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ABSTRACT 

MULTI-CRITERIA EVALUATION MODEL FOR CLASSIFYING MARGINAL  

CROPLAND IN NEBRASKA USING HISTORICAL CROP YIELD AND  

BIOPHYSICAL CHARACTERISTICS 

Andrew Roy Laws, M.S. 

University of Nebraska, 2022 

Advisor: Yi Qi 

Marginal cropland is suboptimal due to historically low and variable productivity 

and limiting biophysical characteristics. To support future agricultural management and 

policy decisions in Nebraska, U.S.A, it is important to understand where cropland is 

marginal for its two most economically important crops: corn (Zea mays) and soybean 

(Glycine max). As corn and soybean are frequently planted in a crop rotation, it is 

important to consider if there is a relationship with cropland marginality. Based on the 

current literature, there exists a need for a flexible yet robust methodology for identifying 

marginal land at different scales, which takes advantage of high spatial and temporal 

resolution data and can be applied by researchers and outreach professionals alike. This 

research seeks to individually identify where cropland is marginal for corn and soybean 

as well as classify the extent of marginality that exists. This research also seeks to 

classify cropland as being part of a long-term corn-soybean crop and see if marginality 

differs between this cropland and the remainder of cropland. Two crop-specific multi-

criteria evaluations (MCE), consisting of crop production, climate, and soil criteria, was 

performed using Google Earth Engine to identify and classify marginal cropland. Criteria 

were individually thresholded before addition to the MCEs. Cropland that was classified 



 

as part of a long-term corn-soybean crop rotation was identified by factoring in the 

balance of corn and soybean occurrence on long established cropland.  

Most cropland in Nebraska has at least some marginality for corn while most has 

no marginality for soybean. Marginality classification is spatially distributed with 

increasing marginality from the northeast to the southwest. Cropland under a long-term 

crop rotation shows much less marginality compared to non-rotation cropland. This study 

improves upon previous attempts to identify marginal cropland in Nebraska by increasing 

spatial and temporal resolution, providing a programmatic and replicable methodology, 

and confining the classification to existing cropland. The implications of these findings 

are useful for policy makers and agricultural extension efforts in Nebraska to identify 

opportunities for conservation, solar energy capture, and biofuel production on cultivated 

land.
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CHAPTER 1: INTRODUCTION 

1.1 Topic and Context 

Marginal land has been a trending topic for well over a decade, especially for 

biofuel production in the United States and around the world (Khanna et al., 2021). 

However, despite its trending status, defining marginal land can be difficult as this 

changes based on the aim and scope of a study (Lewis & Kelly, 2014). The definition of 

marginal land used for this study, hereon referred to as marginal cropland, refers to 

cropland that is suboptimal due to historically low and variable productivity and limiting 

biophysical characteristics. This definition differs from many studies, as they do not 

constrain the classification to a single land class such as cropland (Gopalakrishnan et al., 

2011; Kang et al., 2013; Lewis & Kelly, 2014; P. Yang et al., 2020). The constraint on 

land classification is important as cropland expansion during the last two decades often 

results in cropland that produces less than average yields and harmful impacts to wildlife 

nesting and living habitat (Lark et al., 2020).  

Marginal land has been highly sought after for biofuels production, in particular 

for the growth of perennial biomass crops such as switchgrass (Panicum virgatum) and 

miscanthus (Miscanthus sp.) (Feng et al., 2017). This was driven in part by concerns that 

biofuel production could reduce grain production and raise grain prices, especially if 

biofuel crop prices caused displacement of food crops on the highest quality land 

(Elobeid & Hart, 2007; G. Cassman & Liska, 2007; Swinton et al., 2011). Perennial 

biomass crops also offer important environmental benefits such as improved soil health, 

wildlife habitat, and carbon sequestration (Augustenborg et al., 2012; Swinton et al., 
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2011). However, the focus on biofuel production has overshadowed other opportunities 

for marginal cropland which include conservation practice and solar energy capture.  

Conservation practices such as conservation tillage, crop rotations, and cover 

crops have shown improved soil health, crop yields, and reductions in nutrient loads in 

streams (García et al., 2016; Nunes et al., 2018). Conservation practices can often be 

integrated into existing cropping systems with minimal changes and assistance, both 

technical and financial, offered by university extension and government programs. In the 

U.S., many of these programs are administered by two agencies within the U.S. 

Department of Agriculture (USDA), the Natural Resources Conservation Service (NRCS) 

and the Farm Service Agency (FSA). Such programs include the Environmental Quality 

Incentives Program (EQIP) from the USDA-NRCS and the Conservation Reserve 

Program from the USDA-FSA. However, there is a complex system of motivations and 

barriers that influence farmers’ willingness to adopt conservation practices (Ranjan et al., 

2019). This complex system is becoming increasingly studied, resulting in insights that 

intend to contribute to the application of conservation practices on marginal cropland. 

Interest in solar energy capture on existing or abandoned croplands is growing, 

both from consumers and researchers. Croplands are ideal for solar power as they are 

often flat, contain nearby access roads, and access to electric transmission lines. Marginal 

croplands, particularly large expanses, are prime candidates for agrivoltaic systems, 

which combine crop production with solar power generation (Macknick et al., 2013). 

Agrivoltaic systems could improve economic returns through increased land-use 

efficiency, allow for continue food grain production, and even support growth of 

perennial biofuel crops such as switchgrass with the right installation considerations 
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(Macknick et al., 2013; Proctor et al., 2020; Tsai et al., 2020). While solar energy capture 

on cropland faces some issues such as local zoning codes and crop shading and requires 

additional study, it offers another potential use case for marginal cropland.  

1.2 Focus and Scope 

Nebraska was chosen as the study area due to the importance of agriculture, both 

socially and economically, to the state. Agriculture accounts for 92% of the state’s land 

area, 22% of the gross state product, and a quarter of its jobs (Nebraska Department of 

Agriculture, 2021; Thompson et al., 2020). Cropland is the one of the largest land use 

classifications in Nebraska, accounting for 47% of the state’s land area (51% of all 

agricultural land) (Nebraska Department of Agriculture, 2021). Two crops, corn (Zea 

mays) and soybean (Glycine max), are the focus of this research as they are the two most 

valuable crops in terms of yearly production (Thompson et al., 2020). Therefore, 

understanding the extent of marginal cropland for each crop is important for guiding 

future agricultural policy, management practices, and outreach efforts in the state of 

Nebraska. However, the application of policy and practice on marginal cropland requires 

understanding underlying cropland characteristics at scales useful for outreach and 

research. A study period from 1999-2018 and final spatial resolution of 30 meters was 

pursued to take advantage of current, publicly available datasets while accounting for 

long-term trends and state and field-level considerations. 

1.3 Background 

 Marginal land has been studied with differing methodologies and definitions. 

What follows is a selection of these methods and definitions with commentary on 

advantages and/or weaknesses. Gopalakrishnan et al. (2011) sought to identify marginal 
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land in Nebraska using economic, soil health, and environmental criteria. The study 

found that over 1.6 million hectares of land in Nebraska could be classified as marginal 

for two or more of the criteria (Gopalakrishnan et al., 2011). A novel method for 

identifying marginal land at the time, Gopalakrishnan et al. (2011) provided an original 

method that considered new areas such as highway or right-of-way medians, brownfield 

sites, and areas with nitrogen contamination from runoff. However, some issues present 

in the study include relying on the National Commodity Crop Productivity Index, which 

is derived by underlying soil characteristics for rainfed cropland, as well as not 

considering the influences of climate or irrigation (Gopalakrishnan et al., 2011). 

Peter et al. (2018) developed a model to identify marginal agricultural land for 

corn that was generalizable for decision making at different spatial scales. This study 

used long-term productivity, biophysical characteristics, and temporal climactic 

thresholds. This methodology also sought to manage issues brought on by the modifiable 

areal unit problem, errors of commission, and the ecological fallacy problem (Peter et al., 

2018). The key addition to marginal land identification was the generalizability at 

different spatial scales which was accomplished by using a quantile classification 

algorithm for yield. The quantile classification can also be applied to other non-binary 

characteristics to generalize at-scale. 

