
Real-Time Syst (2016) 52:88–112
DOI 10.1007/s11241-015-9243-y

Formal timing analysis of CAN-to-Ethernet gateway
strategies in automotive networks

Daniel Thiele1 · Johannes Schlatow1 ·
Philip Axer1 · Rolf Ernst1

Published online: 7 October 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Due to increased bandwidth and scalability demands, Ethernet technology
is finding itsway into recent in-vehicle networks. Tomorrow’s heterogeneous networks
will feature legacy buses [e.g. controller area network (CAN) or FlexRay] as well as
high-speed Ethernet devices, connected by switches and gateways. As Ethernet offers
significantly larger frame sizes than CAN, the efficient transmission of CAN data over
an Ethernet backbone depends heavily on theway this data ismultiplexed into Ethernet
frames. This article focuses on the timing impact introduced by various CAN/Ethernet
multiplexing strategies at the gateways. We present a formal analysis method to derive
upper bounds on end-to-end latencies for complex multiplexing strategies, which is
key for the design of safety-critical real-time systems. We capture complex inter-
domain signal paths spanning multiple buses, gateways, and switches and show the
applicability in a realistic automotive setup.

Keywords Automotive · Ethernet · Real-time · Embedded systems · Performance
analysis · CAN · Gateway · Networks · Distributed systems

B Daniel Thiele
thiele@ida.ing.tu-bs.de

Johannes Schlatow
schlatow@ida.ing.tu-bs.de

Philip Axer
axer@ida.ing.tu-bs.de

Rolf Ernst
ernst@ida.ing.tu-bs.de

1 Institute of Computer and Network Engineering, Technische Universität Braunschweig,
Hans-Sommer-Str. 66, 38106 Braunschweig, Germany

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191774487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-015-9243-y&domain=pdf

Real-Time Syst (2016) 52:88–112 89

1 Introduction

The automotive network backbone, today built up on controller area network (CAN),
CAN-FD (flexible data rate), or FlexRay, reaches its limits in bandwidth and scal-
ability. New advanced driver assistance systems add an extraordinary amount of
streaming data and additional control signals which cannot be handled by today’s
network infrastructure. Many automotive manufacturers therefore consider switched
Ethernet to be used as a potential high-speed backbone, as an overlay network or, in
long term perspective, even as a full replacement for most legacy buses.

In the near future, a transition phase is expected, where an Ethernet network will
serve as the backbone to interconnect various vehicle domains (cf. Fig. 1). Low-speed
buses (LIN, CAN) will still be used due to their competitive price and legacy com-
patibility. High-speed devices such as cameras, on the other hand, will be connected
directly to Ethernet switches. The figure does not depict the actual Ethernet topology.
A daisy-chain, a star, or a tree of arbitrary shape can be implemented, depending on
bandwidth requirements and the available number of ports per switch.

One of themajor challenges in automotive network design is the timing determinism
of critical control and streaming data (Zhang et al. 2013). It is crucial that sensor
and actuator data are transmitted within well-specified latency bounds to meet the
constraints of time-critical driving functions and prevent controller degradation. This
is especially important for safety-critical applications which put human lives at stake.
Formal timing analysis, known for example fromReal-TimeCalculus (RTC) (Thiele et
al. 2000) and Compositional Performance Analysis (CPA) (Henia et al. 2005), assists
engineers to formally prove timing constraints such as network end-to-end latencies
and gateway response times.

In this article we focus on the formal end-to-end timing analysis of inter-domain
traffic with real-time requirements. As an example, we use traffic which is being sent
over an Ethernet backbone from a CAN bus in one domain to a CAN bus in a different
domain (e.g. Powertrain to Body in Fig. 1). To transport CAN frames (i.e. their ID and
signal payload) over anEthernet network, there are two extrema: (a) sending eachCAN
frame via a dedicated Ethernet frame and (b) multiplexing (packing) as many CAN
frames as possible into an Ethernet frame. While the first approach intuitively results
in low latencies (each CAN frame is sent immediately), it has a large Ethernet protocol

Fig. 1 Ethernet backbone with gateways and legacy buses

123

90 Real-Time Syst (2016) 52:88–112

overhead (∼90%) and introduces a high load on the domain gateways and the Ethernet
(packing and sending many small frames). The latter approach has minimal protocol
overhead and might also allow the exploitation of Ethernet multicast. However, it
suffers from potentially large latencies as Ethernet frames are only sent when they are
full, which might take some time. An optimal solution is somewhere between these
extrema and highly depends on the traffic characteristics.

While, in this article, we focus on strict-priority scheduled Ethernet (IEEE 802.1Q),
our analysis methodology is scheduling agnostic and works seamlessly with Ethernet
Audio/Video Bridging (AVB) or the upcoming Time Sensitive Networking (TSN)
standards. As we will see in the evaluation, Ethernet has a negligible impact on the
end-to-end latency. It is more important to focus on an efficient multiplexing strategy.

The main contributions of this article are formal methods to analyze the impact of
different multiplexing strategies at the gateways on the end-to-end latency guarantees.
Specifically, we focus on three different aspects of multiplexing: (a) how CAN frames
aremultiplexed and demultiplexed (buffering), (b) which CAN frames aremultiplexed
together (mapping), and (c) when an Ethernet frame is sent (triggering). Our analysis
method is able to capture and quantify the (significant) differences between different
multiplexing strategies.

The article is structured in the following way: First, we discuss related work in
the field of system performance analysis and gateway analysis in Sect. 2. In Sect. 3,
we present an overview of the CPA methodology and, in Sect. 4, we show how it
can be applied to automotive networks. We extend the CPA methodology to cover the
peculiarities ofmultiplexingCAN traffic at the gateways in Sect. 5. The applicability of
our proposed approach is evaluated in Sect. 6. Finally,we conclude the article in Sect. 7.

2 Related work

The investigation of the timing impact of gateway strategies in heterogeneous automo-
tive communication systems requires amultitude of analysismethods, each specialized
to a specific part of the communication path. CAN buses and gateways typically utilize
static-priority scheduling (non-preemptive and preemptive, respectively), which can
be analyzed by the busy-period approach (e.g. Lehoczky 1990, Davis et al. 2007).
Here, the worst-case response time is derived by constructing the worst-case time
during which a resource is busy serving requests at a given priority.

There exists a large body of related work in timing analysis for switched networks.
Most of the work uses either RTC (Thiele et al. 2000) or CPA (Henia et al. 2005).
RTC has been used for Ethernet analysis in e.g. Revsbech et al. (2011). Formal timing
analysis using CPA for strict-priority Ethernet was presented in Rox and Ernst (2010).
In Bauer et al. (2010) the trajectory approach was applied to analyze Avionics Full
Duplex Switched Ethernet (AFDX).

Different CAN to Ethernet multiplexing strategies for gateways have been studied
by Kern et al. (2011), Ayed et al. (2011), Scharbarg et al. (2005), Nacer et al. (2013),
and Herber et al. (2015). In Kern et al. (2011) a prototypical CAN/Ethernet multi-
plexing gateway has been implemented to generate experimental results for average
end-to-end latencies, required network bandwidth, and resource utilization of the gate-

123

Real-Time Syst (2016) 52:88–112 91

way processor for different multiplexing strategies. The authors of Ayed et al. (2011)
present two simple multiplexing strategies (a 1:1 mapping and a timeout-based strat-
egy) along with a formal analysis and propose an optimization of the timeout value
regarding schedulability and gateway resources. Scharbarg et al. (2005) and Nacer et
al. (2013) propose 1:1 mapping, buffer-full, and buffer-full with timeout multiplexing
strategies. The evaluation of the multiplexing process, however, is only simulation
based. In Herber et al. (2015) different buffering mechanisms for CAN frames at
gateways are evaluated (i.e. which CAN frames are to be multiplexed first) under
timeout-based triggering: FIFO, strict-priority, and earliest deadline first.

