2,263 research outputs found

    Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices

    Get PDF
    Accurate crop yield forecasting is essential in the food industry’s decision-making process, where vegetation condition index (VCI) and thermal condition index (TCI) coupled with machine learning (ML) algorithms play crucial roles. The drawback, however, is that a one-fits-all prediction model is often employed over an entire region without considering subregional VCI and TCI’s spatial variability resulting from environmental and climatic factors. Furthermore, when using nonlinear ML, redundant VCI/TCI data present additional challenges that adversely affect the models’ output. This study proposes a framework that (i) employs higher-order spatial independent component analysis (sICA), and (ii), exploits a combination of the principal component analysis (PCA) and ML (i.e., PCA-ML combination) to deal with the two challenges in order to enhance crop yield prediction accuracy. The proposed framework consolidates common VCI/TCI spatial variability into their respective subregions, using Vietnam as an example. Compared to the one-fits-all approach, subregional rice yield forecasting models over Vietnam improved by an average level of 20% up to 60%. PCA-ML combination outperformed ML-only by an average of 18.5% up to 45%. The framework generates rice yield predictions 1 to 2 months ahead of the harvest with an average of 5% error, displaying its reliability

    Modelling and predicting durum wheat yield and quality in Mediterranean environments

    Get PDF
    Durum wheat (Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean environments, where yield and grain protein content are usually constrained by environmental variables. A 1.4 million ha of durum wheat are currently grown in Italy with an average production of 4 million tons and an average yield of 3.8 t/ha. 73% of the production, which accounts for 65% of total production, is located in South Italy, while in the Northern regions yield is usually higher due to different pedology and climatic conditions. The cultivation of durum wheat in Italy generates a vast range of allied activities, “upstream” such as seed and technical supplies industries, and “downstream” such as storage centries, primary and secondary transformation industries. Due to the strategic importance of the durum wheat production, a tool able to accurately predict yield and grain protein content before harvesting and an assessment of the agronomic and environmental variables that most influence the quantitative and qualitative parameters in the Mediterranean environments, can be of great value in policy planning. Currently the national and international agricultural statistics services provide regular updates during the growing season of total acreage planted with a specific crop, as well as the expected yield levels. Traditionally, forecasts have been based on a combination of scouting reports as well as statistical techniques based on historical data. Based on the expected yield, the price of grain can vary significantly, with a high impact on both commodity prices and farmers incomes. Growing season forecasts of crop yields are therefore of considerable interest also to commodity market participants and price analysts. Crop simulation models can play a critical role in crop yield and quality forecasting applications: the relatively low cost and speed of assessment makes crop growth simulation models promising for areas where meteorological information is readily available. The overall aim of the present study was to test the predictive capability of Delphi system, based on the AFRCWHEAT2 model, for yield and quality forecast at local and regional scale in long-term analysis and to determine the general principles underlying how Mediterranean environments affects grain protein content (GPC). General findings allowed us to implement a new simple model with high predictive ability in terms of GPC, only based on gridded climate data, supporting strongly the key role played by weather pattern for a crop such as durum wheat under rainfed conditions.openDottorato di ricerca in Economia, ecologia e tutela dei sistemi agricoli e paesistico ambientaliembargoed_20151029Toscano, Pier

    Economic benefits of the National Cooperative Soil Survey Program

    Get PDF
    The National Cooperative Soil Survey (NCSS) is the primary source of information on the soil resources in the U.S. The information provided by the NCSS program has played a significant and important role in diverse fields. This study estimates the net benefits of the information provided by the soil survey program to the production of selected crops. Benefit estimates are based on relative productivity gains related to the provision of soil information at the county level. The estimated value of increased crop yields less estimated soil survey production costs provides a lower-bound estimate of the total economic benefits of the NCSS.;The structure of the NCSS program provides a spatial-temporal pattern to the development of county level soil information that can be interpreted as a natural experiment where the outcomes provide a means of estimating a partial benefit of the value of soil survey information in agriculture production. Benefit-cost ratios are utilized to evaluate the effectiveness of the NCSS program.;A benefit-cost analysis of the NCSS for the corn and soybeans production regions based on a 7% discount rate gave a benefit-cost ratio of 7:1 for the correlation date scenario and 5:1 for the publication date scenario. This suggests that even the lower bound estimate of benefits based on productivity increases for just two crops, corn and soybeans, outweighs the cost of the entire soil survey program for the study region.;The results from the benefit-cost analysis suggest that the NCSS program is economically viable in areas of the country considered. This is a promising result given the incomplete nature of the currently available data. In summary, this research seeks to compute a lower-bound estimate of the economic benefits of the NCSS for major crops and thus contribute to the documentation of the value of information provided by the NCSS

    Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI

    Get PDF
    Space-based cropland phenology monitoring substantially assists agricultural managing practices and plays an important role in crop yield predictions. Multitemporal satellite observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or by deriving biophysical variables. The Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant and multi-cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a workflow for cropland phenology characterization and mapping based on time series of green Leaf Area Index (LAI) generated from NASA’s Harmonized Landsat 8 (L8) and Sentinel-2 (S2) surface reflectance dataset from 2016 to 2019. LAI time series were processed for each satellite dataset, which were used separately and combined to identify seasonal dynamics for a selection of crop types (wheat, clover, maize and rice). For the combination of L8 with S2 LAI products, we proposed two time series smoothing and fitting methods: (1) the Savitzky–Golay (SG) filter and (2) the Gaussian Processes Regression (GPR) fitting function. Single-sensor and L8-S2 combined LAI time series were used for the calculation of key crop Land Surface Phenology (LSP) metrics (start of season, end of season, length of season), whereby the detection of cropland growing seasons was based on two established threshold methods, i.e., a seasonal or a relative amplitude value. Overall, the developed phenology extraction scheme enabled identifying up to two successive crop cycles within a year, with a superior performance observed for the seasonal than for the relative threshold method, in terms of consistency and cropland season detection capability. Differences between the time series collections were analyzed by comparing the phenology metrics per crop type and year. Results suggest that L8-S2 combined LAI data streams with GPR led to a more precise detection of the start and end of growing seasons for most crop types, reaching an overall detection of 74% over the total planted crops versus 69% with S2 and 63% with L8 alone. Finally, the phenology mapping allowed us to evaluate the spatial and temporal evolution of the croplands over the agroecosystem in the Nile Delta.E.A. was supported by the predoctoral scholarship, grant number ACIF/2019/187, funded by the Generalitat Valenciana and co-funded by the European Social Fund. J.V. and S.B. were supported by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project, grant number 755617. J.V. was additionally supported by a Ramón y Cajal Contract (Spanish Ministry of Science, Innovation and Universities). S.B. was additionally supported by the Generalitat Valenciana SEJIGENT program (SEJIGENT/2021/001) and European Union—NextGenerationEU (ZAMBRANO 21-04)

    Economic Modeling of Agricultural Production in North Dakota Using Transportation Analysis and Forecasting

    Get PDF
    Agricultural industry is crucial for the economy; agricultural transportation is an integrated part of that industry. Optimization of the transportation and logistics costs is an important part of the transportation economics. This study focuses on the minimization of the total cost of transportation logistics. Sugar-beet is one of the important crops in the state of North Dakota and there has been sporadic research in the sugar-beet transportation economic modeling. Therefore, this research focuses on the transportation economic modeling of the sugar-beet including yield forecasting to reduce the uncertainty in this process. This study begins with developing a yield forecasting model which is presented as a way to sustain the agricultural transportation under stochastic environments. The stochastic environment includes variation in weather conditions, precipitation, soil type, and randomness of natural disasters. The yield forecasting model developed uses Normalized Difference Vegetation Index (NDVI), Geographical Information System (GIS), and statistical analysis. The second part of this study focuses on economic model to calculate the total cost associated with the sugar-beet transportation. This model utilizes the GIS analysis to calculate the distances travelled from member coop farms during harvest and transport to processing facilities in various locations. This model sheds light on the critical cost factors associated with the total economic analysis of sugar-beet harvest, transportation, and production. Since the sugar-beet yield varies significantly based on different factors, it provides for a variable optimal harvesting time based on the plant maturity and sugar content. Sub-optimized pilers location result in the high transportation and utilization costs. The third part of this research focuses on minimizing the sum of transportation costs to and from pilers and the piler utilization cost. A two-step algorithm, based on the GIS with global optimization method, is used to solve this problem. In conclusion, this research will provide a primary stepping stone for farmers, planners, and engineers to develop a data driven analytical tool which will help to minimize the total logistics cost of the sugar-beet crop while at the same time keeping the sugar content intact and predict the sugar yield and truck volume

    Multi-Criteria Evaluation Model for Classifying Marginal Cropland in Nebraska Using Historical Crop Yield and Biophysical Characteristics

