81,849 research outputs found

    Inbreeding depression in red deer calves

    Get PDF
    BACKGROUND Understanding the fitness consequences of inbreeding is of major importance for evolutionary and conservation biology. However, there are few studies using pedigree-based estimates of inbreeding or investigating the influence of environment and age variation on inbreeding depression in natural populations. Here we investigated the consequences of variation in inbreeding coefficient for three juvenile traits, birth date, birth weight and first year survival, in a wild population of red deer, considering both calf and mother's inbreeding coefficient. We also tested whether inbreeding depression varied with environmental conditions and maternal age. RESULTS We detected non-zero inbreeding coefficients for 22% of individuals with both parents and at least one grandparent known (increasing to 42% if the dataset was restricted to those with four known grandparents). Inbreeding depression was evident for birth weight and first year survival but not for birth date: the first year survival of offspring with an inbreeding coefficient of 0.25 was reduced by 77% compared to offspring with an inbreeding coefficient of zero. However, it was independent of measures of environmental variation and maternal age. The effect of inbreeding on birth weight appeared to be driven by highly inbred individuals (F = 0.25). On the other hand first year survival showed strong inbreeding depression that was not solely driven by individuals with the highest inbreeding coefficients, corresponding to an estimate of 4.35 lethal equivalents. CONCLUSIONS These results represent a rare demonstration of inbreeding depression using pedigree-based estimates in a wild mammal population and highlight the potential strength of effects on key components of fitness.This research was supported by a NERC grant to LEBK, JMP and THCB, NERC and BBSRC fellowships to DHN and a Royal Society fellowship to LEBK

    Exploring the relationship between tychoparthenogenesis and inbreeding depression in the Desert Locust, Schistocerca gregaria

    Full text link
    Tychoparthenogenesis, a form of asexual reproduction in which a small proportion of unfertilized eggs can hatch spontaneously, could be an intermediate evolutionary link in the transition from sexual to parthenogenetic reproduction. The lower fitness of tychoparthenogenetic offspring could be due to either developmental constraints or to inbreeding depression in more homozygous individuals. We tested the hypothesis that in populations where inbreeding depression has been purged, tychoparthenogenesis may be less costly. To assess this hypothesis, we compared the impact of inbreeding and parthenogenetic treatments on eight life-history traits (five measuring inbreeding depression and three measuring inbreeding avoidance) in four laboratory populations of the desert locust, Schistocerca gregaria, with contrasted demographic histories. Overall, we found no clear relationship between the population history (illustrated by the levels of genetic diversity or inbreeding) and inbreeding depression, or between inbreeding depression and parthenogenetic capacity. First, there was a general lack of inbreeding depression in every population, except in two populations for two traits. This pattern could not be explained by the purging of inbreeding load in the studied populations. Second, we observed large differences between populations in their capacity to reproduce through tychoparthenogenesis. Only the oldest laboratory population successfully produced parthenogenetic offspring. However, the level of inbreeding depression did not explain the differences in parthenogenetic success between all studied populations. Differences in development constraints may arise driven by random and selective processes between populations. (Résumé d'auteur

    The use of frozen semen to minimize inbreeding in small populations

    Get PDF
    In this study, we compared the average coancestry and inbreeding levels for two genetic conservation schemes in which frozen semen from a gene bank is used to reduce the inbreeding in a live population. For a simple scheme in which only semen of generation-0 (G0) sires is used, the level of inbreeding asymptotes to 1/(2N), where N is the number of newborn sires in the base generation and rate of inbreeding goes to zero. However, when only sires of G0 are selected, all genes will eventually descend from the founder sires and all genes from the founder dams are lost. We propose an alternative scheme in which N sires from generation 1 (G1), as well as the N sires from G0, have semen conserved, and the semen of G0 and G1 sires is used for dams of odd and even generation numbers, respectively. With this scheme, the level of inbreeding asymptotes to 1/(3N) and the genes of founder dams are also conserved, because 50% of the genes of sires of G1 are derived from the founder dams. A computer simulation study shows that this is the optimum design to minimize inbreeding, even if semen from later generations is available

