
Durham E-Theses

Parallel simulation techniques for telecommunication

network modelling

Hind, Alan

How to cite:

Hind, Alan (1994) Parallel simulation techniques for telecommunication network modelling, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5520/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5520/
 http://etheses.dur.ac.uk/5520/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation f rom it should be published without

his prior written consent and information derived

f rom it should be acknowledged.

Parallel Simulation Techniques

Telecommunication Network Modelling

Alan Hind

B.Sc. (Salford)

School of Engineering and Computer Science

University of Durham

A thesis submitted in partial fulfilment of the requirements

of the Council of the University of Durham for the Degree

of Doctor of Philosophy (Ph.D.) .

January 1994

1

° ? JUM mh

Abstract

In this thesis, we consider the application of parallel simulation to the performance

modelling of telecommunication networks.

A largely automated approach was f i rs t explored using a parallelizing compiler to speed­

up the simulation of simple models of circuit-switched networks. This yielded reasonable

results for relatively l i t t l e effor t compared w i t h other approaches. However, more complex

simulation models of packet- and cell-based telecommunication networks, requiring the use

of discrete event techniques, need an alternative approach.

A cri t ical review of parallel discrete event simulation indicated that a distr ibuted model

components approach using conservative or opt imist ic synchronization would be wor th ex­

ploring. Experiments were therefore conducted using simulation models of queueing net­

works and Asynchronous Transfer Mode (A T M) networks to explore the potent ia l speed-up

possible using this approach. Specifically, i t is shown tha t these techniques can be used

successfully to speed-up the execution of useful telecommunication network simulations.

A detailed investigation has demonstrated that conservative synchronization performs

very well for applications w i t h good lookahead properties and sufficient message traff ic

density and, given such properties, w i l l significantly ou tper fo rm opt imist ic synchronization.

Opt imis t ic synchronization, however, gives reasonable speed-up for models w i t h a wider

range of such properties and can be optimized for speed-up and memory usage at r un t ime.

Thus, i t is confirmed as being more generally applicable par t icular ly as model development

is somewhat easier than for conservative synchronization. This has to be balanced against

the more di f f icul t task of developing and debugging an opt imis t ic synchronization kernel

and the application models.

i i

VZO Gil ATI A

i i i

Acknowledgments

The fol lowing people have been v i ta l to the product ion of this work; either in their direct

advice and input or jus t in pu t t ing up w i t h the fact that I was busy doing this.

9 To my wife, Angie, and my children, Ben and Heather - for their love.

o To my parents - for their encouragement.

e To my supervisor, Professor Phi l Mars of the University of D u r h a m - for his direction

and advice.

<s> To Neil Macfadyen of B T . Laboratories, Core and Global Networks Division - for

discussions wi thout number and enthusiasm wi thou t bounds.

e To Richard Earnshaw of the University of Twente, The Netherlands - for friendship,

working partnership and the A T M . Simulator.

• To Bruno Preiss and Wayne Loucks at the University of Waterloo, Ontario, Canada

- for their k ind hospital i ty when visi t ing their country and for Y A D D E S .

• To Ron Kerr and Kevin Conner of the Comput ing Laboratory of the University of

Newcastle-upon-Tyne - for allowing me access to N E W T O N , and for their t ime and

advice.

» To Steve Turner at the University of Exeter and Br ian Roberts, Chris Booth and

David Bruce at D R A . Malvern - for their fr iendship, lively discussion and T W S I M .

• To John, Raghu, M a t t , Phi l l ip , Jeremy, Chen and Dav id i n the lab - for a good laugh

when in v i t a l need.

• To Sylvia - for all the arrangements.

iv

The fol lowing trademarks are acknowledged: B T . and Br i t i sh Telecom are trademarks of

Bri t i sh Telecommunications p i c ; IMS. and occam are trademarks of Inmos Limi ted ; I B M . ,

SNA. and P C / A T . are a trademarks of Internat ional Business Machines Corp.; 3L is a

trademark of 3L Limi ted ; V A X is a trademark of Dig i t a l Equipment Corp.; Sun is a trade­

mark of Sun Microsystems Corp.; Ethernet is a trademark of Xerox Corp.; M u l t i m a x is a

trademark of Encore Computer Corp.; and Sim+-(- and Jade is a trademark of Jade Sim­

ulations Internat ional Corp.; Comnet II .5 and ModSim are trademarks of C A C I Products

Company Inc.

Declaration

I hereby declare tha t this thesis is a record of work undertaken by myself, that it has not

been the subject of any previous application for a degree, and that all sources of in format ion

have been duly acknowledged.

© C o p y r i g h t 1994, A l a n H i n d

The copyright of this thesis rests w i t h the author. No quotat ion f r o m i t should be published

wi thout his wr i t t en consent, and in format ion derived f r o m i t should be acknowledged.

v i

Contents

1 I n t r o d u c t i o n 1

1.1 Performance Evaluation 1

1.2 Simulation Objectives 3

1.3 Simulation Speed-up 5

1.3.1 Amdahl ' s Law 9

1.4 Parallel Hardware Architectures 11

1.5 Outl ine of Thesis 16

2 A R e v i e w of P a r a l l e l D i s c r e t e E v e n t S i m u l a t i o n 19

2.1 In t roduc t ion 19

2.2 Parallelizing Compilers 21

2.3 Dis t r ibuted Simulation Experiments 24

2.4 Dis t r ibuted Simulation Functions 25

2.5 Dis t r ibuted Simulation Events 27

2.6 Dis t r ibuted Simulation Model Components 28

2.7 Combined Approaches 29

2.8 T ime Parallelism 30

2.9 Summary 32

3 S y n c h r o n i z a t i o n A p p r o a c h e s for D i s t r i b u t e d M o d e l C o m p o n e n t s 34

3.1 In t roduc t ion 34

3.2 Synchronization in Ac t ion 35

3.3 Conservative Synchronization Approaches 38

3.3.1 Performance of Conservative Synchronization Approaches 43

3.3.2 Cri t ique of Conservative Synchronization Approaches 44

3.4 Synchronous Approaches 45

v i i

3.4.1 Performance of Synchronous Approaches 48

3.4.2 Cri t ique of Synchronous Approaches 48

3.5 Optimist ic Synchronization Approaches 49

3.5.1 Enhancements to Optimist ic Synchronization Approaches 50

3.5.2 Performance of Opt imist ic Synchronization Approaches 57

3.5.3 Cri t ique of Opt imist ic Synchronization Approaches 59

3.6 Summary 61

4 P a r a l l e l S i m u l a t i o n of C i r c u i t - S w i t c h e d N e t w o r k s using a Para l l e l i z ing

C o m p i l e r 63

4.1 In t roduc t ion 63

4.2 The Testbed Architecture 65

4.2.1 Hardware Architecture 65

4.2.2 Software Architecture 66

4.2.3 Execution Model 67

4.3 Discussion of Results 68

4.3.1 In t roduct ion 68

4.3.2 Uniprocessor Simulation Results 71

4.3.3 Multiprocessor Simulation Results for the Five-node Model 72

4.3.4 Multiprocessor Simulation Results for the Ten-node Model 73

4.3.5 Multiprocessor Simulation Results for the Twenty-node Model . . . 74

4.4 Conclusions 75

5 P a r a l l e l S i m u l a t i o n of Q u e u e i n g N e t w o r k s 85

5.1 In t roduc t ion 85

5.2 Y A D D E S — Yet Another Dis t r ibuted Discrete Event Simulator 86

5.2.1 Sequential Event-list Synchronization 87

5.2.2 Dis t r ibuted Mul t ip l e Event-list Synchronization 88

5.2.3 Conservative Dis t r ibu ted Event-list Synchronization 88

5.2.4 Opt imist ic Dis t r ibuted Simulation Synchronization 89

5.3 The Simulation Models 90

5.4 Discussion of Results 93

5.4.1 I n i t i a l Results for the Closed Stochastic Queueing Network 93

5.4.2 Ma in Results for the Closed Stochastic Queueing Network 94

v i i i

5.4.3 V i r t u a l T ime (V T) Memory Management Results for the Closed Stochas­

tic Queueing Network 98

5.4.4 Discussion of Results for the Tandem Queueing Network 100

5.5 Conclusions 102

6 P a r a l l e l S i m u l a t i o n of A s y n c h r o n o u s T r a n s f e r M o d e N e t w o r k s 135

6.1 In t roduct ion 135

6.2 Broadband Networks 137

6.3 Simulator Architecture 139

6.3.1 The Multiprocessor Testbed 139

6.3.2 The Software Architecture 139

6.4 The Synchronization Mechanism 140

6.5 The Simulator Results 142

6.6 Performance Analysis of the Simulator 142

6.6.1 Performance of Product ion Runs 142

6.6.2 Variations in Lookahead 145

6.6.3 Asymmetr ic Traff ic 147

6.7 Conclusions 147

7 C o n c l u s i o n s a n d F u r t h e r W o r k 159

7.1 Conclusions 159

7.2 Further Work 162

A S i m u l a t i o n M o d e l F i l e s 183

B P u b l i s h e d P a p e r s 184

i x

List of Figures

1.1 Amdahl ' s law 18

3.1 Example network of processes at ini t ial isat ion — all l ink-times are at zero. . 37

3.2 Example network of processes at t ime 2—the link-times represent the time-

stamp of the last message to cross the l ink 38

3.3 Example network of processes—simulated using time windows 46

3.4 Example network of processes—simulated using t ime windows 47

3.5 T ime warp rollback using different state-saving schemes 54

4.1 Shared memory multiprocessor architecture w i t h a single bus and local caches. 65

4.2 Execution trace of a parallelized program on the M u l t i m a x shared memory

multiprocessor 68

4.3 The ten-node sparsely-connected network. The numbers in the square brack­

ets indicate the capacity in circuits of each l ink 70

4.4 Speed-up results for the ten-node fully-connected network comparing the

alternative reference times 77

4.5 Speed-up results for the five-node fully-connected network model 78

4.6 Comparison of percentage run-times used by the two most expensive pro­

cesses using the automatical ly parallelized simulator 79

4.7 Speed-up results for the ten-node fu l ly - and sparsely-connected network models 80

4.8 Speed-up results for the ten-node fully-connected network model showing

means and standard deviations f r o m ten simulation runs 81

4.9 Speed-up results for the twenty-node fully-connected network model 82

4.10 Speed-up results comparing the performance of the hand optimized simulator

for all network models 83

x

4.11 Speed-up results showing the performance of the hand optimized simulator

for the fully-connected network models w i t h Amdahl 's law 84

5.1 A 4-dimensional hypercube 91

5.2 Y A D D E S process model of one switch of the tandem queueing network. . . 92

5.3 Speed-up using mult iple dis tr ibuted event-list (M L) synchronization for the

hypercube of queues 104

5.4 Speed-up using conservative Chandy-Misra synchronization (C M) wi thout

NuLL-message cancellation for the hypercube of queues 105

5.5 Speed-up using conservative Chandy-Misra synchronization (C M) w i t h N U L L -

message cancellation (N M C) for the hypercube of queues 106

5.6 Speed-up using v i r t ua l t ime synchronization (V T) w i t h lazy cancellation and

a C P I of one for the hypercube of queues 107

5.7 Speed-up using v i r t ua l t ime synchronization (V T) w i t h aggressive cancella­

t ion and a C P I of one for the hypercube of queues 108

5.8 Speed-up using v i r tua l t ime synchronization (V T) w i t h lazy cancellation and

a C P I of two for the hypercube of queues 109

5.9 Speed-up using v i r t ua l t ime synchronization (V T) w i t h aggressive cancella­

t ion and a C P I of two for the hypercube of queues 110

5.10 Speed-up using v i r t ua l t ime synchronization (V T) w i t h lazy cancellation and

a C P I of four for the hypercube of queues I l l

5.11 Speed-up using v i r tua l t ime synchronization (V T) w i t h aggressive cancella­

t ion and a C P I of four for the hypercube of queues 112

5.12 Speed-up using v i r t u a l t ime synchronization (V T) w i t h lazy cancellation and

a C P I of eight for the hypercube of queues 113

5.13 Speed-up using v i r t ua l t ime synchronization (V T) w i t h aggressive cancella­

t ion and a C P I of eight for the hypercube of queues 114

5.14 Speed-up using v i r t u a l t ime synchronization (V T) w i t h lazy cancellation and

a C P I of sixteen for the hypercube of queues 115

5.15 Speed-up using v i r t u a l t ime synchronization (V T) w i t h aggressive cancella­

t ion and a C P I of sixteen for the hypercube of queues 116

5.16 Speed-up against C P I for v i r tua l t ime synchronization (V T) on two proces­

sors for the hypercube of queues 117

xi

5.17 Speed-up against C P I for v i r tua l t ime synchronization (V T) on four proces­

sors for the hypercube of queues 118

5.18 Speed-up against C P I for v i r tua l t ime synchronization (V T) on eight proces­

sors for the hypercube of queues 119

5.19 Comparison of synchronization mechanisms for a load of one customer per

queue for the hypercube of queues 120

5.20 Comparison of synchronization mechanisms for a load of four customers per

queue for the hypercube of queues 121

5.21 Comparison of synchronization mechanisms for a load of eight customers per

queue for the hypercube of queues 122

5.22 State memory usage for v i r tua l t ime synchronization (V T) on eight processors

at a load of four customers per queue for the hypercube of queues 123

5.23 Message memory usage for v i r tua l t ime synchronization (V T) on eight pro­

cessors at a load of four customers per queue for the hypercube of queues. . 124

5.24 Tota l memory usage for v i r t ua l t ime synchronization (V T) on eight processors

at a load of four customers per queue for the hypercube of queues 125

5.25 To ta l memory usage against simulation t ime for a C P I of 1, 2, 4, 8 and 16

using v i r t ua l t ime synchronization (V T) on eight processors at a load of four

customers per queue for the hypercube of queues 126

5.26 To ta l memory usage against speed-up for a C P I of 1, 2, 4, 8 and 16 us­

ing v i r tua l t ime synchronization (V T) on eight processors at a load of four

customers per queue for the hypercube of queues 127

5.27 Speed-up comparison of conservative synchronization methods for the tan­

dem queueing network 128

5.28 Speed-up using v i r tua l t ime synchronization (V T) w i t h lazy cancellation for

the tandem queueing network 129

5.29 Speed-up using v i r t ua l t ime synchronization (V T) w i t h aggressive cancella­

t ion for the tandem queueing network 130

5.30 Speed-up against C P I for v i r tua l t ime synchronization (V T) w i t h two pro­

cessors for the tandem queueing network 131

5.31 Speed-up against C P I for v i r tua l t ime synchronization (V T) w i t h four pro­

cessors for the tandem queueing network 132

xii

5.32 Speed-up against C P I for v i r tua l t ime synchronization (V T) wi th eight pro­

cessors for the tandem queueing network 133

5.33 Speed-up comparison of all synchronization mechanisms for the tandem queue­

ing network 134

6.1 High-speed transputer-based telecommunication network simulator — hard­

ware configuration 149

6.2 The overall hierarchy of the simulation model. The Event scheduler is a

control-plane for all of the upper layers 150

6.3 Basic network topology used for the simulator performance analysis runs.

The processor assignments are also shown 151

6.4 Parallel simulation run times as a func t ion of t ra f f ic load for the twelve-node

networks on twelve transputers. The 150 Mbi t s / s times are scaled to take

account of the difference in simulation length 152

6.5 Speed-up curves as a funct ion of t raff ic load. Speed-up is calculated relative

to the optimized or unoptimized uniprocessor simulations 153

6.6 Speed-up (optimized) as a func t ion of NuLL-message rat io . The difference

between the two curves represents the extra parallelism that can be extracted

f r o m the higher speed rings 154

6.7 NuLL-message ra t io (N M R) as a func t ion of load. As might be expected, the

ra t io is largely independent of the r ing speed 155

6.8 Speed-up (optimized) as a func t ion of load for a range of lookahead values

and symmetric and asymmetric t ra f f ic patterns 156

6.9 NuLL-message ra t io (N M R) as a func t ion of load for a range of lookahead

values and symmetric and asymmetric t ra f f ic patterns 157

6.10 Number of NULL-messages normalised against the number at the lowest load

(0.05 calls/source/s) plot ted against l ink load for a selection of source-switch

links 158

x i i i

List of Abbreviat ion

A T M Asynchronous Transfer Mode

B - I S D N Broadband Integrated Services D i g i t a l Network

C M Chandy-Misra

C M B Chandy-Misra-Bryant

C P I Checkpoint Interval

F C F S First-Come-First-Served

G V T Global V i r t u a l T ime

I B M Internat ional Business Machines

I S D N Integrated Services Dig i ta l Network

I / O Input and Outpu t

L A N Local Area Network

L V T Local V i r t u a l T i m e

L P Logical Process

M I M D Mul t ip le Inst ruct ion stream Mul t ip le Da ta stream

M I S D Mul t ip le Inst ruct ion stream Single Da ta stream

M M T M i n i m u m Message T ime

M V T M i n i m u m V i r t u a l T ime

N M C NULL-Message Cancellation

N M R NULL-Message Ratio

P D E S Parallel Discrete Event Simulation

P P Physical Process

R R Round-Robin

S I M D Single Ins t ruct ion stream Mul t ip l e Da ta stream

S I S D Single Ins t ruct ion stream Single Da ta stream

V T V i r t u a l Time

W A N Wide Area Network

Y A D D E S Yet Another Dis t r ibuted Discrete Event Simulator

x iv

Chapter 1

In t roduct ion

1.1 Performance Evaluation

f | ^ elecommunication networks have evolved rapidly over the last decade bo th in their size

-L and complexity. As a direct result of this evolution, a large number of computer aided

engineering techniques have been developed to help the engineer in the design, development

and management of these networks. One of the main issues at stake, part icular ly in the

design stage, is tha t of performance evaluation.

So tha t we can understand the aims and objectives of performance evaluation, we must

first examine the structure of the telecommunication network itself. I ts basic funct ion is

to t ransmit in fo rmat ion through a common transmission facil i ty. The network consists of

switching nodes, multiplexers and demultiplexers connected by various transmission media.

Network users generate messages which must be t ransmi t ted f r o m sources to destinations

w i t h i n the network. The network itself w i l l also generate its own internal signalling messages

to control network operation. The engineer must therefore consider several issues; message

formats , mul t ip lexing and demultiplexing techniques, switching techniques, storage, error

control , rou t ing strategies, f low control , network operation, management functions: to name

but a few. The method used to resolve each of these issues w i l l have some impact on the

overall network performance.

The performance measures of interest to the engineer w i l l depend on the type of net­

work under study, its application, and whether the network uses circuit- or packet-switching.

For a circuit-switched network the impor tan t performance measures are the probabi l i ty of

blocked calls and the associated grade of service. For a packet-switched network, through-

T

i

put , average message delay, l ink ut i l isat ion and buffer use statistics are more useful. Eval­

uat ing network architectures w i t h respect to such performance measures is the job of the

performance engineer.

There are three general approaches that can be used to obta in estimates of such per­

formance measures. We can per form measurements on a real system; we can use analytical

techniques in order to calculate performance estimates f r o m a mathemat ical model; or we

can use computer simulation techniques.

The most direct approach is obviously to measure the performance of an existing net­

work. This is usually d i f f icul t due to the size, complexity and accessibility of such networks.

Access can be dif f icul t as the systems are in constant use and to bui ld a duplicate system

just for performance evaluation purposes is of ten prohibi t ive. However, small model 1 sys­

tems are s t i l l o f ten bu i l t , par t icular ly to aid the design and development stage of a new

system. Such a system is of ten termed a testbed or system emulat ion. I f experimentation is

required on an existing network, i t may be economically impracticable or even dangerous to

suspend the normal operation of the network i n order to per form experiments. Nevertheless

some measurements are always required f r o m existing networks i n order to validate perfor­

mance estimates obtained by other means. Indeed, there is a growing t rend to incorporate

measurement and moni tor ing tools as an integral part of the network management software.

The data f r o m such tools can be used to feed capacity planning tools to answer "what - i f "

type questions about changes to the network capacity and architecture. B E S T / 1 - S N A is

such a capacity planning too l for I B M SNA (System Network Archi tecture) networks which

uses measurement data [1],

Another method of obtaining performance estimates is to use mathematical analysis.

Ana ly t ic models generally require a high degree of abstraction in order to ensure that the

model is tractable. This means tha t the development of an analytic model which accu­

rately reflects the network under s tudy is d i f f icul t and requires considerable effort and skil l .

Ana ly t i c models have great d i f f icu l ty w i t h transient conditions, such as t ra f f ic fluctuations

or component failures, as these are d i f f icul t to express mathematically. Also, i n making

the model tractable, a model may be distorted due to the omission or approximation of

system characteristics which are d i f f icul t to solve analytically. However, once the model is

developed, its solution is generally very fast.

s T h e word model is used here in the sense of a small imitation of the real thing.

2

Simulation techniques allow a network to be modelled at an arbitrary level of detail.

This means that less abstraction is required and also the process of model construction

can be more straightforward. In practice, however, the more secondary detail that can

be abstracted out the faster the simulation will be. Generally speaking, the execution of

a simulation model will use substantially more computing time than an analytical model.

However, in many cases simulation is the only option as an analytic model is inaccurate,

intractable or unavailable. There are interesting statistics concerning the use of RESQ [2],

the research queueing package developed at the I B M Thomas J. Watson Research Centre.

This package allows the user to develop simulation models of communication systems using

either analytic or simulation models based on queueing networks and it was found that over

99% of all the models developed used simulation [3].

These three approaches to network performance evaluation should be used in a comple­

mentary manner in order to validate results and obtain the fastest results to the required

accuracy. Reviews of simulation approaches can be found in Frost et. al. [4] and in Kurose

and Mouftah [3].

1.2 Simulation Objectives

The simulation of a telecommunication network may have one or more objectives: un­

derstanding the behaviour of a system, obtaining estimates of average or worst/best case

performance parameters, guiding the selection of design parameters and/or operating strat­

egies and verifying the simulation results against measurements taken from a real system.

The simulation objective can have a profound impact on how the simulation should be

designed and how it should be run. I f we are only interested in understanding the behaviour

of the system, then we would perhaps like an animated graphical output presentation,

adjustable simulation speed and system parameters: all of this controlled via a good user

interface. I f we are interested in obtaining estimates of performance parameters then we

need the simulation to give us results to the required accuracy with confidence intervals as

fast as possible. For the selection of design parameters, the simulation becomes part of an

optimization loop. Thus the simulation needs to be interactive and fast with controllable

accuracy. The information obtained from the simulation can consist of a number of estimates

of a performance measure corresponding to the random variation of particular parameters.

The information is then used to calculate gradient estimates to predict how to optimize

3

design parameters. I f we are fi t t ing a simulation model to measurements taken from a real

system a number of simulations will have to be performed with different parameter settings

that correspond to the measured result conditions. In this case the statistical properties

of the results are very important so as to be able to predict the accuracy of the simulated

results.

I t is well established that simulations of telecommunication networks are generally slow

to develop and slow to run. As we have already mentioned, the telecommunication networks

we are interested in simulating are large and complex consisting of a great variety of compo­

nent parts. This means that our simulation models will reflect this. Existing networks are

also constantly changing with time as new equipment is installed, old equipment is replaced

and software up-graded. Thus the simulation model of an existing system must keep pace

with the current and predicted changes. Networks always seem to grow and never shrink, so

ever larger simulations are required. A frustrating re-occurrent factor for the performance

engineer is that when larger computing resources become available the network which needs

to be simulated has also grown.

Simulations are also slow for statistical reasons as, for any result to be statistically

significant (ie. to a given accuracy), a sufficient run length, or a number of runs, has to be

performed. The generation of events by a simulation program is usually driven by an input

stream of pseudo-random numbers. These are used to generate lengths of time, lengths

of messages, probabilities etc. As the event generation depends on random numbers then

the performance measures output by the simulation model are themselves stochastic in

nature. Therefore a simulation represents a statistical experiment and the results should

be subjected to careful statistical analysis.

In some cases we may be interested in the behaviour of a system as it progresses from

some initial condition. This is known as the transient response. This usually lasts for a

well-defined period of (simulated) time. I f we are interested in long term average results

(steady state), the transient response must be detected and discarded, or the simulation

must be run for long enough so that the effects of the initial conditions are negligible. The

problem of identifying the transient phase of a simulation is addressed by Schruben [5],

Welch [6] and Heidelberger and Welch [7].

If steady state average results of performance measures are required then we find that

every time we run the simulation with different random number streams we get variations

in our results. If we were to run a simulation ten times and get results within one per cent

4

(say) then we may be confident of our result. I f the variation were much greater, then our

confidence would be less. The generation of confidence intervals based on the variance of

the performance measure over the simulation(s) is therefore very important. These can be

generated by dividing up a single long simulation, without the transient period, into n equal

length time periods and constructing the confidence interval from values of the performance

measure in each interval. Otherwise we can do n separate simulation runs with different

random input streams, again without the transient period. How large n should be is a

difficult but crucial problem, as also is the length of the time periods. These problems are

dealt with by Welch [6] and by Law [8].

For the single run case, if n is too small the samples will be correlated, if n is too large,

excessive simulation time will be used. Nevertheless, the single run case has the advantage

of only having to discard a single transient period. Also, the longer the simulation, the

smaller the variance in the result will be. Where to stop is very much governed by the law

of diminishing returns.

Apart from the two more obvious methods described above, there are other methods

of obtaining confidence intervals from simulation results. The regenerative method is also

based on partitioning a single simulation into independent runs which have the same regen­

eration state. This is a state such that the future progress of the simulation is statistically

the same each time the state is entered. The problem is in recognising a regeneration state

for the particular system of interest. This method is described by Crane and Lemoine [9].

A fourth method, known as the spectral method which also uses a single run, takes into

account the correlation between data gathered by the simulation in successive time periods.

This is described by Heidelberger [10].

Reviews of simulation objectives and their impact on simulation studies have been writ­

ten by Kurose [3] and Righter and Walrand [11].

1.3 Simulation Speed-up

So far we have discussed reasons for the complexity, size and slowness of telecommunication

network simulations; we now need to consider methods of speeding them up. Simulation

run times can be reduced by three methods which may also be used together. The use

of parallel multiprocessor systems, the integration of analytical models into the simulation

where possible (as their solution is faster) known as hybrid simulation, and the use of

5

statistical methods known as variance reduction techniques.

In parallel simulation, the ultimate goal is to obtain a simulator that runs as quickly as

possible; if the speed of the parallel simulator is less than that of a conventional simulator

then there is no reason for using it (and many good reasons for not doing so). However, it

is normally impossible to compare parallel and sequential simulators directly since the two

are written in an entirely different manner and the programmer rarely wants to write both.

Simulation speed-up is defined as the time it takes a single processor system to perform

a simulation divided by the time it takes a multiprocessor system to perform the same

simulation. This definition is incomplete however, as we have to specify what we mean by

performing the simulation on a single or a multiprocessor system. We might think that

a safe definition would be to specify the use of the same type of processor for the single

and multiprocessor systems. However, memory requirements would dictate that the single

processor system would need a much larger memory than any individual processor in the

multiprocessor system: we must therefore allow for this. Another method of estimating

speed-up is to measure the total busy time of each processor during the parallel simulation.

This would give a greater speed-up measure than is actually available in distributing the

simulation over multiple processors.

A good indication of the possible behaviour of the conventional simulator can sometimes

be obtained by running aversion of the parallel simulator optimized to run on a uniprocessor.

The time taken for the uniprocessor version can be compared with that of the multiprocessor

version. The speed-up of the simulator is then the ratio of the time for the multiprocessor

version to that for the uniprocessor. Most processors will perform badly though due to the

overhead of multiple task scheduling necessary.

The speed-up should normally lie in the range between one and n when the multipro­

cessor version is run on n processors. A speed-up of n is said to be unitary, and the success

of the parallel simulator is measured by how close we can approach to unitary speed-up.

A speed-up of less than one, sub-linear, would indicate that the uniprocessor simulation is

faster; which is clearly unacceptable.

Helmbold and McDowell [12] have defined a family of useful qualitative terms for speed­

up (see table 1.1) which includes terms for speed-up greater than n. Super-linear speed-up,

where the measured speed-up grows without bound as the number of processors is in­

creased, has not been observed practically, or even predicted theoretically, for any real

application. Linear super-unitary speed-up however, has been observed; but not for parallel

6

simulation [12]. Such super-unitary applications are characterised by one of two factors.

Firstly, the sequential algorithm used by the uniprocessor version may be constrained to

an inferior method compared with that of the parallel algorithm. Thus, when the unipro­

cessor version uses the "same" algorithm as the multiprocessor, the super-unitary speed-up

becomes unattainable. Secondly, the problem may be NP-complete2 and the best known

algorithm is some form of randomized search whose run time is highly dependent on the

initial search point. When the search is done in parallel with multiple initial search points

the expected run time will drop rapidly as the number of processors is increased.

Term Speed-up, S(n)
sub-linear
linear sub-unitary
unitary
linear super-unitary
super-linear

limn-^oo S(n)/n = 0
0 < l i m ^ o o S(n)/n < 1

limn^oo S{n)/n = 1
1 < limn-^co S(n)/n < oo

l i m n _ l o o S(n)/n = oo

Table 1.1: Qualitative terms for speed-up figures.

A practical argument against using parallel simulation is the well-known difficulty of

debugging parallel programs. In some cases this is tackled by debugging a sequential version

of the parallel program on a single processor using standard debugging tools. For instance,

this technique can be used on a program before using a parallelizing compiler which produces

parallel code automatically from a sequential program (see chapters 2 and 4). Certain

microprocessors used in parallel multiprocessor machines, such as the Inmos transputer, can

effectively support the running of an actual parallel program on a single processor (given

sufficient memory) by task switching. The debugging process is then one step closer to true

parallel debugging. In practice, the problem of debugging a parallel program whilst running

on a multiprocessor can only be addressed by either writing a specialised parallel debugging

tool for the particular multiprocessor, or, by embedding large amounts of tracing code

within the program which prints out information on all the relevant details of the programs

progress. Such detailed tracing will obviously affect the programs run time performance

and will only be required during development and actual debugging. Therefore i t is usually

configured so that it can be switched on (or off) at run time or, preferably, at compile

time. Indeed, this is the technique used by three parallel simulation tools 3 discussed in

2 Non-deterministic Polynomial or NP-complete problems are not solvable in polynomial time by any
known deterministic algorithm and the only guarantee of a globally optimum solution is by exhaustive
search.

3 Y A D D E S (Yet Another Distributed Discrete Event Simulator) described in chapter 5, T W O S (the Time

7

later chapters.

In hybrid simulation, a simulation model is combined in some way with an analytical

model. As the solution of analytical models is generally much faster than that of simulation

models we will get a net speed-up. Hybrid simulation can be approached by decomposition

of the simulation model or by replacing the simulation model with an analytic model, known

as conditional expectation. The simulation model can be decomposed into sub-models,

often in a hierarchical manner, and those parts which have known analytical models are

solved analytically. A Little intelligence is also usually applied to the decision of which

simulation sub-models to replace by considering which sub-models have most bearing on

the performance measure(s) of interest. Those sub-models requiring modelling in greater

depth, or to a greater accuracy, are not replaced. Conditional expectation is useful when

an analytic model of a complete system is available but when the vital parameters are not

known but can be simulated. In this case the simulation model feeds the analytic model in

a subordinate manner.

The speed-up obtained by using hybrid simulation techniques is offset somewhat by its

disadvantages. The application of these techniques is highly dependent on the model. If

analytic models are not known for a given situation then a significant amount of expert

knowledge will be required in order to explore whether one is possible and to generate it i f

it is. In moving to analytic models there is also a consequent loss of the detail compared

with that in the simulation model. This may, or may not, be significant; again expert

knowledge is required to assess this. The loss of detail can also mean that the variance of

the results obtained from a hybrid simulation is significantly increased. For instance, each

simulated traffic source in a packet-switched network model may be replaced by a simple

random number generator and an appropriately chosen shaping distribution. Thus, some

accuracy is lost in return for faster model execution.

Hybrid simulation is a subject in its own right, but does not depend on the use of

parallel or distributed architectures, though it may be used in such an environment. General

discussions of hybrid simulation have been written by Shanthikumar and Sargent [13], Frost

et. al. [4].

Variance reduction techniques exploit the statistical nature of simulation models to

reduce the variance, or uncertainty, in the output results. Thus, for a given length of

Warp Operating System) described in chapter 3 and the University of Durham A T M simulator described in
Chapter 6.

8

simulation run-time a more accurate result is obtained, or, for a given accuracy a shorter

simulation run is possible. This is usually described as statistical speed-up. There are

many well known techniques that fall into the category of variance reduction techniques

such as, antithetic sampling, common random number streams, control variates, importance

sampling and stratified sampling. These techniques have been studied extensively and are

well documented but ha,ve not often been used in real simulation applications. This may

be due to ignorance or, more possibly, to the added complication of their use. Also, most

experiments using variance reduction techniques have reported only modest speed-ups. An

excellent survey of variance reduction techniques has been written recently by McGeoch [14].

Statistical speed-up can be exploited in multiple processor systems. In this case, we

define speed-up as the time taken for a single processor to obtain the estimated perfor­

mance measure(s) of interest to a given accuracy divided by the time taken for the multiple

processor system to obtain the same estimate to the same accuracy. We can now consider

using n processors to do n short simulation runs instead of one long one on a single pro­

cessor. Heidelberger [15] discusses these statistical speed-up issues. His, and other work in

the area, will be discussed in chapter 2.

1.3.1 Amdahl's Law

The speed-up, S(n), of a multiprocessor with n processors is defined to be the ratio of the

total execution time on a uniprocessor to the total execution time on the multiprocessor.

Let us first define a simple model for the execution of a parallel program on a multiprocessor.

We define the total number of operations performed by the complete program as W. Various

types of operation are involved, so we define Wi as the number of times that operations

of type i are performed. Each operation has a cost in processor time, so we can define

Ci(n) as the time taken by all the processors to perform one operation of type i on an

n processor system. Let Ws represent the number of sequential operations and C s (n) the

cost of performing a single sequential operation on an n processor system. Likewise, let Wp

and Cp(n) be the amount and cost of work which exhibits n-fold parallelism. Therefore,

speed-up is defined as;

s (n) WSCS(1) + WPCP(1)
J \ ' l J - W,C3(n) . W p C p (n) ^ J - 1 >

n ' n

I f we define the cost of one sequential operation to be one unit of processor time, then

9

Cs(l) = 1. Also we can assume that when performing a single sequential operation on an

n processor system, one processor is working and the other n — 1 are idle; hence C s (n) =

nCs(l) — n. Further, if we assume that the cost of one operation is the same for sequential

and parallel operation, Cp(l) = 1 and Cp(n) — 1, then equation (1.1) reduces to Amdahl's

law [16].

S(n) = W, + Wp

5 n

(1.2)

Amdahl's law for various values of Wp, where Wp and Ws are expressed as a fraction

of the total number of operations (ie. Wp + Ws — 1), is shown graphically in figure 1.1.

Comparing this with our qualitative terms for speed-up in table 1.1, we can see that the

curve for Wp = 1 is effectively the unitary speed-up curve. Above this, is the region of

super-unitary speed-up and below i t , sub-unitary. Also, notice that for any Wp > 0, the

speed-up is never sub-linear.

Amdahl's law also leads to a theoretical upper-bound for speed-up for this model of;

lim S{n) -
Ws + Wp 1

1-W„
(1.3)

These can be observed in figure 1.1 (particularly for values of Wp < 0.95) as the curves

move asymptotically to the upper bounds given in table 1.2.

wp
Speed-up - S(oo)

0.25 1.33
0.50 2
0.75 4
0.90 10
0.95 20
0.99 100

Table 1.2: Upper bounds on speed-up predicted by Amdahl's law

There are several consequences of Amdahl's law and the predicted upper bounds. First

of all, this model does not take any account of any overheads. In the case of a shared mem­

ory multiprocessor, for instance, there will be overheads in synchronization, communication

and memory reference overheads due to local cache misses. Also, whatever the architecture

of the multiprocessor, there is invariably a small period of time at the beginning and end

of any program which is unavoidably sequential; even if i t only consists of reading code

and data files from mass storage, downloading them to each processor and writing the final

10

results back. These two factors on their own mean that the curves in figure 1.1 and the

"upper bounds" in table 1.2 are in reality upper bounds on the speed-up we can expect to

achieve. Other, more practical, limits on the speed-up achievable are the number of pro­

cessors available and the number of processes into which we can decompose the problem;

in this case the simulation model. It may often be possible to decompose a model into

more processes (ostensibly to exploit more parallelism) but this may result in greater over­

heads in communication between processes/processors, synchronization and load balancing

problems. Such problems are addressed in chapters 2 and 3.

1.4 Parallel Hardware Architectures

The last decade has seen the advent of a huge variety of new computer architectures for

parallel processing. This variety can be bewildering to the non-specialist in computer ar­

chitecture who needs to know which architecture is the most suitable for his application.

In order to make an informed choice we need to be able to classify the different types of

architecture which are available and which are possible. This is usually addressed by a

taxonomy. A taxonomy is a classification scheme based on the salient features of the things

being classified: in this case the things are parallel computers and the salient feature is

the type of parallelism employed. In any computer system design the parallelism can be

achieved at various levels. These are denned as the task level, process level, instruction

level and arithmetic or bit level.

The task level is the highest level at which parallelism can occur. I t occurs in multipro-

grammed systems where multiple tasks are executed concurrently using time-sharing. True

parallelism occurs when we have multiple processors and each task is allocated to a separate

one. A task is usually defined as a complete program, though it should be obvious that it

is possible to define a task as a complete phase of a program. Thus there is an overlap with

the next lower level of parallelism. Here we are clearly describing multiprocessor systems.

The process level is usually taken to mean parallel processing at the sub-program, proce­

dure or sub-routine level. Also included are separate instances of loops and even iterations

of loops, i f there is no data dependency. At this level we are describing vector, array and

multi-function processors. Instruction level parallelism is where individual instructions are

executed in parallel. This is normally described as pipeline processing.

The final, and lowest, level is the arithmetic or bit level. A good example is the widely

11

used parallel adder. This level is more the domain of the integrated circuit logic designer

rather than a primary topic in a discussion of parallel processing. So we will restrict ourselves

to the three higher levels of parallelism.

Duncan [17] believes we should go further and "exclude architectures incorporating

only low-level parallel mechanisms that have become common place features of modern

computers". In this category he places instruction pipelining (for overlapping decode, fetch,

execute and store operations) and co-processors (for mathematics and logic or input/output

control).

There are several classification schemes available, the most popular of which is the

taxonomy proposed by Flynn [18]. The problem with any formal classification scheme is

that several well established architectures do not f i t into them very neatly. This has led

to several suggested modifications to Flynn's taxonomy and alternative approaches based

on descriptive notations. The taxonomy used in this survey is that of Duncan [17]. This

is an informal high-level taxonomy based on Flynn's work which distinguishes between the

principle parallel computer architectures which are currently being explored.

Let us first briefly introduce Flynn's taxonomy. Flynn [18] considered the sequential

(often called the von Neumann) model as a single stream of instructions controlling a single

stream of data (hence SISD). One step towards parallelism can be made be adding multiple

data steams (SIMD), and a second by adding multiple instruction streams (MIMD) . The

SIMD machine consists of a single control unit and several processors carrying out the same

instructions on many different items of data. These are usually array or vector processors.

The M I M D machine is a true multiprocessor machine with each processor executing its own

instructions on its own data. The MISD machine, multiple instructions acting on the same

data item, is sometimes deemed impractical, though it seems to describe a multiprocessor

pipeline. The taxonomy is summarised in table 1.3 below.

Single data stream Multiple data stream
Single instruction stream SISD

(von Neumann)
SIMD

(Array/Vector processor)
Multiple instruction stream MISD

(Pipeline)
M I M D

(true multiprocessor)

Table 1.3: Flynn's Taxonomy.

Flynn's taxonomy has the attraction of simplicity, providing a useful shorthand, but is

insufficient for classifying many modern architectures of which almost all would be classed

12

as M I M D . Therefore many modifications to it have been suggested. Duncan summarises

much of the work on extending Flynn's taxonomy in his paper [17]. He also introduces

an informal high-level taxonomy, based around Flynn's taxonomy, to distinguish between

principle approaches to parallel computer architectures. This is shown in figure 1.4.

Synchronous SIMD Processor array
Associative memory

Vector
Systolic

M I M D Distributed memory
Shared memory
M I M D / S I M D

MIMD-based Dataflow
paradigm Reduction

Wavefront

Table 1.4: Duncan's Taxonomy.