Machine learning has been applied to mapping marginal land by several recent 

studies. Yang et al. (2020) used biophysical properties, including climate, soil, and land 

slope, to estimate their impact on yields of six major crops across the continental United 

States (CONUS). The result was a machine learning derived, unconstrained map of 

productivity potential across CONUS at a 250-meter resolution. Yang et al. (2021) 
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expanded beyond productivity and biophysical predictors by incorporating a 

socioeconomic input derived from a study of farmers’ perceptions of marginal land. 

These were used to train a machine learning model and derive maps of marginal 

likelihood and the underlying issues at a 250-meter spatial resolution on agricultural land. 

While both methods take advantage of the predictive capabilities of machine learning, the 

spatial resolution of their outputs are coarse for making decisions at the subfield level. 

Additionally, applying machine learning solutions requires a level of expertise that is not 

always available to all users. 

Based on the current literature, there exists a need for a flexible yet robust 

methodology for identifying marginal land at different scales, which takes advantage of 

high spatial and temporal resolution data and can be applied by researchers and outreach 

professionals alike. The methodology should consider criteria that are relevant to 

cropland and thresholds guided by crop considerations where applicable. The 

methodology should replicable and the results understandable without the need for 

advanced statistical or machine learning knowledge. Finally, a conversation about crop 

rotation and marginal cropland has been lacking in the literature and should be examined. 

1.4 Research Questions 

Based on the considerations put forth by the literature and the identified 

knowledge gap, the following research questions are considered in this study: 

1) For corn and soybean, where can marginal cropland be identified for each crop 

specifically using historical crop yield and biophysical criteria? 
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2) For the land identified as marginal, what classification of marginality is present: 

none, low, moderate, or high? 

• What are the spatial trends of cropland marginality classifications for each 

crop? 

• Are there any relationships between the spatial trends of cropland 

marginality and farmland prices? 

3) Where can a long-term crop rotation (corn-soybean) on cropland be classified? 

• What temporal period or temporal crop occurrence ratio will sufficiently 

identify cropland that experience the benefits of long-term crop rotations? 

4) Does marginality differ between cropland under a long-term crop rotation (corn-

soybean) and cropland not under a long-term crop rotation?  

The method proposed in this research considers the inputs of productivity and 

biophysical predictors, including climate and soil characteristics, while leaving open the 

option for adding socioeconomic inputs as they become available at scales useful for 

field-level application. Long-term crop rotations will be identified to further understand 

their interactions with marginal cropland, which has not been well studied. Identifying 

long-term crop rotations will also help target solutions that take advantage of crop 

rotations. To aid in applicability to other spatial extents and scales, the final methodology 

will be made available through Google Earth Engine (GEE). 

  



7 

 

CHAPTER 2: METHODS 

2.1 Analytical Model and Technology 

A crop-specific multi-criteria evaluation (MCE) was chosen as the analytical 

model due to its frequent use for suitability analysis and for identifying potential 

marginal land use (Malczewski, 2004; Voivontas et al., 1998). As the analytical model 

seeks to be adaptable and straightforward for broader use, the model uses unweighted, 

boolean overlays for the final classification. boolean overlays for each model were either 

procured input-ready or processed into boolean images using thresholding or a set of 

conditional determinants. Overlays with temporal stacks were aggregated using mean or 

summary values. A cropland mask was applied to the final classification to constrain the 

analysis to existing cropland due to environmental and productivity concerns of cropland 

expansion (Lark et al., 2020).  

Tabular data inspection and cleaning for ingestion into GIS was done using 

Microsoft Excel (Microsoft Excel, 2021). White space was removed from the tops of 

tables, column headers formatted, and column data types set in Excel. Disparate 

worksheets representing agricultural fields were combined into a single worksheet. 

Spatial data preprocessing and creation was handled using Python Notebooks in ESRI’s 

ArcGIS Pro, which was also used for map creation (ESRI, 2021). Tabular ENREC yield 

data was ingested into a Spatially Enabled DataFrame (SEDF) inside ArcGIS Pro using 

Python, all null cells converted to zeroes, and yearly point feature layers of yield created 

from latitude and longitude columns in the SEDF. Finally, a Python script was run to 

convert each yield feature layer to a 30-meter spatial resolution raster of yield using a 

mean bilinear interpolation. 
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Google Earth Engine (GEE) was chosen as the primary GIS to perform the MCE 

due to the large number of available datasets, cloud computing capabilities, and ability to 

ingest user data (Gorelick et al., 2017). GEE allows for analyzing spatial and temporal 

trends through an integrated code editor written in Javascript but there also an official 

Python API in addition to Python and R libraries created by other developers (Aybar et 
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al., 2020; Wu, 2020). Data and images were exported from GEE to Google Drive while 

data was analyzed and visualized using Python in Google Colaboratory (Bisong, 2019).  

2.2 Constraint Masks  

The cropland mask was created using the Corn-Soy Data Layer (CSDL) (Table 

2.1) (Wang et al., 2020). First, the CSDL was filtered to images corresponding to the 

years 2015-2018. Next, the temporal stack was reduced to a single image, with pixel 

values greater than or equal to 1 signally where cropland occurred at least once during the 

period, then clipped to Nebraska. The 2015-2018 time period was chosen to capture the 

latest trends in cropland expansion, take into consideration fields that go in and out of 

fallow status, and account for the conversion of cropland to residential use near urban 

areas (Lark et al., 2020). As mentioned above, the cropland mask is used to constrain 

results of the MCE and for intermediate analysis. 

The irrigation status mask was created using the Landsat-based Irrigation Dataset 

for the United States (LANID), which maps irrigation on a yearly basis from 1999-2017 

(Table 2.1) (Xie & Lark, 2021). Image bands contain boolean pixel values for irrigation 

status, with 1 corresponding to an irrigated pixel and 0 a rainfed pixel. A cumulative 

pixel value for the temporal stack was calculated and values greater than or equal to 13, 

which represents most of the temporal stack being irrigated, labelled as under long-term 

irrigation. There are several assumptions considered with this calculation. First, the 

capital cost of irrigation systems would prevent user drop-out if the system remains in an 

operational condition. Second, irrigated land under the purview of a permitting agency or 

other top-down governance may use a non-consecutive irrigation regime in response to 

restrictions on agricultural water use (J. Luck, personal communication, 9/24/2021; T. 
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Franz, personal communication, 9/24/2021). Lastly, irrigation plays an important role in 

agriculture, allowing crops to grow during extreme climate conditions and raising the 

threshold for negative impacts on yield compared to rainfed (Lobell et al., 2009; Troy et 

al., 2015). As the MCE looks at long-term impacts, the resulting impacts on yield could 

be better parsed using this calculation. 

2.2 Criteria 

 The criteria chosen for the final crop-specific MCE were productivity, heat stress, 

slope, soil organic content, available water storage, droughty soils, ponding soils, and 

root zone depth. The criteria broadly represent four categories: economic returns (yield), 

climate (heat stress), accessibility and safety of cropland (slope) and soil and soil health 

(soil organic content, available water storage, droughty soils, ponding soils, and root zone 

depth). Most of the criteria chosen are common to other studies on marginal land.  