    An effective rotational mating scheme for inbreeding reduction in captive populations illustrated by the rare sheep breed

    Get PDF
    Within breeds and other captive populations, the risk of high inbreeding rates and loss of diversity can be high within (small) herds or subpopulations. When exchange of animals between different subpopulations is organised according to a rotational mating scheme, inbreeding rates can be restricted. Two such schemes, a breeding circle and a maximum avoidance of inbreeding scheme, are compared. In a breeding circle, flocks are organised in a circle where each flock serves as a donor flock for another flock, and the same donor–recipient combination is used in each breeding season. In the maximum inbreeding avoidance scheme, donor¿recipient combinations change each year so that the use of the same combination is postponed as long as possible. Data from the Kempisch Heideschaap were used with computer simulations to determine the long-term effects of different breeding schemes. Without exchanging rams between flocks, high inbreeding rates (>1.5% per year) occurred. Both rotational mating schemes reduced inbreeding rates to on average 0.16% per year and variation across flocks in inbreeding rates, caused by differences in flock size, almost disappeared. Inbreeding rates with maximum inbreeding avoidance were more variable than with a breeding circle. Moreover, a breeding circle is easier to implement and operate. Breeding circles are thus efficient and flexible and can also be efficient for other captive populations, such as zoo populations of endangered wild specie

    Reproductive success through high pollinator visitation rates despite self incompatibility in an endangered wallflower

    Get PDF
    PREMISE OF THE STUDY: Self incompatibility (SI) in rare plants presents a unique challenge—SI protects plants from inbreeding depression, but requires a sufficient number of mates and xenogamous pollination. Does SI persist in an endangered polyploid? Is pollinator visitation sufficient to ensure reproductive success? Is there evidence of inbreeding/outbreeding depression? We characterized the mating system, primary pollinators, pollen limitation, and inbreeding/outbreeding depression in Erysimum teretifolium to guide conservation efforts. METHODS: We compared seed production following self pollination and within- and between-population crosses. Pollen tubes were visualized after self pollinations and between-population pollinations. Pollen limitation was tested in the field. Pollinator observations were quantified using digital video. Inbreeding/outbreeding depression was assessed in progeny from self and outcross pollinations at early and later developmental stages. KEY RESULTS: Self-pollination reduced seed set by 6.5× and quadrupled reproductive failure compared with outcross pollination. Pollen tubes of some self pollinations were arrested at the stigmatic surface. Seed-set data indicated strong SI, and fruit-set data suggested partial SI. Pollinator diversity and visitation rates were high, and there was no evidence of pollen limitation. Inbreeding depression (δ) was weak for early developmental stages and strong for later developmental stages, with no evidence of outbreeding depression. CONCLUSIONS: The rare hexaploid E. teretifolium is largely self incompatible and suffers from late-acting inbreeding depression. Reproductive success in natural populations was accomplished through high pollinator visitation rates consistent with a lack of pollen limitation. Future reproductive health for this species will require large population sizes with sufficient mates and a robust pollinator community

    Selection responses of means and inbreeding depression for female fecundity in Drosophila melanogaster suggest contributions from intermediate-frequency alleles to quantitative trait variation

    Get PDF
    The extent to which quantitative trait variability is caused by rare alleles maintained by mutation, versus intermediate-frequency alleles maintained by balancing selection, is an unsolved problem of evolutionary genetics. We describe the results of an experiment to examine the effects of selection on the mean and extent of inbreeding depression for early female fecundity in Drosophila melanogaster. Theory predicts that rare, partially recessive deleterious alleles should cause a much larger change in the effect of inbreeding than in the mean of the outbred population, with the change in inbreeding effect having an opposite sign to the change in mean. The present experiment falls to support this prediction, suggesting that intermediate-frequency alleles contribute substantially to genetic variation in early fecundity.</p

    The effect of genomic information on optimal contribution selection in livestock breeding programs