Duncan begins at the highest level with three classes, Synchronous, M I M D and MIMD-

based architectural paradigms. Synchronous parallel architectures co-ordinate concurrent

operations in lock-step through the use of global clocks, central control units, or vector unit

controllers. His M I M D class matches Flynn's M I M D class, in that multiple processors can

execute independent instruction streams using local data. His MIMD-based paradigm class

embraces hybrid architectures that do not comfortably fall into either Flynn's MIMD or

SIMD classes. Duncan ignores SISD as he is only interested in parallel architectures. The

following is a short summary of Duncan's classifications.

Vector processors are characterised by multiple, pipelined functional units which im­

plement arithmetic and Boolean operators for both vector and scalar quantities and can

operate concurrently. Thus parallel vector processing is provided by streaming many vector

elements sequentially through a number of functional pipeline units in parallel. Because of

the existence of the pipelines there is always a significant start-up overhead. So efficient

operation is only achieved if the pipelines are continuously ful l . Also it has been found that

the vector operand lengths need to be multiples of the vector register size (ie. the number of

pipelines). I f not then some of the pipelines will be idle while smaller vectors are processed

and vectors which are too large will have to be processed in batches.

SIMD architectures normally consist of interconnected processors with a central control

unit. The control unit broadcasts instructions to the processors which execute them in

lock-step on local data. The interconnections allow communication between processors and

13

also between processors and local memory.

Processor array architectures are a type of SIMD architecture which are structured

for numerical SIMD execution. These have been used extensively for large-scale scientific

calculations such as image processing and nuclear energy modelling. The interconnection

networks used have usually been nearest-neighbour meshes or crossbar approaches, though

recently hypercube topologies have been explored. A variant on this architecture is the use

of large numbers of 1 bit processors in processor grid arrangement. These are very much

geared to image processing applications by mapping pixels to the grid processing elements.

Associative memory processor architectures are another a type of SIMD architecture

based on the idea of data stored in an associative memory which can be addressed by

its contents. The major advantage over random access memory (RAM) is its capability

of performing parallel search and comparison operations. These facilities are frequently

needed in many applications such as dynamic databases, image processing and artificial

intelligence. The major disadvantage is the increased hardware cost.

Systolic architectures (arrays) are pipelined multiprocessors in which data is pulsed in a

rhythmic fashion from memory through a network of processors before returning to memory.

This idea was formulated to balance intensive computations with demanding input/output

bandwidths. A global clock is used to synchronize the data flow through the interconnected

processors. Each processor performs a specific invariant sequence of instructions on the

data. A high degree of parallelism is obtained by pipelining the data through multiple

processors typically arranged as two-dimensional arrays. Systolic architectures are best

suited for algorithm specific applications, particularly in signal processing. Some machines

have been constructed which are programmable, and so are not limited to implementing a

single algorithm.

M I M D architectures, as defined by Flynn, use multiple processors to execute indepen­

dent instruction streams using local data. Therefore M I M D machines are highly suited to

applications that require processors to operate in a substantially autonomous manner. The

software processes executing on each processor are synchronized by passing messages via

an interconnection network or via shared memory. Thus there is no central control and

M I M D architectures are asynchronous. They therefore support higher level parallelism at

the task and process level. Another advantage is that they can be extended much more

easily than SIMD machines. M I M D architectures can be further distinguished by their

memory organisation.

14

Distributed memory M I M D architectures need the processing nodes (processor plus local

memory, or cache) to be connected using some interconnection network. Nodes can then

share data by explicitly passing messages through the interconnection network. Various

static interconnection network topologies have been explored to support various applica­

tions, such as pipelines, meshes, trees, rings, chordal rings, cubes, hypercubes etc. Each of

these are particularly suited to certain applications. For instance, a mesh topology is suited

to matrix oriented algorithms, tree topologies are suited to searching and sorting algorithms.

Dynamic, or reconfigurable topologies, are also possible by using a programmable switching

matrix. These can be single stage, multi-stage or a crossbar. Interconnection networks are

examined in detail by Feng [19], Siegel et. al. [20] and Almasi and Gottlieb [21]. A disad­

vantage is that the communication overhead associated with this architecture, particularly

where data has to be queued and forwarded by intermediate nodes, can significantly reduce

the performance.

Shared memory M I M D architectures allow communication between processors via a

common shared memory which each processor can access. Shared memory architectures thus

replace message sending problems with data access synchronization and cache coherency

problems. To coordinate processors with shared variables a synchronization mechanism is

required to prevent one process accessing a piece of data before another finishes updating

i t . Also, each processor in ^ shared memory architecture often has a local cache memory.

Therefore we can have multiple copies of the same shared memory data in the caches of

various processors. Maintaining consistent versions of the shared data is the cache coherency

problem. As in the case of distributed memory M I M D architectures, there are several

alternatives for the interconnection of the multiple processors to the shared memory. Some

major examples are time-shared bus interconnections, crossbar interconnections and various

forms of multi-stage interconnection network.

Duncan's category of MIMD-based architectural paradigms is meant to cover a vari­

ety of hybrid architectures which don't f i t neatly into most orderly taxonomies of parallel

architectures, including Flynn's. Though all the types included are based on the MIMD

principle of multiple instructions and data streams and asynchronous operation, each has a

distinctive fundamental operating principle.

A M I M D / S I M D architecture describes a machine which is a M I M D architecture but

can be controlled in an SIMD manner. This is usually implemented using a master/slave

approach. For instance, let us consider a tree-structured machine as an example. The

15

root processor of a sub-tree can act as an SIMD controller broadcasting instructions to

descendant nodes which then execute the instructions on local data. This is a very flexible

approach and one which is receiving a great deal of attention.

Dataflow architectures depend on an execution paradigm where instructions are enabled

for execution as soon as all their data becomes available. This is known as a data-driven

architecture, in contrast with the normal instruction-driven architecture with which we are

most familiar. This means that the sequence in which instructions are executed is data

dependent. This allows dataflow architectures to exploit parallelism at the task, process

and instruction levels. Dataflow machines are a direct result of research effort into new

computational models and languages to effectively exploit large-scale parallelism.

Reduction architectures are often referred to as demand-driven architectures and, like

dataflow architectures, have their own execution paradigm. In this case, an instruction is

enabled for execution when its results are required as data for another instruction which

has been enabled for execution. Reduction architecture research has the aim of producing

parallel architectures which will support functional programming languages.

Wavefront array architectures combine systolic data pipelining with an asynchronous

dataflow execution paradigm. Wavefront and systolic architectures are both characterised

by modular processors and local interconnection networks. However, the wavefront array

architecture co-ordinates inter-processor data movement using asynchronous handshaking.

Therefore, when a processor has finished its processing and is ready to pass on its data, it

informs the next processor, and sends the data when it indicates that i t is ready. Once the

processor receives an acknowledgement that the transmission was successful, it can proceed

to its next task. Thus computational wavefronts pass through the array in correct sequence.

More detailed discussions of parallel computer architectures can be found in Almasi and

Gottlieb [21], Patterson and Hennessey [22] and Trew and Wilson [23].

1.5 Outline of Thesis

The main body of the thesis following this introduction is divided into five parts which are

covered in the following chapters. Chapter 2 and 3 review parallel discrete event simulation

in some detail with particular emphasis on work relevant to the modelling of telecommu­

nication networks. Chapter 2 explores the various methods used to decompose a simul­

ation model into a set of communicating parallel processes; highlighting their strengths and

16

weaknesses. Chapter 3 concentrates on a particular decomposition approach called here the

distributed model components approach and the fundamental problem of synchronization.

This involves decomposing the system model into loosely-coupled components (sub-models)

and simulating each with a logical process. One or more processes are then allocated to each

processor. The distributed model components approach is often referred to in the literature

as parallel discrete event simulation (PDES) as it is by far the most popular approach.

Chapters 4, 5 and 6 describe the results of the original work performed.

Chapter 4 describes the parallel simulation of circuit-switched telecommunication net­

works using a parallelizing compiler on a shared memory multiprocessor computer. Work

has been conducted previously using this technique to attempt to speed-up parallel dis­

crete event simulations of queueing networks with little success. Here, a simple model of

a circuit-switched network, which is not a discrete event model, is used to explore the use

of a parallelizing compiler. The results showed good speed-up figures with reasonably large

networks of ten nodes and greater.

Chapter 5 describes the parallel simulation of closed and tandem queueing network

models. Such models are often used as the basis for modelling packet-switched telecom­

munication networks. This work was conducted on a distributed memory multiprocessor

computer using the YADDES 4 tool from the University of Waterloo, Ontario, Canada. This

simulator enabled the comparison of the performance of several different parallel simulation

synchronization approaches using common model specifications.

Chapter 6 describes the parallel simulation of asynchronous transfer mode (ATM) net­

works. This work was also conducted on a distributed memory multiprocessor computer

using a simulator written at the University of Durham. Simulation studies of A T M sys­

tems have thus far largely centred on the behaviour of single traffic sources, multiplexors or

switching nodes. Here, the parallel simulation of a complete network has been implemented

allowing realistic network performance to be studied with reasonable simulation run times.

Chapter 7 draws all of the conclusions together and attempts to highlight areas which

appear worthy of further study. There are also two appendices. Appendix A contains

information on the availability of a floppy disk formatted for an I B M . PC. compatible com­

puter. This contains examples of the simulation model files used in this study. Appendix B

contains the journal and conference papers published as a result of this work.

4 Y A D D E S is an acronym for Yet Another Distributed Discrete Event Simulator.

17

16.00

p=0.99

12.00

p=0.95

C/5

a 8.00 r

p=0.9O

4.00 4- 4-
p=0.75

Wp=0.50

Wp=0.25

o.oo
0 8 12 16

Number of Processors - n

Figure 1.1: Amdahl's law

18

Chapter 2

A Review of Parallel Discrete

Event Simulation.

2.1 Introduction

A discrete event simulation is a computer program model for a system where changes

in the state of the system occur at discrete points in (simulated) t ;me. Thus, the

simulation model only makes the transition from one state to another when an event occurs.

The system state is represented by a set of state variables which each event may modify

(thus changing the system state) and/or schedule new events in the future. An event-

list is maintained containing all the pending events that have been scheduled but not yet

processed. Each event has its own unique time-stamp and the simulation progresses by

removing the event from the event-list with the lowest time-stamp. A global clock variable

is used to keep track of how far the simulation has progressed.

This type of model is suitable for modelling many types of communication network. For

a packet-switched network model, say, state variables may represent the amount of traffic

carried on links, lengths of packet queues, processor status etc. Typical events may include,

new call arrivals, call clear downs, packet arrivals at a switching node, packet departures

after processing and routeing and, even, equipment failures. Such a system model is termed

an asynchronous system in that events occur at irregular intervals which can be modelled

by stochastic processes; that is, they are not synchronized by a global system-wide clock.

For such systems, the occurrence of events with the same time-stamp is very small so that

parallel processing techniques based on lock-step execution under the control of a global

19

simulation clock tend to perform poorly.

Parallel discrete event simulation (PDES) refers to the execution of a single discrete

event simulation program on a parallel multiprocessor computer. For a given simulation,

five techniques for decomposing it into parallel processes for execution on a multiprocessor

machine have been identified [11,24].

o A Parallelizing Compiler can be used to compile a sequential simulation, written

in a conventional sequential language to run on a sequential uniprocessor, so that it

will run on a particular multiprocessor machine.

o Distributed Simulation Experiments may be conducted by running separate sim­

ulations on separate processors in parallel. This is often called replicated trials.

o Distributed Simulation Functions involves different subroutines or tasks of a sim­

ulation being placed on separate processors. For instance processors may be dedicated

to random number generation, event-list processing, statistics collection etc.

o Distributed Simulation Events uses a global event-list, as in sequential simulation,

to schedule available processors to process the next event on the list.

o Distributed Simulation Model Components involves decomposing our system

model into loosely coupled components (sub-models) and simulating each with a pro­

cess. One or more processes are then allocated to each processor.

o T ime Parallelism involves partitioning a simulation model into a set of time periods.

Each time period is simulated in parallel and then the results from each period are

joined, or merged, together. This joining process is performed so that the final set

of results is the same as that which would be produced by a single long simulation

run. This is radically different from all of the above approaches which may be said to

exploit space parallelism.

Where the term PDES is found in the literature, it almost invariably refers to distributed

model components, as it is by far the most popular. The term distributed model components

approach will be used here to (hopefully) avoid any confusion. The good and bad points

of all of the above decomposition methods are discussed in the following sections giving

examples of work done in each area particularly emphasising work directly (or indirectly)

related to the simulation of telecommunication networks. The section on the distributed

20

model components approach merely introduces the subject as it is dealt with in much more

detail in chapter 3. Obviously some combined approaches are also possible which are some

combination of the above techniques and these are also discussed.

2.2 Parallelizing Compilers

We are very familiar with the concept of a compiler which takes a high-level language

source code and compiles it to produce the machine-level object code which runs directly

on a sequential uniprocessor system. One approach to tackling the production of code for

a multiprocessor computer is to apply a compiler which takes, as its input, a conventional

sequential high-level language and produces, as its output, the object code to run on each

of the multiprocessors. This is termed a parallelizing compiler. The compiler thus has the

responsibility to recognise sequences in the source code which can be executed in parallel and

scheduled to run on separate processors. This definition thus distinguishes a parallelizing

compiler from a compiler which takes a high-level parallel language and commies it to run

on a multiprocessor computer. Though such a compiler could be made responsible for

automatically assigning processes to processors. An excellent survey of such compilers and

automatic parallelization generally has been produced recently by Bannerjee et. al. [25].

The overwhelming advantage is that the approach is largely transparent to the user. A

new parallel language does not have to be learned, the multiprocessor architecture should

not impact the original program structure and existing sequential software, so-called dusty

decks, may be ported. The disadvantage often found is that the problem has been coded

in sequential form, thus largely ignoring any parallelism in the structure of the problem.

This results in relatively small portions of the available parallelism in the problem being

exploited and, hence, the speed-up in moving to the multiprocessor architecture is generally

disappointing.

Parallelizing compilers are usually constructed such that they are effective in translating

a wide range of sequential programs for use on the particular multiprocessor. Indeed, many

of the algorithms used in the program analysis and transformation may well have been

developed with many classes of scalable parallel multiprocessor in mind. This means in

practice that a parallelizing compiler written for and running on a particular architecture

is unlikely to give the best performance in terms of speed-up for one particular application.

The best performance will always be obtained by writing the application from scratch.

21

There are two basic approaches to converting sequential code to run on multiprocessor

architectures. A parallelizing compiler takes sequential code directly and produces parallel

code to run on the target multiprocessor system. Alternatively, intelligent run-time support

and parallel routine libraries can be provided with a programming environment which allows

the conversion of sequential into parallel code.

The former approach is exemplified by the work of Chandak and Brown [26] and by

Reed [27]. The work done by Chandak and Brown, showed that discrete event simulations

cannot generally be parallelized using this approach and, more specifically, that the discrete

event simulation of any network of queues containing feedback loops cannot be parallelized.

As most simulation models of telecommunication networks involving queues are almost

bound to contain feedback loops this was a disappointing result. On a positive note though,

they showed that careful optimization of event-list processing could produce a speed-up of

two on a CDC Cyber 205 (a synchronous vector architecture, see Duncan [17]) even for

non-parallelized code.

This result was borne out by Reed. He used a Cray X-MP (also a synchronous vector

architecture) and Cray's Fortran 77 vectorizing compiler to investigate the simulation of

queueing networks. The results were compared with the simulations performance on a Vax

11/780 using the same sequential code. The results showed a speed-up of about a hundred

which is almost the same given by the two computers rated performance on sequential code.

I t was suspected that the amount of vectorization was small and using an execution monitor

it was found to be between 1 and 5% for various simulation models.

Nevertheless, Reed did hold out some hope for this approach as he believed the current

limitations were with the Cray Fortran vectorizing compiler. There were many DO loops

in the simulation which potentially could have been parallelized but weren't because the

compiler couldn't parallelize any loops containing IF statements, function calls or data de­

pendencies; even by automatic rearrangement of the code. Indeed there have been some

significant advances in parallelizing and vectorizing compiler technology (eg. the Cray For­

tran 77 compiler [28], PTRAN at I B M Research [29] and SUIF at Stanford University [30])

and associated performance monitoring tools since then [31-35]. A more recent trend is

towards integrated development environments; a good example of which is the ParaScope

system [36]. Al l this points to the approach becoming increasingly more attractive; partic­

ularly as many shared memory multiprocessor machines are becoming available which can

function as general purpose Unix machines as well as parallel processing platforms [23].

22

The second approach, of providing intelligent run-time support and parallel routine

libraries has been taken by several commercial products such as Express, Linda and Helios.

Express [37,38] is based on work done originally at the California Institute of Technology.

Code development is done by first achieving a working sequential C or Fortran program.

Then, either system calls to Express library routines can be added by hand, or ASPAR,

an Automatic Symbolic PARallelizer, can be used to generate parallel C or Fortran code

with the built-in calls to Express library routines. ASPAR also provides decomposition,

processor mapping and load balancing facilities. I t is recognised in [38], that ASPAR works

extremely well on applications which use regular meshes, but can fail on communication

intensive applications. However, this disadvantage is slightly offset by diagnostics which are

issued on failure to suggest corrections to the problem to allow parallelization. Debugging

and testing of the parallel code is aided by the tool NDB. There is also a performance

monitoring tool, PM, which gives graphical output displaying processor utilisation and

communication.

The basic concept used in Linda [39] is the idea of a "tuple-space", which is effectively

a database for software objects of various kinds. Processing nodes communicate by drop­

ping objects into the database which can then be extracted by other nodes. This concept

has a very simple and elegant implementation but it suffers from quite severe performance

problems. This is particularly so on distributed memory M I M D architectures where the

database searching required to find an object can involve intensive inter-node communica­

tion within the operating system. More recent versions of Linda [40] have extended the

original concept by adding additional "tuple-spaces" and allowing the user to specify to

which space an object should be sent and from which it should be retrieved. This new style

is similar to a "mailbox" approach.

Helios [41] is a distributed memory M I M D architecture operating system designed for

Inmos transputer networks. I t offers Unix-like utilities such as compilers, editors and print­

ers all available from the nodes of the transputer system. Interprocessor communication

is achieved using "pipes" though no collective communication support is provided. No

automated programming or parallelizing tools are provided.

A research project at Texas Christian University at Fort Worth has used a pre-processor

approach similar to that of Express. A Pascal based event oriented simulation language

SIMPAS was used and the sequential code was passed through a pre-processor to produce

Pascal code which could be compiled to run on a Texas Instruments 990/12 multitask-

23

ing minicomputer or a tightly coupled network of eight Motorola 68000 based processors

connected using a V M E bus [42]. See also the section on distributed simulation functions

concerning this project.

Another interesting approach is the development of a hardware architecture which specif­

ically supports a high-level language. This has been done for Lisp, Prolog and Simula

amongst others. Both a Parallel Simula machine [43] and a Prolog co-processor machine [44]

have been used for simulation purposes. Performance figures are not quoted for either ma­

chine.

2.3 Distributed Simulation Experiments

I f we have n multiple processors available, an obvious approach is to do n experiments

(simulation runs) simultaneously. This is particularly efficient for stochastic simulations,

as results can be averaged at the end of the run, and also for doing several "what-if" sim­

ulations simultaneously with slightly different parameters. This approach seems extremely

efficient as no co-ordination is required between processors except for result averaging or

presentation. Hence, for n processors we may approach an ideal speed-up of n. The only

other overhead is loading the model into each processor which is often negligible for pro­

duction runs.

Let us first consider the case of stochastic simulation. In some cases it is better to do a

single long run, in terms of simulated time, than to do several short runs and average the

results. Heidelberger [15] considered the statistical properties of estimates obtained from

discrete event simulations run on parallel processing computers. He showed that, generally

speaking, if the run length required for a particular accuracy is long or the initial transient

is weak, then distributed simulation experiments will be statistically more efficient than

distributed simulation for estimating steady state quantities. I f a reasonable speed-up factor

can be attained using the distributed simulation, it will be statistically more efficient than

distributed experiments for short runs, for simulations with a strong transient or if a large

number of processors are available. In between these two extremes (ie. moderate transient

relative to the required run length), the optimal policy, he suggests, is a combination of a

small number of processors per experiment and a large number of experiments.

Heidelberger's principles have been explored by Rajagopal and Comfort [45] simulat­

ing an M / M / c queueing network using occam on Inmos transputers. A combination of

24

distributed simulation functions and distributed simulation experiments was used. The

speed-up obtained using the distributed experiments was near perfect ignoring initial load­

ing of the processors and data collection at the end of the simulation. In general, the

steady state was reached more quickly but, surprisingly, the mean squared errors were not

significantly different. It was concluded, however, that this may have been due to the small

number of processors employed (two and three sets of three).

Independent simulation runs with different parameters have been explored by Biles,

Daniels and O'Donnell [46]. They used a hierarchical tree network of microcomputers,

in which lower levels performed the same simulation with different parameters. Again,

this is very efficient, but does not allow interactive decisions to be made. This is because

decisions about all the parameters for all the runs to be executed in parallel must be made

before they take place. Thus, optimization of a simulation, by examining results of previous

runs, is more difficult. Also many of the simulations in a particular batch may be wasted

because of this hindrance to sequential decision making. To summarise, a few short fast

single runs are often better for optimization and decision making than making many slow

ones in parallel. In terms of the hardware required, distributed experiments may not be

possible. Distributed experiments require that we have multiple identical processors each

with sufficient memory to contain the whole simulation program as well as enough memory

to run i t . This suggests an M I M D architecture that is loosely coupled, as communication

between processors is not generally required during simulation. In most distributed memory

systems each processor does not have large amounts of local memory. Even in a shared

memory system there may not be enough memory capacity for many copies of the simulation

program. This leads us back to considering, as did Biles, Daniels and O'Donnell, a network

of uniprocessors. Nevertheless, i f these memory deficiencies do not apply to the particular

simulation application, the distributed experiments approach can be very efficient and can

also use existing sequential simulation programs adapted for this purpose.

2.4 Distributed Simulation Functions

For any simulation there are always a certain number of key activities which must be

supported. Functions such as random number generation, event processing, result collection,

statistical calculations, results presentation, file manipulation etc. Also other functions

may be desired such as animated graphics during simulation or intelligent supervision of

25

the simulation process. Each of these functions may be supported by distributing them to

individual processors. The processors may be identical, or may be tailored to each individual

function. This is very much like the approach taken in many personal computers; a general

purpose processor, an arithmetic co-processor for floating-point calculations, a graphics co­

processor, other processors for controlling input/output functions with keyboards, printers

or communications links.

The advantages of this decomposition method is its freedom from the possibility of

deadlock (a cycle of blocked processes) and its potential scalability. The architecture may

also be made transparent to the user as each function's code can be divided up and placed

with each processor fairly easily. I t could even be made an automatic process at compilation.

This would obviously be much easier if identical processors were used.

Its disadvantages are the communication overhead between functional processors, which

may become the limiting factor in performance, and the failure to exploit any parallelism

in the system being modelled.

At Texas A & M University work has proceeded in this area for several years [42,47-

52]. Initially, the GASP IV simulation language was used and the simulation support

processes were separated to run on eight separate processors. A tightly coupled network

of eight Motorola 68000 based processors, connected using a V M E bus was implemented.

Unfortunately problems were found between the operating system and the multitasking

Fortran 78, on which the GASP IV depended. The idea was abandoned. However, the idea

was also emulated on a T I 990/12 minicomputer to determine the feasibility of the approach

which was successful.

Comfort has also worked on this approach, see [53-55]. In [53] he describes a comparison

experiment using a PDP-11/44 alone and using the PDP-11/44 with a Motorola 68000

microprocessor for event set processing, for the simulation of an M / M / k queueing network.

He obtained a 40% improvement. In [54] he describes a three processor system achieving a

45% improvement over a single processor. In [55] a master/slave approach is described in

which event set processing is done by slave processors controlled by a master host processor

which does everything else. Speed-ups as high as 1.3 were obtained with two or three slave

processors, but no incremental benefit was found beyond three.

Rajagopal and Comfort used this technique in the simulation of an M / M / c queueing

network using Occam running on Inmos transputers [56] and [45]. The speed-up factors

obtained were 0.96 to 1.3 for two processor systems, 0.96 to 1.6 for three processor systems

26

and 1.2 to 1.6 for four processor systems. Also it was found that speed-up improved with

event set size. Individual processor efficiencies were between 0.31 and 0.64. These results

are encouraging though only a small number of processors were used. This was partly due

to the transputer only having four physical links which limited the complexity of the model

that could be simulated.

Rajagopal and Comfort's work, particularly, seem to point to this approach being fruitful

for a small number of processors. Unfortunately, the benefits only increase marginally with

the number of processors and may even fall away. More recently, this level of limited speed­

up on a small number of processors was also reported by Zhang, Zeigler and Concepcion [57,

58]. They used a hierarchical decomposition of the simulation model in order to produce

events, each consisting of several sub-events, to be processed in parallel.

2.5 Distributed Simulation Events

In sequential simulation, a global simulation event-list is usually maintained. The next event

is the one at the top of the list. When this is processed, any events generated by it are

inserted into the list at the correct time slot. In the distributed simulation events approach, a

global event-list is maintained in the same manner, but as each processor becomes available

it processes the next scheduled event. The difficulty is maintaining consistency in the

simulation as the next event available on the list may be affected, or pre-empted, by another

event currently being processed by other processors. The need for global simulation control

points very much towards the use of a shared memory M I M D architecture so that all

processors can have access to the global event-list.

Jones describes the distributed simulation events approach as concurrent simulation us­

ing temporal decomposition [59]. He develops the concept of "limit times", which determine

whether the next event on the list can be safely executed. However there are no results for

his algorithm.

Cota and Sargent have developed an algorithm for parallel discrete event simulation

using a shared memory architecture machine [60]. It has been implemented on an En­

core Multimax machine though no performance results are available as it was still under

evaluation.

The Texas A & M University has put a great deal of work into developing a concurrent

simulation environment using Ada on a Sequent Balance 8000 shared memory multiproces-

27

sor (twelve) machine [51,61]. Generally i t was found that if tasks communicated very little,

significant speed-ups over sequential simulations could be achieved. However, if the tasks

had many rendezvous then the simulation essentially became sequential.

The results for this approach seem to indicate that it is reasonable if there are only a

small number of processes required and a large amount of global information used by the

components of the system.

2.6 Distributed Simulation Model Components

The final, and most popular, method of decomposing a simulation is to decompose the

simulation model into a number of components, or sub-models, and assign the simulation

of each component to a process. One, or many, processes can then be assigned to execute

on each processor. Each process must be able to communicate with other processes so that

either global shared variables or a message passing scheme between processors is required.

Model decomposition often follows the logical structure of the real system being simulated.

For instance, each exchange in a packet-switched network may be modelled by an individual

process.

This approach can take advantage of any parallelism inherent in the system to be mod­

elled, so i t seems to promise significant speed-up on a multiprocessor system. However,

this only holds if the simulation does not require a significant amount of global information

and control. The major overhead will be communication between processes executing on

different processors. This can be handled by message passing on a distributed memory

M I M D architecture or shared variables or message passing on a shared memory MIMD

architecture. The other major problem is the synchronization of events during the simul­

ation. Generally speaking, the more loosely-coupled the processes can be (ie. asynchronous

requiring little communication), the more likely the simulation is to be processor bound.

That is, the performance of the simulator will be limited by processor performance. On

the other hand, the more tightly-coupled the processes are, the more likely the simulation

is to be communication bound. That is, limited by the performance of the communication

mechanism between processors.

For a network which has a fixed topology, such as the public circuit-switched network,

the most natural way to decompose the model is to assign a process to each exchange, or

node, and represent network traffic by messages passing between the nodes. These messages

28

could be implemented in a shared or distributed memory machine. Each message would

contain a time-stamp representing its simulated time of generation. An alternative approach

is to have processes representing the traffic status as well. In this case messages passed will

represent a change in traffic status.

In a dynamic topology system, such as a mobile telephone network, processes can rep­

resent interacting components; the users, the fixed transmitting/receiving stations and the

normal telephone network exchanges. Messages between processes will then represent in­

teractions between the components. Another method, originally developed by battlefield

simulators [62] is to divide the simulation geographically into sectors. Each sector is then

simulated by a process and then the processes are mapped onto the processors. At this

point it has been found that there are trade-offs between placing adjacent sectors onto the

same processor and placing non-adjacent sectors on the same processor. In battlefield simul­

ations, the former minimises communications, but the latter produces better load balancing

between processors. For communication systems, it is suspected that there will be little or

nothing to choose between these sector placement schemes.

The two major tasks with distributed model components is the development of the model

processes themselves and the synchronization of the processes during simulation. Model

building is purely a software problem; synchronization is a problem of both simulation and

software. As we shall see the method employed to synchronize the distributed model impacts

the way the model is developed, the facilities required of the software and the hardware,

and most importantly the performance of the simulation. The performance is affected as it

is the synchronization message passing overhead which prevents ideal speed-up. A detailed

discussion of synchronization approaches for distributed model components and its impact

on performance can be found in chapter 3.

2.7 Combined Approaches

The ideal decomposition approach for a particular application may well be a combined

approach integrating two or more of the above. Several scenarios are possible. Heidel-

berger [15], for instance, discusses the relative merits of combining distributed simulation

experiments with other approaches using multiple processors to execute single simulations.

The use of a parallelizing compiler could actually lead to a distributed event approach de­

pending on how the compiler divided up and scheduled the processes. However, it is difficult

29

to imagine how these two approaches could interact with the other approaches. But let us

now consider what approaches might work effectively together.

We could begin by decomposing our simulation model into our loosely-coupled compo­

nents and modelling each with a process. Then, instead of placing each component in a

single processor, we could decompose each process into its simulation functions and place

each function in a processor. Each component process will thus be executed in a cluster of

processors. This seems a useful approach as the research on distributed simulation functions

seems to be most efficient using a small number of processors. Also we are exploiting the

parallelism of the system at a fine-grain size. The disadvantages will be with code gener­

ation, loading and lack of flexibility and scalability. The distributed simulation functions

approach could also be exploited alongside distributed model components by using extra

processors to handle global results collection, statistical calculations and animation. This

particular approach has been used at Durham University in the simulation of wide area

telecommunication networks [63-66]. Here each node of the communication network is sim­

ulated on an Inmos transputer and the system set-up, graphics, results and user interface

are handled by other processors.

The distributed experiments approach may be combined with the distributed functions

or distributed model component approaches, or both. This simulator could then run several

different simulations in parallel as well as exploiting the parallelism in each simulation. The

approach using distributed experiments and distributed functions has been explored by

Rajagopal and Comfort [45], and described above in the sections on distributed simulation

experiments and distributed simulation functions.

2.8 Time Parallelism

The most obvious form of parallelism in physical systems, exploited as distributed model

components, is due to concurrent activity among spatially separated objects. This is some­

times referred to as space parallelism. I f we model a hundred physical objects with a

hundred logical processes then Amdahl's law predicts that our maximum speed-up is also

a hundred. However, our realistic speed-up, due to some inherently sequential sections and

synchronization and communication overheads will be considerably less.

I t has recently been recognised that parallelism in some simulation models can also

be exploited in time. This was first discussed by Chandy and Sherman [67], where the

30

authors observe that simulations are fixed-point computations, and as such can be executed

as asynchronous-update computations. Practical exploitation of time parallelism was first

reported by Greenberg et. al. [68], where they showed how certain queueing systems (eg.

a single FCFS G / G / l queue and networks of feed-forward queues) can be expressed as

systems of recurrence relations (in the time domain) which can be solved using standard

parallel prefix methods on massively parallel machines. The most impressive thing about

this approach is that the degree of parallelism which can be exploited is only limited by the

size of the parallel machine and its memory.

A more direct approach to time parallelism is to partition the time domain, assigning

different processors to different regions of time. A process, LPn, assumes some initial state

for the system at the beginning of its assigned interval, tn say, and simulates i t . The

processor LPn-\ whose interval terminates at t n may have a different final state at tn

than the one assumed by LPn. In this case a fix-up operation must be performed. This

method will work if the cost of a fix-up is much less than the cost of re-simulating the

interval. Variations on this idea are described by Ammar and Deng [69] and by Lin and

Lazowska [70]. This technique is easier for trace-driven simulations, where an input file

is available which contains a trace of all the inputs to the simulation. Often the trace

is one obtained from a real system. This technique has already been explored for cache

simulations [71,72], queueing networks [69] and packet-switched multiplexers [73]. It also

has potential for digital logic circuits.

These techniques are still in their infancy, though they have already been applied to a

variety of systems as shown below in table 2.1.

Author(s) Ref. Application
Ammar and Deng [69] Queueing networks
Baccelli and Canales [74] Stochastic petri nets
Gaujal et. al. [75] Circuit-switched telecommunication networks
Heidelberger and Stone [71] Trace-driven cache simulations
Nicol et. al. [72] Trace-driven cache simulations

Table 2.1: Applications explored using Time Parallel approaches.

Time offers another dimension in which speed-up may be obtained. However, as yet

there are few implementations and any speed-up will rely heavily on the specifics of the

application. This is not surprising, given the diverse ways in which simulation models

evolve in simulation time. Therefore, it seems unlikely that a general purpose protocol will

be developed that can be consistently effective in exploiting time parallelism for a variety

31

of applications. Nevertheless, as seen above, there are already some non-trivial examples

of important applications that have been shown to benefit from time parallelism. Future

efforts will be directed towards expanding the class of applications where time-parallelism

works. The applications which do benefit need to be characterised so that the techniques

used can be generalised. Much work also needs to be done in the performance analysis of

such approaches.

2.9 Summary

The speed-up possible in using parallel simulation is clearly dependent on many interrelated

factors. The application, the multiprocessor architecture, the decomposition approach, the

synchronization approach (if applicable) all have a direct bearing on the simulators perfor­

mance and also interact with each other in a complex manner. As has been discussed in

chapter 1, some of the decisions concerning these factors will be made on what is required

from the simulation. For instance, if real-time decisions need to be made by observing the

behaviour of the simulator using graphical animation of the system, time driven synchro­

nization wil l be needed and, for instance, the distributed experiments approach will never

be appropriate. However, ignoring these complex interrelated problems for the moment, let

us summarise the performance of the parallel simulation approaches.

The use of a parallelizing compiler tends to ignore the potential parallelism in the struc­

ture of the problem if sequential simulation code is translated into parallel code automat­

ically. This results in relatively small portions of the available parallelism in the problem

being exploited and, hence, the speed-up in moving to a multiple processor architecture is

generally disappointing. Most compilers in this category, to be fair, have been aimed at syn­

chronous SIMD and vector machines. Thus, they have been tailored to work with vectors,

matrices and generally fine-grain problems inappropriate for communication network sim­

ulations. However, the work in this area has given rise to multiprocessor operating systems

and development environments which should make life easier for the performance engineer

wishing to use a multiprocessor to speed-up the execution of some simulation models.

The distributed simulation experiments approach is a simple but effective technique

which, i f coupled with variance reduction techniques, can give impressive performance. The

relative unpopularity of the approach is perhaps because the most common need from a

simulation is fast accurate results. As we are not exploiting any parallelism in the problem,

32

speed-up is more in terms of statistical efficiency and simulation throughput (ie. more

simulation can be done in the same time). For comparing many similar designs at once it

is probably the ideal approach. Also the performance engineer will probably be able to use

existing sequential simulations as a basis.

The work on the distributed simulation functions approach seems to indicate that this

is a f ru i t fu l approach if the number of processes that the simulation is decomposed into is

small. The law of diminishing returns sets in at an early stage above more than a handful

of processors.

The distributed simulation events approach depends very much on the use of a shared

memory M I M D multiprocessor. The results for this approach seem to indicate that it is

reasonable i f there are only a small number of processes required and a large amount of

global information used by the components of the system. Otherwise the results seem

somewhat disappointing.

The distributed simulation model components approach offers the greatest potential

speed-up in terms of a reducing the execution time for a single simulation. Also, the de­

composition of the simulation model can follow the structure of the problem making it

easier to understand and develop the models. In the case of the simulation of commu­

nication networks, we may be producing something akin to a software emulation. The

synchronization problem complicates the approach, but guidelines are beginning to appear

as to which synchronization method will be the best for a particular type of application.

The ultimate speed-up for any particular application is more than likely only available

using a combined approach. The parallelizing compiler and distributed simulation events

approaches do not lend themselves to combination with any of the other techniques though

they may be interrelated themselves. Distributed simulation functions seem to give good

results particularly when combined in order to relieve the rest of the simulation of the

ancillary functions of statistical calculations, graphics control and results processing. An

ideal mixture would seem to be multiple simulation experiments, each executing on multiple

processors, feeding output results to other global processors for processing and display.

Time parallelism is a relatively new area potentially offering substantial speed-up on

massively parallel multiprocessor machines. It seems unlikely that i t will be a generally

applicable technique but certain problems which lend themselves to this type of approach

may yield good results.

33

Chapter 3

ymchromzation. Approaches for

Dis t r ibuted Model Components

3.1 Introduction

A significant amount of work has been done to ascertain the most efficient method of

1 synchronizing the simulation of systems using distributed model components. Reviews

of the plethora of possible schemes, in chronological order, can be found in [24,76-79].

Before we discuss various synchronization schemes, i t is important to review why it is

such a difficult problem. In a sequential simulation, the synchronization of the simulation

is maintained by manipulation of the event-list. This contains the pending events in the

system usually (but not necessarily) in time-stamped order. The simulation progresses by

removing the event with the earliest time-stamp from the list and processing i t . I f a new

event is generated, i t is inserted into the event-list at its time-stamp position. Thus the

simulator processes the events in synchronized chronological order. I f we now distribute

the simulation over several processes, it becomes possible for a processor to process an

event which is not the earliest. Also, in processing this event we may affect conditions for

earlier, as yet un-simulated events. Thus the future is affecting the past, which is clearly

unacceptable, and is known as a causality error.

Thus, synchronization schemes generally fall into one of three categories; conservative,

optimistic and synchronous approaches. Conservative approaches avoid causality errors ever

occurring by relying on some strategy of determining events which are "safe" to process.

That is, they must determine when all events that could affect the event in question have

A

34

been processed. Optimistic approaches allow causality errors to occur, but when they are

detected, a rollback mechanism is employed to recover. More recently, so-called synchronous

approaches have been developed which determine iteratively which events are "safe" to

process within a bounded time period. Each iteration is ended by some form of barrier

synchronization in order to keep all the processes in synchrony.

Optimistic approaches detect and recover from causality errors rather than avoid them.

Therefore optimistic approaches don't need to determine whether or not it is "safe" to

proceed; they only need to detect the error and recover. The original work was done by

Jefferson on the mechanism called time warp, based on the concept of virtual time [80]. In

this case, virtual time is synonymous with simulated time. In the time warp mechanism, a

causality error is detected whenever an event message is received by a process that contains

a time-stamp earlier than the processes' local clock (ie. the time of the last processed

message). This is known as a straggler. Recovery is accomplished by undoing the effects

of all events that have been processed prematurely by the process receiving the straggler.

This is known as rollback. Two things are affected by rollback. The process state may be

modified; this is accomplished by returning to the correct old state which is taken from a

store of previous states. Also, previously sent messages must be effectively un-sent; this

is achieved by sending antimessages that cancel the effect of the original. I f the original

message has already been processed then that process in turn must also rollback. This

process continues until the effects of the causality error are cancelled.

3.2 Synchronization i n Ac t ion

Before discussing each of these approaches in more detail let us briefly discuss the synchro­

nisation problem and the two classical approaches to i t using a simple example; based on

that of Fujimoto and Nicol [79]. Consider the network of three processes shown in figure 3.1.

Each process sends jobs in the form of messages to each of the two other processes. Let each

process execute on its own processor and let the minimum service time of any job be 0.1.

Therefore, each process must maintain its own event-list; for example, A:2 indicates a job

arrival event scheduled for time 2. The values on the communication links, called link-times,

indicate the time-stamp of the last message sent over that link. When the simulation is

initiated, a process knows its first job arrival and associated time-stamp (defined as part

of the initiation), and the link-times are all initialised to zero. In conservative protocols,

35

no process can simulate its first event until it is certain that it will not receive a job from

another process with a time-stamp less than its first arrival time. Therefore, we have a

problem; as the arrival times are all strictly greater than the initial link-times. However,

this can be resolved as each process "knows" that even i f a job were received at time 0,

that job would require at least 0.1 service time. Therefore, the process can "promise", to

all the processes connected to i t , that it will not send a job until at least time 0.1. Thus,

the process can send a (so-called) NuLL-message with time-stamp 0.1 to the processes to

which it sends jobs. Since every process can do this, every link-time eventually increases

to 0.1. Note that a NuLL-message does not represent any entity moving between processes

and hence has no counterpart in the physical system being modelled, it is used simply to

inform another simulation object of the time elsewhere in the simulation. Hence, i t can be

considered to be a promise to the receiving process that it can carry on accepting messages

on a link safe in the knowledge that no new message or job will arrive on that link with a

time-stamp earlier than the last NuLL-message received.

