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 ABSTRACT OF THE DISSERTATION 

MACHINE LEARNING AND IMAGE PROCESSING FOR NOISE REMOVAL 

AND ROBUST EDGE DETECTION IN THE PRESENCE OF MIXED NOISE 

by 

Mehdi Mafi 

Florida International University, 2019 

Miami, Florida 

Professor Malek Adjouadi-Major Professor 

The central goal of this dissertation is to design and model a smoothing filter based on 

the random single and mixed noise distribution to significantly attenuate the effect of noise 

while preserving edge details. Only then could robust, integrated and resilient edge 

detection methods be deployed to overcome the ubiquitous presence of random noise in 

images. Random noise effects are modeled as those that could emanate from impulse noise, 

Gaussian noise and speckle noise.  

In the first stage of this dissertation, a thorough evaluation of methods is performed 

based on an exhaustive review on the different types of methods which focus on impulse 

noise and Gaussian noise along with related denoising filters that were designed to counter 

their effects. These include spatial filters (linear, non-linear and a combination of them), 

transform domain filters, neural network-based filters, numerical-based filters, fuzzy-based 

filters, morphological filters, statistical filters, and supervised learning-based filters.  

In the second stage, switching adaptive median and fixed weighted mean filter 

(SAMFWMF), which is a combination of linear and non-linear filters, is introduced in 
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order to detect and remove impulse noise. Then, a robust edge detection method is applied 

relying on an integrated process including non-maximum suppression, maximum 

sequence, thresholding and morphological operations. The results are obtained on MRI and 

natural images.  

In the third stage, a combination of transform domain-based filter which is a 

combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is 

introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and 

speckle noise. Then, a robust edge detection is applied in order to track the true edges. The 

results are obtained on ultrasound and natural images.  

In the final stage, a smoothing filter based on a feed-forward convolutional network 

(CNN) is introduced to assume a deep architecture supported through a learning algorithm, 

an l2 loss function minimization, a regularization method, and batch normalization, all 

integrated in order to detect and remove impulse noise as well as mixed impulse and 

Gaussian noise. This process if followed with the deployment of a robust edge detection in 

order to track true edges in the different images considered. The results are obtained on 

natural images for both specific and non-specific noise-levels.    

The significance of this work is evidenced through its many critical applications in (1) 

image segmentation, (2) object identification, (3) feature matching in stereo vision, (4) 

pattern recognition, (5) classification, (6) deriving structural and functional measurements 

in medical imaging, and (7) biometrics. 
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1. CHAPTER I 

INTRODUCTION 

 Research Objectives 

Edge detection is a challenging nontrivial problem but is a task that remains essential 

for object identification, image segmentation, feature extraction, among other essential 

image processing tasks. A treatise on the “Theory of Edge detection is presented in [1] 

describing what constitutes a full primal sketch and defining what constitutes an intensity 

change over a wide-range of scales, and what optimal smoothing filter could effectively be 

used. Earlier experiments on information processing in the visual system was pioneered by 

Hubel and Wiesel (1962, 1968) [2] and later by Campbell & Robson (1968) [3]. Hubel and 

Wiesel, through inserted microelectrodes into the primary visual cortex of anesthetized cat 

and monkey, identified what they named as simple cells, complex cells and hyper-complex 

cells. Through the discovery of these cells, they elicited new understanding on how 

collectively they could construct composite edge representations of visual information 

from simple features extracted through orientation tuned line/slit detectors, motion 

detectors, and angle/corner detectors.  Campbell & Robson took a different direction, and 

through experiments involving a variety of grating patterns over a wide range of spatial 

frequencies, suggest “the existence within the nervous system of linearly operating 

independent mechanisms selectively sensitive to limited ranges of spatial frequencies,” 

akin to Fourier transforms.  

There are several methods and well-known operators that are commonly used to detect 

edges in images, and their success is often weighted as a function of the application at hand. 

Contentious issues remain with thresholding, contrast and scale issues for which an edge 
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point is deemed to be a true edge point. When we deal with images, pertinent details can 

be useful when analyzing specific imaging data, but the concern has always been in 

delineating what really constitute edge data with a high degree of similarity and correlation 

in contrast to other background and noise data. The challenge is further amplified when the 

images are degraded by noise, affecting significantly the structural metrics and the signal 

to noise ratio measure.  

In this dissertation smoothing filters based on types of noise distributions that we have 

to contend with are created with the aim to attenuate the effect of noise while preserving 

as much edge details as possible. The smoothing filters are based on a combination of linear 

and non-linear filters for impulse denoising, combination of transform domain based and 

non-linear based filters for Gaussian as well as mixed Gaussian and speckle denoising, 

convolutional neural network (CNN) with very deep architecture (deep learning) for 

impulse and mixed impulse and Gaussian denoising. The results obtained are contrasted to 

other well-known denoising filters by using different structural metrics and evaluation 

measures that would gauge the degree of edge preserving by means of correlation and 

signal to noise ratio (SNR). Then, a robust and integrated edge detection method that is 

resilient to the presence of noise in images, is applied in order to detect the true edges. 

There is however a tradeoff (or a balance) that needs to be struck between the image 

smoothing operation which is to attenuate the effect of noise and the edge detection process 

that should preserve edge details and minimize any presence of potential noise points. The 

smoothing algorithm is thus designed based on the assumed model of the random mixed 

noise. The edge detection phase, on the other hand, is based on the gradient that is applied 

to the smoothed/denoised image with additional processing steps that are created for 
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optimized thresholding, edge thinning to overcome the blur introduced through smoothing, 

appropriate edge tracking to overcome discontinuities, and maximized sequencing to 

eliminate any remaining noise points due to predefined thresholds in the presence of high 

density noise.    

Edge detection methods that are immune or resilient to noise allow for enhanced image 

segmentation, object recognition, feature extraction and pattern classification. The 

significance of edge detection is evidenced through its many critical applications in (1) 

object identification, (2) feature matching in stereo vision [4, 5], (3) pattern recognition 

and classification, (4) deriving structural and functional measurements in medical imaging 

[6], (5) biometrics [7], and (6) image segmentation, among many other real-world 

applications that can be contemplated.  For illustrative examples that highlight the 

significance of this work, our experience with medical images clearly show that effective 

edge detection could improve (1) segmentation of tumors in PET images which have low 

resolution and suffer from inherent noise in the image [8]; (2) Estimating anatomic liver 

volumes towards selective internal radiation treatment (SIRT) [9], where the ratio of tumor 

to liver is essential in determining the radiation dose.  

In more specific terms, the significance of the work of this dissertation could also be 

measured in terms of (1) allowing researchers that deal with noisy images to be familiar 

with different types of methods and algorithms that best investigate the types of noise that 

they confront, (2) providing denoising method for images containing single and mixed 

noise, and (3) introducing an integrated process with its related software that maximize the 

preservation of edge details and minimizes the signal to noise ratio. Moreover, the 

significance of such a design is also elevated in view of its simplicity of use, flexibility, 
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and extensibility with users still having the full potential to add and/or improve the software 

modules in seeking an optimal outcome under different circumstances and conditions of 

the application at hand.  

 Random Noise 

The term noise is used to describe any unwanted and/or random phenomenon that may 

degrade an image, distorting its original content and burdening any preprocessing step that 

may be undertaken. There exists a plethora of noise sources that can affect images, some 

of which are controllable by the potential means of undoing (reversing) their effect, while 

others are extremely difficult to formulate and hence less obvious for overcoming their 

effect. Some common sources of noise include image sensors, scanners, optic defects, 

relative motion, shot noise, atmospheric turbulence, among others. Impulse noise is caused 

by A/D converter saturation, transmission errors, memory errors, and faulty pixels in 

camera sensors resulting in black pixels in white regions and white pixels in black regions 

[10-11].  Impulse noise, also known as salt and pepper noise, is represented by equation 

(1), where cmin and cmax are minimum and maximum values which are 0 and 255 in the 

standard 8-bit pixel resolution images [12].                                

𝐼(𝑐) =  {

𝐼𝑚𝑖𝑛                   𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑠
𝐼𝑚𝑎𝑥                   𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑝

           𝐼𝑚𝑖𝑛 < 𝑐 < 𝐼𝑚𝑎𝑥       𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑃𝑝 − 𝑃𝑠 
                    (1) 

In this model, 𝑐 denotes the uncorrupted pixels, and where the corrupted pixels are 

assigned probability Ps for salt and Pp for pepper.  In this normalized representation of the 

image, 0 being the minimum intensity denoted by 𝐼𝑚𝑖𝑛 and 1 being the maximum intensity 

denoted by 𝐼𝑚𝑎𝑥.  
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Also, the random value model appears as uniformly-distributed random numbers 

between a minimum and maximum interval [𝑛𝑚𝑖𝑛, 𝑛𝑚𝑎𝑥] and is expressed by equation (2).  

𝐼𝑐(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) =  {
𝑛                             𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

𝑐                       𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝 
                        (2) 

In this model, 𝑐 denotes the uncorrupted pixels, and the corrupted pixels are assigned 

probability P.  

Gaussian noise, represented by a Gaussian distribution function, is additive and 

independent, and is caused by 3 common factors: amplifier noise, shot noise, and grain 

noise of film [13-15]. Accordingly, the noisy image can be expressed as 

                                             𝐼𝑛(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) + 𝑛(i, j)                        (3) 

Where 𝐼𝑛 represents the noisy image, I is the original (noise free) image and n is the 

additive noise on a pixel basis. 

Speckle noise is one type of noise that is multiplicative and independent. It is the result 

of interference between returning light from rough surfaces and the aperture creating a 

granular shape pattern in the camera sensor. This type of noise affects both the resolution 

and contrast in ultrasound images. The general model of speckle noise [16] contains 

multiplicative and additive components, but in ultrasound images, the additive part can be 

overlooked [17]. Using a logarithmic transform, the multiplicative noise is converted to 

additive noise. Speckle noise is assumed to have a generalized gamma (GG) distribution 

as in (4).     

𝑝𝑧(𝑧) =
𝛾𝑧𝛾𝑣−1

𝛼𝛾𝑣𝛤(𝑣)
𝑒−(

𝑧

𝛼
)

𝛾

    𝑧 ≥ 0, 𝛼, 𝑣, 𝛾 > 0                                (4) 

Where  𝑧 is a random variable which represents a pixel value. 𝛤(𝑣) is the gamma 

function, 𝑣 and 𝛾 are shape parameters, and 𝛼 is a scale parameter. 
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 Structure 

Chapter 1 introduces the research objectives of this dissertation and relates the 

importance of image denoising and edge detection. The mathematical foundation of 

random noise in images is presented, and a structure of the main research themes covered 

are discussed subsequently.  

Chapter 2 provides an exhaustive literature review describing the impulse, Gaussian, 

and mixed impulse and Gaussian denoising filters and a classification of them is shown to 

depend on the method used.   

Chapter 3 introduces filters designed to remove random noise. These filters include 1) 

spatial filter for impulse denoising 2) wavelet-based filter for Gaussian, speckle, and mixed 

Gaussian and speckle denoising 3) Convolutional neural network (CNN) filter with very 

deep architecture for impulse and mixed Impulse and Gaussian denoising. Finally, gradient 

based edge detection methods are applied in order to detect the true edges.  

Chapter 4 provides the implementation results of 1) spatial filter for impulse denoising 

as applied on MRI and natural images, 2) wavelet-based filter for Gaussian and mixed 

Gaussian and speckle denoising also applied on MRI and natural images, and 3) specific 

and non-specific noise-level convolutional neural network (CNN) for impulse and mixed 

impulse and Gaussian denoising applied on natural images. Finally, after each of the 

filtering methods, edge detection results are given to gauge the merits of each of the 

denoising methods.  

Chapter 5 provides concluding remarks, highlighting the merits of the proposed 

denoising and edge detection methods, and provides a perspective on future research 

endeavors.  
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2. CHAPTER II 

LITERATURE REVIEW  

This chapter provides a comprehensive survey on state-of-the-art impulse denoising 

filters [18], Gaussian denoising filters [18], and mixed impulse and Gaussian [19] applied 

to images and summarizes the progress that has been made over the years in several 

applications involving image processing. The random noise model in this survey is 

assumed to be comprised of impulse (salt and pepper) and Gaussian noise. Different noise 

models are addressed, and different types of denoising filters are studied in terms of their 

performance on digital images and in their various domains of application. A comparison 

is performed to cover relevant denoising methods and the results they yield.  

2.1 Impulse Noise Filtering 

2.1.1 Spatial Non-Linear Filters  

Spatial filters are obviously defined in the normal 2-D image space, where the intensity 

of each pixel is adjusted based on its original value and that of its neighbors. In this case, 

the filter output is a non-linear function of its inputs.  They can be divided into median 

filters, weighted averaging filters, and non-local mean filters.  

Median filters convolve a window of a determined size (referred to as a moving 

window) over the image to determine whether the pixel at its center is corrupted or not. 

When a pixel is deemed corrupted, its value is replaced with the current window’s median 

value. When the noise intensity increases, the size of the window must be increased to 

compensate for this intensity increase. The median filters can be used in different formats, 

allowing for specific improvements. Such filters include: 1) The adaptive median filters 

exploit the adaptive property of the scanning window as exemplified in the adaptive median 
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filter (AMF) [20], the filter in [21] which is a combination of AMF and an iterative 

minimization, and the simple adaptive median filter (SAMF) [22]; 2) Threshold filters, 

which use predefined thresholds in their noise detection phase such as pixel wise median 

absolute deviation filter (PWMAD) [23]; 3) Switching filters that use a switching process 

to select the optimal output, either in the noise detection phase or in the noise correction 

phase. Such filters include progressive median filter (PSMF) [24], noise adaptive soft-

switching median filter [25], directional difference-based switching median filters 

(DDBSMF) [26], Impulse detector switching median filters (ISMF) [27], adaptive 

switching median filter (ASMF) [28] and sorted switching median filter (SSMF) [29]; 4) 

Weighted and multi-states-based filters that use different threshold comparisons and 

consequently different states for noise detection and correction. The tri-states median filter 

(TSMF) [30], MSMF [31], directional weighted median filter (DWMF) [32] are different 

types of weighted and multi-states filters; 5) Decision filters, which assume that corrupted 

pixels have a value of 0 or 255 and uncorrupted ones have a value between them. They 

include decision based median filters [33], new based decision algorithm (NEDBF) [34], 

and decision base unsymmetrical median filter (DBUTMF) [33]; and 6) Adjusted median 

filters are types of filters that use an adjusted median value to replace the corrupted pixels, 

and boundary discriminative noise detection filter (BDNDF) [35], and IBDNDF [36] which 

is an improvement on BDNDF.        

  Weighted averaging filters employ a multi-criteria weighted mean value to correct the 

corrupted pixels. They include switching adaptive weighted mean filter (SAWMF) [37], 

adaptive weighted mean filter (AWMF) [38], unbiased weighted mean filters (UWMF) 
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[39], the cloud generator-based filter in [40], and interpolation-based impulse noise 

removal filter (IBINRF) in [41].  

Non-local mean filters are used for Gaussian denoising. The iterative non-local mean 

filter (INMF) in [42] is a combination of a switching median filter and a non-local mean 

filter. It identifies the corrupted pixel within the selected window and replaces it with the 

median value of the uncorrupted ones. Once the corrupted pixels are identified and 

replaced, the filter further improves the approximation of the corrupted pixel’s value by 

using an iterative non-local means (NLM) algorithm. 

2.1.2 Spatial Combined Linear and Non-Linear Filters  

They can be divided into the following types: combined median and mean filters, and 

combined median and mid-point filters.    

Combined median and mean filters, as their name implies, assume a certain combination 

of median and mean filters. Such filters include decision based algorithm filters (IDBAF) 

as described in [43], cascading algorithm combining a decision-based median filter and an 

asymmetric trimmed mean filter DMF+UTMF as introduced in [44], modified decision 

based unsymmetrical trimmed median filters (MDBUTMF) as applied in [45], cascade 

decision-based filtering algorithms [46], decision based partial trimmed global mean filters 

(DBPTGMF) [47], decision based adaptive neighborhood median filters (DBANMF) [48],   

decision based unsymmetrical trimmed modified winsorized mean filters (DBUTMWMF) 

[49], and denoising filter in [50] that utilizes two cascading algorithms, which are special 

types of spatial combined linear and non-linear filters.  

Combined median and mid-point filters, as their name implies, is likewise a 

combination of median and mid-point filters. They include cascading algorithms that 
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combine decision-based median filter and unsymmetric trimmed midpoint filtering 

DMF+UTMP as described in [44].  

2.1.3 Morphological Based Filters 

Morphological operations are non-linear and not related to numerical values.  They 

include generalized directional morphological filters (GDMF) [51], Open-close sequence 

filters (OCSF) [52], and the proposed denoising and enhancement filter for salt and pepper 

noise [53].   

2.1.4 Fuzzy Based Filters 

These types of filters are based on fuzzy rules and they include 1) switching based filters 

such as adaptive fuzzy switching filter (AFSF) [54]; 2) Gradient based filters such as fuzzy 

impulse noise detection and reduction method (FIDRM) as proposed in [55], and gradient 

detection fuzzy filters (GDFF) [56] [57]; and 3) Histogram based filters explored in [58].   

     

2.2 Gaussian Noise Filtering 

2.2.1 Spatial Non-Linear Filters 

Spatial Non-linear filters simply have outputs dictated by a non-linear function of their 

inputs. They can be divided into total variation filters, anisotropic diffusion filters, non-

local mean filters, bilateral filters, fourth order partial differential filters, and Kuwahara 

filters. Total variation methods make use of the total variation measure and assume that the 

integral of the signal gradient to be high. Therefore, by decreasing total variation, a 

denoised image with high similarity is obtained. Total variation was first introduced in [59] 

with the assumption that spurious effects in the image contribute greatly to this variation 

measure.  An improved total variation method is applied to the image to smooth it and 
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remove the remaining noise [60], especially from high frequency sub-bands. Also, other 

types of improvements to total variation are further described in [61-63] with a non-

uniform total variation partition filter (NTVPF) introduced in [63].    

Anisotropic diffusion filters reduce image noise and preserves edge details by using 

non-linear and space-variant transforms. Algorithms that use a diffusion process and a new 

definition of scale-space are introduced in [31]. Then, improvements on anisotropic 

diffusion are presented in [65] and [66]. A specific improvement on anisotropic diffusion 

as shown in [67] attains better noise removal by discriminating between fine details and 

noise while preserving edges and details by using local gradients and gray-level variance. 

Another type of improvement on anisotropic diffusion filter presented in [68] applies a 

Gaussian filter to the moving window to reduce noise.   

Non-local similarity-based filters use several similar patches to reconstruct the patch 

being processed. The non-local mean (NLM) filter presented in [69] uses non-local 

averaging to preserve image edges and self-predictions to replace noisy pixels with the 

mean weighted average of the pixels with similar Gaussian neighbors. The authors of [70] 

postulate that non-local mean (NLM) filters can emerge from a Bayesian approach with 

new arguments and the authors in [71] reduce the NLM [69] algorithm’s time complexity.  

The exponential term of the weight function of NLM is improved in [72]. Also, there are 

other improvements on NLM such as iterative based NLM filter in [73] as well as with the 

method presented in [74].   

Bilateral filters are non-linear denoising methods aimed at edge preservation. Corrupted 

pixels are replaced with the weighted Gaussian-based average of its neighboring pixels 

depending on domain and range distance to reduce phantom edge color. Bilateral filters are 
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composed of a combination of domain (responsible for geometry closeness) and range 

(responsible for similarity intensification) filter(s) [75].   The improved bilateral filter 

presented in [76] achieve good high-noise rejection performance. Also, the time 

complexity of the filter is reduced by using the faster algorithms presented in [77] and [78].      

Fourth order partial differential equations (4th PDE) are used to optimize noise removal 

and edge preservation by minimizing the cost function (absolute value of the image’s 

Laplacian). The 4th PDE provided in [79] performs very well, avoiding the blocky artifacts 

that appear in the early stages of diffusion when smoother areas diffuse faster than the less 

smooth ones. The improved PDE proposed in [80] achieves higher detail preservation, even 

in low SNR conditions. The authors of [81] propose an improved 4th PDE to set the 

diffusivity functions that controls the diffusion along the gradient direction, achieving fast 

convergence filtering with better edge preserving performance. 

Kuwahara filters are non-linear denoising filters that preserve edge details. They divide 

the 3x3 moving window into four sub-windows, calculate their means and standard 

deviations, and use the mean of the window with the smallest standard deviation to replace 

the corrupted pixel at the center of the original window [82].  However, Kuwahara filters 

have some important limitations as discussed in [83].  

2.2.2 Spatial Linear Filters 

Spatial linear filters include mean filters, Gaussian filters and Wiener filters. Mean filters, 

as in [16] and [84], use a moving window to detect the corrupted pixels and replace them 

with the average value of their neighboring pixels.  Gaussian filters, as in [84], aim to 

preserve the edges. They are similar to mean filters but use the Gaussian distribution 

function to achieve discrete approximations and softer frequency responses. They are linear 
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and mean square error stationary filters that can be used for Gaussian denoising and are 

often applied to images in the frequency domain [16, 84].  

2.2.3 Neural Network-Based Filters 

These filters can be divided into cellular-based filters, auto-encoder-based filters, and 

convolutional neural network-based filters.   

Cellular neural networks are parallel computing algorithms similar to neural networks 

(NNs). However, unlike NNs, cellular neural networks allow communication only between 

neighboring units. The method in [85] proposed a combination of a nonlinear transform 

domain filter and a cellular neural network. 

Auto encoders learn to perform efficient representation, or encoding, of a given data set 

(through dimensional reduction) using unsupervised learning. The authors in [86] propose 

a combination of sparse coding and deep networks pre-trained with denoising auto-encoder 

(DA) as an alternative to training pure DAs.   

Convolutional neural networks are deep and feedforward artificial neural networks that 

use a variation of multilayer perceptron and preprocessing. The Trainable Nonlinear 

Reaction Diffusion (TRND), presented in [87], used supervised training to train a dynamic 

nonlinear reaction diffusion model with time-dependent parameters (linear filters and 

influence functions). The method proposed in [87] is similar to the feedback convolutional 

neural network (CNN) presented in [88], where each iteration (stage) of the proposed 

diffusion process uses convolutional operations of a set of linear filters and can thus be 

thought of as a convolutional network. Also, the deep convolutional neural network method 

(DnCNN) introduced in [89] can be thought of as a generalization of TRND [87] and are 

shown to achieve better performance than TRND-based filters.  

https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Neural_networks
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2.2.4 Fuzzy Filters 

These fuzzy filters can be divided into weighted averaging based filters, control-based 

filters, similarity-based filters, and wavelet domain-based filters. The fuzzy rule-based 

filter proposed in [90] is a weighted average filter with non-linear weights. The authors in 

[90] introduce a gradient based non-linear multi-dimensional step-like function for which 

the mean square error is minimized. 

The authors in [91] propose an iterative fuzzy control-based filter (IFCF) whose 

membership function is defined by 7 triangular-shape fuzzy sets based on the S-type fuzzy 

function. The modified IFCF (MIFCF) avoids the blurring of edges and tunes the 

membership function used by IFCF in each step. Extended IFCF (EIFCF) perform extra 

filtering in each iteration by compressing the membership function to further decrease the 

noise level. Smoothing fuzzy control-based filters (SFCF) use non-iterative IFCF-based 

filters to increase the filter’s runtime by changing one of the rules and replacing the IFCF 

membership functions with smoother slope ones. Sharpening SFCFs (SSFCF) add two 

extra rules with an extra S-type or sigmoid function to smooth the noise and sharpen the 

edges at the same time. Fixed-point fuzzy control-based filters (FFCF) is a modification to 

SFCF. Adaptive fixed-point fuzzy control-based filters (AFCF) are modified versions of 

FFCF used to reduce hardware implementations cost. While adaptive c-average fuzzy 

control-based filters (ACFCF), nearly identical to AFCF, overcome better the effect of 

blurriness and perform with faster runtimes.  

The fuzzy similarity-based filter (FSBF) presented in [92] defines its fuzzy rules based 

on the similarities between the central pixel and all the selected window templates 

depending on uniformity of the intensity and the template homogeneity.   While the method 
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presented in [93] applies the Haar wavelet transformation to the noisy image and filters the 

wavelet coefficients through a Wiener filter (or through other kinds of fuzzy filters) with 

triangular membership functions like the asymmetrical triangular median filter (ATMF) 

[94] or the asymmetrical triangular moving average filter (ATMAF) [94]). The final 

denoised image is obtained through an inverse wavelet transform.  

2.2.5 Combined Fuzzy and Morphological Filters 

 These filters are based on a combination of fuzzy and morphological filters. The 

method introduced in [95] uses fuzzy closing and opening mathematical image morphology 

[96] based on image erosion and dilation [97]. 

2.2.6 Statistical Filters  

These can be divided into singularity function-based filters, Hidden Markov tree-based 

filters, and neighborhood-based filters. For example, the method proposed in [98] divides 

the input image into multiple sub-images and reconstructs it by using 2-D singularity 

function analysis (SFA) and inverse discrete Fourier transform (IDFT). Markov trees, on 

the other hand, are tree-like graphs composed of nodes, subset of variables, and links to 

which a learning algorithm is applied to model and predict meaningful descriptions. The 

method proposed in [99] uses non-parametric hidden Markov trees to denoise images. The 

neighborhood-based filters are statistical filters and they are based on the neighborhood of 

under-process pixels. An unsupervised, information-theoretic, adaptive filter (UINTA) is 

proposed in [100] based on the statistical relationship of the pixel being processed and its 

neighbors. 

Norm based filters are another type of statistical filters. The concept of norm is a 

statistical average which can be defined as a function in which the size or length of each 

https://en.wikipedia.org/wiki/Function_(mathematics)
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vector (in a vector space) is set to be positive. It has different types such as sparsity based 

filters and low-rank approximation-based filters. The PCABM4D method from [101] is 

based on sparse regularization. It uses a 3D-overcomplete wavelet dictionary and solves 

sparse regularization minimization by using an iterative Chambolle-Pock method as the 

gradient method. The modified low rank matrix recovery (LRMR) method presented in 

[102] explores the hyperspectral image (HSI) low rank property by using a linear spectral 

mixing model [103, 104]. It first builds an HSI restoration model and solves it using “Go 

Decomposition” (GoDec) [105] and the augmented Lagrange multiplier (ALM) numerical 

optimization method. Total-variation-regularized low-rank matrix factorization (LRTV) 

denoising method [105] is another method in which the nuclear norm is used as the low 

rank property, total variation (TV) regularization is used for its spatial piecewise 

smoothness, while the 𝑙1- norm is used to detect sparse noise.  