We, in contrast, model multiplexing as operations on event models (Henia et al.
2005), which can later be used seamlessly by a formal performance analysis, con-
sidering more complex triggering strategies [including the aforementioned ones and
new strategies specified by AUTOSAR (2015)] and their combination. This allows us
to formally derive the worst-case timing behavior on the Ethernet and the gateways,
which, as we will see, has a significant impact on end-to-end timing. The importance
of this work is stressed by the fact that the AUTOSAR Socket Adapter Specification
(AUTOSAR 2015) already specifies multiplexed transmissions of payload data units
via UDP and TCP sockets. In contrast to Herber et al. (2015), we only consider FIFO
buffering and, instead, assume that time-critical CAN frames can trigger the immedi-
ate transmission of an Ethernet frame (as proposed by AUTOSAR 2015), eliminating
the requirement of complex frame ordering strategies at the gateways, while also elim-
inating the additional delay of waiting for the next timeout to occur. Additionally, our
approach supports lossy buffering, i.e. old values are overwritten by newer ones.

The multiplexing of individual control signals into (CAN) frames is discussed in
e.g. Pop et al. (2005) and Saket and Navert (2006). While related to the multiplexing
of CAN frames into Ethernet frames, the authors do not focus on the derivation of
formal event models, but instead suggest heuristics to solve the mapping problem
(which signal is packed into which frame) during multiplexing. Thus, these works are
orthogonal to our approach.

Furthermore, there is work on the (hierarchical) composition and decomposition
of event streams in join-fork scenarios that are applicable for the timing analysis of
inter-gateway communication. In Rox and Ernst (2008), the construction and decon-
struction (multiplexing and demultiplexing) of Hierarchical Event Streams (HES) was
formally defined for AND-/OR-join semantics with timeout and trigger events. It also
defines update functions for the modification of jitter and minimum distance of the
inner event streams of an HES. Similarly, Structured Event Streams, which are charac-
terized by so-called Event Count Curves, were introduced in Perathoner et al. (2010)
and compared against HES.

3 Compositional performance analysis

In CPA (Henia et al. 2005), systems are modeled by sets of resources and tasks. A
resource provides service (processing or transmission time) which is consumed by the
tasks mapped to it. Contention for resources with multiple tasks is resolved according
to the resource’s scheduling policy (e.g. static-priority preemptive).

123

92 Real-Time Syst (2016) 52:88–112

The execution behavior of a task τi is divided into the following steps: activation,
core execution, and finally completion/propagation. After being activated, a task (or
job) is ready to execute and can be scheduled. Depending on the scheduling policy and
resource type, tasks may be interrupted by other tasks running on the same resource.
Each invocation of a task imposes a bounded workload to the resource, i.e. its core
execution time, which is bounded by the worst-case and best-case execution times
denoted C+

i and C−
i , respectively.

A distributed application consisting of multiple communicating tasks is described
by a directed graph in which nodes are tasks and edges represent functional data
dependencies. After a task’s execution is completed, the task activates its dependent
tasks (propagation). Here, forks are possible, i.e. one task can activate multiple other
tasks. The opposite, i.e. a join, requires an explicit semantic. There are two common
join-semantics as discussed by Henia et al. (2005): For anOR-join any incoming event
produces one outgoing event, and for anAND-join, an outgoing event is produced once
events are available on all incoming edges.

In CPA, the communication between tasks is abstracted by an event model interface.
As discussed above, task activation and completion denote specific events of interest.
Events can also originate from external sources, such as a timer or external devices.
During the analysis, the actual data is of no further interest but rather the points in
time when events occur is modeled (e.g. times when data is communicated). To keep
the analysis problem tractable, an event model interface abstracts the actual event
trace by only capturing worst-case and best-case behavior. An event model consists
of a pair of arrival curves η−

i (�t)/η+
i (�t), which return a lower/upper bound on

the number of events that can arrive within any half-open time window [t, t + �t)
Richter (2005). Thus, any trace that is between these bounds is covered by the event
model representation. These functions have pseudo-inverse counterparts, the so-called
maximum/minimum-distance functions δ+

i (n)/δ−
i (n), which return an upper/lower

bound on the time interval between the first and the last event of any sequence of n
event arrivals. For convenience we introduce the event model interfaces δi = {δ−

i , δ+
i }

and ηi = {η+
i , η−

i } to refer to an event stream’s worst-case and best-case event models.
Often, it is more convenient to consider δ functions, due to their discrete domain. A
conversion between δi and ηi is described by Diemer et al. (2012a).

The CPA analysis flow, as shown in Fig. 2, consists of two interleaved steps: the
local analysis and the propagation of event models. The environment model specifies

Fig. 2 Compositional analysis flow

123

Real-Time Syst (2016) 52:88–112 93

the boundary conditions for each event stream under which the system is operating.
This is usually given as external event models which describe the characteristics of
external sources. Other, yet unknown, event models are initialized with optimistic
guesses that are iteratively updated during analysis. The event models are used for the
local resource analysis during which the local behavior of each resource is considered
in isolation. Among other results, the local analysis yields the response-time jitter
from which new output event models can be derived (Henia et al. 2005). These output
event models then become the input event models of dependent task.

The iteration is stopped and a system fixed-point is found if all event models remain
stable. Then, the resulting best-case/worst-case response times (R−

i /R
+
i) along a path

can be added up to retrieve end-to-end path latencies L−
i /L

+
i . Similarly, if we are

interested in the delay of multiple activations, we can use the following equation
(Diemer et al. 2011):

L−/+
i (q) = δ−

i (q) +
∑

j∈Path(i)
R−/+
j (1)

Here, Path(i) is the set of all tasks which belong to a path i . Equation 1 assumes a
maximum injection rate at the event source, i.e. q events are generated within a time
interval of δ−

i (q). This will cause the system’s resources to exhibit worst-case behavior
such as the worst-case response times R+

i . The general idea behind Eq. 1 is that the
last of the q events will experience the worst-case on each resource. Due to causality,
all q − 1 previously sent events must have arrived by then.

4 Modeling automotive networks

In this section,wediscuss howaheterogeneous automotive network, consisting ofmul-
tiple ECUs, buses, Ethernet switches, and gateways is modeled using CPA primitives.
An exemplary architecture is shown in the upper part of Fig. 3 and the corresponding
logical CPA model in the lower part. Two CAN buses are connected to an Ether-
net switch via gateways. Individual communication streams are indicated by colored
arrows in the upper part of the figure. One ECU is directly connected to the Ethernet
switch. In this particular example, CAN frames available on CAN1 are sent to CAN2
(red arrow) and from CAN2 to CAN1 (yellow arrow). Some CAN frames from CAN1
are sent via multicast to the ECU for further processing and the result is sent back to
CAN1.

The resulting CPA model is shown in the lower part of Fig. 3. Edges represent
event model interfaces which are given as environment models δ1,in to δ5,in or are
derived during analysis. Multicast traffic (CAN1 sends data to CAN2 and ECU) is
modeled by forking the event stream. Most physical resources are directly modeled as
CPA resources (rectangles with black name tags). An exception is the Ethernet switch,
which is modeled as described by Diemer et al. (2012b). Each output port, as a point
of arbitration, is modeled as a resource. We assume that all other switch delays can be
modeled by constant delays Diemer et al. (2012b). Software tasks are shown as white
tasks. The transmission of CAN and Ethernet frames is depicted as grey tasks.