Using a conservative protocol, a process may execute the message associated with the

smallest link-time. In the example a process eventually receives two NuLL-messages, with

the same time-stamp, and these may be processed. As a result, each process sends two new

NuLL-messages, now with time-stamp 0.2. This increment in NuLL-message time-stamps

continues until the link-times reach the time of the Q l arrival, time 2. At this point, "real"

simulation activity begins.

Twenty rounds of NULL-message increments were required to reach this point. Now, let

us suppose that when the Q l arrival goes into service i t cannot be pre-empted, and will

not depart until time 3, event D:3. Knowing this, Q3 can now send NuLL-messages with

time-stamp 3 to both Q2 and Q3, effectively "looking ahead" in simulation time to the

job's completion. This leads to the situation shown in figure 3.2. Further increments in

NuLL-message time-stamps are then needed to raise the link-times to the point where the

Q l departure at time 3 can be simulated.

The problem with the above scheme is clearly the high volume of NuLL-messages. An

optimistic approach such as time warp [80] avoids these. In time warp, every process

checkpoints (stores) its state, then optimistically executes its first event. Taking our example

network once more, figure 3.2. The Q l arrival at time 2 departs at time 3 and may then be

sent to Q3. Unfortunately, Q3 has already simulated an arrival at time 4, which must now

be undone along with all the messages which may have been sent prior to time 3. Therefore,

36

0
0 © 0

@
A:2 A:4

A:8

Figure 3.1: Example network of processes at initialisation — all link-times are at zero.

Q3 must recover its state at time 3 (its initial state in this case) and simulate the new arrival.

Thus Q3 is said to roll-back to time 3. Let us now suppose that the allocated service time

is 1 unit and that the job is then routed to Q2 at time 4. Since Q2 has already simulated

an arrival at time 5, i t too must roll-back, send anti-messages after messages it erroneously

sent, recover its initial state, and simulate the new arrival. These descriptions are intended

to suggest that synchronization protocols may typically impose severe overheads depending

on the behaviour of the simulation model. The goal of synchronization protocol research

is to reduce those overheads. Let us now discuss these synchronization approaches in more

detail.

37

2
3 ® 2

Q3

D:3 A:4

A:8

Figure 3.2: Example network of processes at time 2—the link-times represent the time-
stamp of the last message to cross the link.

3.3 Conservative Synchronization Approaches

Conservative approaches were the first to appear historically. An added problem which

categorises various conservative approaches is that of deadlock. I f processes do not have

a "safe" event which they can process then they are blocked and cannot progress. I f a

cycle of blocked processes occurs then we have deadlock and the simulation will grind to

a halt unless the deadlock can be broken. Generally i t has been found that, if there are

relatively small numbers of pending events compared with the number of communication

links between processes in the simulation model, or, if such a scenario occurs in a localised

part of the model, then deadlock may occur frequently. Early work by Chandy, Misra and

Holmes [81-83], Bryant [84], and Peacock, Wong and Manning [85,86] investigated various

solutions to this problem.

38

Chandy and Misra's first approach was that of deadlock avoidance using NuLL-messages

[81-83]. The same approach was investigated independently by Bryant [84], hence conserva­

tive protocols using NuLL-messages are often called Chandy-Misra (CM) or Chandy-Misra-

Bryant (CMB) protocols. The NuLL-messages are purely for synchronization purposes and

do not correspond to any simulation activity. The clock value of each input to a process (the

link-times in the example) give a lower bound on the time-stamp of the next unprocessed

event which will appear on that input. These clock values can thus be used to calculate

the lower bound of the time of the next output messages from the process on each output.

Therefore, when a process blocks, it sends a NuLL-message out on each output indicat­

ing these lower bounds. Processes receiving these NuLL-messages can thus calculate lower

bounds for their own outputs and so on. I t can be shown that this scheme avoids deadlock

as long as no cycles of processes occur in which the collective time-stamp around the cycle

is zero (ie. all the processes in the cycle have the same clock time). This approach has

been used successfully in many simulation studies such as; [27,87-89]. The main problem

with this approach is the NuLL-message overhead which can reduce simulation performance

significantly, see [90],

An alternative NuLL-message approach is to only send them at the request of a pro­

cess [49,76,85,86,91,92]. The query, or probe, is sent when a process is blocked and

needs an improved clock time. Nicol and Reynolds used a variation on this approach in

their SRADS (Shared Resource Algorithm for Distributed Simulation) simulation proto­

col [93,94]. Here, when a process is about to become blocked, due to the incoming link

with the smallest link-time having no further messages waiting to be processed, it sends a

request to the process on the other end of the link for the next message. Execution can

then continue when this message is received. Thus, these approaches reduce NuLL-message

traffic at the expense of query and query-reply traffic.

Chandy and Misra also developed an alternative approach based on the idea of deadlock

detection and recovery [76,83,95]. Various deadlock detection algorithms are also described

by Dijkstra and Scholten [96] and by Groselj and Tropper [97]. Deadlock can be broken using

the basic fact that the message (or messages) having the smallest time-stamp can always

be processed safely. Another method is to compute lower bounds on the link-times at each

process, not unlike the NuLL-message computation. Such mechanisms are aimed at global

deadlock situations. Misra discusses a modification to this to deal with local deadlock

involving only a small cycle of the processes [76]. This uses a pre-processor to identify

39

all local cycles prone to deadlock within a complete simulation model and apply these

techniques only on those. However, the overheads on implementing such an approach would

seem to be large especially on large models where the network of processes could contain

many cycles. Liu and Tropper discuss similar techniques for detecting cycles of processes

prone to deadlock [98]. In certain cases, the topology of the network to be simulated can be

exploited to simplify the synchronization protocol: Kumar [99] has shown this for acyclic

networks. This fact has been exploited by Lin, Lazowska and Baer [100]. They eliminate

cycles from a network by combining cyclic sub-networks into single logical processes. The

resulting acyclic network is then simulated using the standard CMB protocols.

Significant improvement in the performance of the simulation can be achieved if, instead

of holding a message in a process until the clock times on all of its inputs reach the time

of departure, the message is processed and passed on to the next object as soon as the

causality of the simulation can be guaranteed. In doing this the simulation model can lose

some information such as queue length and additional calculations would be required if

such information needs to be collected [82]. I t should also be noted that such a technique

cannot be used with priority queueing structures or pre-emptive messages since the message

processing order cannot be determined in advance. The ability to do this was formalised as

the lookahead capability of the simulation by Fujimoto [101,102]. This refers to the ability

to predict what will (or will not) happen in the simulated time future based on application

specific knowledge. The lookahead of the simulation is defined as the interval of time during

which the output events can be determined solely from information already received. Thus,

the lookahead for a logical process can be known from the minimum time of the next new

scheduled event (eg. minimum service time in a queue) and/or from knowing the minimum

time-stamp of events received from other logical processes.

A physical system which is well suited to simulation in this manner will have a high

degree of lookahead. Work by Reed, Malony and McCredie [103] and by Reed and Mal-

ony [90] has suggested that central server queueing systems were unsuited to this type of

simulation algorithm, but Fujimoto [101,104] has since shown that simulations of this form

are possible provided that the lookahead is exploited effectively by pre-computing service

times.

Nicol [105] first proposed a method for improving the lookahead ability of processes

by pre-computing part of the computations for future events. The example put forward

is the pre-computing of service times for a network of FCFS queues with no pre-emption.

40

Pre-computation itself depends on lookahead and is only possible if it can be done with­

out knowledge of the future event message which causes that computation and without

knowledge of the state of the process when it occurs. For example, if the service time for a

message in a packet-switched communication network simulation depended on the message

length, and this were variable and not known until i t was generated, then pre-computation

would not be possible. However, where pre-computation is possible, it has proved to be a

useful technique. For example, in a queueing network simulation, we may take advantage

of a non-pre-emptive queueing discipline, and state independent service times and route-

ing decisions by pre-sending job completions at the point the job enters service, and by

pre-sampling a job's service time upon recognising the message reporting its arrival.

Chandy and Sherman [106] introduced the idea of conditional events instead of N U L L -

messages for improving simulation performance. In a sequential simulation, a conditional

event is defined as one that will be executed in the future, provided that there are no other

events scheduled for earlier execution which will modify or de-schedule i t . A definite event

is therefore one which will be executed unconditionally. For a sequential simulator there is

always at least one definite-event (with the minimum time-stamp) and many conditional-

events. In a parallel simulation, each logical process does not necessarily have a definite

event at the head of its event-list since messages may still arrive from other processes that

will pre-empt them. However, there will be at least one, and probably more, definite events

somewhere in the simulation. Therefore, i t is the task of the simulation protocol to promote

as many conditional to definite events as possible by sharing timing information between

the processes. Good speed-up figures have been obtained for scenarios that usually showed

poor results using other conservative algorithms.

One of the reasons that the example network requires so many NuLL-messages using a

CMB protocol is that the NuLL-messages carry so little information. Consider the initial

case in figure 3.1. I f Q l had some way of learning that it was only waiting for itself before

proceeding, it could clearly simulate the first arrival at time 2; A:2. I f , for the case in

figure 3.2, it could then learn that no other process will send a job prior to time 3, it could

also simulate the departure; D:3. This observation is explored by Cai and Turner [107]

using the "Carrier NULL-Message" approach.

In standard CMB algorithms NULL-messages propagate through the system; the result

of receiving a NuLL-message is usually to send a number of others. In the carrier N U L L -

message approach one appends a list of visited processes and pending event times to the

41

NuLL-messages. This information allows a process to learn if it is free to execute an event,

potentially, well before it would have done using ordinary NuLL-messages. Consider our

example network in figure 3.1 once more. Q l initially sends out NuLL-messages with time-

stamp 0.1, but appends its own identity and first event time (Ql .A:2) . One copy of the

message is received by Q2, which appends (Q2,A:5) and sends it back to Q l and also

forwards it to Q3. Q3 appends (Q3,A:4) and also sends a copy back to Q l . The feedback

on both incoming links allows Q l work out that it may proceed in processing the job

arrival at time 2. Thus carrier NuLL-messages trade some extra computation and longer

NULL-messages against a reduction in their number.

Even with carrier NuLL-messages, CMB algorithms can still generate large numbers

of NULL-messages. Another optimisation, explored by Preiss et. al. in [108], attempts to

reduce NuLL-message propagation by recognising when a NuLL-message becomes stale. In

our example network, Q l sends a stream of NuLL-messages to Q2 and Q3, successively

increasing in time-stamp by 0.1. Now, suppose a NuLL-message with time-stamp t\ arrives

from Q l at Q2's message queue, where i t finds an unreceived NuLL-message from Q l at

time ti <t\. There is no point in having Q2 process the earlier NuLL-message; it may be

discarded. Indeed, any message (N U L L or otherwise) from a process that discovers a N u L L -

message with smaller time-stamp from the same process may discard i t . This is called by

the authors NuLL-message cancellation.

Still another set of optimizations arise when considering the high cost of message-passing

in distributed memory multiprocessors. The cost of sending an m byte message is very

well modelled as a + bm, where a is a large fixed start-up cost owing (usually) to software

overheads, and b is the transfer cost per byte. This provides a strong incentive to concatenate

logical messages together into a single long message. CMB variations doing this are explored

in [92] where a number of issues are examined, including receiver or sender initiated transfer

as well as lazy (demand-driven) or eager (the original technique) transmission. A more

specific instance of this effect is explored by Gould et. al. [109] for communications in an

array of Inmos transputers; they show that the throughput of the communication channels

increase dramatically as the size of the messages sent is increased and the number decreased

by concatenation.

42

3.3.1 Per formance of Conservat ive Synchronizat ion Approaches

A substantial amount of work has been done on evaluating the performance of various CMB

protocols. Reed, Malony and McCredie [103] did extensive measurements using deadlock

avoidance and the deadlock detection and recovery approaches for the simulation of various

types of queueing networks. Generally they report poor performance except for the case

of feed-forward networks with no cycles. However, they made no attempt to exploit looka­

head. Fujimoto [102] reproduced these results but was able to improve the performance

dramatically by exploiting lookahead.

Su and Seitz [92] report some success simulating digital logic circuits using variations of

the deadlock avoidance algorithm using NuLL-messages. The simulations were performed

on a distributed memory multiprocessor (Intel iPSC) and they argue that superior perfor­

mance should be possible on a shared memory multiprocessor using this approach due to the

reduced overhead in messaging. This assertion was borne out by Wagner, Lazowska and Ber-

shad [110] who implemented the techniques on a shared memory architecture and improved

their performance still further. Wagner and Lazowska [111] and Lin and Lazowska [112]

looked at lookahead analytically to derive expressions for the lookahead in various types

of queueing network simulations. Loucks and Preiss [113] went further with this work on

queueing networks and verified experimentally that lookahead has a very significant impact

on performance. They also showed that the effective exploitation of lookahead achieves bet­

ter performance by reducing communication overheads without introducing corresponding

computation overheads.

Table 3.1 below summarises some of the best performances achieved using CMB ap­

proaches all of which are sub-unitary as expected.

Author(s) Ref. Machine Application S(n) n
Su and Seitz [92] Intel iPSC Logic circuits 8 64

10-20 128
Ayani [114] Sequent Balance Queueing networks 5 9
Chandy and Sherman [106] Intel iPSC Queueing Networks 7 12

9 24
Merrifield et. al. [115] Inmos transputers Road traffic 19 33
Preiss et. al. [108] Inmos transputers Queueing Networks 6.5 8

Table 3.1: Speed-up figures for CMB approaches.

43

3.3.2 C r i t i q u e of Conservat ive Synchronizat ion Approaches

A great deal has been learned about the performance of conservative approaches. The most

f ru i t fu l approach has been deadlock avoidance using NuLL-messages often employing extra

optimizations such as pre-computing event times [105], NuLL-message cancellation [108] or

carrying extra information in each NuLL-message [107].

The reliance on lookahead for good performance often limits the usefulness of conser­

vative approaches. Simulation models which have pre-emptive behaviour, possible zero (or

very small) time-stamp increments or dependence of output message parameters on the

process state at the time of transmission all have poor lookahead properties. Such models

will therefore not attain good speed-up using conservative approaches even though there

may be significant amounts of parallelism available. We may say that, particularly in con­

trast to the optimistic approaches to be discussed later, that conservative approaches are

pessimistic in that they force sequential execution of two events if it is possible that the

earlier may directly or indirectly affect the later event. In practice, earlier will only affect

later events part of the time.

Simulation models using conservative synchronization approaches (with the exception

of deadlock detection and recovery) have to be constructed with knowledge of the logical

processes behaviour built in explicitly. Also, the model must be constructed with detailed

knowledge of the synchronization approach employed. This leads to the models being more

difficult to develop in the first instance and less robust in terms of later changes. The

configuration of logical processes must be static. Therefore dynamic processes are not

possible and changes to the topology of the processes can affect the performance. Later

additions to a model, not anticipated when the model was first developed, can have marked

performance effects. For instance, the addition of high priority messages which pre-empt

the processing of other messages added to a computer network simulation model.

The criticism that the simulation developer must have detailed knowledge of the syn­

chronization mechanism largely comes from the traditional sequential and the optimistic

synchronization communities. They argue that the simulationist should not have to be

concerned with such details; users of sequential simulators and optimistic parallel simul­

ators largely don't. This problem is being addressed though the development of simulation

languages which allow the synchronization mechanism to extract the necessary information

from the model code; an example of which is Maisie [116,117].

44

3.4 Synchronous Approaches

Several researchers have used synchronous algorithms which determine iteratively which

events are "safe" to process [106,114,118-120]. Each iteration, or window, consists of "safe"

event determination, event processing and ends with some form of barrier synchronization

in order to keep the events in each iteration separate. As the "safe" event determination and

the barrier synchronization need to be computed globally, these algorithms are more suited

to shared memory machines as the message passing overhead of global synchronization on

a distributed memory architecture is prohibitive.

There is more than a passing resemblance between synchronous approaches and the

deadlock detection and recovery approach discussed earlier. Both approaches involve a

global computation to determine which events are safe to process in the next phase. The

difference is in the computation. Ideally, a deadlock detection and recovery approach will

never (or very seldom) deadlock, whereas a synchronous approach will continually block and

restart at the end of each iteration. This would seem to indicate that deadlock detection and

recovery should outperform a synchronous approach. In practice i t has been found that in

the period leading up to a deadlock, execution is largely sequential as there are increasingly

fewer events to process. This effectively throttles any speed-up as per Amdahl's law. Syn­

chronous approaches control potential deadlock by controlling the amount of computation

in each iteration. In addition, they do not require a deadlock detection algorithm.

Synchronous approaches are distinguished by the mechanism used to determine which

events are "safe" to process within an iteration. Lubachevsky [118] introduced the idea of a

moving (simulated) time window. The lower edge of the window is defined as the minimum

time-stamp of any unprocessed event; the upper edge is usually set using application specific

knowledge based on the same concept of lookahead discussed earlier.

The algorithm studied by Nicol [119] can be applied to a queueing network as follows.

We assume that the queue knows all there is to know about a job's departure at the time it

enters service. Therefore, we can immediately report the job's arrival at the next queue; this

is known as pre-sending. Using knowledge of the queueing discipline, and the assumption

that no further job will arrive, the queue can compute the time of the next message it

will send. This time must be the departure time of the next job to enter service. Let us

suppose that all the processors have simulated up to time t and have synchronised globally.

Each processor p must compute the time Sj,(t) of the next message it will send (in the

45

absence of receiving further messages), and the processors together compute the minimum

6(t) = minp{6p(t)}. The window [t,8(t)} is now defined, and every processor is now free to

simulate all events with time-stamps within i t .

Now let us see how this mechanism would be applied to our example network of processes,

again based on that of Fujimoto and Nicol [79]. Initially, all the processors are synchronised

at time 0. This is the situation shown in figure 3.3 (a). The computations for the next

messages from each process are as follows;

A:5 2)

A:2(l) A:4f3)
A:8(7)

D:3 A : 3 m
A:4(3)
A:8(7)

(a) Beginning of first window, [0,3] (b) Beginning of second window, [3,4]

Figure 3.3: Example network of processes—simulated using time windows

Si(0) = 3, S2(0) = 7, <S3(0) = 7 and minp{6p(0)} = 3

Each process identifies the completion time of the next job to receive service, a calcula­

tion made possible by pre-sampling service times as shown in figure 3.3 (a); eg. A:2(l) , is a

job arrival at time 2 which receives a service time of 1 unit.

Only one event occurs in the first window [0,3]; the arrival at process Q l . Q l puts the

job in service and decides that Q3 will receive i t next and sends a message informing it of

the arrival. Q3 must pre-sample a service time for the new arrival, A :3 (l) . Q l must also

generate a departure event (D:3) and place it in its event-list. So, at the end of the first

46

window, we have the situation in figure 3.3 (b) and we can compute the size of the next

window.

^ (3) = oo, <52(3) = 7, 63(3) = 4 and minp{Sp(3)} = 4

Thus the second window is [3,4]. In this window the departure at Q l is simulated, the

corresponding arrival at Q3 is simulated, and notification of a new arrival at time 4 is given

to Q2, A:4(3). The situation at the end of the second window is shown in figure 3.4 (a).

A:4(3) D:7 0 2 Q2
A:5(2) Q: 2

0 0 0 Q3 Ql Q3

D:4 D:7 A:7f2)
A:8 7) A:7 5)

A:8(7)

(a) Beginning of t h i r d window, [4,7] (b) Beginning of four th window, [7,9]

Figure 3.4: Example network of processes—simulated using time windows

«51(4) = oo, S2(4) = 7, <53(4) = 7 and minp{6p(4)} = 7

For the third window, [4,7], Q3 simulates a departure and an arrival at time 4; pre-

sending notification of the arriving job's departure (at time 7) to Q l , which chooses a

service time of 2. Q2 simulates an arrival at time 4 (pre-sending to Q l) , and simulates the

job arrival at time 5 by marking the job as being in the queue as the server is busy. Upon

receiving the arrival at time 7, Q l pre-samples a service time of 5 units and places the new

arrival event in its event-list. The situation at the beginning of the fourth window is shown

in figure 3.4 (b). The fourth window will be [7,9] as shown below.

47

«5i(7) = 9 , 62(7) = 9 , <53(7) = 15 and minp{6p(7)} = 9

3.4.1 Per formance of Synchronous Approaches

The performance of the bounded lag approach which uses synchronous execution, lookahead

and time windows has been examined by Lubachevsky [118,121], see table 3.2. Again, as for

the CMB approach, the speed-up found was sub-unitary but i t did scale well as predicted.

Author (s) Ref. Machine Application S{n) n
Lubachevsky [118]

[121]
Sequent Balance

Connection machine
Queueing networks

Ising spin model
16

1900
25

16,384

Table 3.2: Speed-up figures for Synchronous approaches.

3.4.2 C r i t i q u e of Synchronous Approaches

The issue which needs to be addressed for window algorithms is whether enough parallel

events are processed in each window for i t to be effective. This is discussed for the window

algorithm described above, as well as for the Bounded Lag algorithm [121]. Both algorithms

should be scalable, which means that their performance characteristics do not degrade as

the size of the problem (and the machine architecture) increases.

Some insight into the scalability of the window algorithm is gained if we suppose that

a job's service time, t3, is always greater than zero. Since the Sp(t) value computed by a

processor is the completion time of a job that has not yet entered service, one infers that

6p(t) — t > t s for all p, so that the width of the window is at least t s . The average number

of events processed in a window is at least £ts, where S is the event density (events/unit

simulation time) for the entire simulation model. Increasing the problem size increases the

event density; the number of events in a window increases proportionally with S. Assuming

the simulation load is evenly balanced (or that the imbalance does not grow with the

number of processors), the number of events a processor executes per window does not

decrease if the number of processors and event density simultaneously increase in fixed

proportion. Another advantage of window-based protocols is that they are relatively easy

to use on SIMD architectures and this has been done successfully for a switching network

by Berkman [122].

48

3.5 Optimist ic Synchronization Approaches

Optimistic approaches detect and recover from causality errors rather than avoid them.

Therefore optimistic approaches don't need to determine whether or not it is "safe" to

proceed; they only need to detect the error and recover. The advantage of this is that

the simulator can exploit parallelism fully in applications which may produce causality

errors but in reality rarely do. Obviously, the greater the amount of causality errors that a

simulation produces, the greater the synchronization overhead with this approach.

The original work was done by Jefferson on the mechanism called time warp, based on

a concept of virtual time [80]. In this case, virtual time is synonymous with simulated time.

In the time warp mechanism, a causality error is detected whenever an event message is

received by a process that contains a time-stamp earlier than the process' local clock (ie. the

time of the last processed message). This is known as a straggler. Recovery is accomplished

by undoing the effects of all events that have been processed prematurely by the process

receiving the straggler. This is known as roll-back. Two things are affected by roll-back.

The process state may be modified; this is accomplished by returning to the correct old

state which is taken from a store of previous states. Also, previously sent messages must

be unsent; this is achieved by sending anti-messages which cancel the effect of the original.

If the original message has already been processed then that process in turn must also

roll-back. This process continues until the effects of the causality error are cancelled.

For even a moderate size of simulation this seems to imply a large amount of memory

to save the states for each process. However, as the earliest time-stamped event is always

"safe" to process, this is designated global virtual time (GVT) and is used to discard all

states before this time. This process of reclaiming memory, which is irrevocable, is known

as fossil collection. GVT has another function which is to commit irrevocable operations

such as I / O . Many algorithms have been suggested for computing GVT, most of which are

based on including the "local" GVT of a logical process with all, or selected, messages sent

to other processes. Discussions of various GVT algorithms can be found in the work of

Bellenot [123], Lin and Lazowska [124] and Priess [125]. GVT is discussed in more detail in

the next section.

A variation on the above cancellation approach, which is said to use aggressive can­

cellation using anti-messages, is an approach which seeks to repair the "damage". This is

known as lazy cancellation, discussed by Gafni [126]. In this case, instead of immediately

49

sending out anti-messages, the process waits to see which messages that the re-execution

of the process produces are different to those produced before. If the same message is pro­

duced, there is no need to send out an anti-message. I t has been found that, depending

on the application, lazy cancellation may improve or degrade the simulation performance.

Improvement, noted by Berry [127] and by Som et. al. [128], is usually due to processes with

incorrect input still producing correct output. Degradation can be due to the additional

message checking overheads and the fact that incorrect computations have longer to spread

out, causing more processes to roll-back.

A variation on lazy cancellation is that of lazy re-evaluation, or jump forward proposed

by West [129]. If, after rolling back and processing a straggler, i t is found that the state

vector is unaltered and no new messages have arrived, then re-execution of the rolled back

events will be the same as before. Therefore, re-execution is unnecessary and the simulation

may jump forward over them. This sounds useful but was found to significantly complicate

the time warp kernel. An implementation was tried in the Jet Propulsion Laboratory

(JPL) time warp kernel but was later removed due to such problems. This was reported by

Jefferson et. al. [130].

Fujimoto [131] proposed an enhancement called direct cancellation which works with any

of the above cancellation approaches if implemented on a shared memory multiprocessor.

Any event scheduling a new event keeps a pointer between the two, thus allowing faster

cancellation compared with conventional time warp systems which must search for the

messages to cancel. This has proved to be a useful optimization, i f limited in scope.

3.5.1 E n h a n c e m e n t s to Opt imi s t i c Synchronizat ion Approaches

There have been several variations on the basic approaches seeking to optimize the time

warp mechanism. Optimizations have been sought in two basic areas, rollback stability and

memory management.

The rollback stability problem stems from the possibility that a "fast" processor (or

processors) may simulate too far ahead of the others. This is most likely to occur when

communication between processors is low and processor loads not equal. A form of thrashing

may then occur where the simulation processes are caught in an increasing cycle of roll­

backs and cannot progress termed by Lubachevsky et. al. wildfire cascade rollbacks [132].

Lubachevsky et. al. also introduced the terms gushing cascade rollback, for the situation

where rollbacks propagate rapidly through a simulation temporarily halting progress, and

50

echo rollback where a small cycle of processes cause each other to rollback. The latter

classes of rollback have been observed by simulationists, though rarely, and the cause has

often been found to be an error in the simulation model rather than a flaw within time

warp. Wildfire cascade has not been observed as yet to the knowledge of this author and

Lubachevsky et. al. though this does not mean necessarily that i t cannot occur. Indeed,

Lubachevsky et. al. [132] and Fujimoto [24] argue analytically and from experience that

such thrashing behaviour is exacerbated if the cost of rollback is too high.

One idea presented for preventing such unwanted rollbacks is to cause controlled pre­

emptive rollbacks or to freeze the computation of all adjacent processors. For example,

when a processor needs to rollback it may immediately issue rollback instructions to other

processors who will probably have to rollback anyway. This effectively causes the rollbacks

to occur in parallel rather than serially. An algorithm to achieve this has been developed by

Madisetti et. al. called Wolf calls [133]. An alternative way of implementing this idea, also

by Madisetti et. al. [134], is to build periodic (or even random) pre-emptive rollbacks that

occur in the simulation model independently of any activity. This keeps all the processors

loosely synchronized in the same period of simulation time.

An alternative to these ideas is simply to restrain processors from getting too far ahead

of the rest, effectively curbing the optimism. The simplest method is to use a window,

[t,t -f St]. Events with a time-stamp less than t + St are simulated as normal; those with a

time-stamp greater than or equal to t + St are left until all of the processors have simulated

up to time t. This is achieved using a barrier synchronization as described by Nicol [135]. A

new window [t + St,t + 2St] is then defined and simulated. This idea has been investigated

by Sokol and and Stucky [136], Turner and Xu [137] and by Ball and Hoyt [138]. A similar

proposal to extend constrained optimism to the Bounded-Lag protocol has been proposed

by Lubachevsky [139].

Effective memory management has been required for optimistic synchronization ap­

proaches like time warp since their first development. In time warp, three types of mech­

anism have been used to restrain the amount of memory that is required to perform the

simulation. Firstly, and fundamentally, fossil collection using GVT calculation. Secondly,

some form of infrequent or reduced state-saving, often termed checkpointing. Thirdly, a

rollback-based recovery mechanism often achieved by limiting the optimism as described

above.

Before discussing fossil collection and GVT calculation let us establish what time warp

51

does in each logical process. In order to be able to recover (rollback) from a causality error,

each logical process must maintain past state vectors (records) in its state queue, previously

processed events in its input queue, and records of previously sent messages (saved as anti-

messages) in its output queue. Fossil collection, the recovery of memory for re-use by

discarding contents of the above queues which are no longer needed by the simulation, is

made possible by the distributed calculation of the global virtual time (GVT) . AH memory

occupied by state vectors and messages whose time-stamps are older than GVT can be

recovered.

GVT is the time-stamp of the earliest event in the simulation, but also represents a

lower bound on the time-stamp of any future rollback. In time warp, as originally denned

by Jefferson [80], rollbacks only occur when receiving messages whose time-stamp is less

than the local clock time of the logical process, often called local virtual time (LVT). This

means that, strictly, GVT has to be defined as the minimum of the time-stamp of all

messages in transit (sent but not received) as well as the LVT of all logical processes. If

a logical process has no unprocessed messages in its input queue, then the LVT is set to

infinity. I f there are no unprocessed messages, or messages in transit, in the entire system

then GVT will be set to infinity and the simulation will terminate.

If barrier synchronization (eg. that of Nicol [135]) is possible (and not prohibitively

expensive) in the multiprocessor, then GVT calculation is simple. I f this is not possible

then GVT calculation is more difficult as i t must be distributed. The difficulty arises

as inaccurate values of GVT may be calculated due to messages still in transit and race

conditions. The former problem can be addressed with acknowledgements or by a logical

process only proceeding with the calculation if i t has information on LVT from all the

adjacent processes. These algorithms are discussed by Lin and Lazowska [124]. The effect

of race conditions can only be solved completely using a barrier synchronisation to ensure

that all simulation computations halt before the GVT calculation is begun. The processes

agree to synchronize at some barrier simulation time tfj. A process enters the barrier when it

has no events left to process with time-stamps less than t j , but rolls back out of the barrier

if i t subsequently receives a message with a time-stamp less than This ensures that a

process does not leave the barrier until all processors have simulated all events at times less

than or equal to f j . Emerging from this barrier, a process knows that GVT is Thus it

can perform fossil collection and simulate up to the next barrier synchronization time.

Other approaches to GVT calculation have been suggested in order to avoid using barrier

52

synchronization. Preiss [125] uses a token passing scheme where the processes are organised

in a logical ring, and continually compute GVT as the token containing LVT values for each

process visited is passed around the ring. Similarly, Bellenot uses a logical tree structure to

initiate, compute, and distribute GVT values [123]. Reynolds [140] also uses a tree structure

to compute GVT in his hardware synchronization network.

Even with fossil collection time warp still uses prodigious amounts of memory compared

with sequential and parallel simulation using a conservative or synchronous synchronization

approach. Memory may also be saved by cutting down on the overheads of state-saving

either by doing it incrementally or infrequently. These schemes are illustrated in figure 3.5.

Where the state vector is large and only a small portion is modified by each event, incremen­

tal state-saving may be useful. Here, only the incremental changes to the state are saved

rather than the entire state vector reducing both memory space and access time. The disad­

vantage is that rollbacks become more expensive as the state vector must be reconstructed

from the incremental changes. This is a problem because, as noted above, time warp is more

prone to thrashing if rollback costs are high. Briner [141] used incremental state-saving in

an implementation of time warp for digital logic simulation, and found that the state-saving

overheads were significantly reduced for transistor and gate level simulations.

An alternative approach is to reduce the frequency of state-saving, or conversely, to

increase the checkpoint interval. As illustrated in figure 3.5, rollback must be to the last

checkpointed event older than the straggler's time-stamp and the relevant state recreated.

This phase, between the last checkpoint time and the straggler arrival time, is known as

coasting forward as message sending is turned off. As before, with incremental state-saving,

the cost of rollback is increased but the state-saving overhead in time and space is reduced.

As the checkpoint interval may be varied there is an obvious trade-off between memory usage

and the performance of the simulation. Lin and Lazowska [142] investigated this trade-off

analytically and derived expressions for the range in which the optimum checkpoint interval

should be set. They also showed that it is better to err on the side of a longer checkpoint

interval as storage space is reduced but speed-up is not greatly affected. Preiss, Maclntyre,

and Loucks [143] and Bellenot [144] validated Lin and Lazowska's results experimentally.

Further collaborative work by Lin, Preiss, Loucks and Lazowska [145] has resulted in an

improved version of Lin and Lazowska's model. This has been used as the basis for a

heuristic algorithm for automatically selecting the optimum checkpoint interval in terms of

reducing the execution time. Palaniswamy and Wilsey [146] compare checkpointing with

53

© © ® ® © © ° ®—©§®—@~"©—e

G V T / / L V T
straggler ' Saved state/

(a) Normal t ime warp operation

time

@ ® 3 ^ t ime

Event

(b) T ime warp using a checkpoint interval of three

© [g [g[g B E o B t ime

G V T / L V T
Incrementally saved state

(c) T ime warp using incremental state saving

Figure 3.5: Time warp rollback using different state-saving schemes

incremental state-saving analytically using Lin and Lazowska's model as a starting point.

They conclude that incremental state-saving should generally outperform checkpointing for

applications where there are many small rollbacks and and a long execution time compared

with the total state-saving overhead. This conclusion would seem, in practical terms, to

favour checkpointing with an optimum interval.

Al l of the above strategies have the drawback that if the system runs out of memory then

the simulation must terminate. The problem may lie with the time warp approach itself

(too optimistic) or the application. Whichever is the cause, and due to the large amounts

of memory used by time warp, much attention has been paid to allowing time warp to work

within limited memory. The basic idea underlying these enhancements is to rollback overly

optimistic computations and reclaim memory.

Jefferson, when time warp was first proposed, described a mechanism called message

sendback to achieve this effect [80]. Here, the time warp kernel may return a message to

54

the sending process without processing i t , and reclaim the memory. Upon receiving the

returned message, the sending process will usually have to rollback to the send time-stamp

of the message as it will be a straggler, and re-generate i t . Assuming aggressive cancellation

(which Jefferson did), this rollback will cause anti-messages to be sent and the subsequent

annihilations, and possibly other rollbacks, release additional memory resources in the sys­

tem. Obviously, only messages with send time-stamps greater than GVT can be returned

as rollbacks beyond GVT would result causing an unrecoverable error. Message sendback

is triggered when a process receives a message, but has no memory available to store i t .

The message with the largest send time-stamp is then returned. Gafni [126] proposed a

mechanism which uses message sendback along with other mechanisms to reclaim storage

used by state vectors and messages stored in the output queue. More recently, Jefferson

has proposed an alternative approach called cancelback [147]. While Gafni's algorithm will

only discard states in the process which ran out of memory, cancelback also allows states in

any process to be reclaimed. Messages containing high send time-stamps are sent back to

reclaim storage allocated to messages. This is intended to rollback processes that are ahead

of others in the simulation.

Message sendback and cancelback require us to redefine GVT slightly. Messages re­

turned to the sending process may now cause rollbacks, so the send time-stamps of messages

must now be considered in addition to receive time-stamps in the definition. For cancelback,

Lin [148] has defined GVT as the minimum of the LVT of all the logical processes in the

simulation and the send time-stamp of all messages in transit. Lin also proposed a mech­

anism called artificial rollback which uses the same definition of GVT. I f memory storage

becomes exhausted and fossil collection cannot reclaim additional memory, processes are

rolled back. The process that is the furthest ahead in simulation time is rolled back to the

time of the second most advanced process. This is repeated until the supply of free memory

reaches a certain threshold termed the salvage parameter, which is a control that can be

used for tuning performance and is essentially the amount of memory reclaimed when the

system runs out. Artificial rollback is similar to cancelback in the sense that cancelback

returns messages which cause the sender to rollback, and artificial rollback rolls back the

processes directly. The principal advantage of artificial rollback over cancelback is that

it has been found to be simpler to implement. Lin has shown that artificial rollback and

cancelback have the property of being storage optimal. That is, they are able to execute

the simulation program using no more than a constant times the amount of memory re-

55

quired by the sequential simulation that uses an event-list. Also, in the case where there

is insufficient memory to run the time warp simulation without using artificial rollback or

cancelback; then the simulation will still run.

It has been found that while time warp with cancelback or artificial rollback is storage

optimal, certain conservative simulation protocols are not. Lin, Lazowska and Baer [100]

and Jefferson [147] show that the CMB algorithms may require 0(nk) space for parallel

simulations on n processors where the sequential simulation requires only 0(n + k) space-

Lin and Preiss [149] report the existence of simulations where CMB algorithms have expo­

nential space complexity, and so use far more storage than even the sequential simulation.

Conversely, they also indicate that the same algorithm may sometimes use less storage than

that required by the sequential simulator. They show that time warp with cancelback or

artificial rollback always requires at least this much.

The main drawback of time warp with cancelback or artificial rollback is that it will

run very slowly if it is only provided with the minimum of memory. Akilidiz et. al. [150]

explore the performance of time warp with varying amounts of memory both analytically

and using an implementation of time warp using cancelback. They found that time warp

needs relatively little memory in order to perform well, compared with execution using

unlimited memory (ie. more than enough). However, they only explored the case of ho­

mogeneous processing loads. An experimental study on the same implementation by Das

and Fujimoto [151] has examined the performance/memory trade-off using various non-

homogeneous processing loads. Also, a stress case of a processing load containing a number

of overly optimistic processes that advance unthrottled into the simulated future was investi­

gated. Again, they found that time warp with cancelback, even with asymmetric processing

loads, only needed a modest amount of extra memory above that needed for sequential sim­

ulation and still performed well. However, it did not perform as well as the case with

symmetric processing loads, as expected. This was achieved by optimizing the setting of

the salvage parameter. I t was found that setting it too low causes poor performance espe­

cially i f the system is memory bound; setting i t too high (the maximum setting essentially

causes the simulation to delete everything except that required for sequential execution)

also degrades performance because correct computations are unnecessarily rolled back. Be­

tween these two extremes, however, performance appeared to be relatively insensitive to

the salvage parameter setting. Further, it was discovered that an inefficient implementa­

tion of the event-list (ie. the input queue) in each logical process can seriously degrade the

56

performance of the system in limited memory situations.

3.5.2 Performance of Optimistic Synchronization Approaches

Many successes have been reported in using the time warp approach to speed-up simul­

ations. Impressive results have been published in areas as diverse as battlefield simulations,

biological systems (eg. an ant foraging model, shark's world, health care systems), petri nets,

colliding pucks, queueing networks and computer communication networks. A selection of

the most successful results are shown in table 3.3

Author(s) Ref. Machine Application S(n) n
Wieland et. al. [152] Caltech/JPL

Mk. I l l Hypercube
BBN Butterfly

Battlefield
simulation

28.6

36.8

60

100
Sokol and Stucky [136] BBN Butterfly Battlefield

simulation
8.59 9

Baezner et. al. [153] Inmos transputers Battlefield
simulation

6-10 32

Ebling et. al. [154] Caltech/JPL
Mk. I l l Hypercube

Biological
systems

12.7 32

Hontalas et. al. [155] Caltech/JPL
Mk. I l l Hypercube

Colliding pucks 11.5 32

Presley et. al. [156] Caltech/JPL
Mk. I l l Hypercube

Computer
networks

11
16.2

16
32

Briner [141] BBN Butterfly Digital logic
circuits

23 32

Fujimoto [131]
[157]

BBN Butterfly Queueing networks
Synthetic (Phold) model

57
32-54

64
64

Table 3.3: Speed-up figures for Optimistic approaches.

I t has been found that significant performance improvements can also be made to time

warp by using application specific knowledge in the form of lookahead, but the impact is far

less than for the CMB approach. This has been noted by Loucks and Preiss [113], Baezner

et. al. [158] and Fujimoto [131,157]. Fujimoto showed, using a queueing network simul­

ation, that time warp could obtain significant speed-up for models with poor lookahead

where conservative approaches performed badly. This was confirmed in a further investiga­

tion using a synthetic workload model known as Phold, a parallel hold model 1. Variations

in lookahead, time-stamp increment distribution, topology and granularity of computation

1 Phold is an extension of the synthetic hold model used in evaluating sequential simulation event-list
implementations.

57

were investigated. It also was found that time warp was able to achieve speed-up in propor­

tion to the amount of parallelism available in the workload. That is, speed-up continued to

increase as the processes were allocated to more processors; this often called scaling. A less

encouraging result was that time warp was found to be very sensitive to the cost of rollback

and also to the size of state vectors; the performance is severely affected by increases in

both. This result has fuelled the interest in hardware support for time warp, infrequent and

incremental state-saving and analytical studies into time warp performance.