2.2.1 Productivity  

2.2.1.1 Mean Crop Yield 

Yield calculation has been done using a semi-empirical model by converting 

remote sensed accumulated biomass to final yield using a crop-specific conversion 

equation (Jaafar & Ahmad, 2015; Marshall et al., 2018). This requires an observation of a 

specific crop in time and space and a measurement of the accumulated biomass. The 

CSDL dataset was chosen to meet the first requirement as it contained yearly 

observations of corn, soybean, and cropland from 1999-2018. The CSDL was chosen 

over the commonly used USDA National Agricultural Statistical Service (NASS) 

Cropland Data Layer (CDL) as the CSDL allows for longer temporal analysis due to its 

increased accuracy and coverage from 1999-2007 (Wang et al., 2020). CSDL has  



11 

 

  

  
  

M
a

rg
in

a
l 

T
h

re
sh

o
ld

 
  

  
  

C
ri

te
r
ia

 
D

a
ta

se
t(

s)
 

C
o

rn
 

S
o

y
b

ea
n

 

S
p

a
ti

a
l 

R
es

o
lu

ti
o

n
 

T
em

p
o

ra
l 

R
es

o
lu

ti
o

n
  

S
o

u
rc

e
 

Y
ie

ld
 

C
S

D
L

 
<

 3
3
rd

 p
er

ce
n
ti

le
 m

ea
n
 2

0
-y

ea
r 

y
ie

ld
 a

n
d
  
  

<
 5

0
th

 p
er

ce
n
ti

le
 2

0
-y

ea
r 

st
an

d
ar

d
 

d
ev

ia
ti

o
n
 o

f 
y
ie

ld
 p

er
 i

rr
ig

at
io

n
 c

la
ss

 

3
0
 m

 
1
 y

ea
r 

W
an

g
 e

t 
al

. 
2
0
2
0

 

L
an

d
sa

t 

G
P

P
 

3
0
 m

 
1

6
 d

ay
 

R
o
b
in

so
n
 e

t 
al

. 

2
0
1
8
 

H
ea

t 
S
tr

es
s 

D
ay

m
et

 V
4

 

≥
1
4
 y

ea
rs

 w
it

h
 ≥

6
 

d
ay

s 
w

it
h
 a

 T
m

ax
 ≥

 

3
3
.8

°C
 d

u
ri

n
g
 t

h
e 

si
lk

in
g
 p

er
io

d
 

≥
1
4
 y

ea
rs

 w
it

h
 ≥

6
 

d
ay

s 
w

it
h
 a

 T
m

ax
 ≥

 

3
5
.0

°C
 d

u
ri

n
g
 

fl
o
w

er
in

g
 a

n
d
 

ea
rl

y
 g

ra
in

 f
il

li
n
g
 

p
er

io
d
 

1
0
0
0
 m

 
1
 d

ay
 

A
b
at

zo
g
lo

u
 2

0
1
3

 

S
lo

p
e 

3
D

E
P

 D
E

M
 

6
° 

o
r 

1
2

%
  

1
0
 m

 
N

/A
 

U
S

G
S

 2
0
2
1

 

P
o
n

d
in

g
 

g
S

S
U

R
G

O
 

P
ix

el
 v

al
u
es

 g
re

at
er

 t
h
an

 0
.3

3
 

1
0
 m

 
N

/A
 

U
S

D
A

-N
R

C
S

 

2
0
2
1
 

D
ro

u
g
h
ty

 
g
S

S
U

R
G

O
 

P
ix

el
 v

al
u
e 

o
f 

1
 

1
0
 m

 
N

/A
 

U
S

D
A

-N
R

C
S

 

2
0
2
1
 

R
o
o
t 

Z
o
n
e 

D
ep

th
 

g
S

S
U

R
G

O
 

<
1
5
0
 c

m
 

<
9
0
 c

m
 

1
0
 m

 
N

/A
 

U
S

D
A

-N
R

C
S

 

2
0
2
1
 

A
va

il
a
b
le

 

W
a
te

r 

S
to

ra
g
e 

g
S

S
U

R
G

O
 

1
8
.8

 c
m

 o
f 

A
W

S
 i

n
 

0
-1

5
0
 c

m
 s

o
il

 

h
o
ri

zo
n
 

1
2
.5

 c
m

 o
f 

A
W

S
 

in
 0

-1
0
0
 c

m
 s

o
il

 

h
o
ri

zo
n
 

1
0
 m

 
N

/A
 

U
S

D
A

-N
R

C
S

 

2
0
2
1
 

S
o
il

 

O
rg

a
n
ic

 

C
o
n
te

n
t 

g
S

S
U

R
G

O
 

<
 2

5
th

 p
er

ce
n
ti

le
 

S
O

C
sc

o
re

3
0

,1
5

0
 

<
 2

5
th

 p
er

ce
n
ti

le
 

S
O

C
sc

o
re

3
0

,1
0

0
 

1
0
 m

 
N

/A
 

U
S

D
A

-N
R

C
S

 

2
0
2
1
 

 

T
ab

le
 2

.2
: 

S
u
m

m
ar

y
 o

f 
M

C
E

 c
ri

te
ri

a 
th

re
sh

o
ld

s 
an

d
 d

at
as

et
s.

 

 



12 

 

consistent observations with CDL from 2008-2018 due in part to CSDL using CDL and 

Landsat imagery to train a machine learning model to perform hindcasting (Wang et al., 

2020). An additional benefit is that CSDL is readily available in GEE. An example of the 

CSDL dataset can be seen in Figure A.2. 

Accumulated biomass is often represented by one of two values: gross primary 

productivity (GPP) or net primary productivity (NPP). GPP is a measurement of the 

fraction of photosynthetically active radiation that is absorbed by vegetation throughout 

the growing season. NPP is GPP minus the energy lost to the environment through 

respiration costs. Other research has used NPP to calculate yield but early work in this 

study and others showed that using NPP often resulted in low yield estimation (Reeves et 

al., 2005; Xin et al., 2013). These measurements came from the Landsat Gross Primary 

Productivity CONUS (Landsat GPP) dataset by the University of Montana Numerical 

Terradynamic Simulation Group (Robinson et al., 2018). An example of the Landsat GPP 

dataset can be seen in Figure A.3. 

Gross primary production was initially converted to crop production (tonnes) 

using a harvest index (HI), root: shoot ratio (R:S), moisture content (MC), and the area 

represented by the pixel (Apx), an adaptation of Prince et al., 2001:  

(𝐸𝑞 2.1)     𝑌𝑖𝑒𝑙𝑑 = 𝐺𝑃𝑃 × 
𝐻𝐼

1 + 𝑅𝑆
 × 

1

1 − 𝑀𝐶
 × 𝐴𝑝𝑥 

Initial testing at the field scale showed the need for a crop-specific correction 

coefficient (Yc), which led to the final equation:  

(𝐸𝑞 2.2)     𝑌𝑖𝑒𝑙𝑑 = 𝐺𝑃𝑃 × 
𝐻𝐼

1 + 𝑅𝑆
 ×  

1

1 − 𝑀𝐶
 × 𝐴𝑝𝑥 ×  𝑌𝑐 
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Crop-specific values for HI, RS, MC, and Yc can be found in Table 2.3. Yc was 

calculated for each crop by summing combine harvester yields and calculated yields 

across all available years of ENREC data, calculating the relative difference between 

combine harvester and calculated yields, and adding 1. Yc, though a simple method of 

correction, was applied to yield calculation at the state level because of several concerns, 

which included: spatial location of ENREC with regards to the spatial extent of Nebraska 

and whether ENREC is represesentative of such broad conditions; small sample sizes of 

crop yield collected from only three fields and fifteen years of data; and limited abilities 

to infer rainfed effects on crop-specific yield as the rainfed field alternates crop plantings. 

The temporal stack was aggregated to find the mean yield for each crop type. Pixels were 

then grouped into irrigated and rainfed pixels using the irrigation status masking layer. 

Pixels with values less than the intragroup 33rd percentile are given a value of 1 

(Gopalakrishnan et al., 2011; Peter et al., 2018).  

2.2.1.2 Yield Variability 

Yield stability is important as it shows that an area provides consistent economic 

returns. Pixels were divided into two groups, stable or variable. This was done by 

calculating the standard deviation of yield of a crop-specific temporal stack. Pixels were 

then grouped into irrigated and rainfed pixels using the irrigation status masking layer. 

