305 research outputs found

    An Efficient Approach of Removing the High Density Salt

    Get PDF
    Images are often corrupted by impulse noise, also known as salt and pepper noise. Salt and pepper noise can corrupt the images where the corrupted pixel takes either maximum or minimum gray level. Amongst these standard median filter has been established as reliable - method to remove the salt and pepper noise without harming the edge details. However, the major problem of standard Median Filter (MF) is that the filter is effective only at low noise densities. When the noise level is over 50% the edge details of the original image will not be preserved by standard median filter. Adaptive Median Filter (AMF) performs well at low noise densities. In our proposed method, first we apply the Stationary Wavelet Transform (SWT) for noise added image. It will separate into four bands like LL, LH, HL and HH. Further, we calculate the window size 3x3 for LL band image by Reading the pixels from the window, computing the minimum, maximum and median values from inside the window. Then we find out the noise and noise free pixels inside the window by applying our algorithm which replaces the noise pixels. The higher bands are smoothing by soft thresholding method. Then all the coefficients are decomposed by inverse stationary wavelet transform. The performance of the proposed algorithm is tested for various levels of noise corruption and compared with standard filters namely standard median filter (SMF), weighted median filter (WMF). Our proposed method performs well in removing low to medium density impulse noise with detail preservation up to a noise density of 70% and it gives better Peak Signal-to-Noise Ratio (PSNR) and Mean square error (MSE) values

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Recursive trimmed filter in eliminating high density impulse noise from digital image

    Get PDF
    Advances in technology have made it easier to share media over the Internet. In the process of media sharing, a media may receive noise or interference that results in loss of information. In this paper, a new method to remove Salt and Pepper noise from images based on recursive method will be presented. The first stage is to recognize the noise from the damaged image, the damaged pixels will be replaced by the mean of the surrounding window, the difference with other methods is the use of recursive approach that aims to minimize the size of the window in the recovery process

    An overview of multi-filters for eliminating impulse noise for digital images

    Get PDF
    An image through the digitization process is referred to as a digital image. The quality of the digital image may be degenerating due to interferences on the acquisition, transmission, extraction, etc. This attracted the attention of many researchers to study the causes of damage to the information in the image. In addition to finding cause of image damage, the researchers also looking for ways to overcome this problem. There are many filtering techniques that have been introduced to deal the damage to the information in the image. In addition to eliminating noise from the image, filtering techniques also aims to maintain the originality of the features in the image. Among the many research papers on image filtering there is a lack of review papers which are an important to facilitate researchers in understanding the differences in each filtering technique. Additionally, it helps researchers determine the direction of research conducted based on the results of previous research. Therefore, this paper presents a review of several filtering techniques that have been developed so far

    A Survey of Non-Linear Filtering Techniques For Image Noise Removal

    Get PDF
    Image is captured or noninheritable by any image capturing device like camera or scanner and then it is stored in the mass storage of the computer system. In many of these applications the existence of impulsive noise among the noninheritable pictures is one altogether common problems. This noise is characterized by spots on the image and is usually related to the innate image because of errors in image sensors and information transmission. Now-a-days there are numerous strategies that are offered to remove noise from digital images. Most of the novel methodology includes 2 stages: the primary stage is to find the noise within the image and the second stage is to eliminate the noise from the image. This paper explores the varied novel methods for the removal of noise from the digital images. The distinctive feature of the all the described filters is that offers well line, edge and detail preservation performance while, at the constant time, effectively removing noise from the input image. In later section, we present a short introduction for various strategies for noise reduction in digital images

    An Improved Adaptive Filtering Technique to Remove High Density Salt-and-Pepper Noise using Multiple Last Processed Pixels

    Get PDF
    This paper presents an efficient algorithm which can remove high density salt-and-pepper noise from corrupted digital image This technique differentiates between corrupted and uncorrupted pixels and performs the filtering process only on the corrupted ones The proposed algorithm calculates median only among the noise-free neighborhoods in the processing window and replaces the centre corrupted pixel with that median value The adaptive behavior is enabled here by expanding the processing window based on neighbourhood noise-free pixels In case of high density noise corruption where no noise-free neighborhood is found within the maximum size of window this algorithm takes last processed pixels into the account While most of the existing filtering techniques use only one last processed pixel after reaching maximum window the proposed algorithm considers multiple last processed pixels rather than considering a single one so that more accurate decision can be taken in order to replace the corrupted pixe

    Optimum Median Filter Based on Crow Optimization Algorithm

    Get PDF
    يُقترح مرشح متوسط ​​جديد يعتمد على خوارزميات تحسين الغراب (OMF) لتقليل ضوضاء الملح والفلفل العشوائية وتحسين جودة الصور ذات اللون الرمادي والملونة . الفكرة الرئيسية لهذا النهج هي أن أولاً ، تقوم خوارزمية تحسين الأداء بالكشف عن وحدات البكسل الخاصة بالضوضاء ، واستبدالها بقيمة وسيطة مثالية تبعًا لدالة الأداء. أخيرًا ، تم استخدام نسبة القياس القصوى لنسبة الإشارة إلى الضوضاء (PSNR) ، والتشابه الهيكلي والخطأ المربع المطلق والخطأ التربيعي المتوسط ​​لاختبار أداء المرشحات المقترحة (المرشح الوسيط الأصلي والمحسّن) المستخدمة في الكشف عن الضوضاء وإزالتها من الصور. يحقق المحاكاة استنادًا إلى MATLAB R2019b والنتائج الحالية التي تفيد بأن المرشح المتوسط ​​المحسّن مع خوارزمية تحسين الغراب أكثر فعالية من خوارزمية المرشح المتوسط ​​الأصلية ومرشحات لطرق حديثة ؛ أنها تبين أن العملية المقترحة قوية للحد من مشكلة الخطأ وإزالة الضوضاء بسبب مرشح عامل التصفية المتوسط ​​؛ ستظهر النتائج عن طريق تقليل الخطأ التربيعي المتوسط ​​إلى أدنى أو أقل من (1.5) ، والخطأ المطلق للتساوي (0.22) ,والتشابه الهيكلي اكثر من ( 95%) والحصول على PSNR أكثر من 45dB).) وبنسبة تحسين ( 25%) .          A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the results present that the improved median filter with crow optimization algorithm is more effective than the original median filter algorithm and some recently methods; they show that the suggested process is robust to reduce the error problem and remove noise because of a candidate of the median filter; the results will show by the minimized mean square error to equal or less than (1.38), absolute error to equal or less than (0.22) ,Structural Similarity (SSIM) to equal (0.9856) and getting PSNR more than (46 dB). Thus, the percentage of improvement in work is (25%)

    Removal of Fixed-valued Impulse Noise based on Probability of Existence of the Image Pixel

    Get PDF
    This paper proposes a new approach for restoring images distorted by fixed-valued impulse noise. The detection process is based on finding the probability of existence of the image pixel. Extensive investigations indicate that the probability of existence of a pixel in an original image is bounded and has a maximum limit. The tested pixel is judged as original if it has probability of existence less than the threshold boundary. In many tested images, the proposed method indicates that the noisy pixels are detected efficiently. Moreover, this method is very fast, easy to implement and has an outstanding performance when compared with other well-known methods. Therefore, if the proposed filter is added as a preliminary stage to many filters, the final results will be improved
    corecore