123

94 Real-Time Syst (2016) 52:88–112

Fig. 3 Systemmodel, consisting of two buses, two gateways, an Ethernet switch connected to the gateways,
and an ECU

Due to network heterogeneity, differentCPAanalysesmust be utilized to derive end-
to-end latency guarantees, e.g. from CAN1 to CAN2. For the analysis of the CAN
buses, we resort to an analysis approach based on Davis et al. (2007). We assume
that frames in the Ethernet network are scheduled according to IEEE 802.1Q, i.e.
in a static-priority non-preemptive way (Rox and Ernst 2010; Thiele et al. 2014). A
detailed discussion of the modeling and timing analysis of the gateways is given in
the following section. All analyses are interconnected by event model interfaces.

5 Ethernet gateways

In this section, we present CPA techniques to model different frame multiplexing
strategies, i.e. how CAN frames are buffered into an Ethernet frame, how CAN frames
are mapped to Ethernet frames, when Ethernet frames are sent, as well as the demul-
tiplexing of CAN frames from Ethernet frames.

5.1 CPA gateway model

Without loss of generality, we reduce the discussion to the unidirectional scenario
in Fig. 4 in which we distinguish between the ingress and the egress gateway. The

123

Real-Time Syst (2016) 52:88–112 95

Fig. 4 An ingress gateway sends a multiplexed CAN traffic stream via a switched Ethernet to an egress
gateway. The first merges in-event models, the latter demultiplexes the stream

ingress gateway receives CAN frames from one or multiple CAN buses and packs
these frames into one or multiple Ethernet frames (multiplexing). The egress gateway
receives Ethernet frames and unpacks the contained CAN frames in order to transmit
them to the destination CAN bus(es) (demultiplexing). Bidirectional scenarios can
be modeled by combining the task graphs of the ingress and egress gateways (cf.
Fig. 3).

As we focus on CPA techniques to model different multiplexing strategies, we
utilize simplified gateway models, which assume that any processing on the gateways
can be split into a per-CAN-frame and a per-Ethernet-frame part. The ingress gateway
comprises RX tasks for each incoming CAN frame as well as a TX task for each
outgoing Ethernet frame. An RX task models the execution time that is required to
process a CAN frame with a particular CAN identifier. Similarly, a TX task models
the execution time of the Ethernet stack and the time that is required to transmit an
Ethernet frame. The processor of the gateway is assumed to schedule tasks in static-
priority preemptive (SPP) fashion (Schliecker et al. 2008). The TX task has the highest
priority and RX tasks have a priority proportional to their CAN identifier below the TX
task. Apart from the RX and TX tasks, a (multiplexing) join merges the event streams
frommultiple RX tasks to a single TX task. The semantics of this join junction depend
on the multiplexing strategy and impact the sampling delay of the gateway (Feiertag et
al. 2008). The sampling delay arises whenever multiple CAN frames are multiplexed
into a single Ethernet frame during packetization, i.e. the first CAN frame in a new
Ethernet frame must wait for the last CAN frame to be packed into the Ethernet
frame.

The egress gateway ismodeled by a task graph that basically reverses the operations
of the ingress gateway. It contains an RX task for each incoming Ethernet frame and
a TX task for each outgoing CAN frame. Here, the RX task has the highest priority
and TX tasks have a priority proportional to their CAN identifier. In order to distribute
a single activation from the RX task, which (in a multiplexing scenario) typically
contains several CAN frames, to the TX tasks, a (demultiplexing) fork is required. As
this fork, in contrast to the standard fork, which forwards all incoming event models
to all dependent tasks, selectively distributes event models depending on the receiving
task, we model the demultiplexing fork explicitly as in Perathoner et al. (2010). There
is no sampling delay on the egress gateway.

123

96 Real-Time Syst (2016) 52:88–112

5.2 Multiplexing strategies

We classify multiplexing strategies in terms of three fundamental parameters: buffer-
ing, triggering and mapping. Buffering takes place at the ingress gateway in order
to collect incoming CAN frames. Once a certain condition is met (triggering), the
contents of the buffer are sent as payload of an Ethernet frame. If multiple buffers are
used, a mapping function determines to which buffer a CAN frame is forwarded.

We distinguish between lossy and lossless buffering, which fundamentally affect
the timing analysis. A lossy strategy assumes that each CAN frame designated to a
certain buffer has a fixed position in this buffer and will update (overwrite) the buffer
content (or parts of it) with the most recent value and is suitable for transmitting sensor
data. Conversely, a lossless strategy is order preserving and (non-destructively) queues
data in the buffer.

Based on Kern et al. (2011), Ayed et al. (2011), Scharbarg et al. (2005), Nacer et
al. (2013), and AUTOSAR (2015), Ethernet frames can be triggered by:

– Buffer Timeout This time-trigger is specified by a fixed timeout per buffer so that
the gateway emits an Ethernet frame periodically (Kern et al. 2011; Ayed et al.
2011; Scharbarg et al. 2005; Nacer et al. 2013; AUTOSAR 2015).

– Buffer-full Event In case of a lossless buffering strategy, an Ethernet frame is trans-
mitted once the queue is full (Scharbarg et al. 2005; Nacer et al. 2013; AUTOSAR
2015).

– Trigger Frames Incoming CAN frames with particular identifiers immediately
trigger the transmission of anEthernet frame,which corresponds to theAUTOSAR
configuration TriggerMode=TRIGGER_ALWAYS (Kern et al. 2011; AUTOSAR
2015).

– Per-frame Timeout Incoming CAN frames set a timer, which then triggers the
transmission of an Ethernet frame, i.e. to bound the sampling delay for these
frames. This resembles the timed approach in Kern et al. (2011).

The last three triggermechanisms adddependencies between allCANframeswithin
a buffer, i.e. the trigger condition depends on the arrival pattern of incoming CAN
frames. These dependencies can be reduced by introducingmultiple buffers to partition
the CAN traffic (mapping), according to e.g. destination, priority, or deadline. Due to
their complexity, we do not model per-frame timeouts (cf. Sect. 5.3.6 for a discussion).

CAN frames can be mapped to a buffer statically or dynamically. A static mapping
assigns a CAN identifier to a buffer at design time so that each CAN frame with this
identifier is always stored in the same buffer. In a dynamic mapping the assignment
is not predefined and is instead determined at run-time. In such an approach the
CAN frames would not be mapped statically to a fixed buffer (or set of buffers)
but the gateway would rather decide at run-time which output buffer will be most
suitable for an incoming CAN frame. The eligible output buffers are constrained by
the CAN frame’s destination(s). For this, a set of reasonable (online) strategies should
be developed. However, before a formal analysis can be applied, it must be evaluated if
reasonable bounds for theworst-case behavior of these online strategies can be derived.
In this article, we focus on static mapping only, as dynamic mapping introduces an
additional level of indeterminism and complexity to a formal analysis.

123

Real-Time Syst (2016) 52:88–112 97

5.3 Multiplexing event models

We model multiplexing as an event model operator which depends on the semantics
of the join (i.e. its triggering mechanism) and its input event models. More for-
mally, we define the multiplexing function M : � → δ̂ that, given a set of input
event models � = {δ0, δ1, . . . , δn}, calculates the combined output event model δ̂

(cf. Fig. 4). In this section, we consider buffer timeouts, trigger frames, buffer-full
events, and combinations of these.

5.3.1 Buffer timeout

This triggering mechanism is modeled by a periodic event model δto whose period
corresponds to the timeout value tto. The output event model δ̂ is solely determined
by the timeout event model.