Pixels with values greater than the intragroup 50th percentile are given a value of 1 (Peter 

et al., 2018). 

Crop HI RS MC Apx Yc 

Corn 0.53 0.18 0.11 0.09 1.585194402 

Soybean 0.42 0.15 0.1 0.09 0.719686173 

 

Table 2.3: Crop-specific values for yield calculation. 
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2.2.1.3 Combined Productivity Overlay 

 The final productivity criteria image was created by intersecting the pixels with 

the lowest yields with the most variable pixels (Table 2.2). The mean crop yield and yield 

variability images were added together, and overlaps were indicated by a pixel value of 2 

in the resulting image. Values of 2 were reclassified to a value of 1 with all other values 

reclassified to a value 0 and masked to cropland for the final productivity image before 

addition into the MCE. 

2.2.1.4 Analysis and Validation 

Two data sources were used to verify productivity calculations at separate scales 

(Table 2.4). At the field level, crop production from the Eastern Nebraska Research and 

Extension Center (ENREC) was used to calculate Yc (Franz et al., 2020). Data was 

available across a nineteen year period (2000-2018) and three fields under different 

cropping regimes: irrigated straight-cropped corn, irrigated corn-soybean rotation, and 

rainfed corn-soybean rotation (Franz et al., 2020). This data was preprocessed and made 

spatial using Excel and ArcGIS Pro then ingested into GEE, as described in Section 2.1. 

At the county-level, yield data was retrieved from the NASS Quick Stats database for 

both grain and silage then summed into a single yield value (NASS - Quick Stats, 2021). 

Yearly state aggregated NASS yield estimates and calculated yields were graphed with 

Scale Dataset(s) 

Temporal 

Resolution  Source 

Field 
ENREC Harvest 
Data 

1 year Franz et al. 2020 

County/State 
NASS Crops/Stocks   
Agricultural Survey 

1 year 
NASS - Quick Stats 

2021 

 

Table 2.4: Summary of yield verification datasets. 
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linear regression trendlines to visually compare the slopes of each data source over time 

(Figure 3.2).  

Wang et al., 2020 provides validation of cropping area totals against CDL and 

NASS statistics. With using CSDL as the observation source, yield trend validation 

against CDL and NASS yield estimates from 2008-2018 was deemed a prudent step. 

Yield was calculated using Eq2 but the source of observations coming from two different 

sources, CDL and CSDL, across 2008-2018. Yield was summed at the state-level 

resulting in two calculated datasets (YieldCSDL YieldCDL). YieldCSDL, and YieldCDL were 

graphed with linear regression trendlines to visually compare the slopes of each data 

source over time (Figure 3.3).  

2.2.2 Climate 

2.2.2.1 Heat Stress 

 Heat stress can have major impacts on crop growth on rainfed cropland but less so 

on irrigated cropland due to irrigation raising the thresholds for plants to experience 

stressors (Table 2.2) (Lobell et al., 2009). Despite the positive impacts of irrigation, this 

criterion was not restricted to rainfed cropland as Nebraska has had concerns over water 

extraction for cropland irrigation. This concern spans a lawsuit from Kansas over the 

Republican River water depths and potential overextraction of the Ogallala Aquifer and 

impacts of climate change on these practices (Abrams, 2014; Deines et al., 2020).  

 Crop-specific heat stress was determined by examining at what growth stage a 

temperature can impact final yield if experienced for a specific duration (Table 2.5) (L. 

Puntel, personal communication, October 26, 2021). Corn is most susceptible during the 
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silking phase (DOY 163-225) (Elmore & Taylor, 2011; Herrero & Johnson, 1980; 

National Agricultural Statistical Service, 2005). Maximum daily temperatures over 

33.8°C for 6 or more days can reduce corn crop yield 4-10% (Elmore & Taylor, 2011). 

Soybean is most susceptible during the flowering and early grain filling (DOY 163-212) 

at temperatures above 35°C (Gibson & Mullen, 1996; National Agricultural Statistical 

Service, 2005; Vann, 2020). Durations for soybean was matched to corn as durations in 

the literature were generalized.  

The crop-specific heat stress images were created by filtering the Daymet V4 

images to the day of year (DOY) range and year range (1999-2018) (Table 2.2). The 6-

day average of the daily maximum temperature was calculated and values greater than 

the temperature threshold assigned a value of 1. The temporal stack was summed by year 

and 1 or more occurrences of a heat stress event led to that year receiving a value of 1 

and no occurrences a value of 0. The interannual temporal stack was then summed and 

pixel values greater than 14, representing a significant majority of 20 years, were 

remapped to a value of 1 and all others to 0. The final heat stress criteria image was 

reprojected to a 30-m resolution using mean resampling and masked to cropland. An 

example of the Daymet V4 dataset can be seen in Figure A.4. 

Table 2.5: Crop-specific thresholds for heat stress criteria. 

Threshold 

Crop 

Corn Soybean 

Start DOY 163 163 

End DOY 225 212 

Temperature 33.8°C/93°F 35°C/95°F 

Duration 6 days 6 days 

Years 14 
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2.2.2.2 Precipitation 

 Precipitation constraints are of prime concern for crops grown on rainfed 

cropland, as noted above. Precipitation was considered but not included in the final MCE 

due to lack of significant results during testing. Two methods were considered to examine 

marginality for precipitation: 20-year mean growing season accumulated precipitation 

and prevalence of large precipitation events during the early growth stages of the crops 

(L. Puntel, personal communication, October 26, 2021; Peter et al., 2018). Accumulated 

precipitation was discarded due to difficulties with defining thresholding ranges for the 

area of study. Prevalence of large precipitation events was tested but early results showed 

that the large precipitation events during early growth stages had not occurred during the 

temporal window and across the area of study. 

2.2.3 Soils 

2.2.3.1 Data Preprocessing 

 The Gridded Soil Survey Geographic (gSSURGO) Database is available by state 

as an ESRI file geodatabase from the USDA NRCS Geospatial Data Gateway (Soil 

Survey Staff, 2021). gSSURGO is a source of field-validated soil information across 

broad spatial extents in the United States. The data for Nebraska was downloaded and 

brought into ArcGIS Pro. Images for the criteria were extracted by joining the Valu1 and 

muaggatt tables to the MapunitRaster_10m raster and exporting the resulting images with 

integer pixel values. After ingestion as a GEE Asset, the images were reprojected to a 30-

m resolution using mean resampling and to WGS84 (EPSG: 432). WGS84 was used to 

match the native geoprocessing coordinate reference system in GEE. An example of the 

gSSURGO dataset can be seen in Figure A.5. 
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2.2.3.2 Root Zone Depth 

 Root zone depth (RZD) is a measurement of how deep within a soil profile crop 

roots can extract water and nutrients for growth, which significantly effects soil 

productivity potential (Table 2.2) (Dobos et al., 2012). From Dobos et al., 2012: “Soil 

component horizon criteria for root-limiting depth include: presence of hard bedrock, soft 

bedrock, a fragipan, a duripan, sulfuric material, a dense layer, a layer having a pH of less 

than 3.5, or a layer having an electrical conductivity of more than 12 within the 

component soil profile”. The effective root zone depths for corn and soybean were 150 

cm and 90 cm, respectively (Kranz et al., 2008; Kranz & Specht, 2012). Depths less than 

these thresholds were classified as marginal in the root zone depth input layer then 

masked by cropland for the crop-specific MCE. Of note, while 90 cm is the effective root 

zone for soybean and threshold for RZD marginal classification, other depths are used for 

measuring soil properties in gSSURGO. The nearest depth in gSSURGO is 100 cm and 

this was used for soybean when considering other soil properties.   