2.2.7 Transform Domain Based Filters   

These filters can be divided into Curvelet filters, Contourlet filters, non-local-based 

filters, data-adaptive filters, and non-data adaptive filters.  Curvelets based on the theory 

of multiscale geometry (using scale, orientation and position) are introduced in [106], 

yielding better performance on edge boundaries than other mature wavelet image denoising 

methods. The curvelet transformation consists of the following steps: 1) compute all 

curvelet thresholds, 2) obtain curvelet norms, 3) apply the curvelet transform, 4) apply hard 

thresholding to the curvelet coefficients, and 5) apply the inverse curvelet transform. 

The proposed Contourlet method in [107] uses a 2-D transform to find image geometries 

from their discrete nature and provides sparse representation in both spatial and directional 

resolution; achieving better smooth curve edges performance than wavelets while keeping 
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contours and details. The Contourlet transformation can be summarized by the following 

steps: 1) apply Contourlet transform to multiscale decomposition and consequently obtain 

the number of scales and directions, 2) apply thresholding to the Contourlet coefficients 

(for each direction and for each scale), and 3) apply inverse Contourlet transform to obtain 

the denoised image.        

Non-local filters process all pixels in the image to find how similar they are to the pixel 

being processed at the center of the moving window.  They include: an enhanced sparse 

representation-based filter in transform domain (BM3D) [108], and the BM4D filter 

proposed in [109] which is an extension of BM3D. 

Data adaptive filters use a common representation of the whole image that minimizes 

the global reconstruction error. The method proposed in [110] introduces the application 

of sparse coding (related to independent component analysis (ICA)) for image wavelet-like 

extraction while using soft thresholding [111] operators on sparse coding to further reduce 

noise. The method proposed in [112] uses an iterative fixed-point method to obtain higher 

convergence speed. 

Non-data adaptive filters utilize the local properties of the noisy image (such as local 

windows and local blocks) to approximate the denoised one. They can be further divided 

into spatial frequency domain filters, wavelet and non-linear spatial domain filters. Low-

pass filters and Gaussian filters are two types of spatial frequency domain filters. The low-

pass filters presented in [15] [84] and [113] remove the high frequency signals present in 

the image that exceed a specified cut-off frequency. Also, the authors in [114] use the 

relationship between Gaussian filters, images, and noise statistics to design an optimal 

filter. Wavelet domain filters use orthogonal mathematical series to generate square 
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integrable function (Wavelets). These Wavelets are then used to transform a noisy image’s 

domain into one where various noise removal steps can be applied.  

Other filters use a combination of wavelet transforms and non-linear spatial filters to 

achieve denoising. Among these types of filters are: 1) 4th Order Partial differential 

equation [115], 2) Anisotropic like wavelet-based multiscale anisotropic diffusion method 

(WMSAD) presented in [116], 3) Gaussian and Bilateral [117], 4) Non-local mean [118] 

[119], 5) Total variation [120], 6) Wiener filters [121], 7) PCA-based denoising [122], and 

8) Shrinkage rules-based filter. A classification of different shrinkage rules is performed in 

[123]. This type of classification includes soft and hard thresholding [111], hyperbola 

function thresholding [124], firm thresholding [125], non-negative Garrote thresholding 

[126], smoothly clipped absolute deviation (SCAD) thresholding [127], exponential 

thresholding [128], and non-linear thresholding-based filters. Also, these methods specify 

thresholds for their shrinkage rules, which include: non-adaptive thresholding estimation-

based filters [129], adaptive thresholding filters-SURE [130-132], adaptive thresholding 

filters-Bayes [133][134], adaptive thresholding filters-cross validation [135-137], adaptive 

thresholding filters-spatially adaptive [138] [139], adaptive thresholding filters-bivariate 

[140-143].  

For comparative purposes, Table 1 illustrates the peak signal to noise ratio comparison 

of filters based on adaptive thresholding estimation for the Lena image. 10) Wavelet 

coefficient-based filters. These filters can be categorized as deterministic [144], 

statistically-based [145-147] or of non-orthogonal type [148]. Table 2 summarizes the key 

points and limitations one ought to consider in the implementation of the numerous Impulse 
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and Gaussian filtering. Also, the overall filter classification block diagram is as shown in 

figure 1. 

 

Table 1 – Peak signal to noise ratio comparison of impulse denoising filters based on adaptive 

thresholding estimation for the Lena image example 

 
Method Noise level Correlation PSNR SSIM 

Spatially 
adaptive 

0.1 0.9281 26.6219 0.9245 

LLSURE 0.1 0.9243 26.1790 0.9224 

SURE-LET 0.1 0.9225 26.0652 0.9207 

Bivariate 0.1 0.9201 25.9104 0.9189 

Bayes 0.1 0.9187 25.7731 0.9178 

 

Table 2 – Summary of the key points and limitations one ought to consider in the 

implementation of the numerous filters for impulse and Gaussian noise filtering 

 
Type of filter Key Points/Limitations 

Spatial filters Averaging blurs edges and image. 

Total variation filters  Inappropriate estimation of the number of iteration causes detail loss and over-

smoothing. 

Non-local means filters Weight estimation complexity leads to increased computational requirements. 

Bilateral filters Small structures and details are removed by narrow spatial windows. 

Anisotropic diffusion filters Block effects result from removing features. 

Partial differential equation 

filters  

Increasing the order of filter produces artifacts. 

Morphological-based filters It uses small images as structuring elements and acts as a moving probe that samples 

each pixel in the image. Artifacts appear in the shape of structuring element as the 

window moves in a fixed direction across the image.        

Fuzzy-based filters Time and memory complexity are the main implementation limitations for these types 

of filters. 

Neural network-based 

filters 

Bad performance can result from inappropriate loss function and inappropriate or small 

training datasets. 

Singularity function-based 

filters 

Inappropriate frequency response, singular point determination, and thresholding lead 

to bad performance. 

Hidden Markov tree-based 

filters 

Inappropriate convergence and large number of unstructured parameters cause bad 

performance. 

Low rank approximation 

based filters 
Complexity and large dimension of the matrix in order to solve the problem 

cause to computational burden. 

Curvelet filters Poor performance in smooth area and induced Curvelet artifact production. 

Contourlet filters High computational complexity. 

Non-local based filters  Lack of large amounts of matching blocks can result in artifacts. 

Edges blur after collaboration and aggregation steps specially in highly corrupted 

images.  

Data adaptive based filters Dimensionality reduction causes feature and information loss. 

Wavelet domain-based 

filters 

Inappropriate scaling and thresholding introduces image artifacts. Also, by avoiding 

detail blurring leads to information loss.    

Frequency domain-based 

filters 

Enhances entire structure (image and noise) without discrimination. 
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Figure 1 – Overall filter classification block diagram for the Impulse and Gaussian filtering 
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2.3 Mixed Impulse and Gaussian Noise Filtering 

2.3.1 Spatial Non-Linear Filters 

 As indicated earlier, spatial filters are defined in the spatial domain of the image in 

which the intensity of each pixel is changed based on its intensity and the intensities of the 

neighborhood pixels. A non-linear filter is a type of filter in which its output is a non-linear 

function of its input. These filters can be divided into non-local mean based filters, adaptive 

median based filters, and total variation filters.   

The non-local mean filters are based on the weighted mean value of the all pixels of the 

image as well as how similar they are to the pixel being processed. Patch based weighted 

mean filter (PWMF) [149] is a one type of such filters.     

Adaptive median filters have good performance in eliminating impulse noise while 

averaging filters tend to have good performance in eliminating Gaussian noise. Their 

combination can hence be effective in eliminating these noises when mixed. An adaptive 

weighted mask [150] is used to remove such mixed noises based on the median filter.   

Total variation methods are designed to remove spurious effects by gauging the total 

variation. Therefore, by decreasing total variation, we are also decreasing such spurious 

effects. The method proposed in [151] is based on the total variation and has two steps: 

noise detection and total variation minimization. Another total variation-based method is 

proposed in [152] which first detects the corrupted impulse noise then, applies the total 

variation in order to remove Gaussian and impulse noise, respectively.  

2.3.2 Spatial Combined Linear and Non-Linear Filters 

The non-linear median filter has good performance in removing impulse noise. If 

median filter is combined with linear filters, their combination will be effective in 
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removing the mixed impulse and Gaussian noise. The filter in [153], uses a combination 

of median filter [16][84], wiener filter [16][84] and bilateral filter in order to remove mixed 

noises. 

2.3.3 Fuzzy Filters  

These filters can be divided into weighted averaging filters, entropy-based filters, 

switching based filters, and Cardinality based filters.  

The weighted averaging filters are based on weights. They apply weights to the under-

processed pixels by using a sort averaging in which the summation of them are used as 

denominator. The weights can be obtained in different ways, one of them is based on the 

fuzzy logic. There are some methods which are based on the fuzzy weights [154-156].  

The concept of entropy refers to a statistical measure of randomness and can analyze 

the texture of the image. Some filters use this concept in order to perform image restoration. 

The method proposed in [157] is based on the fuzzy entropy concept. 

Some filters in noise detection phase are based on the switching process in order to 

select the optimal output. The method in [158] uses fuzzy switching filter and bilateral 

filter to remove the impulse and Gaussian noise, respectively. 

Cardinality is defined as number of elements in a set.  The method in [159] which is an 

improvement on simple fuzzy rule (SFR) [160] and vector median filter (VMF) method 

[161] uses the Cardinality concept. 

2.3.4 Statistical Filters   

This type of filters exploits key statistical parameters through norm-based filters, non-

local similarity-based filters, and maximum likelihood estimation-based filters.  The 

following are 3 different types that are predominant in the literature: 
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1) Sparsity based filters: Sparse approximation can be defined as a sparse vector in 

which a system of equations is solved. By adding key information as we prevent 

overfitting, sparse regularization is obtained. Both sparsity and sparse regularization select 

the best input variables (reduced input variables) in seeking the desired output variables.  

They include methods in [162] and [163], and weighted encoding with sparse non-local 

regularization (WESNR) [164].  

2) In-painting based filters: Image in-painting is said to occur when there are damaged 

image pixels and missing image pixels. The image is reconstructed from background 

information.  The proposed method in [165] is based on an in-painting filter design. 

3) low-rank approximation-based filters: Low-rank approximation is a minimization 

problem based on the Frobenius norm in which the cost function calculates the fit between 

a given data and an approximating optimization variable, subject to a constraint that the 

approximating optimization variable has a reduced rank. The method in [166] is based on 

low rank approximation and uses weighted low rank model (WLRM) as weighted low-

rank approximation (WLRA) [167] [168] or representation (WLRR) [165][170]. Another 

low rank approximation-based algorithm is defined in [171], based on Laplacian scale 

mixture (LSM) modeling and non-local low rank regularization.   

In non-local similarity-based filter, several similar patches are used to reconstruct the 

under-processed patch. A non-local similarity-based filter is introduced in [172] which has 

several steps. Moreover, maximum likelihood estimation (MLE) is based on statistical 

model and is a special case of maximum a posteriori estimation (MAP). For parameter 

estimation, MLE finds the values that maximize the likelihood of them. The PARIGI 

method [173] is based on the MLE method.  

https://en.wikipedia.org/wiki/Sparsity
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Rank_(linear_algebra)
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2.3.5 Supervised Learning Algorithm Based Filters   

Supervised learning is a machine learning task in which the output is known for the 

network in the process of labeling the training set. It iteratively makes predictions on the 

training data. The method in [174] is based on switching scheme with two noise detectors 

and two estimators for noise removal. Most of the noise is captured by the first detector 

and the rest remains hidden in the image details or close to the edges which are to be 

detected by the second one. Each detector has its own estimator which are based on median 

and median absolute deviation (MAD). Also, in order to build the detectors, genetic 

programming (GP) is sometimes used [175] [176]. 

2.3.6 Numerical Method Based Filters   

Finite element method is a numerical method used to solve the problem in which 

a vibrational formulation, post processing and one or more solution algorithm are used. 

The method in [177] is based on one such finite element method [178-180]. 

2.3.7 Morphological Operation Based Filters   

This is a non-linear operation using the morphology of features in an image not 

necessarily related to a numerical value. Dilation and erosion are two such morphological 

operators used in images. Dilation adds pixels to the boundaries in an image and erosion 

removes the pixels on the boundaries. The method in [181] is based on such morphological 

operations. 

2.3.8 Transform Domain Based Filters   

These filters are processed in the domain which is not their original domain. There are 

some transformation domain filters such as frequency, wavelet, Curvelet, and Framelet. 

The method in [182] proposed a frame-based [183] iterative algorithm for denoising. 

https://en.wikipedia.org/wiki/Calculus_of_variations
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The overall filter classification block diagram is as shown in figure 2. Also, Table 3 

summarizes the key point and limitations of the numerous mixed Impulse and Gaussian 

filtering. 

 

 

 

 

 

 

Figure 2 – Overall filter classification block diagram for the mixed impulse and Gaussian filtering 
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Table 3 – Essential points and limitations to consider in the implementation of the numerous 

filters for the mixed Impulse and Gaussian filtering 

 
Type of filter Limitations 

Spatial filters Averaging caused to blur the edges and consequently image  

Total variation filters  Inappropriate estimation of the number of iteration caused to loss the 

details and over-smoothing 

Non-local means filters Complexity of weighting cause to computational burden  

Fuzzy based filters In the case of good mathematical descriptions and solutions, time and 

memory are two limitations for complete mathematical implementation 

Non-local similarity based filters Detection of the best patches. 

Complexity cause to computational burden. 

Difficulty obeying quality constraints. 

Maximum likelihood based filters Difficulty obeying quality constraints. 

Sensitive to choose initial values. 

It needs large samples to get optimal result.  

The numerical estimation is non-trivial. 

The mathematic is often non-trivial, particularly confidence intervals for 

the parameters is needed.    

Sparsity based filters Principled way to choose a solution for problem cause to computational 

burden and time consumption. 

Solving a noise-aware variant cause to sparse approximation and 

representation problem. 

Inpainting based filters Reproduction of large texture regions 

Unable to recover partially degraded image 

Low rank approximation based 

filters 

Complexity and large dimension of the matrix in order to solve the 

problem cause to computational burden. It could be a serious practical 

problem in the image. 

Genetic programming based filters Very remarkable computing resources required.  

Finite element based filters There is no general close-form solution (it can change in various 

parameters). 

The solutions are based on an approximation. 

It has inherent errors which can cause to corrupt the image. 

Morphological based filters It uses small images as structuring elements and acts as a moving probe 

that sample each pixel of image. it moves a fixed direction across the 

image, therefore, an artifact appears in the shape of structuring element.        

Framelet based filters Their orientation selectivity is limited to only two directions. 

Complexity cause to computational burden. 
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3. CHAPTER III 

THEORY AND METHODOLOGY  

3.1 Spatial Filter Design for Impulse Denoising  

Noise is a ubiquitous and unwanted phenomenon that is inherent to many image 

acquisition and transmission sources. One such type of noise that degrades image quality 

is impulse (or salt and pepper) noise which appears as white and black pixels in the 

degraded image. In order to remove this type of noise, smoothing filters are often applied 

to the image to decrease the variance of the noise, while endeavoring to preserve as much 

as possible important details in the image. A standard course of action is to perform 

smoothing of the image first before some form of gradient is applied. With the knowledge 

that derivatives tend to amplify the presence of noise, a tradeoff needs to be negotiated 

between the objective of decreasing noise variance and the need for keeping all relevant 

image details.  

There are several image impulse denoising and edge-preserving methods that have been 

proposed in the past as discussed in chapter II. In this study, a comparative assessment is 

provided contrasting the results obtained using the proposed approach with the results of 

the most recent and proven effective filters, which focus on the removal of impulse noise 

in images [184] [185]. These include: 1) improvement boundary discriminative noise 

detection (IBDND) [36] which is an improvement on BDND [35]. 2) Decision based 

unsymmetrical trimmed modified winsorized mean filter (DBUTMWMF) [49], which is 

based on two mean filtering steps. The authors report that the results they obtained using 

the method in [49] were better than those achieved using AMF [20], progressive switching 

median filter (PSMF) [24], decision based median filter (DBMF) [44, 33], improved 
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decision based filter (IDBA) [43], MDBUTMF [45], trimmed-global mean [186], adaptive 

cardinal B spline algorithm (ACBSA) [187] and the cascaded decision based median filter 

and unsymmetrical trimmed decision midpoint filter (CUDBMPF) [44]. 3) Two cascading 

algorithms were proposed in [50] with the first combining a decision based median filter 

and modified decision based partial trimmed global mean filter (DBPTMGF) [47] and the 

second combining DBMF and MDBUTMF [45]. The authors who proposed these 

cascading algorithms report a better performance than when using the AMF [20], the 

decision base asymmetric median filter (DBUTMF) [33], the decision based partial 

trimmed global mean filter (DBPTGMF) [47] as well as when using other cascading 

algorithms such as DMF+UTMF and DMF+UTMP [44]. 4) Unbiased-based weighted 

mean filter (UWMF) as described in [39], a weighted mean filter, which is based on the 

spatial bias, Minkowski distance and spatial distances in the x and y directions. The results 

using the UWMF show a better performance than when using AMF [20], the MDBUTMF 

[45], the improved boundary discriminative noise detection filter (IBDND) [36], cloud 

model filter (CMF) [40] as well as the interpolation-based impulse noise filter (IBINRF) 

[41]. Nonetheless, these denoising methods still encounter some challenges when faced 

with high impulse noise that include loss of image details, blurring of the image and 

unsmoothed edges, which make the edge detection process more difficult to attain reliably. 

    The Motivation in this endeavor is driven by the following two goals: 1) resolve the 

challenges still faced when using denoising methods in terms of keeping as much image 

details as possible, avoid blurring of the image, and preserve the sharper edges associated 

with boundaries; and 2) contend with these challenges even in the presence of high-

intensity impulse noise. Combining these two steps highlights the novelty of this proposed 
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method. Consequently, this study introduces a new denoising filter capable of preserving 

more edge details with high structural similarity to the original (noise-free) image even in 

the presence of high impulse noise. The results obtained, as will be discussed later, are 

contrasted to all other well-known denoising filters. 

The proposed method, as illustrated in Figure 3, consist of five essential steps: 1) use of 

adaptive median and fixed weighted mean smoothing filters in combination in an effort to 

yield the highest structural metrics in comparison to current state-of-the-art filters; 2) 

perform edge detection using standard kernels; 3) extract edge routes based on the non-

maximum suppression method; 4) fill the discontinuities and remove noisy pixels 

according to the maximum-sequence method, especially when using high predefined 

thresholds and under high-intensity noise levels; and 5) apply predefined thresholds and 

make use of specific morphologic operations to evaluate the results under different impulse 

noise intensities.  

3.1.1 Proposed Method for Impulse Denoising   

With the proposed method, boundary edges of filtered images are assumed to have high 

correlation with the original images, and as such, edges should track the true routes even 

under high-intensity impulse noise. Most of the current leading filters ensure a good 

performance on impulse noise reduction, but they still do not perform well on boundaries, 

especially in the presence of impulse noise with high-intensity levels. 

 

Figure 3 – Essential processing steps for impulse denoising and edge detection 

 

 

 

 

 

 

Fig1. Block diagram of the process 
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In the proposed method, there are two choices that can be made when using the switching 

adaptive median filter: 

- In switch 1, within an initial sliding window, all pixels with 0 and 1 values are removed, 

and the median value of the remaining pixels with probability of 1 −  𝑃𝑝 − 𝑃𝑠 as in (1) will 

replace the pixel being processed. If all of them are 0s, 1s or a combination of them, or if 

the variance of the pixels is much higher than the median value, then the size of the window 

is increased by 1 and the process is repeated until the window size reaches the predefined 

maximum window size. We assume the difference between pixel values is high when the 

variance is much higher than the median value (in this study 𝜎 > 2𝑀𝑒𝑑𝑖𝑎𝑛), which could 

be an indication that an edge is present in that area.  It thus checks the variance in bigger 

window sizes to validate whether such an edge does indeed exist or not. If there is an edge, 

the assumption is that the median value can detect it, otherwise the median value will be 

correlated to the texture found within the window.  

- In switch 2, the 0s and 1s are not removed within the initial sliding window, and the 

median value of all pixels will replace the pixel being processed. In this switch, if all of the 

pixels are 0s, 1s or a combination of 0s and 1s, the window is simply increased by 1, and 

in the same way as in switch 1, the process continues until the window size reaches the 

predefined maximum window size. This case is designed specifically for images which 

contain significant black and white regions with clear edges like checkerboards or mesh 

like images; but, for other types of images, switch 1 is expected to yield better structural 

metrics than switch 2.  

By increasing the size of the adaptive median filter, the structural metrics will be 

somewhat decreased, resulting in an image that is slightly blurred. However, the edges still 
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appear sharp. Therefore, there is a tradeoff to be made between the edges extracted and the 

quantitative values of the structural metrics. However, the pixel being processed will 

remain unchanged if all of the pixels in the selected window are 0s or 1s or a combination 

of them. There are special cases when a given texture would itself consist of 1s and 0s, for 

example a checkerboard. The problem for this latter case becomes more challenging in 

delineating such textures especially in the presence of impulse noise. When such 

combinations of 0s and 1s are found in several instances in the sliding window, the mean 

filter can be applied. This combination can smooth the image while maintaining high 

structural metrics and sharp edge boundaries even in the presence of high-intensity impulse 

noise. In order to avoid any lingering noise effects in the black and white regions 

(especially in relatively bigger regions) in which the mean filter could potentially change 

the intensities, an additional shrinkage window can be defined before applying the mean 

filter. This step, which removes 0s in white regions and 1s in black regions, can be very 

useful for textures that consist of a combination of black and white sections. The maximum 

size of the window would hence depend on the texture and noise level in the image being 

denoised.  

Also, the structural metrics of fixed mean filter can be improved by assigning appropriate 

adaptive weights for the pixels in the selected window in accordance to the probabilities of 

noise occurrence. This window could contain all 0s (𝑃𝑝), all 1s (𝑃𝑠), or a combination of 

them together with the other pixels with probability of 1 −  𝑃𝑝 − 𝑃𝑠. The mean filter tends 

to introduce more blur in the image, which in turn could lead to loss of details. To prevent 

theses side effects, the size of the mean filter should be kept small and fixed, as is done in 

the proposed method.  
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   In this study, noise reduction is performed with the intent to preserve edge points in 

an optimal fashion.  

3.1.1.1 Structure of the Method    

The procedural steps of this method embed the two main components of switching 

adaptive median (SAM) filtering and fixed weighted mean (FWM) filtering with additional 

shrinkage window to make up the proposed denoising method we refer to as SAMFWMF. 

The adaptive median component is so called in that the window size can be dynamically 

changed according to table 4. Increasing the window size from its original 3x3 size is 

warranted only if the SAM step did not yield optimal results. Another adaptive additional 

window is set to overcome any the remaining noise in white and black regions. By doing 

so, we avoided blurring the final SAMFWMF image by increasing the size of the window 

in the SAM component (steps 1-5) rather than in the FWM component (steps 6 -11) of the 

following process:  

1. In the case of switch 1, if all of the pixels in the 3×3 window are 0s and 1s, or a 

combination of them, or if the variance (𝜎) of the window is much higher than the 

median value (in this case 𝜎 > 2𝑀𝑒𝑑𝑖𝑎𝑛) then, the size of the window is increased 

to a 4×4, then 5×5 and so on until it reaches the predefined maximum size. Otherwise, 

Table 4 – Maximum window size of adaptive median filter in different noise levels on 

different images a) natural images b) images which contain significant black and white 

regions with clear edges like checkerboards 
 

Windo

w size 

3×3 5×5 7×7 9×9 > 9×9 

Noise 

level 

< 40% ≥ 40% 

≤  70% 

> 70% 

≤  80% 

> 80% 

≤ 90% 

> 90 

                                                                                                  (a)   

Windo

w size 

3×3 5×5 ≥7×7 

Noise 

level 

<  40% ≥ 40% 

< 70% 

≥70% 
 

                                                                                                  (b) 

 

 

 

 

 

Fig1. Block diagram of the process 
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it leaves the window size unchanged. In the case of switch 2, it only checks if all of 

the pixels in the 3×3 window are either 0s or 1s, or a combination of them, and if so, 

the size of the window is increased by 1; else, it leaves the window size unchanged. 

Then set the normalized pixels of the 2-D selected window as a 1 × 𝑁 1-D vector 

(𝑁=3 to maximum value), and check if the pixel 𝐼(𝑖, 𝑗) being processed is a corrupted 

pixel; that is to check if 𝐼(𝑖, 𝑗) = 0 or 1 (normalized value) in 𝑊1×𝑁 = (… , 𝐼(𝑖, 𝑗), … ).  

2. Detect all pixels with 0 and 1 values, and in the case of switch 1 eliminate them, so 

the size of the window W1×N is now decreased to a new size 𝑊1×𝑁−𝑘 =

(… , 𝐼(𝑖, 𝑗), … ), where k represents the number of corrupted pixels that were removed; 

and in the case of switch 2 where such pixels are not eliminated, the size of the 

window remains  𝑊1×𝑁. 

3. Switch 1 replaces the 𝐼(𝑖, 𝑗) pixel value with the median value of the remaining 𝑁 −

𝑘 pixels in the vector window if at least one pixel remains in the reduced window, 

otherwise leaves 𝐼(𝑖, 𝑗) unchanged. Switch 2 replaces the 𝐼(𝑖, 𝑗) pixel value with the 

median value of the 𝑁 pixels in the vector window.  

4. Leave uncorrupted pixels unchanged.       

5. Slide the window by one pixel and repeat the process consisting of steps 1-4 

throughout the entire image, establishing at this stage the SAM filtered image. 

6. Starting from the predefined maximum size for the shrinkage window, we start by 

checking the boundary pixels of the selected window (filtering window). One of the 

following conditions has to be met: If they are all 1, the interior pixels are changed 

to 1. If all the pixels on the boundary are 0, then the interior pixels are changed to 0. 
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Otherwise (there is a combination of 0 and 1), the window is then shrunk by one and 

the process is repeated until the minimum size (3×3) is reached.  