δ̂ = δto with δ−
to(n) = (n − 1) · tto

δ+
to(n) = (n − 1) · tto

(2)

5.3.2 Trigger frames

Let �tr ⊆ � be the subset of triggering event models. Then, the output event model
is determined by event models δi ∈ �tr. As a trigger frame causes the immediate
emission of an output event, an Ethernet frame can only contain, among other non-
trigger frames, a single trigger frame. The output event model δ̂ is modeled by an
OR-join (Henia et al. 2005) of all triggering event models. The OR event model is
conveniently modeled in the η domain, which can be converted to the δ domain to
retrieve δ̂ (Diemer et al. 2012a).

η̂+(�t) =
∑

ηi∈�tr

η+
i (�t)

η̂−(�t) =
∑

ηi∈�tr

η−
i (�t)

(3)

5.3.3 Trigger frames with buffer timeout

Here, we consider triggered frames in conjunction with a buffer timeout. If no trigger
frame arrives, the data is sent after tto at the latest. We interpret the buffer timeout
as a triggering event model, and add it to the set of triggering event models �T =
�tr ∪ {δto}. The resulting event model can be derived analogously to Eq. 3.

This approach may introduce a certain degree of over approximation. A practi-
cal implementation would certainly omit an Ethernet frame transmission on a buffer
timeout event if the buffer is empty. There are, however, also scenarios in which this
behavior is desired, e.g. in lossy buffering when the latest known values should be
distributed periodically (in this case the buffer is never empty but always keeps the

123

98 Real-Time Syst (2016) 52:88–112

latest values). Also, one may decide to optimize the implementation by resetting the
timer once a CAN frame is placed into an empty buffer as specified by AUTOSAR
(2015).

5.3.4 Buffer-full

At this point, we are able to analyze multiplexing scenarios with lossy buffering. For
lossless buffering, however, we also need to take buffer-full events into account.

Let�B ⊆ � be the subset of all event models which are non-triggering and queued
in the buffer. Let δB denote the OR-join (cf. Eq. 3) of all input event models in�B , and
let m denote the size of the buffer in number of CAN frames. Now, we can construct
best-case and worst-case scenarios to derive the combined output event model δ̂.
Suppose that at time t0 the buffer has just been filled with m̃ ∈ [0,m] CAN frames
(i.e. frame m̃ just arrived), such that m − m̃ additional frames are required to transmit
the buffer. This implies that the last buffer transmission was m̃ + 1 frames before t0
(one frame to transmit the buffer and then m̃ frames to fill the buffer up to time t0).
So, two output frames (of δ̂) are m̃ + 1+m − m̃ = m + 1 input frames (of δB) apart.
In the worst-case/best-case the minimum/maximum-distance between these two input
frames is described by δ−

B (m + 1)/δ+
B (m + 1). This argumentation can be generalized

to:

n ≥ 2 : δ̂−(n) = δ−
B ((n − 1)m + 1)

δ̂+(n) = δ+
B ((n − 1)m + 1)

(4)

5.3.5 Buffer-full, trigger frames, buffer timeout

Here, we combine the buffer-full event with trigger frames and the buffer timeout.
Let δtr denote the OR-join of �T which contains all triggering event models, i.e.
trigger frames and buffer timeout (cf. Eq. 3). Any n frames observed at the output
of the multiplexer can be decomposed into a number of frames triggered by single
trigger events ntr and a number of frames triggered by buffer-full events nbuf, i.e.
n = ntr + nbuf. Now, the timing of the output events depends on the number of trigger
frames and buffer-full events:

δ̂−(nbuf, ntr) = max{δ−
B ((nbuf − 1) · m + 1), δ−

tr (ntr)}
δ̂+(nbuf, ntr) = max{δ+

B ((nbuf − 1) · m + 1), δ+
tr (ntr)}

(5)

As the decomposition n = ntr + nbuf is unconstrained and any combination can
possibly occur, we must find the worst-case/best-case combination:

δ̂−(n) = min{δ̂−(nbuf, ntr) | nbuf + ntr = n}
δ̂+(n) = min{δ̂+(nbuf, ntr) | nbuf + ntr = n} (6)

123

Real-Time Syst (2016) 52:88–112 99

(a) (b)

Fig. 5 Per-frame timeout examples

Note that δ̂+(n), like its counterpart, is the minimum over all combinations. This is
because no trigger condition that occurs within the considered time window must be
missed.

5.3.6 Per-frame timeouts

In the per-frame timeout triggering strategy, CAN frames can be associated with an
individual timeout, which then triggers the transmission of an Ethernet frame. When
such a CAN frame arrives at a gateway, it is guaranteed to be sent out (as part of an
Ethernet frame) after at least its timeout, i.e. the timeout allows to specify an upper
bound on the CAN frame’s residence time in the gateway.

Per-frame timeout triggering can be approximated by the buffer timeout strategy
by using the minimum of all frame timeouts as the buffer’s timeout δto. This approach
assumes that, in the worst-case, a CAN frame of the stream with the shortest timeout
arrives just after the buffer has been sent (cf. e1 Fig. 5b). Care must be taken when
deriving the sampling delay for each steam (cf. Sect. 5.4 below). By definition of
per-frame timeouts, the worst-case sampling delay is the frame’s timeout. However,
this approximation is clearly an overestimation.

Deriving tighter worst-case output event models for per-frame timeouts is hard,
due to the complex interaction of the input event streams in this strategy. The trigger-
ing strategies we presented so far have in common that the trigger condition, which
releases an Ethernet frame, occurs concurrently with the arrival of an input event, e.g.
a timeout which acts as the exclusive trigger or the event which triggers the buffer to
be sent in the buffer-full strategy. In a per-frame timeout strategy, however, this trig-
ger condition occurs some time (i.e. the timeout) after the corresponding input event
arrives. Depending on the arrival pattern of the input events and their timeouts, there
can be masking effects, where one frame completely masks the actions of another
frame. An example is shown in Fig. 5 where the arrival time of event e1 (within its jit-
ter interval) determines whether it is masked by event e2’s timeout, i.e. it is part of the
Ethernet frame which is triggered by e2’s timeout (at time t0 in Fig. 5a), or contributes
to the output event model by triggering another Ethernet frame (at t1 in Fig. 5b).

Hence, to derive the worst-case output event model, we must consider the relative
arrival times of the events of all input event models. Per input event, these times can
be anywhere within its jitter interval. Additionally, the relative position of the jitter

123

100 Real-Time Syst (2016) 52:88–112

intervals of different input event models can be affected by an offset between these
input event models. This problem is complex to solve, as we have to consider all event
arrival times within their respective jitter intervals together with all offsets between
the input event models to find the worst-case output event model.

If we introduce certain assumptions to simplify this problem, we can outline a con-
structive method to derive output event models for per-frame timeouts. First, assuming
strictly periodic input event models can be used to eliminate the jitter interval problem.
For each input event model, this assumption implies that the timeouts within this input
event model are also periodic with the input event model’s period, i.e. the (minimum)
distance between any two timeouts of this input event model also is the input event
model’s period. Second, only trying to find the occurrence of an input event’s next
timeout without considering its history beyond its last timeout can be used to elimi-
nate the offset problem between different input event models. Now, given an output
event, for each per-frame timeout event model, the occurrence of its next timeout can
be derived by taking into account that this timeout must occur (a) at least one period
after the input event’s last timeout or (b) by its timeout after the last output event (as
in Fig. 5b), whichever occurs last. The next output event occurs at the minimum over
all these new timeouts.