2.2.3.3 Droughty 

 The droughty image describes soils that are drought vulnerable, with the 

following definition coming from the gSSURGO metadata: “Drought vulnerable soil 

landscapes comprise those map units that have available water storage within the root 

zone for commodity crops that is less than or equal to 6 inches (152 mm)” (Table 2.2) 

(Soil Survey Staff, 2021). These effects are predominantly seen under climactic drought 

conditions and is especially impactful on rainfed cropland (Chen et al., 2010). The image 

comes already classified and was masked using the cropland mask for use in the MCE. 
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2.2.3.4 Available Water Storage 

 While available water storage (AWS) is used to identify droughty soils, it is 

important also consider it separately for two reasons: first, the root zone for commodity 

crops in the droughty calculation is assumed to be 150 cm; second, understanding where 

soils are overly drained is important for targeting management practices and funding 

(Table 2.2) (Soil Survey Staff, 2021). Overly drained soils contain AWS of 

approximately 1.5 in/ft or less, resulting in a threshold of 12.5 cm for soybean and 18.8 

cm for corn. Soils at each crops root zone depth with AWS less than these thresholds 

were classified as marginal and the layer masked using the cropland mask for use in the 

MCE. 

2.2.3.5 Ponding 

 The ponding images represents the frequency of ponding the soil components will 

experience over a unit of time (Table 2.2) (Soil Survey Staff, 2021). A threshold 

frequency of 33% or greater was chosen as this represents the chance of flooding 

occurring at least once every 3 years and represents a significant risk to producer income. 

This threshold includes the upper part of the “Occasional” and all of the “Frequent” 

Ponding Frequency Class according to the National Soil Survey Handbook (Soil Survey 

Staff, 2019). This threshold was applied to the ponding image and then constrained using 

the cropland mask for the MCE.  

2.2.3.6 Soil Organic Content 

 Soil organic content (SOC), often measured as the amount of carbon in the soil, is 

an important consideration for soil health (Table 2.2). The positive effect of soil organic 

content on crop yield has historically been attributed to the ability of SOC to supply crops 
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with nitrogen and water nearer to the surface and improve root aeration and mitigate 

compaction throughout the entirety of the root zone (Kane et al., 2021; King et al., 2020). 

High SOC has economic benefits including reduce yield variability and lessening 

insurance payments during drought years (Kane et al., 2021; Lal, 2020). Generally, more 

SOC was considered better but thresholds for SOC were expressed not as a rate or 

measurement but as a percentage of soil and management practice dependent (Lal, 2020).  

Soil depth is important when considering SOC impacts, as 45-60% of SOC is 

found in the top 30 cm of soil (Coulter et al., 2009; Y.-Y. Yang et al., 2020; Zomer et al., 

2017). With a higher concentration of SOC and the importance of SOC from seeding 

through plant growth, the 30 cm soil horizon is highly impactful on plant health (Coulter 

et al., 2009). However, the SOC found throughout the remainder of the root zone needs to 

be considered for its impact on later vegetative stages (King et al., 2020). To take into 

consideration each zone and their relative importance, a soil organic content score 

(SOCscore) is calculated. This is done by manually identifying outliers through a 

histogram, clamping outliers to the lower and upper normalized bounds, and scale 

normalizing the SOC content of the 0-30 cm horizon (Norm30) and remainder of the crop 

specific RZD (NormRZD).  SOCscore is then calculated using those scores in a weighted 

formula: 

(𝐸𝑞2.3)    𝑆𝑂𝐶𝑠𝑐𝑜𝑟𝑒 =  (2
3⁄ ∗  𝑁𝑜𝑟𝑚30) +  (1

3⁄ ∗ 𝑁𝑜𝑟𝑚𝑅𝑍𝐷)  

The weighting in the formula is based on perceived importance from the literature rather 

than empirically driven. The final SOC criteria input layer is calculated by reclassifying 

SOCscore pixel values less than the 25th percentile to a value of 1 and masked to cropland. 
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2.2.4 Slope 

 High slopes can make land difficult to access or dangerous to farm with modern 

farming equipment. Previous studies have used thresholds anywhere between 5-12 

degrees (10-20%) slope and conversations with experts on Nebraska soils and topography 

helped narrow the threshold to 6 degrees ( L. Puntel, personal communication, October 

26, 2021; Lewis & Kelly, 2014; Neil Dominy, personal communication, July 13, 2021). 

Slope was calculated with the 3D Elevation Program (3DEP) 10-Meter Resolution 

Digital Elevation Model using the ee.Terrain.slope function in Google Earth Engine and 

the image reprojected to a 30-m resolution using mean resampling (U.S. Geological 

Survey, 2020). Slopes greater than or equal to 6 degrees were reclassified as 1 and all 

other slopes to 0. The resulting layer was masked to cropland to create the final layer for 

the MCE. An example of the USGS 3DEP DEM dataset can be seen in Figure A.6. 

2.3 Marginal Classification 

 With an image representing whether cropland in Nebraska is marginal for each 

criterion, the next step was classification. For each crop-specific MCE, the criteria 

images were overlaid then summed and a total score calculated, ranging from 0 to 8. This 

score represents the number of overlapping criteria a pixel is marginal for. To make the 

total scores more understandable, the scores were divided into descriptive ordinal 

Table 2.6: Marginal classification score ranges. 

 

Marginal 

Classification 

Score 

Ranges 

None 0 

Low 1-2 

Moderate 3-4 

High 5-8 
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marginal classifications as detailed in Table 2.6. The total area (hectares) and percentage 

of cropland per class, criterion, and crop were then calculated. A comparison of spatial 

trends in cropland marginality and farmland prices across Nebraska is examined. 

2.4 Long-term Crop Rotation 

Identifying long-term corn-soybean crop rotation (LCR) is used to understand 

differences in marginality between LCR and non-LCR cropland as well as potential for 

conservation practices such as adding winter wheat or other crops to the corn-soybean 

Figure 2.1: Classifying long-term crop rotation. 
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crop rotation (Bullock, 1992; Gaudin et al., 2015). Using a crop rotation for corn and 

soybean has positive effects on yield, soil physical properties, organic content, pest 

control, and nutrients such as nitrogen when compared to straight cropping systems 

(Bowles et al., 2020; Bullock, 1992; Crookston et al., 1991). However, the number of 

years before a crop rotation is considered long-term and benefits are seen is not clearly 

defined, as studies look at the effects of crop rotation across different time horizons 

(Bowles et al., 2020; Crookston et al., 1991). Therefore, LCR is formalized, with the 

input from L. Puntel (L. Puntel, personal communication, October 26, 2021), in the 

following way. 

The CSDL was the source of observations for the productivity criteria and for 

formalizing LCR. For a temporal stack to be considered under LCR, it was determined 

that a significant majority of years with approximately equal representation of corn and 

soybean observations and total corn-soybean observations occurring in at least 70% of 

the temporal stack had to be present (L. Puntel, personal communication, October 26, 

2021). First, a new image was created where CSDL was reclassified so cropland pixels 

equaled 1 and non-cropland 0 then the temporal stack summed to give a total of years that 

cropland (Croplandsum). Next, a new image was created where CSDL was masked to each 

crop then the temporal stack summed to give a total number of years each crop was 

grown (Cornsum, Soybeansum). Next, an image was created that expressed the ratio of each 

crop across the temporal stack by dividing its sum by the crop’s sum (Cornratio, 

Soybeanratio). The following conditional statement was used to determine the presence of 

LCR on a pixel stack: 

(𝐸𝑞. 2.4 ) 𝐿𝐶𝑅 =  𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠𝑢𝑚 ≥ 14 𝐴𝑁𝐷 𝐶𝑜𝑟𝑛𝑟𝑎𝑡𝑖𝑜 ≥ 0.35 𝐴𝑁𝐷 𝑆𝑜𝑦𝑏𝑒𝑎𝑛𝑟𝑎𝑡𝑖𝑜 ≥ 0.35 
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The classification process is illustrated in Figure 2.1. Finally, with cropland classified as 

either LCR or non-LCR, the percentage within-class cropland by marginal classification 

and marginal criteria were calculated. 