7. For the fixed mean filtered image, use a 2×2 window in a convolution manner, and 

check if the pixel being processed (𝐼(𝑖, 𝑗) within the vector window 𝑊1×4 = (=

(𝐼(𝑖, 𝑗), 𝐼(𝑖, 𝑗 + 1), 𝐼(𝑖 + 1, 𝑗), 𝐼(𝑖 + 1, 𝑗 + 1)) is found corrupted (i.e., 𝐼(𝑖, 𝑗) =0 or 

1 (normalized value)) 

8. Using the weights selected on the basis of the two conditions described next, if salt 

or pepper (probability 𝑃𝑠 or 𝑃𝑝) is detected, the new processed pixel would be 

assigned the new value as in (5). Otherwise, it leaves the pixels unchanged.   

𝑀𝑛𝑒𝑤(𝑖, 𝑗) =
∑ 𝜔𝑥,𝑦(𝑥,𝑦)∈𝑆𝑛𝑒𝑤(𝑖,𝑗)

 𝐼𝑥,𝑦  

𝑁−1
                                        (5)  

In this equation, 𝑁 is 4, 𝑆𝑛𝑒𝑤(𝑖,𝑗) = {𝐼(𝑖, 𝑗 + 1), 𝐼(𝑖 + 1, 𝑗), 𝐼(𝑖 + 1, 𝑗 + 1)}, with 

indices (𝑖, 𝑗) indicating the positions of the corrupted pixels, and (𝑥, 𝑦) are the 

coordinates of the pixels around it. In this proposed method, when the detected 

corrupted pixel occurs as salt or pepper (with probabilities 𝑃𝑠 or 𝑃𝑝), the weights 𝜔𝑥,𝑦 

are directly selected based on the probability of occurrence 1 or 0 for neighboring 

pixels, according to one of these conditions: 

 Condition1: We assume the corrupted pixel with the probability of  𝑃𝑠 or 𝑃𝑝 

occurs, and the probability of occurrence of 1 is more than that of 0 for the 

neighboring pixels (with the assumption that the window contains only 0 and 1). 

We will set 𝜔𝑥,𝑦 = 1 for all pixels. In this case, if all the neighboring pixels are 

equal to 1, the value of the corrupted pixel changes to 1, otherwise, changes to a 
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value between 0 and 1 based on the assumption that the probability of changing 

neighboring pixels to a value between 0 and 1 is high.  

 Condition 2: We assume the corrupted pixel with the probability of 𝑃𝑠 or 𝑃𝑝 occur, 

and the probability of occurrence of 0 is more than that of 1 in neighboring pixels 

(with the assumption that the window contains only 0 and 1). Then we will set 

𝜔𝑥,𝑦 = 2 for the east and south pixels and 𝜔𝑥,𝑦 = 1 for the southeast pixel. In 

this case, if all the neighboring pixels are equal to 0, the value of the corrupted 

pixel changes to 0, otherwise, changes to a value between 0 and 1 based on the 

assumption that the probability of changing neighboring pixels to a value 

between 0 and 1 is high. 

 Condition 3: We assume the corrupted pixel with the probability of 𝑃𝑠 or 𝑃𝑝 

occurs, and there is a probability for neighboring pixels with value between 0 and 

1 to exist. Then we will set 𝜔𝑥,𝑦 = 2 for the east and south pixels and 𝜔𝑥,𝑦 = 1 

for the southeast pixel. If all of the neighboring pixels are equal or if the 

summation of the weighted neighboring pixels are greater or equal to the 

denominator (greater or equal to N-1) as 𝑠𝑢𝑚 = ∑ 𝜔𝑥,𝑦(𝑥,𝑦)∈𝑆𝑖,𝑗
 𝐼𝑥,𝑦  𝑖𝑓  𝑠𝑢𝑚 ≥

𝑁 − 1 , then we will set 𝜔𝑥,𝑦 = 1 for all pixels. In this case, the value of the 

corrupted pixel changes to a value between 0 and 1 with the assumption that the 

probability of changing neighboring 0 or 1 pixels (if they exist) to a value 

between 0 and 1 is high and with the rest of the pixels still assuming values 

between 0 and 1. Also, in the case of equal neighboring pixel values, the 

corrupted pixel would be equal to the value of these neighboring pixels. 
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9. Replace the corrupted pixel with the mean value. Leave uncorrupted pixels 

unchanged.  

10. Repeat steps 7-9 for the entire filtered image, resulting in the SAMFWM filtered 

image. 

11. Check the level of impulse noise present and determine if the filter yields 

satisfactory results. If results are not satisfactory, increase the switching adaptive 

median 3×3 window into 5×5 and so on. Hence, as the intensity of the noise present 

is higher, set a new of dimension of the window as 𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 + 2, and the process 

consisting of steps 1 through 11 is repeated until optimal results are obtained.   

In this last step, optimization of the filtering results is reached when the evaluations 

measures, as described next, yield the highest values. Figure 4 shows a flowchart depicting 

the process.. 

3.1.1.2 Evaluation Measures     

To measure the degree of edge preserving and image structural metrics, standard measures 

are computed in order to compare the performance of different filters including the 

proposed method to gauge the quality of image after the smoothing process is performed.  

The following measures are used in this study: 

 Correlation coefficient (𝛽) [188] measures the amount of preserved details and 

edges after the denoising process.  

 Structural similarity index (SSIM) [189] measures the difference between the 

original noise-free image and the denoised image after the denoising process. 
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 Peak signal to noise ratio (PSNR) which measures the level of noise in the 

denoised image after the denoising process. 

 Figure of merit (FOM) [190] which measures the edge detection performance. 

Equations (6) through (9) provide the different formulations used for Correlation (𝛽), 

SSIM, PSNR and FOM, respectively. In all these formulations, 𝑥(𝑖, 𝑗) represent the pixels 

in the original noise-free image, 𝑛(𝑖, 𝑗) represent the pixels in the noisy image, and 𝑦(𝑖, 𝑗) 

represent the pixels in the denoised image after the filtering process has been applied.  
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Figure 4 – Flowchart for impulse denoising  
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The correlation coefficient is defined as follows:  

   𝛽 =
∑ ∑ [𝑥(𝑖,𝑗)−𝑥(𝑖,𝑗)𝑁−1

𝑗=0
𝑀−1
𝑖=0 ]×[𝑦(𝑖,𝑗) −𝑦(𝑖,𝑗)]

√
 
∑ ∑ [𝑥(𝑖,𝑗)−𝑥(𝑖,𝑗)]

2
×[𝑦(𝑖,𝑗)−𝑦(𝑖,𝑗)]

2
𝑁−1
𝑗=0

𝑀−1
𝐼=0  

                                     (6) 

Where 𝑥(𝑖, 𝑗) and 𝑦(𝑖, 𝑗) represent the mean values of the 𝑥 and 𝑦 images, respectively. 

The structural similarity index (SSIM) is measured as follows: 

       SSIM =
(2�̅��̅�+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(�̅�2+�̅�2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
                                            (7)   

Where 𝜎𝑥 and 𝜎𝑦 define the standard deviations in the 𝑥 and 𝑦 images, respectively, and 

𝜎𝑥𝑦  defines the standard deviation between the two images, while C1 and C2 are two 

variables which depend on the dynamic range of pixels often set in the (7) as C1=0.01L and 

C2=0.03L, where L is the dynamic range (here it is assumed 1 since pixels are normalized). 

The values of 0.01 and 0.03 are default values recommended by the inventors of the SSIM 

measure to stabilize the denominator and avoid a zero value in the denominator. 

The peak signal to noise ratio (PSNR) measure is given as:   

                       𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔
(max (𝑥))2

𝑀𝑆𝐸
                                                 (8) 

Where MSE is the mean square error, and max(𝑥)  defines the maximum intensity of the 

pixels in image 𝑥. 

Noteworthy comparisons and evaluations of different edge detection methods are 

provided in [190] [191]. It should be noted that the main point in this proposed method is 

in edge detection evaluation after the denoising process has been accomplished; therefore, 

the figure of merit (FOM) [190] of the algorithm is measured to assess the merits of the 



 

39 

 

denoising process. FOM, which consists of several steps, is a metric that measures the 

distance between the detected edges with those of a reference image. The binary reference 

image is generated based on 3 steps: 1) white noise generator, 2) low pass filter (Gaussian 

PSF with width 𝜎𝑔), and 3) a zero-crossing detector. The test image is generated based on 

8 steps: 1) white noise generator, 2) low-pass filter (Gaussian PSF with width 𝜎𝑔), 3) 

thresholding, 4) region labeling, 5) random grey level assignment (with standard deviation 

𝜎ℎ), 6) low-pass filter (Gaussian PSF with width 𝜎𝑝), 7) Gaussian noise with variance 𝜎𝑛
2), 

and 8) impulse noise (with noise level 𝐼𝑚); all this before applying the denoising process 

which is an extra step in order to evaluate the edge detection performance in the presence 

of impulse noise. The FOM measure is thus given as: 

𝐹𝑂𝑀(𝜎𝑐, 𝜎𝑔, 𝜎ℎ, 𝜎𝑝, 𝜎𝑛, 𝐼𝑚) =
1

𝑁𝑀
∑ ∑ 𝑔2(𝑛, 𝑚)𝑀

𝑚=1
𝑁
𝑛=1                           (9) 

Where (𝑁, 𝑀) is the size of the image, 𝑔(𝑛, 𝑚) is the convolution between f(𝑛, 𝑚) and 

the Gaussian PSF with width 𝜎𝑐, and where f(𝑛, 𝑚) is the difference between the binary 

image (with the detected edges) and the binary reference image.   

3.1.1.3 Experimental Evaluation in the Presence of Impulse Noise      

The cascading algorithm [50], IBDNDF [36], DBUTMWMF [49], UWMF [39], 

considered as most effective when dealing with impulse noise, are compared to the 

SAMFWMF under different impulse noise intensity levels, and the aforementioned metrics 

are used for evaluation. It should be noted that in order to optimize the denoising of the 

image, when the impulse noise is increased, the size of the filter may be changed.  

Using images of Lena (512×512), Camera man (256×256), Coins (300×246) and 

checkerboard (256×256) as the standard examples used in the literature for comparative 
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purposes, Figure 5 shows respectively the correlation comparison between both switching 

methods on different images. The initial windows for both of them are equal to the 

maximum window size in the related noise intensity.  

Figure 6 shows the edge boundaries of different images after applying the SAMFWMF 

with switch 1 in the presence of high noise intensities with different initial adaptive median 

windows and in contrast to the other well-known filters. The adaptive properties of the 

proposed median filter, in which its initialization is dynamic, adapts well to the smoothness 

of the edges. In the lower initial window size, sharpness of the edges is not easily attained; 

therefore, as the initial window size is increased, the edges appear smoother and sharper, 

Figure 6 (rows 7 and 8) exemplifies these observations. As the results for the SAMFWMF 

reveal, the intensity variations on the edges are sharper, and the structural similarity 

measures are higher than with other filters even when the impulse noise intensity is high. 

Furthermore, since the mean filter introduces blur in the image with some details lost as a 

     

(a)                                                                   (b) 

Figure 5 – Correlation comparison between both switching methods on a) Lena  

b) Checkerboard 
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consequence, the proposed method maintains the size of the mean filter fixed but with 

specific weights given to the neighboring pixels during the smoothing process.      

Figure 6 shows the comparison between other denoising methods with and without fixed 

weighted filter as a post-processing step in the presence of high impulse noise intensities.  

Figure 7 shows the correlation comparison between the two states (with and without 

weights) of fixed mean filter (FM) with switch 1 in the presence of different noise 

intensities. The initial adaptive median window size for both of them are equal to the 

 

                                                                 

Figure 6 – Edge boundaries of different images after applying the spatial filter with switch 

1.Results of filtering Camera man with 70% impulse noise intensity, Camera man with 90% 

impulse noise intensity, Lena with 80% impulse noise intensity, Lena with 90% impulse noise 

intensity and Coins with 90% impulse noise intensity in column 1 through 5, respectively. 

After applying the filter: Rows 1 through 8 are: Original image showing the specified area 

under scrutiny, original specified area, denoised results using, cascading algorithm [50], 

IBDNDF [36], DBUTMWMF [49] and UWMF [39], and SAMFWMF with initial adaptive 

median window size=3 (minimum size), and SAMFWMF with initial adaptive median window 

size=maximum size in that noise level 
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minimum window size (3 × 3). In the first approach, weights (𝜔𝑥,𝑦) are set for neighboring 

pixels, and in the second approach the method is run without setting these neighboring 

weights. As the figure shows, setting weights improves the structural metrics in the 

denoised images.   

 

3.1.2 Edge Detection After Spatial Filtering   

Edge detection is a challenging nontrivial problem but is a task that remains essential 

for object identification, image segmentation, feature extraction, pattern recognition among 

other essential image processing tasks. There are several methods and well-known 

operators that are commonly used to detect edges in images, and their success is often 

weighted as a function of the amount of image detail that was preserved and the application 

at hand. When we deal with images, pertinent details can be useful when analyzing specific 

imaging data, but the concern has always been in delineating what really constitute actual 

edge data with a high degree of similarity to the original noise-free image in contrast to 

 

Figure 7 – Correlation comparison between two states of fixed mean filter (with and without 

weights) on image Lena 
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other background and noise data that burdens the edge detection process. The challenge is 

further amplified when the images are degraded by noise, affecting significantly their 

structural metrics. 

Canny edge detection [192], perhaps one of the most useful and well-known method, is 

a multifaceted process that integrates Gaussian filtering for smoothing the image, intensity 

gradient, non-maximum suppression for edge thinning, thresholding and tracking of the 

edges to ensure edge connectivity and continuity. The holistically nested edge detection 

(HED) method [193], which is a robust edge detection method, uses convolutional neural 

networks and is based on image training and prediction through multi-scale and multi- level 

feature learning. Such edge detection methods and related edge operators extract quite 

successfully edge information and yield a good performance when dealing with clean 

images; however, their performance is degraded in the presence of impulse noise, 

especially when it is of high-intensity type. Such degradation could be overcome, but only 

with additional well thought out filtering steps. Neuro –fuzzy operator [194] is designed to 

detect edges in the presence of impulse noise, but its success is limited only for low 

intensity noise levels. A fast algorithm that detects edges in noisy images is proposed in 

[195], but preserving image details under different noise intensities was not its main focus.  

Edge detection is a nontrivial process mainly due to the ambiguity associated with 

defining what constitutes an observable transition (differential thresholds or just-noticeable 

difference) between image intensities. For all practical purposes, first derivative operators 

are adequate in their use for edge detection and in determining local minima and maxima. 

Second derivative operators could be useful for localization purposes due to the zero 
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crossings. To determine the strength of an edge point, the gradient should be measured 

perpendicular to the edge direction.     

 There are several kernels that can be used for edge detection. First derivative operators, 

although weak in terms of localization, are nonetheless less sensitive to noise than their 

second derivative counterparts and are also less complicated in their implementation. 

Accordingly, for this study, any edge detection kernel could have been used, but in the 

implementation of the proposed method, a 3×3 first order derivative kernel is used, and the 

results are satisfactory in terms of the evaluation metrics used in this study. Figure 8 shows 

the different grayscale images with different kernels. 

 

3.1.2.1 Continuity in Edges and Thresholding in Grayscale Images    

3.1.2.1.1 Non-Maximum Suppression     

 This technique [192] is used for edge thinning in the grayscale image. Edge strength is 

compared with the neighboring pixels according to gradient direction, the whole process 

can be summarized as follows:  

 Calculate the vertical and horizontal gradient. 

 Calculate the angle of the gradient, and  

                       

                     (a)                                                (b)                                                                                                                  

Figure 8 – Different grayscale images with different kernels on image Camera man a) First 

derivative with 2×2 matrix b) First derivative with 2×2 diagonal matrix c) Second derivative 

d) First derivative with 3×3 matrix  
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 if the angle of gradient is 0 degree, the gradient magnitude is checked in the east 

and west directions, and if it is more than the magnitude of pixels in these 

directions, it is considered on the edge  

 if the angle of gradient is 45 degrees, the gradient magnitude is checked in the 

northeast and southwest directions, and if it is more than magnitude of pixels in 

these directions, it is considered on the edge 

 if the angle of gradient is 90 degrees, the gradient magnitude is checked in the 

north and south directions and if it is more than the magnitude of pixels in these 

directions, it is considered on the edge 

 if the angle of gradient is 135 degrees, the gradient magnitude is checked in the 

northwest and southeast directions and if it is more than the magnitude of pixels 

in these directions, it is considered on the edge 

 

3.1.2.1.2 Maximum-Sequence and Thresholding         

This technique is used to maintain edge continuity during the edge detection process and 

extract more edges at different threshold intensities while minimizing noise. The 

predefined threshold (𝑇) and edge point factor (𝛼) are set to any value within the 

normalized range such that 0 < T < 1, 0 < 𝛼 < 1. The value 𝛼 when used with T as (𝛼 ∗ T) 

is assigned such as to resolve the dilemma of selecting too high or too low of a threshold 

initially. Then the following steps are considered:  

 The process starts by setting a threshold value for a starting (first) edge point 

(𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡) as (𝛼 ∗ T) or (T) 

 The next step is to check the value of 𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 in all four edge directions in a 2 × 2 
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window (𝑊2×2 = 𝐼(𝑖, 𝑗), 𝐼(𝑖, 𝑗 + 1), 𝐼(𝑖 + 1, 𝑗), 𝐼(𝑖 + 1, 𝑗 + 1)), if it is higher than (T) 

or (𝛼 ∗ T). 

 Find the maximum value of the neighboring pixels (𝐼𝑚𝑎𝑥) in direction of the edge. 

 Increase the intensity of the maximum pixel (𝐼𝑚𝑎𝑥) which was found within the 2 × 2 

window to the value of (T).  

 If   𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 ≥  𝛼 ∗ T and 𝐼𝑚𝑎𝑥 ≥  𝛼 ∗ T, then 𝐼𝑚𝑎𝑥𝑛𝑒𝑤 = 𝑇; or if  𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 ≥  T and  

𝐼𝑚𝑎𝑥  ≥  𝛼 ∗ T  then  𝐼𝑚𝑎𝑥𝑛𝑒𝑤 = 𝑇  

 This process scans the entire image.  

It is possible to set 𝛼 = 1 and change the value of T to get the desired results, but this 

does not guarantee a noise-free outcome when a low value of T is chosen, especially when 

the probability of occurrence of the salt and pepper is high. By using the weights for the 

mean filter in order to affect the values of salt and pepper, the values of the noisy pixels 

may be changed to a value more consistent with their neighboring pixels, and if the value 

of T  is less than that, the algorithm will assume the noisy pixels to be edge points. 

However, by using the maximum sequence method, this problem can be overcome. Such 

an algorithm can thus detect edges at any threshold level simply by changing the value of 

𝛼. If the pixel is considered part of the edge line, the algorithm will continue to track the 

line, but if it is a noisy point, the algorithm makes the pixel zero, creating a discontinuity. 

There are two choices that can be made: in the first choice, we can assume 𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 ≥  T, 

while in the second choice, we assume 𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 ≥  𝛼 ∗ T. For both choices, the algorithm 

tracks the edge line and maintains the continuity. In the second choice, maybe some points 

in the edge line may not be detected, because the algorithm selects only the neighboring 



 

47 

 

pixels which have maximum value in the selected window. This can be resolved by 

increasing the value of 𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 t in the related direction to the value of  T if at least one 

of the neighboring pixels is ≥  𝛼 ∗ T. Empirical evidence showed that is better to use the 

first choice for low T and the second one for high T, on the basis of the histogram of the 

image. Figure 9 shows the performance of the algorithm to remove noisy pixels and track 

the edge lines. The symbol (×) denotes any neighboring pixel around the 𝐼𝑠𝑡𝑎𝑟𝑡𝑝𝑜𝑖𝑛𝑡 which 

is less than the value of (𝛼 ∗ T). Figure 9-a shows how the maximum sequence method 

removes the noisy point 𝑛(𝑖, 𝑗). Recall that the value of 𝑛(𝑖, 𝑗) should be 𝑛(𝑖, 𝑗) ≥ 𝑇 in the 

first choice and 𝑛(𝑖, 𝑗) ≥ 𝛼 ∗ T in the second choice. If these conditions are met, the 

algorithm after checking all directions, changes the value of 𝑛(𝑖, 𝑗) to zero. Figure 9-b 

shows how the algorithm tracks the edges when more than one edge pixel (𝐸) is found in 

a given direction. Likewise, the value of 𝐸 should be 𝐸 ≥ 𝑇 in the first choice, and 𝐸 ≥

𝛼 ∗ T in the second choice. The algorithm changes the value of both of the 𝐸 pixels equal 

to the value of T and continues tracking the edge line. Figure 9-c shows the connectivity in 

the first choice when there is a discontinuity (𝐷) between two edge points (𝐸) where 𝐸 ≥

𝑇 and 𝐷 ≥ 𝛼 ∗ T. The algorithm in this case increases the value of 𝐷 to the value of T to 

maintain continuity.  

Thresholding remains however a challenging problem in image processing, where a 

general value definition for all images is very difficult to attain, but it instead varies 

according to image characteristics and application at hand. There are known methods for 

× ×
× 𝑛

      
0 0
0 0

                               

× × ×
× 𝐸 ×
× × 𝐸

      

 0 0 0
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                                     (a)                                                                 (b)                                                                   (c) 

Figure 9 – Performance of maximum sequence to remove noisy pixels and track the edge lines 
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thresholding such as the hysteresis and Otsu methods which are quite interesting and 

effectual. The hysteresis method relies on two thresholds (low and high) and pixels above 

the high threshold are assumed edges and those below are not edges and those pixels in 

between these two thresholds are edges only if they are adjacent to other edges. Also, the 

Otsu method sets its own general threshold depending on the minimized variance of the 

two regions that are separated by the threshold [196]. This last approach is akin to finding 

that threshold maximizing interclass variance in a bimodal histogram. Figure 10 shows that 

how the maximum-sequence method makes continuity along the edge lines in the image. 

Figure 11 contrasts the results between different thresholding methods and the maximum-

sequence method on the image. As the figure shows, the maximum-sequence method can 

detect more edges, and the edges it detects are thinner in the different threshold intensities 

in contrast to the other methods.  

3.1.2.2 Morphological Operations    

After applying the threshold on the image, the output would be a binary image. So, in order 

to improve the binary image, some morphological operations as shown in figure 12 are 

performed on the image. The objectives for using such operations are to remove unwanted 

edge points and improve the tasks of edge thinning and edge continuity. They also help in 

                                                                 

                                          (a)                                                       (b)                                                     (c)        

Figure 10 – Continuity along the edge lines in the image after applying maximum sequence 
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determining the true edge boundaries, especially for curved regions, which remain a 

challenging task for many of the edge operators.  

Figure 12 shows examples of binary formatted morphological operations which are 

applied to the binary image.   

 Figure 12-a shows that diagonal pixel which is attached to the lines or curves, is 

removed, bit “1” in the top-left corner can be put in different corners.  

 Figure 12-b shows that H pixel(s) which lie between two lines, are removed; it 

removes at most two pixels.  

 Figure 12-c and 12-d shows that the gap between two pixels will be filled with a 

single pixel and connects two vertical and horizontal lines.  

 Figure 12-e shows the unwanted pixels removal which are attached to each other in 

a region, this process is under control of the user, somehow, the user can determine 

                        

                                      (a)                                 (b)                                (c) 

                                                        

                                      (d)                                 (e)                                (f)         

Figure 11 – Edge detection with different thresholding methods on image Lena a) Original 

image b) Otsu method c) Hysteresis method with predefined threshold value=0.01-

0.1(normalized) d) PA with predefined threshold value (T=0.1,  normalized) and edge point 

factor (𝛼 = 0.6) e) Hysteresis method with predefined threshold value=0.1-0.4 (normalized) f) PA 

with predefined threshold value (T=0.4, normalized) and edge point factor (𝛼 = 0.15) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.   
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the number of pixels that should be removed.  

   Some new developments were performed on the following morphological 

operations:  

 Figure 12-f shows that vertical and horizontal pixel(s) which are attached to the 

lines or curves, are removed, also, it removes the pixels from left side, upside and 

downside. 

 Figure 12-g shows how a single pixel which is attached to the lines or curves 

vertically or horizontally, are removed. The symbol ‘×’ indicates that the pixel can 

be zero or one and the pixel can be attached left, right, up and down. 

 Figure 12-h and 12-i shows that the gap between two pixels will be filled with a 

single pixel and connects the curves; the figures show examples of binary formats 

for horizontal up-right side curve connection and vertical down-left side curve 

connection, respectively. Also, it can connect the curve horizontally or vertically in 

different sides. 

 Figure 12-j shows that the pixel(s) which lie in front of each other as parallel 

(double edges), are removed, they can be up to 3 pixels.  

 Figure 12-k shows a pixel on the corner is removed to make the edge thinner. The symbol 

“×” indicates that the pixel can be zero or one and such a pixel can be situated in the 

different corners. 

Figure 13 shows an example of before and after applying morphological operations on the 

image with respect to a particular area of the image. 
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3.2 Wavelet-Based Filter for Gaussian and Combined Gaussian-Speckle Denoising  

Other types of noise which can be appear in different forms and distributions such as 

impulse, speckle and Gaussian. As said before, speckle noise is one type of noise that is 
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1 0 1
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                                                                   (a)                         (b)                     (c) 
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                                                                                                    (j)                          (k) 

Figure 12 – Binary formatted morphological operations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

                                                                 (a) 

                                                               

                          (b)                                                                                 (c)  

Figure 13 – Morphological operations on Lena image and the specified area within the white 

rectangle is compared in the two different conditions a) Original image b) Results before 

applying morphological operations c) Results after applying morphological operations    
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multiplicative and independent and the general model of speckle noise [16] contains 

multiplicative and additive components, but in ultrasound images, the additive part can be 

overlooked [17]. Speckle noise is assumed to have a generalized Gamma (GG) distribution 

as in (3). Also, Gaussian noise is another type of noise that is also additive and independent, 

and the noisy image is as expressed in (2). 