Event models from real CAN buses typically have jitter, such that this method
cannot be applied directly. Moreover, if we relaxed the first assumption and allowed
jitter, then theminimum distances between the timeouts of the per-frame timeout event
models would decrease. If the jitter grows too large, in our argumentation above, case
(b) will dominate case (a), which is equivalent to the initially presented overestimation
of using the minimum of all frame timeouts as the buffer’s timeout.

5.4 Sampling delay

As discussed in Sect. 3, the end-to-end latency along a path can be computed by
summing up the response times of the contained tasks (cf. Eq. 1). The multiplexing
join, however, induces an additional delay for non-trigger frames because an input
event does not trigger an output event immediately. This is similar to a scenario where
the inputs of a subsystem are periodically sampled, which results in a time-triggered
rather than an event-triggered activation of the subsystem (Feiertag et al. 2008). In the
multiplexing scenario, we therefore add a similar sampling delay (denoted Ls

i) to the
end-to-end latency of non-trigger frames, which results from the maximum distance
between two output events of the corresponding multiplexing join:

Ls
i =

{
0 if δi ∈ �tr

δ̂+(2) otherwise
(7)

5.5 Demultiplexing event models

The demultiplexing problem is the inverse of the multiplexing problem: Given a com-

bined input event model δ̂
′
, we have to find the set of individual output event models

123

Real-Time Syst (2016) 52:88–112 101

�′ = {δ′
0, δ

′
1, . . . , δ

′
n} (cf. Fig. 4). The individual output event models δ′

i , in turn,
are defined by their lower and upper bounds. In the following, we discuss how these
bounds can be derived conservatively. We start with a naive approach to illustrate the
general demultiplexing problem before we proceed to present a more sophisticated
approach that is guaranteed to preserve the load on the egress CAN bus.

5.5.1 Naive bounds

The naive approach is based on the idea that each combined event at the demultiplexer
(incomingEthernet frame) can inducemultiple demultiplexed events (CANframes) for
each stream. Hence we can establish the naive bounds by scaling the combined event
model with the minimum/maximum number of contained events for the particular
stream.

For lossy buffering, there can be at most a single CAN frame of each stream, as,
during multiplexing, old CAN frames will always be updated (overwritten) by the
most recent ones. Hence, the upper bounds of the demultiplexed event models η′

i on
the egress side follow the upper bound of the combined input event model from the
incoming Ethernet frame: η′+

i (�t) = η̂′+(�t). The number of output events of a
particular outgoing event model interface is lower bounded by zero at all times, i.e.
η′−
i (�t) = 0. Again, η′

i can be converted to δ′
i (Diemer et al. 2012a).

Under lossless buffering, the number of CAN frames in a buffer (incoming Ethernet
frame) depends on the multiplexing strategy (M) and the arrival pattern of the CAN
frames (δi) on the ingress gateway. We can derive an upper bound for the number
of CAN frames of each stream j by assuming that the CAN frames of this stream
arrived as fast as possible (δ−

j), while the CAN frames of all other streams i 	= j

arrived as late as possible (δ+
i). This represents the worst possible combination of

event arrivals w.r.t. the number of events from stream j , as events from stream j cannot
arrive faster and events from other streams cannot arrive slower. More generally, we
let � j denote this set of event models so that we can calculate a combined output
event model δ̂ j based on these assumptions dependent on the multiplexing strategy:
δ̂ j = M(� j). We can then bound the number of CAN frames N j of stream j from
above by calculating the number of events of stream j that can arrive between two
output events: N j = η+

j (δ̂+
j (2)). Thus, at the egress gateway, the maximum number of

CAN frames of stream j in a single Ethernet frame can be upper bounded by scaling
the combined input event model by N j : η

′+
j (�t) = N j η̂

′+
j (�t). As in the lossy case,

the number of output events of a particular outgoing lossless event model interface is
lower bounded by zero at all times, i.e. η′−

j (�t) = 0.
For both cases, lossy and lossless, this is an overly pessimistic approximation, as

it (conservatively) underestimates/overestimates the minimum/maximum number of
CAN frames for each multiplexed stream inside every incoming Ethernet frame with-
out respecting any correlations between the scenarios. E.g. assuming the maximum
number of CAN frames for each multiplexed stream (per incoming Ethernet frame)
can lead to mutually exclusive worst-case scenarios for the upper event bounds: under
buffer-full buffering, for example, we generally have

∑
0≤i<|�| Ni ≥ m, where m

is the size of the buffer (number of CAN frames per Ethernet frame). Consequently,

123

102 Real-Time Syst (2016) 52:88–112

by using this naive approach, the (artificially) increased number of CAN frames on
the egress side potentially induces a higher load and jitter on the egress gateway and
CAN bus(es). This is a major drawback as we have observed that (especially) CAN
buses can be easily overloaded, i.e. deemed unscheduable, by using this approach.
Although this could be improved by deriving bounds on the number of CAN frames
within multiple consecutive Ethernet frames instead of applying the same N j on every
single Ethernet frame, we present another approach that is guaranteed to preserve the
load on the egress gateway and CAN bus(es) in the next section.

5.5.2 Load-preserving bounds

This approach is based on the assumption that the number of events entering the join
must be equal to the number of events exiting the fork, i.e. we reasonably assume that
no events are lost or added during multiplexing, transmission, and demultiplexing.
It is similar to Perathoner et al. (2010) and Rox and Ernst (2008) as it considers a
hierarchical structure of eventmodels, i.e. inner eventmodels that are propagated along
with their outer event model. More precisely, we propagate the original (inner) input
event models δi ∈ � of the join along with its (outer) output event model δ̂ and add the
path jitter to the inner event models upon their extraction at the demultiplexing fork.
Note, that under lossy buffering this approach can introduce a slight overestimation
in rare cases where there might actually be desired frame loss, e.g. when the buffer
timeout at the join is configured to exceed a stream’s period.

Let J JFi be the path jitter, which is defined as the difference between the worst-case
and best-case end-to-end latency (incl. the sampling delay Ls

i) of a single event of

path i along the subpath î from the join to the fork (cf. Fig. 4 and Eq. 1):

J JFi = l+i − l−i with l+i = Ls
i + L+

î
(1)

l−i = 0 + L−
î
(1)

(8)

The path jitter is then applied as described by Rox and Ernst (2008):

δ′−
i (n) = max(δ−

i (n) − J JFi , 0)

δ′+
i (n) = δ+

i (n) + J JFi
(9)

6 Experiments

Here, we evaluate the presented gateway analysis in a more complex system topology
that combines video, control, and inter-gateway traffic. Our comparison metrics are
the worst-case end-to-end latency guarantee and load from our analysis.

6.1 System topology

Figure 6 depicts the synthetic system topology on which we based our experiments. It
comprises an Ethernet network of one inner switch (S center) and four outer switches

123

Real-Time Syst (2016) 52:88–112 103

Fig. 6 System topology for our experiments comprising a network with five switches, four gateways, two
cameras and five ECUs. Ethernet links are bidirectional 100 Mbit/s links.eps

Table 1 Ethernet traffic: three video streams and two control streams

Name Source Destination PCP Payload (bytes) Period Jitter

Video1 CAM1 ECUCam 2 786 250 µs 0

Video2 CAM2 ECUCam 2 786 250 µs 0

Video3 ECUCam ECUInfo 2 786 250 µs 0

Control 1 ECUCtrl1 ECUCtrl3 3 50 10 ms 10 ms

Control 2 ECUCtrl2 ECUCtrl3 3 100 50 ms 50 ms

PCP denotes the priority (IEEE 802.1Q)

(S1–S4). Moreover, there is a CAN/Ethernet gateway connected to each of the outer
switches. Each of these gateways, in turn, connects a CAN bus to the system. Two
cameras are assigned to S1 and S2. Further, S1, S3, and S4 each connect to a dedicated
ECU. There are also two additional ECUswhich are directly linked to the inner switch.
All these components are interconnected by bidirectional 100 MBit/s links.