    Get PDF
    Marginal cropland is suboptimal due to historically low and variable productivity and limiting biophysical characteristics. To support future agricultural management and policy decisions in Nebraska, U.S.A, it is important to understand where cropland is marginal for its two most economically important crops: corn (Zea mays) and soybean (Glycine max). As corn and soybean are frequently planted in a crop rotation, it is important to consider if there is a relationship with cropland marginality. Based on the current literature, there exists a need for a flexible yet robust methodology for identifying marginal land at different scales, which takes advantage of high spatial and temporal resolution data and can be applied by researchers and outreach professionals alike. This research seeks to individually identify where cropland is marginal for corn and soybean as well as classify the extent of marginality that exists. This research also seeks to classify cropland as being part of a long-term corn-soybean crop and see if marginality differs between this cropland and the remainder of cropland. Two crop-specific multi-criteria evaluations (MCE), consisting of crop production, climate, and soil criteria, was performed using Google Earth Engine to identify and classify marginal cropland. Criteria were individually thresholded before addition to the MCEs. Cropland that was classified as part of a long-term corn-soybean crop rotation was identified by factoring in the balance of corn and soybean occurrence on long established cropland. Most cropland in Nebraska has at least some marginality for corn while most has no marginality for soybean. Marginality classification is spatially distributed with increasing marginality from the northeast to the southwest. Cropland under a long-term crop rotation shows much less marginality compared to non-rotation cropland. This study improves upon previous attempts to identify marginal cropland in Nebraska by increasing spatial and temporal resolution, providing a programmatic and replicable methodology, and confining the classification to existing cropland. The implications of these findings are useful for policy makers and agricultural extension efforts in Nebraska to identify opportunities for conservation, solar energy capture, and biofuel production on cultivated land. Advisor: Yi Q

    Testing the temporal ability of landsat imagery and precision agriculture technology to provide high resolution historical estimates of wheat yield at the farm scale

    Get PDF
    The long term archiving of both Landsat imagery and wheat yield mapping datasets sensed by precision agriculture technology has the potential through the development of statistical relationships to predict high resolution estimates of wheat yield over large areas for multiple seasons. Quantifying past yield performance over different growing seasons can inform agricultural management decisions ranging from fertilizer applications at the sub-paddock scale to changes in land use at a landscape scale. However, an understanding of the magnitude of prediction errors is needed. In this study, we examine the predictive wheat yield relationships developed from Normalised Difference Vegetation Index (NDVI) acquired Landsat imagery and combine-mounted yield monitors for three Western Australian farms over different growing seasons. We further analysed their predictive capability when these relationships are used to extrapolate yield from one farm to another. Over all seasons, the best predictions were achieved with imagery acquired in September. Of the five seasons reviewed, three showed very reasonable prediction accuracies, with the low and high rainfall years providing good predictions. Medium rainfall years showed the greatest variation in prediction accuracy with marginal to poor predictions resulting from narrow ranges of measured wheat yield and NDVI values. These results demonstrate the potential benefit of fusing together two high resolution datasets to create robust wheat yield prediction models over different growing seasons, the outputs of which can be used to inform agricultural decision making.Greg Lyle, Megan Lewis and Bertram Ostendor

    Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices

    Get PDF
    Accurate crop yield forecasting is essential in the food industry’s decision-making process, where vegetation condition index (VCI) and thermal condition index (TCI) coupled with machine learning (ML) algorithms play crucial roles. The drawback, however, is that a one-fits-all prediction model is often employed over an entire region without considering subregional VCI and TCI’s spatial variability resulting from environmental and climatic factors. Furthermore, when using nonlinear ML, redundant VCI/TCI data present additional challenges that adversely affect the models’ output. This study proposes a framework that (i) employs higher-order spatial independent component analysis (sICA), and (ii), exploits a combination of the principal component analysis (PCA) and ML (i.e., PCA-ML combination) to deal with the two challenges in order to enhance crop yield prediction accuracy. The proposed framework consolidates common VCI/TCI spatial variability into their respective subregions, using Vietnam as an example. Compared to the one-fits-all approach, subregional rice yield forecasting models over Vietnam improved by an average level of 20% up to 60%. PCA-ML combination outper-formed ML-only by an average of 18.5% up to 45%. The framework generates rice yield predictions 1 to 2 months ahead of the harvest with an average of 5% error, displaying its reliability

    Advancing agricultural monitoring for improved yield estimations using SPOT-VGT and PROBA-V type remote sensing data