The wavelet and spatial filters can be used in order to reduce speckle, additive white 

Gaussian and salt and pepper noise in ultrasound images [197]. There are many filters in 

order to reduce Gaussian noise in the image which were discussed in chapter II. A 

combination of wavelet thresholding and Bilateral filter in the transform domain are often 

used in order to remove speckle noise in ultrasound images [198]. Modified total variation 

regularization is proposed in [199] in order to remove multiplicative noise. Furthermore, a 

combination of total variation, high-order total variation and a generalized Kullback-

Leibler divergence method [200] is proposed in [201] in order to remove speckle noise.  

The Daubechies complex wavelet transform is used in order to remove speckle noise [202] 

in which imaginary component of complex scaling coefficient and shrinkage on complex 

wavelet coefficient are applied respectively, to detect edges and non-edges. Improved 

adaptive wavelet shrinkage is proposed in [203] based on correlation of the coefficients 

within and across the resolution scales.  

There are some research studies reported on a combination of wavelet and total variation 

in order to remove speckle and Gaussian noise. A combination of wavelet and total 

variation is performed in studies [120, 204] in order to achieve low level Gaussian and 

speckle denoising on natural and ultrasound images. The method in [120] applied total 

variation [59] to LL sub-band of wavelet for one iteration and after inverse wavelet 
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transform, the remaining noise is removed by that one-iteration total variation. The method 

in [204] applied total variation [60] to LL sub-band of wavelet and used local variance of 

sub-bands for thresholding and finally, inverse wavelet transform is applied in order to 

obtain the reconstructed image. Also, there are several edge-preserving image speckle 

denoising methods that have been proposed in the past. The filters that are commonly used 

include the Frost filter [205], the Kuan filter [206], the Lee-diffusion filter [207], the Lee 

filter [208, 209] and the Geometry filter [210]. Most of the previous research studies were 

focused on removing speckle or Gaussian noise separately. The challenge is obviously 

amplified when these types of noise are combined.  

Therefore, this study [211] introduces a new filter that combines the strengths of the dual 

complex wavelet domain filter [212] and improved total variation filter [60] in order to 

preserve edge details and overcome the presence of a Gaussian noise as well as combined 

speckle and Gaussian noise. The Motivation and resulting modifications that were made in 

this study can be explained through the following two main objectives: 1) Resolve the 

challenges faced with the use of denoising methods by keeping as much image details as 

possible, while avoiding blurring of the image, and hence preserving the sharper edges 

associated with boundaries in the presence of Gaussian noise and combined speckle noise 

and Gaussian noise. 2) Contend with these challenges even in the presence of high-intensity 

noise levels. Designing a denoising filter that integrates these two objectives highlights the 

novelty of the proposed method. As a practical application, and to assess the merits of our 

method, we applied the proposed denoising filter to natural and medical ultrasound images. 

Consequently, this study introduces a new denoising filter capable of preserving more edge 

details with high structural similarity to the original (noise-free) image even in the presence 
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of Gaussian noise as well as combined speckle noise and Gaussian noise even under high 

intensity levels. The results obtained, as will be discussed later, are contrasted to all other 

well-known denoising filters. 

3.2.1 Proposed Method for Gaussian Denoising and Combined Gaussian and Speckle 

Denoising  

3.2.1.1 Description of the method  

The block diagram of the fully integrated process is given in figure 14, showing the all 

steps of the denoising process. The iterated based structure of the total variation causes to 

miss some details and other textures. This is due to an inappropriate estimation of the 

number of iterations in the process [204]. On the other side, there is another challenge to 

predict the noisy coefficients and determine an appropriate threshold to remove them in the 

wavelet domain. The challenge is more complicated in the presence of random distribution 

of combined speckle and Gaussian noise in the image. In the case of using one of two 

wavelet or total variation algorithm independently, some high frequency noise components 

still remain in the image, which the algorithms are not able to suppress them alone. Some 

algorithms apply total variation only on LL sub-band of wavelet transform and remove the 

noise in other sub-bands with thresholding [204, 120], but, in the presence of combined 

noise, there is still noise in LH, HL and HH sub-bands, especially in higher noise intensity 

levels.   

 

 

Figure 14 – Essential steps for Gaussian and combined Gaussian-speckle denoising 
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Therefore, in this study, a new structure is introduced which consists of two separated 

blocks: dual-tree complex wavelet transforms [212] and improved total variation [60]. In 

the proposed method, in addition to noise reduction and structural parameters extraction, 

boundary edges are assumed to yield high correlation with the original image, an important 

outcome especially in in ultrasound images.  

In this integrated approach, noisy coefficients are removed using the dual-tree complex 

wavelet domain filter [212], which is a modification of the standard wavelet transform. The 

2-D Discrete Wavelet Transform (DWT) coefficients and 2-D Discrete Wavelet Transform 

are as defined in (10) and (11). 

𝐶𝑖(𝑗, 𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑ 𝐼(𝑥, 𝑦)𝜑𝑖(𝑥, 𝑦)𝑁−1

𝑦=0
𝑀−1
𝑥=0 ,  𝑖 = 𝐿𝐻,  𝐻𝐿,  𝐻𝐻            (10) 

𝜑𝑖(𝑥, 𝑦) = 2𝑗𝜑𝑖(2𝑗𝑥 − 𝑚, 2𝑗𝑦 − 𝑛)                                     (11) 

Where 𝐼(𝑥, 𝑦) is the 𝑀 × 𝑁 input image, 𝑚 and 𝑛 are time shifts which control the different 

time points, 𝑗 is scale factor which controls the frequency content and 𝑖 is an index used 

for the three different wavelet functions.  But, DWT has some problems such as oscillation, 

shift variance, aliasing and direction selectivity. Then, we switched to using complex 

wavelet transform (CWT) as defined in (12) which forms a Hilbert transform (90° out of 

phase with each other). The CWT has another problem in that it cannot exactly express the 

Hilbert transform analytic.   

𝐶𝑐(𝑥, 𝑦) = 𝐶𝑟(𝑥, 𝑦) + 𝑗𝐶𝑖(𝑥, 𝑦),   𝜑𝑐(𝑥, 𝑦) = 𝜑𝑟(𝑥, 𝑦) + 𝑗𝜑𝑖(𝑥, 𝑦)             (12) 

  Finally, we switched to Dual tree- Complex Wavelet Transform (DT-CWT). It employs 

two real DWTs as expressed in (13), one is the real part (upper tree) and the second one 

is the imaginary part (lower tree). 
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                    𝜑(𝑥, 𝑦) = 𝜑ℎ(𝑥, 𝑦) + 𝑗𝜑𝑔(𝑥, 𝑦) 𝜑𝑔(𝑥, 𝑦) = Ӈ𝜑ℎ(𝑥, 𝑦)                            (13) 

Where Ӈ shows Hilbert transform. Each tree is divided in to low pass and high pass pairs. 

Real and imaginary parts are inverted and averaged to obtain the output. Then, the 

original output is recovered from either the real or the imaginary part as in (14). 

𝜑(𝑥, 𝑦) = [𝜑ℎ(𝑥) + j𝜑𝑔(𝑥)][𝜑ℎ(𝑦) + j𝜑𝑔(𝑦)] = 𝜑ℎ(𝑥)𝜑ℎ(𝑦) − 𝜑𝑔(𝑥)𝜑𝑔(𝑦) + 𝑗[𝜑𝑔(𝑥)𝜑ℎ(𝑦) + 𝜑ℎ(𝑥)𝜑𝑔(𝑦)]    (14) 

  DT-CWT is implemented as two parallel-channel filter banks applied to the same data. In 

its structure, filters are purely real and meet the perfect reconstruction (PR) condition, and 

the phase shift of complex coefficients depends almost linearly on the displacement and as 

a result, this transform is shift invariant. The parallel trees are first applied to the rows, 

then, they are applied to the columns of the image. In the upper tree, sub-band signals are 

considered as the real part and in the lower tree, they are considered as the imaginary part 

of the transform. Each level of decomposition contains six complex high-pass sub bands 

and two complex low-pass sub bands. Low pass sub bands will iterate in the subsequent 

stages and high pass sub bands are the result of directional filtering of the signal in six 

different orientations (±15°, ±45°, ±75°), which are set to provide directional selectivity. 

This will improve the accuracy of edge definition compared to real coefficients. In this 

study, the level of decomposition is set to 2, and soft shrinkage thresholding [106] with 

SURE estimation [130] are applied to the sub-bands as in (15) and (16), respectively. 

𝑠𝑔𝑛(𝑐)(|𝑐| − 𝜆)  if  |𝑐| ≥ 𝜆, otherwise it is 0                              (15) 

𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡≥0[𝑁 − 2[1: 𝑁] + ∑ (min (|𝑐𝑥,𝑦|, 𝑡))2𝑁
𝑥,𝑦=1 ]                    (16)  
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Where (𝑐) is the absolute value of the wavelet coefficients, (𝜆) is a threshold and N is 

number of the coefficients (𝑐𝑥,𝑦) in each sub-band. Then, inverse dual-tree complex 

wavelet transform is applied to the image in order to obtain the reconstructed image. The 

results obtained from the dual-tree complex wavelet transform are compared against the 

standard wavelet transform denoising filter in the presence of combined speckle noise and 

Gaussian noise on Lena and Cameraman as shown in table 5. The structural metrics include 

correlation and peak signal to noise ratio (PSNR).  

Finally, improved total variation [60], which is an improvement on total variation in [59], 

is applied to the image in order to smooth the image and remove the remaining noise, 

especially in high frequency sub-bands. The total variation minimization [59] is defined as 

in (17).   

𝑚𝑖𝑛
‖𝑢−𝑔‖2

2𝜆
+ 𝐽(𝑢)                                                   (17) 

Where 𝑢 is the clean image, 𝑔 is the observed image, 𝜆 is the Lagrange multiplier, 𝜎2 is 

the estimated noise variance and  𝐽(𝑢) is the total variation as defined in (18). 

𝐽(𝑢) = ∑ |(∇𝑢)𝑖,𝑗|𝑁
(𝑖,𝑗)=1                                               (18) 

Table 5 – PSNR and Correlation comparison of proposed method with DT-CWT and 

stationary wavelet transform (SWT) on different images in the presence of different combined 

speckle and Gaussian noise levels 

 
 PSNR 

Lena 

Correlation 

Lena 

Correlation 

Cameraman 

PSNR 

Cameraman 

DT-CWT  21.5436 0.8966 0.8753 20.7149 

SWT  20.8767 0.8766 0.8500 20.0452 

                                                                       (a) 
 PSNR 

Lena 

Correlation 

Lena 

Correlation 

Cameraman 

PSNR 

Cameraman 

DT-CWT  20.7149 0.8753 0.8970 18.9431 

S-WT  20.0452 0.8500 0.8779 18.4661 

                                                                       (b)  
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The improved total variation [60], which is based on dual information [213, 214], can be 

expressed by using the Euler-Lagrange equation given below.  

𝑢 = 𝑔 − 𝜋𝐾𝜆(𝑔)                                                    (19) 

Where 𝜋𝐾𝜆(𝑔) is a non-linear orthogonal projection of 𝑔 [204] and it is solved based on 

a fast minimization algorithm. Then, a new iterated way is suggested in [60] for image 

denoising to solve equation (20) in order to recover the original 𝑁 × 𝑁 image. 

min{𝐽(𝑢): ‖𝑢 − 𝑔‖2 = 𝑁2𝜎2 } , 𝜋𝐾𝜆(𝑔) = 𝑁𝜎                                      (20) 

In this study, the stopping criterion has been set to 5e-5, which empirically led to the 

lowest error. This value has been carefully chosen with over 3000 iteration of the 

algorithm. The minimum error has actually occurred at 2.3e-5, but we selected the 5e-5 as 

our stopping criteria since it resulted in a visually smoother image. Figure 15-a shows the 

denoising error versus the number of iterations. In this figure, minimum error and desired 

threshold (stopping criteria) points are specified. Figure 15-b shows the resultant denoised 

image based on threshold=2.3e-5 (minimum error) and figure 15-c demonstrates the 

resulting image by selecting the desired threshold using 5e-5 as the stopping criteria for 

total variation. 

  Figure 16 shows the performance of the algorithm with and without DT-CWT in the 

presence of combined Speckle and Gaussian noise on Lena. As the figures show, the result 

is better when the DT-CWT is used. 
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3.2.1.2 Evaluation Measures  

To measure the degree of edge preserving and to gauge the image structural metrics, 

correlation coefficient (𝛽), peak signal to noise ratio (PSNR), feature similarity index 

(FSIM) [215] and figure of merit (FOM) [190] are computed. The correlation coefficient 

 

(a) 

 

                                                 (b)                                       (c)  

Figure 15 – Stopping criteria for total variation a) Denoising error vs number of iteration 

with respect to minimum error and desired threshold b) Denoised image after minimum error 

c) Denoised image after desired threshold. 
 

 

 

 

 

                            

 

Figure 16 – Performance of the Wavelet-based algorithm with and without DT-CWT in the 

presence of combined Speckle (σ = 0.1) and Gaussian (σ = 0.1) noise on image Lena             

a) Original image b) Noisy image (c) Denoised without DT-CWT (d) Denoised with DT-CWT 
 



 

60 

 

is defined as in (5). The peak signal to noise ratio (PSNR) and FOM measures are given 

by equations (7) and (8), respectively.  

The feature similarity index (FSIM) [215] between the noisy image and the denoised 

image is provided in order to measure the degree of similarity and quality. This is based on 

the human visual system (HVS) which understands an image according to its low-level 

features. Phase congruency (PC) and gradient magnitude (GM) are used respectively as the 

primary and secondary features in FSIM. They have complementary roles in order to 

identify the image local quality. PC is a dimensionless measure of the significance of a 

local structure. Finally, the local quality map is obtained and then the PC is used as 

weighting function in order to achieve the desired quality score [215].      

3.2.1.3 Structure of the Method  

Implementation of the proposed method assumes the following steps: 

1. Load the input noisy image. 

2. Apply dual-tree complex wavelet transform (DT-CWT) with 2-level decomposition. 

Farras filters are set for the first-stage of the dual-tree wavelet transform and 10-tap 

Kingsbury Q-shift filters for the next stage. 

3. Soft shrinkage thresholding with SURE estimation on the noisy coefficients is 

applied. The equation (10) (sure shrink) is solved with the coefficients of the analysis 

and synthesis filters (previous step) to calculate the threshold λ. The number of 

coefficients for all stages is equal to 10 and we reached a value for λ = 1.4746.  Then 

this λ is used to solve equation (9) in order to zero-out the noisy coefficients and keep 

the non-noisy ones. 
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4. Apply the inverse dual-tree complex wavelet transform (DT-CWT) in order to obtain 

the reconstructed image. 

5. Improved total variation is applied in this step. The Lagrangian total variation 

minimization in equation (11) is solved, where 𝐽(𝑢) is discrete total variation norm. 

It includes partial derivatives ∑ (√𝑢(𝑖)𝑥
2 + 𝑢(𝑖)𝑦

2 )𝑖  and the regularization 

parameter (𝜆) controls the amount of denoising. The algorithm linearly decreases the 

value of 𝜆 between two predefined maximum and minimum values. Then, the 

iterative algorithm is implemented. Finally, by reducing the total variation of the 

noisy image, the denoised image deemed a close match to the clean original image is 

obtained.         

3.2.2 Edge Detection After Wavelet-Based Filtering  

The edge detection process is applied to the denoised image according to the defined 

process in section 3.1.2 with this difference that the maximum sequence block is removed 

from the process.        

3.3 Design CNN Filter for Mixed Impulse and Gaussian Denoising  

The noise removal challenge is further amplified when the images are degraded by 

mixtures of impulse and Gaussian noise, significantly affecting the structural metrics of 

any given image. It is thus necessary to find a reliable process by which we could attenuate, 

and at best remove, the effects of such mixed noise. Therefore, a standard course of action 

is to perform an adequate smoothing technique to the image first before some form of 

gradient could be applied to preserve finer image details. Given that derivatives could 

amplify the effect of noise, a tradeoff must be negotiated between the task of decreasing 
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noise variance and that of keeping all relevant image details. This results in a subtle and 

difficult challenge in image processing especially when edge detection is to be performed 

on the resulting denoised image. Consequently, edge detection remains a challenging 

nontrivial problem although an essential preprocessing step for object identification, image 

segmentation, feature extraction, pattern recognition, and other relevant image processing 

tasks. When we deal with images, pertinent details can be useful when analyzing specific 

images for all types of real-world applications, but the concern has always been in 

delineating what really constitute an edge with high degree of similarity in contrast to other 

background and noise data that could be misidentified as real edges.  

Several impulse and Gaussian denoising methods as well as mixed impulse and 

Gaussian denoising methods that have also been proposed which are discussed in chapter 

II. The methods uniquely used for impulse or for Gaussian denoising have shown good 

performance in the presence of the targeted noise, but it degrades when the two noises are 

mixed. Previously reported methods that have considered mixed impulse and Gaussian 

denoising filters are based on traditional methods that could not properly confront the 

problem when in the presence of high-intensity impulse and Gaussian noise, leading to loss 

of image details and excessive blurring burdening the edge detection process.  

For a fair assessment of the proposed method against others that have focused on mixed 

impulse and Gaussian noise under different intensity levels, a comparative study is 

provided contrasting the results obtained using the proposed deep learning algorithm 

against those from the most recent and effective denoising filters.  In this comparative 

assessment, we have focused our comparison against the low rank approximation algorithm 

(LSM-NLR) [166] which has proven to be effective for the removal of mixed impulse and 
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Gaussian noise in images. The LSM-NLR method is based on Laplacian scale mixture 

(LSM) modeling and non-local low rank regularization. In order to model the impulse noise 

in LSM, a MAP estimator is defined by the authors of [171]. For non-local rank 

regularization, a combination of the LSM model, the MAP estimator, and a low rank 

regularization model was used with the assumption that similar patches are interdependent, 

consequently resolving the denoising process by using an optimization algorithm. The 

author of this effective approach claims to obtain better result than the two-phase 

deblurring/denoising (TPD) method (or Cai1) [216], sparse and low-rank regularization 

denoising (SLR) [217], the well-known BM3D [108], non-locally centralized sparse 

representation [218], weighted encoding with sparse non-local regularization (WESNR) 

[164], 𝑙0-nonlocal low rank, and 𝑙1-nonlocal low rank.  

We should note that the WESNR method does not have an impulse noise detection step 

due to its generated artifacts in high intensity noise levels. It shows that the image can be 

defined as a multiplication of sparse coding and a dictionary. In order to denoise the image, 

an optimal estimation of sparse code should be calculated by encoding the noisy image 

over the dictionary. Because of two different noise categories, the weight (close to 1 for 

pixels corrupted by Gaussian noise and smaller weights (𝑤) for pixels corrupted by impulse 

noise) is assigned to residuals; and therefore, an optimal estimation for sparse coding is 

defined in the presence of mixed noise based on sparse regularization. This method is 

claimed to outperform ROR-NLM [219], Cai [220], 𝑙1 − 𝑙0 [162], TF [221], and M+BM3D 

[108].  

This study’s motivation can be explained by three objectives: 1) To determine new ways 

for overcoming the persisting problems experienced by previously reported denoising 
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methods in order to attenuate as much as possible the effects of noise, while keeping more 

of the image details; 2) To deblur the image in such a way as to yield an enhanced noise 

free image were the lack of noise is visually appreciable; 3) To preserve edge information 

yielding sharper and continuous edge boundaries, considered here as one of the main aims 

of this study.  

Therefore, this study [222] introduces a new denoising filter capable of preserving more 

edge details while yielding high structural similarity to the original (noise-free) image even 

in the presence of high mixtures of impulse and Gaussian noise. The obtained results, as 

presented and discussed later, are contrasted to all other well-known denoising filters.  

3.3.1 Proposed Method for Mixed Impulse and Gaussian Denoising 

The proposed method, as illustrated in Figure 17, uses an end-to-end deep convolutional 

neural network (CNN) to achieve optimal denoising of mixed impulse and Gaussian noise 

and, consequently, directly estimates the original noise free image. Thereafter, batch 

normalization is applied to speed up and improve this denoising process. Finally, the 

network is trained for both specific and non-specific noise-levels denoising.  

3.3.1.1 Evaluation Measures 

Standard structural metrics are computed to compare the performance of multiple filters 

against the proposed method and gauge the quality of the denoised image. The following 

metrics are used in this study: 

                                               

 

 Figure 17 – Essential steps for proposed DCNN based denoising 
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 Feature similarity index (FSIM) [215] measures the quality of the denoised image 

based on the human visual system (HVS).  

 Peak signal to noise ratio (PSNR) measures the level of noise remaining in the denoised 

image as equation (7).  

3.3.1.2 Related Works on Denoising  

There are some notable previous works which use CNNs for image denoising. The 

authors of [86] propose a combination of sparse coding and deep neural networks, pre-

trained with denoising auto-encoders (DAs), as an alternative to training pure DAs. In 

[223], the authors use multilayer perceptron (MLP) for image denoising. The Trainable 

Nonlinear Reaction Diffusion (TRND) presented in [87] uses supervised training to train a 

dynamic nonlinear reaction diffusion model with time-dependent parameters (linear filters 

and influence functions) for Gaussian denoising. The method proposed in [87] is similar to 

the feedback convolutional neural network (CNN) presented in [88], and in both cases each 

iteration (stage) of the proposed diffusion process uses convolutional operations of a set of 

linear filters. The deep convolutional neural network method (DnCNN) introduced in [89] 

can be seen as a generalization of TRND [87] that: 1) is easier to train, by replacing the 

influence function with a rectified linear units (ReLU) [224]; 2) increases architectural 

depth (number of convolution layers) to improve image modeling capacity; and 3) 

incorporates batch normalization [225] to improve performance.  

All the aforementioned networks are used solely for Gaussian denoising and all of them, 

except [89], were used to remove known/predefined noise levels. As Gaussian noise is 

additive, the network in [89] removes the noise by using residual learning, that is, learning 

the noise. When Gaussian and impulse noise are mixed the resulting interference is no 
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longer additive. Therefore, in this paper we cannot use residual learning to directly estimate 

the denoised image.     

3.3.1.3 Batch Normalization and Network Parameters 

During training, any change to a deep neural network layer’s parameters causes a change 

in distribution of the following layer`s input, referred to as an internal covariate shift. Batch 

normalization [225] can alleviate internal covariate shift by learning the normalization 

parameters of each part of the model and applying it to each training mini-batch.  Batch 

normalization has several advantages that include faster convergence (preventing the 

gradient to be zero in backpropagation), flexibility for incorporating larger learning rates, 

independency from weight initialization, and lack of need for drop-out.    

We have seen from previous work that the network’s depth and patch size are dependent 

on the type and level noise present. Specifically, larger patch sizes are shown to exhibit 

better performance in the presence of higher noise levels [226]. The network presented in 

[87] used 10 convolutional layers (or 5 stages) with patches of 61×61 to remove a 

predefined level of Gaussian noise. The network in [89] uses 17 layers of 40×40 patches 

for specific-noise-level denoising and 20 layers of 50×50 patches for non-specific noise-

level Gaussian denoising.  

3.3.1.4 Network Model 

The proposed CNN model is a modified version of the VGG [227] and DnCNN [89] 

models aimed at overcoming the challenge of mixed impulse and Gaussian noise removal. 

The network’s input is a noisy image 𝑦𝑖, produced by artificially injecting noise to a clean 

original (𝑥𝑖) image, and the network’s output 𝑓(𝑦𝑖)  is an estimate of the original noise-

free image. The network’s loss function is the summation of the squared error between the 
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estimated and original noise-free images as formulated in (21). Finally, the network’s 

parameters are updated by minimizing this loss function.        

𝐿 = ∑ ||𝑓(𝑦𝑖) − 𝑥𝑖||2
2𝑁

𝑖=1                                                   (21) 

Where 𝑁 is number of training image sets ({𝑦𝑖, 𝑥𝑖}).    

The network used in this study resembles that used in [89] with few changes. It is 

composed of 3 different types of layers where: the 1st is a convolutional layer of 64 3x3x1 

filters with ReLU non-linear activation functions [224] used to create 64 feature maps, the 

2nd through second-to-last layers are batch normalized [225] convolutional layers of 64 

3x3x64 filters with ReLU activations [224]; and the last is a convolutional layer made out 

of a single 3×3×64 kernel used to output the reconstructed image. The use of ReLU 

activations [224] on convolutional layers separates the mixed noise from the noisy 

observations through the hidden layers. Finally, the input images are directly padded with 

zeros to reduce boundary artifact [89] resulting from size mismatches between different 

input images. Figure 18 illustrates the considered network model.   
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In contrast to [89], this network attempts to predict the clean noise-free image directly 

instead of obtaining it from subtracting the predicted residuals from the noisy image. This 

is a result of the non-additive nature of the types of noise dealt with by this paper. Although 

we use batch normalization to prevent overfitting, we also implemented extra steps to 

further avoid it. Every time the network starts a new epoch (run through the training data) 

a new random seed is used to regenerate the noisy images. This extra step has proved to be 

a very helpful regularization technique as it prevents the network from seeing the same 

input image twice, or at least assign a very low probability to such event, allowing the 

network to better generalize.  

 

Figure 18 – Proposed DCNN model 
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We should indicate that we obtained optimal denoising results by using 20 layers with 

40×40 patches for both specific and non-specific noise-level denoising. Although either, 

Stochastic gradient descent (SGD)-momentum [228] and Adam gradient-based 

optimization [229] could have been used, previous convolutional neural networks [230-

233] [89] have used stochastic gradient descent (SGD), and the performance of networks 

with and without batch normalization for both SGD-momentum and Adam are shown in 

[89]. This demonstrates that batch normalization can significantly improve the PSNR for 

SGD by increasing the number of epochs. Therefore, in this paper stochastic gradient 

descent (SGD)-momentum [228] is used.   

Lastly, all the source-code written in the deployment of this research study is available 

at: “https://github.com/wizquierdo/DnCNN” for other researchers to perform comparative 

assessments and explore for any potential improvements that can be made to the proposed 

method. 