Hardware support for time warp has been investigated in two ways; hardware support

for state-saving and hardware support for dissemination of global information. These both

involve "add-on" hardware implementing certain time consuming operations used in the

simulation. They are intended to be attached to existing parallel or distributed computer

architectures so that they may be more "technology proof" and, therefore, still be useful as

faster microprocessors and denser memory chips become available.

The Virtual Time Machine, developed by Fujimoto and Ghosh [159,160], is envisioned

to be a general purpose parallel processor based on optimistic synchronization. The machine

is essentially a shared memory multiprocessor with a special type of memory system called

space-time memory, and a hardware implemented rollback mechanism. Fujimoto et. al. [161]

have also designed a component called the rollback chip that provides hardware support for

state-saving and rollback in time warp. This component was the forerunner to the space-

time memory system mentioned above and can be viewed as a special memory management

unit. A process may issue a special "mark" operation to indicate that a state vector must

be preserved in case a rollback later occurs. The rollback chip hardware then modifies

the addresses of subsequent memory writes to preserve i t , thus minimising the amount of

copying that is required and reducing the cost of restoring a state if rollback occurs. This

is similar to the direct cancellation also proposed by Fujimoto [131]. Simulations indicate

that the state-saving overhead can be considerably reduced.

Reynolds et. al. have proposed a hardware mechanism to rapidly collect, operate on, and

disseminate synchronization information throughout a parallel simulation system [140,162-

164]. The hardware is configured as a binary tree, with a processor assigned to each node. To

compute GVT for instance, each processor indicates a local minimum among the processes

assigned to i t , and the tree automatically computes the global minimum in a distributed

fashion 2 and distributes the computed value to all processors in the system by broadcasting

2 Each node (processor) computes the minimum of its own L V T and that of its neighbours, and propagates

58

values down the tree. Simulations indicate that the time required to compute GVT is

reduced by orders of magnitude over software based approaches. A prototype system is

currently under construction.

Experimental investigations into the benefits of infrequent state saving, or checkpointing,

have been done by Preiss, Maclntyre, and Loucks [143] and by Bellenot [144]. Preiss

et. al. simulating queueing networks, found that the "time-optimal and space-optimal

checkpoint intervals are not the same". They also found that "a checkpoint interval that is

too small adversely affects space more than time; whereas a checkpoint interval which is too

large adversely affects time more than space", thus providing a useful trade-off. Bellenot

confirmed these conclusions with simulations of colliding pucks, a battlefield scenario and

a computer network. However, he did find that "the positive effects of state skipping3

generally decreases as the number of processors increase".

3.5.3 Critique of Optimistic Synchronization Approaches

The major fear with optimistic approaches such as time warp is that they may exhibit

thrashing behaviour due to multiple rollbacks. However, the experience of researchers at a

number of universities and research centres has been that such behaviour is seldom encoun­

tered in practice. Also, when it is observed, i t is almost always attributable to some flaw

in the simulation model or the implementation of the time warp mechanism. As mentioned

previously, this conclusion is largely supported by the results of analytical studies of the

time warp mechanism, assuming that the cost of rollback is sufficiently small.

There is an intuitive explanation as to why the behaviour of the time warp mechanism

tends to be stable in this regard. First of all, erroneous computations can only occur when

a correct event is processed prematurely. This premature execution, and all subsequent

erroneous computations, must necessarily be in the simulated time future of the (correct)

straggler event. Also, the further the incorrect computation spreads, the further it moves

into the simulated time future. This lowers its priority for execution as scheduling pref­

erence is always given to events having smaller time-stamps. Therefore, the time warp

mechanism tends to automatically slow the propagation of erroneous computations allow­

ing the causality error detection and rollback mechanism to correct things before too much

damage has been done. A potentially dangerous case has been suggested by Fujimoto [24]

the new minimum up the tree.
3State skipping is the term Bellenot uses for checkpointing or infrequent state-saving.

59

where the erroneous computation propagates with smaller time-stamp increments than the

correct one. It remains to be seen, however, to what extent this behaviour can degrade

performance, or if such pathological situations arise in practice with any frequency.

A more serious practical problem with the time warp mechanism is the need to peri­

odically save the state of each logical process. As previously mentioned, the state-saving

overhead can seriously degrade the performance of time warp programs, even if the state

vector is relatively modest in size. The state-saving problem is further exacerbated by ap­

plications requiring dynamic memory allocation because one may have to traverse complex

data structures to save the process's state. State-saving overhead limits the effectiveness of

time warp to applications where the amount of computation required to process an event

can be made significantly larger than the cost of saving a state vector 4. This may be

difficult to achieve for certain applications. A more general solution is to use hardware

support for state-saving [126,159]. Supporters of optimism concede that hardware support

will probably be required to exploit fine-grain parallelism effectively.

Much has been learned with respect to techniques to control memory usage in opti­

mistic protocols. However, some important questions still remain unanswered. Although,

experimental data has provided some useful insights as how controls such as the checkpoint

interval and the salvage parameter should be set; analytic models (as yet) do not exist to

definitively answer such questions. Nevertheless, controls such as these do at least allow

a practical trade-off between performance and memory usage. Furthermore, the perfor­

mance/memory properties of conservative protocols have not been studied in any depth.

I t follows that mechanisms to ensure storage optimal execution for conservative protocols

have yet to be developed.

In time warp, fossil collection and GVT computations are used to commit any irrevocable

operations, eg. screen and disk 10. Thus far, most of the work in PDES has been done

with simulators which have used relatively little 10. When PDES is used in interactive and

real-time simulations, rapid commitment of events, and particularly GVT computations,

becomes critical. The usefulness of optimistic mechanisms for such simulation applications

is just beginning to be investigated by researchers; see Ghosh et. al. [166].

Unlike conservative approaches, optimistic mechanisms need to be able to recover from

arbitrary run-time errors; particularly as such errors may be erased by a subsequent rollback.

4 "A high granularity compared with the event overhead" is recommended for all applications using the
time warp operating system (TWOS) [165].

60

Erroneous computations may enter infinite loops, requiring the time warp kernel to interact

with the hardware interrupt system. In certain languages (eg. C and Pascal), pointers may

be manipulated in arbitrary ways; time warp must be able to trap illegal pointer usages

that result in run-time errors, and prevent incorrect computations from overwriting critical

areas of memory. Although such problems are, in principal, not insurmountable, they may

be difficult to circumvent in certain systems without appropriate hardware support. The

alternative taken by most existing time warp systems is to leave the task of analyzing

incorrect execution sequences to the user by providing copious information in the form of

redundant statistics and run-time traces5. Practically, this means that errors in time warp

simulation models can be extremely difficult to debug. Indeed, the user manual for JPL's

time warp operating system (TWOS) [165] recommends the use of TWSim, a sequential

simulator which runs TWOS applications, for debugging.

Finally, supporters of conservative approaches point out that the time warp mechanism is

far more complex to implement than conservative approaches; particularly if one attempts

to catch errors such as those described above. Although the actual time warp code is

not very complex6, if one ignores the error handling aspects, inexperienced implementors

may make seemingly minor design mistakes that lead to extremely poor performance. For

example, the use of an inappropriate process scheduling policy can be catastrophic. Further,

debugging time warp implementations is time consuming because i t may require detailed

analysis of complex rollback scenarios. A certain amount of design experience (or pure luck)

is often required to obtain a good, robust implementation of time warp. On the other hand,

champions of optimism counter this by pointing out that this development cost need only

be paid once when developing the time warp kernel.

3.6 Summary

This chapter has attempted to provide an overview of the distributed model components

approach to parallel discrete event simulation and the fundamental problem of synchronizing

the execution of multiple processes. Optimistic methods such as time warp seem to offer the

greatest hope as a general purpose simulation mechanism assuming that the state-saving

5See the article by Reiher et. al. [167] for a practical insight into debugging time warp applications.
6 T h e entire time warp kernel, described by Fujimoto [131] for a shared-memory multiprocessor, is only a

few hundred lines of code. The rollback, message cancellation and event handling code in JPL's time warp
operating system (TWOS) kernel for distributed memory multiprocessors is fewer than 1000 lines [165].

61

overhead can be kept to a manageable level. Significant success has been achieved across a

very wide range of applications.

Conservative methods offer good potential for certain classes of problems. Significant

successes have also been obtained particularly when application specific knowledge, in the

form of lookahead, has been applied to maximise the efficiency of the simulation mechanism.

Conservative methods may well find success in packaged simulation systems (eg. digital logic

simulators) in which the simulation code is optimized for the synchronization algorithm and

users only configure the provided simulation modules into specific systems.

Which strategy should then be used for a particular simulation problem? If state-

saving overheads do not dominate, then time warp has a good chance of success assuming

(of course) that the problem contains a reasonable degree of parallelism. I f the applica­

tion has good lookahead properties, conservative mechanisms may also perform well If the

application has both poor lookahead and large state-saving overheads, all existing PDES

approaches will have trouble obtaining good performance even if the application contains

copious amounts of parallelism. However, time warp, aided with hardware support for

state-saving, should provide a viable solution in this situation. Also, hybrid approaches of

time warp with limited optimism (eg. breathing time warp) may well yet produce a more

general parallel simulation mechanism.

Finally, perhaps the most challenging problem remaining to be explored is application

of these techniques beyond the realm of discrete event simulation, in the world of general

purpose parallel computation. A parallel simulator executes events in parallel, yet guaran­

tees that the same results are obtained as would be if the events were processed sequentially

in increasing time-stamp order. Consider any computation that is broken up into tasks,

and the tasks are assigned time-stamps to reflect a valid sequential execution. For example,

each task might represent a single iteration of a FOR-loop with the time-stamp indicating

the iteration number. Parallelization of this FOR-loop is essentially the same problem as

parallelizing a discrete event simulation: one must execute the iterations in parallel but

obtain the same results they would compute if the events were executed sequentially in

increasing time-stamp order. The degree to which the techniques described here can be

applied to parallelizing arbitrary computations is yet to be explored.

62

Chapter 4

Parallel Simulation, of

Circuit-Switched Networks osim

4.1 Int roduct ion

A parallelizing compiler is defined as a program which takes an application written

- T l i n a conventional sequential programming language, determines which parts of the

program can be executed in parallel, and produces the machine level code to run on multiple

processors. The major motivation for such a compiler is that existing sequential programs

can be ported to a multiprocessor architecture without changing the source code, but with

a subsequent decrease in execution time. Thus, time and money is saved as a consequence

of not having to re-write the program, learn a new language or tailor the program to the

particular multiprocessor architecture. The experiments described in this chapter were

intended to explore the utility of such an approach for speeding-up the execution of a

circuit-switched telecommunication network simulator.

The approach taken was to try to discover the "path-of-least-resistance" to achieving

significant speed-up. That is, to find out how to get the most speed-up from the simulator

with the minimum of effort. Wi th any multiprocessor architecture, the best way of fully

exploiting the parallelism available is to re-code the application in the machine's own parallel

language using inherently parallel algorithms wherever possible. In this case, we are trying

to exploit the automated facilities and expend as little development effort as possible. The

a

A

63

nearest relevant research to this exercise done previously was by Chandak and Browne [26]

and by Reed [27]. Both worked on parallelizing discrete event simulations of queueing

network models and achieved relatively poor results (see chapter 2).

The original simulation program used was written by Nadereh Eshragh at the University

of Durham as part of her Ph.D. thesis looking into dynamic routeing in circuit-switched

telecommunication networks [168]. The program was written in Fortran 77 for execution

on an Amdahl mainframe. The simulator was written to work with networks of up to ten

fully-connected exchanges or nodes; though the program could easily be extended to larger

numbers of nodes and also to networks which are not fully-connected. The routeing strat­

egies available are fixed routeing, random routeing, automatic alternative routeing, least

busy alternative routeing, dynamic alternative routeing and stochastic learning automata

using linear reward inaction or linear reward penalty. The strategies are described in detail

in her thesis [168].

The program, henceforth called N A D , requires two files; an input file, always called

datsimt, consisting of the number of nodes, random number seeds, a capacity matrix and a

traffic matrix; and an output file, which is usually called fort.8 (often a Fortran constraint),

initially containing a simulation run title, the routeing information, an overload factor

(scaling factor for network traffic intensity) and a trunk reservation parameter. Results are

written into the output file along with the simulation input information 1 .

The simulation consists of a number of time units, each time unit consisting of a cycle of

the following actions. Firstly, the inter-arrival time, and the origin-destination pair of the

next call arrival are generated. Next, the calls which have been completed during this inter-

arrival time are cleared down. Then, an attempt to route the new call is made according to

the specified routeing algorithm. Finally, the acceptance or rejection (blocking) of the call,

along with the origin-destination pair information, is recorded into the appropriate arrays.

Results are written into the output file at the end of each time unit. The operation of the

program is discussed in much greater depth in the thesis.

Thus, we are dealing with very simple, highly aggregated, model of a circuit-switched

network. Hence, many operational details of the network are ignored in order to focus on

the performance of the routeing algorithms in relation to the overall blocking probability.

In particular, i t is not a true discrete event simulation; accurately modelling the contention

1 All of the files used in this work are contained on a separately available floppy disk (see Appendix A for
information on availability).

64

for trunk capacity between call arrivals and departures. As this model involves a great deal

of matrix manipulation using DO loops there seemed a good possibility that some speed-up

would be possible using a parallelizing compiler.

4.2 The Testbed Architecture

4.2.1 Hardware Architecture

The shared memory multiprocessor used in these experiments was an Encore Multimax.

This was first designed in 1983 and is produced in several versions. The version available at

the University of Newcastle's Computing Laboratory is a 520, known locally as NEWTON,

with fourteen main processors and 160 Mbytes of shared memory. In computing terms

the Multimax is a M I M D machine but is more commonly known as a shared memory

multiprocessor (see section 1.4). The basic architecture is illustrated in figure 4.1.

Cache

Processor

Cache

Processor

Cache

Processor

Bus

Shared Memory

Figure 4.1: Shared memory multiprocessor architecture with a single bus and local caches.

The Multimax is controlled by a central processor which provides general monitoring

and diagnostic facilities. This is based on a National Semiconductor NS32016 running at

10 MHz. The main processors are based on a processor/co-processor pair, the NS32532 and

NS32381, running at 30 MHz. Encore claim a peak performance of about 8 MFlops for a

main processor. Each main processor has a 256 kbyte cache memory controlled from the

memory management circuitry in the NSC32532.

The complete system is built around a bus designed by Encore called the nanobus. I t

is made up of three individual buses; a 32 bit address bus, a 64 bit data bus and a 14

65

bit vector bus. In addition, each bus has an extra byte wide channel for parity checking.

The Multimax 520 is so called as it has space for 20 card slots on the nanobus. The clock

speed of the bus is nominally 12.5 Mhz giving a total memory bandwidth of 100 Mbytes per

second. Inevitably, the bus is the bottleneck for this type of machine partially alleviated by

the local cache memories.

4.2.2 Software Architecture

For the Multimax, Encore developed two varieties of UNIX : U M A X 4.3 and UMAX V.

The former is based on Berkeley UNIX 4.3 BSD. and the latter is an implementation of

the System V UNIX from A T & T . UMAX 4.3 is the system available on NEWTON. The

languages available are C, U M A X Fortran and Encore Parallel Fortran (EPF) [169].

The U M A X Fortran compiler can produce standard sequential code for running on

a single processor, or parallel code for running on multiple processors using EPF. The

sequential Fortran meets the ANSI Fortran 77 standard and also includes most of the

V A X / V M S extensions. In order to support the parallelism of the machine, a number of

Fortran 90 features have also been included. Parallelization of programs may either be

done manually or automatically by the parallel optimizer. The optimizer is implemented as

a pre-processor to the compiler. I f required, the programmer may take the output from the

pre-processor to perform further parallelization by hand. The compiler also has an option

to generate execution profiling code. Thus, when the program is executed a trace file is

produced which can be analysed using the utility gprof to produce a report. The report

will contain exact call counts, call graph arcs and statistically approximate timing data for

a process as well as other data to aid in optimizing the program. Conventional Fortran 77

debugging tools can be used, such as debug and dbx, as well as the optional enhanced f db

debugging tool.

EPF analyses the source code to determine which program segments can be executed

concurrently and converts them into parallel Fortran constructs. EPF uses explicit synch­

ronization statements and local variables to improve concurrency automatically. The most

fundamental optimization performed is loop spreading. This consists of converting DO loops

into DQALL (parallel) loops; where all the statements in the loop can be executed in paral­

lel. Loop spreading is enabled by EPF by splitting existing loops, re-ordering statements,

introducing new variables and introducing explicit synchronization and ordering controls.

The extent to which any program can be parallelized using loop splitting and the asso-

66

dated techniques described above is limited by four primary forms of data dependency. A

flow dependency occurs where an assignment modifies a variable used in a later statement.

Anti-dependence occurs where an assignment is made after a variable is altered. Output

dependencies occur where an assignment must complete before another is made and control

dependencies are caused by conditional statements which are dependent on prior statements.

The parallel programming tools provided with the Encore Multimax facilitate task cre­

ation and synchronization. A U M A X process contains the program, as a set of machine

instructions and reserved address space, and operating system data (the necessary environ­

ment support structure). Multiple tasks must be created for parallel processing, with each

task able to carry out a portion of the program on different processors. While the operating

system treats each task as an independent process, there is a significant difference between

a task and a U M A X process: tasks can share memory with the parent process and all

other tasks spawned by that process; thus the group of tasks spawned by a process form

a task set. Tasks are timeshared in the conventional manner regardless of whether or not

they share memory. U M A X handles timesharing by context switching, idling one task and

letting another use the processor while storing registers and program counters in order to

restore the original task in its turn.

The Encore Parallel Fortran extensions exist within a task-based run-time model, the

Encore Parallel Runtime library (EPR). On program start-up, an EPF program is initialised

to use the EPR. A task shares the code of the main program, but has an automatic data

stack, registers and a program counter of its own. The number of tasks that are available for

use in parallel constructs can be specified by setting the environment variable EPR.PROCS.

I f not specified, the default is to use one task, and hence execute on a single processor.

Built-in EPF functions track the number of tasks and their identities. In deference to other

users; n ice must be used to run the program at a low priority i f there are more than four

processors specified to be used at run time using EPR-PROCS.

4.2.3 E x e c u t i o n M o d e l

The execution trace of the parallel simulation is relatively simple and is illustrated in fig­

ure 4.2 for four processors. This follows from the description above of the run-time model.

As can be seen, Amdahl's law will effectively be an upper-bound on the possible speed-up

which may be obtained on the Multimax. The execution trace also indicates how the timing

of the execution of programs on the Multimax is achieved. A version of the Unix time com-

67

mand uses a hardware clock to keep track of effective execution periods and ignores that

time when execution is suspended. This clock is also used by the system for general time­

keeping and time-stamping outgoing messages to other computer systems. A time-stamp

is taken from this clock at the time that the program is initiated and terminated and the

difference is used to calculate the execution time. The clock is also read at other points to

time system commands and also to avoid including the time that the system spends waiting

for processors to become available. This was borne out by running the same simulations

at various priority levels (levels of nice) which resulted in the same execution times to the

nearest second.

Processor 4

Processor 3

Processor 2

Processor 1

Sync, periods

Timing

: f

•A

Timing active

Timing inactive

Processor busy

Processor idle

Inter-processor
communication

Execution suspended

whilst system cannot

free four processors

Figure 4.2: Execution trace of a parallelized program on the Multimax shared memory
multiprocessor.

4.3 Discussion of Results

4.3.1 Introduct ion

The performance measure we are interested in is speed-up. But, as we have already seen,

this is a dimensionless and relative measure. For these experiments i t was decided to try

to get as complete a comparison as possible. This was done by performing simulations on

a single Multimax processor using a sequential compiler, simulations on a single processor

68

using the parallelizing compiler, as well as the true multiprocessor simulations. In addition,

some sequential simulations were performed on a more modern uniprocessor machine to put

the parallel simulations in context with the possible performance available without going

to parallel simulation.

The models of the five- and ten-node fully-connected networks were taken from Nadereh

Eshragh's thesis [168]. The traffic and capacity figures were chosen to reflect reasonably

busy trunks in a realistic network. The link capacities were obtained using fixed route

dimensioning using Erlang's formula constrained by a modularity factor of thirty circuits

and random effects due to periodic upgrading of trunks. The twenty-node fully-connected

and the ten-node sparsely-connected networks were constructed by the author. These were

designed in a similar manner but were less realistic as the link capacities and traffic volumes

needed to be much smaller to give lower overall network traffic and hence reasonable execu­

tion times. The topology of the ten-node sparsely-connected network is shown in figure 4.3

including the capacity of the links. The mean call holding time for all of the models was

one time unit (nominally one second) and the traffic figures are for the average number of

calls generated per second between each node pair. For each experiment, the simulator was

run for 200 time units.

It should be noted that, at each stage of the experimentation, the results were compared

with those collected by Nadereh Eshragh to ensure that they were reasonable. This was

done by doing multiple runs 2 and ensuring that the blocking probabilities were within a

standard deviation of the means. There were no problems observed in this respect.

Chronologically, the experiments proceeded as outlined below. The following sections

will discuss the results in more detail.

« Uniprocessor simulations performed.

• First set of multiprocessor simulations performed on the five- and ten-node fully-

connected models using the automatically parallelized simulator. Little or no speed-up

observed.

• Run-time profiles made of first multiprocessor simulations to investigate poor speed­

up. Parallelizing compiler is found not to have exploited all the available parallelism

in the simulator.

2 Ten runs were performed for selected experiments using different random number seeds.

69

Figure 4.3: The ten-node sparsely-connected network. The numbers in the square brackets
indicate the capacity in circuits of each link.

o Simulator is "hand optimized" in order to aid the compiler in recognising and exploit­

ing parallelism.

o Second set of multiprocessor simulations performed on the five- and ten-node fully-

connected models using the new "hand optimized" simulator. Reasonable speed-up

observed for the ten-node model.

o Third set of multiprocessor simulations performed on the twenty-node fully-connected

network model to investigate if the speed-up scales for larger models. This is shown

to be the case.

a Fourth set of multiprocessor simulations performed on the ten-node sparsely connected

network to investigate if reduced connectivity reduces performance. It does, but not

significantly.

o Multiple simulation runs performed using the ten-node fully-connected model to inves­

tigate the variation in run-times (and hence speed-up) with different random number

seeds. This is found to be not unreasonable as expected.

70

4.3.2 Uniprocessor Simulat ion Resu l t s

For these simulations the fixed routeing strategy was used and the same random number

seeds. Initially, runs were done with various routeing options but there was little to choose

between them in execution time and the fixed routeing strategy generally gave the shortest

run-time. In each case, the simulation run length was 200 time units (seconds), the input was

read from a file and the results written to a file and to the screen. The only change between

implementations on different machines were the Fortran READ and WRITE statements which

needed to be different depending on the Fortran implementation. In each case the results

were checked against those obtained from the original implementation to ensure consistency.

Execution times were obtained using the Unix Time command and the operating system

(MTS) logging facilities on the Amdahl. The uniprocessor execution times are shown in

Table 4.1.

Machine five-node model ten-node model twenty-node model
Amdahl 470 607 782 3212
Encore Multimax 520 675 844 3308
Sun 4/460 SPARCstation 126 256 1173

Table 4.1: Execution times for the uniprocessor simulations in seconds.

A single processor on the Encore Multimax using the sequential option to compile the

code yields roughly the same performance as the Amdahl mainframe. Thus the Encore

Multimax times were used as the reference for the speed-up calculations. The difference in

reference points for the speed-up are illustrated for the ten-node fully-connected network in

figure 4.4. The more modern Sun SPARCstation is easily the fastest; as much as four times

faster than the Amdahl or Encore Multimax.

For comparison purposes, an attempt was made to simulate the five-node fully-connected

model on an I B M . PC. compatible using a commercial telecommunication network simulator

Comnet II.5 produced by CACI. This is a flexible package allowing the simulation of many

types of network with much greater depth of detail than in N A D . This extra detail, and

hence more complex simulation models, led to a much longer run-time. In reality only a

simulation run length of 4 seconds was possible due to insufficient hard disk space for the

temporary files created by the simulation. Only 21 Mbytes were available! I f this were scaled

accordingly to reflect a run length of 200 seconds, the run-time would be 177,400 seconds

(49 hours 16 minutes and 40 seconds!). It is interesting to note that the simulation model

for Comnet can be entered as a flat text file or using a graphical user interface. Using a

71

flat text file is far quicker than the graphical interface once the user is familiar with the

format. This is due to the increased model complexity requiring the user to traverse dozens

of different menu and form screens many of which, for this application, weren't needed.

4.3.3 Mult iprocessor Simulat ion Resu l t s for the Five-node M o d e l

The multiprocessor simulations were begun by using the parallelizing compiler without any

modifications to the source code. The results, in the form of a speed-up graph are shown

in figure 4.5. Overall, the results are disappointing with no speed-up and with the trend

being downwards as n increases.

These results were investigated by re-compiling the simulator with the profiler option

and re-running some of the simulations. From careful examination of the profile reports the

most expensive subroutines and functions could be noted, including the compiler generated

functions which manage parallel execution. One of these, mtask_fork, which manages

the re-synchronization of tasks before and after parallel execution phases, becomes more

expensive as n increases. The overheads of this function effectively stifle any potential

speed-up. This is illustrated in figure 4.6.

At this point, it was decided that work must be concentrated on reducing the cost of the

most expensive tasks of the original program thereby reducing the impact of the mtask_fork
function. Only two tasks were involved; the subroutines for clearing down calls and that

for calculating link loads. These were by far the most expensive. This was achieved in both

cases by hand coding. Data dependencies which couldn't be removed by the compiler were

removed using local independent variables and coding some of the function calls in-line.

This allowed the compiler to achieve greater parallelization in the tasks by loop spreading

(converting DO to DOALL loops) 3.

This "hand optimized" version of the simulator yielded slightly better speed-up results

as shown in figure 4.5. However, there is still no evidence of speed-up and the trend is still

downwards as n increases.

The simulations were again profiled showing that the execution times of the hand-coded

functions had decreased but the number of calls to mtask_f ork were considerably increased

due to the increased parallelism. Thus, the synchronization overheads still stifled the speed­

up as n increased. Therefore it was decided that a larger simulation model might lead to

3 T h e Fortran source files of the auto-parallelized program and the hand optimized program are contained
on a separately available floppy disk (see Appendix A for information on availability).

72

more significant speed-up as the synchronization overheads would remain about the same

but the amount of parallelism would increase.

4.3.4 Mult iprocessor Simulat ion Resu l t s for the Ten-node M o d e l

The results shown in figure 4.7 using the 'hand optimized" version of the simulator are

much more encouraging with a net speed-up for all n. There is an intriguing dip in the

speed-up graph for six, seven and eight processors, picking up again for nine, peaking at

ten and dipping again above ten. This type of behaviour is not uncommon with machines

employing parallelizing compilers. The greatest speed-up is most often observed when n

coincides numerically with the granularity of the application's parallelism. Where i t doesn't

match more overheads are incurred as extra tasks are run on less than the ful l complement

of processors. This decreases the effective utilisation of the processors available. This

phenomenon is described for Cray Parallel Fortran by Almasi and Gottlieb [21]. The other

possible explanation for such phenomena is statistical variation, as each point on the speed­

up graph is only the result of two experiments. To allay this fear, ten runs of each experiment

(on n processors) were performed with different random number seeds. The results can be

seen in figure 4.8. It is clear from these that even though the "granularity" effect is present,

it is not as marked as was first thought from figure 4.7.

The execution profiles bore out the assumption made after the five-node model exper­

iments in that the compiler generated functions had much less impact on the execution

time; see figure 4.6. That is, the processors spend much more time executing tasks in par­

allel than previously with the five-node model; thus making the synchronization overheads

less significant. The fastest executions of the ten-node model were with four, five and ten

processors which were equal to the nearest three seconds of execution time.

The ten-node sparsely-connected network is a modified version of the fully-connected

network. This means that the results should logically have lower execution times, due to the

reduction in overall traffic intensity, but lower speed-up figures, due to the extra overheads

in routeing. The routeing for sparsely-connected networks is handled by the simulator

with the addition of fixed routeing tables. The results for the ten-node sparsely-connected

network are shown in figure 4.7. I t shows that the logical speculations are largely confirmed;

both lower execution times (actually the lowest as it had the lowest overall traffic intensity)

and lower speed-up figures. The shapes of the speed-up graphs for the two networks are

similar but there is a marked difference between the "hand optimized" simulator version

73

for eight processors and above. The sparsely-connected network results dip much further

and do not recover anything like as well for ten processors. The extra work in routeing and

clearing down calls is obviously allowing the parallel synchronization overheads to have a

more significant impact than for the fully-connected network whose routes never involve

more than two links.

4.3.5 Mult iprocessor Simulat ion Resu l t s for the Twenty-node Model

The twenty-node model was created to investigate whether the encouraging results found

with the ten-node model would scale for larger models. The network was created by hand

with only two rules: the overall traffic intensity should not be so large as to cause excessive

execution times, and that the link capacities should reflect the same modularity factor of

thirty circuits as used for the previous models. The only change required to the simulator

source was to increase the size of the data structures to accommodate the larger model.

The speed-up results are shown in figure 4.9. These indicate that speed-up does increase

with model size. The "granularity" factor is not observable in the shape of the speed-up

graph at all. Indeed, there are no peaks in the graph for the "hand optimized" version

of the simulator, only a slight dip for eight processors. The speed-up is still increasing as

we run out of available processors. This would indicate that the increase in the parallel

synchronization overheads as the number of processors increases is much less significant.

The following observations are on a slightly more pessimistic note. The results for the

original automatically parallelized simulator version are the best of all, see figure 4.9, but

still no speed-up was observed. The twenty-node model results are the only ones which show

the "hand optimized" simulator performing worse than the original for a single processor

executing the parallel simulation. Indeed, it is the worst for all of the models. This may

be due to cache misses as the model is now (obviously) larger. I t should be noted that the

code for the new simulator version is 127,063 bytes and the static data structures occupy

84,140 bytes compared with a processor cache size of 256 Kbytes. This can only be an

educated guess as the profiling tool was not used to trace cache misses due to the much

longer execution times involved; usually at least two or three times longer.

74

4.4 Conclusions

These experiments have highlighted the fact that there needs to be sufficient parallelism

in a problem to make it possible to achieve reasonable speed-up when porting it to a

multiprocessor architecture. The results for the five-node model were poor as the model did

not contain enough parallelism to offset the cost of the parallel synchronization overheads.

The threshold, or "break-even" point, was obviously passed with the ten-node model and the

results for the twenty-node model indicate that this approach will scale to larger network

models though more processors would obviously be needed to take ful l advantage of the

available parallelism. It is known the effective break-even point is difficult to predict, even

by professional parallel programmers; though some prediction can be made with the help

of Amdahl's law (see Patterson and Hennessy [22] pp. 8-11).

Figure 4.11 shows a speed-up graph for the results of the hand optimized version of the

simulator executing the fully-connected network models. Superimposed are the contours for

Amdahl's law for various values of Wp {Wp is the fraction of the simulator run-time executed

in parallel). As a measure of the success of the ten-node simulations, consider the following.

The worst simulation was with seven processors giving a speed-up of 1.65. This indicates,

using Amdahl's law (see section 1.3.1), that the percentage of the program parallelized was

45.6% giving a theoretical maximum speed-up of 1.84. The "best" simulation was with four

processors yielding a speed-up of 1.99. This indicates a percentage parallelized of 66.3%

and a theoretical maximum speed-up of 2.97. These comparisons make the results obtained

look quite reasonable.

The complicating factor is of course due to the parallel synchronization overheads which

are assumed to be negligible in the derivation of Amdahl's law. Interestingly, when the

profile reports for the ten-node fully-connected model simulations were examined, between

22.6% (n = 4) and 44.3% (n = 14) of the execution times were expended on synchronization

operations. Removing these overheads would yield speed-ups of 2.57 and 3.12 respectively.

Furthermore, the percentage of the program parallelized indicated by these revised figures

is closely grouped between 71.7% (n = 6) and 76.7% (n = 10); a theoretical maximum

speed-up of 4.30. Thus, a revised graph of speed-up against n for the ten-node model would

follow Amdahl's law for Wp = 0.75 quite closely. I t must be noted, however, that overheads

due to cache misses have not been removed though their effect must be much lower than

the synchronization overheads.

75

The speed-up results for the twenty-node network model have not been investigated

more closely due to the excessive execution times incurred when using the profiling tool as

mentioned previously.

The Encore Parallel Fortran package would seem to be quite reasonable for this kind of

exercise. The most difficult aspect, as always with parallel processing, is debugging. In this

case, the parallel simulation can be run on one processor with the debugging tool f db. This

was never severely put to the test in this case. The other debugging alternative is to write

the application as a sequential program initially and debug this with the standard tools

before proceeding with the parallelization. The profiler gprof proved to be an essential

tool in highlighting problem areas and assessing performance, echoing again the findings of

Reed [27]. The hand coding performed as part of the exercise was not particularly arduous

involving finding out how to do i t , doing i t , and debugging successfully. The most interesting

point to note is that the key to success was knowledge, not of the machine's architecture,

but of the compiler's "hooks".

The parallelizing compiler approach is obviously attractive if an acceptable level of

speed-up for the simulation can be obtained. Unfortunately, discrete event simulations have

been shown to achieve little or no speed-up using this approach [26,27]. We must therefore

look to the distributed model components approach to give us more general solutions for

successful parallel discrete event simulation.

76

2.25

2.00

1.75 —

B

a.
a

i

1.50

1.25

-o \

.' /

1.00

/• _
('7

'/••' I

i? /
/• •'
•: i

\

.o
y

a
y

-a" '

H h

0.75 - — a- — Vs. Amdahl Sequential

. . -0- - Vs. Encore Sequential

— -0— Vs. Encore Parallel

0.50 -

Number of Processors - n

Figure 4.4: Speed-up results for the ten-node fully-connected network comparing the alter­
native reference times

77

1.20 -r

1.00

0.80 4-

•—'
on

0.60

0.40 4-

0.20 4-

0.00 - 1 -

\ 3 4 5 6 7 8 9 10 11 12 13 14

°~ Automatic

O- Hand optimized

\ \

HA

•

Number of Processors - n

Figure 4.5: Speed-up results for the five-node fully-connected network mo

78

80 -r

70

60

- - Q- ' depart. (5 node)

- - mUsk_fork (5 node)

— Q- depart (10 node)

— -Cr — mtask_fork (10 node)

50

V

e
2 40 +

s
QJ
fa.
£ 30

20 - -

10

0

2 3 4 5 6

Number of Processors - n (0 = uniprocessor)

Figure 4.6: Comparison of percentage run-times used by the two most expensive processes
using the automatically parallelized simulator

79

Fully- - O- Fully- — o- — Sparsely- — °" — Sparsely-
connected - connected - connected - connected -
Automatic Hand Automatic Hand

optimized optimized

2.00 -r

1.80

1.60

1.40

1.20

> \
o.

V '

§• 1.00 H 1 1 h
2 3 4 5 6 7 8 9 10 11 12 13 14

0.80 - - TXc

0.60

0.40 - -

0.20

0.00

Number of Processors - n

Figure 4.7: Speed-up results for the ten-node fully- and sparsely-connected network models

80

Max Min Mean - - o- - Original

2.40

2.20 +

2.00 4-

1.80

1.60

1.40

1.20

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig ure 4.8: Speed-up results for the ten-node fully-connected network model showing means
and standard deviations from ten simulation runs

81

4.50

4.00 —

3.50 - -

3.00

2.50 - -

2.00

1.50 - -

1.00

J

— — Automatic

— — Hand optimized

r
H 1 h

0.50 - -

0.00 -L

• ̂ Q " t l — - -A— .
2 3 4 5 6 ~ f ~ " -fr- - -8- - . U 12 13 14

Number of Processors - n

Figure 4.9: Speed-up results for the twenty-node fully-connected network mo

82

— 5 Node - - - © - - 10 Node — 20 Node
fully- fully- fully-
connected connected connected

— o- — 10 Node Unitary
sparsely- speed-up
connected

4.50

4.00 -*r-
-if

/

3.50

3.00

2.50 on

4

2.00

-o— 1.50 •o-

/

1.00

15 11 13
—

0.50
E L

0.00 -i-

Number of Processors • n

Figure 4.10: Speed-up results comparing the performance of the hand optimized simulate
for all network models

83

Wp=0.9 6.00 Wp=1.0

o- 5-node model

10-node model
5.00

20-node model

4.00
Wp=0.8

-fir"
/

r
/

a 3.00 i Wp=0.7

in

Wp=0.6

2.00
Wp=0.5

tr^ 1 1 1 1 1 1 1 1 1 1 1 1.00
—Q.

a

0.00

0 6 8 10 12 14

Number of processors - n

Figure 4.11: Speed-up results showing the performance of the hand optimized simulator for
the fully-connected network models with Amdahl's law

84

Chapter

Parallel Simulation of Qnernem

Networks

5.1 In t roduct ion

ueueing networks are often used as the basis for simulation models of packet- and

cell-based telecommunication networks as well as many other engineering systems.

As such they can be used as a useful generic benchmark for parallel simulation. Chapters 2

and 3 have described the work of various parallel simulation practitioners who have shown

that discrete event simulations, particularly of queueing networks, cannot be parallelized.

The most successful method reported for parallel simulation of queueing networks is that

of distributed model components. This chapter describes a series of experiments conducted

to evaluate the performance of various simulation synchronization algorithms using this

approach.

The simulation models were constructed using YADDES (an acronym for Yet Another

Distributed Discrete Event Simulator). The YADDES system is set of tools for constructing

discrete event simulations which was developed in the Computer Communication Networks

Group, Department of Electrical and Computer Engineering, University of Waterloo, On­

tario, Canada. The implementation used for these experiments runs on a single Inmos

transputer or a hardwired cube of eight transputers. A manual is available for this imple­

mentation [170] which should be read in conjunction with the original manual [171]. There

is also a discussion of it's implementation by the author [172].

The parallel discrete event simulation algorithms supported by YADDES are a sequen-

Q

85

tial (uniprocessor) event-list (EL), a distributed multiple event-list (M L) , a conservative

synchronization algorithm based on that of Chandy and Misra (CM) and and optimistic

synchronization algorithm using the concept of Virtual Time (VT) . YADDES allows a

common simulation model description to be compiled to use any of these algorithms thus

enabling direct performance comparisons.

5.2 Y A D D E S — Yet Another Dis t r ibuted Discrete Event

Simulator

The principle features of the YADDES system are;

o The YADDES simulation specification language and compiler.

o A set of libraries which support various simulation time synchronization methods with

trace and debugging support.

© A pseudo-random number generator package which supports multiple, independent

pseudo-random number streams.

o A distributed statistics collection and reporting package.

The user begins by writing a YADDES specification of the desired simulation model.

YADDES then compiles the specification into a collection of C language functions. These

functions are then compiled using the relevant C compiler and then linked to a simulation

synchronization library to form a complete program which performs the simulation. The

user need not be concerned with the synchronization method used. In fact, every YAD­

DES specification can be executed using any method merely by linking to the appropriate

library. Provided that the specifications are coded properly, the results of a simulation are

independent of the synchronization method used.

The modelling approach used in the YADDES system is based on that of Chandy-

Misra-Bryant (CMB) distributed discrete event simulation (see chapter 3). The real-world

system is modelled by a collection of physical processes (PPs) that periodically exchange

information. This exchange of information takes place at discrete points in time. Every

instant at which one PP provides information to another is called an event. The computer

simulation of the real-world system is obtained by constructing a computer program in which

the behaviour of each PP is modelled by a logical process (LP). The exchange of information

86

by the PPs is modelled in the simulation by the exchange of messages by the LPs. Since

the computer simulation does not execute in real time, each LP has its own notion of time

and each message is time-stamped with the time of the corresponding real-world event.

The YADDES system provides a language and compiler that aids in the specification of

the behaviour of LPs. An LP in the YADDES system is a general state machine. A general

state machine has an arbitrary (finite) number of inputs and outputs and a (finite, albeit

possibly large) set of states. The state machine is driven by the occurrence of event combi­

nations. An event combination is a collection of one or more input events having the same

time-stamp. In response to an event combination, an LP may change its state and produce

zero, or more, output events on each of its outputs. The YADDES specification language

is used to specify the state of an LP and to associate programs with event combinations.

These programs being written out as sequences of C language statements.

In the YADDES system, the connections between LPs are static. Each input of every LP

must be connected to the output of another LP; they require unity fan-in. The output of an

LP may be connected to zero, or more, LPs; they may have arbitrary fan-out. The YADDES

specification language also provides a means for describing the connections between LPs.