6.2 Traffic streams

Table 1 specifies the Ethernet traffic streams in the network. There are two video
streams originating from the cameras that are received and processed by ECUCam.
This ECU sends the resulting video stream to the Infotainment ECU (ECUInfo). Two
additional control traffic streams are sent fromECUCtrl1 andECUCtrl2 to ECUCtrl3.
Control traffic is mapped to a high Ethernet priority (PCP), while video traffic is
mapped to a lower one.

To model the inter-gateway CAN traffic streams between the gateways, we use a
synthesized set of 100 periodic CAN frames with periods between 16 and 1001 ms.
The periods and CAN identifiers of these frames are assigned by random according
to distributions that we observed in real automotive systems. We divided this set
further into two disjunct sets, which are sent from GW1 to GW3 and from GW2 to

123

104 Real-Time Syst (2016) 52:88–112

Table 2 Multiplexed inter-gateway traffic by the source and destination gateway, the buffer size and the
buffer timeout

Source Destination Buffer size Timeout (ms) Period range (ms)

1 GW1 GW3 10 20 0–30

2 GW1 GW3 10 100 90–110

3 GW1 GW3 10 120 110–130

4 GW1 GW3 10 1000 900–1010

5 GW2 GW4 10 40 30–50

6 GW2 GW4 10 60 50–70

7 GW2 GW4 10 80 70–90

8 GW2 GW4 10 140 130–150

9 GW2 GW4 10 280 270–290

10 GW2 GW4 10 480 470–490

A period range is specified, to group similar CAN frames

Table 3 Number of trigger and total number of CAN frames assigned to the multiplexing groups

Group # 1 2 3 4 5 6 7 8 9 10 Total

Assigned frames 17 12 17 5 6 6 10 14 9 4 100

Trigger frames 0 0 1 1 0 0 1 0 1 0 4

WG4, respectively. The former set contains 51 CAN traffic streams, which induce an
asymptotic bus load, i.e. the (theoretical) average load over a time interval of infinite
length, of about 31 % on a 500 kBit/s CAN bus, while the latter set comprises 49
streams, which induce an asymptotic bus load of about 14 %. For the later evaluation,
we set the jitter of the CAN frames to half their periods to accommodate for delays
within parts of the system that we do not model.

We manually assembled these inter-gateway CAN traffic streams into ten multi-
plexing groups as shown in Table 2. For every stream we assume an UDP/IP transport
protocol (i.e. 28 bytes of additional protocol overhead) and assign it Ethernet priority
3, i.e. the same priority, we used for control traffic in Table 1. The CAN frames of
these streams are statically mapped to the Ethernet frames of Table 2 according to their
period, which must match the specified range. The period ranges have been chosen
to match (rounded down/up to the nearest 10 µs) the minimum/maximum periods
of each group’s traffic streams. For a given mapping, the Ethernet frame size can be
computed as described by Diemer et al. (2012b). We also selected some of the CAN
frames to be trigger frames. Table 3 shows how many frames have been assigned to
which group based on this mapping scheme. Note that all frames from GW1/GW2 are
transmitted to GW3/GW4 respectively, which later allows a direct comparison of the
ingress and egress sides.

For each group, we instantiate a multiplexer on the source and a demultiplexer on
the destination gateway (cf. Fig. 4). Assuming a multiplexing strategy using buffer
timeouts, trigger frames, and buffer-full events, the output event models can be derived

123

Real-Time Syst (2016) 52:88–112 105

Table 4 Worst-case latency for video and control streams. 1:1 mapping, multiplexing (mux) and all-in-one
mapping

Stream: Control 1 (µs) Control 2 (µs) Video1 (µs) Video2 (µs) Video3 (µs)

1:1 825 422 671 638 68

mux 349 201 333 313 68

All-in-one 246 131 299 280 68

Table 5 Shared network
resources (switch ports)

Port Traffic streams

S1→Scenter Video1, Control 1, GW1→GW3

S2→Scenter Video2, GW2→GW4

Scenter→ECUCam Video1, Video2

Scenter→S4 Control 1, Control 2, GW2→GW4

S4→ECUCtrl3 Control 1, Control 2

from the arrival patterns of their associated CAN frames. The best-case/worst-case
execution times of the ingress gateway tasks (cf. Sect. 5.1) are estimated to be 10 µs/
20 µs for the RX tasks and 10 µs/50 µs for the TX tasks. Similarly, the execution
times of the egress gateway tasks are assumed to be 10 µs/20 µs for the TX tasks and
10 µs/50 µs plus N j · 5 µs for the RX tasks. For the latter, we additionally account
for processing overhead depending on the maximum number N j of packaged CAN
frames within a single Ethernet frame of group j (cf. Sect. 5.5.1).

6.3 Results

We evaluate our analysis by comparing the multiplexing scenario defined by Tables 2
and 3 (i.e. buffer timeouts, trigger frames, and buffer-full events) to the two extrema
discussed in the introduction: a 1:1 mapping (i.e. transmitting each CAN frame sep-
arately) as well as to an all-in-one mapping (i.e. transmitting as many CAN frames
together as possible). More precisely, the latter scenario is defined by two multiplex-
ing groups, one that transmits all CAN frames from GW1 to GW3 and one for the
CAN frames from GW2 to GW4. There is no buffer timeout in the all-in-one scenario
whereas the buffer size is raised to 30. In all scenarios, we use the load-preserving
demultiplexing approach from Sect. 5.5.2.

Table 4 shows the resulting end-to-end latency guarantees of the Ethernet traffic
streams listed in Table 1 for all three scenarios. As the inter-gateway traffic is assigned
the highest Ethernet priority, it interfereswith the video and control streams. The points
of possible interference (i.e. shared resources) are listed in Table 5. As multiplexing
reduces the number of traffic streams injected by the gateways considerably, the inter-
ference with other traffic streams decreases as well. Hence their end-to-end latency
improves by at least 50 % except for stream Video3, which does not experience any

123

106 Real-Time Syst (2016) 52:88–112

Table 6 Load comparison between 1:1 mapping, multiplexing (mux) and all-in-one mapping on the gate-
ways and the ports of the central switch

Res.: Scenter→ Scenter→ Scenter Scenter
GW1 (%) GW2 (%) GW3 (%) GW4 (%) ECUCam (%) ECUInfo (%) →S3 (%) →S4 (%)

1:1 8.2 3.7 8.2 3.7 54.9 27.4 0.78 0.48

mux 3.3 1.7 4.2 2.3 54.9 27.4 0.23 0.28

All-in-one 2.6 1.2 3.3 1.7 54.9 27.4 0.12 0.21

interference from other streams. As expected, the all-in-one scenario minimizes the
interference on other streams.

Table 6 shows the asymptotic load for the gateways and selected ports on the central
switch as a result of the worst-case analysis. Due to the low bandwidth requirements
of the inter-gateway traffic, there is only a small improvement on the network load in
the multiplexing scenario. The gateway load, in contrast, is significantly lower under
multiplexing, as less Ethernet packets must be processed. Note that the load increase
on the egress gateways (GW3 and GW4) results from the higher execution times of
the RX tasks (which depend on the number of CAN frames in an Ethernet frame) in
comparison to the corresponding TX tasks on the ingress gateways (GW1 and GW2).
This additional load, however, is only required during the demultiplexing process on
the egress gateway. The asymptotic load induced by the demultiplexed CAN streams
on the egress CAN buses (CAN buses 2 and 4), in contrast, is preserved and equals
the asymptotic load on the corresponding ingress CAN buses.