3.3.2 Edge Detection After CNN Filtering 

The edge detection process is applied to the denoised image according to the defined 

process in section 3.1.2.  
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4. CHAPTER IV 

RESULTS AND DISCUSSIONS 

4.1 Denoising Filters Comparisons   

4.1.1 Impulse Denoising Filters   

Table 6 compares the Peak Signal to Noise Ratio (PSNR), correlation, and Structural 

Similarity Index Metric (SSIM) of some of the relevant impulse denoising filters. Moving 

windows of 3x3, 5x5, and 9x9 sizes were respectively used for images with 10%, 60%, and 

90% noise intensity.  

4.1.2 Gaussian Denoising Filters   

Table 7 compares the averaged Peak Signal to Noise Ratio (PSNR) of some of the 

discussed Gaussian denoising filters. The images whose PSNR were average included the 

standard images of Camera man, House, Peppers, Starfish, Monarch, Airplane, Parrot, 

Lena, Barbara, Boat, Man, Couple. The methods compared in Table 4 are based on machine 

learning algorithms (neural networks, deep learning) and the PSNR values are calculated 

on the average of the 12 testing images similar to the standard images used in [89]. Table 

8 compares the Peak Signal to Noise Ratio (PSNR) of some of the discussed Gaussian 

denoising filters. The methods indicated in table 8 are based on the traditional methods of 

spatial non-linear filters, and the PSNR and SSIM are calculated on the basis of one testing 

image, the Parrot image as in [68], deemed sufficient for this type of comparison involving 

PSNR and SSIM. Table 9 compares the SSIM measure of some of the discussed Gaussian 
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denoising filters. The Bird image is used for comparison in table 9 [68] and is also deemed 

sufficient for this type of comparison.  

Table 6 – PSNR, Correlation, and Structural Similarity Index Metric (SSIM) comparison of 

some of the discussed impulse denoising filters 
 

 Lena Cameraman 

DMFUTMF [44] 

 

Noise level  Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9659 26.1517 0.8783 0.9366 21.2120 0.7910 

60 % 0.8415 18.9888 0.5335 0.8048 16.0254 0.4616 

90 % 0.5772 11.2136 0.1004 0.3431 9.9221 0.0661 

The algorithm [21] Noise level  Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9577 24.9189 0.9402 0.9328 20.9744 0.9094 

60 % 0.8981 19.0121 0.8411 0.8731 15.8791 0.6807 

90 % 0.7141 14.5981 0.4383 0.5621 12.5981 0.3973 

FIDRM [55] Noise level Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9681 25.6991 0.9432 0.9422 21.7111 0.9100 

60 % 0.9133 20.3459 0.8417 0.8741 16.3336 0.7519 

90 % 0.8103 16.2993 0.5221 0.6473 13.3112 0.4812 

DBUTMF [33] Noise level  Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9715 26.8279 0.9469 0.9584 22.8511 0.9231 

60 % 0.9137 21.0671 0.8427 0.8821 17.2112 0.7823 

90 % 0.8593 17.8893 0.6421 0.7891 15.1173 0.5949 

DBPTGMF [47] Noise level Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9720 26.9001 0.9473 0.9587 22.8794 0.9240 

60 % 0.9163 21.3123 0.7852 0.8948 18.7242 0.7852 

90 % 0.8621 18.0001 0.6048 0.7846 15.4401 0.6048 

Cascading [50] Noise level  Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9722 26.9181 0.9559 0.9580 22.8053 0.9220 

60 % 0.9286 22.7196 0.8190 0.8777 18.0692 0.7418 

90 % 0.8324 18.8145 0.5987 0.7413 14.5668 0.5234 

The algorithm [234] Noise level Correlation PSNR SSIM Correlation PSNR SSIM 

10% 0.9714 26.8173 0.9377 0.9576 22.7594 0.9003 

60% 0.9330 22.9959 0.7625 0.8960 18.5976 0.6813 

90% 0.8686 19.0761 0.6806 0.7895 14.8671 0.5676 

DBUTMWMF [49] Noise level  Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9722 26.9401 0.9574 0.9581 22.8361 0.9227 

60 % 0.9366 23.2440 0.8599 0.8951 18.7293 0.7851 

90 % 0.8547 19.6696 0.6917 0.7726 15.4655 0.5640 

IBDNDF [36] Noise level  Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9720 26.8841 0.9542 0.9507 22.6953 0.9174 

60 % 0.9339 23.0719 0.8369 0.8865 18.4298 0.7553 

90 % 0.8677 19.8145 0.6976 0.7859 15.3892 0.6074 

IBINRF [41] Noise level Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9725 26.9733 0.9586 0.9588 22.9110 0.9254 

60 % 0.9402 23.5241 0.8831 0.9032 19.1352 0.7947 

90 % 0.8725 20.0350 0.7496 0.7963 15.6989 0.6093 

UWMF [39] Noise level  Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9725 26.9813 0.9580 0.9586 22.8891 0.9251 

60 % 0.9396 23.4561 0.8633 0.9021 19.0629 0.7929 

90 % 0.8709 19.9437 0.7039 0.7956 15.6536 0.6136 

INMF [42] Noise level Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9831 29.3112 0.9721 0.9802 26.2762 0.9531 

60 % 0.9472 24.2273 0.8701 0.9189 19.9385 0.8021 

90 % 0.8751 20.1331 0.7179 0.8107 15.9397 0.6268 

SAMWMF [185] Noise level Correlation PSNR SSIM Correlation PSNR SSIM 

10 % 0.9843 29.4961 0.9744 0.9821 26.5929 0.9576 

60 % 0.9478 – 

0.9499 

24.1751 – 

24.3335 

0.8641 – 0.8744 0.9165 – 0.9219 19.8201-20.0877 0.7940 – 0.8080 

90 % 0.8725 – 
0.8800 

20.0941 – 
20.2852 

0.7032 – 0.7253 0.8011 – 0.8122 15.8451 -16.0122 0.6116 – 0.6315 
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4.1.3 Mixed Impulse and Gaussian Denoising Filters   

Tables 10 and 11 provide comparisons of the averaged peak signal to noise ratio (PSNR) 

and averaged image perceptual quality index (FSIM) of some of the discussed mixed 

impulse and Gaussian denoising filters on 12 images. The images Lena, F16, Leaves, Boat, 

Couple, Fingerprint, Hill, Man, Peppers, Painting and Average are used as standard images 

for comparative purposes. Tables 12 and 13 provide a comparison of the averaged peak 

signal to noise ratio (PSNR) and averaged image perceptual quality index (FSIM) of some 

of the discussed mixed impulse and Gaussian denoising filters. The images Lena, FG, Boat, 

Table 7 – Averaged PSNR comparison of some of the discussed Gaussian denoising filters 

(based on machine learning techniques) 
 

Gaussian noise 
(standard deviation) 

Type of denoising filters 

BM3D 

[108] 

WNNM 

[235] 

CSF 

[236] 

MLP 

[223] 

TNRD 

[87] 

DnCNN-S 

[89] 

DnCNN-B 

[89] 

0.15 32.372 32.696 32.318 - 32.502 32.859 32.680 
0.25 29.969 30.257 29.837 30.027 30.055 30.436 30.362 
0.50 26.722 27.052 - 26.783 26.812 27.178 27.206 

 

 

Table 8 – PSNR comparison of some of the discussed Gaussian denoising filters (based on 

spatial non-linear methods) 
 

Gaussian noise 

(standard deviation) 
Type of denoising filters 

Catte  
[65] 

TV 
 [59] 

EAD 
[237] 

CTD  
[67] 

MPM 
[238] 

Improved Anisotropic 
diffusion 1 [68] 

Improved Anisotropic 
diffusion 2 [68] 

0.15 32.1392 33.9370 32.4884 33.2009 31.7202 33.4551 33.4537 
0.20 29.3338 31.3270 30.8812 30.3440 30.7569 31.8628 32.0353 
0.25 25.7468 28.5566 28.9374 26.3181 29.5313 30.3513 30.6436 
0.30 22.6088 26.7680 26.7680 22.9874 28.3664 28.9608 29.3514 
0.35 20.1988 23.9319 24.7122 20.2339 27.2262 27.6440 28.1019 

 

Table 9 – Structural Similarity Index Metric (SSIM) comparison of some of the discussed 

Gaussian denoising filters 
 

Gaussian noise 

(standard deviation) 
Type of denoising filters 

Catte 
[65] 

TV  
[59] 

EAD 
[237] 

CTD 
[67] 

MPM 
[238] 

Improved Anisotropic 
diffusion 1 [68] 

Improved Anisotropic 
diffusion 2 [68] 

0.15 0.9731 0.9837 0.9745 0.9823 0.9663 0.9748 0.9720 
0.20 0.9676 0.9799 0.9730 0.9705 0.9652 0.9724 0.9701 
0.25 0.9513 0.9719 0.9696 0.9502 0.9635 0.9699 0.9680 
0.30 0.9205 0.9581 0.9603 0.9144 0.9608 0.9666 0.9654 
0.35 0.8794 0.9394 0.9455 0.8633 0.9567 0.9618 0.9614 
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Hill, Peppers, Man, Couple, AP, Cloth, Vase, Bush, Flower were used for comparative 

purposes as shown in tables 12 and 13. 

4.2 Impulse Denoising Based on Spatial Filter    

4.2.1 Implementation on Natural Images    

In this section, the results obtained using the proposed method after applying the steps of 

denoising (SAMFWMF) followed by edge detection is presented. The results of 

SAMFWMF are compared with the cascading algorithm [50], IBDNDF [36], 

DBUTMWMF [49] and UWMF [39] filters on different images and under different 

impulse noise intensity levels. Images of Lena (512×512), Camera man (256×256), Coins  

Table 10 – Averaged peak signal to noise ratio (PSNR) comparison of some of the discussed 

mixed impulse and Gaussian denoising filters  

 Type of denoising filter  

Gaussian noise 

(standard deviation) 
Impulse noise  

(level) 
ROR-NLM [219] Cai [220] 𝑙1 − 𝑙0 [162] WESNR [164] 

0.1 30% 27.6027 29.8790 31.8109 31.3600 
40% 26.5590 28.9290 30.6754 30.6309 
50% 21.2990 27.8354 29.4290 29.6663 

0.2 30% 25.1118 27.6600 28.9027 31.4636 
40% 24.1227 27.0627 28.1281 28.2509 
50% 21.4790 25.4827 27.1900 27.4809 

0.25 30% 24.1327 26.7172 27.8636 27.9100 
40% 23.0354 26.2172 27.1436 27.3154 
50% 20.4409 25.4827 26.3172 26.5718 

 

Table 11 – Averaged image perceptual quality index (FSIM) comparison of some of the 

discussed mixed impulse and Gaussian denoising filters 

 
 Type of denoising filter  

Gaussian noise 

(standard deviation) 
Impulse noise  

(level) 
ROR-NLM [219] Cai [220] 𝑙1 − 𝑙0 [162] WESNR [164] 

0.1 30% 94.5000 95.6909 97.0154 96.7063 
40% 93.1700 94.5800 96.1927 96.1700 
50% 88.8263 89.5381 95.0400 95.3563 

0.2 30% 88.2336 92.3518 93.7163 93.6018 
40% 86.0090 91.2409 92.7163 92.8263 
50% 80.9609 89.5381 91.5227 91.7854 

0.25 30% 85.1118 90.5818 91.9881 92.2709 
40% 82.5336 89.5054 91.0718 91.2309 
50% 77.2509 87.8072 89.8200 90.1327 
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Table 12 – Averaged peak signal to noise ratio (PSNR) comparison of some of the 

discussed mixed impulse and Gaussian denoising filters 

 Type of denoising filter  

Gaussian noise 

(standard 

deviation) 

Impulse noise 

(level) 
TPD 

[216] 

BM3D 

[108] 

WESNR 

[164] 

SLR 

[217] 
𝐿1-NLR 

[171] 

𝐿0-NLR 

[171] 

LSM-NLR 

[171] 

0.1 10% 28.78 3057 30.24 30.50 31.25 31.36 32.30 
20% 27.97 29.46 29.36 29.18 29.46 29.86 30.82 
30% 27.15 28.30 28.40 27.82 27.74 28.55 29.37 
40% 26.02 26.67 27.02 2620 26.74 26.92 27.24 
50% 24.92 24.54 25.30 24.18 24.72 25.18 25.36 

0.2 10% 27.96 27.96 27.69 27.62 28.62 28.90 29.22 
20% 25.84 27.21 27.09 26.79 27.50 27.78 28.27 
30% 25.29 26.36 26.42 25.86 26.21 26.74 27.28 
40% 24.37 24.97 25.24 24.54 24.83 25.37 26.08 
50% 23.42 23.22 23.86 22.88 23.19 24.00 24.62 

0.3 10% 24.58 26.08 26.11 25.60 26.56 26.95 26.98 
20% 24.21 25.39 25.55 24.85 25.49 25.92 26.20 
30% 23.76 24.65 24.92 24.03 24.30 25.00 25.39 
40% 22.95 23.35 23.74 22.83 23.11 23.74 24.33 
50% 21.99 21.77 22.30 21.35 21.62 22.52 23.18 

0.5 10% 22.19 23.66 23.16 22.83 23.83 24.14 24.27 
20% 21.94 22.99 22.59 22.18 22.73 23.20 23.61 
30% 21.59 22.29 21.84 21.44 21.59 22.31 22.85 
40% 20.87 21.05 20.78 20.35 20.73 21.14 21.95 
50% 19.83 19.62 19.35 19.08 19.34 20.08 20.73 

 

Table 13 – Averaged image perceptual quality index (FSIM) comparison of some 

of the discussed mixed impulse and Gaussian denoising filters 

 Type of denoising filter  

Gaussian noise 

(standard deviation) 
Impulse noise 

(level) 
TPD 

[216] 

BM3D 

[108] 

WESNR 

[164] 

SLR 

[217] 
𝐿1-NLR 

[171] 

𝐿0-NLR 

[171] 

LSM-NLR 

[171] 

0.1 10% 95.59 97.11 96.65 97.11 97.48 97.57 97.63 
20% 94.77 96.43 96.06 96.29 96.63 96.78 96.99 
30% 93.78 95.43 95.25 95.15 95.32 95.78 96.17 
40% 91.89 93.38 93.69 93.16 93.25 93.93 93.88 
50% 89.60 89.58 90.99 89.63 90.23 90.96 91.00 

0.2 10% 93.76 93.76 92.82 93.66 94.29 94.77 94.78 
20% 90.49 92.82 92.12 92.58 93.31 93.56 93.80 
30% 89.43 91.52 91.27 91.18 91.91 92.15 92.67 
40% 87.13 88.96 89.44 91.18 89.05 89.78 90.83 
50% 84.70 85.19 87.07 88.73 85.86 86.70 87.92 

0.3 10% 86.98 90.11 90.19 85.14 91.06 91.67 91.68 
20% 85.12 88.81 89.32 90.15 89.66 89.86 90.42 
30% 84.92 87.33 88.30 88.73 87.91 87.96 89.17 
40% 82.45 84.48 85.95 87.06 84.47 85.06 86.59 
50% 79.89 80.73 82.93 84.32 81.13 81.93 83.78 

0.5 10% 79.84 84.04 82.71 80.72 85.19 85.54 86.31 
20% 78.55 82.21 80.92 83.93 83.09 82.66 84.60 
30% 77.31 80.51 78.94 82.02 80.82 79.86 82.72 
40% 74.88 77.52 76.17 77.06 76.79 76.39 79.66 
50% 72.37 74.04 72.51 73.71 73.53 73.74 76.80 
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(300×246) and checkerboard (256×256) are standard examples used in the literature for 

comparative purposes.  

Table 14 shows the results obtained on the execution time (in seconds) after the denoising 

process, comparing different denoising filters to the SAMFWMF. All the experiments were 

run on a PC with Intel(R) core (TM) 2 Quad CPU 2.67GHZ and 8G RAM. All filters except 

for UWMF [39] yielded high execution time in the presence of high-intensity impulse 

noise. As the results show, SAMFWMF has a high execution time because of the 

complicated nesting blocks. Most of the execution time of SAMFWMF is dedicated to 

switching adaptive median filter (more than 70%) and the rest of the time is dedicated to 

the shrinkage window and weighted fixed mean filters. By decreasing the initial adaptive 

median window size, the execution time is increased. Also, by decreasing the shrinkage 

window size, the execution time is decreased.          

Tables 15 and 16, show respectively the results obtained on the correlation (𝛽) and the 

peak signal to noise ratio (PSNR) measured in comparison to the different initial adaptive 

median window sizes for the SAMFWMF. Note that in tables 15 and 16, higher numbers 

are associated with better results. All these metrics/measures are computed in the presence 

of 10 up to 90 percent impulse noise and switch 1 is used for SAMFWMF. Also, table 17 

shows the results for the computed structural metrics using the checkerboard as a 

challenging example for different initial adaptive median window sizes for the 

SAMFWMF. In this case, switch 2 is used for the SAMFWMF, given the nature of the 

Table 14 – Execution time after proposed spatial filtering process 
 

 10% 40% 80% 90% 

UWMF [39] 0.309078 0.465255 1.002563 1.652859 

IBDNDF [36] 0.622326 1.580908 5.242255 11.045418 

DBUTMWMF [49] 1.839567 4.002603 3.621499 4.868026 

Cascading algorithm [50] 5.268536 6.429431 8.824390 11.972124 

Proposed Algorithm 8.481578 8.564322-8.659768 8.576215-10.387456 8.553084-12.779870 
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checkerboard image used here as a challenge for denoising such type of input images. As 

Tables 15-17 show, by increasing the initial adaptive median window size (approaching to 

maximum predefined window size), the values of the structural metrics are decreased, but, 

the edges are sharper and smoother; therefore, there is a tradeoff between better image 

similarity with less noise and the need for sharper edges.  

Tables 18-20 show respectively the results obtained on the correlation (𝛽), the peak signal 

to noise ratio (PSNR) and the structural similarity (SSIM) measures, comparing different 

denoising filters to the SAMFWMF based on the minimum initial adaptive median window 

size to the maximum predefined window size. All these metrics/measures are computed in 

Table 15 – Correlation (β) measured in comparison to the different initial adaptive median 

window sizes for the proposed spatial filter 
 

 Initial window=3×3 Initial window=5×5 Initial window=7×7 Initial window=9×9 

Lena Camera 

man 
Coins Lena Camera 

man 
Coins Lena Camera 

man 
Coins Lena Camera 

man 
Coins 

10% 0.9843 0.9821 0.9933 - - - - - - - - - 
20% 0.9834 0.9790 0.9921 - - - - - - - - - 

30% 0.9819 0.9753 0.9906 - - - - - -  - - 
40% 0.9548 0.9345 0.9799 0.9528 0.9301 0.9785 - - - - - - 
50% 0.9524 0.9282 0.9770 0.9508 0.9231 0.9755 - - - - - - 
60% 0.9499 0.9219 0.9734 0.9478 0.9165 0.9720 - - - - - - 
70% 0.9459 0.9138 0.9690 0.9432 0.9083 0.9666 - - - - - - 
80%  0.9160 0.8663 0.9544 0.9136 0.8624 0.9501 0.9106 0.8571 0.9504  - - 
90% 0.8800 0.8122 0.9300 0.8773 0.8077 0.9287 0.8754 0.8071 0.9277 0.8725 0.8011 0.9274 

 

Table 16 – Peak signal to noise ratio (PSNR) measured in comparison to the different initial 

adaptive median window sizes for the proposed spatial filter 
 

 Initial window=3×3 Initial window=5×5 Initial window=7×7 Initial window=9×9 

Lena  Camera 

man 
Coins  Lena  Camera 

man 
Coins  Lena  Camera 

man  
Coins  Lena  Camera 

man  
Coins  

10% 29.4967 26.5927 31.7914 - - - - - - - - - 
20% 29.2478 25.9157 31.1160 - - - - - - - - - 

30% 28.8934 25.2241 30.3653 - - - - - -  - - 
40% 24.9708 20.8165 26.8780 24.5841 20.5567 26.6311 - - - - - - 
50% 24.5506 20.4417 26.3245 24.4105 20.1538 26.1080 - - - - - - 
60% 24.3336 20.0870 25.7222 24.1757 19.8203 25.5401 - - - - - - 
70% 24.0080 19.6702 25.0923 23.8142 19.4124 24.7978 - - - - - - 
80%  21.9598 17.5974 23.2398 21.8666 17.5196 22.9917 21.7218 17.3890 22.9759 - - - 
90% 20.2855 16.0121 21.2778 20.2264 15.9205 21.2165 20.1514 15.9198 21.2199 20.0942 15.8457 21.2177 

 

Table 17 – Computed structural metrics using the checkerboard for different initial adaptive 

median window sizes for the proposed spatial filter 
 

 Initial window=3 Initial window=5 Initial window=13 

30% 50% 80% 30% 50% 80% 30% 50% 80% 

𝛽 0.9595 0.9307 0.8076 - 0.9295 0.8054 - - 0.8007 

PSNR 17.0082 14.6801 10.2579 - 14.6175 10.1606 - - 10.0947 

SSIM 0.8417 0.7953 0.6599 - 0.7915 0.6497 - - 0.6492 
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the presence of 10 to 90 percent impulse noise and switch 1 is used for the proposed filter. 

In tables 18-20, higher numbers are again associated with better results. As the results 

show, SAMFWMF yielded better structural metrics. Table 21 shows the results for the 

computed structural metrics using the checkerboard example for comparing the results 

obtained using different denoising filters to the SAMFWMF. In this case, switch 2 is used 

for the SAMFWMF, with higher numbers indicating better results. As the results show, 

SAMFWMF has better structural metrics. Table 22 shows the results obtained on the 

correlation (𝛽) and the peak signal to noise ratio (PSNR) measures, comparing other 

denoising filters with and without fixed weighted mean filter as a post-processing step. All 

of these metrics/measures are computed in the presence of 10 to 90 percent impulse noise. 

As the results indicate, the structural metrics are increased when the fixed weighted mean 

filter is used as a post-processing step for other denoising filters.  

Table 18 – Correlation (𝛽) comparison for different denoising filters to the proposed spatial 

filter 
 

 Cascading algorithm 
[50]  

IBDNDF [36] DBUTMWMF [49] UWMF [39] SAMFWMF 

Lena  Camera 

man 
Coins  Lena  Camera 

man 
Coins  Lena  Camera 

man  
Coins  Lena  Camera 

man  
Coins  Lena  Camera man  Coins  

10% 0.9722 0.9580 0.9893 0.9720 0.9567 0.9885 0.9722 0.9581 0.9892 0.9725 0.9586 0.9897 0.9843 0.9821 0.9933 
20% 0.9704 0.9529 0.9873 0.9704 0.9518 0.9861 0.9712 0.9543 0.9880 0.9717 0.9566 0.9886 0.9834 0.9790 0.9921 
30% 0.9681 0.9472 0.9842 0.9682 0.9464 0.9836 0.9701 0.9508 0.9863 0.9704 0.9533 0.9869 0.9819 0.9753 0.9906 
40% 0.9396 0.9024 0.9716 0.9404 0.9031 0.9724 0.9420 0.9080 0.9751 0.9441 0.9128 0.9763 0.9528-0.9548 0.9301-0.9345 0.9785-0.9799 
50% 0.9348 0.8905 0.9646 0.9376 0.8950 0.9692 0.9397 0.9011 0.9722 0.9424 0.9085 0.9738 0.9508-0.9524 0.9231-0.9282 0.9755-0.9770 
60% 0.9286 0.8777 0.9574 0.9339 0.8865 0.9637 0.9366 0.8951 0.9683 0.9396 0.9021 0.9698 0.9478-0.9499 0.9165-0.9219 0.9720-0.9730 
70% 0.9199 0.8616 0.9481 0.9303 0.8799 0.9591 0.9323 0.8852 0.9639 0.9355 0.8927 0.9647 0.9432-0.9459 0.9083-0.9138 0.9663-0.9690 
80%  0.8781 0.8067 0.9205 0.9018 0.8340 0.9442 0.8948 0.8295 0.9388 0.9063 0.8479 0.9497 0.9106-0.9160 0.8571-0.8663 0.9504-0.9544 
90% 0.8324 0.7413 0.8846 0.8677 0.7859 0.9216 0.8547 0.7726 0.9117 0.8709 0.7956 0.9248 0.8725-0.8800 0.8011-0.8122 0.9274-0.9300 

 

Table 19 – Peak signal to noise ratio (PSNR) comparison for different denoising filters against 

the proposed spatial filter 
 

 Cascading algorithm 
[50]    

IBDNDF [36] DBUTMWMF [49] UWMF [39] SAMFWMF 

Lena  
Camera 

man 
Coins  Lena  

Camera 

man 
Coins  Lena  

Camera 

man  
Coins  Lena  

Camera 

man  
Coins  Lena  Camera man  Coins  

10% 26.918 22.805 29.666 26.884 22.695 29.379 26.940 22.836 29.656 26.981 22.889 29.862 29.496 26.592 31.791 

20% 26.675 22.320 28.970 26.661 22.259 28.613 26.802 22.492 29.233 26.861 22.697 29.443 29.247 25.915 31.116 

30% 26.345 21.834 28.034 26.382 21.821 27.929 26.656 22.206 28.700 26.681 22.403 28.870 28.893 25.224 30.365 

40% 23.434 19.012 25.335 23.514 19.088 25.460 23.611 19.272 25.905 23.771 19.533 26.198 24.584-24.758 20.556-20.816 26.631-26.878 
50% 23.109 18.515 24.406 23.318 18.759 25.006 23.448 18.986 25.449 23.646 19.332 25.734 24.410-24.550 20.153-20.441 26.108-26.324 
60% 22.719 18.069 23.625 23.071 18.429 24.318 23.244 18.729 24.914 23.456 19.062 25.261 24.175-24.333 19.820-20.087 25.540-25.722 
70% 22.242 17.555 22.790 22.847 18.191 23.803 22.981 18.372 24.385 23.181 18.677 24.451 23.814-24.008 19.412-19.670 24.797-25.092 
80%  20.296 15.941 20.806 21.220 16.595 22.322 21.131 16.784 22.185 21.453 17.033 22.790 21.721-21.959 17.389-17.597 22.975-23.239 
90% 18.814 14.566 19.107 19.814 15.389 20.719 19.669 15.465 20.563 19.943 15.653 20.980 20.094-20.285 15.845-16.012 21.217-21.277 
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The results in table 23 show the FOM comparison (with different input parameters) 

between the proposed edge detection (without SAMFWMF) and the Canny edge detection 

algorithm. Table 24 shows the FOM comparison (with different input parameters) between 

proposed edge detection algorithm after SAMFWMF denoising process with Canny edge 

detection algorithm after the same SAMFWMF denoising process, and the proposed edge 

detection algorithm after UWMF [39] denoising process with and without fixed weighted 

mean filter as a post processing step. We selected UWMF [39], because visually it has 

produced better results among the other filters used in the comparison. In table 24, in order 