    Full text link
    Accurate and timely crop condition monitoring is crucial for food management and the economic development of any nation. However, accurately estimating crop yield from the field to global scales is a challenge. According to the global strategy of the World Bank, in order to improve national agricultural statistics, crop area, crop production, and crop yield are key variables that all countries should be able to provide. Crop yield assessment requires that both an estimation of the quantity of a product and the area provided for that product should be available. The definition seems simple; however, these measurements are time consuming and subject to error in many circumstances. Remote sensing is one of several methods used for crop yield estimation. The yield results from a combination of environmental factors, such as soil, weather, and farm management, which are responsible for the unique spectral signature of a crop captured by satellite images. Additionally, yield is an expression of the state, structure, and composition of the plant. Various indices, crop masks, and land observation sensors have been developed to remotely observe and control crops in different regions. This thesis focuses on how much low spatial resolution satellites, such as Project for On Board Autonomy Vegetation (PROBA V), can contribute to global crop monitoring by aiding the search for improved methods and datasets for better crop yield estimation. This thesis contains three chapters. The first chapter explores how an existing product, Dry Matter Productivity (DMP), that has been developed for Satellites Pour l’Observation de la Terre or Earth observing Satellites VeGeTation (SPOT VGT), and transferred to PROBA V, can be improved to more closely relate to yield anomalies across selected regions. This chapter also covers the testing of the contribution of stress factors to improve wheat and maize yield estimations. According to Monteith’s theory, crop biomass linearly correlates with the amount of Absorbed Photosynthetically Active Radiation (APAR) and constant Radiation Use Efficiency (RUE) downregulated by stress factors such as CO2, fertilization, temperature, and water stress. The objective of this chapter is to investigate the relative importance of these stress factors in relation to the regional biomass production and yield. The production efficiency model Copernicus Global Land Service Dry Matter Productivity (CGLS DMP), which follows Monteith’s theory, is modified and evaluated for common wheat and silage maize in France, Belgium, and Morocco using SPOT VGT for the 1999–2012 period. The correlations between the crop yield data and the cumulative modified DMP, CGLS DMP, Fraction of APAR (fAPAR), and Normalized Difference Vegetation Index (NDVI) values are analyzed for different crop growth stages. The best results are obtained when combinations of the most appropriate stress factors are included for each selected region, and the modified DMP during the reproductive stage is accumulated. Though no single solution can demonstrate an improvement of the global product, the findings support an extension of the methodology to other regions of the world. The second chapter demonstrates how PROBA V can be used effectively for crop identification mapping by utilizing spectral matching techniques and phenological characteristics of different crop types. The study sites are agricultural areas spread across the globe, located in Flanders (Belgium), Sria (Russia), Kyiv (Ukraine), and Sao Paulo (Brazil). The data are collected for the 2014–2015 season. For each pure pixel within a field, the NDVI profile of the crop type for its growing season is matched with the reference NDVI profile. Three temporal windows are tested within the growing season: green up to senescence, green up to dormancy, and minimum NDVI at the beginning of the growing season to minimum NDVI at the end of the growing season. In order of importance, the crop phenological development period, parcel size, shorter time window, number of ground truth parcels, and crop calendar similarity are the main reasons behind the differences between the results. The methodology described in this chapter demonstrates the potentials and limitations of using 100 m PROBA V with revisiting frequency every 5 days in crop identification across different regions of the world. The final chapter explores the trade off between the different spatial resolutions provided by PROBA V products versus the temporal frequency and, additionally, explores the use of thermal time to improve statistical yield estimations. The ground data are winter wheat yields at the field level for 39 fields across Northern France during one growing season 2014–2015. An asymmetric double sigmoid function is fitted, and the NDVI values are integrated over thermal time and over calendar time for the central pixel of the field, exploring different thresholds to mark the start and end of the cropping season. The integrated NDVI values with different NDVI thresholds are used as a proxy for yield. In addition, a pixel purity analysis is performed for different purity thresholds at the 100 m, 300 m, and 1 km resolutions. The findings demonstrate that while estimating winter wheat yields at the field level with pure pixels from PROBA V products, the best correlation is obtained with a 100 m resolution product. However, several fields must be omitted due to the lack of observations throughout the growing season with the 100 m resolution dataset, as this product has a lower temporal resolution compared to 300 m and 1 km. This thesis is a modest contribution to the remote sensing and data analysis field with its own merits, in particular with respect to PROBA V. The experiments provide interesting insight into the PROBA V dataset at 1 km, 300 m, and 100 m resolutions. Specifically, the results show that 100 m spatial resolution imagery could be used effectively and advantageously in agricultural crop monitoring and crop identification at local – field level – and regional – the administrative regions defined by the national governments – levels. Furthermore, this thesis discusses the limitations of using a low resolution satellite, such as the PROBA V 100 m dataset, in crop monitoring and identification. Also, several recommendations are made for space agencies that can be used when designing the new generation of satellites
    • …
    corecore