2.5 Example Sites 

 Four example sites were selected from around Nebraska to better illustrate the 

methodology and selection was based on local heterogeneity in marginal classifications, 

quantities of marginal classification, irrigation patterns, long-term crop rotation patterns, 

and local features of interest. The sites are each approximately 4 miles by 4 miles (16 

mi2) and are around the same size as sixteen Public Land Survey System (PLSS) sections. 

The percentage of each sites total area that are under long-term irrigation and crop 

rotation as well as are impacted by each criterion were calculated. The impact of the 

different influences on marginality and agricultural practices are then examined as well as 

recommendations for potential uses for marginal cropland at the sites. 

 The Northeast site, located in Antelope County, was chosen for its closeness to 

the least marginal land for corn and soybean in Nebraska as well as its similar spatial 

patterns of marginality classification between corn and soybean. The Southeast site, 

located in Richardson County, was chosen to highlight an area that has traditionally been 

rainfed agriculture as well as the influence of heat stress on corn marginality 

classifications. The Central site, located in Phelps County, was chosen to represent 

agricultural areas near river systems or underlaid by riverine soils. Finally, the Southwest 

site, located in Chase County, was chosen as it highlights higher marginality 

classifications, limited long-term crop rotations, and is an area heavily influenced by 

underlying soil characteristics. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Productivity 

3.1.1 Field Scale and Correction 

 Initial testing at the field scale using NPP resulted in yields that averaged ~20% of 

actual, which has been noted as an issue with final yield calculations and NPP (Reeves et 

al., 2005; Xin et al., 2013). When the source of biomass was switched to GPP, calculated 

yields were still low at the field level for corn but were higher than actual for soybean 

(blue line in Figure 3.1). Of note, field scale data were unavailable for 2009 and 2010 due 

to crop damage and data loss issues. As long-term mean crop yield is used in the 

Productivity criteria and the calculations were followed similar trends, an average 

correction coefficient based on mean accumulated yield (Yc) was calculated.  

Yc for corn was calculated as 1.6594 and 1.5101 for irrigated and rainfed, 

respectively. Yc for soybean was calculated as 0.7343 and 0.7087 for irrigated and 

rainfed, respectively. To avoid overfitting and issues with scaling the equation, a final Yc 

of 1.5852 and 0.7197 was calculated for corn and soybean, respectively. The results of 

this correction at the field level are seen in Figure 3.1 as the green line, which shows 

much agreement over time with the red line (combine harvester).  

 There are some limitations to this correction coefficient. Management practices, 

which differ among the three fields, and other biophysical characteristics were not 

factored into Yc (Franz et al., 2020). This was due to wanting to maintain similar 

calculation methodologies at larger scales, where management practices are difficult to 

account for. Also, the combine harvester data from ENREC is from 3 fields in eastern  
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Nebraska and may not be entirely representative of the entirety of Nebraska. Therefore, 

advanced methods for correcting  yield may not be more accurate for other spatial 

extents.  

3.1.2 State Scale Comparisons 

 At the state scale, calculated corn yields show similar long-term and interannual 

trends to NASS estimates from 1999 to 2018. Calculated soybean yields also have similar 

long-term and interannual trends, though three years, 2002, 2012, and 2018, contain high 

disagreement. This is explained in part as 2002, 2012, and 2018 were all years the CSDL 

has low R2 when compared with NASS soybean cultivation acreage in Nebraska (Wang 

et al., 2020, Figure 5).. Additionally, Nebraska experienced extreme droughts in 2002 and 

2012, which could have negative impacts on vapor pressure deficit values in the 

underlying calculation of GPP over cropland (Marshall et al., 2018). Together, 

disagreement between CSDL and NASS acreage totals as well as extreme climactic 

events create high single year disagreement. However, these single year outliers are 

mitigated in the model by using long-term means across an individual pixel temporal 

stack, which lessens outlier interactive effects in the final criteria layer.  

While long-term trends are similar between CSDL and NASS, estimated 

interannual yield totals are higher with CSDL with corn and higher outside of extreme 

climactic years for soybean (Figure 3.2). Some of this discrepancy can be explained by 

examining how NASS creates the estimates and past studies on NASS yield accuracy. 

NASS uses a combination of farmer surveys and yield modeling during and after the 

growing season to estimate productivity (The Yield Forecasting Program of NASS, 2012). 

NASS yield estimates are widely used, from market analysts to agricultural researchers, 
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and are thus expected to be accurate. However, there have been some past concerns about 

these estimates due to fears of hidden agendas at the agency, statistical biases, or large 

differences between quarter-to-quarter estimates (Good et al., 2011; Irwin et al., 2014). 

Despite these concerns, this dataset remains the best estimate of crop yield trends at large 

scales in the United States, especially due to the lack of publicly available, affordable, 

and large scale in-situ data (Deines et al., 2021).  

Figure 3.2: Comparison of yields calculated using CSDL against NASS yields. 
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The CSDL and CDL both have high R2 with NASS acreage statistics from 2008 

to 2018 (Wang et al., 2020). CDL yields have similar long-term trends as both CSDL and 

NASS for corn but does not suffer the same disagreements in 2012 and 2018 that CSDL 

does with NASS soybean yields (Figure 3.3). The agreement between CDL and NASS is 

expected, as the primary goal for the CDL since its inception has been to verify and 

improve NASS crop acreage estimates (Lark et al., 2017). On average, CSDL corn and 

soybean yield estimates were 7.28% higher and 9.57% lower, respectively, than CDL 

yield estimates from 2008 to 2018. The overall agreement between CSDL and CDL yield 

Figure 3.3: Comparison of yields calculated using CSDL and CDL (2008-2018). 
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estimates and the CDL’s agreement with NASS county acreage estimates provide 

confidence in the CSDL hindcasting of corn and soybean observations. 

3.2 Marginality by Criterion and Classification 

 Cropland in Nebraska shows relatively small amounts of marginality for 

productivity, with approximately 13% and 10% marginal for corn and soybean, 

respectively (Figure 3.5). Corn yield marginality is evenly spatially distributed, with 

marginality slightly increasing east to west across the state. This distribution is likely 

influenced by the spatial gradations of annual rainfall amounts, which decrease from east 

to west across Nebraska (A. Irmak et al., 2010). Soybean yield marginality shows more 

of a northeast to south central spatial distribution. Part of the differences in these 

distributions is the limited diaspora of soybean planting, with the CSDL showing limited 

to no planting of soybean in parts of western Nebraska during the study period. Soybean 

planting is limited in the western half of Nebraska as that geographic region is 

responsible for around 75% of wheat production and features rotation cycles that 

incorporate fallow periods to conserve water or crops such as corn or sunflowers (Hein & 

Kamble, 2003). This lack of soybean planting in western Nebraska is seen in the lack of 

markets that buy soybeans compared to corn and red winter wheat (Cusato-Wood, 2020). 

Gopalakrishnan et al. (2011) found 0.64 million ha of land produced less than 9 tonnes/ha 

and was marginal for grain (corn) yield. Their amount is less than what this study found 

(Table 3.1) and had a different spatial distribution, with a distribution across the center of 

the state (Gopalakrishnan et al., 2011, Fig. 1).  

 Heat stress had the highest levels of marginality for any criteria for corn, with 

59% of cropland being affected, primarily across the southern half of the state (Figure 
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 3.5). Soybean had much less cropland affected by heat stress, with around 11% of 

cropland area that was distributed primarily in the southwest and west of the state. While 

much of the southern half of the state is under long-term irrigation, areas exist in the 

extreme southeast, central southwest, and western Nebraska that are primarily rainfed 

(Figure A.1). These areas could experience increasingly negative impacts from heat stress 

due to increases in extreme air temperatures (dos Santos et al., 2022). While Nebraska 

has experienced an expansion in irrigated cropland, the increasing negative impacts from 

heat stress could potentially expand irrigated cropland in the areas noted above and put 

further stress on the underlying water supplies (Johnson et al., 2011). The connection 

between rainfed cropland that has been identified as experiencing heat stress and the 

impacts on future irrigation policy and management warrants additional study, especially 

for creating targeted irrigation policies in the future. 