The YADDES system currently supports four different synchronization methods. How­

ever, the YADDES system hides the details of the underlying synchronization method so

that the user need only be concerned with the specification, not the implementation of

the simulation. There are three important advantages of the ability to support different

synchronization methods. First, by executing the same specification using different synch­

ronization methods, i t is possible to directly and quantitatively compare the performance

of the synchronization methods. Second, the user can change the synchronization method

used without having to re-code the simulation specifications. In this way, the most efficient

synchronization method can be chosen experimentally. Third, not only can new synchro­

nization methods be added relatively easily, as they are entirely decoupled from the model

description, but aspects of the existing methods can be also be altered for investigation.

5.2.1 Sequential Event-list Synchronization

The sequential simulation library uses the traditional discrete event simulation method. A

single data structure, called the event-list, is used to hold future events. The event-list is

sorted by time and by the LP identifiers. The basic execution cycle involves removing events

from the head of the event-list, forming event combinations, and causing the appropriate

87

LPs to perform the action associated with the given input event combination. When an

action causes output events, those events are inserted into the event-list.

5.2.2 Distributed Multiple Event-list Synchronization

This method is a simple extension of the sequential simulation method for execution on

a multiprocessor. In this method, each processor has its own event-list. In addition, one

processor (the scheduler) has special status and acts to coordinate the other processors. The

basic execution cycle is somewhat more complex in order to guarantee correct execution on

the multiprocessor. First, each processor sends a message to the scheduler indicating the

simulation time of the next event on its local event-list. The scheduler selects the minimum

next event time and broadcasts this value. Each processor having this minimum value

removes events from its event-list, forms event combinations, and invokes the appropriate

LP's actions. When an action causes an output event, that event is either inserted into the

local event-list, or a message is sent to a remote processor requesting that i t insert an event

into its local event-list. When a processor is finished executing all the actions for a given

value of simulation time, i t sends a completion message to all its successors indicating that

it is done. Finally, each processor waits until it receives a completion message from all its

predecessors. At this point the execution cycle is complete and may begin again.

In YADDES, each LP is statically assigned to a processor. This assignment is specified

in the YADDES source. Since the assignment is static, each LP knows a priori whether to

insert output events into its own future event-list or to send a message to another processor.

5.2.3 Conservative Distributed Event-list Synchronization

In conservative (CMB) distributed simulation each LP runs as a separate task. Tasks may

run on the same or on different processors and the number of tasks need not be the same

as the number of processors. In this environment, the LPs consist of the YADDES model,

state and output tables, all encapsulated in an envelope.

The basic execution cycle begins when an envelope receives a message. The envelope

buffers messages until an event combination can be formed. An event combination with

simulation time t can only be formed when an envelope has received an event message for

each of its inputs having time t' greater than or equal to t. When an event combination is

formed, the LP is activated. I f a LP causes an output event, i t sends an event message to

the envelope of the appropriate LP.

88

This synchronization method has the potential for deadlock. The current implemen­

tation does not use any deadlock detection/recovery scheme and the user is required to

explicitly avoid deadlock. Two approaches are provided in order to achieve this. N U L L -

messages are events inserted by the user which assert that no event has occurred up to the

given time-stamp, t^ull- This allows an envelope to determine that i t has received all the

events up to time tjyuu on a given model input. In certain cases, it is possible for the model

itself to know that no event will occur on one or more of its inputs up to a certain time.

In such cases, the envelope can be informed that no event will occur and the envelope may

safely ignore that input. This is termed by Loucks et. al. to be "additional knowledge" [113].

5.2.4 Optimistic Distributed Simulation Synchronization

The implementation of optimistic, or virtual time based, distributed simulation is based on

that of the Time Warp Operating System (TWOS) [80,130]. As in the CMB mechanism

each LP runs as a separate task consisting of the YADDES model, state and output tables

encapsulated in an envelope. However the virtual time based mechanism cannot deadlock.

Every envelope has a local clock as before. When a message is received by an envelope,

there are three possibilities; it's time-stamp is either before, after, or equal to the current

local value of simulation time, called the local virtual time (LVT). I f its time-stamp is after

the LVT, an input event combination is formed and the LP is activated to process it or

place it in the event-list it to be processed. However, i f its time-stamp is less than or equal

to the LVT, the envelope backs up to the time immediately prior to the incoming message

time-stamp. This is facilitated by an elaborate checkpointing mechanism which allows an

earlier state of the LP to be recovered. Essentially, an earlier state is restored, input event

combinations are re-scheduled, and output events are cancelled by sending antimessages.

The envelope has buffers which save past inputs, past states and antimessages. This state-

saving overhead, known as checkpointing, can be reduced by decreasing it's frequency.

An important component of the implementation of the virtual-time environment is the

fossil collection algorithm. Fossils are said to be past inputs, states and antimessages that

are no longer needed and so may be discarded releasing memory space for further use.

Essentially, these are events which are older than the current global minimum simulation

time, called global virtual time (GVT) . The YADDES fossil collection algorithm uses a

circulating token message which visits each LP in turn collecting the LVTs. Once all LPs

have been visited, each can update it's own LVT in the message, calculate a value for GVT

89

(the minimum value of all the LVTs), invoke the fossil collection algorithm and pass on the

token message.

When a rollback occurs, output messages need to be processed in some way. There are

two types of cancellation strategy - aggressive and lazy. When the aggressive strategy is

used, antimessages are sent immediately when the rollback occurs. When lazy cancellation

is used, antimessages are not sent immediately. Instead, they are placed in a buffer of

pending antimessages. When the LP resumes execution, i t will obviously generate output

messages. If an output message is the same as a message that would have been cancelled

during the rollback under aggressive cancellation, then the pending antimessage and the

new output message annihilate 1. I f a new output message is generated, that is, one that

was not generated previously, then this is sent. I f the LVT progresses past the time-stamp

of a pending antimessage, then the antimessage is sent as the original "real" message is now

shown to be erroneous.

Finally, the number of LPs required for a simulation will often not match the number of

processors available to perform the simulation. I f the number of LPs exceeds the number of

processors then a scheduling algorithm is invoked to select the next LP for execution. There

are three scheduling algorithms available; round-robin (RR) scheduling, scheduling the LP

with the minimum LVT (M V T) and scheduling the LP with the minimum message time-

stamp (M M T) in it's input queue. A l l of these scheduling algorithms are non-pre-emptive.

5.3 The Simulation Models

The simulation models used were of a closed stochastic queueing network and a tandem

queueing network. The configuration of the closed stochastic queueing network is of a

four-dimensional hypercube consisting of sixteen queues which can be visualised as a cube

within a cube, with a queue at each corner as shown in figure 5.1. I t is a closed system

in that the population of customers in the system is constant throughout the simulation.

Each queue is initiated with a number of customers in the queue (the load) and these are

processed in first-come-first-served (FCFS) order. Each customer is served with a negative

exponential service time and then routed randomly to one of it's four nearest neighbour

queues. In not using a global routeing scheme (ie. any node routes to any other node via

intermediates) greatly simplified the model specification as a distinction need not be drawn

1 Annihilation implies that both the "real" message and the antimessage are discarded.

90

between customers. The mappings of queues to processors was made simply by cutting the

hypercube in the x-plane for two processors, the x- and y-planes for four processors and the

x-, y- and z-planes for eight processors.

The second model, a tandem queueing network, was originally proposed for investigating

policing in an asynchronous transfer mode (ATM) network 2. Policing mechanisms are

intended to control congestion and cell loss in the network; this subject is reviewed by

Rathgeb [173]. In this case, the policing is done using a leaky bucket mechanism. The

performance of the model is of interest in its own right, but it is quite large in simulation

terms and would normally require long simulation times due mainly to the size and traffic

intensity.

The performance measures of interest in the model are the cell delay variation collected

at destinations and the cell loss which is collected at switch queues and leaky buckets.

The cell delay variation can be examined by comparing the cell creation times with the

time that they arrive at Lhe destination. Cell delay variation was however not monitored

in these simulations. Cell loss is typically very low in A T M networks and so very long

simulations involving the generation and switching of more than 10 9 cells are often required

to give results which are statistically significant. However, the simulation run length used

in these experiments was deliberately short so as to allow reasonable run-times; and hence

a reasonable exploration of the parallel simulation options.

The A T M switches were modelled by simple M / D / l queues rather than an Orwell ring

or other more complex switch. Each switch used five processes of three types, shown in

figure 5.2; a queue, a server and a sink. The sink looks at the labels of the incoming cells

2 A T M networks are introduced in the next chapter.

Figure 5.1: A 4-dimensional hypercube.

91

and removes from the stream all those which should terminate at that switch. The leaky

bucket was also modelled as an M / D / l queue. Thus, both the switch and the leaky bucket

mechanism use the same queue and server models with different parameters. This was

easily developed and at first was thought to be adequate if the queue length was set to an

appropriate value. However, in a cursory exploration of the literature, leaky buckets are

better implemented using a token pool so as not to introduce any delay as in Butto et. al.

[174].

Sourcefn] Traffic

leaky bucket

Queue[n-1]
Sink

Queue[n]

Queue Server
Y

Queue[n] overflow traffic
Bucket[n] overflow traffic

Y
Sinkfn] traffic

Figure 5.2: YADDES process model of one switch of the tandem queueing network.

The traffic sources were modelled with simple poisson sources. Ideally, for the ATM

network modelling, an on/off source with a geometrically distributed burst length and

silences with a negative exponential distribution needs to be developed, see Rathgeb [173],

The topology of the processors is a hardwired cube of eight Inmos transputers and so

the process mapping is a straightforward "pipeline" arrangement for the eight switches.

Each transputer carries a switch and a traffic source; except for the first which has an extra

source feeding into the first switch, and the last which has no sink or leaky bucket. This

arrangement was dictated by the way that some of the processes synchronize, which meant

that breaks between queues and servers would not be practical as they would require two

links. An alternative would be to move each leaky bucket to the next processor which may

create a better load balance; this was however not tried. This indicates that there is a large

amount of parallelism to be exploited and a large amount of scope for studying the effect

of different mappings. Mappings to two and four processors used in these experiments are

straightforward bearing in mind that a queue/server pair should not be split 3 .

3 T h e Y A D D E S code for both of the models is available on a floppy disk (see appendix A for information
on availability)

92

A major obstacle to realising the tandem queueing network model was the requirement

for multiple instances of the same process with different parameters. This was done by

introducing an extra "special" variable to YADDES called $label which could be used by

a process to read an identification label and thus to be able to read the correct set of

parameters from the configuration file. Some constants are also used to check that the

correct number of parameters are read from the file.

5.4 Discussion of Results

5.4.1 Initial Results for the Closed Stochastic Queueing Network

The initial simulation experiments were begun whilst the transputer array only had 1 Mbyte

of memory per processor. This was insufficient for the multiprocessor simulations using VT

synchronization. So, attention was first made to the speed-up results of the CM simulations.

These did not use NuLL-message cancellation, as i t was not enabled, and only used the

lookahead afforded by assuming propagation delays over the modelled links between queues.

This is known in YADDES as eps i lon lookahead as it is the minimum available. The results

are shown in table 5.1.

Synchronization
mechanism

No. of Processors Synchronization
mechanism 1 2 4

ML 0.94 0.91 0.97
CM 0.36 0.73 0.89
V T 0.40 0.89 1.69

Table 5.1: Initial speed-up results using YADDES.

The speed-up figures, which are all calculated relative to the EL simulation, are disap­

pointing. The speed-up figures for ML synchronization were not expected to be good but

some speed-up should be possible and indeed was observed by Preiss [175] when simulating

similar but somewhat larger systems. For CM, the results are very disappointing. However,

i t is well known that CM simulations are sensitive to the amount of lookahead. So, for

the main simulation studies the lookahead was increased by making use of advanced sim­

ulation knowledge in terms of adding the next customer service time to the NULL-message

time-stamp. This type of technique was described in chapter 3 and is discussed in detail

for queueing networks by Loucks and Preiss [113].

The V T speed-up figures were completed once extra memory was available for the trans-

93

puters (4 Mbytes per processor). These again were disappointing but at least recorded

some speed-up on eight processors. The two processor simulation would still not run within

4 Mbytes so this had to be done on two processors each with 16 Mbytes. This was true

for all the two processor VT simulations performed. These simulations used aggressive

cancellation, the round-robin process scheduling and a checkpoint interval (CPI) of one (ie.

saving every state). It was known, from other work using YADDES by Preiss et. a.l. [143],

that minimum virtual time scheduling and an increased CPI should give superior results.

Lazy cancellation was also available which could possibly improve performance. These other

options required extra coding and re-compilation to make them available, so they were held

back until the modifications to the lookahead had been made.

One other change from the initial to the main simulation results was the method of

timing the simulation runs. YADDES usually relies on the timing facilities offered by the

operating system. For MS-DOS, the t ime command is not ideal as it was never intended

for use in timing the execution of an application. Therefore, for the main simulation speed­

up results a timing function was added to the YADDES synchronization libraries before

compilation. This is always the first and last function called in a simulation run.

5.4.2 Main Results for the Closed Stochastic Queueing Network

Summary of Experiments

These were performed using the model described in the previous section modified to exploit

more lookahead in terms of the service time for a customer plus the link propagation time.

The ful l range of useful options available within YADDES was explored, listed below.

o Sequential event-list (EL) — for loads of 1, 4 and 8 customers per queue.

o Multiple distributed event-list (ML) — for loads of 1, 4 and 8 customers per queue,

on 1, 2, 4 and 8 processors.

© Chandy-Misra (CM) — for loads of 1, 4 and 8 customers per queue, on 1, 2, 4 and 8

processors, with and without NuLL-message cancellation (NMC).

o Virtual Time (V T) — for loads of 1, 4 and 8 customers per queue, on 1, 2, 4 and 8

processors, using aggressive and lazy cancellation, using checkpoint intervals (CPI) of

1, 2, 4, 8 and 16.

94

In addition, nine extra runs using different random number seeds were made of each of

the following experiments to ascertain the mean and standard deviation of the run-times.

These results are discussed in the relevant results sections.

o EL — load = 4.

o ML — load = 4, on 2 processors.

o CM — load = 4, without NMC, on 4 processors.

o V T — load — 4, aggressive cancellation, CPI = 1, on 8 processors.

o V T — load = 4, lazy cancellation, CPI = 16, on 8 processors.

The memory management performance of the V T simulations was investigated with a

further ten runs. In order to produce results, the memory usage figures were coupled with

the run-time and speed-up results from the equivalent simulation runs performed without

the memory usage tracing code enabled. The run-times for the experiments with the tracing

code enabled were inevitably much slower.

e V T — load = 4, on 8 processors, using aggressive and lazy cancellation and using

checkpoint intervals (CPI) of 1, 2, 4, 8 and 16.

Multiple event-list (ML) Synchronization

The M L speed-up results, shown in figure 5.3 are still unimpressive, but some improvement

is seen over the initial results, particularly at the higher load. This slight change in the

result at a load of four over the initial results will be due to the change in the method of

timing the runs; no other change introduced between the initial and main simulation runs

would affect the ML runs. The M L results do show slight improvement with the increase

in the load and with the number of processors but do not come near the speed-up results

described by Preiss [175]. Here, a speed-up of just less than two was recorded at a load

of eight. This is due to the model considered here being smaller and slightly less complex.

The M L synchronization would obviously perform better with an application requiring more

processing per event.

The multiple runs with different random number seeds for M L synchronization (two

processors at a load of four) showed a standard deviation of just over 1% of the mean. The

first time recorded, which was used for the speed-up graph, was actually the slowest. If the

95

mean were used for this point on the graph, this would give a speed-up of 1.04. The first

figure was used as the random number seeds used in this run were the same as for the other

simulation runs used in the graphs and thus affords a better comparison.

Conservative Chandy-Misra (CM) Synchronization

The CM speed-up results, shown in figures 5.4 and 5.5, are much improved over the initial

simulation results. This is due primarily to the increase in lookahead in the model, though

the change in timing method will also have a small impact. The other most noticeable fea­

ture is that NuLL-message cancellation has a very marked affect on the speed-up; reducing

it significantly at the lowest load (load = 1 customer per queue), improving slightly at the

middle load (load = 4) and improving it greatly at the highest load (load — 8). Indeed,

the speed-up figures with NuLL-message cancellation at the highest load are the highest

recorded of any of the experiments (4.02 on eight processors). This increase in effect with

load is as expected; also, the overheads of the algorithm at lower loads obviously outweighs

any benefits.

The multiple runs for CM synchronization exhibited the lowest standard deviation of

all the multiple run experiments at just under 0.5%. Again, the first time recorded, which

was used for the speed-up graph, was the slowest.

Optimistic Virtual Time (VT) synchronization

The V T speed-up results are shown in several graphs summarised in table 5.2 below. Each

figure shows the speed-up against the number of processors for a certain cancellation strategy

and CPI at all three loads.

Reference Cancellation Strategy CPI
5.6 Lazy 1
5.7 Aggressive 1
5.8 Lazy 2
5.9 Aggressive 2

5.10 Lazy 4
5.11 Aggressive 4
5.12 Lazy 8
5.13 Aggressive 8
5.14 Lazy 16
5.15 Aggressive 16

Table 5.2: Figure Numbers for the graphs of V T Speed-up results.

96

Figures 5.16, 5 . 1 7 and 5 . 1 8 show speed-up against CPI on two, four or eight processors

respectively. The speed-up improvement from the initial results is largely due to the change

from round-robin to minimum virtual time scheduling plus some small contribution due to

the change in run-time measurement. For minimum virtual time scheduling, where there

is more than one process per processor, the process with the lowest virtual time will be

be scheduled next for execution. This tends to reduce the number of rollbacks created

compared with round-robin scheduling.

The speed-up figures obtained are consistently good and relatively insensitive to load.

There is some improvement in speed-up with load though this is not as marked as with

CM synchronization. There seems little to choose between the lazy and aggressive cancel­

lation strategies, this reinforces the findings by Preiss et. al. [143] that lazy and aggressive

cancellation strategies perform similarly under minimum virtual time scheduling. However,

lazy cancellation does slightly outperform aggressive cancellation at low settings of CPI.

The opposite is true at higher settings; roughly equal at eight, aggressive better at six­

teen. An optimum CPI for maximum speed-up is also discernible. This is discussed later

in connection with the experiments on CPI and memory management.

The standard deviations for the multiple runs were again quite low at 2 . 1 % for lazy

cancellation on eight processors and a CPI of one and 1.2% for aggressive cancellation on

eight processors and a CPI of sixteen.

Comparison of Speed-up Results for the Closed Stochastic Queueing Network

The different synchronization algorithms are compared at the three values of load in fig­

ures 5 .19, 5 .20 and 5 . 2 1 . Only the best VT results are shown for lazy and aggressive

cancellation at a CPI of two. Overall M L synchronization is the worst performer giving

little or no speed-up. This proves the intuitive conclusion that any algorithm, such as ML

synchronization, which tries to synchronize the parallel simulation using some form of global

control will not result in significant speed-up.

CM synchronization exhibited both the best and worst speed-up results. At a load

of one (figure 5 .19) the algorithm performed much worse than the M L synchronization

due to to the extra overheads of NULL-message calculation. Wi th the addition of N U L L -

message cancellation this performance was exacerbated. At a load of four (figure 5 .20) the

performance is average, but at a load of eight the performance is the best of all with the

addition of NuLL-message cancellation. This shows that where there is good lookahead

97

properties in a model coupled with a significant message load CM synchronization can

produce excellent speed-up results.

The V T synchronization speed-up results shown here are consistently good over all loads.

Lazy cancellation is slightly better at low loads and we have also observed that the CPI

should be optimized. In this case, the best interval is two 4 .

One noticeable feature is that almost all the speed-up curves show some signs of sat­

uration if the number of processors were increased much above eight, the limit used here.

However, this is explained by the observation that the maximum amount of parallelism

in the model is sixteen (the number of queues) so speed-up saturation is bound to start

above eight processors. This will also be affected by the connectivity of the model and

the mapping of this onto the processors; even numbers of processors will be most easily

realisable. There would be an extra problem at sixteen processors due to the requirement

for a connection back to the host as a transputer only has four physical links. This would

have to be resolved using an extra, seventeenth, transputer.

5.4.3 Virtual Time (V T) Memory Management Results for the Closed

Stochastic Queueing Network

The V T synchronization algorithm uses far more memory than the other algorithms. Indeed,

for the initial simulation experiments, the multiprocessor V T experiments could not be run

to completion within 1 Mbyte per processor and the two processor simulations could not

be run to completion using 4 Mbytes. I t was therefore decided that some investigation into

it's memory usage would be useful. However, i t is very difficult to obtain a time-average

or a trace of the memory utilisation data for each process without significantly changing

the behaviour of the simulation in terms of it's run-time and memory usage. However,

it is possible is to keep track of the maximum memory utilisation for checkpointed state

information and the message buffers for each LP as these are allocated separately. This

monitoring lengthens the simulation run-time but barely changes the memory usage. The

other possibility is to trace the execution of the simulation in terms of it's virtual time

(VT) and global virtual time (GVT) . The distance between the traces at any instant is

proportional to the state memory usage. This technique has been used by a number of

users to observe the progress of optimistic simulations.

4 A C P I of three may have been better overall but trying one or two experiments yielded times slightly
worse than that at two.

98

We have already observed that changing the CPI impacts the run-time (and hence the

speed-up) of a simulation as the overhead of checkpointing is reduced but the penalty of a

rollback is increased. Obviously, changing the CPI will also impact the amount of memory

used to store checkpointed state information as well as the message buffers of each process.

The experiments performed were on eight processors at a load of four. The memory usage

figures are the maximum amounts used by one queue process on one of the eight processors

to simplify analysis. To complete the picture of the memory map a single queue process

occupies 598,107 bytes of memory and some memory will also be taken up by constants,

variables, arrays etc. This is illustrated in table 5.3 taking the worst case scenarios with

lazy cancellation and a CPI of one which requires 200,192 bytes total storage.

Number of Number of Processes Total memory
Processors per processor requirement

1 16 12,772,784
2 8 6,386,392
4 4 3,193,196
8 2 1,596,598

Table 5.3: Estimated worst-case memory requirements in bytes for V T simulation.

This illustrates why the simulations using four and eight processors each with 1 Mbyte

per processor and two processors with 4 Mbytes would not run to completion. Also, the four

processor simulation had barely enough memory. However, these are "worst case" figures.

Figure 5.22 shows the maximum amount of memory needed for checkpointed state in­

formation against the CPI. It clearly shows that increasing the CPI substantially decreases

the maximum state memory required though the impact tails off above eight. Figure 5.23

shows the maximum amount of memory needed for the message buffers. This increases with

CPI as expected; the process state can be saved at the CPI but all incoming messages must

be stored in order to be able to regenerate the unstored states on rollback. Also, as there

is necessarily more processing to do during rollback the build-up of messages during such

times must be greater.

The total memory usage is shown in figure 5.24. This shows that, as the CPI is increased,

the maximum memory usage initially falls quickly to a minimum in the case of aggressive

cancellation, at an interval of eight and above. For lazy cancellation, the usage continues

to falls above this point at a lower rate. This would suggest, particularly in the case of lazy

cancellation, that i t is better to select a CPI that is too large rather than one which is too

small.

99

Figures 5.25 and 5.26 show the maximum total memory usage against run-time and

speed-up respectively for the range of CPI. The run-times used in this case are for the sim­

ulations without the memory tracing enabled. They clearly show that there is a space/time

optimal CPI of two. The shape of the curves also suggest that a CPI of three would most

probably be worse than "optimal" for aggressive cancellation and possibly better for lazy

cancellation. As in the case of the total memory usage curve (figure 5.24) they would sug­

gest that it is better to select a CPI that is a little too large. Memory usage is reduced but

speed-up too is adversely affected. These figures compare well with those found by Preiss

et. al. [143] for the case where checkpointing is not artificially penalised.

5 . 4 . 4 Discussion of Results for the Tandem Queueing Network

These experiments were performed using the tandem queueing network model. The wide

range of useful options available within YADDES was again explored in the experiments

listed below; though memory management was not examined in this instance. In addition

to comparing the performance of the various synchronization methods within YADDES

for this application, comparisons are also drawn in the following sections with previous

experiments on the closed stochastic queueing network.

o Sequential event-list (EL) — on 1 processor.

o Multiple distributed event-list (ML) — on 1, 2, 4 and 8 processors.

o Chandy-Misra (CM) — on 1, 2, 4 and 8 processors, with and without NuLL-message

cancellation (NMC).

o Virtual Time (V T) — on 1, 2, 4 and 8 processors, using aggressive and lazy cancella­

tion, using checkpoint intervals (CPI) of 1, 2, 4, 8 and 16.

Multiple Event-list (ML) Synchronization

The ML speed-up results, shown in figure 5.27 are unimpressive the highest being 1.39 on

eight processors. However, these are an improvement over previous results for the closed

stochastic queueing network and also come close to speed-up results recorded by Preiss [175]

on large closed stochastic queueing networks.

100

Conservative Chandy-Misra (CM) Synchronization

The CM speed-up results, also shown in figure 5.27, are very impressive. The most notice­

able feature is that NuLL-message cancellation has a very marked affect on the speed-up for

all n. Indeed, the speed-up figures with NuLL-message cancellation at the highest load are

the highest recorded of any of the experiments for the number of processors (1.87 on two

processors, 3.01 on four processors, 5.65 on eight processors), see figure 5.33. Again, these

results are an improvement on the previous experiments with the closed stochastic queuing

network. I t has been widely reported in parallel simulation literature (see Fujimoto [24])

that acyclic queuing networks are well suited to conservative synchronization approaches,

particularly Chandy-Misra. This is because cycles of processes tend to slow the propagation

of lookahead increments.

Optimistic Virtual Time (V T) Synchronization

The V T speed-up results are shown in several graphs as follows. Figures 5.28 and 5.29 show

the speed-up against the number of processors and CPI for lazy and aggressive cancellation

strategies. Figures 5.30, 5.31 and 5.32 show speed-up against CPI on two, four and eight

processors respectively. The process scheduling strategy used was minimum virtual time

scheduling as this has been shown to give the best performance of those available within

YADDES — round-robin, minimum message time and minimum virtual time. For minimum

virtual time scheduling, where there is more than one process per processor, the process

with the lowest virtual time will be be scheduled next for execution.

The speed-up figures obtained are consistently good though not as good as CM synch­

ronization. Only lazy cancellation with a CPI of four (the best V T result) out-performs

CM without NllLL-message cancellation. In the previous experiments, on closed stochastic

queueing networks, there seemed little to choose between the lazy and aggressive canceUa-

tion strategies. However, here lazy cancellation easily out-performs aggressive cancellation

at all settings of CPI. Again, this is most likely due to the acyclic nature of the model

leading to rollbacks which seldom need the use of anti-messages to undo erroneous compu­

tations. An optimum CPI for maximum speed-up is also discernible from figures 5.30, 5.31

and 5.32 for both cancellation strategies: for lazy cancellation the optimum CPI is between

four and eight (nearer eight) and for aggressive cancellation the optimum is around four.

Again, this indicates that rollbacks are more expensive under aggressive cancellation.

101

Comparison of Speed-up Results

The different synchronization algorithms are compared in figure 5.33. Only the best VT

results are shown for lazy (CPI = 8) and aggressive cancellation (CPI = 4). Overall ML

synchronization is the worst performer giving little or no speed-up. This proves the intuitive

conclusion that any algorithm, such as ML synchronization, which tries to synchronize a

parallel simulation using global control will not result in significant speed-up. CM synch­

ronization exhibited by far the best speed-up results. This shows that where there is good

lookahead properties in a model coupled with a significant message load CM synchronization

can produce excellent speed-up results.

The V T synchronization speed-up results shown here are consistently good with lazy

cancellation consistently out-performing aggressive cancellation We have also observed that

an optimum CPI improves speed-up as well as giving benefits in reduced memory usage.

An encouraging feature of figure 5.33 is that the better speed-up curves show less signs

of saturation as the number of processors were increased than in previous experiments.

This would seem to indicate that i f more processors were added further speed-up would

be observed. This is not surprising given the amount of parallelism in the model and the

simple pipeline process topology.

5.5 Conclusions

This chapter has described the results of a programme of experiments to evaluate the per­

formance of various parallel discrete event simulation algorithms. This has been possible

using YADDES with it's common simulation model description language and the four par­

allel discrete event simulation synchronization algorithms supported. The two models used

in the experiments were of a closed stochastic queueing network (a hypercube of queues)

and a tandem queueing network of sixteen queues.

The speed-up results for distributed multiple event-list (ML) synchronization were poor

as expected for both models. Any synchronization method which tries to control a parallel

simulations progress globally from a single process is unlikely to yield significant speed-up.

The speed-up results for conservative Chandy-Misra (CM) synchronization show the

importance of lookahead and, more particularly, the impact of NuLL-message cancellation

at higher model loads. Indeed, CM synchronization with NuLL-message cancellation yielded

the best speed-up result for both models. This shows generally that CM gives good speed-

102

up for models with good lookahead and high customer (and hence message) loads. However,

at lower loads the speed-up is considerably reduced by NULL-message processing overheads.

The speed-up results for the tandem queueing model were higher than those recorded for

the closed queueing network. This result has been noted previously by various researchers

(eg. Fujimoto [24]) and is due to the lack of cycles in the model. These tend to slow the

propagation of lookahead increments and thus cause increased synchronization overheads.

The speed-up figures for optimistic virtual time (VT) synchronization were more mod­

est than for CM, but were also more consistent, being relatively insensitive to the load.

Optimistic synchronization was easily the best performer for lower loads only losing out to

CM synchronization with NULL-message cancellation at the highest load.

The V T synchronization algorithm could use lazy or aggressive cancellation strategies.

For the tandem queuing network model, lazy cancellation out-performed aggressive cancel­

lation at all values of CPI. In the experiments on the closed queueing network model there

seemed little to choose between the lazy and aggressive cancellation strategies except in the

area of memory usage, where lazy cancellation used less, particularly at higher values of

CPI. Again, this is most likely due to the acyclic nature of the model leading to rollbacks

which seldom need the use of anti-messages to undo erroneous computations.

An optimum CPI for maximum speed-up is discernible for both models and cancellation

strategies. For the tandem queueing network model, the optimum CPI is greater for lazy

than for aggressive cancellation. Again, this seems to indicate that rollbacks are more

expensive under aggressive cancellation. A larger CPI will also result in lower memory

usage for the simulation though these were not measured.

The next chapter discusses the parallel simulation of asynchronous transfer mode (ATM)

networks. The results of the experiments discussed here indicate that the conservative

Chandy-Misra synchronization approach would be the best to use in simulating such net­

works using distributed memory multiprocessor computers.

103

Unitary Linear - - A- - load = 1 - - • © - - load = 4 - - a- - load = 8

5.00

4.00 —

3 2.50 —

3 4 5 6

Number of processors - n

Figure 5.3: Speed-up using multiple distributed event-list (ML) synchronization for the
hypercube of queues.

104

Unitary Linear - - A- - load = 1 - o- - load = 4 - - a - - load =

5.00

4.50 - -

4.00

3.50

3.00 - -

§• 2.50

2.00

1.50

1.00

0.50 - -

0.00

3 4 5 6

Number of processors - n

Figure 5.4: Speed-up using conservative Chandy-Misra synchronization (CM) without
NuLL-message cancellation for the hypercube of queues.

105

Unitary Linear oad = 1 load = 4 oad = 8

5.00 T

4.50

4.00

3.50

3.00

CO

a 2.50

8

2.00

1.50

1.00

0.50

0.00

8 1

Number of processors - n

Figure 5.5: Speed-up using conservative Chandy-Misra synchronization (CM) with N U L L -

message cancellation (NMC) for the hypercube of queues.

106

Unitary Linear - - A- - load = 1 - - • © - - load = 4 - - a - - load = i

5.00

4.50 —

4.00

3.50

3.00 - -

Q.
3
•O
41
a.

1/3

2.50 —

2.00

1.50

1.00

0.50

0.00

3 4 5 6

Number of processors - n

Figure 5.6: Speed-up using virtual time synchronization (VT) with lazy cancellation and a
CPI of one for the hypercube of queues.

107

Unitary Linear • A- load = 1 - - o- load = 4 - - • - load = 8

5.00

4.50

4.00

3.50

3.00

a 2.50

at

2.00

1.50

1.00

0.50 - -

1 2 3 4 5 6 7 8

Number of processors - n

Figure 5.7: Speed-up using virtual time synchronization (VT) with aggressive cancellation
and a CPI of one for the hypercube of queues.

108

Unitary Linear - A- load = 1 " - -0- Ioad = 4 " - a- load = 8

5.00

4.50

4.00

3.50

3.00

«2

a 2.50

2.00

1.50

1.00

0.50 - -

1 2 3 4 5 6 7 8

Number of processors - n

Figure 5.8: Speed-up using virtual time synchronization (VT) with lazy cancellation and a
CPI of two for the hypercube of queues.

109

Unitary Linear - - A- - load = 1 - - o- - load = 4 - - a - - load = i

5.00

4.00 —

a 2.50 —

2.00 —

3 4 5 6

Number of processors - n

Figure 5.9: Speed-up using virtual time synchronization (VT) with aggressive cancellation
and a CPI of two for the hypercube of queues.

110

Unitary Linear - A- load = 1 " o- - load = 4 - - a- load = 8

5.00

4.50

4.00

3.50

3.00

so

a 2.50 &

2.00

a

1.50

g 1.00

0.50

2 3 4 5 6 7 8

Number of processors - n

Figure 5.10: Speed-up using virtual time synchronization (VT) with lazy cancellation and
a CPI of four for the hypercube of queues.

0.00 - -

1

111

Unilary Linear - A - load = 1 - • O- - load = 4 - - O - load =

5.00

4.50

4.00

3.50 - -

3.00

a 2.50
•a
8 a.

2.00 - -

1.50

1.00

0.50

0.00

3 4 5 6 7

Number of processors - n

Figure 5.11: Speed-up using virtual time synchronization (V T) with aggressive cancellation
and a CPI of four for the hypercube of queues.

112

Unitary Linear - • A - - | o a d _] - - O - - i o a i J - 4 - - a- - | o a (| = j

5.00 - r

4.50

4.00

3.50

3.00

«3

a.
3

<u <u a.
«5

2.50 - -

2.00 - -

1.50 - -

1.00

0.50

0.00

3 4 5 6

Number of processors - n

Figure 5.12: Speed-up using virtual time synchronization (VT) with lazy cancellation and
a CPI of eight for the hypercube of queues.

113

Unitary Linear - - A - - load = 1 - O - - load = 4 - - a - - load =

5.00 - r

4.50 —

4.00

3.50

3.00 —

on

a. 2.50

a.
1/3

2.00 - -

1.50 - -

1.00

0.50 - -

0.00

3 4 5 6

Number of processors - n

Figure 5.13: Speed-up using virtual time synchronization (VT) with aggressive cancellation
and a CPI of eight for the hypercube of queues.

114

Unitary Linear load = 1 load = 4 load = 8

5.00

4.50

4.00

3.50

3.00

a 2.50

i

2.00

1.50

1.00

8

0.50

0.00

8 1

Number of processors - n

Figure 5.14: Speed-up using virtual time synchronization (VT) with lazy cancellation
a CPI of sixteen for the hypercube of queues.

115

Unitary Linear - A- load = 1 " - o- load = 4 " - re­ load = 8

5.00

4.50

4.00

3.50

3.00

in

a 2.50

2

2.00

1.50

1.00 a

0.50 —

1 2 3 4 5 6 7 8

Number of processors - n

Figure 5.15: Speed-up using virtual time synchronization (V T) with aggressive cancellation
and a CPI of sixteen for the hypercube of queues.

116

- - n- - L a Z y i — a- - Aggr., ' - •*• Lazy, - o- - Aggr.,
Load=l Load=l Load=4 Load=4

" • A ' ' Lazy, — - Aggr.,
Load=8 Load=8

3.00

2.50 —

2.00 —

3

1.50 —

1.00

0.50

<r — = —
! 1 : J - * — - -a -

—A

-

6 7 8 9 10 11

Checkpoint Interval

12 13 14 15 16

Figure 5.16: Speed-up against CPI for virtual time synchronization (VT) on two processors
for the hypercube of queues.

117

- - Q- - Lazy, - ° - - Aggr., - " ' Lazy, - o- - Aggr.,
Load=l Load=l Load=4 Load=4

- ' A~ ' Lazy, — A- - Aggr..
Load=8 Load=8

3.00 -r-

2.50 —

2.00

Q. 3

O.

o .
A -

• -

1.50

1.00

0.50

6 7 8 9 10 11

Checkpoint Interval

12 13 14 15 16

Figure 5.17: Speed-up against CPI for virtual time synchronization (VT) on four processors
for the hypercube of queues.

118

- - °- - Lazy, - ° - - Aggr., - ' °" " Lazy, - +• - Aggr.,
Lcad=l Load=l Load=4 Load=4

- - a- - Lazy, - - Aggr.,
Load=8 Load=8

3.00

A : .

2.50 9r - ^ •

2.00

s
i/2

a.
3

O.

1.50 -4-

1.00 +

0.50

A

6 7 8 9 10 11 12 13 14 15 16

Checkpoint Interval

Figure 5.18: Speed-up against CPI for virtual time synchronization (VT) on eight processors
for the hypercube of queues.

119

5.00

4.50

4.00

3.50

3.00

a 2.50

QJ
e.

T

2.00 - -

1.50

1.00

0.50

0.00

UniUry

Linear

H — M L

— X- — C M -nmc

— X- — C M -fnmc

• - a- - VT/lazy - cpi=2

- - o- - VT/aggr. - cpi=2

a o

- X
_ — X

3 4 5 6

Number of processors • n

Figure 5.19: Comparison of synchronization mechanisms for a load of one customer
queue for the hypercube of queues.

120

5.00

Unitary

Linear

4.50 M L

C M -nine

C M +nmc

4.00 VT/Iazy - cpi=2

VT/aggr. - cpi=2

3.50

3.00

a 2.50

2.00

*

1.50

8 1.00

0.50

0.00

8 1

Number of processors - n

Figure 5.20: Comparison of synchronization mechanisms for a load of four customers
queue for the hypercube of queues.

121

5.00

4.50

4.00

3.50 —

3.00

a 2.50 +
•a
it
u a.

Vi

2.00

1.50

Unitary

Linear

— -4- — M L

— X- C M -nmc

— X- — C M +nmc

- - a - VT/lazy - cpi=2

- - o . - VT/aggr. - cpi=2

1.00

0.50 - -

0.00

3 4 5 6

Number of processors - n

Figure 5.21: Comparison of synchronization mechanisms for a load of eight customers per
queue for the hypercube of queues.

122

Lazy Aggressive

200000 - r

180000

T 160000

140000

120000

1
.a

I 100000
o
E
4>

80000 - -

60000

40000 - -

20000

i

v

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Checkpoint Interval

Figure 5.22: State memory usage for virtual time synchronization (VT) on eight processors
at a load of four customers per queue for the hypercube of queues.

123

Lazy Aggressive

40000

35000

30000

25000 - -

20000

15000

10000

5000

n ..-/•- o '
/

6 7 8 9 10 11

Checkpoint Interval

12 13 14 15 16

Figure 5.23: Message memory usage for virtual time synchronization (VT) on eight proces­
sors at a load of four customers per queue for the hypercube of queues.

124

Lazy ~ °~ Aggressive

250000 —

200000 -Q-

150000 - -

.a
>. u
O
B

s
o

100000

w

P.

50000 - -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Checkpoint Interval

Figure 5.24: Total memory usage for virtual time synchronization (VT) on eight processors
at a load of four customers per queue for the hypercube of queues.

125

Lazy °~ Aggressive

250000 -r

200000

150000

o

100000 - r

Ocpi=l

-Qcpi=16

• - Clcpi=16

50000 - -

25.00 27.00 29.00 31.00 33.00 35.00 37.00 39.00

Simulation Time (s)

Figure 5.25: Total memory usage against simulation time for a CPI of 1, 2, 4, 8 and 16
using virtual time synchronization (VT) on eight processors at a load of four customers per
queue for the hypercube of queues.

126

Lazy ~~ a Aggressive

250000 - r

200000 —

2 150000

o
s

o 100000

50000

nepr=rl6

•cpi=16

Ocpi=l

\
\
\
\
\
\
\
\-

1.50 1.75 2.00 2.25 2.50

Speed-up - S(n)

2.75 3.00

Figure 5.26: Total memory usage against speed-up for a CPI of 1, 2, 4, 8 and 16 using
virtual time synchronization (VT) on eight processors at a load of four customers per queue
for the hypercube of queues.

127

Unitary Linear M L - x- - C M - - *- - C M
nmc +nmc

6.00

5.50

5.00

4.50

4.00

/
/ 3.50

/

X a 3.00

</2 XT' 2.50

2.00

1.50

1.00

0.50 +

3 4 5 6 7 8

Number of processors - n

Figure 5.27: Speed-up comparison of conservative synchronization methods for the tandem
queueing network.

