375 research outputs found

    Verifying Weakly-Hard Real-Time Properties of Traffic Streams in Switched Networks

    Get PDF
    In this paper, we introduce the first verification method which is able to provide weakly-hard real-time guarantees for tasks and task chains in systems with multiple resources under partitioned scheduling with fixed priorities. Existing weakly-hard real-time verification techniques are restricted today to systems with a single resource. A weakly-hard real-time guarantee specifies an upper bound on the maximum number m of deadline misses of a task in a sequence of k consecutive executions. Such a guarantee is useful if a task can experience a bounded number of deadline misses without impacting the system mission. We present our verification method in the context of switched networks with traffic streams between nodes, and demonstrate its practical applicability in an automotive case study

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Methods for Massive, Reliable, and Timely Access for Wireless Internet of Things (IoT)

    Get PDF

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    MACHINE LEARNING IN THE DESIGN SPACE EXPLORATION OF TSN NETWORKS

    Get PDF
    Real-time systems are systems that have specific timing requirements. They are critical systems that play an important role in modern societies, be it for instance control systems in factories or automotives. In recent years, Ethernet has been increasingly adopted as layer 2 protocol in real-time systems. Indeed, the adoption of Ethernet provides many benefits, including COTS and cost-effective components, high data rates and flexible topology. The main drawback of Ethernet is that it does not offer "out-of-the-box" mechanisms to guarantee timing and reliability constraints. This is the reason why time-sensitive networking (TSN) mechanisms have been introduced to provide Quality-of-Service (QoS) on top of Ethernet and satisfy the requirements of real-time communication in critical systems. The promise of Ethernet TSN is the possibility to use a single network for different criticality levels, e.g, critical control traffic and infotainment traffic sharing the same network resources. This thesis is about the design of Ethernet TSN networks, and specifically about techniques that help quantify the extent to which a network can support current and future communication needs. The context of this work is the increasing use of design-space exploration (DSE) in the industry to master the complexity of designing (e.g. in terms of architectural and technological choices) and configuring a TSN network. One of the main steps in DSE is performing schedulability analysis to conclude about the feasibility of a network configuration, i.e., whether all traffic streams satisfy their timing constraints. This step can take weeks of computations for a large set of candidate solutions with the simplest TSN mechanisms, while more complicated TSN mechanisms will require even longer time. This thesis explores the use of Artificial Intelligence (AI) techniques to assist in the design of TSN networks by speeding up the DSE. Specifically, the thesis proposes the use of machine learning (ML) as an alternative approach to schedulability analysis. The application of ML involves two steps. In the first step, ML algorithms are trained with a large set of TSN configurations labeled as feasible or non-feasible. Due to its pattern recognition ability, ML algorithms can predict the feasibility of unseen configurations with a good accuracy. Importantly, the execution time of an ML model is only a fraction of conventional schedulability analysis and remains constant whatever the complexity of the network configurations. Several contributions make up the body of the thesis. In the first contribution, we observe that the topology and the traffic of a TSN network can be used to derive simple features that are relevant to the network feasibility. Therefore, standard and simple machine learning (ML) algorithms such as k-Nearest Neighbors are used to take these features as inputs and predict the feasibility of TSN networks. This study suggests that ML algorithms can provide a viable alternative to conventional schedulability analysis due to fast execution time and high prediction accuracy. A hybrid approach combining ML and schedulability analyses is also introduced to control the prediction uncertainty. In the next studies, we aim at further automating the feasibility prediction of TSN networks with the Graph Neural Network (GNN) model. GNN takes as inputs the raw data from the TSN configurations and encodes them as graphs. Synthetic features are generated by GNN, thus the manual feature selection step is eliminated. More importantly, the GNN model can generalize to a wide range of topologies and traffic patterns, in contrast to the standard ML algorithms tested before that can only work with a fixed topology. An ensemble of individual GNN models shows high prediction accuracies on many test cases containing realistic automotive topologies. We also explore possibilities to improve the performance of GNN with more advanced deep learning techniques. In particular, semi-supervised learning and self-supervised learning are experimented. Although these learning paradigms provide modest improvements, we consider them promising techniques due to the ability to leverage the massive amount of unlabeled training data. While this thesis focuses on the feasibility prediction of TSN configurations, AI techniques have huge potentials to automate other tasks in real-time systems. A natural follow-up work of this thesis is to apply GNN to multiple TSN mechanisms and predict which mechanism can provide the best scheduling solution for a given configuration. Although we need distinct ML models for each TSN mechanism, this research direction is promising as TSN mechanisms may share similar feasibility features and thus transfer learning techniques can be applied to facilitate the training process. Furthermore, GNN can be used as a core block in deep reinforcement learning to find the feasible priority assignment of TSN configurations. This thesis aims to make a contribution towards DSE of TSN networks with AI

    Parallel simulation techniques for telecommunication network modelling

    Get PDF
    In this thesis, we consider the application of parallel simulation to the performance modelling of telecommunication networks. A largely automated approach was first explored using a parallelizing compiler to speed up the simulation of simple models of circuit-switched networks. This yielded reasonable results for relatively little effort compared with other approaches. However, more complex simulation models of packet- and cell-based telecommunication networks, requiring the use of discrete event techniques, need an alternative approach. A critical review of parallel discrete event simulation indicated that a distributed model components approach using conservative or optimistic synchronization would be worth exploring. Experiments were therefore conducted using simulation models of queuing networks and Asynchronous Transfer Mode (ATM) networks to explore the potential speed-up possible using this approach. Specifically, it is shown that these techniques can be used successfully to speed-up the execution of useful telecommunication network simulations. A detailed investigation has demonstrated that conservative synchronization performs very well for applications with good look ahead properties and sufficient message traffic density and, given such properties, will significantly outperform optimistic synchronization. Optimistic synchronization, however, gives reasonable speed-up for models with a wider range of such properties and can be optimized for speed-up and memory usage at run time. Thus, it is confirmed as being more generally applicable particularly as model development is somewhat easier than for conservative synchronization. This has to be balanced against the more difficult task of developing and debugging an optimistic synchronization kernel and the application models
    • …
    corecore