 Root zone depth marginality was found on a relatively minor amount of cropland 

in Nebraska, around 5% and 3% for corn and soybean, respectively (Figure 3.5). Root 

zone depth marginality is found mostly in western, and along river systems throughout, 

Nebraska. Underlying soils in western Nebraska are characterized by exposed or shallow 

depths to bedrock, high levels of gravelly sand, and shallow loess or loamy soils 

underlaid by the bedrock and/or gravelly sand (Elder, 1969). All these factors can 

potentially constrain root development and impede water and nutrient uptake. As noted 

above, wheat has been the predominant agricultural crop in this area and was suggested 

as far back as 1969 (Elder, 1969; Hein & Kamble, 2003).  

 Available water storage marginally is spatially distributed similarly between corn 

and soybean across Nebraska and is found in around 15% and 13% of cropland 
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respectively (Figure 3.5). Spatial patterns follow rivers and the associated floodplains in 

addition to western Nebraska. The soil characteristics of western Nebraska were 

discussed above and these combine to create soils that are incredibly well drained and 

have limited water storage capacity (Elder, 1969). Cropland found in rivers and 

floodplains in Nebraska contain soil parent materials of sand and silt, sand, or alluvium 

materials, which are characterized as incredibly well drained and limited in water storage 

capability (Elder, 1969). Droughty soils, which impact about 11% of all croplands, have 

Figure 3.4: Marginal cropland classification. 
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similar spatial distributions as available water storage, likely due to available water 

storage being an input into droughty soil calculation (Soil Survey Staff, 2021). 

 Marginality for soil organic content has a broad spatial distribution across 

cropland in Nebraska (Figure 3.5). Localized patterns in the eastern half of Nebraska, 

outside of the Sandhills, are found along rivers, tributary streams, and drainages. Low 

SOC in western and southwestern Nebraska and the Sandhills are due to underlying soil 

qualities (Elder, 1969). The percentage of cropland marginal for soil organic content is 

less important than the spatial distinction as it was driven by the quantile classification 

and would be expected to be around 25%.  

 Slope and ponding marginalities are limited and occur on only 5% and 1% of 

Nebraska cropland (Figure 3.5). Slope marginality areas is similar to that found by 

Gopalakrishnan et al. (2011) at 350,000 ha but that study used 15° of slope across all land 

classes in Nebraska and were spatially distributed in the Sandhill region, making direct 

comparison between the studies difficult. While Gopalakrishnan et al. (2011) did not 

directly address ponding, they did examine soil characteristics that could lead to ponding 

including poorly drained soils, frequently flooded areas, and the intersection of both 

across all land classes (700,000 ha). The current study found ponding occurred on an area 

equivalent to about 10% of Gopalakrishnan et al.’s findings (74,498 ha), a likely indicator 

that crops are most likely not currently cultivated in most of areas identified by 

Gopalakrishnan et al. (2011) as poorly drained and/or frequently flooded.  

 Two marginality classification images, one apiece for corn and soybean, resulted 

from criteria inputted into the multi-criteria evaluation model (Figure 3.4). The largest 

differences between corn and soybean marginality were the percentage of cropland 
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classified as non- or low marginality. Slightly less than a quarter of Nebraska croplands 

were found to be non-marginal for corn and just over half for soybean. The low 

marginality classification was the dominant classification by area for corn at 63% of 

cropland while being around half as much for soybean at 34%. Heat stress largely 

Figure 3.5: Final criteria input layers for MCE. 
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influences the low marginal classification in corn due to the large percentage of cropland 

area that it coincides with that other criterion do not. The moderate marginality class 

accounts for about 12% and 10% of cropland for corn and soybean, respectively. The 

high marginality class (5 or more criteria) occurs on a miniscule amount of cropland.  

 Spatially, corn marginality classification increases from the northeast to the 

southwest of Nebraska, with higher marginality classes in the northeast of Nebraska 

found in river drainage networks. Soybean marginality follows more of an east-west 

trend, with the highest marginality occurring in southwest Nebraska, like corn. Much of 

these trends are driven by the underlying soil properties, as soils make up five of the eight 

criteria, of which three soil criteria (root zone depth, available water storage, droughty) 

have similar spatial trends (Figure 3.5). This shows that these three factors could be 

represented in future work at other spatial extents through a single criterion such as soil 

type or category. The trends of increasing marginality are approximately the inverse of 

farmland, where prices tend to decrease from east to west across Nebraska (Jansen & 

Stokes, 2022).  

3.3 Long-term Crop Rotation  

The programmatic method of identifying long-term corn-soybean crop rotation 

shows it occurs primarily in eastern Nebraska on approximately 2.47 million hectares of 

cropland (Figure 3.6). This accounts for about one-third of all croplands in Nebraska and 

is evenly divided between irrigated and rainfed agriculture as defined by the irrigation 

mask (49% vs 51%).  
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    Percent of within rotation-class cropland of non-marginality are much higher and 

percent cropland per marginality class lower under a long-term crop rotation, as seen in 

Table 3.2. The results are most striking for the moderate and high marginality 

classifications. Cropland not under LCR had 3 times more area than LCR cropland in the 

moderate marginality class for both crops. This jumps to almost 25 times more area in the 

high marginality class. While it is hard to say LCR directly decreases marginality due to 

the spatial heterogeneity of soil characteristics, climate factors, and cropping systems 

across such a large spatial extent, the net positive effects on marginality fit with the 

Figure 3.6: Long-term corn-soybean crop rotation in Nebraska (1999-2018). 

Table 3.2: Percent of area by crop and crop rotation class. 

 

Marginality 

Class 

Corn Soybean 

Crop 

Rotation 

Non-

crop 

Rotation 

Crop 

Rotation 

Non-

crop 

Rotation 

None 39% 16% 71% 49% 

Low 56% 65% 24% 39% 

Moderate 5% 15% 4% 12% 

High 0.15% 4% 0.03% 0.73% 
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previously stated benefits of crop rotations on individual criterion (Bowles et al., 2020; 

Bullock, 1992; Crookston et al., 1991). Therefore, if cropland drops out of LCR, it could 

face increased marginality and result in lower long-term yields. 

While this method does use a quantification-based approach to identify LCR, it 

does not fully describe the rotations that are occurring at distinct time periods. In short, it 

does not allow for trend analysis and so would not be suitable for studies that required 

this. For studies that seek to identify crop rotation patterns, other studies have used 

multiple methods including string matching, raster calculators, and algorithmic 

approaches (add citation). Monoculture cropping has been increasing during the study 

period, especially on newly converted cropland, and could be occurring more recently on 

lands identified in this study as LCR (Long et al., 2014; Plourde et al., 2013; Rosenzweig 

& Schipanski, 2019; Sahajpal et al., 2014). Crop rotation identification would also be 

needed where agricultural cropping systems have not been well studied using methods in 

the literature. This is not an issue for Nebraska as its cropping systems are dominated by 

corn and soybean, with wheat and corn in the western reaches of the state. A potential 

addition to the methodology would be to observe whether temporal stacks identified as 

LCR had been converted to monocropping during recent years and drop those pixels from 

the crop rotation classification.  

3.4 Example Sites 

 The example sites are useful for demonstrating local marginality classification 

patterns and the contributions of each criterion (Table 3.3) alongside irrigation and long-

term crop rotation patterns (Figure 3.7). The Northeast site features marginal 

classifications of None to Moderate for both corn and soybean, with similar spatial  
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patterns for both crops. These patterns are driven by yield, soil organic content, available 

water storage, and droughty marginality (Table 3.3). Yield marginality with almost twice 

the percent area for soybean when compared to total area of cropland across the state. 