0.00 -f

1

128

Unitary Linear cpi=l cpi=2

cpi=4 8 cpi=16 cpi

6.00

5.50

5.00

4.50

4.00

3.50

«5

a 3.00

B
2.50

2.00

1.50

1.00

0.50

0.00

1 8

Number of processors - n

Figure 5.28: Speed-up using virtual time synchronization (VT) with lazy cancellation fo
the tandem queueing network.

129

unitary Linear cpi-1 cpi=2

cpi-4 cpi-8 cpi=16

6.00

5.50

5.00

4.50

4.00

3.50

a 3.00

VI
2.50

2.00 8

1.50

/ 1.00

0.50

0.00

1 8

Number of processors - n

Figure 5.29: Speed-up using virtual time synchronization (VT) with aggressive cancellation
for the tandem queueing network.

130

Lazy ~~ D Aggressive

2.00 - r

1.50 —

- o -

D -

3 1.00 -a
4)

VI

0.50 - -

0 . 0 0 H 1 — I — I — I 1 — I — I — I 1 — I — I — I — i — i — I
1 2 3 4 5 6 7 8 9 10 H 12 13 14 15 16

Checkpoint Interval

Figure 5.30: Speed-up against C P I for v i r t ua l t ime synchronization (V T) w i t h two proces­
sors for the tandem queueing network.

131

Lazy °~ Aggressive

3.00 -R

2.50

2.00

e
So

•a
8

1.00

0.50

0.00 H 1 1 1 1 1 1 h -
3 4 5 6 7 8 9 10

Checkpoint Interval

H 1 1 1 1 1
11 12 13 14 15 16

Figure 5.31: Speed-up against C P I for v i r tua l t ime synchronization (V T) w i t h four proces­
sors for the tandem queueing network.

132

Q - - lazy Aggressive

4.50

4.00 - -

3.50 - -

3.00 +

• -a.

3
-a
§5

2.50 +

2.00

1.50

1.00

0.50

0.00

13^

H h — I 1 \
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Checkpoint Interval

Figure 5.32: Speed-up against C P I for v i r t u a l t ime synchronization (V T) w i t h eight pro­
cessors for the tandem queueing network.

133

6.00

5.50 +

5.00

4.50

4.00 4-

3.50

3 3.00

Unitary

Linear

— -X- C M -rune

— -X- " C M +nmc

- - o- - VT/aggr. - cpi=4

- - Q- - VT/lazy - cpi=8

— M L

•8
41
B.

2.50

2.00

1.50 +

1.00

0.50 +

0.00 - f 1 1 h

3 4 5 6

Number of processors - n

Figure 5.33: Speed-up comparison of all synchronization mechanisms for the tandem queue-
ing network.

134

Chapter 6

Parallel Simulation of

Asynchronous Transfer Mode

6.1 Int roduct ion

he arguments for parallel simulation of telecommunication networks become most

pointed when considering the performance evaluation of proposed broadband networks

for an integrated services digi ta l network (I S D N) . The complexity, t ra f f ic intensity and the

potent ia l size of such networks are all (at least potent ia l ly) very large. Simulation studies of

systems of this nature have thus far largely centred on the behaviour of a single t raf f ic source,

mult iplexor or switching node. When complete networks have been studied i t has usually

been at the call- or burst-level 1 since more detailed simulat ion involves levels of complexity

(and hence processing t ime) which are orders of magnitude greater; the consequent loss of

detailed in fo rmat ion can sometimes also lead to misleading results. For many investigations

in to network behaviour detailed simulation is unavoidable and motivated the development

of a multiprocessor A T M network Simulator at the Universi ty of Durham. This has been

used for the study of switch behaviour, network behaviour and, part icularly, for studying

the integrat ion of mobile communication protocols in to the broadband environment [180].

A parallelizing compiler approach was not seriously considered for such a complex discrete

' A burst of cells is defined as a cell rate lasting for a particular period during which the inter-cell time is
constant. Thus, in a burst-level simulation, an event marks a change in the cell rate. See the work of Pitts
et. al. [176-179].

135

event simulation so the simulator used the distr ibuted model components approach. Also,

as the simulation model was itself complex to implement a conservative synchronization

approach was used based on NuLL-messages.

Other researchers have implemented parallel simulators to model A T M networks. Phillips

and Cuthbert et. al . [88,89] used a small network of Inmos transputers in the detailed cell-

level modelling of A T M networks based on queueing network models. A typical model

consisted of t h i r t y queues and ten t raff ic sources. The speed-up results compare three

synchronization strategies for up to three processors; a centralized event-list, a distributed

event-list and a conservative approach using NuLL-messages. The centralized event-list

yielded the best results, but no speed-up. This was explained by the authors to be due

to the high number of processes and the high level of communications; thus the simul­

ations were communication bound. They went on to suggest tha t improvements in message

handling and the use of lookahead (addit ional knowledge) should bring better results.

Mellor et. a l . [181,182] at the University of D u r h a m have developed an A T M simulator

also based on a small network of Inmos transputers using a conservative synchronization

approach w i t h NuLL-messages. They model t raf f ic at the burst-level and switching and

other functions at the cell-level. They also report l i t t l e or no speed-up using a small number

(two to fou r) of processors. This result is again explained by high communication overheads.

Also, they only implemented small models w i t h relatively few processes and hence there

was l imi ted parallelism available for exploi tat ion.

Chai and Ghosh [183] at Brown University, USA. in contrast, used a loosely-coupled

network of indust ry standard SUN workstations using an Ethernet L A N . Thus, we should

t e rm this dis t r ibuted rather than parallel s imulat ion. The synchronization strategy used is

an alternative f o r m of the conservative NuLL-message approach, where they are sent only

at the request of a process. The query, called by the authors an alarm request, is sent when

a process is blocked and needs an improved clock t ime. They have investigated several large

detailed cell-level network models, between ten and f i f t y switching nodes and present a wide

range of performance results for the networks. The speed-up obtained is di f f icul t to assess

as no uniprocessor simulations were performed; only runs on ten, t h i r t y and f i f t y processors

w i t h one switch per processor in each case. Indeed, the size of the models and the way they

were implemented made i t impossible to achieve a uniprocessor simulation. W h a t can be

said is tha t larger network models can be simulated as the number of workstations available

increases wi thou t significant t ime penalties; see table 6 .1 .

136

Number of switches Run times Cells sourced Cells sourced
(processors (mins) per second

10 31 724,000 23,354
30 87.75 2,265,000 25,812
50 90 3,440,000 38,222

Table 6.1: Brown and Chai's Dis t r ibuted Simulation Results.

6.2 Broadband Networks

The C C I T T define an integrated services digi ta l network (ISDN) as one " . . . that provides

end-to-end d ig i ta l connectivity to support a wide range of services, including voice and non-

voice services, to which users have access by a l imi ted set of standard multi-purpose user-

network interfaces" [184]. This contrasts w i t h most current networks which were designed

for very specific services, such as voice telephony: using such networks for other services

leads to problems and shortcomings. More and more service-dedicated networks are not

the solution; ISDN hopefully is. In i t ia l ly , basic access was centred around two 64 kbits/s

data channels (B channels) and one 16 kbi ts /s signalling channel (D channel). In addit ion,

primary access is denned w i t h a gross b i t rate of 1.5 or 2 Mbi t s / s . Primary access is more

flexible offer ing a mix ture of a 64 kbi ts /s signalling channel w i t h a combination of basic, B , or

high-speed, H , data channels at 384 to 1920 kbi ts / s . However, in the context of current local

area network (L A N) technologies, these are relatively low-speed f ixed bandwidth channels.

The requirement for supporting even more advanced mult i -media services w i t h i n ISDN,

par t icular ly those w i t h variable bi t-rate t ra f f ic , has led to the development of broadband

I S D N (B - I S D N) .

Asynchronous transfer mode (A T M) is the target solution for B - I S D N defined by the

C C I T T . Such a network uses a fixed-size data packet, known as a cell, which consists of

48 octets of data and 5 octets of header. Cells are typical ly t ransmi t ted , w i t h i n the network,

using multi-megabit-per-second media, such as fibre-optic links; such links w i l l typically be

running at data rates i n excess of 150 M b i t / s . Good background texts on B - I S D N , and

A T M networks in particular, have recently been published by Handel and Huber [185] and

by De Prycker [186].

The A T M switch used in this simulation study is based on the Orwell r ing protocol [187]

which is a slotted r ing protocol . The r ing is divided into slots which circulate around the

r ing; a node wishing to t ransmit a message waits un t i l an unfi l led slot is found , changes the

slot header and transmits the message in the body of the slot. Slotted r ing protocols have

137

been unpopular in the past for several reasons. A monitor node is required to ensure that

slots tha t become corrupted can be identified and regenerated, thus correct behaviour of the

ring is cri t ical ly dependent on correct behaviour of the moni tor . To get a reasonable number

of slots onto the r ing delays have to be inserted at each node and one node, normally the

moni tor , has to be able to adjust its delay so tha t there are an integral number of slots. In

L A N terms, the efficiency of slotted rings is generally poor since the rat io of header to body

is normally high. Its greatest advantage over token-based protocols, however, is that more

tha t one node can be t ransmi t t ing in format ion at a t ime, using different slots on the ring.

Acknowledgement of delivery is normally made by releasing the slot at the source (correct

receipt there is taken to imply correct delivery at the destination); the node may not refi l l a

slot tha t i t has just released, ensuring tha t the slot is passed to the next node and thereby

ensures fair access to all nodes on the r ing . A n earlier implementat ion of a slotted ring is

the Cambridge Ring protocol (Br i t i sh Standard BS6531).

Examinat ion of existing protocols has indicated tha t those based on a slotted r ing are

probably the best suited for carrying delay-sensitive t raf f ic such as speech. However, sim­

ulat ion studies of high-bandwidth Cambridge Rings have indicated that there are s t i l l sig­

nif icant l imi ta t ions when operated under high load [188] and, fu r ther , that load control is

d i f f icu l t since there is no relevant parameter that can easily be extracted f r o m the ring.

The Orwell protocol was developed after making a detailed study of the l imitat ions of the

Cambridge Ring protocol: i t was found tha t by introducing destination release of slots, and

by adding a novel, dis tr ibuted, load control mechanism to bound access delays, a viable

level of performance could be obtained [189,190]. For higher capacity networks mult iple ,

synchronized, rings can be used and such a network is known as an Orwell Torus. Thus, the

Orwel l r ing shows considerable promise as a low capacity dis t r ibuted A T M switch which

can support mult i -media t raf f ic .

Whi l s t detailed simulations of a single Orwell r ing have been made, under a variety

of load and t raf f ic services, there has, as yet, been very l i t t l e investigation made into the

behaviour of an Orwell torus, or r ing behaviour in mul t i - r ing systems. The reason for this,

at least in par t , is because of the large amount of simulation t ime required to investigate

networks of Orwell rings. The original sequential simulation was w r i t t e n at B T . Laboratories

and run on a V A X 11/750. The accuracy of the simulation model was validated against a

testbed Orwel l r ing. The multiprocessor simulations described here were in t u r n validated

against the results of the B T simulator.

138

6.3 Simulator Architecture

6.3.1 The Multiprocessor Testbed

The multiprocessor testbed used for the A T M simulator is based on a network of Inmos

transputers. This was originally designed for use as a high-speed circuit-switched network

simulator, w i t h code wr i t t en in occam; subsequently, a t rad i t iona l packet-switched network

simulator was also developed using the same language [63,65]. The testbed architecture

consists of up to 31 simulation transputers, each w i t h up to 16 Mbytes of memory (the im­

plementation used in these experiments consisted of 13 T800 processors, one w i t h 16 Mbytes

and the others w i t h 1 M b y t e of memory) . The transputers are connected w i t h a double

layer of cross-point l ink switches which enables any l ink on each of the simulation pro­

cessors t o be connected to a l ink on any of the other processors; this flexibility enables

the network to be configured in a rb i t ra ry topologies so tha t the system being simulated

can be mapped closely onto the processor network, and enables the pa th length required

when passing messages between processors to be kept to a m i n i m u m ; there is no shared

memory in the system. Finally, a layer of control processors are used to connect between

the host transputer (so-called as i t normally resides in a conventional workstat ion) and the

l ink switches; one is connected to the l ink-switch programming interface, while bo th can

be connected, via the switches, to any of the simulation transputers. Figure 6.1 shows a

func t iona l representation of the hardware used.

6.3.2 The Software Architecture

To isolate the simulation model, as far as possible, f r o m the implementat ion details of the

hardware, the simulator was structured in a hierarchical manner; each layer building on the

abstraction of the layer below in a similar approach to that of the ISO. seven-layer model.

A t the lowest layer lie the transputer processors in a dynamically reconfigurable array.

On top of this a mult iplexor task on each processor provides the abstraction of v i r tua l

channels between each task in the simulation, regardless of where the tasks are mapped

in the processor network. Thus, the mult iplexor provides message buffer ing, routeing, and

a v i r t u a l topology configurat ion which exactly matches the simulated network. A simple

packetizer layer hides the fact tha t the channels in the mult iplexor (and, indeed, the physical

channels of the transputer i t se l f) work most efficiently when presented w i t h large packets

as opposed to a series of very small ones. A synchronization layer uses the packet layer

139

processes; i t ensures that each message is correctly marked w i t h a time-stamp on dispatch

and uses this at the receiver to maintain synchronization: the layer is optional , i f there is no

definable synchronization between two tasks (for example, diagnostic messages destined for

the console) then the channel can be declared asynchronous and the packet layer accessed

direct. Finally, in parallel w i t h the simulation model and the synchronization layer, an event

manager is responsible for scheduling components of the simulation model i n the correct

sequence. The overall hierarchy is shown in figure 6.2. The implementat ion is described by

Earnshaw in more detail elsewhere [66,87,191].

6.4 The Synchronization Mechanism

Synchronization approaches for parallel s imulation using the dis t r ibuted model components

approach have been discussed in chapter 3. The approach used here was the conservative

Chandy-Misra-Bryant [81-84] approach using NuLL-messages to avoid deadlock situations

occurring. To recap, NULL-messages are only used for synchronization purposes and do

not correspond to any act iv i ty i n the physical system being simulated and, hence, have no

message content only a t ime-stamp i/vu(f- Thus, they are essentially a promise that the

sending process w i l l not send a real message to the destination process w i t h a time-stamp

less than tivull- NliLL-messages are sent on each outgoing por t whenever a process finishes

simulat ing an event. Generally, conservative synchronization approaches can achieve good

performance w i t h sparsely-connected systems which have less oppor tun i ty for deadlock and

an application which contains good lookahead properties. Lookahead refers to the abili ty

to predict what w i l l , or w i l l not, happen in the simulated t ime fu tu re based on application

specific knowledge.

For an A T M l ink between the switches in our s imulat ion model i t is possible to derive

a simple formula describing the propagation delay and also the number of cells, JV, that

could be in t ransi t across a l ink of length, L, at any instant:

where, S is the speed of the l ink (adjusted to account for overheads such as f r aming) , n

is the refractive index of the transmission medium (typical ly, about 1.5 for a glass f ibre) , I

is the cell size and c is the speed of l ight . Considering, for example, a modest 15 k m link

running at 150 M b i t / s , then there may be up to twenty-six cells i n transit across the l ink

140

at any t ime; longer, or faster, links would have correspondingly larger numbers of cells in

transit . This "pipeline" is used to advantage as a method of lookahead wi th in the simulator.

Effectively, a destination task can see a small amount of fu tu re behaviour for the l ink: this

can then be exploited for two ends; the avoidance of deadlock w i t h fewer NuLL-messages

and the improvement of concurrency between the processes.

I n the Chandy-Misra-Bryant simulation, there is not normally an event processor in

the classical sense. Instead, events are replaced exclusively by messages and the order of

processing determined by selecting the message w i t h the oldest t ime-stamp: there must be

a message available f r o m each incoming l ink i n order to be able to do this; the absence of

a message causes the node to block. I n the A T M network simulator an event manager is

used; consequently, in addit ion to adding dependence on the l ink mechanisms to the code

of the event manager, moni tor ing for messages would be inefficient. To overcome this, the

synchronization routines are implemented as normal events tha t run in the same manner as

al l other events in the simulator: two events are required between each pair of dependent

processes; these are a NuLL-message generating event and a process blocking event.

The NuLL-message generating event runs on the ou tpu t of a l ink : i t compares the current

simulation t ime w i t h the t ime when a message was last sent to the remote process; i f this

is less than a l ink propagation delay i t simply re-schedules itself to a t ime one propagation

delay later than the t ime at which the last message was sent; otherwise, i t must be exactly

one propagation delay since a message was last sent, so a NuLL-message is generated to

the remote process and the generator re-schedules itself one propagation delay later. The

process blocking event compares the simulation t ime against the t ime when a message was

last received across a l ink f r o m the remote process; i f this is less than a propagation delay

then i t simply re-schedules itself for one propagation delay after the t ime the last message

was received; otherwise i t may not continue un t i l a message is received and blocks un t i l this

occurs before re-scheduling itself accordingly. The process blocking event appears to the rest

of the simulat ion as one tha t takes just sufficiently long to execute tha t the process remains

in synchronization w i t h its neighbours; however, while blocking, i t consumes no processing

t ime. I t is possible to show tha t , provided tha t the lookahead is greater then zero, cyclic

dependencies tha t could lead to deadlock cannot exist. This is shown by Earnshaw in his

thesis [87].

141

6.5 The Simulator Results

The results produced by the simulator consist of sets of statistics for the t raff ic patterns and

the switch act ivi ty. In addi t ion, statistics are also gathered giving the various performance

indices for the simulator itself: this can be assessed f r o m the run- t ime, processor usage and

l ink usages. The performance of the synchronization mechanism is monitored, along w i t h

several other aspects, by an event profi l ing process; this gives the number of instances and

percentage processing t ime spent on various simulation events. Such prof i l ing is made easier

as the transputer has a hardware t imer which allows the profiler to be run at fixed time

intervals. Traff ic patterns are reported as a set of histograms of the voice delay statistics for

each source i n the network. Switch activities are also reported as histograms of the input

queue lengths to the Orwell rings, the r ing reset and cell delay statistics.

6.6 Performance Analysis of the Simulator

6.6.1 Performance of Production Runs

The performance results given here are for the A T M Network Simulator configured as shown

in figure 6.3: the network consists of four A T M switches in a fully-connected trunk network

and eight local switches each of which is dual-parented onto two t runk switches. Each local

switch has two t ra f f ic generators which can generate normal voice calls or a mixture of

conventional and mobile voice calls. The switches were all running the Orwell r ing protocol

(see section 6.2). T w o sets of results were taken in i t ia l ly w i t h di f fer ing switch capacities

and t ra f f ic mixes. I n bo th cases the links were running at 150 M b i t / s and the propagation

delay was set to 0.1 ms (equivalent to about 20 k m of glass fibre, or about 35 cells). A l l

inter-switch and source-to-switch distances were set to 20 k m . The results for the lower

t ra f f ic load were taken using 150 M b i t / s Orwell rings for al l the switches w i t h a mix ture of

voice and mobile t raf f ic ; the results for the higher loads used conventional voice t raff ic and

a r ing speed of 600 M b i t / s for the t runk switches. W i t h the smaller capacity switches the

m a x i m u m l ink loading was about 15% before the rings saturated, but this was increased to

about 50% for the higher capacity rings. T w o uniprocessor simulations were run for each

load: one w i t h identical code to the multiprocessor version, the unoptimized version; the

other w i t h the redundant multiplexors removed to speed message transfer, the optimized

version. Ideally, of course, the speed-up figures should al l be relative to a version of the

142

simulator running on a single processor (transputer) using efficient event-list processing. In

the fo l lowing graphs, when the load is shown i t is expressed as the average percentage of

the capacity of a l ink .

These experiments were production runs in that the results of the simulations were

used to validate the simulator, examine the performance of the switches and verify the

operation of the protocol developed to manage mobile voice t raff ic on the network. Thus,

these runs had to be of sufficient length; 12.5 s for the 150 Mbi t s / s rings and 7.5 s for the

600 M b i t s / s w i t h the statistics reset after 2.5 s i n bo th cases. The length of a product ion run

is constrained by several criteria. First of a l l , the normal simulation constraints have to be

observed. The statistics being collected should be reset (or collection begun) only after the

warm-up period is complete and the system has reached equi l ibr ium. Also, the simulation

needs to be of sufficient length for the statistics gathered to be significant. To minimise

execution times the call holding t ime can be reduced and the call arr ival rate increased such

that the average load remains the same (thus causing the simulation to reach equil ibrium

more rap id ly) : previous simulations have shown tha t this technique has no noticeable effect

on the statistics collected due to the very large number of cells involved in even a short call.

The technique is described by McGeeney [192].

Figure 6.4 shows the t ime taken to simulate the two models on an array of twelve

processors. The times for the 150 Mbi t s / s rings has been scaled by a factor of 7.5/12.5 to

take account of the difference in simulation length. Therefore, the simulation lengths are

effectively the same. The fact that the two curves do not pass through the origin (ie. for

zero t r a f f i c) has two causes: the NULL-message t ra f f ic for low loads and the overhead of

s imulat ing the r ing slot-rotat ion action for the Orwel l protocol . T h a t i t is the la t ter that

represents the dominant factor can be inferred f r o m the fact that the N U L L message rat io

for each of the two curves is almost identical for a given l ink loading, as can be seen in

figure 6.7. I f the NuLL-messages were the cause, then the two curves would cut the axis

at the same p o i n t 2 . As i t is, the r ing s lot-rotat ion action is dominant as there are fewer

slot-rotations (about two-thirds) in the 150 Mbi t s / s simulations. Figure 6.4 also shows that

the s imulat ion run t ime of the model using mixed conventional and mobile voice t raff ic is

growing faster w i t h load than for purely conventional voice t ra f f i c . This is not surprising

due to the extra overheads incurred i n managing the mobile protocol [180]. These times

2 T h e number of NuLL-messages in the two simulations of the same length with the same traffic load
would be (approximately) the same as long the lookahead in both were the same.

143

should be borne in mind when looking at the speed-up results as the average run-time across

all t raf f ic loads for the 600 M b i t s / s rings is just over three hours; thus a speed-up of ten

implies a uniprocessor run-t ime in excess of t h i r t y hours.

Figure 6.5 shows the speed-up of the simulator as a func t ion of load for the 150 M b i t / s

rings; i t shows tha t , even for a load of just 15% of max imum capacity, the speed-up is

approaching the ideal value of twelve for the unoptimized version, and is s tar t ing to level

out at just over ten when compared w i t h the optimized version. The difference between the

two curves represents the propor t ion of the processing t ime tha t is taken up in switching

the messages f r o m one processor to another. The speed-up of the simulator relative to the

unoptimized version can also be estimated f r o m the processor ac t iv i ty moni tor ing of each

of the transputers in the parallel simulation: the results f r o m doing this agree well w i t h

the curve for the unoptimized version. Figure 6.5 shows, for the 600 M b i t / s i n comparison

w i t h the unoptimized version, tha t the speed-up is greater than nine for all loads simulated,

and for l ink loads greater than 30% i t is almost u n i t a r y 3 . This result shows that the

communicat ion overheads in the parallel simulation are effectively hidden and that the

synchronization method is very efficient for this simulation model. I f the message passing

code for the multiprocessor version could be made more efficient then i t is possible that

the speed-up, when compared against the optimized version, could be improved upon st i l l

fu r the r .

A useful performance indicator for the Chandy-Misra-Bryant synchronization method

is the NuLL-message ra t io (N M R) which is defined as follows:

NMR= Nnu"
Nnull + N„

where Nnuu is the number of NuLL-messages generated in the simulation and N m e s s is

the number of real messages generated, in this case A T M cells. The numbers of messages

reported here were averages across a l l twelve of the switches. This was fel t to give better

comparisons between different s imulat ion runs (than the number for a single switch or the

t o t a l for al l switches) par t icular ly i n the case where asymmetric t ra f f ic patterns were used.

Figure 6.6 shows tha t the speed-up degrades gracefully w i t h increasing NuLL-message

ra t io ; bu t , for tunately, as can be seen more clearly in figure 6.7, the NuLL-message rat io

3 Careful examination of figure 6.5 reveals that a speed-up slightly greater than twelve is achieved at
a load of about 40%. This was due to the single and multiprocessor simulations being run with different
random number seeds.

144

remains very low for a large range of the load. This reinforces the conclusion that the

synchronization message overhead is very low for the parallel simulation w i t h a realistic

t raf f ic load.

The results given in figure 6.6 for the 600 M b i t / s rings show that for a speed-up of

approximately nine, the NuLL-message rat io is almost one. As the NULL-message ratio

decreases by a factor of around 5000, the speed-up only increases by about 20%. This seems

to indicate that the NuLL-message ra t io has less impact than as f i rs t thought . However,

this is explained by the overheads in NuLL-message processing. As mentioned previously,

a NuLL-message generator event is periodically processed and re-scheduled for each output

l ink of a process regardless of whether a NuLL-message is eventually generated or not. I t

is impor t an t to note that there w i l l at least be a NuLL-message generator event scheduled

at intervals equal to the lookahead; i n this case, the propagation delay across a l ink . I t is

reasonable to assume that most of the processing overhead of sending a NuLL-message is

incurred by processing and scheduling the NuLL-message generator event. As this overhead

occurs whether the NULL-message is sent or not then this would explain why the reduction

in the NuLL-message rat io has relatively l i t t l e impact on the speed-up

6.6.2 Variations in Lookahead

A series of simulations were then undertaken w i t h the al l of the inter-switch and source-to-

switch distances set symmetrically to 2 k m , 20 k m or 200 k m . Another series was done using

a UK. national ne twork 4 . A l l of these were performed using the usual range of symmetric

conventional voice t ra f f ic loads. The nat ional network has the same topology as before but

w i t h inter-switch distances between 51 k m and 343 k m (average 174 k m) and source-to-

switch distances between 0.5 k m and 7.5 k m (average 4.3 k m) . The overall average distance

is 103 k m . Thus, the national network can be said to have asymmetric lookahead.

The simulat ion length used for this series of experiments, 0.5 s, was much shorter than

tha t used fo r the product ion runs. As we have already noted, the run times for the unipro­

cessor versions are prohibi t ive; par t icular ly in terms of the series of simulations proposed

above. The length used was a compromise: short enough to be practicable and long enough

for the speed-up not to be biased by the sequential parts of the parallel simulation (pre-

4 I t is national'm the sense that the trunk and local switches are placed at major cities in the UK. and the
distances between them calculated accordingly. The source-to-switch distances were set randomly between
0.5 and 7.5 km. The distances normally found currently in the local loop.

145

processing data and boot ing the processor network at the beginning and w r i t i n g results at

the end of the simulation per iod) . As the simulator results for the model are not of interest

for these experiments, the previous assumptions concerning statist ical significance may be

ignored. I t should be noted, however, tha t the speed-up curve for the 20 k m symmetrical

lookahead model i n figure 6.8 is not the same as tha t i n f igure 6.5 as the shorter r un times

do not allow the simulations to reach equi l ibr ium.

Figure 6.8 shows the speed-up against t raf f ic load (w i t h respect to the optimized version)

for these experiments. They show tha t lookahead is the key fac tor i n determining speed-up.

There is a large increase i n speed-up between the 2 k m and the 20 k m models, but less

between the 20 k m and the 200 k m as there was less room here for improvement in the

concurrency. This is borne out by examination of figure 6.9, where the NuLL-message rat io

against t ra f f ic load is quite close for the la t ter two models. The curve for the 2 k m model

is almost f l a t , reflecting the relatively small amount of lookahead in the model.

The speed-up curves of f igure 6.8 also indicate tha t the in t roduc t ion of asymmetry in

terms of the lookahead for the nat ional network has quite a p rofound effect on the speed-up.

Indeed, the speed-up figures recorded are not consistent w i t h the overall average (103 km)

or the m i n i m u m lookahead (0.5 k m) in the network as they are rather lower than those for

the 20 k m model but s t i l l greater than those for the 2 k m model. They are most consistent

w i t h the average source-to-switch distance of 4.3 k m . The answer lies par t ly in figure 6.9,

where the NuLL-message curve for the national network model lies only slightly below that

for the 2 k m model. When the number of NuLL-messages was examined for each process

the greatest number was recorded for the sources closest to the switches (i.e. those w i t h

the lowest lookahead). Indeed, the number of NuLL-messages recorded at a source process

is almost inversely propor t ional to the distance to the nearest switch. This is i l lustrated in

f igure 6.10 which shows the number of Null-messages normalised against the number at the

lowest load (0.05 calls/source/s) p lo t ted against l ink load for a selection of source-switch

l inks.

Interestingly, the simulation run times for the national network are about the same as

those for the 20 k m model on a single processor, but are obviously longer for the mult ipro­

cessor. Examinat ion of the processor act ivi ty revealed tha t the uti l isations were lower than

usual by about 10% on average. We deduce f r o m this evidence tha t , due to the asymme­

t r y in the lookahead, processes block much more of ten in the parallel simulation wait ing

for messages (real or N U L L) on the shortest connected links. This scenario has much less

146

impact on the uniprocessor simulation as i t is almost certain that there is another process

waiting to be scheduled with work to do. The reduction in speed-up is of the order of 25 to

40% on the 20 km network depending on traffic load. Even so, a speed-up of around six on

twelve processors is still a respectable result, particularly bearing in mind the length of the

uniprocessor simulation.

6.6.3 Asymmetric Traffic

A short series of experiments similar to those described in the previous section was repeated

but with an asymmetric traffic pattern. This was achieved by setting eight of the sources

to transmit/receive calls to each other at 60 calls/s (42.4% of link load) and the rest to

20 call/s (14.13%). This gives a network average load of 40 calls/source/s (28.27%). The

speed-up and NuLL-message ratio results are plotted against traffic load in the figures 6.8

and 6.9 at this average load.

The speed-up figures for asymmetric traffics all show reductions from their symmetric

traffic counterparts of between of 6 and 14% depending on the original lookahead. The

higher the lookahead initially, the more impact the asymmetric traffic has. In fact i t can

be seen that the NULL-message ratio is biased towards that at the lower link load. On

examining the processor activity i t is plain that load imbalance is the primary cause due to

a high concentration of traffic in one of the trunk switches.

6.7 Conclusions

The speed-up figures obtained were reasonable throughout the series of experiments, the

speed-up for the production runs being particularly good. The production runs show

that the synchronization mechanism, Chandy-Misra-Bryant message passing using NULL-

messages and exploiting lookahead, is very effective at medium to high message loads for

this kind of model. These runs have also indicated that the communication overheads in

the simulator are effectively hidden. The most important result is that the lookahead in the

simulation model is the key factor in determining good speed-up. I t is not too surprising

that the speed-up results relative to the unoptimized version of the simulator are nearly

unitary as it has all the disadvantages of parallel execution (ie. the synchronization mech­

anism, the message passing and the process blocking) without any of the advantages. Also,

the optimized version still has the overhead of the synchronization mechanism. Speed-up

147

comparisons with a true uniprocessor simulation using efficient event-list processing would

obviously yield lower figures.

Both asymmetric traffic and asymmetric lookahead cause reductions in speed-up; asym­

metric lookahead having the more profound impact as expected from the results on varying

lookahead evenly. The reduction in speed-up for the national network is of the order of

25 to 40% over the 20 km network model for asymmetric lookahead depending on traffic

load in line with average lookahead between sources and switches. This is thought to be

due to the increased instance of process blocking in the parallel simulation while processes

wait for messages on the shortest connected link. The reduction for asymmetric traffic is

between 6 and 14% depending on the original lookahead in the model. This was found to

be due to processor load imbalance brought about by the asymmetric traffic pattern.

148

5533 5333 5333 5353 5333

5333 5555 &AAA

? m . . m

g

"3

<
so
c

to

ex

I
U

Figure 6.1: High-speed transputer-based telecommunication network simulator — hardware
configuration.

149

n
t

Model

Async Sync

Packetizer Packetizer

Multiplexor

Transputer Links •

Figure 6.2: The overall hierarchy of the simulation model. The Event scheduler is a control-
plane for all of the upper layers.

150

/ \ Trunk Exchange

(^) Local Exchange

(^) Traffic Source

Transputer

Figure 6.3: Basic network topology used for the simulator performance analysis runs. The
processor assignments are also shown.

151

18000

16000 - -

14000 - -

12000

| 10000 - -

6 8000

d'

6000 • i '

4000

2000

D- — 600 Mbii/s Ring

S- " 150 Mbit/s Ring

H 1 1

10 20 30

Link Load (% of capacity)

40 50

Figure 6.4: Parallel simulation run times as a function of traffic load for the twelve-node
networks on twelve transputers. The 150 Mbits/s times are scaled to take account of the
difference in simulation length.

152

13 T

12 - -

11

10 - -

B
05

| 9

a.

P
/

/
/ °

P I : /

O ' /
' /

' /
' /

4 J

i

4
7 - f i

i

. - a- • 600 Mbits/s Rings -
Uaoptimized

. - o- - 600 Mbits/s Rings -
Optimized

— o- — 150 Mbits/s Rings -
Unoptimized

— o- — 150 Mbits/s Rings -
Optimized

H 1 — I

10 20 30

Link Load (% of capacity)

40 50

Figure 6.5: Speed-up curves as a function of traffic load. Speed-up is calculated relative to
the optimized or unoptimized uniprocessor simulations.

153

12 - r

10

f 6 •o
c
CO

2 —

D . • • - D - - • .

\

\
\

° - - 600 Mbit/s Rings

•O 150 Mbit/s Rings

0.0001

— I • 1 t -

0.001 0.01 0.1

Null Message Ratio (NMR)

Figure 6.6: Speed-up (optimized) as a function of NuLL-message ratio. The difference
between the two curves represents the extra parallelism that can be extracted from the
higher speed rings.

154

1

0.1

0.01

3
z

0.001

- - n- - 600 Mbil/s Rings

— Q 150 Mbil/s Rings

0.0001 H 1 1

10 20 30

Link Load (% of capacity)

40 50

Figure 6.7: NuLL-message ratio (NMR) as a function of load. As might be expected, the
ratio is largely independent of the ring speed.

155

— 0~ — 2 Km even — ^— 20 Km — a - - 200 Km - . o- National
even even even

o 2 Km A 20 Km D 200 Km o National
flsymm asymm. asymm. asymm.

12

11 - -

10

o.
9
"8 *
S 6

2 - -

• D- - -

•o -o .

10 20 30

Link Load (% of Capacity)

40 50

Figure 6.8: Speed-up (optimized) as a function of load for a range of lookahead values and
symmetric and asymmetric traffic patterns.

156

— •<>- — 2 km Even — ^— 20 km — a- — 200 km - . o- National
Even Even Even

o 2km A 20 km ° 200 km o National
Asymm. Asymm. Asymm. Asymm.

on

3
2

o.i —

0.01

0.001

0.0001

o

\ \
\

o

-o

\

\
\

\ \

\
\

+ +
10 20 30

Link Load (% of capacity)

40 50

Figure 6.9: NuLL-message ratio (NMR) as a function of load for a range of lookahead values
and symmetric and asymmetric traffic patterns.

157

- - °- - 0.52 km " - «- " 1.78 km - A- 2.14km - - -x- • 2.20 km

- - *- - 2.95 km " • +- " 3.10km • • o- 4.83 km • - °" - 6.71 km

1 +7*
6

0.95

8
CD

z
o

9

z

0.9

1 0.85

o
Z

0.8 —

0.75

10 20 30

v + •

" + .

" is .
"X -

-x - .

40 50

- +

Link Load (% of capacity)

Figure 6.10: Number of NuLL-messages normalised against the number at the lowest load
(0.05 calls/source/s) plotted against link load for a selection of source-switch links.

158

Chapter 7

Conclusions and Further Work

7.1 Conclusions

I n this thesis, we have considered the application of parallel simulation to the performance

modelling of telecommunication networks. Parallel simulation is a rapidly growing area

of research, with significant potential for increasing the size and complexity of models which

can be simulated in a reasonable amount of time. I t is also hoped that the reader has gained

an insight into the practical difficulties of implementing a parallel simulator as well as the

advantages in run-time performance.

The work described here has particularly focussed on the problem of synchronization;

and this will continue to be an interesting area of study. A number of different approaches

have been shown to work, albeit under varying circumstances and with varying degrees of

success. The review highlighted the potential of the parallelizing compiler approach for

simple models and the distributed model components approach for true parallel discrete

event simulation. Both of these techniques have been explored.

The parallelizing compiler approach has a number of attractions. Firstly, it can be used

like any other compiler; ignoring the machine architecture and any involvement with parallel

programming. I f an acceptable level of speed-up for an application can be obtained with such

a cursory approach then this is most attractive; particularly to those with no real interest

in learning about parallelism but with a real need for improved performance. The approach

is also attractive for improving the performance of so-called "dusty decks"; old, tried and

tested programs, often written in an obsolete language version, still in use; but, not enough

to justify a complete re-write to improve the performance, even in a modern sequential

159

language. However, such applications very often use efficient sequential algorithms which

usually do not (by definition) contain much scope for the compiler to extract parallelism.

For these reasons, the user should make use of execution profiling tools and any interme­

diate output of the compiler analysing the parallelism extracted. An appreciation of how the

parallelizing compiler resolves dependencies by modifying or re-arranging the code is very

useful. The parts to look for are where the compiler has failed to extract parallelism and

the code is unchanged from it's original sequential execution. Often, quite small changes

made in the source code can enable large portions of code to be parallelized. This is often

described as "fighting the compiler's hooks"; an experience not unknown in conventional

programming when attempting to optimize code for execution. Some knowledge of the

machine architecture and, more particularly, the run-time model of the architecture, is also

useful in giving insights into possible improvements in the source code which are often very

easy to implement. More complex improvements may require the replacement of sequential

with parallel algorithms or the re-writing of some parts of the application directly in the

parallel language.

Thus, the user can choose to get involved at several levels of knowledge in order to

improve the performance of the application. There is obviously a potential trade-off possible

between time and effort expended and performance achieved. However, depending on the

size and characteristics of the application, the law of diminishing returns will mean that an

increasingly large amount of effort is expended to achieve a decreasingly small improvement.

I t is interesting that many of these conclusions were also arrived at by Thomborson [193]

in a recent article on porting programs to supercomputers.

The work on parallel discrete event simulation reported here confirms results obtained

by parallel simulation practitioners in similar fields using the distributed model components

approach to model decomposition. The work on queueing networks using YADDES showed

that conservative Chandy-Misra-Bryant synchronization gives good speed-up for models

with good lookahead and high traffic loads. Conversely, poor lookahead and/or low traffic

loads result in relatively poor performance. The results for optimistic virtual time synchro­

nization were more modest, but were also more consistent, being relatively insensitive to the

traffic load. Optimistic synchronization was easily the best performer for lower traffic loads

only losing out to conservative Chandy-Misra-Bryant synchronization with NuLL-message

cancellation at the highest load.

The optimistic synchronization algorithm could use lazy or aggressive cancellation strat-

160

egies. Overall, with the closed stochastic queueing network models, there was little to choose

between their performance except in the area of memory usage, where lazy cancellation used

less, particularly at higher values of checkpoint interval. The checkpoint interval was also

found to have an optimal value in terms of reducing memory usage and increasing speed-up

as predicted by other parallel simulation practitioners.

The speed-up results for the asynchronous transfer mode network simulations using

the conservative synchronization approach were reasonable throughout the series o' experi­

ments, the speed-up for the production runs being particularly good. The production runs

again show that Chandy-Misra-Bryant message passing using NuLL-messages and exploiting

lookahead is very effective at higher traffic loads. Reduced lookahead, asymmetric traffic

and asymmetric lookahead all caused reductions in the speed-up; asymmetric lookahead

having the most impact as expected from the results on varying lookahead evenly. Given

these results, i t seems unlikely that using an optimistic synchronization approach would

lead to improved speed-up.

Conservative methods thus offer good potential for certain classes of problems. Signif­

icant successes have also been obtained particularly when application-specific knowledge

is applied to maximise the efficiency of the simulation mechanism. Conservative methods

may well find success in packaged simulation systems (e.g. logic simulators and, possibly

communication network simulators) in which the simulation code is optimized for the synch­

ronization algorithm and users only configure the provided simulation modules into specific

systems.

Which strategy should one use for a particular simulation problem? If state-saving

overheads do not dominate, time warp has a good chance of success, assuming of course

that the problem contains a reasonable degree of parallelism. I f the application has good

lookahead properties, conservative mechanisms may also perform well. I f the application

has both poor lookahead and large state-saving overheads, all existing parallel discrete event

approaches will have trouble obtaining good performance even if the application contains

copious amounts of parallelism. However, i t is hoped that time warp aided with hardware

support for state-saving will provide a viable solution for this situation in the future.