Each multiplexing strategy introduces a certain amount of jitter, which is caused
by the sampling delay (if present) and the Ethernet latency difference during frame
transmissions. This jitter can (potentially) lead to transient overload peaks on the egress
side. Figure 7 illustrates how the different approaches affect the (transient) worst-case
load induced by the inter-gateway CAN frames on the pretended ingress and egress
CAN buses. Specifically, the figure shows the transient worst-case load (on the y-axis)
versus the time interval in which this load can be observed (on the x-axis). Note that,
as the traffic on ingress CAN buses 1 and 2 is not multiplexed, all approaches perform
the same on these two buses. As expected, the latency a CAN frame experiences on
the path between the ingress and egress gateway results in additional output jitter and
therefore (potentially) a bursty arrival at the egress CAN bus. Asymptotically, there
is no difference between the load on the ingress and egress buses as our analysis is
load preserving, i.e., although not shown, the asymptotic load on egress buses 3 and 4
approaches loads of 31 and 14% (respectively) as the time interval approaches infinity.
The lowest (transient) overload can be seen for the 1:1 mapping whereas the all-in-one
mapping results in the highest overload. This is also reflected in the latency results for
the inter-gateway traffic.

Figure 8 shows the worst-case end-to-end (i.e. gateway-to-gateway) latency guar-
antees of the inter-gateway traffic in all scenarios relative to the periods of the frames.
The frames are sorted by their period. In 1:1mapping, the worst-case response times of
the corresponding gateway tasks dominate, which, in turn, are affected by their priority

123

Real-Time Syst (2016) 52:88–112 107

Fig. 7 Worst-case transient load on the (pretended) ingress (Bus 1, Bus 2) and egress (Bus 3, Bus 4) CAN
buses

assignment (CAN frames with lower IDs have higher priority). This becomes clear
by looking at the frames of the first group (first 17 bars in Fig. 8) that all have similar
periods of 16–23 ms but quite different latencies (cf. Fig. 9, which shows the absolute
latencies for the 8-th (#671) and 9-th (#1854) frames of the group). Looking at the
longer-periodic frames, we can identify some room for improvement to exploit in the
multiplexing scenario as their latency is much lower than their period. In the multi-
plexing scenario, for non-trigger frames, the buffer timeouts, i.e. the sampling delays,
dominate. The latency of trigger frames (#1420, #822, #1966, #1462) is improved over
the latency from 1:1 multiplexing (e.g. compare the absolute latencies of frame #1420
in Fig. 9a, b). Contrastingly, the all-in-one scenario is dominated by the buffer-full
events and trigger frames, resulting in large latencies for the lower-periodic frames.
Figure 8 clearly shows that we can influence the frame latencies (in both directions)
by multiplexing. We will continue this train of thought when we discuss the impact of
different multiplexing parameters in Fig. 10.

Figure 9 depicts the latency contributions of the Ethernet, the ingress and egress
gateways, as well as the sampling delay for four selected frames and thereby further
illustrates the dominating factors. The frames are selected from two different groups
in the multiplexing and all-in-one scenario. We notice that the sampling delay in
Fig. 9 equals the corresponding buffer timeouts and that the trigger frame #1420 is
not affected by the sampling delay. In the all-in-one scenario (Fig. 9), we observe that
frames #671 and #1854 experience a sampling delay of ∼53 ms that results from the

123

108 Real-Time Syst (2016) 52:88–112

Fig. 8 Period-relativeworst-case end-to-end latency of CAN frames in the 1:1, multiplexing, and all-in-one
scenarios. The vertical lines represent the group boundaries from Table 2

(a) (b) (c)

Fig. 9 Worst-case end-to-end latency contributions of selected CAN frames for 1:1 mapping (a), multi-
plexing (b), and all-in-one mapping (c)

buffer-full event whereas frame #1297 has a sampling delay of ∼119 ms resulting
from the period (79 ms) and jitter (39.5 ms) of trigger frame #1420.

Next, we evaluate the effect of different multiplexing parameters on the end-to-end
latencies guarantees. In the following, we focus on frame #822, which is the only
trigger frame of group 3. The buffers for all groups in Table 3 are evaluated for sizes
2, 5, 10, 15, and 20 (named BUF2 to BUF20). We vary the timeouts for each group
within 0, 25, 50, 75, and 100 % of their period range (named TO0.0 to TO1.0). For
group 3, 0 % corresponds to 110 ms and 100 % to 130 ms. At the same time, these

123

Real-Time Syst (2016) 52:88–112 109

Fig. 10 Worst-case end-to-end latency guarantees of frame #822 for different buffer sizes and timeouts

parameters lead to 90 and 110 ms for group 2. For group 1 the 0 % bound is set to 5
ms to prevent overload at the gateways.

Figure 10 shows the effect of these parameters on the end-to-end latency guarantees
of frame #822. The subgraphs on the right show the latencies when frame #822 is
considered as a trigger frame (as originally specified), whereas for the subgraphs on
the left, we consider frame #822 as a non-trigger frame, i.e. in this scenario group 3
does not contain any trigger frames.

The latencies of the non-trigger setup are dominated by the sampling delay δ+(2),
which is the longest distance between any two output events (Eq. 7). Thus, during
timeout evaluation, the sampling delay corresponds to the timeouts. In the buffer size
evaluation, the sampling delay increases with buffer size, but there is a plateau between
BUF2 and BUF15. This is because many frames in group 3 have roughly the same
δ+(n) leading to a burst in δ+

B (n) (Eq. 4), which is large enough to generate the output
events for BUF2 to BUF15 at nearly the same time.

In the trigger setup, smaller buffers inducemore gateway and Ethernet load, leading
to higher interference, and thus, longer latencies. At the same time, as long as the
buffer-full events are dominating, a larger buffer size also increases the execution
time of the RX tasks on the egress gateway in our model, as this time depends on the
number of CAN frames in an incoming Ethernet frame. At BUF15, we can observe
that the increased execution time overbalances the reduced interference. FromBUF15,
the group’s trigger event begins to dominate buffer-full events. There is effectively no
influence of different timeouts on the latency for frame #822. This is expected, as, in
this scenario, frame #822 is a trigger frame whose period is in the order of the smallest
timeout (TO0.0).

123

110 Real-Time Syst (2016) 52:88–112

In all scenarios, the gateway load is lower than in the 1:1 scenario (∼ 8 %). Short
timeouts and small buffers induce a high load, while large timeouts and big buffers
result in lower loads.

6.4 Discussion

The focus of our evaluation was to demonstrate how multiplexing affects the design
metrics worst-case end-to-end latency and load. In general (and unsurprisingly),
latency can be reduced at the cost of increased load and vice versa. However, our
formal analysis allows to quantify this trade-off, which enables future optimizations
to find the best multiplexing parameters for a given problem.

Multiplexing (compared to a 1:1 mapping of CAN frames to Ethernet frames) can
reduce the number of transmitted Ethernet frames, which leads to less load on the
gateways (less frames require processing) and less interfering frames in the Ethernet
network (cf. Table 6). Consequently, less interfering Ethernet frames lead to smaller
end-to-end latencies of other (non-inter-gateway) Ethernet traffic (cf. Table 4). For
inter-gateway traffic, however, multiplexing can introduce sampling delay, which neg-
atively affects its end-to-end latencies (compared to a 1:1 mapping). This sampling
delay can be controlled via different multiplexing parameters, e.g. timeouts or buffer
sizes (cf. Figs. 8, 10). In general, smaller timeouts or smaller buffer sizes decrease the
sampling delay at the cost of increased load and an increased number of interfering
Ethernet frames. By making frames triggering, the sampling delay can be avoided
entirely (cf. Figs. 8, 9). In fact, the 1:1 mapping is a scenario where all frames are
trigger frames.