Table 20 – Structural similarity (SSIM) comparison for different denoising filters against the 

proposed spatial filter 
 

 Cascading algorithm 
[50]   

IBDNDF [36] DBUTMWMF [49] UWMF [39] SAMFWMF 

Lena  Camera 

man 
Coins  Lena  Camera 

man 
Coins  Lena  Camera 

man  
Coins  Lena  Camera 

man  
Coins  Lena  Camera man  Coins  

10% 0.9559 0.9220 0.9342 0.9542 0.9174 0.9312 0.9574 0.9227 0.9348 0.9580 0.9251 0.9373 0.9744 0.9576 0.9634 
20% 0.9401 0.8997 0.9225 0.9384 0.8947 0.9180 0.9468 0.9052 0.9270 0.9489 0.9128 0.9307 0.9635 0.9426 0.9558 

30% 0.9209 0.8741 0.9072 0.9199 0.8671 0.9046 0.9354 0.8885 0.9174 0.9361 0.8955 0.9202 0.9496 0.9225 0.9463 
40% 0.8893 0.8281 0.8695 0.8902 0.8227 0.8716 0.9016 0.8438 0.8815 0.9043 0.8497 0.8892 0.9048-0.9156 0.8508-0.8630 0.8898-0.9022 
50% 0.8585 0.7867 0.8396 0.8662 0.7886 0.8515 0.8825 0.8141 0.8658 0.8848 0.8204 0.8706 0.8861-0.8962 0.8221-0.8370 0.8725-0.8875 
60% 0.8190 0.7418 0.8046 0.8369 0.7553 0.8280 0.8599 0.7851 0.8442 0.8633 0.7929 0.8509 0.8641-0.8744 0.7940-0.8080 0.8521-0.8670 
70% 0.7724 0.6875 0.7659 0.8099 0.7245 0.8039 0.8312 0.7454 0.8187 0.8331 0.7588 0.8225 0.8343-0.8456 0.7604-0.7736 0.8240-0.8427 
80%  0.6895 0.6103 0.6829 0.7693 0.6699 0.7614 0.7614 0.6508 0.7151 0.7791 0.6921 0.7727 0.7772-0.7995 0.6901-0.7129 0.7714-0.7958 
90% 0.5987 0.5234 0.5981 0.6976 0.6074 0.6939 0.6817 0.5640 0.6353 0.7039 0.6136 0.7018 0.7032-0.7253 0.6116-0.6315 0.7011-0.7169 

 

Table 21 – Computed structural metrics using the checkerboard for comparing the results 

obtained using different denoising filters to the proposed spatial filter 
 

 Cascading algorithm 

[50]  
IBDNDF [36] DBUTMWMF [49] UWMF [39] SAMFWMF 

30% 50% 80% 30% 50% 80% 30% 50% 80% 30% 50% 80% 30% 50% 80% 
𝛽 0.9587 0.9270 0.7921 NaN NaN NaN 0.9076 0.8470 0.4251 0.9520 0.9202 0.7860 0.9595 0.9295-0.9270 0.8002-0.8076 

PSNR 16.9202 14.5194 10.0525 NaN NaN NaN 12.7868 10.1671 6.8285 16.2001 13.9772 9.6609 17.0082 14.6175-14.6801 10.0947-10.2579 
SSIM 0.7457 0.7027 0.4793 NaN NaN NaN 0.1626 0.1427 0.2089 0.7391 0.7467 0.6202 0.8417 0.7915-0.7953 0.6492-0.6599 

 

Table 22 – Correlation (β) and the PSNR measures, comparing other Impulse denoising filters 

with and without fixed weighted mean filter as a post-processing step 
 

 Cascading Algorithm 

[50]  

IBDNDF [36] DBUTMWMF [49] UWMF [39] 

Without 

mean 

filter   

With 

mean 

filter   

Without 

mean 

filter   

With 

mean 

filter   

Without 

mean 

filter   

With 

mean 

filter   

Without 

mean 

filter   

With 

mean 

filter   

Without 

mean 

filter   

With 

mean 

filter   

Without 

mean 

filter   

With 

mean 

filter   

Without 

mean 

filter   

With 

mean 

filter   

Without 

mean 

filter   

With 

mean 

filter   

 𝛽 𝛽 PSNR PSNR 𝛽 𝛽 PSNR PSNR   
 

𝛽 𝛽 PSNR PSNR 𝛽 𝛽 PSNR PSNR 

10% 0.9722 0.9840 26.918 29.406 0.9720 0.9838 26.884 29.364 0.9722 0.9841 26.940 29.452 0.9725 0.9843 26.981 29.431 
20% 0.9704 0.9823 26.675 28.971 0.9704 0.9823 26.661 28.989 0.9712 0.9832 26.802 29.222 0.9717 0.9834 26.861 29.232 
30% 0.9681 0.9799 26.345 28.432 0.9682 0.9805 26.382 28.634 0.9701 0.9820 26.656 28.745 0.9704 0.9821 26.681 29.018 

40% 0.9396 0.9505 23.434 24.376 0.9404 0.9516 23.514 24.493 0.9420 0.9521 23.611 24.495 0.9441 0.9548 23.771 24.526 

50% 0.9348 0.9455 23.109 23.968 0.9376 0.9484 23.318 24.222 0.9397 0.9487 23.448 24.398 0.9424 0.9511 23.646 24.326 

60% 0.9286 0.9381 22.719 23.423 0.9339 0.9423 23.071 23.965 0.9366 0.9427 23.244 24.162 0.9396 0.9451 23.456 24.387 

70% 0.9199 0.9306 22.242 22.930 0.9303 0.9401 22.847 22.543 0.9323 0.9436 22.981 23.843 0.9355 0.9455 23.181 24.005 

80%  0.8781 0.9104 20.296 21.855 0.9018 0.9103 21.220 21.675 0.8948 0.9048 21.131 21.643 0.9063 0.9167 21.453 21.934 
90% 0.8324 0.8375 18.814 19.049 0.8677 0.8612 19.814 20.065 0.8547 0.8654 19.669 20.088 0.8709 0.8792 19.943 20.339 
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to evaluate the edge detection after the denoising processes, we insert an extra block in 

FOM process which injects impulse noise before the denoising process is applied. In tables 

23 and 24, lower numbers in this case show improvement on the performance as FOM is 

monotonically increasing the noise variance and image blurring. The size of the input for 

FOM is 64×64. A 3×3 first-order derivative kernel is used for the proposed edge detection 

algorithm. In tables 23 and 24, there is an unexpected tendency in the results of the 

proposed edge detection which shows decreasing FOM values by increasing noise 

intensity. The study in [190] indicates that when operators are used (like Sobel) which can 

cause thickening of edges or missed edges, noise can improve the detector quality by 

decorrelation of the quantization error. However, the proposed edge detection algorithm 

(with and without applying SAMFWMF) has resulted in better structural metrics.  

Table 25 summarizes the acronyms and the corresponding methodologies. Figures 19-21 

show a comparison of the denoising filters in the presence of 80% impulse noise on the 

images of Lena, Camera man, and the Coins. Figures 22-24 show a comparison of the 

Table 23 – FOM comparison between the proposed edge detection and the Canny edge 

detection algorithm 

𝜎𝑔 1 2 

𝜎ℎ 5 15 5 15 

𝜎𝑝 0.5 1 0.5 1 

𝜎𝑛 1 2 1 2 

Canny 1.1627 1.4009 1.1223 1.3539 

Proposed Algorithm 0.0607 0.0377 0.0783 0.0237 

 

Table 24 – FOM comparison between proposed edge detection algorithm after proposed 

spatial filter denoising process with Canny edge detection algorithm after the same denoising 

process, and the proposed edge detection algorithm after UWMF [39] denoising process with and 

without fixed weighted mean filter as a post processing step 

𝜎𝑔 1 2 

𝜎ℎ 5 15 5 15 

𝜎𝑝 0.5 1 0.5 1 

𝐼𝑚 10% 30% 10% 30% 10% 30% 10% 30% 

Canny 6.3127 7.8594 6.4761 7.8751 6.3561 7.9511 7.0012 7.9724 

UWMF – With post processing 5.5767 4.4949 5.5123 4.6514 5.4337 4.8386 5.2711 4.2581 

UWMF – Without post processing 4.8765 1.8743 4.6754 1.9876 4.1132 1.3241 3.9854 1.2190 

Proposed Algorithm  4.3306 0.6555 4.1241 0.3072 3.9849 0.3318 3.6782 0.3058 
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denoising filters in the presence of 90% impulse noise on the images of Lena, Camera man, 

and the Coins. The proposed filter with switch 1 is used in both figures. As the results 

show, SAMFWMF has better structural metrics, and by increasing the initial adaptive 

median window size (approaching to maximum predefined window size), the similarity is 

decreased, but the edges become sharper and smoother.  

 

Table 25 – Summary of acronyms and corresponding methodologies 

Acronym Corresponding methodology 

Switching 

Adaptive Median 

(SAM) 

This is a technique for denoising and it switches between 

two states of adaptive median filter in which adaptive 

median filter is flexible and adapts itself to the predefined 

conditions 

Fixed Weighted 

Mean (FWM) 

This technique for denoising, calculates the averaging 

weighted mean of neighboring pixels in which the size of 

the selected window is fixed 

Shrinkage 

window 

This technique is used to improve the denoising in which 

the size of the window is shrunk according to predefined 

condition 

Gradient based 

edge detection 

This technique is used to detect the image edges in which 

a kernel obtain based on the gradient of the image and the 

kernel convolves with the image in order to edge 

detecting 

Non-maximum 

suppression 

This technique is used to track the edges based on the 

angle of gradient  

Maximum 

sequence  

This technique is used to keep the connectivity of the 

edges and remove the noisy pixels after edge detection 

Thresholding This technique is used to obtain a binary image from 

grayscale one 

Morphological 

operation 

This technique is used for trimming the binary image in 

order to better visualization    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.   

 

                             

                                 (a)                               (b)                              (c)                                (d)                              (e)          

                                                

                                         (f)                              (g)                               (h)                              (i) 

Figure 19 – Comparison of the denoising filters in the presence of 80% impulse noise on the 

image of Lena a) Original image b) Noisy image c) Cascading Algorithm [50] d) IBDNDF [36] 

e) DBUTMWMF [49] f) UWMF [39] g) SAMFWMF (initial adaptive median window size=3) 

h) SAMFWMF (initial adaptive median window size=5) i) SAMFWMF (initial adaptive 

median window size=7) 
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                  (a)                                   (b)                                    (c)                                   (d)                                    (e) 

      

                                       (f)                                   (g)                                       (h)                                      (i)                                        

Figure 20 – Comparison of the denoising filters in the presence of 80% impulse noise on the 

image of Coins a) Original image b) Noisy image c) Cascading Algorithm [50] d) IBDNDF [36] 

e) DBUTMWMF [49] f) UWMF [39] g) SAMFWMF (initial adaptive median window size=3) 

h) SAMFWMF (initial adaptive median window size=5) i) SAMFWMF (initial adaptive 

median window size=7) 
  

 

 

 

 

 

 

 

                      (a)                                   (b)                                    (c)                                   (d)                                    (e)                                     

     

                                        (f)                                     (g)                                    (h)                                     (i) 

 Figure 21 – Comparison of the denoising filters in the presence of 80% impulse noise on the 

image of Camera man a) Original image b) Noisy image c) Cascading Algorithm [50] d) IBDNDF 

[36] e) DBUTMWMF [49] f) UWMF [39] g) SAMFWMF (initial adaptive median window 

size=3) h) SAMFWMF (initial adaptive median window size=5) i) SAMFWMF (initial adaptive 

median window size=7) 
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  (a)                                  (b)                                (c)                               (d)                                (e) 

   

                           (f)                                 (g)                                (h)                                 (i)                                (j) 

Figure 22 – Comparison of the denoising filters in the presence of 90% impulse noise on the 

image of Lena a) Original image b) Noisy image c) Cascading algorithm [50] d) IBDNDF [36] 

e) DBUTMWMF [49] f) UWMF [39] g) SAMFWMF(initial window size=3) h) SAMFWMF 

(initial adaptive median window size=5) i) ) SAMFWMF (initial adaptive median window 

size=7) j) ) SAMFWMF (initial adaptive median window size=9) 
 

 

 

 

 

 

 

  

                                          (a)                                    (b)                                   (c)                                    (d)                                   (e) 

                          

                                            (f)                                     (g)                                   (h)                                    (i)                                    (j) 

Figure 23 – Comparison of the denoising filters in the presence of 90% impulse noise on the 

image of Coins a) Original image b) Noisy image c) Cascading algorithm [50] d) IBDNDF [36] 

e) DBUTMWMF [49] f) UWMF [39] g) SAMFWMF(initial adaptive median window size=3) h) 

SAMFWMF (initial adaptive median window size=5) i) SAMFWMF (initial adaptive median 

window size=7) j) SAMFWMF (initial window size=9) 
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4.2.2 Implementation on Magnetic Resonance Imaging  

To assess the merits of the proposed method on a different imaging modality, Magnetic 

Resonance Imaging (MRI) of brain are used for evaluation. For comparative purposes, the 

results obtained using the proposed method are compared with some of the most effective 

methods reported in the literature, namely IBDNDF [36], DBUTMWMF [49], UWMF [39] 

and Lu`s three-values-weighted filter [234] under different impulse noise intensities. In this 

comparison, all the parameters chosen, such as initialization and regularization parameters, 

weights, and window sizes, are set according to their proposed optimal values for the 

specific noise level. 

Tables 26 and 27 show the results obtained on the correlation (𝛽), and the structural 

similarity index (SSIM) measures, comparing different filters against the proposed filter 

(results for the proposed filter are based on the minimum and maximum initial window 

size of the adaptive median filter for the related noise level). All these metrics are computed 

 

                       (a)                                   (b)                                   (c)                                    (d)                                   (e) 

          

                       (f)                                    (g)                                    (h)                                    (i)                                    (j) 

Figure 24 – Comparison of the denoising filters in the presence of 90% impulse noise on the 

image of Camera man a) Original image b) Noisy image c) Cascading Algorithm [50] d) IBDNDF 

[36]  e) DBUTMWMF [49] f) UWMF [39] g) PA PA(initial adaptive median window size=3) h)  

SAMFWMF (initial adaptive median window size=5) i) SAMFWMF (initial window size=7)    

j)  SAMFWMF (initial adaptive median window size=9) 
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in the presence of 10 to 90 percent impulse noise on images frequently used in the literature 

for denoising purposes of MRIs.  

 Figures 25 shows, the edge boundaries and similarity of different natural and MRI 

images after applying the proposed filter in the presence of high intensity noise. Figures 26 

and 27 show the same comparison in the presence of 80% and 90% impulse noise, 

respectively, on MRI images. Figure 28 show the results obtained from the proposed 

method for 20%, 40%, 60%, 80% and 90% impulse noise on different MRIs. As these 

figures show, the proposed algorithm has good performance in terms of keeping relevant 

detail while obtaining the highest similarity, least noise, and the preserving of edges, 

especially in high impulse noise environment.     

Table 26 – Correlation (𝛽) measures for different filters against the proposed spatial filter 

(results for the proposed filter are based on the minimum and maximum initial window size of the 

adaptive median filter for the related noise level) 
 

 IBDNDF [36] DBUTMWMF [49] UWMF [39] Lu`s three-values-

weighted [234] 
AMFWMF 

Lena Camera 

man 

MRI 

image 

Lena Camera 

man 

MRI 

image 

Lena Camera 

man 

MRI 

image 

Lena Camera 

man 
MRI 

image 
Lena Camera man MRI  

image 
10% 0.9720 0.9567 0.9971 0.9722 0.9581 0.9434 0.9725 0.9586 0.9983 0.9714 0.9576 0.9975 0.9843 0.9821 0.9987 

20% 0.9704 0.9518 0.9929 0.9712 0.9543 0.8621 0.9717 0.9566 0.9909 0.9687 0.9525 0.9936 0.9834 0.9790 0.9971 
30% 0.9682 0.9464 0.9801 0.9701 0.9508 0.7597 0.9704 0.9533 0.9495 0.9659 0.9480 0.9820 0.9819 0.9753 0.9931 
40% 0.9404 0.9031 0.9422 0.9420 0.9080 0.7420 0.9441 0.9128 0.9013 0.9383 0.9079 0.9501 0.9528-0.9548 0.9301-0.9345 0.9577-0.9627 
50% 0.9376 0.8950 0.9300 0.9397 0.9011 0.6110 0.9424 0.9085 0.8777 0.9359 0.9023 0.9412 0.9508-0.9524 0.9231-0.9282 0.9501-0.9541 

60% 0.9339 0.8865 0.9187 0.9366 0.8951 0.4811 0.9396 0.9021 0.8477 0.9330 0.8960 0.9237 0.9478-0.9499 0.9165-0.9219 0.9402-0.9439 
70% 0.9303 0.8799 0.8894 0.9323 0.8852 0.3257 0.9355 0.8927 0.6381 0.9301 0.8881 0.9097 0.9432-0.9459 0.9083-0.9138 0.9281-0.9323 
80% 0.9018 0.8340 0.8327 0.8948 0.8295 0.2011 0.9063 0.8479 0.5914 0.9024 0.8430 0.8621 0.9106-0.9160 0.8571-0.8663 0.8771-0.8851 
90% 0.8677 0.7859 0.7991 0.8547 0.7726 0.0859 0.8709 0.7956 0.3539 0.8686 0.7895 0.8315 0.8725-0.8800 0.8011-0.8122 0.8401-0.8506 

Table 27 – Structural similarity index (SSIM) measures for different filters against the 

proposed spatial filter (results for the proposed filter are based on the minimum and maximum 

initial window size of the adaptive median filter for the related noise level) 
 

 IBDNDF [36] DBUTMWMF [49] UWMF [39] Lu`s three-values-

weighted [234] 
AMFWMF 

Lena Camera 
man 

MRI 
image 

Lena Camera 
man 

MRI 
image 

Lena Camer
a man 

MRI 
image 

Lena Camera 

man 
MRI  

image 
Lena Camera man MRI 

 image 
10% 0.9542 0.9174 0.9807 0.9574 0.9227 0.4825 0.9580 0.9251 0.9818 0.9377 0.9003 0.9811 0.9744 0.9576 0.9877 
20% 0.9384 0.8947 0.9681 0.9468 0.9052 0.4128 0.9489 0.9128 0.9606 0.8944 0.8529 0.9713 0.9635 0.9426 0.9813 
30% 0.9199 0.8671 0.9535 0.9354 0.8885 0.3982 0.9361 0.8955 0.8994 0.8565 0.7923 0.9621 0.9496 0.9225 0.9724 
40% 0.8902 0.8227 0.9098 0.9016 0.8438 0.3865 0.9043 0.8497 0.8646 0.8168 0.7423 0.9227 0.9048-0.9156 0.8508-0.8630 0.9353-0.9424 
50% 0.8662 0.7886 0.8871 0.8825 0.8141 0.3702 0.8848 0.8204 0.8186 0.7894 0.7127 0.9017 0.8861-0.8962 0.8221-0.8370 0.9181-0.9264 
60% 0.8369 0.7553 0.8525 0.8599 0.7851 0.3544 0.8633 0.7929 0.7693 0.7625 0.6813 0.8702 0.8641-0.8744 0.7940-0.8080 0.8916-0.9001 
70% 0.8099 0.7245 0.8195 0.8312 0.7454 0.3317 0.8331 0.7588 0.5689 0.7437 0.6537 0.8441 0.8343-0.8456 0.7604-0.7736 0.8627-0.8712 
80% 0.7693 0.6699 0.7715 0.7614 0.6508 0.2757 0.7791 0.6921 0.5775 0.7244 0.6191 0.8031 0.7772-0.7995 0.6901-0.7129 0.8107-0.8261 
90% 0.6976 0.6074 0.7016 0.6817 0.5640 0.2161 0.7039 0.6136 0.4424 0.6806 0.5676 0.7543 0.7032-0.7253 0.6116-0.6315 0.7656-0.7873 
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Figure 25 – Edge boundaries and similarity of different MRI images after applying the 

proposed filter in the presence of high intensity noise 

 

 

 

                                         (a)                        (b)                         (c)                         (d)                        (e)                         

 

                                                       (f)                         (g)                         (h)                         (i) 

Figure 26 – Comparison in the presence of 80% impulse noise intensity on MRI images a) 

Original image b) Noisy image c) IBDNDF [36] d) DBUTMWMF [49] e) UWMF [39] f) Lu`s 

three-values-weighted [234] g) AMFWMF (initial window size=3) h) AMFWMF (initial 

adaptive median window size=5 i) AMFWMF (initial adaptive median window size=7) 
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4.2.3 Results After Edge Detection    

To evaluate the performance of the proposed edge detection step after SAMFWMF 

process with switch 1, the results obtained are compared with other relevant denoising 

 

                                             (a)                        (b)                         (c)                       (d)                         (e)                         

 

                                             (f)                        (g)                        (h)                         (i)                        (j) 

Figure 27 – Comparison in the presence of 90% impulse noise intensity on MRI images a) 

Original image b) Noisy image c) IBDNDF [36] d) DBUTMWMF [49] e) UWMF [39] f) Lu`s 

three-values-weighted [234] g) AMFWMF (initial window size=3) h) AMFWMF (initial 

adaptive median window size=5 i) AMFWMF (initial adaptive median window size=7 j) 

AMFWMF (initial adaptive median window size=9) 

 

 

 

                                            

  

Figure 28 – Results obtained from the proposed method for different impulse noise levels on 

different MRI images. The 1th column is original MRI images, even columns (2nd through 10th) 

are respectively the original MRI with 20%, 40%, 60%, 80% and 90% impulse noise, odd 

columns (3rd through 11th) show the denoising results of their previous columns. 
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filters. Also, the performance of the SAMFWMF with switch 1 after applying the Canny 

edge detector, which is one of the most powerful and most reliable edge detectors [190] 

[191], is evaluated. Figures 29 and 30 show these comparisons on the camera man in the 

presence of respectively, 80% and 90% impulse noise intensities. Figures 31 and 32 show 

these comparisons on the Coins in the presence of respectively, 80% and 90% impulse 

noise intensities. Figures 33 and 34 show these comparisons on the Lena in the presence 

of respectively, 80% and 90% impulse noise intensities.  

For all these figures, the initial adaptive median window size for SAMFWMF is equal to 

the maximum predefined window size. In both figures, part (c) shows the results when 

applying the Canny edge detection step after SAMFWMF process, part (d) shows the 

results when applying the proposed edge detection step after the cascading algorithm [50] 

process, part (e) shows the results when applying the proposed edge detection step after 

the IBDNDF [36] process, part (f) shows the results when applying the proposed edge 

detection step after DBUTMWMF [49] process, part (g) shows the results when applying 

the proposed edge detection step after the UWMF [39] process, and part (h) shows the 

result when applying the proposed edge detection step after the SAMFWMF process. 

Figure 35 shows the results when applying the SAMFWMF (using switch 2) and the 

proposed edge detection algorithm on the checkerboard image. Figure 36 shows the 

proposed filter (using switch 1) with 95% impulse noise after and before edge detection.   
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                  (a)                                    (b)                                   (c)                                   (d)                                     (e) 

  

                                                              (f)                                    (g)                                   (h) 

Figure 29 – Comparison on the camera man in the presence of 80% impulse noise intensity, 

T=0.2 (normalized) a) Original image b) Noisy image c) Edge detection with canny (with σ=1, by 

increasing the σ, more details will be lost) after SAMFWMF process d) Proposed edge detection 

algorithm after cascading algorithm [50] process e) Proposed edge detection algorithm after 

IBDNDF [36] process f) Proposed edge detection algorithm after DBUTMWMF [49] process g) 

Proposed edge detection algorithm after UWMF [39] process h) Proposed edge detection 

algorithm after SAMFWMF process 
 

 

                       (a)                                    (b)                                   (c)                                    (d)                                   (e)  

                                                                                                                      

 

                                                              (f)                                    (g)                                    (h) 

Figure 30 – Comparison on the camera man in the presence of 90% impulse noise intensity, 

T=0.2 (normalized) a) Original image b) Noisy image c) Edge detection with canny (with σ=1, by 

increasing the σ, more details will be lost) after SAMFWMF process d) Proposed edge detection 

algorithm after cascading algorithm [50] process e) Proposed edge detection algorithm after 

IBDNDF [36] process f) Proposed edge detection algorithm after DBUTMWMF [49] process g) 

Proposed edge detection algorithm after UWMF [39] process h) Proposed edge detection 

algorithm after SAMFWMF process 
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                                   (a)                                         (b)                                         (c)                                        (d) 

 

                                   (e)                                         (f)                                         (g)                                        (h) 

Figure 31 – Comparison on the Coins in the presence of 80% impulse noise intensity, T=0.3 

(normalized)  a) Original image b) Noisy image c) Edge detection with canny (with σ=1, by 

increasing the σ, more details will be lost) after SAMFWMF process d) Proposed edge detection 

algorithm after cascading algorithm [50] process e) Proposed edge detection algorithm after 

IBDNDF [36] process f) Proposed edge detection algorithm after DBUTMWMF [49] process g) 

Proposed edge detection algorithm after UWMF [39] process h) Proposed edge detection 

algorithm after SAMFWMF process 

 

 

                                  (a)                                         (b)                                         (c)                                        (d)   

 

                                  (e)                                          (f)                                        (g)                                         (h)                                                                                           

Figure 32 – Comparison on the Coins in the presence of 90% impulse noise intensity, T=0.3 

(normalized)  a) Original image b) Noisy image c) Edge detection with canny (with σ=1, by 

increasing the σ, more details will be lost) after SAMFWMF process d) Proposed edge detection 

algorithm after cascading algorithm [50] process e) Proposed edge detection algorithm after 

IBDNDF [36] process f) Proposed edge detection algorithm after DBUTMWMF [49] process g) 

Proposed edge detection algorithm after UWMF [39] process h) Proposed edge detection 

algorithm after SAMFWMF process 
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                             (a)                                (b)                                (c)                                (d)                                 (e)    

 

                                                                  (f)                                 (g)                                (h)      

Figure 34 – Comparison on the Lena in the presence of 90% impulse noise intensity, T=0.3 

(normalized)  a) Original image b) Noisy image c) Edge detection with canny (with σ=1, by 

increasing the σ, more details will be lost) after SAMFWMF process d) Proposed edge detection 

algorithm after cascading algorithm [50] process e) Proposed edge detection algorithm after 

IBDNDF [36] process f) Proposed edge detection algorithm after DBUTMWMF [49] process g) 

Proposed edge detection algorithm after UWMF [39] process h) Proposed edge detection 

algorithm after SAMFWMF process 
 

 

 

                                                         

                         (a)                                  (b)                                  (c)                                   (d)                                  (e)    

                                                                        

                                                                  (f)                                 (g)                                (h)      

Figure 33 – Comparison on the Lena in the presence of 80% impulse noise intensity, T=0.3 

(normalized)  a) Original image b) Noisy image c) Edge detection with canny (with σ=1, by 

increasing the σ, more details will be lost) after SAMFWMF process d) Proposed edge detection 

algorithm after cascading algorithm [50] process e) Proposed edge detection algorithm after 

IBDNDF [36] process f) Proposed edge detection algorithm after DBUTMWMF [49] process g) 

Proposed edge detection algorithm after UWMF [39] process h) Proposed edge detection 

algorithm after SAMFWMF process 
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(a) 

         (10%)                         (30%)                          (50%)                          (60%)                           (80%)                          (90%)                                

                                        
(b) 

                                   
(c) 

                                    
(d) 

 

Figure 35 – Application of the proposed spatial filter (using switch 2) and the proposed edge 

detection algorithm on the checkerboard image a) Original image b) Noisy images c) After 

denoising d) After edge detection 
 

 

 

 

 

 

 
(a)                                                (b)                                                   (c)  

             

 
                                                                   (d)                                                    (e)  

  

Figure 36 – Application of the proposed spatial filter (using switch 1) and the proposed 

edge detection algorithm on the Lena image in presence of 95% Impulse noise intensity a) 

Original image b) Noisy image c) after apply the filter with 95% impulse noise, initial 

window size of the adaptive median filter is 3 d) after apply the filter with 95% impulse 

noise, initial window size of the adaptive median filter is 13 e) Edge detection after apply 

the filter with 95% impulse noise, initial window size of the adaptive median filter is 13 
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As the results clearly demonstrate, the proposed algorithm has a better performance 

amongst all other methods in terms of keeping relevant details and for attaining the highest 

similarity, least noise, preservation of edges, and better edge tracking, especially in the 

presence of impulse noise even under high-intensity levels.  