161

7.2 Further Work

The parallelizing compiler approach still has, potentially, a good future; albeit largely driven

by application areas other than simulation. There are continuing improvements being made

in parallelizing compilers and they are becoming almost mandatory on new massively par­

allel machines. Such machines hold the promise of simulating very large circuit-switched

networks with hundreds or even thousands of switches; modelling the whole, or at least

substantial portions, of national and international networks in reasonable amounts of time.

The question which needs to be addressed is whether the speed-up will scale as the model

size, the number of processors, and the level of model detail are increased.

A particularly interesting area, which has yet to be explored, is the application of a

parallelizing compiler to the time parallel simulation models discussed in chapter 2. Time

parallel models based on recurrence relations are currently under investigation for queueing

networks and circuit-switched telecommunication networks. Another interesting compari­

son would be to compare the speed-up, obtained using a parallelizing compiler, with that

obtained from a parallel discrete event simulation; executing the same simulation mod­

els, using a similar depth of model construction, but synchronized using a conservative or

optimistic approach.

Much work could be done in the area of asynchronous transfer mode network in terms of

investigating larger networks and different switch and traffic models. Also, the simulation

models here were performed at the cell-level; that is, in relatively fine detail. Work could

also be done looking at simpler models at the burst- or call-levels in order to speed-up

execution times and allow more complex networks to be investigated. Indeed, work has

already been done by Pitts et. al. [176-179] at Queen Mary and Westfield College, London,

on using burst-level, or cell rate, simulation techniques.

An important application area that has not yet been adequately addressed by either

optimistic or conservative simulation mechanisms is real-time applications. Theories of per­

formances are not sufficiently developed to address this question, though significant progress

has been made particularly by Ghosh et. al. [166]. This may well be an important issue in

the future where high performance simulator/emulator packages are required to drive new

switch architectures with simulated traffic and also to investigate network management

strategies in future networks.

Most applications of parallel simulation reported thus far in research papers and confer-

162

ence proceedings tend to be simplified benchmarks. Therefore, they are not commercially

motivated and the results of the simulation are not necessarily required by anyone. Parallel

simulation will only prove itself on serious applications which need to be simulated and

are only feasible in terms of of both time and cost on a parallel simulator; due to to time,

size, complexity or all three. Telecommunication networks offers such grand challenges

in abundance; eg. very large circuit-switched trunk networks, asynchronous transfer mode

networks, high speed local and metropolitan area networks, heterogeneous internets and

intelligent networks.

If the practice of parallel simulation is to become more widespread, most of the difficult

details of synchronization must be embedded within a parallel simulation environment where

they remain hidden from the simulation modeller. I t seems that the critical problems for

parallel simulation lie more in its automation. The important future work in synchronization

protocol design lies in developing protocols whose application is transparent to a wide

variety of simulation models, and whose overheads are minimal. This potential lies more

with optimistic approaches such as time warp.

The vast majority of parallel simulators currently run on what are perceived by many

to be specialist hardware platforms; either due to their cost, complexity or sheer novelty.

Little work has been done to address the use of local area networks (LANs) of workstations

and/or personal computers for parallel simulation. Though, there is no doubt, that the

performances will not be as good, and the novelty will not be as great, the vast majority of

potential users of parallel simulation will not consider buying specialist parallel hardware

for a single, or small number, of applications. I t is interesting that the Jade time warp

simulation package, which is the only one commercially available at present, is now available

for networks of workstations as well as a transputer based parallel computers. Unfortunately,

there are no speed-up figures available for the workstation version as yet. Also, the recent

work of Chai and Ghosh [183] at Brown Univerity, USA. on the distributed simulation of

A T M networks on a LAN of standard workstations, has shown that good performance on

such platforms for serious applications is possible.

Finally, perhaps the most challenging problem remaining to be explored is the applica­

tion of these techniques, beyond the realm of discrete event simulation, and into the world

of general purpose parallel computation. The degree to which the techniques described here

can be applied to parallelizing arbitrary computations is only just beginning to be explored.

163

ib l iography

[1] S. Agrawal, E. Matalon, and R. Ramaswany, "BEST/1-SNA: An analytic tool for

computer aided modelling of SNA MSNF networks," in Proceedings of the IEEE In­

ternational Conferences on Communications, pp. 37.6.1-37.6.6, 1987.

[2] C. H. Sauer, E. A. McNair, and J. F. Kurose, "Queueing network simulation of com­

puter communication," IEEE Transactions on Selected Areas in Communications,

vol. 2, pp. 203-220, January 1984.

[3] J. F. Kurose and H. T. Mouftah, "Computer aided modeling, analysis, and design of

communication networks," IEEE Transactions on Selected Areas in Communications,

<-ol. 6, pp. 130-145, January 1988.

[4] V. S. Frost, W. W. Larue Jr., and K. S. Shanmugan, "Efficient techniques for the

simulation of computer communications networks," IEEE Transactions on Selected

Areas in Communications, vol. 6, pp. 146-157, January 1988.

[5] L. Schruben, "Detecting initialization bias in simulation output," Operations Re­

search, vol. 30, pp. 569-590, 1982.

[6] P. Welch, "The statistical analysis of simulation results," in The Performance Mod­

eling Handbook (S. Lavenberg, ed.), Academic Press, 1983.

[7] P. Heidelberger and P. D. Welch, "Simulation run control in the presence of an initial

transient," Operations Research, vol. 31, pp. 1109-1144, 1983.

[8] A. M . Law, "Statistical analysis of simulation output data." Operations Research,

vol. 31, pp. 983-1029, 1983.

[9] M . Crane and A. Lemoine, An introduction to the regenerative method for simulation

analysis. Springer-Verlag, 1977.

164

[10] P. Heidelberger and P. D. Welch, "A spectral method for confidence interval generation

and run length control in simulation," Communications of the ACM, vol. 24, pp. 223-

245,1981.

[11] R. Righter and J. C. Walrand, "Distributed simulation of discrete event systems,"

Proceedings of the IEEE, vol. 77, pp. 99-113, January 1989.

[12] D. P. Helmbold and C. E. McDowell, "Modeling speedup (n) greater than n,n IEEE

Transactions on Parallel and Distributed Systems, vol. 1, pp. 250-256, April 1990.

[13] J. G. Shanthikumar and R. G. Sargent, "A unifying view of hybrid simulation/analytic

models and modeling," Operations Research, vol. 31, no. 6, pp. 1030-1052, 1983.

[14] C. McGeoch, "Analyzing algorithms by simulation: Variance reduction techniques

and simulation speedups," ACM Computing Surveys, vol. 24, no. 2, pp. 195-212,

1992.

[15] P. Heidelberger, "Statistical analysis of parallel simulations," in Proceedings of the

Winter Simulation Conference, pp. 290-295, 1986.

[16] G. M . Amdahl, "Limits of expectation," International Journal of Supercomputer Ap­

plications, vol. 2, no. 1, pp. 88-97, 1988.

[17] R. Duncan, "A survey of parallel computer architectures," IEEE Computer, pp. 5-16,

February 1990.

[18] M . J. Flynn, "Very high speed computing systems," Proceedings of the IEEE, vol. 54,

pp. 1901-1909, December 1966.

[19] T. Feng, "A survey of interconnection networks," IEEE Computer, vol. 14, pp. 12-27,

December 1981.

[20] H. J. Siegel, T. Schwederski, D. G. Meyer, and W. Tsun yuk Hsu, "Large-scale parallel

processing systems," Microprocessors and Microsystems, vol. 11, no. 1, pp. 3-19, 1987.

[21] G. S. Almasi and A. J. Gottlieb, Highly parallel computing. Benjamin/Cummings,

1989.

[22] D. A. Patterson and J. L. Hennessey, Computer architecture: A quantitative approach.

Morgan Kaufmann, 1990.

165

[23] A. Trew and G. Wilson, eds., Past, present and Parallel: A survey of available parallel

computing systems. Springer-Verlag, 1991.

[24] R. M . Fujimoto, "Parallel discrete event simulation," Communications of the ACM,

vol. 33, pp. 30-53, October 1990.

[25] U. Bannerjee, R. Eigenmann, A. Nicolau, and D. A. Padua, "Automatic program

parallelization," Proceeding of the IEEE, vol. 81, pp. 211-243, February 1993.

[26] A. Chandak and J. C. Browne, "Vectorization of discrete event simulation," in Pro­

ceedings of the IEEE International Conference on Parallel Processing, pp. 359-361,

1983.

[27] D. A. Reed, "Parallel discrete event simulation: A case study," in Proceedings of the

18th IEEE Annual Simulation Symposium, pp. 95-107, 1985.

[28] Y. Escaig and W. Oed, "Analysis tools for micro- and autotasking programs on CRAY

multiprocessor systems," Parallel Computing, vol. 17, pp. 1425-1433, 1991.

[29] F. Allen, M . Burke, P. Charles, R. Cytron, and J. Ferrante, "An overview of the

PTRAN analysis system for multiprocessing," in Proceedings of the First International

Conference on Supercomputing, Springer-Verlag, June 1987.

[30] S. Tjang, M . E. Wolf, M . S. Lam, K. L. Pieper, and J. L. Hennessey, "Integrating

scalar optimization and parallelization," in Proceedings of the Fourth Workshop on

Languages and Compilers for Parallel Computing, August 1991.

[31] R. J. Carpentar, "Performance measurement instrumentation for multiprocessor sys­

tems," High Performance Computer Systems, pp. 81-92, 1987.

[32] T. Kerola and H. Schwetman, "Monit: A performance monitoring tool for parallel and

pseudo-parallel programs," in Proceedings of the ACM SIGMETRICS Conference,

May 1987.

[33] B. P. Miller and C. Q. Yang, "IPS: An interactive and automatic performance mea­

surement tool for parallel and distributed programs," in Proceedings of the Seventh

International Conference on Distributed Computing Systems, September 1987.

[34] H. Burkhart and R. Millen, "Performance measurement tools in a multiprocessor

environment," IEEE Transactions on Computers, vol. 38, pp. 725-737, May 1989.

[35] T. E. Anderson and E. D. Lazowska, "Quartz: A tool for tuning parallel program

performance," in Proceedings of the ACM SIGMETRICS Conference, pp. 115-125,

May 1990.

[36] K. D. Cooper, M . W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M . MeUor-

Crummey, L. Torczon, and S. K. Warren, "The ParaScope parallel programming

environment," Proceeding of the IEEE, vol. 81, pp. 244-263, February 1993.

[37] Parasoft, Programming parallel computers using the Express system, 1990.

[38] K. Ikudome, G. C. Fox, A. Kolawa, and J. W. Flower, An automatic and symbolic

parallelization system for distributed memory parallel computers. Parasoft, 1990.

[39] S. Ahuja, N . Carriero, and D. Gelertner, "Linda and friends," IEEE Computer, August

1986.

[40] D. Gelertner, Proceedings on Parallel Architectures and Languages in Europe, vol. 2 of

Lecture Notes in Computer Science 366, ch. Multiple tuple spaces in Linda. Springer-

Verlag, June 1989.

[41] Perihelion Software Ltd. , The Helios operating system. Prentice-Hall, 1989.

[42] D. L. Wyatt , "Simulation programming on a distributed system: A preprocessor

approach," in Proceedings of the SCS Conference on Distributed Simulation, pp. 32-

36, 1985.

[43] M . P. Papazoglou, P. I . Georgiadis, and D. G. Maritsas, "Designing a parallel Simula

machine," Computer design, pp. 125-132, October 1983.

[44] P. Civera, G. Piccinini, and M . Zamboni, "Implementation studies for a VLSI Prolog

Co-processor," IEEE Micro, pp. 10-23, February 1989.

[45] R. Rajagopal and J. C. Comfort, "Contrasting distributed simulation with parallel

replication: a case study of a queueing simulation with a network of transputers," in

Proceedings of the Winter Simulation Conference, pp. 746-755, December 1989.

[46] W. E. Biles, D. M . Daniels, and T. J. O'Donnell, "Statistical considerations in sim­

ulation on a network of microcomputers," in Proceedings of the Winter Simulation

Conference, pp. 388-392, December 1985.

167

[47] D . L. Wyat t , S. V . Sheppard, and R. E. Young, "An experiment in microprocessor-

based digital simulation," in Proceedings of the Winter Simulation Conference,

pp. 271-277, December 1983.

[48] D. L. Wyatt and S. V. Sheppard, "A language directed distributed discrete simulation

system," in Proceedings of the Winter Simulation Conference, pp. 463-464, December

1984.

[49] M . Krishnamurthi, U. Chandrasekaran, and S. V. Sheppard, "Two approaches to

the implementation of a distributed simulation system," in Proceedings of the Winter

Simulation Conference, pp. 435-444, December 1985.

[50] R. M . Reese, "A software development environment for distributed simulation," in

Proceedings of the SCS Conference on Distributed Simulation, pp. 37-40, 1985.

[51] S. V. Sheppard and C. K. Davis, "Parallel simulation environments for multiprocessor

architectures," in Proceedings of the SCS Multiconference on Distributed Simulation,

vol. 19, pp. 109-114, July 1988.

[52] C. K. Davis, S. V. Sheppard, and W. M . Lively, "Automatic development of paral­

lel simulation models in Ada," in Proceedings of the Winter Simulation Conference,

pp. 339-343, December 1988.

[53] J. C. Comfort, "The design of a multi-microprocessor based simulation computer I , "

in Proceedings of the IEEE Annual Simulation Symposium, pp. 45-52, 1982.

[54] J. C. Comfort, "The design of a multi-microprocessor based simulation computer I I , "

in Proceedings of the IEEE Annual Simulation Symposium, pp. 197-209, 1983.

[55] J. C Comfort, "The simulation of a master-slave event set processor," Simidation,

vol. 42, pp. 117-124, March 1984.

[56] J. C. Comfort and R. Rajagopal, "Environment partitioned distributed simulation

with transputers," in Proceedings of the SCS Multiconference on Distributed Simul­

ation, vol. 19, pp. 103-108, July 1988.

[57] A. I . Concepcion, "A hierarchical computer architecture for distributed simulation."

ACM Transactions on Computers, vol. 38, pp. 311-319, February 1989.

168

[58] G. Zhang and B. P. Zeigler, "DEVS-Scheme supported mapping of hierarchical model

onto multiple processors systems," in Proceedings of the SCS Multiconference on Dis­

tributed Simulation, pp. 64-69, 1989.

[59] D. W. Jones, "Concurrent simulation: An alternative to distributed simulation," in

Proceedings of the Winter Simulation Conference, pp. 417-423, December 1986.

[60] B. A. Cota and R. G. Sargent, "An algorithm for parallel discrete event simulation

using common memory," in Proceedings of the 22nd IEEE Annual Simulation Sym­

posium, pp. 23-31, 1989.

[61] C. Hughes, U. Chandra, and S. V. Sheppard, "Two implementations of a concur­

rent simulation environment," in Proceedings of the Winter Simulation Conference,

pp. 618-623, December 1987.

[62] D. M . Nicol, "Mapping a battlefield simulation onto message-passing parallel architec­

tures," in Proceedings of the SCS Multiconference on Distributed Simulation, vol. 19,

pp. 141-146, July 1988.

[63] R. T. Clarke, S. J. Nichols, and P. Mars, "Transputer-based simulation tool for per­

formance evaluation of wide area telecommunications networks," Microprocessors and

Microsystems, vol. 13, no. 3, pp. 173-178, 1989.

[64] S. J. Nichols, R. T. Clarke, and P. Mars, "Design of a high speed simulation tool

for WAN using parallel processing," Microprocessing and Microprogramming, vol. 25,

pp. 327-332, 1989.

[65] S. J. Nichols, Simulation and analysis of adaptive routing and flow control in wide area

communication networks. PhD thesis, University of Durham, School of Engineering

and Applied Science, 1990.

[66] R. W. Earnshaw and P. Mars, "Simulation of A T M networks on Transputer arrays,"

in Seventh UK IEE Teletraffic Symposium, 1990.

[67] K. M . Chandy and R. Sherman, "Space-time, and simulation," in Proceedings of the

SCS Multiconference on Distributed Simulation, vol. 21, pp. 53-57, March 1989.

169

[68] A. G. Greenberg, B. D. Lubachevsky, and I . Mitrani, "Algorithms for unboundedly

parallel simulations," ACM Transactions on Computer Systems, vol. 9, no. 3, pp. 201-

221,1991.

[69] H. Ammar and S. Deng, "Time warp simulation using time scale decomposition,"

in Proceedings of the SCS Multiconference on Advances on Parallel and Distributed

Simulation, vol. 23, pp. 11-24, January 1991.

[70] Y-B. Lin and E. D. Lazowska, "A time-division algorithm for parallel simulation,"

ACM Transactions on Modeling and Computer Simulation, vol. 1, pp. 73-83, January

1991.

[71] P. Heidelberger and H. Stone, "Parallel trace-driven cache simulation by time parti­

tioning," Technical Report RG 15500, I B M Research, February 1990.

[72] D. M . Nicol, A. G. Greenberg, B. D. Lubachevsky, and S. Roy, "Massively parallel

algorithms for trace-driven cache simulation," in Proceedings of the SCS Multiconfer­

ence on Parallel and Distributed Simulation, vol. 24, pp. 3-11, January 1992.

[73] Y-B. Lin, "Parallel trace-driven simulation of packet-switched multiplexer under prior­

ity scheduling policy," Information Processing Letters, vol. 77, pp. 197-201, September

1993.

[74] R. Baccelli and M . Canales, "Parallel simulation of stochastic petri nets using recur­

rence equations," in Proceedings of the 1992 ACM SIGMETRICS Conference, pp. 257-

258, June 1992.

[75] B. Gaujal, A. G. Greenberg, and D. M . Nicol, "A sweep algorithm for massively

parallel simulation of circuit-switched networks," Technical Report 92-30, ICASE,

July 1992. To appear in the Journal of Parallel and Distributed Computing.

[76] J. Misra, "Distributed discrete-event simulation," ACM Computing Surveys, vol. 18,

pp. 39-65, March 1986.

[77] P. F. Reynolds Jr., "A spectrum of options for parallel simulation," in Proceedings of

the Winter Simulation Conference, pp. 325-332, December 1988.

[78] R. M . Fujimoto and D. Nicol, "State of the art in parallel simulation," in Proceedings

of the Winter Simulation Conference, pp. 246-254, December 1992.

170

[79] R. M . Fujimoto and D. Nicol, "Parallel simulation today." Presented as notes accom­

panying a tutorial session at the 7th Workshop on Parallel and Distributed Simulation,

May 1993.

[80] D. R. Jefferson, "Virtual time," ACM Transactions on Programming Languages and

Systems, vol. 7, pp. 404-425, July 1985.

[81] K. M . Chandy and J. Misra, "Distributed simulation: A case study in design and

verification of distributed programs," IEEE Transactions in Software Engineering,

vol. SE-5, no. 5, pp. 440-452, 1979.

[82] K. M . Chandy, V. Holmes, and J. Misra, "Distributed simulation of networks," Com­

puter Networks, vol. 3, pp. 105-113, 1979.

[83] K. M . Chandy and J. Misra, "Asynchronous distributed simulation via a sequence

of parallel computations," Communications of the ACM, vol. 24, pp. 198-206, April

1981.

[84] R. E. Bryant, "Simulation of packet communication architecture computer systems,"

Master's thesis, M I T , Computer Science Laboratories, 1977.

[85] J. K. Peacock, J. W. Wong, and E. Manning, "Distributed simulation using a network

of processors," Computer Networks, vol. 3, pp. 44-56, 1979.

[86] J. K. Peacock, E. Manning, and J. W. Wong, "Synchronization of distributed simul­

ation using broadcast algorithms," Computer Networks, vol. 4, pp. 3-10, 1980.

[87] R. W. Earnshaw, Simulation of packet- and cell-based communication networks. PhD

thesis, University of Durham, School of Engineering and Computer Science, 1992.

[88] S. Manthorpe, C. I . Phillips, and L. G. Cuthbert, "High performance A T M network

simulation using transputers," in IEE Colloquium on Parallel Processing: Industrial

and Scientific Applications, June 1990.

[89] C. I . Phillips and L. G. Cuthbert, "Concurrent discrete event-driven simulation tools,"

IEEE Journal on Selected Areas in Communications, vol. 9, pp. 477-485, April 1991.

[90] D. A. Reed and A. D. Maloney, "Parallel discrete event simulation: The Chandy-

Misra approach," in Proceedings of the SCS Multiconference on Distributed Simul­

ation, vol. 19, pp. 8-13, July 1988.

[91] W. L. Bain and D. S. Scott, "An algorithm for time synchronization in distributed

discrete event simulation," in Proceedings of the SCS Multiconference on Distributed

Simulation, vol. 19, pp. 30-33, July 1988.

[92] W. K. Su and C. L. Seitz, "Variants of the Chandy-Misra-Bryant distributed discrete-

event simulation algorithm," in Proceedings of the SCS Multiconference on Distributed

Simulation, vol. 21, pp. 38-43, March 1989.

[93] P. F. Reynolds Jr., "A shared resource algorithm for distributed simulation," in Pro­

ceedings of the 9th IEEE Annual Symposium on Computer Architecture, pp. 259-266,

1982.

[94] D. M . Nicol and P. F. Reynolds Jr., "Problem oriented protocol design," in Proceedings

of the Winter Simulation Conference, pp. 471-474, December 1984.

[95] J. Misra, "Detecting termination of distributed computations using markers," in Pro­

ceedings of the 2nd ACM Con- -ence on Principles of Distributed Computing, pp. 290-

293, 1983.

[96] E. W. Dijkstra and C. S. Scholten, "Termination detection for diffusing computa­

tions," Information Processing Letters, vol. 11, pp. 1-4, August 1980.

[97] B. Groselj and C. Tropper, "A deadlock resolution scheme for distributed simulation,"

in Proceedings of the SCS Multiconference on Distributed Simulation, vol. 21, pp. 108-

112, March 1989.

[98] L. Z. Liu and C. Tropper, "Local deadlock detection in distributed simulations," in

Proceedings of the SCS Multiconference on Distributed Simulation, vol. 22, pp. 64-69,

January 1990.

[99] D. Kumar, "An approximate method to predict performance of a distributed sim­

ulation scheme," in Proceedings of International Conference on Parallel Processing,

vol. 3, pp. 259-262, August 1989.

[100] Y-B. Lin, E. D. Lazowska, and J-L. Baer, "Conservative parallel simulation for sys­

tems with no lookahead prediction," in Proceedings of the SCS Multiconference on

Distributed Simulation, vol. 22, pp. 144-149, January 1990.

172

[101] R. M . Fujimoto, "Lookahead in parallel discrete-event simulation," in Proceedings of

the IEEE International Conference on Parallel? rocessing, vol. 3, pp. 34-41, 1988.

[102] R. M . Fujimoto, "Performance measurements of distributed simulation strategies," in

Proceedings of the SCS Multiconference on Distributed Simulation, vol. 19, pp. 14-20,

July 1988.

[103] D. A. Reed, A. D. Malony, and B. D. McCredie, "Parallel discrete event simulation

using shared memory," IEEE Transactions on Software Engineering, vol. 14, pp. 541-

553, April 1988.

[104] R. M . Fujimoto, "Performance measures of distributed simulation strategies," Trans­

actions of the Society for Computer Simulation, vol. 6, pp. 89-132, Apri l 1989.

[105] D. M . Nicol, "Parallel discrete-event simulation of FCFS stochastic queueing net­

works," SIGPLAN Notes, vol. 23, pp. 124-137, September 1988.

[106] K. M . Chandy and R. Sherman, "The conditional event approach to distributed simul­

ation," in Proceedings of the SCS Multiconference on Distributed Simulation, pp. 93-

99, 1989.

[107] W. Cai and S. J. Turner, "An algorithm for distributed discrete-event simulation

the "carrier null message" approach," in Proceedings of the SCS Multiconference on

Distributed Simulation, vol. 22, pp. 3-8, January 1990.

[108] B. R. Preiss, W. M . Loucks, I . D. Maclntyre, and J. A. Field, "Null message cancella­

tion in conservative distributed simulation," in Proceedings of the SCS Multiconference

on Advances on Parallel and Distributed Simulation, vol. 23, pp. 33-38, January 1991.

[109] L. Gould, I . Bowler, and A. Purvis, "Real-time, multi-channel digital filtering on the

transputer," in Proceedings of the International Symposium on Computer Architecture

and Digital Signal Processing, 1989.

[110] D. B. Wagner, E. D. Lazowska, and B. N. Bershad, "Techniques for efficient shared-

memory parallel simulation," in Proceedings of the SCS Multiconference on Distributed

Simulation, pp. 29-37, 1989.

173

[I l l] D. B. Wagner and E. D. Lazowska, "Parallel simulation of queueing networks: Limi­

tations and potential," in Proceedings of ACM SIGMETRICS and Performance '80,

vol. 17, pp. 146-155, May 1989.

[112] Y-B. Lin and E. D. Lazowska, "Exploiting lookahead in parallel simulation," Tech­

nical Report 89-10-06, University of Washington, Department of Computer Science,

University of Washington, Seattle, Washington, 1989.

[113] W. M . Loucks and B. R. Preiss, "The role of knowledge in distributed simulation," in

Proceedings of the SCS Multiconference on Distributed Simulation, vol. 22, pp. 144-

149, January 1990.

[114] R. Ayani, "A parallel simulation scheme based on the distance between objects," in

Proceedings of the SCS Multiconference on Distributed Simulation, vol. 21, pp. 113-

118, March 1989.

[115] B. C. Merrifleld, S. B. Richardson, and J. B. G. Roberts, "Quantitative studies of

discrete event simulation modelling road traffic," in Proceedings of the SCS Multicon­

ference on Distributed Simulation, vol. 22, pp. 188-193, January 1990.

[116] R. L. Bagrodia and W-T. Liao, "Maisie: A language and optimizing environment

for distributed simulation," in Proceedings of the SCS Multiconference on Distributed

Simulation, vol. 22, pp. 205-210, January 1990.

[117] R. L. Bagrodia and W-T. Liao, "A language for iterative design of efficient simul­

ations," Technical Report UCLA-CSD-920044, University of California at Los Ange­

les, Department of Computer Science, UCLA, Los Angeles, California, 1992.

[118] B. D. Lubachevsky, "Efficient distributed event-driven simulations of multiple-loop

networks," Communications of the ACM, vol. 32, pp. 111-123, January 1989.

[119] D. Nicol and S. Roy, "Parallel simulation of timed petri nets," in Proceedings of the

Winter Simulation Conference, pp. 574-583, December 1991.

[120] J. Steinman, "Speedes: synchronous parallel environment for emulation and discrete

event simulation," in Proceedings of the SCS Multiconference on Advances on Parallel

and Distributed Simulation, vol. 23, pp. 95-103, January 1991.

174

[121] B. D. Lubachevsky, "Scalability of the bounded lag distributed discrete event simul­

ation," in Proceedings of the SCS Multiconference on Distributed Simulation, vol. 21,

pp. 100-107, March 1989.

[122] B. Berkman and R. Ayani, "Parallel simulation of multistage interconnection networks

on a SIMD computer," in Proceedings of the SCS Multiconference on Advances on

Parallel and Distributed Simulation, vol. 23, pp. 133-140, January 1991.

[123] S. Bellenot, "Global virtual time algorithms," in Proceedings of the SCS Multiconfer­

ence on Distributed Simulation, vol. 22, pp. 122-127, January 1990.

[124] Y-B. Lin and E. D. Lazowska, "Determining the global virtual time in a distributed

simulation," Technical Report 90-01-02, University of Washington, Department of

Computer Science, University of Washington, Seattle, Washington, 1989.

[125] B. R. Preiss, "The Yaddes distributed discrete event simulation specification lan­

guage and execution environments," in Proceedings of the SCS Multiconference on

Distributed Simulation, vol. 21, pp. 139-144, March 1989.

[126] A. Gafni, "Rollback mechanisms for optimistic distributed simulation systems," in

Proceedings of the SCS Multiconference on Distributed Simulation, vol. 19, pp. 61-67,

July 1988.

[127] 0 . Berry, Performance evaluation of the time warp distributed simulation mechanism.

PhD thesis, University of Southern California, Department of Computer Science, May

1986.

[128] T. K. Som, B. A. Cota, and R. G. Sa.rgent, "On analyzing events to estimate the

possible speedup of paraDel discrete event simulations," in Proceedings of the Winter

Simulation Conference, pp. 729-737, December 1989.

[129] D. West, "Optimizing time warp lazy rollback and lazy re-evaluatioii," master's thesis,

University of Calgary, Department of Computer Science, January 1988.

[130] D. R. Jefferson, B. Beckman, F. Wieland, L. Blume, M . Di Loreto, P. Hontalas,

P. Reiher, K. Sturdevant, J. Tupman, J. Wedel, and H. Younger, "The time warp

operating system," in The 1 1th Symposium on Operating System Principles, vol. 21,

November 1987.

175

[131] R. M . Fujimoto, "Time warp on a shared memory multiprocessor," in Proceedings of

the IEEE International Conference on Parallel Processing, 1989.

[132] B. D. Lubachevsky, A. Weiss, and A. Shwartz, "An analysis of rollback-based simul­

ation," ACM Transactions on Modeling and Computer Simulation, vol. 1, pp. 154-193,

Apri l 1991.

[133] V. Madisetti, J. Walrand, and D. Messerschmitt, "Wolf: a rollback algorithm for

optimistic distributed simulation systems," in Proceedings of the Winter Simulation

Conference, pp. 296-305, December 1988.

[134] V. Madisetti, D. Hardaker, and R. M . Fujimoto, "The M I M D I X operating system

for parallel simulation," in Proceedings of the SCS Multiconference on Parallel and

Distributed Simulation, vol. 24, pp. 65-74, January 1992.

[135] D. M . Nicol, "Global synchronization for optimistic parallel discrete event simul­

ation," in Proceedings of the Seventh Workshop on Parallel and Distributed Simul­

ation, pp. 27-34, May 1993.

[136] L. M . Sokol and B. K. Stucky, " M T W : experimental results for a constrained opti­

mistic scheduling paradigm," in Proceedings of the SCS Multiconference on Distributed

Simulation, vol. 22, pp. 169-173, January 1990.

[137] S. Turner and M . Xu, "Performance evaluation of the bounded time warp algorithm,"

in Proceedings of the SCS Multiconference on Parallel and Distributed Simulation,

vol. 24, pp. 117-128, January 1992.

[138] D. Ball and S. Hoyt, "The adaptive time warp concurrency control algorithm," in

Proceedings of the SCS Multiconference on Distributed Simulation, vol. 22, pp. 174-

177, January 1990.

[139] B. D. Lubachevsky, A. Shwartz, and A. Weiss, "Rollback sometimes works . . . i f f i l ­

tered," in Proceedings of the Winter Simulation Conference, pp. 630-639, December

1989.

[140] P. F. Reynolds Jr, "An efficient framework for parallel simulations," in Proceedings of

the SCS Multiconference on Advances on Parallel and Distributed Simulation, vol. 23,

pp. 167-174, January 1991.

176

[141] J. V. Briner Jr., "Fast parallel simulation of digital systems," in Proceedings of the

SCS Multiconference on Advances on Parallel and Distributed Simulation, vol. 23,

pp. 71-77, January 1991.

[142] Y-B. Lin and E. D. Lazowska, "Reducing the state saving overhead for time warp par­

allel simulation," Technical Report 90-02-03, University of Washington, Department

of Computer Science, University of Washington, Seattle, Washington, February 1990.

[143] B. R. Preiss, I . D. Maclntyre, and W. M . Loucks, "On the trade-off between time

and space in optimistic parallel discrete-event simulation," in Proceedings of the SCS

Multiconference on Parallel and Distributed Simulation, vol. 24, pp. 33-42, January

1992.

[144] S. Bellenot, "State skipping performance with the time warp operating system,"

in Proceedings of the SCS Multiconference on Parallel and Distributed Simulation,

vol. 24, pp. 53-64, January 1992.

[145] Y-B. Lin, B. R. Preiss, W. M . Loucks, and E. D. Lazowska, "Selecting the check­

point interval in time warp," in Proceedings of the Seventh Workshop on Parallel and

Distributed Simulation, vol. 23, pp. 3-10, May 1993.

[146] A. C. Palaniswamy and P. A. Wilsey, "An analytical comparison of periodic check­

pointing and incremental state saving," in Proceedings of the Seventh Workshop on

Parallel and Distributed Simulation, vol. 23, pp. 127-134, May 1993.

[147] D. R. Jefferson, "Virtual time I I : Storage management in distributed simulation,"

in Proceedings of the Ninth Annual ACM Symposium on Princliples of Distributed

Computing, pp. 75-89, August 1990.

[148] Y-B. Lin, "Memory management algorithms for optimistic parallel simulation,"

in Proceedings of the SCS Multiconference on Parallel and Distributed Simulation,

vol. 24, pp. 43-52, January 1992.

[149] Y-B. Lin and B. R. Preiss, "Optimal memory management for time warp paral­

lel simulation," ACM Transactions on Modeling and Computer Simulation, vol. 1,

pp. 283-307, October 1991.

177

[150] I . F. Akyildiz, L. Chen, S. R. Das, R. M . Fujimoto, and R. Serfozo, "Performance

analysis of time warp v ' " hmited memory," in Proceedings of the ACM SIGMETRICS

Conference on Measuring and Modeling Computer Systems, vol. 20, May 1992.

[151] S. R. Das and R. M . Fujimoto, "A performance study of the cancelback protocol

for time warp," Technical Report GIT-CC-92/50, Georgia Institute of Technology,

College of Computing, Georgia Institute of Technology, Atlanta, Georgia, October

1992.

[152] F. Wieland, L. Hawley, A. Feinberg, M . Di Loreto, L. Blume, P. Reiher, B. Beckman,

P. Hontalas, S. Bellenot, and D. R. Jefferson, "Distributed combat simulation and time

warp: The model and its performance," in Proceedings of the SCS Multiconference on

Distributed Simulation, pp. 14-20, 1989.

[153] D. Baezner, C. Rohs, and H. Jones, "U.S. Army ModSim on Jade's TimeWarp," in

Proceedings of the Winter Simulation Conference, pp. 665-671, December 1992.

[154] M . Ebling, M . Di Loreto, M . Presley, F. Wieland, and D. R. Jefferson, "An ant

foraging model implemented on the time warp operating system," in Proceedings of

the SCS Multiconference on Distributed Simulation, pp. 21-28, 1989.

[155] P. Hontalas, B. Beckman, M . Di Loreto, L. Blume, P. Reiher, K. Sturdevant, L. Van

Warren, J. Wedel, F. Wieland, and D. R. Jefferson, "Performance of the colliding

pucks simulation on the time warp operating system (Part 1: Asynchronous behaviour

and sectoring)," in Proceedings of the SCS Multiconference on Distributed Simulation,

pp. 3-7, 1989.

[156] M . Presley, M . Ebling, F. Wieland, and D. R. Jefferson, "Benchmarking the time

warp operating system with a computer network simulation," in Proceedings of the

SCS Multiconference on Distributed Simulation, pp. 8-13, 1989.

[157] R. M . Fujimoto, "Performance of time warp under synthetic workloads," in Proceed­

ings of the SCS Multiconference on Distributed Simulation, vol. 22, pp. 23-28, January

1990.

[158] D. Baezner, J. Cleary, G. Lomow, and B. Unger, "Algorithmic optimizations of sim­

ulations on time warp," in Proceedings of the SCS Multiconference on Distributed

Simulation, vol. 21, pp. 73-78, March 1989.

178

[159] R. M . Fu j imo to , "The v i r t ua l t ime machine," in The IEEE International Symposium

on Parallel Algorithms and Architectures, 1989.

[160] K . Ghosh and R. M . Fu j imoto , "Parallel discrete event simulation using space-time

memory," i n Proceedings of the International Conference on Parallel Processing, vol . 3,

pp. 201-208, August 1991.

[161] R. M . Fu j imo to , J. Tsai , and G. Gopalakrishnan, "Design and evaluation of the

rollback chip: Special purpose hardware for t ime warp ," IEEE Transactions on Com­

puters, vol . 4 1 , pp. 68-82, January 1992.

[162] C. M . Pancerella, " Improving the efficiency of a f ramework for parallel simulations,"

i n Proceedings of the SCS Multiconference on Parallel and Distributed Simulation,

vol . 24, pp. 22-32, January 1992.

[163] P. F . Reynolds Jr. and C. M . Pancerella, "Mak ing parallel simulations go fast," in

Proceedings of the Winter Simulation Conference, pp. 646-656, December 1992.

[164] C. M . Pancerella and P. F . Reynolds Jr., "Disseminating cri t ical target-specific syn­

chronization informat ion in parallel discrete event s imulat ion," in Proceedings of the

Seventh Workshop on Parallel and Distributed Simulation, vo l . 23, pp. 52 -61 , May

1993.

[165] Jet Propulsion Laboratory, Cal i fornia Ins t i tu te of Technology, Pasadena, California,

Time Warp Operating System 2.5.1: User's Manual, j p l d-6493 rev. b ed., September

1991.

[166] J. Ghosh, R. M . Fu j imoto , and K . Schwan, "T ime warp simulation in t ime constrained

systems," in Proceedings of the Seventh Workshop on Parallel and Distributed Simul­

ation, vol . 23, pp. 163-166, May 1993.

[167] P. L . Reiher, S. Bellenot, and D . Jefferson, "Debugging the t ime operating system

and its application programs," in Proceedings of the Second Unenix Symposium on

Experience with Distributed and Multiprocessor Systems, pp. 203-220, 1991.

[168] N . Eshragh, Dynamic routeing in circuit-switched non-hierarchical networks. PhD

thesis, University of Durham, School of Engineering and Applied Science, May 1989.

179

[169] Encore Computer Corporat ion, Encore parallel Fortran manual. Encore Computer

Corpora t ion , 1983.

[170] A . H i n d , " Y A D D E S (Yet Another Dis t r ibu ted Discrete Event Simulator) user man­

ual ," research report , University of D u r h a m , School of Engineering and Computer

Science, September 1992.

[171] B . R. Preiss and I . D . Macln tyre , " Y A D D E S - Yet Another Dis t r ibu ted Discrete Event

Simulator: User manual," Technical report E-197, Universi ty of Waterloo, Computer

Communications Networks Group, 1990.

[172] A . H i n d , "On Por t ing Y A D D E S (Yet Another Dis t r ibu ted Discrete Event Simulator) ,"

research report , University of D u r h a m , School of Engineering and Computer Science,

September 1992.

[173] E. P. Rathgeb, "Model ing and performance comparison of policing mechanisms for

A T M networks," IEEE Journal on Selected Areas in Communications, vol . 9, pp. 325-

334, A p r i l 1991.

[174] M . B u t t o , E . Cavallero, and A . Tonie t t i , "Effectiveness of the Leaky Bucket policing

mechanism in A T M networks," IEEE Journal on Selected Areas in Communications,

vol . 9, pp. 335-342, A p r i l 1991.

[175] B . R. Preiss, "Performance of discrete event simulation on a multiprocessor using op­

t imis t ic and conservative synchronization," i n Proceedings of the IEEE International

Conference on Parallel Processing, August 1990.

[176] J. M . P i t t s and Z. Sun, "Burst-level teletraffic modell ing and simulation of broadband

multi-service networks," in Proceedings of the Seventh IEE UK Teletraffic Symposium,

pp. 7 / 1 - 7 / 5 , May 1990.

[177] J. M . P i t t s , J. A . Schormans, and E. M . Scharf, "Burst level s imulat ion: A comparison

w i t h cell level simulation and queueing analysis," in Proceedings of the Ninth IEE UK

Teletraffic Symposium, pp. 8 /1 -8 /6 , May 1992.

[178] J. M . P i t t s , L . G. Cuthber t , L . G. Bocci, and E. M . Scharf, "Model l ing burst scale con­

gestion in A T M networks," in Proceedings of the First UK Workshop on Performance

Modelling and Evaluation of ATM Networks, pp. 4 / 1 - 4 / 1 0 , June 1993.

180

[179] J. M . P i t t s , L . G. Cuthber t , L . G. Bocci, and E. M . Scharf, "Cell-rate modelling:

A n accelerated technique for A T M networks," i n Proceedings of the Ninth UK Per­

formance Engineering Workshop for Computer and Telecommunication Systems, July

1993.

[180] R. W . Earnshaw and P. Mars , "Footprints for mobile communications," in Proceedings

of the Eighth IEE UK Teletraffic Symposium, pp. 2 2 / 1 - 2 2 / 5 , A p r i l 1991.

[181] J. E. Mel lor , J. R. Chen, and M . Hansen, "Simulat ion support for the management

networks," i n Proceedings of the Sixth RACE TMN Conference, 1992.