    Get PDF
    BACKGROUND: Long-term benefits in animal breeding programs require that increases in genetic merit be balanced with the need to maintain diversity (lost due to inbreeding). This can be achieved by using optimal contribution selection. The availability of high-density DNA marker information enables the incorporation of genomic data into optimal contribution selection but this raises the question about how this information affects the balance between genetic merit and diversity. METHODS: The effect of using genomic information in optimal contribution selection was examined based on simulated and real data on dairy bulls. We compared the genetic merit of selected animals at various levels of co-ancestry restrictions when using estimated breeding values based on parent average, genomic or progeny test information. Furthermore, we estimated the proportion of variation in estimated breeding values that is due to within-family differences. RESULTS: Optimal selection on genomic estimated breeding values increased genetic gain. Genetic merit was further increased using genomic rather than pedigree-based measures of co-ancestry under an inbreeding restriction policy. Using genomic instead of pedigree relationships to restrict inbreeding had a significant effect only when the population consisted of many large full-sib families; with a half-sib family structure, no difference was observed. In real data from dairy bulls, optimal contribution selection based on genomic estimated breeding values allowed for additional improvements in genetic merit at low to moderate inbreeding levels. Genomic estimated breeding values were more accurate and showed more within-family variation than parent average breeding values; for genomic estimated breeding values, 30 to 40% of the variation was due to within-family differences. Finally, there was no difference between constraining inbreeding via pedigree or genomic relationships in the real data. CONCLUSIONS: The use of genomic estimated breeding values increased genetic gain in optimal contribution selection. Genomic estimated breeding values were more accurate and showed more within-family variation, which led to higher genetic gains for the same restriction on inbreeding. Using genomic relationships to restrict inbreeding provided no additional gain, except in the case of very large full-sib families

    Inbreeding management and optimization of genetic gain with phenotypic and genomic selection in oil palm (Elaeis guineensis)[W776]

    Full text link
    Oil palm breeding relies on reciprocal recurrent selection between two heterotic groups complementary for bunch number and average bunch weight. Given the long generation interval and the limited selection intensity imposed by the progeny tests currently used in the program, genomic selection (GS) is a very promising solution for this species. However, GS also accelerates the annual increase in inbreeding in oil palm parental populations. This can generate inbreeding depression, which can be detrimental for seed production, and cause the loss of favourable alleles, which can reduce the long-term genetic progress. Here, we investigated the effect of three approaches of inbreeding management on parental inbreeding and genetic progress in hybrids. We simulated two widely used parental populations, La Mé and Deli, and four generations of selection. Inbreeding was measured in La Mé and genetic progress on hybrids bunch production. Inbreeding management in La Mé was made by: (i) mate selection, which uses the simulated annealing optimization algorithm, (ii) limiting deterministically the number of full-sibs selected and (iii) prohibiting selfings. The results showed that all methods slowed down the increase in parental inbreeding. Mate selection was also able to simultaneously increase the genetic progress. Stronger slowing-down in inbreeding were achieved with deterministic methods, in particular by selecting at best one individual per full-sib family and prohibiting selfings. However, this was associated with a decreased genetic progress. Finally, mate selection will allow oil palm breeders to control the rate of increase in inbreeding in the parental populations while maximizing the genetic gain

    Genetic improvement of the herbivorous blunt snout bream (Megalobrama amblycephala)

    Get PDF
    Selection experiments with the herbivorous blunt snout bream or Wuchang bream (Megalobrama amblycephala) were started in 1985. Mass selection for size and length/depth ratio resulted in a significant increase in growth and better shape, while inbreeding led to a significant decrease in growth. The total selection ratio from fry to mature brooders was about 0.03 per cent per generation. In the grow out stage, the average daily body weight gains of two lines of fifth generation (F5) fish were 29 per cent and 20 per cent respectively more than the control group, with an average of 5.8 per cent and 4 per cent improvements per generation, respectively. The body was 4 per cent deeper in ratio of standard length/body depth. The effects of inbreeding were examined by crossing full-sibs, the offspring of which were kept without selection. The third generation inbred fish showed 17 per cent lower growth as compared to the control group, with an average of 7.5 per cent per generation. The results demonstrate that selection is a powerful tool to improve the economic traits of the blunt snout bream, but inbreeding can rapidly lead to a reduction in performance. In 2000, the 6th generation of selected bream was certified by the Chinese Ministry of Agriculture as a good breed for aquaculture
    corecore