4.3 Gaussian and Combined Gaussian - Speckle Denoising Based on Wavelet Filter     

4.3.1 Combined Gaussian and Speckle Denoising      

In this section, the results obtained using the proposed method after applying the steps 

of denoising are presented. These results are compared with some well-known de-

speckling filters reported in the literature, namely the Frost filter [205], Kuan filter [206], 

Lee-diffusion filter [207], Lee filter [208, 209], Geometry filter [210] and improved total 

variation filter [59] applied on different images and under different noise intensity levels. 

In this comparison, images of Lena , Camera man and medical ultrasound images are 

standard examples used in the literature for quantitative and visual comparative purposes. 

Tables 28-30 show respectively the results obtained on the peak signal to noise ratio 

(PSNR), correlation (𝛽) and the feature similarity index (FSIM) measures, comparing 

different denoising filters against the proposed method. All these metrics/measures are 

computed in the presence of speckle noise with standard deviation 0.1, 0.2, 0.3 and 

Gaussian noise with standard deviation 0.05, 0.1, 0.2, 0.3. In Tables 28-30, higher numbers 

mean better results, indicating that the proposed method produced better structural metrics.  

The results in Table 31 shows the FOM comparison after the denoising process, expressed 

as an extra block in the FOM. We selected Lee-diffusion [207], because it has shown better 

results among all other filters used in the comparison. In Table 31, lower numbers in this 

case show improvement on the performance as FOM is monotonically increasing with 
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noise variance and image blurring. The size of input for FOM is 64×64. The Sobel kernel 

is used for edge detection. However, the proposed method has resulted in better structural 

metrics.  

Figure 37 shows the denoising filters comparison in the presence of speckle (𝜎 = 0.1) and 

Gaussian noise (𝜎 = 0.1) on a medical ultrasound image. As the figure shows, the 

proposed method has better performance among all of others in terms of keeping relevant 

details and also in terms of obtaining the highest similarity and the least noise as well as 

better edge tracking, especially in high combined speckle and Gaussian noise intensities. 

Table 28 – Correlation (𝛽) measure, comparing other denoising filters against proposed 

wavelet-based denoising filter in presence of different combined speckle and Gaussian noise 

intensities 
 

Speckle / 

Gaussian 

Noise 

levels 

Geometry  filter 
[210] 

Frost filter 
[205] 

Lee filter 
[208,209] 

Lee-diffusion filter 
[207] 

Proposed 
Algorithm 

Lena  Cman Ultras  Lena  Cman Ultras Lena  Cman  Ultras  Lena  Cman  Ultras Lena  Cman  Ultras 

0.1, 0.1 0.6156 0.7297 0.6359 0.9004 0.9134 0.8725 0.8219 0.8662 0.8559 0.9203 0.8942 0.9565 0.9501 0.9312 0.9736 
0.2,0.1 0.5993 0.7261 0.6420 0.8727 0.8969 0.8840 0.7856 0.8462 0.8526 0.9025 0.8831 0.9249 0.9422 0.9275 0.9411 

0.2, 0.05 0.7136 0.8036 0.7869 0.9127 0.9253 0.9349 0.8425 0.8855 0.9192 0.9265 0.9034 0.9693 0.9474 0.9307 0.9731 

 

Table 29 – PSNR measure, comparing other denoising filters against proposed wavelet-based 

denoising filter in presence of different combined speckle and Gaussian noise intensities 
 

Speckle / 

Gaussia

n noise 

levels 

Geometry  filter 
[210] 

Frost filter 
[205] 

Lee filter 
[208.209] 

Lee-diffusion filter 
[207] 

Proposed Algorithm 

Lena  Cman Ultras  Lena  Cman Ultras Lena  Cman  Ultras  Lena  Cman  Ultras Lena  Cman  Ultras 
0.1, 0.1 8.5464 8.5193 7.4461 21.6528 19.6096 18.7944 19.2698 18.2299 18.5562 22.5657 19.0907 22.0761 22.3043 19.2951 20.0266 

0.2,0.1 8.2559 8.3458 7.4086 20.6083 18.9099 19.3681 18.5428 17.6942 18.7525 21.9825 18.7237 21.2821 21.4054 18.7749 19.8631 
0.2, 0.05 9.4056 9.4015 9.9133 22.0613 20.3137 21.0742 19.7286 18.8843 20.6442 22.9332 19.5416 23.7871 22.4349 19.7529 21.8145 

 

Table 30 – Feature similarity index (FSIM), comparing other denoising filters against 

proposed wavelet-based denoising filter in presence of different combined speckle and Gaussian 

noise intensities 
 

Speckle / 

Gaussian 

noise 

levels 

Geometry  filter 
[210] 

Frost filter 
[205] 

Lee filter 
[208,209] 

Lee-diffusion filter 
[207] 

Proposed Algorithm 

Lena  Cman Ultras  Lena  Cman Ultras Lena  Cman  Ultras  Lena  Cman  Ultras Lena  Cman  Ultras 
0.1, 0.1 0.9036 0.9277 0.9099 0.9437 0.9545 0.9398 0.9264 0.9377 0.9362 0.9711 0.9348 0.9639 0.9714 0.9419 0.9653 

0.2,0.1 0.8992 0.9254 0.9087 0.9336 0.9477 0.9387 0.9155 0.9319 0.9356 0.9700 0.9316 0.9633 0.9702 0.9439 0.9638 

0.2, 0.05 0.9235 0.9380 0.9348 0.9487 0.9569 0.9573 0.9265 0.9412 0.9547 0.9719 0.9389 0.9745 0.9728 0.9465 0.9678 

 

  

 

Table 31 – FOM comparison between proposed wavelet-based filter denoising process with 

gradient-based edge detection process, and Lee-diffusion [39] with the same edge detection 

process 
 

    𝜎𝑔 1 2 

𝜎ℎ 3 10 3 10 

𝜎𝑝 0.5 1 0.5 1 

Gaussian 0.5 1 0.5 1 

Lee-diffusion [207] 2.9446 2.4765 2.5985 2.4164 

Proposed Algorithm  0.1659 0.0206 0.1241 0.0122 
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Figure 38 shows the denoising filters comparison in the presence of speckle noise (𝜎 =

0.2) and Gaussian noise (𝜎 = 0.1) on a medical ultrasound image. As the figure shows, 

the proposed method has better performance among all of the other methods, again in terms 

of keeping relevant details, producing the highest similarity and the least noise as well as 

showing better edge tracking, especially in high combined speckle and Gaussian noise 

intensities. Figure 39 shows the results obtained from the proposed method in the presence 

of different combined speckle and Gaussian noise intensities on a medical ultrasound 

image.  

Although the compared filters have shown very high performance in the presence of 

speckle noise alone, as these figures illustrate, their performance is weakened in terms of 

keeping the relevant details, obtaining the highest similarity, least noise, and preserving 

edges, especially in high intensity levels when there is a combined presence of speckle and 

Gaussian noise.  

                                                                  

                                
                     (a)                        (b)                        (c)                        (d)                       (e) 

                                               
                                                 (f)                         (g)                      (h) 

  

Figure 37 – Comparison of the denoising filters in the presence of speckle (𝜎 = 0.1) and 

Gaussian noise (𝜎 = 0.1) on a medical ultrasound image a) Original image b) Noisy image c) 

Geometry filter d) Frost filter e) Kuan filter f) Lee filter g) Lee-diffusion filter h) Proposed filter 
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4.3.2 Gaussian Denoising      

To evaluate the performance of the proposed filter in presence of Gaussian noise alone, 

the visual results are provided on different natural images. Figure 40 shows the results 

obtained from the proposed method in the presence of different Gaussian noise intensities 

on different natural images.  

                                                                  

                           
                     (a)                        (b)                        (c)                        (d)                       (e) 

                                                              
                                                 (f)                         (g)                       (h) 

  

Figure 38 – Comparison of the denoising filters in the presence of speckle (𝜎 = 0.2) and 

Gaussian noise (𝜎 = 0.1) on a medical ultrasound image a) Original image b) Noisy image c) 

Geometry filter d) Frost filter e) Kuan filter f) Lee filter g) Lee-diffusion filter h) Proposed filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  

 
                                                                               (a) 

                            
                                         (b)                                                                      (c) 

 

Figure 39 – Application of the proposed wavelet-based filter in the presence of 

combined Speckle and Gaussian noise intensities on a medical ultrasound image, a) 

original image b) Denoising in the presence of Noisy image with Speckle (σ = 0.2) and 

Gaussian (σ = 0.2) c) Denoising in the presence of Speckle a (σ = 0.3) and Gaussian (σ 

= 0.3) 
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4.3.3 Results after Edge Detection      

To evaluate the performance of the proposed filter after the edge detection step, the visual 

results are provided on different ultrasound and natural images. Figures 41 shows the 

results after edge detection in the presence of speckle noise (𝜎 = 0.2) and Gaussian noise 

                                                                  

 
(a) 

 
(b) 

 
(c)  

 
(d) 

 

Figure 40 – Application of the proposed wavelet-based filter in the presence of different 

Gaussian noise intensities on different natural images a) column 1 through 3 are: original Lena 

image, noisy image corrupted with Gaussian noise (σ = 0.1) b) a) column 1 through 3 are: 

original Man image, noisy image corrupted with Gaussian noise (σ = 0.15) c) a) column 1 

through 3 are: original Boat image, noisy image corrupted with Gaussian noise (σ = 0.2) d) a) 

column 1 through 3 are: original Peppers image, noisy image corrupted with Gaussian noise (σ = 

0.3)   
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(𝜎 = 0.1) on a medical ultrasound image. Figures 42 shows respectively results after edge 

detection in the presence of Gaussian noise (𝜎 = 0.2) and (𝜎 = 0.3) on Lena and Peppers 

images.     

                                                                  

                                                    

                                            (a)                                            (b) 

 
(c) 

 

Figure 41 – Edge detection after applying the proposed wavelet-based filter in the 

presence of combined speckle (𝜎 = 0.2) and Gaussian (𝜎 = 0.1) noise on a medical 

ultrasound image, T=0.02 (normalized)    
 

                                                    
(a) 

                                         
(b) 

  Figure 42 – Edge detection after applying the proposed wavelet-based filter in the 

presence of Gaussian noise a) Column 1 through 3 are: original peppers image, noisy image 

corrupted with Gaussian noise (σ = 0.2), after edge detection (T=0.02 (normalized)) b) Column 1 

through 3 are: original peppers image, noisy image corrupted with Gaussian noise (σ = 0.3), after 

edge detection (T=0.02 (normalized))    
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4.4 CNN Filtering      

4.4.1 Mixed Impulse and Gaussian Denoising       

We have used 400 180×180 pixels images from the Berkeley segmentation dataset (BSD) 

to train the described network for both specific and non-specific noise-level removal, 

similar to studies reported in [87, 89, 171]. While for testing, we have used BSD100 (as in 

[171]) and the additional 12 images that [171] uses and are shown in Figure 43. 

 

As previously stated, the optimal results were obtained by using a 20-layer network with 

40×40 patches for both specific and non-specific noise-level denoising. We have used 

stochastic gradient descent (SGD)-momentum [228] with an initial learning rate of 0.1 

(which decreased over progressive epochs), weight decay of 0.0001, momentum of 0.9 and 

 

Figure 43 – 12 Test Images  
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mini-batches of size 128. The type of noise mixture affected the numbers of epochs the 

model needed for training.  

We carried out all implementations in MATLAB 2017b using the MatConvNet package 

[89, 69] for convolutional neural networks on a PC with Nvidia Quadro M6000 GPU. The 

time required to train the network varied between 24 and 48 hours depending on the noise 

mixture (as different mixtures required different number of epochs).  

Once the network was trained, the results obtained from the proposed denoising method 

are compared to the results obtained from the WESNR [164] method and the LSM-NLR 

[171] method on the different images and under the same mixed impulse and Gaussian 

noise intensities.   

Tables 32 and 33 show the results of specific and non-specific noise-level removal for 

mixed Gaussian and impulse noise. They respectively show the results obtained from the 

average peak signal to noise ratio (PSNR) and the average feature similarity index (FSIM) 

[215] metric from the 12 test images shown in Figure 3 after the denoising process. 

Gaussian noise with standard deviation of 10, 20, 30, and 50, and 10, 20, 30, 40, and 50 

percent salt and pepper impulse noise were introduced. Specific noise-level denoising 

required 125 epochs while non-specific noise-level denoising required 150; further 

increments of the number of training epochs yielded better results in both cases. The 

network was run 50 times for each noise level over the testing set and the means and 

standard deviations of the results were calculated.      

Tables 34 and 35 show the results obtained for the average peak signal to noise ratio 

(PSNR) and the average feature similarity index (FSIM) measures on the BSD100 data set 
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images. The collection method, number of epochs, and noise levels introduced are equal to 

those of Tables 32 and 33. 

 

Table 32 – Average PSNR comparison for different mixed Impulse and Gaussian denoising filter 

against the proposed CNN filter (specific and non-specific noise-level) on 12 test images 
 

Gaussian 

noise 

Impulse 

noise 
WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] 

Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 50% 28.95 29.75 29.89 30.60 31.0823±0.0095 31.4845±0.0127 

 𝜎 = 20 50% 26.73 27.50 27.75 28.51 28.6711±0.0096 28.9127±0.0112 

 𝜎 = 30 
20% 26.80 26.59 27.09 28.31 28.3351±0.0067 28.5869±0.0836 

50% 24.52 25.85 26.13 26.70 26.9530±0.1371 27.1718±0.0138 

 𝜎 = 50 
10% 20.80 24.44 24.83 26.00 26.1794±0.0063 26.4956±0.0063 

50% 14.43 23.35 23.56 24.36 24.5109±0.0136 24.8086±0.0116 

 
Table 33 – Average feature similarity index (FSIM) comparison for different mixed Impulse 

and Gaussian denoising filter against the proposed CNN filter (specific and non-specific noise-

level) on 12 test images 
 

Gaussian 
noise 

Impulse 
noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 50% 95.29 96.49 96.39 96.63 0.9677±1.1773× 𝟏𝟎−𝟒 0.9703±1.0412× 𝟏𝟎−𝟒 

 𝜎 = 20 50% 91.99 93.32 93.38 93.76 0.9409±1.8120× 𝟏𝟎−𝟒 0.9430±2.1311× 𝟏𝟎−𝟒 

 𝜎 = 30 20% 91.55 93.02 93.12 93.21 0.9346±0.0014 0.9367±1.6123× 𝟏𝟎−𝟒 

50% 88.80 90.02 90.04 91.06 0.9133±3.1004× 𝟏𝟎−𝟒 0.9154±4.0265× 𝟏𝟎−𝟒 

 𝜎 = 50 10% 82.29 89.31 89.36 90.04 0.9000±2.0388× 𝟏𝟎−𝟒 0.9005±2.1699× 𝟏𝟎−𝟒 

50% 66.08 83.69 83.50 85.44 0.8637±4.0668× 𝟏𝟎−𝟒 0.8661±4.4334× 𝟏𝟎−𝟒 

 
Table 34 – Average PSNR comparison for different mixed Gaussian and salt and pepper 

Impulse denoising filter against the proposed CNN filter (specific and non-specific noise-level) 

on BSD100 dataset 
 

Gaussian 

noise 

Impulse 

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 50% 26.62 27.54 27.36 28.17 29.0404±0.0046 29.4035±0.0055 

 𝜎 = 20 50% 24.81 25.86 26.12 26.88 27.1435±0.0049 27.3621±0.0053 

 𝜎 = 30 20% 24.94 24.61 25.27 26.94 27.0714±0.0031 27.2842±0.0021 

50% 22.92 24.43 24.81 25.44 25.7770±0.0060 25.9552±0.0044 

 𝜎 = 50 10% 19.82 22.13 22.80 24.05 25.2762±0.0031 25.5064±0.0033 

50% 14.44 22.22 22.66 23.96 23.9800±0.0058 24.0689±0.0048 

 

Table 35 – Average feature similarity index (FSIM) comparison for different mixed 

Gaussian and salt and pepper denoising filter against the proposed CNN filter (specific 

and non-specific noise-level) on BSD100 dataset 
 

Gaussian 

noise 

Impulse 

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 50% 86.45 89.96 90.06 89.87 0.8979±1.2083× 𝟏𝟎−𝟒 0.9085±9.5743× 𝟏𝟎−𝟓 

 𝜎 = 20 50% 80.61 83.25 83.79 83.83 0.8528±2.1385× 𝟏𝟎−𝟒 0.8638±1.4583× 𝟏𝟎−𝟒 

 𝜎 = 30 20% 80.05 82.79 83.00 83.00 0.8500±1.4967× 𝟏𝟎−𝟒 0.8551±1.0677× 𝟏𝟎−𝟒 

50% 78.45 80.43 80.66 80.75 0.8136±0.200 0.8170±1.8009× 𝟏𝟎−𝟒 

 𝜎 = 50 10% 73.45 76.71 78.05 80.51 0.8060±1.3329× 𝟏𝟎−𝟒 0.8083±1.8824× 𝟏𝟎−𝟒 

50% 63.90 75.22 75.60 75.66 0.7627±3.1885× 𝟏𝟎−𝟒 0.7578±2.5994× 𝟏𝟎−𝟒 
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Tables 36 and 37 show the average peak signal to noise ratio (PSNR) and the average 

feature similarity index (FSIM) of 12 test images in Figure 43 for non-specific noise-level 

denoising of mixed Gaussian and random value impulse noise. The collection method, 

number of epochs, and noise levels injected are equal to those of Tables 32 and 33. 

Tables 38 and 39 show the average PSNR and average FSIM for the same 12 test images 

from Figure 43 after performing both non-specific and specific noise-level denoising for 

mixed Gaussian, salt and pepper impulse and random value impulse noise. We used 

Gaussian noise with standard deviation 10 and 20, salt and pepper impulse noise of 10 and 

40percent, and random value impulse noise of 10 and 30 percent. The number of epochs 

for specific noise-level denoising is 30 and for non-specific noise-level denoising is 35. 

Tables 40 and 41 show the PSNR and FSIM of the results with non-specific noise-level 

denoising for mixed Gaussian and random value impulse noise on the BSD100 dataset. In 

Table 36 – Average PSNR comparison for different mixed Gaussian and random value Impulse 

denoising filter against the proposed CNN filter (non-specific noise-level) on 12 test images 

Gaussian 

noise 

Impulse 

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

𝜎 = 10 10% 30.24 31.25 31.36 32.30 33.0696±0.0049 

20% 29.36 29.46 29.86 30.82 31.2961±0.0100 

30% 28.40 27.74 28.55 29.37 30.3377±0.0116 

40% 27.02 26.74 26.92 27.24 29.4561±0.0080 

50% 25.30 24.72 25.18 25.36 28.6942±0.0423 

𝜎 = 20 10% 27.69 28.62 28.90 29.22 29.8603±0.3333 

20% 27.09 27.50 27.78 28.27 29.8453±0.0082 

30% 26.42 26.21 26.74 27.28 28.9769±0.0097 

40% 25.24 24.83 25.37 26.08 28.4833±0.0084 

50% 23.86 23.19 24.00 24.62 27.9477±0.0236 

𝜎 = 30 10% 26.11 26.56 26.95 26.98 27.3427±0.0097 

20% 25.55 25.49 25.92 26.20 28.2655±0.0115 

30% 24.92 24.30 25.00 25.39 27.8864±0.0104 

40% 23.74 23.11 23.74 24.33 27.4426±0.0100 

50% 22.30 21.62 22.52 23.18 27.0158±0.0112 

𝜎 = 50 10% 23.16 23.83 24.14 24.27 26.5025±0.0031 

20% 22.59 22.73 23.20 23.61 26.5615±0.0055 

30% 21.84 21.59 22.31 22.85 26.3021±0.0084 

40% 20.78 20.73 21.14 21.95 25.6629±0.0086 

50% 19.35 19.34 20.08 20.73 24.7693±0.0160 
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these tables, we use combinations of Gaussian noise with standard deviation 10, 20, 30, 

and 50 and random value impulse noise of 10, 20, 30, 40, and 50 percent. The network was 

trained for 150 epochs while further training showed promise of results improvement.  