The site is also heavily irrigated (72%) and when combined with low water storage 

capacities and low soil organic content, this site would be a prime candidate for 

conservation practices aimed at improving physical soil characteristics and soil health. 

One of these practices could be increased use of crop rotations, as some of the fields with 

lots of Low and Moderate marginality classes were not classified as LCR.  

 The Southeast site generally contains soybean marginality that is one marginal 

classification less severe than corn marginality i.e., Low rather than Moderate (Figure 

3.7). This is likely due to the cropland in the area experiencing heat stress marginality for 

corn while none exists for soybean (Table 3.3). The heat stress as well as lack of 

irrigation and relatively minimal amount of yield marginality would suggest that this site 

receives adequate rainfall to meet water needs for corn at this time. The Southeast site has 

the highest amount of ponding of any site (9%), low amounts of available water storage 

and droughty soils and no marginality for soil organic content, all of which adds to the 

narrative that this region receives adequate rainfall for crop planting. However, concern 

for future climate change could push this site into adopting more irrigation, something to 

be considered for water management in the region.  

 The Central site features Low to High marginality classes for corn and all classes 

for soybean. The most severe marginality occurs in a band across the upper two-thirds of 

the site (Figure 3.7), where underlying riverine soils contribute to high amounts of 

available water storage, soil organic content, and droughty marginality (Table 3.3). This 
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Figure 3.7: Maps of example sites in Nebraska. 
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site is a heavily irrigated area (72%) but has low yield marginality, which could be an 

indicator that the quantity of water may be higher in this area to offset any yield issues 

caused by the underlying soil. For corn, the Central site features a heavy concentration of 

heat stress marginality. Crop rotations could also be adopted more in this area, as only a 

limited amount of the cropland in the upper two-thirds of the site has been under a crop 

rotation.  

 The Southwest site features the greatest amounts of the High marginality class of 

all the sites. This is also representative of the area, as marginality was highest for corn 

and soybean in the west and southwest of Nebraska. The Southwest site has some of the 

most yield marginality, is the only site with heat stress marginality for both crops, and the 

most impaired root zones (Table 3.3). High marginality classification for corn is most 

prominent in the eastern half of the site where soybean marginality is Moderate (Figure 

3.7). This is likely due to corn having more than twice the amount of marginality across 

the site for root zone depth and available water storage with a more than half again 

amount of soil organic carbon marginality (Table 3.3). Irrigation is present on much of 

the site while crop rotation is not. The latter is likely driven by a lack of planting of 

soybean in the area (see Section 3.2 for more details).   
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CHAPTER 4: CONCLUSION 

This study aimed to answer several research questions with regard to marginal 

cropland in the state of Nebraska. First, this study sought to identify and classify marginal 

cropland for corn and soybean. Based on the results of the multicriteria evaluation, 

marginal cropland was identified across Nebraska and generally increased from the 

northeast to southwest. Second, this study set out to determine where cropland was under 

a long-term corn and soybean crop rotation and identify its impacts on marginality 

classification in Nebraska. A long-term crop rotation had positive effects on reducing 

marginality, especially more severe classifications, and highlights the importance of this 

cropping practice. Furthermore, the results can inform policymakers, researchers, and 

outreach professionals where cropland has the greatest potential for uses with regards to 

biofuel production, conservation, and/or solar energy development. Finally, the 

methodology is easily replicable yet robust, and allows for transference to other spatial 

extents and scales with localized threshold updating. 

While the thresholds for individual criterion were set to match the biotic and 

abiotic conditions of Nebraska, the quantile approach to thresholding some criterion 

allows the application of this model to other spatial extents and scales with minimal 

changes. While the importance of soil health and structure is undeniable, soil 

characteristics became the most weighted group of criteria, especially when the effects of 

precipitation were found to be non-existent. This limitation could be overcome in future 

work by excluding one of the two soil water criteria based on relevance to the study area 

or using a drop-out when the results are similar, so their effect is only applied once in the 

MCE. Another limitation was inherent in the secondary data that was used being 
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predominantly products derived from satellite imagery. Products derived from satellite 

imagery can contain errors such as cloud interference, speckled classification, and 

misalignments between pixels and field boundaries, to name a few. Despite these 

limitations, the overall model shows much promise for informing decisions regarding 

policy and practice from the state to field-level. Additionally, field-level advice for 

farmers should always be constructed with in-situ testing as needed and farmer insights 

about local conditions, regardless of the findings of ex situ research.  

 Based on these findings, there are opportunities for collaboration between 

researchers and outreach professionals. There exists a continued need for researchers to 

understand the drivers and motivations of farmers’ land management decisions and for 

outreach professionals to integrate these findings into their conversations with farmers, 

especially around conservation, biofuel production, and solar energy capture. By 

integrating the human dynamics of agricultural practices with marginal land 

classification, outreach professionals would be able to prioritize cropland for outreach of 

best management practices, program money, and other improvements to the long-term 

sustainability of agriculture in Nebraska. A great starting point about barriers and 

motivations for outreach professionals around conservation, with potential insights into 

biofuels production and solar energy capture, is Ranjan et al., 2019. 

Locating cropland under a long-term crop rotation provides an opportunity for 

University of Nebraska Extension outreach to farmers about the benefits of adding winter 

wheat to the corn-soybean crop rotation in Nebraska. This practice has shown promise in 

Illinois and while it would need to match the farmers existing business plans and 

logistical capabilities, support from Extension personnel and potential conservation 
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payments from USDA could help offset these challenges. Furthermore, Extension 

researchers could benefit from the opportunity to study and examine the impacts of 

adding winter wheat to the corn-soybean crop rotation in Nebraska. Such impacts that 

could warrant study include changes in soil health, how and why farmers make land 

management decisions, and changes to economic well-being. 

Opportunities for future work on improving and expanding this methodology also 

exist. The first, mentioned above, will be to limit the effects on marginal classification by 

cooccurrences of soils limited available water storage and droughty soils by giving these 

overlaps the weight of a single criterion rather than two criteria. Second, mentioned 

briefly in section 3.3, will be changes aimed at improving the value-added properties of 

identifying long-term crop rotation with better informing about current cropping systems. 

Third, a sensitivity analysis of soil organic content marginality between the derived 

SOCscore and other SOC measurements will be conducted to test and validate SOCscore 

further. Finally, there are additional criteria that will be considered for addition to the 

MCEs. One of those will be using nutrient runoff maps, in particular the proximity of 

vulnerable cropland to rivers and other water sources with high nitrogen or other nutrient 

levels. Another will be examining if a spatial metric can capture important social, 

socioeconomic, or management considerations by farmers on cropland. 

This research contributes much to the subject of marginal cropland classification. 

The described methodology bridges gaps in resolution, land class constraints, complexity, 

and scalability. While replicable and adaptable to a broad spectrum of criteria, the criteria 

examined provide a robust measurement of marginality as it exists on Nebraska cropland. 

In particular, the measurement of importance of different soil depths for soil organic 
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content provides new insights on examining SOC through the root zone of a crop. The 

mapping of heat stress on plant health provides warrants serious considerations for future 

irrigation and agricultural systems as they exist now and evolve in the face of climate 

change. Finally, the novel method for long-term crop rotation identification expands 

crop-rotation examination beyond previous temporal ranges and provides valuable 

insights into applications on marginal cropland in Nebraska. 
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APPENDIX A: ADDITIONAL FIGURES 

 
Figure A.1: Heat stressed and rainfed cropland by crop. 
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Figure A.2: Example of CSDL dataset. 
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Figure A.3: Example of Landsat GPP dataset. 
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Figure A.4: Example of Daymet V4 dataset. 
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Figure A.5: Example of gSSURGO dataset. 
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Figure A.6: Example of USGS 3DEP DEM dataset. 
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