We have also shown that there can be complex interdependencies between different
multiplexing parameters (cf. Fig. 10). Larger buffer sizes, for example, can reduce the
number of Ethernet frames, which need to be processed. This can reduce the load,
but at the same time more time is required at the egress gateway to extract individual
CAN frames from larger Ethernet frames. Some triggering strategies also introduce
dependencies of the output event models on the input event models, e.g. buffer-full
triggering (cf. sampling delay plateau in the upper left subfigure of Fig. 10), while
for others the output event models are independent of the input event models, e.g.
buffer timeouts, or are dominated by a single trigger frame (cf. Fig. 10, lower right
subfigure).

7 Conclusion

In this article, we presented a formal system-level analysis approach of heterogeneous,
in-vehicle Ethernet-based systems, focusing on CAN-to-Ethernet gateway strategies.
We considered complex frame packing effects with various triggering strategies such
as buffer timeout, buffer-full as well as trigger frames. We modeled and analyzed an
Ethernet-based backbone under different gateway multiplexing strategies. However,
the additional latency introduced by gateway effects such as sampling latency is signif-
icantly larger than Ethernet effects.We showed that end-to-end latency can be adjusted
by trading it for Ethernet and gateway load via different multiplexing parameters and

123

Real-Time Syst (2016) 52:88–112 111

vice versa. Formal analysis is able to reflect such design decisions enabling Ethernet
network optimization guided by formal timing guarantees. This will help to establish
Ethernet-based backbone networks for safety critical systems.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

AUTOSAR (2015) Release 4.2.2, Specification of socket adapter
Ayed H, Mifdaoui A, Fraboul C (2011) Gateway optimization for an heterogeneous avionics network

afdx-can. In: IEEE real-time systems symposium (RTSS)
Bauer H, Scharbarg JL, Fraboul C (2010) Improving the worst-case delay analysis of an afdx network using

an optimized trajectory approach. IEEE Trans Ind Inf 6:521–533
Davis R, Burns A, Bril R, Lukkien J (2007) Controller area network (can) schedulability analysis: refuted,

revisited and revised. Real-Time Syst 35(3):239–272
Diemer J, Rox J, Negrean M, Stein S, Ernst R (2011) Real-time communication analysis for networks with

two-stage arbitration. In: Proceedings of EMSOFT, pp 243–252
Diemer J, Axer P, Ernst R (2012a) Compositional performance analysis in python with pycpa. In: Proceed-

ings of WATERS. http://retis.sssup.it/waters2012/WATERS-2012-Proceedings.pdf
Diemer J, Rox J, Ernst R (2012b) Modeling of ethernet avb networks for worst-case timing analysis. In:

Proceedings of MATHMOD
Feiertag N, Richter K, Nordlander J, Jonsson J (2008) A compositional framework for end-to-end path

delay calculation of automotive systems under different path semantics. In: Work on compositional
theory and technology for real-time embedded systems CRTS

Henia R, Hamann A, JersakM, Racu R, Richter K, Ernst R (2005) System level performance analysis—-the
SymTA/S approach. IEE Proc Comput Digit Tech 152(2):148–166

Herber C, Richter A, Wild T, Herkersdorf A (2015) Real-time capable can to avb ethernet gateway using
frame aggregation and scheduling. In: Proceedings of design, automation and test in Europe (DATE)

Kern A, Reinhard D, Streichert T, Teich J (2011) Gateway strategies for embedding of automotive CAN-
frames into ethernet-packets and vice versa. In: Architecture of computing systems, pp 259–270

Lehoczky J (1990) Fixed priority scheduling of periodic task sets with arbitrary deadlines. In: Proceedings
of 11th RTSS, pp 201–209. doi:10.1109/REAL.1990.128748

Nacer A, Jaffres-Runser K, Scharbarg JL, Fraboul C (2013) Strategies for the interconnection of can buses
through an ethernet switch. In: IEEE international symposium on industrial embedded systems (SIES),
pp 77–80

Perathoner S, Rein T, Thiele L, Lampka K, Rox J (2010) Modeling structured event streams in system level
performance analysis. In: ACM SIGPLAN/SIGBED conference on languages, compilers and tools
for embedded systems (LCTES). ACM, Sweden, pp 37–46

Pop P, Eles P, Peng Z (2005) Schedulability-driven frame packing for multicluster distributed embedded
systems. ACM Trans Embed Comput Syst 4(1):112–140

Revsbech K, Schiøler H, Madsen TK, Nielsen JJ (2011) Worst-case traversal time modelling of ethernet
based in-car networks using real time calculus. In: Proceedings of NEW2AN, pp 219–230

Richter K (2005) Compositional scheduling analysis using standard event models. Ph.D. Thesis, TU Braun-
schweig

Rox J, Ernst R (2008) Modeling event stream hierarchies with hierarchical event models. In: Proceedings
of design, automation and test in Europe DATE’08, pp 492–497. doi:10.1109/DATE.2008.4484729

Rox J, Ernst R (2010) Formal timing analysis of full duplex switched based ethernet network architectures.
In: SAE World Congress, vol System level architecture design tools and methods

Saket R, Navet N (2006) Frame packing algorithms for automotive applications. J Embed Comput 2:93–102
Scharbarg J, Boyer M, Fraboul C (2005) Can-ethernet architectures for real-time applications. In: IEEE

conference on emerging technologies and factory automation (ETFA), vol 2, pp 8–252

123

http://creativecommons.org/licenses/by/4.0/
http://retis.sssup.it/waters2012/WATERS-2012-Proceedings.pdf
http://dx.doi.org/10.1109/REAL.1990.128748
http://dx.doi.org/10.1109/DATE.2008.4484729

112 Real-Time Syst (2016) 52:88–112

Schliecker S, Rox J, Ivers M, Ernst R (2008) Providing accurate event models for the analysis of heteroge-
neous multiprocessor systems. In: Proceedings of CODES-ISSS, pp 185–190

Thiele D, Axer P, Ernst R, Seyler JR (2014) Improving formal timing analysis of switched ethernet by
exploiting traffic stream correlations. In: Proceedings of CODE+ISSS, New Delhi

Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems. In:
Proceedings of IEEE international symposium on circuits and systems (ISCAS), vol 4, pp 101–104.
doi:10.1109/ISCAS.2000.858698

Zhang L, Gao H, Kaynak O (2013) Network-induced constraints in networked control systems—a survey.
IEEE Trans Ind Inf 9(1):403–416

123

http://dx.doi.org/10.1109/ISCAS.2000.858698

	Formal timing analysis of CAN-to-Ethernet gateway strategies in automotive networks
	Abstract
	1 Introduction
	2 Related work
	3 Compositional performance analysis
	4 Modeling automotive networks
	5 Ethernet gateways
	5.1 CPA gateway model
	5.2 Multiplexing strategies
	5.3 Multiplexing event models
	5.3.1 Buffer timeout
	5.3.2 Trigger frames
	5.3.3 Trigger frames with buffer timeout
	5.3.4 Buffer-full
	5.3.5 Buffer-full, trigger frames, buffer timeout
	5.3.6 Per-frame timeouts

	5.4 Sampling delay
	5.5 Demultiplexing event models
	5.5.1 Naive bounds
	5.5.2 Load-preserving bounds

	6 Experiments
	6.1 System topology
	6.2 Traffic streams
	6.3 Results
	6.4 Discussion

	7 Conclusion
	References