 

Table 37 – Average feature similarity index (FSIM) comparison for different mixed Gaussian 

and random value Impulse denoising filter against the proposed CNN filter (non-specific noise-

level) on 12 test images 

Gaussian 

noise 

Impulse 

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

𝜎 = 10 10% 96.65 97.48 97.57 97.63 0.9777±8.6987× 𝟏𝟎−𝟓 

20% 96.06 96.63 96.78 96.99 0.9712±1.0816× 𝟏𝟎−𝟒 

30% 95.25 95.32 95.78 96.17 0.9677±1.6653× 𝟏𝟎−𝟒 

40% 93.69 93.25 93.93 93.88 0.9480±2.0952× 𝟏𝟎−𝟒 

50% 90.99 90.23 90.96 91.00 0.9386±2.1346× 𝟏𝟎−𝟒 

𝜎 = 20 10% 92.82 94.29 94.77 94.78 0.9608±1.0206× 𝟏𝟎−𝟒 

20% 92.12 93.31 93.56 93.80 0.9543±1.1349× 𝟏𝟎−𝟒 

30% 91.27 91.91 92.15 92.67 0.9451±2.2174× 𝟏𝟎−𝟒 

40% 89.44 89.05 89.78 90.83 0.9366±2.0672× 𝟏𝟎−𝟒 

50% 87.07 85.86 86.70 87.92 0.9278±2.7104× 𝟏𝟎−𝟒 

𝜎 = 30 10% 90.19 91.06 91.67 91.68 0.9414±9.0921× 𝟏𝟎−𝟒 

20% 89.32 89.66 89.86 90.42 0.9382±1.6833× 𝟏𝟎−𝟒 

30% 88.30 87.91 87.96 89.17 0.9303±0.0020 

40% 85.95 84.47 85.06 86.59 0.9223±2.1602× 𝟏𝟎−𝟒 

50% 82.93 81.13 81.93 83.78 0.9136±4.1212× 𝟏𝟎−𝟒 

𝜎 = 50 10% 82.71 85.19 85.54 86.31 0.9112±8.6603× 𝟏𝟎−𝟒 

20% 80.92 83.09 82.66 84.60 0.9075±1.7635× 𝟏𝟎−𝟒 

30% 78.94 80.82 79.86 82.72 0.9012±2.2361× 𝟏𝟎−𝟒 

40% 76.17 76.79 76.39 79.66 0.8927±2.9754× 𝟏𝟎−𝟒 

50% 72.51 73.53 73.74 76.80 0.8827±3.8588× 𝟏𝟎−𝟒 

 

Table 38 – Average PSNR comparison for different mixed Gaussian, salt and pepper Impulse 

noise, and random value Impulse denoising filter against the proposed CNN filter (specific and 

non-specific noise-level) on 12 test images 

Gaussian 

noise 

Impulse 

noise 

Random 

value level  

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 40% 10% 27.25 28.00 28.36 29.20 31.9400±0.0179 30.7781±0.0104 

 𝜎 = 20 10% 30% 25.27 25.74 25.87 26.10 28.2207±0.0089 28.6746±0.0102 

 
Table 39 – Average feature similarity index (FSIM) comparison for different mixed Gaussian, 

salt and pepper impulse noise, and random value impulse denoising filter against the proposed 

CNN filter (for specific and non-specific noise-level) on 12 test images 

Gaussian 

noise 

Impulse 

noise 

Random 

value level  
noise 

WESNR 

[56] 
𝑙1 −NLR 

[58] 
𝑙0 −NLR 

[58] 
LSM−NLR 

[58] 
Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 40% 10% 93.53 95.06 95.14 96.09 0.9738±1.0498× 𝟏𝟎−𝟒 0.9665±1.1537× 𝟏𝟎−𝟒 

 𝜎 = 20 10% 30% 90.30 90.56 90.56 91.32 0.9348±2.6162× 𝟏𝟎−𝟒 0.9379±2.0485× 𝟏𝟎−𝟒 
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Table 40 – Average PSNR comparison for different mixed Gaussian and random value 

Impulse denoising filter against the proposed CNN filter (non-specific noise-level) on 

BSD100 dataset 

Gaussian 

noise 

Impulse 

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

𝜎 = 10 10% 27.66 29.13 29.15 30.12 31.9660±0.0020 

20% 27.06 27.67 27.79 28.54 30.1583±0.0029 

30% 26.44 26.27 26.75 27.27 29.0402±0.0029 

40% 25.40 25.22 25.43 27.27 28.1507±0.0040 

50% 24.09 23.61 23.92 24.37 27.4191±0.0023 

𝜎 = 20 10% 25.67 26.97 27.22 27.64 28.9212±0.0033 

20% 25.47 26.07 26.21 26.73 28.6438±0.0031 

30% 25.04 25.03 25.35 25.86 27.7893±0.0055 

40% 24.13 23.85 24.24 24.85 27.2935±0.0043 

50% 22.98 22.43 23.01 23.45 26.7856±0.0021 

𝜎 = 30 10% 24.86 25.38 25.71 25.87 26.6653±0.0171 

20% 24.46 24.35 24.65 24.96 27.2172±0.0164 

30% 23.97 23.53 24.01 24.51 26.7719±0.0057 

40% 23.03 22.56 23.01 23.73 26.3448±0.0062 

50% 21.74 21.21 21.89 22.69 25.9463±0.0054 

𝜎 = 50 10% 22.67 23.09 23.19 23.40 25.6711±0.0012 

20% 22.21 22.38 22.60 23.08 25.6309±0.0023 

30% 21.47 21.36 21.79 22.48 25.3034±0.0030 

40% 20.50 20.58 20.82 21.85 24.7095±0.0056 

50% 19.13 19.14 19.65 20.62 23.8956±0.0050 

 

Table 41 – Average feature similarity index (FSIM) comparison for different mixed 

Gaussian and random value Impulse denoising filter against the proposed CNN filter 

(non-specific noise-level) on BSD100 dataset 
 

Gaussian 

noise 

Impulse 

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

𝜎 = 10 10% 87.25 91.82 92.51 92.70 0.9358±5.9362× 𝟏𝟎−𝟓 

20% 86.12 90.00 90.38 90.83 0.9116±7.4322× 𝟏𝟎−𝟓 

30% 84.91 87.72 88.20 88.94 0.8897±0.0016 

40% 82.60 81.63 82.61 88.94 0.8938±1.7099× 𝟏𝟎−𝟒 

50% 80.20 79.34 80.36 79.62 0.8463±2.8516× 𝟏𝟎−𝟒 

𝜎 = 20 10% 79.44 87.89 87.24 87.44 0.9003±8.3381× 𝟏𝟎−𝟓 

20% 78.62 83.82 85.23 85.38 0.8859±1.7674× 𝟏𝟎−𝟒 

30% 77.81 82.49 82.98 83.35 0.8674±2.0273× 𝟏𝟎−𝟒 

40% 46.03 78.05 80.20 80.44 0.8508±1.7974× 𝟏𝟎−𝟒 

50% 74.59 75.84 76.26 76.83 0.8345±2.1202× 𝟏𝟎−𝟒 

𝜎 = 30 10% 77.30 80.96 83.46 82.70 0.8644±7.9881× 𝟏𝟎−𝟓 

20% 76.59 79.44 80.27 80.20 0.8558±9.7496× 𝟏𝟎−𝟓 

30% 76.01 78.46 78.82 78.87 0.8422±1.8048× 𝟏𝟎−𝟒 

40% 74.27 75.05 75.72 75.74 0.8277±2.4142× 𝟏𝟎−𝟒 

50% 72.78 73.04 73.19 71.98 0.8129±2.2593× 𝟏𝟎−𝟒 

𝜎 = 50 10% 74.93 76.17 76.15 76.19 0.8259±4.5774× 𝟏𝟎−𝟓 

20% 73.78 74.19 74.38 74.88 0.8128±1.4083× 𝟏𝟎−𝟒 

30% 72.65 73.77 73.51 73.34 0.7997±9.9043× 𝟏𝟎−𝟓 

40% 70.52 70.27 70.34 70.00 0.7866±3.1593× 𝟏𝟎−𝟒 

50% 67.97 69.01 69.13 68.66 0.7734±3.2558× 𝟏𝟎−𝟒 
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Tables 42 and 43 show the PSNR and FSIM of the results of both non-specific and 

specific noise-level denoising for mixed Gaussian, salt and pepper impulse, and random 

value impulse noise images of the BSD100 dataset. Gaussian noise with standard deviation 

10 and 20, salt and pepper impulse noise of 10 and 40 percent, and random value impulse 

noise of 10 and 30 percent. The network was trained for 30 epochs for specific noise-level 

denoising and for 35 epochs for non-specific noise-level denoising.  

Figure 44 shows the results comparison when removing Gaussian noise with standard 

deviation 20 and 50 percent salt and pepper impulse noise from test image “Vase”. Figure 

45 shows the denoising comparison for Gaussian noise with standard deviation 20 and 30 

percent random value impulse noise from “Flower”. Figure 46 present the performance in 

the presence of Gaussian noise with standard deviation 10, 40 percent salt and pepper 

impulse noise, and 10 percent random value impulse noise from “Boat”. As seen from these 

figures, the proposed CNN attains better performance than all other filters at preserving 

relevant image details, obtaining the highest similarity, and achieving the least amount of  

 

Table 42 – Average PSNR comparison for different mixed Gaussian, salt and pepper Impulse 

noise, and random value Impulse denoising filter against the proposed CNN filter (specific and 

non-specific noise-level) on BSD100 dataset 

Gaussian 

noise 

Impulse 

noise 

Random 

value level  

noise 

WESNR [56] 𝑙1 −NLR [58] 𝑙0 −NLR [58] LSM−NLR [58] Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 40% 10% 26.20 26.13 26.45 27.11 29.0286±0.0044 29.0522±0.0044 

 𝜎 = 20 10% 30% 23.91 24.58 24.55 24.70 27.0155±0.0057 27.3811±0.0042 

 

Table 43 – Average feature similarity index (FSIM) comparison for different mixed Gaussian, 

salt and pepper Impulse noise, and random value Impulse denoising filter against the proposed 

CNN filter (specific and non-specific noise-level) on BSD100 dataset 

Gaussian 

noise 

Impulse 

noise 

Random 

value level  
noise 

WESNR 

[56] 
𝑙1 −NLR 

[58] 
𝑙0 −NLR 

[58] 
LSM−NLR 

[58] 
Proposed CNN 

(Non-specific) 

Proposed CNN 

(Specific) 

𝜎 = 10 40% 10% 86.23 86.60 86.09 88.44 0.8962±1.1804× 𝟏𝟎−𝟒 0.9055±7.0711× 𝟏𝟎−𝟓 

 𝜎 = 20 10% 30% 80.65 79.24 80.27 79.72 0.8592±1.4142× 𝟏𝟎−𝟒 0.8551±1.5470× 𝟏𝟎−𝟒 
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remaining noise. These improvements lead to better edge tracking especially when dealing 

with high intensity mixtures of impulse and Gaussian noise. 

Finally, Figures 47 through 49 showcase the denoising results of the proposed CNN for 

varying degrees of specific and non-specific noise-levels trained networks in the presence 

of different intensity mixture of Gaussian and impulse noise on multiple testing images. 

4.4.2 Impulse Denoising         

To assess the merits of the proposed method [222] [239], different natural input images 

are used for evaluation. For comparative purposes, the results obtained using the proposed 

method are compared with SAMFWMF [185]. Again, all the parameters chosen for this 

comparison, such as initialization and regularization parameters, weights, and window 

sizes, are set according to their proposed optimal values for the specific noise level.  

 

        
                             (a)                                          (b)                                            (c)                                            (d) 

                                                                            
                     (e)                                           (f)                                           (g)                                           (h) 

Figure 44 – Comparison of the denoising filters in the presence of Gaussian noise with standard 

deviation 20 and 50 percent salt and pepper impulse noise on test image “Vase” image, a) 

Original image b) Noisy image; images denoised by (c) WESNR [56] (PSNR= 24.43dB, FSIM= 

0.9235) d) l1 −NLR [58] (PSNR= 27.56dB, FSIM= 0.9442) e)  l0 −NLR [58] (PSNR= 

27.72dB, FSIM= 0.9464) f) LSM−NLR [58] (PSNR=29.24dB, FSIM= 0.9556) g) Non-specific 

noise-level proposed CNN (PSNR=29.17dB, FSIM= 0.9532) h) Specific noise-level proposed 

CNN (PSNR=29.58dB, FSIM=0.9586 ) 
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                              (a)                                           (b)                                           (c)                                          (d) 

                                                           
                                                        (e)                                               (f)                                              (g) 

                                                     

Figure 45 – Comparison of the denoising filters in the presence of Gaussian noise with standard 

deviation 20 and 30 percent random value impulse noise on “Flower” image a) Original image b) 

Noisy image; images denoised by (c) WESNR [56] (PSNR= 23.04dB, FSIM= 0.8956) d) 

l1 −NLR [58] (PSNR=23.68 dB, FSIM=0.9120) e)  l0 −NLR [58] (PSNR=23.51dB, 

FSIM=0.9071) f) LSM−NLR [58] (PSNR=24.36dB, FSIM=0.9156) g) Non-specific Noise-level 

proposed CNN (PSNR=27.07dB, FSIM=0.9482 )    

   

           

         
                         (a)                                           (b)                                          (c)                                            (d) 

               
                             (e)                                           (f)                                           (g)                                           (h) 

                                         

Figure 46 – Comparison of the denoising filters in the presence of Gaussian noise with standard 

deviation 10, 40 percent salt and pepper impulse noise, and 10 percent random value impulse 

noise on “Boat” image a) Original image b) Noisy image; images denoised by (c) WESNR [56] 

(PSNR= 27.32 dB, FSIM= 92.75 ) d) l1 −NLR [58] (PSNR=27.99dB, FSIM=0.9452) 

e) l0 −NLR [58] (PSNR=27.99dB, FSIM=0.9396) f) LSM−NLR [58] (PSNR=28.89dB, 

FSIM=0.9482) g) Non-specific Noise-level proposed CNN (PSNR= 30.97 dB, FSIM=0.9620 ) 

h) Specific noise-level proposed CNN (PSNR=30.82dB, FSIM=0.9646) 
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We also used the 400 images (180×180) from Berkley segmentation dataset (BSD) [89] 

in the training phase. We set as testing images (8 natural images (512×512) as shown in 

figure 51. We emphasize that the images that are used in the testing phase were not seen in 

the training phase. As we discussed before, the optimal results were obtained by using 

depth of 20 with 40×40 patch size for non-specific noise-level denoising. In this 

       
(a) 

 
(b) 

 
(c) 

 

Figure 47 – Application of the proposed CNN filter in the presence of different mixed Gaussian 

and salt and pepper Impulse noise intensities on different natural images, columns 1 through 4 

are: Original test image, corrupted image with mixed Gaussian and salt and pepper impulse 

noise, non-specific noise-level denoising, and specific noise-level denoising a) Test image 

“Fruits” corrupted with Gaussian (s.d.=10) and salt and pepper (50%) (Non-specific Noise-

level: PSNR=33.28 dB, FSIM=0.9736) (Specific noise-level: PSNR=33.53 dB, FSIM=0.9743) 

b)  Test image “Hill” corrupted with Gaussian (s.d.=30) and salt and pepper (20%) (Non-

specific noise-level: PSNR=28.57 dB, FSIM=0.9200) (Specific noise-level: PSNR=28.77 dB, 

FSIM=0.9236) c) Test image “Couple” corrupted with Gaussian (s.d.=50) and salt and pepper 

(10%) (Non-specific noise-level: PSNR=26.05 dB, FSIM=0.8844) (Specific noise-level: 

PSNR=26.34 dB, FSIM=0.8830) 
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implementation stochastic gradient descent (SGD)-momentum [228] with weight decay of 

0. 0001 and momentum of 0.9 and a mini-batch of 128 is used. The 50 epochs are trained 

for our model. MatConvNet package [89] which is a MATLAB toolbox for convolutional 

neural network (CNN) is used in this case. All implementations are carried out using 

MATLAB 2017b on a PC with Nvidia GPU. The training time of the network is about 1 

day. Tables 44 shows the results obtained on the averaged peak signal to noise ratio 

(PSNR), averaged structural similarity index (SSIM) and averaged FSIM measures,  

                         
                                                                                                       (a) 

 
(b) 

 
(c) 

 

Figure 48 – Application of the proposed CNN filter in the presence of different mixed Gaussian 

and random value Impulse noise intensities on different natural images, columns 1 through 3 

are: Original test image, corrupted image with mixed Gaussian and random value impulse noise, 

and non-specific noise-level denoising a) Test image “Finger print” corrupted with Gaussian 

(s.d.=10) and random value (10%) (PSNR=31.14 dB, FSIM=0.9906) b) Test image “Boat” 

corrupted with Gaussian (s.d.=30) and random value (30%) (PSNR=28.24 dB, FSIM=0.9211) c) 

Test image “Lena” corrupted with Gaussian (s.d.=50) and random value (50%) (PSNR=27.31 

dB, FSIM=0.9107). 
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(a) 

 
(b) 

 
(c) 

                            

Figure 49 – Application of the proposed CNN filter in the presence of different mixed Gaussian, 

salt and pepper Impulse, and random value Impulse noise intensities on different natural images, 

columns 1 through 4 are: Original test image, corrupted image with mixed Gaussian and salt and 

pepper impulse and random value impulse noise, non-specific noise-level  denoising, and 

specific noise-level denoising a) Test image “385039 of BSD100 dataset” corrupted with 

Gaussian (s.d.=10), salt and pepper (40%)and random value (10%) (Non-specific noise-level: 

PSNR=27.18 dB, FSIM=0.8902) (Specific noise-level: PSNR=27.09 dB, FSIM=0.8962)  b) 

Test image “Man” corrupted with Gaussian (s.d.=10), salt and pepper (40%) and random value 

(10%) (Non-specific noise-level: PSNR=31.05 dB, FSIM=0.9585) (Specific noise-level: 

PSNR=30.86 dB, FSIM=0.9599) c) Test image “Couple” corrupted with Gaussian (s.d.=20), 

salt and pepper (10%) and random value (30%) (Non-specific Noise-level: PSNR=28.16 dB, 

FSIM=0.9266) (Specific noise-level: PSNR=28.55 dB, FSIM=0.9303) 

 

 

 
 

 

 
 

                   

 

 

Table 44 – Average peak signal to noise ratio (PSNR), average structural similarity index 

(SSIM), and averaged FSIM comparison between proposed CNN filter and AMFWMF [179] 

denoising process in presence of different impulse noise intensities 
  

SAMFWMF[185] 
 

Proposed CNN 

PSNR  SSIM FSIM  PSNR  SSIM FSIM  

10% 28.8309 0.9698 0.9979 40.7748 ±0.0125 0.9869±4.4721×10−5 0.9980±4.5241×10−5 

20% 28.6718 0.9549 0.9965 33.9328±0.0171 0.9780±7.6089×10−5 0.9969±2.2361×10−5 

30% 26.3245 0.9437 0.9932 37.4581±0.0148 0.9684±7.9472×10−5 0.9955±5.1042×10−5 

40% 23.9689 0.9052 0.9926 36.1030±0.0187 0.9574±9.2338×10−5 0.9939±0.0013  

50% 23.7025 0.8815 0.9902 34.7381±0.0229 0.9466±0.0112 0.9909±5.1042×10−5 

60% 23.9220 0.8442 0.9838 33.2798±0.0204 0.9269±1.8778×10−4 0.9865±8.3351×10−5 

70% 23.2654 0.8331 0.9721 31.5983±0.0335 0.9027±2.4623×10−4 0.9790±1.4749×10−4 

80%  21.5890 0.7865 0.9521 29.5832±0.0227 0.8641±3.6746×10−4 0.9644±2.8266×10−4 

90% 20.0002 0.7201 0.9067 26.6888±0.0346 0.7835±5.1186×10−4 0.9269 ±5.1186×10−4 
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comparing different filters against the proposed filter (results for the SAMFWMF [185] 

are based on the minimum and maximum initial window size of the adaptive median filter 

for the related noise level. All these metrics are computed in the presence of 10 to 90 

percent impulse noise intensities on images frequently used in the literature for the 

denoising purposes (i.e. “8 testing images”).  

Figures 50 show the same comparison in the presence of 90% impulse noise on test image 

“Lena”. Figure 51 shows the proposed non-specific noise-level CNN denoising filter 

results in the presence of different noise intensities on different testing images. As these 

figures show, the proposed algorithm has good performance in terms of keeping relevant 

detail and obtaining the highest similarity, least noise, and preserving edges, especially in 

high impulse noise environments.  

4.4.3 Results After Edge detection        

To evaluate the performance of the proposed filter after edge detection step, the visual 

results are provided on different natural images. Figures 52 through 54 shows the results 

                                        
                                                  (a)                                    (b)                                    (c)                                   (d)      

                                                                   1  

                                                                      (e)                                    (f)                                     (g)              

Figure 50 – Comparison of the denoising filters in the presence of 90 percent salt and pepper 

impulse noise on test image “Lena”, a) Original image b) Noisy image c) AMFWMF(initial 

window size=3) d) AMFWMF (initial adaptive median window size=5) e) ) AMFWMF (initial 

adaptive median window size=7) f) ) SAMFWMF (initial adaptive median window size=9) 

[185] g) Proposed bling CNN 
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after edge detection in the presence of different mixed Impulse noise and Gaussian noise 

intensities on different testing images. 

 

 

 

                         

 
                                                     (a)                                                                                                 (b) 

 
                                                      (c)                                                                                                 (d)                                                      

 
                                                      (e)                                                                                                   (f) 

 
                                                       (g)                                                                                                   (h) 

 

Figure 51 – Application of the proposed CNN filter in the presence of different salt and pepper 

Impulse noise intensities on different testing images, columns 1 through 3 are: Original test 

image, noisy image, and denoised image a) Test image “Fruits” corrupted with 80% impulse 

noise b) Test image “Man” corrupted with 80% impulse noise c) Test image “Hill” corrupted 

with 90% impulse noise d) Test image “Couple” corrupted with 90% impulse noise e) Test 

image “Finger print” corrupted with 90% impulse noise f) Test image “Boat” corrupted with 

90% impulse noise g) Test image “Airplane” corrupted with 95% impulse noise h) Test image 

“Lena” corrupted with 95% impulse noise 
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Figure 53 – Edge detection after applying the proposed CNN filter (non-specific noise-level) in 

the presence of mixed Gaussian and random value Impulse noise, columns 1 through 3 are: 

Original test image “Fruits”, corrupted image with mixed Gaussian (s.d=50) and random value 

impulse (50%), edge detection after blind denoising (Normalized threshold=0.08), and edge 

detection after certain level denoising (Normalized threshold=0.08) 
 
 

                   

 

 

    
 

Figure 52 – Edge detection after applying the proposed CNN filter (specific and non-specific 

noise-level) in the presence of mixed Gaussian and salt and pepper Impulse noise, a) Original 

test image “Lena”, b) corrupted image with mixed Gaussian (s.d=50) and salt and pepper 

impulse (50%) c) edge detection after blind denoising (Normalized threshold=0.1) d) edge 

detection after certain level denoising (Normalized threshold=0.1) 

 

            
                   

Figure 54 – Edge detection after applying the proposed CNN filter (specific and non-specific 

noise-level) in the presence of mixed Gaussian, salt and pepper Impulse, and random value 

Impulse noise, Original test image “Boat”, corrupted image with mixed Gaussian (s.d=20) and 

salt and pepper impulse (10%) and random value impulse (30%), edge detection after blind 

denoising (Normalized threshold=0.1), and edge detection after certain level denoising 

(Normalized threshold=0.1)    
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5. CHAPTER V 

SUMMARY & CONCLUSIONS 

This dissertation contends with noise in digital images. The first Chapter introduces the 

research objectives and what we aim to achieve through the newly developed denoising 

method to be followed by effective edge detection. The goal is to preserve image details 

while minimizing the effects of noise. Chapter II provides the literature survey of the 

current literature in relation to the theme of this dissertation. This chapter presented a 

comprehensive retrospective on impulse, Gaussian, and mixed impulse and Gaussian 

denoising filters which are applied to digital images to reduce the effects of the different 

noise types and combinations. We considered a random noise model comprised of impulse 

(salt and pepper) and Gaussian noise. We have explained the noise models and denoising 

filters, as well as classified them according to their types and domain of application. The 

merits of each of the methods reviewed are assessed in comparison to other related methods 

in terms of their application domain and in terms of the different performance levels they 

achieve. This survey allows researchers to also gauge the progress in this challenging 

research endeavor and to ascertain which method and which metrics they would 

contemplate using for their own research as a preprocessing step when dealing with noisy 

images.  

In chapter III, the relevant theory and related methodologies were presented. In the first 

subsection, a new combination of median and mean filter, we refer to as the switching 

adaptive median and mean filter (SAMFWMF), with additional shrinkage window, was 

introduced as a new smoothing filter to remove or minimize in an optimal fashion the 
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presence of impulse noise even at high intensity levels. The adaptive properties of the 

median filter are proven to control the similarity and edge smoothing as an option to adjust 

the smoothness and sharpness of the edges. Also, a shrinkage window is introduced in 

order to improve the denoising process, and the entire process is completed by applying a 

2×2 fixed weighted mean filter. The properties of the mean filter as set provide a 

considerable improvement on the denoising process while circumventing image blurring, 

especially under high impulse noise intensity levels. Also, the weights are set for the fixed 

mean filter based on probabilities of noise occurrence with the ability to remove the 

remaining noise in the image with the least effect on non-noisy pixels. Also, the switching 

property of the denoising filter introduced a new option which is able to denoise the images 

like the challenging case of the checkerboard even in the presence of high-intensity impulse 

noise. This combination of filters is shown to yield the best (i.e., highest) structural metrics 

than any other well-known denoising filter in the presence of different impulse noise 

intensities. Denoising under this method is shown to preserve edge details with good edge 

preserving capability as reflected through the highest structural similarity measure between 

the denoised image and the original noise-free image. This filtering method also allows 

edge detection algorithms to become immune and resilient to noise, enhancing image 

segmentation, object recognition, feature extraction, pattern classification, and deriving 

structural and functional measurements in medical imaging especially MRI and CT images. 

Chapter IV- provides the results and discussions. A comparative assessment is also 

provided in chapter IV in terms the filter developed and its denoising performance in 

contrast to state-of-the-art filters that have been proven effective in the literature. The 
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comparative results that were presented indicate that the proposed method outperformed 

state-of-the art methods and filters which were designed to remove this type of noise on 

both natural and medical images. In the edge detection phase, and after the smoothing 

process attained with SAMFWMF, we observe that our method preserved edge continuity 

and tracked well the boundaries, especially in high predefined thresholds in relation to the 

use of maximum-sequence, whose intent was to detect more edges at different threshold 

intensities while minimizing the effect of noise. This new approach led to a better 

performance in contrast to other common thresholding methods. For visual appreciation of 

the optimal outcome, several morphological operations were used on the final image. The 

results obtained proved that the proposed method yielded a better performance after edge 

detection even in the presence of high intensity impulse noise.  

In the second subsection of Chapter IV, the focus was placed on a combination of the 

dual-tree complex wavelet and improved total variation introduced as a new smoothing 

filter to remove or minimize in an optimal fashion the presence of combined speckle and 

Gaussian noise on ultrasound images. Dual-tree complex wavelet transform is shown to 

yield better structural metrics than standard wavelet transforms denoising filter. Its 

combination with total variation filter is shown to yield better performance than dual-tree 

complex wavelet and total variation independently as well as other well-known de-

speckling filters. Furthermore, this combination is shown to preserve image details and has 

good edge preservation capability as reflected by the highest similarity between the 

denoised image and the original noise-free image. This is extremely useful in order to 

enhance image segmentation, object recognition, feature extraction, pattern classification, 
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and deriving necessary structural or functional measurements in medical imaging as this 

practical implementation on ultrasound images has proven. The results obtained using the 

proposed method after applying the steps of denoising are presented in presence of 

combined Gaussian and speckle noise. These results are compared with some well-known 

de-speckling filters reported in the literature. Also, we observe that our method has very 

good performance in presence of Gaussian noise alone, especially in high intensities. 

Again, the results obtained proved that the proposed method yielded a good performance 

after edge detection even in the presence of high intensity noise.  

Chapter V provides concluding remarks on the many denoising methods and relates the 

merits of each in accordance to their performance and domain of applications.  

In the area of signal and image denoising, the theory ad methodology could be used to 

detect and remove different kind of random noise. Such a generalized approach could be 

very useful for any challenging applications in signal and image processing often fraught 

with ubiquitous noise effects. This research topic can be further extended to various 

applications that could include medical imaging, biometrics, and telecommunication 

systems.  The efficiency of the proposed method can be improved through further research. 

The ultimate plan is to implement the proposed methods in order to design denoising 

algorithms that can automatically the source of noise, formulate its effect, and model the 

filter design to minimize the presence of noise. A singular merit of the proposed filters is 

in their ability to remove the different noise types in isolation or in combination even in 

high intensity levels of noise, and still yield an output with high correlation and similarity 

to the noise free image.     
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The importance of image segmentation and object detection in different industries 

especially medical industry is obvious. The goal of segmentation is to simplify or change 

the representation of an image into something that is more meaningful and easier to 

analyze. More precisely, image segmentation is the process of assigning a label to every 

pixel in an image such that pixels with the same label share certain characteristics. Object 

detection deals with detecting instances of semantic objects of a certain class in digital 

images and videos. Their importance is further amplified when we deal with medical 

images. New algorithms for image segmentation could extend to object detection and 

identification. In the medical field, delineating certain anatomical structures could help 

localize tumors or diseased tissue from healthy tissue all in context to key anatomical 

landmarks. Such research could eventually extend to classification, diagnosis and for 

surgical planning.   
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