[182] J. E. Mellor and A . H ind , "Performance of parallel simulators for A T M networks," in

Proceedings of the First UK Workshop on Performance Modelling and Evaluation of

ATM Networks, pp. 8 /1 -8 /9 , June 1993.

[183] A . Chai and S. Ghosh, "Model ing and distr ibuted simulat ion of a broadband-ISDN

network," IEEE Computer, vol . 26, pp. 37 -51 , September 1993.

[184] C C I T T : C O M X V I I I , 228-E. Geneva, March 1984.

[185] R. Handel and M . N . Huber, Integrated broadband networks: An introduction to ATM-

based networks. Addison-Wesley, 1991.

[186] M . De Prycker, ed., Asynchronous transfer mode: Solution for broadband ISDN. Ellis

Horwood, 1990.

[187] J. Chauhan, T . K i n g , and A . C. Micallef, Specification of the Orwell protocol. Br i t i sh

Telecom Research Laboratories, Mart lesham Heath, Ipswich, Suffolk, U K . IPS 7RE.

[188] R. M . Falconer, J. L . Adams, and G. M . Walley, " A simulat ion study of the Cambridge

r ing w i t h voice t ra f f ic , " British Telecom Technology Journal, vol . 3, A p r i l 1985.

[189] J. L . Adams and R. M . Falconer, "Orwell : A protocol for carrying integrated services

on a d igi ta l communications r ing ," Electronics Letters, vol . 20, pp. 970-971, November

1984.

[190] R. M . Falconer and J. L . Adams, "Orwel l : a Protocol for an Integrated Services Local

Network," British Telecom Technology Journal, vol . 3, October 1985.

181

[191] R. W . Earnshaw and A . H i n d , " A parallel simulator for performance modelling of

broadband telecommunication networks," in Proceedings of the Winter Simulation

Conference, pp. 1365-1373, 1992.

[192] B . M . McGeeney, "Performance of an integrated services A T M protocol over a broad­

band passive optical network," in Proceedings of the Sixth IEE UK Teletraffic Sym­

posium, pp. 12 /1 -12 /8 , May 1989.

[193] C. D . Thomborson, "Does your workstat ion computa t ion belong on a vector super­

computer?," Communications of the ACM, vol . 36, pp. 41-49,94, November 1993.

182

endix A A P P

1 d 1 M 1 F t lmu on O e e

A floppy disk fo rma t t ed for an I B M . PC. compatible computer is available f r o m the author

which contains examples of the simulation model files described herein.

There are four directories on the disk, as follows.

© N A D — contains files which relate to the circuit-switched telecommunication network

simulator originally wr i t t en by Nadereh Eshragh. This was modif ied to run on modern

workstations and on the Encore M u l t i m a x , a shared memory multiprocessor, using a

parallelizing compiler.

e Q U E U E — contains files used by the Y A D D E S simulator t o model a closed stochastic

queueing network of a hypercube of queues. This runs on a hardwired cube of Inmos

transputers.

• T A N D E M — contains files used by the Y A D D E S simulator to model a tandem queue­

ing network. This also runs on a hardwired cube of Inmos transputers.

• A T M — contains files used by the Richard Earnshaw's A T M . simulator to model a

network of twelve Orwell rings. This runs on a reconfigurable array of Inmos trans­

puters.

For more in format ion on these files contact:

A lan Hind , School of Comput ing and Mathematics , University of Teesside, Borough

Road, Middlesbrough, Cleveland, T S l 3BA.

Telephone: (0642) 342673.

Emai l : alan.hind@teesside.ac.uk

183

mailto:alan.hind@teesside.ac.uk

Appendix B

Published Papers

The fol lowing papers have been published as a result of this work:

o A . H i n d , "Parallel Discrete-Event Simulat ion of Engineering Systems", i n Proceedings

of The Eighth International Conference on Mathematical and Computer Modelling,

University of Maryland, USA. , A p r i l 1991. (Published in The Journal of Mathe­

matical Modelling and Scientific Computing, Principia Scientia, Vo l . 2, Section A ,

pp. 228-233, February 1993.)

o A . H i n d , "Parallel Simulation for Performance Model l ing of Telecommunication Net­

works", i n Proceedings of The Eighth IEE. UK. Teletraffic Symposium, GEC-Plessey

Telecommunications, Beeston, Nottingham, pp. 9 / 1 - 9 / 6 , A p r i l 1991.

o A . H i n d , "Overview: Parallel Simulation Techniques for Telecommunication Network

Model l ing" , in Proceedings of The Ninth IEE. UK. Teletraffic Symposium, University

of Surrey, Guildford, pp. 5 /1 -5 /6 , A p r i l 1992.

o A . H i n d , "Parallelization of a Circuit-Switched Telecommunication Network Simu­

la tor" , in Proceedings of The Ninth IEE. UK. Teletraffic Symposium, University of

Surrey, Guildford, pp. 7 /1 -7 /7 , A p r i l 1992.

e R. W . Earnshaw and A . Hind , "Parallel Simulation of Asynchronous Transfer Mode

Networks" , in Proceedings of The Fourth IEE. Bangor Communications Symposium,

University of Wales, Bangor, Wales, pp. 58-62, May 1992.

184

R. W . Earnshaw and A . H ind , " A Parallel Simulator for Performance Modell ing of

Broadband Telecommunications Networks," i n Proceedings of the Winter Simulation

Conference, Arlington, Virginia, USA . , pp. 1365-1373, December 1992.

J. E. Mellor and A . H i n d , "Performance of Parallel Simulators for A T M . Networks",

in Proceedings of the First UK. Workshop on Performance Modelling and Evaluation

of ATM. Networks, University of Bradford, Bradford, pp. 8 /1 -8 /9 , June 1993.

185

Math hAateiling and Set. Computing. Vol. 2, pp 228-233,1593
Prmapii Sdsntk. Printed in USA.

ISSN \067-OS88m $5.00 <• 0.00

Parallel Diserete=Event Simulation of Engineering Systems

A. Hind

British Telecom Research Fellow in Parallel Simulation,
Telecommunication Networks Research Group, School of Engineering and Applied Science,

University of Durham, South Road, Durham, DH1 3LE, U.K.

A B S T R A C T

This review paper discusses some of the issues which need to be addressed by someone wishing to use a
multiprocessor computer architecture to speed-up the discrete-event simulation of an engineering system.
Some indications of future advances in this area e?e also discussed.

K E Y W O R D S

Simulation; Methodology; Parallel Processing; Parallel Simulation; Distributed Simulation.

I N T R O D U C T I O N

The performance evaluation of engineering systems rapidly becomes analytically intractable as the complex­
ity of the system increases. In addition, behaviour under transient conditions, such as traffic fluctuations
or component failures, is diff icult to express mathematically. Under such conditions the use of simulation
techniques to determine relevant performance parameters becomes necessary. Conventional sequential sim­
ulations running on sequential (i.e. Von Neumann) computer architectures suffer f rom limitations imposed
by the excessive processing time required to achieve the required depth of information and the intrinsic
statistical nature of the results. These problems increase as functions of the activity in the system, its
size and complexity. This leads to detailed simulations of large systems often being economically and even
physically impossible to implement. Such engineering systems include communication systems, battlefield
scenarios, manufacturing systems, road traffic systems, general queueing networks etc.

Dramatic advances are expected over the next decade in the extensive use of parallel multiprocessor ar­
chitectures to speed-up simulation. However the use of parallel simulation has its own attendant issues.
These include the hardware architecture, the decomposition approach used to produce the parallel software
processes, mapping these processes onto the processors and the synchronization of the resulting parallel
simulation.

H A R D W A R E A R C H I T E C T U R E

The last decade has seen the advent of a huge variety of new computer architectures for parallel processing.
This variety can be bewildering to the non-specialist in computer architecture who needs to know which
architecture is the most suitable for his application. In order to make an informed choice we need to
be able to classify the different types of architecture which are possible along with their suitability for
various applications. A useful taxonomy introduced recently is that of Duncan (1990). This is an informal
high-level classification scheme, based on Flynn's Taxonomy (Flynn, 1966), which distinguishes between the
principle parallel computer architectures which are currently being explored. Of the architectures described
by Duncan the most useful, and the most used, architectures for parallel simulation are the synchronous
vector (SIMD) architecture and multiprocessor (M I M D) architectures using shared or distributed memory.
The synchronous vector architecture wi l l be discussed later in connection with the parallelizing compiler.

A distributed memory architecture needs the processing nodes (processor plus local memory) to be con­
nected using some interconnection network. This network may be static, dynamic or programmable (Almasi
and Gottlieb, 1989). Various static interconnection network topologies have been explored to support var­
ious applications, eg. pipelines, meshes, trees, rings, cubes, hypercubes etc. Dynamic or programmable

228

file:///067-OS88m

P a r a l l e l Discrete=-£vent Simulation 229

topologies are also possible by using some programmable switching matrix. These can be single-stage,
multi-stage or a crossbar. A disadvantage is that the communication overhead associated with this archi­
tecture can significantly reduce the performance, particularly where data has to be queued and forwarded
by many intermediate nodes. This explains the current popularity of the hypercube topology as i t minimises
the number of hops between any two processors.

Shared memory architectures allow communication between processors via a common shared memory which
each processor can access. Shared memory architectures thus replace message sending problems with data
access synchronisation and cache coherency problems. As in the case of distributed memory architectures,
there are several alternatives for the interconnection of the multiple processors to the shared memory.
Some major examples are time-shared bus interconnections, crossbar interconnections and various forms of
multi-stage interconnection network.

Comparing the two architectures, the distributed memory architecture gives greater flexibility. Generally
i t is easier to develop, more easily extensible and, with the advent of more powerful microprocessors, gives
a higher performance/cost ratio.

M O D E L D E C O M P O S I T I O N

For a given simulation model, five ways of decomposing i t for processing on a multiprocessor architecture
have been identified (Rigbter and Walrand, 1989) together wi th combined approaches.

T H E P A R A L L E L I Z I N G C O M P I L E R

A parallelizing compiler can be used to compile a sequential simulation wri t ten in a conventional sequential
language so that i t wil l run on our chosen multiprocessor hardware. The compiler thus has the responsibility
to recognize sequences in the source code which can be scheduled to run on separate processors in parallel.
This definition thus distinguishes a parallelizing compiler f rom a compiler which takes a high-level parallel
language and compiles i t to run on multiple processors. The overwhelming advantage is that the approach
is largely transparent to the user. A new parallel language does not have to be learned, the multiple
processor architecture should not impact the program structure and existing sequential software may be
ported. The disadvantage that has been found is that the problem has been coded in sequential form,
thus ignoring any parallelism in the structure of the problem. This results in relatively small portions of
the available parallelism in the problem being exploited and, hence, the speed-up in moving to a multiple
processor architecture is generally disappointing.

There are at least two approaches to converting sequential code to run on multiple processor architectures.
The provision of a parallelizing compiler which takes sequential code directly and produces parallel code to
run on the target multiple processor system, or, intelligent run-time support and parallel routine libraries
to provide the user with a programming environment which allows the conversion of sequential code into
parallel code. The latter approach has been taken by several commercial products such as Express and
Linda. The former approach is exemplified by the work concerning parallelization and optimiz. tion of
code for synchronous vector architectures such as the Cray X-MP. Here, sequential Fortran 77 code is
compiled and vectorized by the parallelizing compiler. Work has been done by Chandak and Browne
(1983) which showed that any network of queues containing feedback loops cannot be vectorized. Because
most simulation models of any interest are bound to contain feedback this is a disappointing result. This
result was born out by Reed (1985) who also investigated the simulation of queueing networks using a
Cray machine. The results were compared wi th the simulation's performance on a Vax 11/780 using the
same sequential code. The results showed a speed-up of about 100 which is almost the same as the two
computers rated performance on sequential code. I t was suspected that the amount of vectorization was
small and, using an execution monitor, i t was found to be between 1 and 5%.

D I S T R I B U T E D E X P E R I M E N T S

Distributed experiments may be conducted by running separate simulations on separate processors in
parallel. This is particularly efficient for stochastic simulations, as results can be averaged at the end of
the run, and also for doing several "what-if" simulations simultaneously wi th slightly different parameters.
This approach seems extremely efficient as no co-ordination is required between processors except for
results averaging and presentation. Hence, for N processors we may approach an ideal speed-up of N . The
only other overhead is loading the model into each processor which is often negligible compared with the
simulation run time. Many of us have exploited this technique when several workstations or microcomputers
are available, perhaps on an evening, overnight or at a weekend.

230 Proc. of the 8th ICMCM

In terms of the hardware required, distributed experiments may not be possible due to the memory require­
ments. This has led to the use of networks of uni-processors to realise the approach. Nevertheless, if these
memory deficiencies do not apply to the particular simulation application, the distributed experiments
approach can be very efficient and can also use existing sequential simulation programs. Also variance
reduction techniques such as antithetic sampling and common random number streams may be used to
improve statistical efficiency (Frost ei ai, 1988). The relative unpopularity of the approach is perhaps due
to the most common need f rom simulations being fast and accurate results. As we are not exploiting any
parallelism in the problem, speed-up is more in terms of statistical efficiency and simulation throughput.

D I S T R I B U T E D F U N C T I O N S

Distributed functions involves different tasks of a simulation being placed on separate processors. For
instance, processors may be dedicated to random number generation, event list processing, statistics col­
lection etc. Also other functions may be desired such as animated graphics during simulation or intelligent
supervision of the simulation process. Each of these functions may be supported by distributing them to
individual processors. The processors may be identical, or may be tailored to each individual function. The
advantages of this decomposition method is its freedom from the possibility of deadlock and its potential
scaleability. The architecture may also be made transparent to the user as each function's code can be
divided up and placed with each processor fairly easily. I t could even be made an automatic process at
compilation. This would obviously be much easier i f identical processors were used. Its disadvantages are
the communication overhead between functional processors, which becomes the l imi t ing factor in perfor­
mance above a handful of processors, and also the failure to exploit any parallelism in the syotem being
modelled. The work on the distributed functions approach seems to indicate that this is a f ru i t fu l approach
i f the number of processes that the simulation is decomposed into is small (Rajagopal and Comfort, 1989).

D I S T R I B U T E D E V E N T S

Distributed events uses a global event list, as in sequential simulation, to schedule available processors to
process the next event on the list. The difficulty is maintaining consistency in the simulation as the next
event available on the list may be pre-empted by other events currently being processed by other processors.
The need for global simulation control points very much towards the use of a shared memory multiprocessor
architecture so that all processors can have access to the global event list. The results for this approach
seem to indicate that i t is reasonable i f there are only a small number of processes required and a large
amount of global information used by the components of the system (Sheppard and Davis, 1988).

D I S T R I B U T E D M O D E L C O M P O N E N T S

The final, and most popular, method of decomposing a simulation is to decompose the simulation model
into a number of components and assign the simulation of each component to a process. One, or many,
processes can then be assigned to execute on each processor. Model decomposition usually follows the
logical structure of the real system being simulated. Therefore his approach can take advantage ->f any
parallelism inherent in the system to be modelled, so i t seems to promise significant speed-up on a multiple
processor system. However, this only holds i f the simulation does not require a significant amount of
global information and control. The major overhead wil l be communication between processes executing
on different processors. This can be handled by message passing on a distributed memory architecture or
global shared variables or message passing on a shared memory architecture.

The two major problems with distributed model components are the development of the model processes
themselves and the synchronization of the processes during simulation. Model building is essentially a
software problem, synchronization is a problem of both simulation and software. As we shall see the
method employed to synchronize the distributed model impacts the way the model is developed and the
performance of the simulation. The performance is affected as i t is the synchronization overhead which
prevents ideal speed-up. Distributed model components offers the greatest potential speed-up in terms of a
single simulation. Also, the decomposition of the simulation model can follow the structure of the problem
making i t easier to understand and develop the models.

C O M B I N E D A P P R O A C H E S

The ideal decomposition approach for a particular application may well be a combined approach integrating
two or more of the above. Several scenarios are possible. For instance, the use of a parallelizing compiler
could actually lead to a distributed event approach depending on how the compiler divided up and scheduled
the processes. However, it is difficult to imagine how these two approaches could interact with the other

P a r a l l e l Discret©=-Event Simulation 231

approaches. We could begin by decomposing our simulation model into our loosely coupled components
and modelling each wi th a process. Then, instead of placing each component in a single processor, we
could decompose each process into its simulation functions and place each function in a processor. Each
component process wil l thus be executed in a cluster of processors. This seems a useful approach as the
research on distributed simulation functions seems to be most efficient using a small number of processors.
Also we are exploiting the parallelism of the system at a fine grain size. The disadvantages wil l be with code
generation, loading and lack of flexibil i ty and scaleability. The distributed simulation functions approach
could also be exploited alongside distributed model components by using extra processors to handle global
results collection, statistical calculations and animation. This combined approach is used in one of the
telecommunication network simulators at Durham (Clarke ei a/., 1989). The distributed experiments
approach may be combined with the distributed functions or distributed model component approaches,
or both. This simulator could then run several different simulations in parallel as well as exploiting the
parallelism is each simulation.

PROCESS M A P P I N G

The mapping of software processes onto hardware processors can be an easy or diff icul t problem depending
on the relative numbers of each. I f we have the same number, or more, processors than processes then
the mapping can be done fairly logically, particularly i f the hardware topology is flexible. I f however we
have more processes to allocate than processors then the ideal mapping is rarely obvious. The two factors
involved are the balance between processing loads and the amount of communication between processors.
Any schema for mapping processes must take these two factors into account. The number of processes to
be placed and the structure of the simulation model are also significant. I f the number of processes is small
or the simulation model has a structure which points to an obvious placement, then the mapping is best
done manually. I f these criterion are not satisfied then an automatic mapping strategy may be employed.

There are three static mapping strategies which are commonly used at present; random partitioning,
heuristic partitioning and simulated annealing. These are essentially a pre-processor approach to mapping
processes onto processors. The two performance measures considered by the strategies are processor load
and communications volume. They each work by starting at some random placement of processes and
running the simulation for a short time to ascertain the two performance measures. A new placement
is determined using the particular strategy and the run repeated. This is continued unti l an "optimum"
placement is arrived at. Dynamic strategies are also possible, but the overheads incurred in transferring
processes from one processor to another are considered to be too excessive in the vast majori ty of eases.

Random mapping concentrates entirely on load balancing and ignores communication considerations. I t
can be effective i f allowed sufficient time to explore the whole design space (i.e. a very long time). Heuristic
mapping attempts to minimise communication volume while maintaining a high degree of processor load
balancing. The heuristic strategy, which searches for the optimum mapping, can find itself locked into a local
minima depending on the ini t ial placement. Simulated annealing weights load balancing and communication
volume equally, attempting to find the global opt imum by perturbation analysis. Thus avoiding the problem
of the heuristic strategy. However, all of these strategies take significant amounts of processing time to
achieve good results and may not give significantly better results than a manual placement done by a
competent engineer (Chamberlain and Franklin, 1990). The author believes that the use of automated and
manual process mapping needs to be integrated in much the same way as for printed circuit layout and
routeing in semi-custom integrated circuits. The automated mapping can be used to reduce the tedious
work but intervention by the engineer is required to apply a measure of common sense.

S I M U L A T I O N S Y N C H R O N I Z A T I O N

Before we discuss various synchronization schemes, it is important to review why i t is such a difficult
problem. In a sequential simulation, the synchronization of the simulation is maintained by manipulation
of a data structure called the event list. This contains the pending events in the system in time stamped
order. The simulation progresses by removing the event wi th the earliest time stamp from the list and
processing i t . I f another event is generated, i t is inserted into the event list at its time stamp position.
Thus the simulator processes the events in synchronized chronological order. I f we now distribute the
simulation over several processes, i t becomes possible for a processor to process an event which is not the
earliest. Also, in processing this event we may affect conditions for earlier, as yet un-simulated events. Thus
the future is affecting the past, which is clearly unacceptable, and is known as a causality error. Thus,
synchronization schemes fall into two categories; conservative approaches and optimistic approaches.

232 Proc. of the 8th ICMCM
C O N S E R V A T I V E S Y N C H R O N I Z A T I O N

Conservative approaches avoid causality errors ever occurring by relying on some strategy of determining
events which are "safe" to process. That is, they must determine when all events that could affect the event
in question have been processed. An added problem which categorises various conservative approaches is
that of deadlock. I f processes do not have a "safe" event which they can process then they are blocked and
cannot progress. I f a cycle of blocked processes occurs then we have deadlock and the simulation wil l grind to
a halt unless the deadlock can be broken. Generally conservative synchronization approaches can achieve
good performance with sparsely connected systems which have less opportunity for deadlock and/or an
application which contains good lookahead properties, eg. (Earnshaw and Mars, 1990). Lookahead refers to
the ability to predict what wi l l , or wi l l not, happen in the simulated time future based on application specific
knowledge. The worst case for a conservative synchronization approach is to be forced into almost sequential
operation coupled wi th the synchronization mechanism overheads. This situation is not uncommon in
some applications which have used these approaches. In their favour are simplicity and their chronological
execution.

O P T I M I S T I C S Y N C H R O N I Z A T I O N

Optimistic approaches allow causality errors rather than avoid them but when they are detected, a roll­
back mechanism is employed to recover by re-simulating f rom the time of the error. Therefore optimistic
approaches don't need to determine whether or not i t is safe to proceed; they only need to detect the error
and recover. The advantage of this is that the simulator can exploit the parallelism ful ly in applications
which may produce causality errors but in reality rarely do. Obviously, the greater the amount of causality
errors that a simulation produces, the greater the synchronization overhead.

The original work on optimistic synchronization was done by Jefferson (1985) on the mechanism called
time warp, based on a concept of vir tual time. In this case, virtual time is synonymous wi th simulated
time. In the time warp mechanism, a causality error is detected whenever an event message is received by
a process that contains a time stamp earlier than the processes' clock (i.e. the time of the last processed
message). This is known as a straggler. Recovery is accomplished by undoing the effects of all events that
have been processed prematurely by the process receiving the straggler. This is known as roll-back. Two
things are affected by roll-back. The process state may be modified; this is accomplished by returning to
the correct old state which is taken f rom a store of previous states. Also, previously sent messages must
be unsent; this is achieved by sending anti-messages that cancel the effect of the original. I f the original
message has already been processed then that process in turn must also roll-back. This process continues
until the effects of the causality error are cancelled. For even a moderate size of simulation this seems to
imply a large amount of memory to store states for each process. However, as the earliest time stamped
event is always safe to process, this is designated global vir tual time and is used to discard all states before
this time. This process of reclaiming memory, which is irrevocable, is known as fossil collection.

A variation on the above approach, which is said to use aggressive cancellation, is an approach which seeks
to "repair the damage". This is known as lazy cancellation. In this case, instead of immediately sending
out anti-messages, the process waits to see which messages that the re-execution of the process produces
are different to those produced before. I f the same message is produced, there is no need to send out
an anti-message. I t has been found that, depending on the application, lazy cancellation may improve or
degrade the simulation performance. Improvement is usually due to processes with incorrect input still
producing correct output. Degradation can be due to the additional message checking overheads and the
fact that incorrect computations have longer to spread out.

M A K I N G T H E C H O I C E

The performance results for time warp approaches often look impressive. However it does have some
problems. Time warp approaches do not lend themselves to fine grain parallelism due to the memory
overheads required. Each process needs substantial memory capacity as well as the mechanism for fossil
collection. Also, it is unproven that a continuous cycle of roll-backs may be possible for a particular
simulation. Hence, a conservative approach is often preferred as being "safer". However, when time warp
does well, i t usually yields far greater speed-up than any conservative approach. There are, at present, no
established rules for determining which of these two approaches wil l allow the greatest amount of speed­
up for a given application. Much research effort is currently aimed at this area benchmarking various
simulation applications using different synchronization approaches. Reviews of various synchronization
approaches are to be found in (Righter and Walrand, 1989; Fujimoto, 1989).

P a r a l l e l D i s c r e t e - E v e n t S i m u l a t i o n 233

T H E F U T U R E

The future of parallel simulation wil l most probably come in three areas; modular simulators, microproces­
sors for parallel processing and artificial intelligence (A I) .

The development of simulation models and the wr i t ing and debugging of the simulator code are the two most
costly simulation activities, in terms of both time and money. I t is imperative in the future that factors like
re-usability, modularity, model definition and validation be seriously addressed. Future simulators, whether
they use multiprocessors or not, wi l l need to be made of modular re-usable software components. Much
attention is currently being given to the definition of object-oriented sequential languages. This work is now
being adapted for parallel processing applications, including simulation, w i th languages such as C-4-H- and
Object-Oriented Communicating Sequential Prolog, both for the Initios Transputer series of processors.

We have already seen that the most flexible approach to distributed simulation is that of the distributed
memory multiprocessor. Using cheap modern microprocessors and a standardized communication protocol,
such as that used by the Inmcs Transputer, a flexible, easily extensible and powerful multiprocessor can be
construe tea Future hardware developments lie wi th new parallel processing elements such as the Inmoa
T-9000 Transputer (formerly known as the H I project) and the Intel iWarp and N i l projects.

Useful applications of A I techniques in simulation seem to appear in three categories; model development,
simulation control and results analysis. Model development using a standard format could be aided by a
software tool akin to an expert system. This would provide an interface to the model format for oomeone
requiring to do a simulation who did not have the tints to learn i t . Also the tool could transparently
make use of existing models f rom a library. Simulation control could also be aided by an embedded expert
system. This could control a number of simulation functions, for instance; the management of simulation
and analytical model libraries, analysis of simulation output and choice of suitable statistical methods to
increase simulation efficiency, and the mapping of processes to processors. Results analysis and presentation
may also be aided in this manner.

A C K N O W L E D G E M E N T S

The author would like to thank British Telecom Research Laboratories for both their technical and financial
support of this work.

R E F E R E N C E S

Almasi G. S. and Gottlieb A. J . (1989). Highly Parallel Computing, Chap. 8. Benjamin/Cummings.
Chamberlain R. D. and Franklin M . A. (1990). Hierarchical Discrete Event Simulation on Hypercube

Architectures. IEEE Mien, August, 10-20.
Chandak A . and Browne J. C. (1983). Vectorization of Discrete Event Simulation. Proc. of the IEEE

Intl. Con/, on Parallel Processing, 359-361.
Clarke R. T. , Nichols S. J., and Mars P. (1989). Transputer-based Simulation Tool for Performance

Evaluation of Wide Area Telecommunication Networks. Microprocessors and Microsystems,
Vol. IS, No. 3, 173-178.

Duncan D. (1990). A Survey of Parallel Computer Architectures. IEEE Computer, February, 5-16.
Earnshaw R. W . and Mars P.(1990). Simulation of A T M Networks on Transputer Arrays. Proc. of the

7th IEE UK Teletraffic Symposium, 1/1-1/5.
Flynn M . J. (1966). Very High Speed Computing Systems. Proc. of the IEEE, Vol. 54, No. IS,

1901-1909.
Frost V. S.. Larue Jr. W. W., and Shanmugan K. S. (1988). Efficient Techniques for the Simulation

of Computer Communications Networks. IEEE Trans, on Sel. areas in Comms.. Vol. 6, No. 1, 146-157.
Fujimoto R. M . (1989). Parallel Discrete Event Simulation. Proc. of the IEEE Winter Simulation

Conf. 19-28.
Jefferson D. R. (1985). Vir tual Time. ACM TOPLAS, Vol. 7, No. 3, 404-425.
Rajagopal R. and Comfort J. C. (1989). Contrasting Distributed Simulation with Parallel Replication:

A Case Study of a Queueing Simulation with a Network of Transputers. Proc. of the IEEE Winter
Simulation Conf., 746-755.

Reed D. A. (1985). Parallel Discrete Event Simulation: A Case Study. Proc. of the 18th IEEE Annual
Simulation Symposium, 95-107.

Righter R. and Walrand J. C. (1989). Distributed Simulation of Discrete Event Systems. Proc. of
the IEEE, Vol. 77, No. 1. 99-113.

Sheppard S. V. and Davis C. K. (1988). Parallel Emulation Environments for Multiprocessor Archi­
tectures. Proc. of the SCS Multtconference on Distributed Simulation, 109-114.

Parallel Simulation for Performance Modelling of
Telecommunication Networks

A. Hind"

1 Introduction
The performance evaluat ion o f te lecommunicat ion networks r ap id ly becomes ana ly t ica l ly int ractable as
the complexi ty o f the network increases. In a d d i t i o n , behaviour under t ransient condi t ions , such as t ra f f ic
f luc tua t ions or component failures, is d i f f i c u l t t o express mathemat ica l ly . Under such condit ions the use
of s imula t ion techniques t o determine relevant performance parameters becomes necessary. Convent ional
sequential s imula t ions runn ing on sequential (i .e . Von Neumann) computer architectures suffer f r o m
l im i t a t i ons imposed by the excessive processing t i m e required to achieve the required dep th o f i n f o r m a t i o n
and the in t r ins ic s ta t i s t ica l nature o f the results. These problems increase as func t ions o f the t ra f f ic
intensi ty and the size and complexi ty o f the ne twork . T h i s leads t o detai led s imula t ions of large networks
o f ten being economical ly and even physically impossible to implement .

Drama t i c advances are expected over the next decade in the extensive use o f paral le l multiprocessor
architectures to speed-up s imula t ion . However the use o f paral lel s imu la t ion has i ts own at tendant
issues. These include the hardware archi tecture, the decomposit ion approach used t o produce the paral lel
software processes, mapp ing these processes on to the processors and the synchroniza t ion o f the resul t ing
parallel s imu la t ion . T h i s is not an exhaustive list o f the issues, b u t w i l l suffice for the purposes o f this
review paper.

2 Hardware Architecture
The last decade has seen the advent o f a huge variety o f new computer architectures fo r paral le l processing.
T h i s variety can be bewilder ing to the non-specialist i n computer architecture who needs to know which
archi tecture is the most suitable for his appl ica t ion . I n order to make an i n fo rmed choice we need to
be able to classify the di f ferent types of archi tecture which are possible along w i t h their s u i t a b i l i t y for
various appl icat ions . A useful t axonomy in t roduced recently is t h a t o f Duncan [1]. T h i s is an i n f o r m a l
high-level classif ication scheme, based on F lynn ' s Taxonomy, which distinguishes between the pr incip le
paral lel computer architectures which are cur ren t ly being explored.

Paral lel s imu la t ion o f te lecommunicat ion systems tends to result i n a re la t ively coarse grain model .
T h e communica t ion volume between software processes is h igh and the amount o f memory required is also
h igh . These factors push us towards the use o f multiprocessor architectures using shared or d i s t r ibu ted
memory. T h e sof tware processes executing on each processor are then synchronized by passing messages
either v ia an interconnect ion network or v i a shared memory.

A d i s t r i bu t ed memory architecture needs the processing nodes (processor plus local m e m o r y) to be
connected using some interconnect ion ne twork . T h i s ne twork may be s ta t ic , dynamic or p rogrammable .
Various s ta t ic in terconnect ion network topologies have been explored to suppor t various applicat ions,
eg. pipelines, meshes, trees, rings, cubes, hypercubes etc. D y n a m i c or p rogrammable topologies are
also possible by using some programmable swi t ch ing m a t r i x . These can be single-stage, mult i-s tage or
a crossbar. A disadvantage is tha t the communica t ion overhead associated w i t h th is architecture can
s ign i f ican t ly reduce the performance, pa r t i cu la r ly where da ta has to be queued and fo rwarded by many
in termedia te nodes.

Shared m e m o r y architectures allow communica t ion between processors v i a a common shared memory
which each processor can access. Shared memory architectures thus replace message sending problems
w i t h da ta access synchronizat ion and cache coherency problems. As in the case o f d i s t r i bu t ed memory
architectures, there are several al ternatives for the interconnect ion o f the m u l t i p l e processors to the
shared memory . Some m a j o r examples are t ime-shared bus interconnections, crossbar interconnections
and various forms of mult i-s tage interconnect ion ne twork .

° British Telecom Research Fellow, Telecommunication Networks Research Group, School of Engineering and Applied
Science, University of Durham, South Road, Durham, U.K. DHl 3LE.

9 / 1

Compar ing the t w o architectures, the d i s t r ibu ted memory architecture gives greater flexibility. Gener­
ally i t is easier to develop, more easily extensible and, w i t h the advent o f more p o w e r f u l microprocessors,
gives a higher performance/cost ra t io .

For a given s imula t ion model , f ive ways o f decomposing i t for processing on a mult iprocessor architecture
have been ident i f ied [2]. A paral lel izing compiler approach, d i s t r ibu ted experiments, d i s t r ibu ted funct ions ,
d i s t r ibu ted events and d i s t r ibu ted model components. Combined approaches are also possible.

A paral lel izing compiler can be used to compile a sequential s imula t ion w r i t t e n in a conventional
sequential language so tha t i t w i l l run on our chosen multiprocessor hardware. T h e compiler thus has
the responsibil i ty to recognize sequences in the source code which can then be executed in parallel and
scheduled t o run on separate processors in paral le l . T h i s def in i t ion thus distinguishes a paral lel izing
compiler f r o m a compiler which takes a high-level paral le l language and compiles i t t o r u n on mul t i p l e
processors. T h e overwhelming advantage is t h a t the approach is largely t ransparent to the user. A new
paral lel language does not have to be learned, the m u l t i p l e processor archi tecture should not impac t the
p rogram s t ruc ture and exis t ing sequential software may be por ted . T h e disadvantage t h a t has been found
is t h a t the p rob lem has been coded in sequential f o r m , thus ignor ing any para l le l i sm i n the s t ructure
of the problem. T h i s results in relat ively smal l por t ions o f the available para l le l i sm in the p rob lem
being exploi ted and, hence, the speed-up in mov ing t o a mul t ip l e processor archi tecture is generally
d i sappoin t ing .

There are at least t w o approaches to convert ing sequential code to r u n on m u l t i p l e processor archi­
tectures. T h e provis ion o f a paral lel izing compiler which takes sequential code d i rec t ly and produces
paral lel code to r u n on the target mul t ip l e processor system, or, in te l l igent r u n - t i m e suppor t and paral lel
rou t ine libraries t o provide the user w i t h a p rog ramming environment wh ich allows the conversio: f
sequential code in to paral le l code. The la t ter approach has been taken by several commercia l products
such as Express and L i n d a . T h e former approach is exemplif ied by the work concerning paral le l izat ion
and o p t i m i z a t i o n o f code for synchronous vector and shared memory mult iprocessor architectures. Tak ing
for example the Cray X - M P , a synchronous vector architecture, sequential For t r an 77 code is compiled
and vectorized by the paral le l iz ing compiler . W o r k has been done by Chandak [3] which showed tha t
any network o f queues conta in ing feedback loops cannot be vectorized. Because most s imula t ion models
of any interest are bound to contain feedback this is a d isappoint ing result . T h i s result was born ou t
by Reed [4] who investigated the s imula t ion o f queueing networks. T h e results were compared w i t h the
s imulat ions performance on a Vax 11/780 using the same sequential code. T h e results showed a speed-up
of about 100 which is almost the same as the two computers ra ted performance on sequential code. I t
was suspected tha t the amount o f vector izat ion was small and, using an execution mon i to r , i t was found
to be between 1 and 5%.

D i s t r i b u t e d experiments may be conducted by r u n n i n g separate s imulat ions on separate processors
in paral le l . T h i s is pa r t i cu la r ly efficient for stochastic s imulat ions , as results can be averaged at the
end o f the r u n , and also fo r doing several "wha t - i f* s imulat ions s imultaneously w i t h s l ight ly di f ferent
parameters. T h i s approach seems extremely efficient as no co-ordinat ion is required between processors
except fo r results averaging and presentation. Hence, fo r N processors we may approach an ideal speed-up
o f N . T h e only other overhead is loading the model in to each processor which is o f t en negligible compared
w i t h the s imula t ion r u n t ime .

I n terms o f the hardware required, d i s t r ibu ted experiments may not be possible due to the memory
requirements. Th i s has led to the use o f networks o f uni-processors to realise the approach. Nevertheless,
i f these memory deficiencies do not apply to the par t icular s imula t ion appl ica t ion , the d i s t r ibu ted ex­
periments approach can be very efficient and can also use exis t ing sequential s imula t ion programs. Also
variance reduct ion techniques such as an t i the t ic sampl ing and common r andom number streams may be
used to improve s ta t is t ical efficiency [5]. T h e relative unpopu la r i ty o f the approach is perhaps due to
the most common need f r o m s imulat ions being fast and accurate results. As we are no t exp lo i t ing any
paral le l ism i n the p rob lem, speed-up is more in terms o f s ta t is t ical efficiency and s imula t ion th roughpu t .

D i s t r i b u t e d func t ions involves d i f ferent tasks o f a s imula t ion being placed on separate processors. For
instance, processors may be dedicated to r a n d o m number generation, event l i s t processing, statist ics col­
lect ion etc. Also other func t ions may be desired such as an imated graphics d u r i n g s imula t ion or intel l igent
supervision o f the s imula t ion process. Each o f these funct ions may be suppor ted by d i s t r i b u t i n g them to
i n d i v i d u a l processors. T h e processors may be ident ical , or may be ta i lored t o each ind iv idua l f u n c t i o n .
T h i s is very much like the approach taken in many personal computers; a general purpose processor,

3 Model Becosnposition

9 / 2

an a r i thmet ic co-processor for floating-point calculat ions, a graphics co-processor, other processors for
cont ro l l ing i n p u t / o u t p u t funct ions w i t h keyboards, pr inters or communicat ions l inks .

T h e advantages o f this decomposit ion me thod is its f reedom f r o m the poss ib i l i ty o f deadlock and its
po ten t ia l scaleabil i ty. T h e archi tecture may also be made transparent to the user as each func t ion ' s code
can be d iv ided up and placed w i t h each processor f a i r l y easily. I t could even be made an au tomat ic process
at compi l a t ion . T h i s wou ld obviously be much easier i f ident ical processors were used. I ts disadvantages
are the communica t ion overhead between func t i ona l processors, which may become the l i m i t i n g factor
in performance, and also the fa i lure to explo i t any paral le l ism in the system being model led. The work
on the d i s t r ibu ted func t ions approach seems to indicate tha t this is a f r u i t f u l approach i f the number o f
processes t h a t the s imula t ion is decomposed in to is smal l [6, 7]. T h e law o f d i m i n i s h i n g returns sets in
at an early stage above a hand fu l o f processors due to communica t ion overheads.

D i s t r i b u t e d events uses a global event l i s t , as in sequential s imula t ion , t o schedule available processors
to process the next event on the l i s t . T h e d i f f i c u l t y is ma in ta in ing consistency in the s imula t ion as the
next event available on the list may be pre-empted by other events cur ren t ly be ing processed by other
processors. T h e need for global s imula t ion cont ro l points very much towards the use o f a shared memory
mult iprocessor archi tecture so tha t al l processors can have access to the global event l i s t . The results for
this approach seem t o indicate t h a t i t is reasonable i f there are only a smal l number of processes required
and a large amount o f global i n f o r m a t i o n used by the components o f the system [8].

T h e f i n a l , and most popular , me thod o f decomposing a s imula t ion is t o decompose the s imula t ion
model in to a number o f components and assign the s imula t ion o f each component to a process. One, or
many, processes can then be assigned to execute on each processor. M o d e l decomposi t ion usually fol lows
the logical s t ruc ture o f the real system being s imula ted . Therefore his approach can take advantage o f
any para l le l i sm inherent in the system to be model led, so i t seems t o promise s ignif icant speed-up on
a m u l t i p l e processor system. However, th is on ly holds i f the s imula t ion does not require a s ignif icant
amount o f global i n f o r m a t i o n and cont ro l . T h e m a j o r overhead w i l l be communica t ion between processes
execut ing on di f ferent processors. T h i s can be handled by message passing on a d i s t r ibu ted memory
archi tecture or global shared variables or message passing on a shared memory archi tecture. T h e other
m a j o r p rob l em is the synchronizat ion o f events d u r i n g the s imula t ion . General ly speaking, the more
loosely coupled the processes can be (i .e. asynchronous requi r ing l i t t l e communica t i on) , the more l ikely
the s imula t ion is to be processor b o u n d . O n the other hand , the more t i g h t l y coupled the processes are,
the more l ike ly the s imula t ion is to be communica t ion bound .

T h e two m a j o r problems w i t h d i s t r ibu ted mode l components is the development o f the model processes
themselves and the synchronizat ion o f the processes d u r i n g s imula t ion . M o d e l b u i l d i n g is essentially a
software p rob lem, synchronizat ion is a p rob l em o f bo th s imula t ion and sof tware . As we shall see the
m e t h o d employed to synchronize the d i s t r ibu ted model impacts the way the mode l is developed and
the per formance o f the s imula t ion . T h e performance is affected as i t is the synchronizat ion overhead
which prevents ideal speed-up. D i s t r i b u t e d s imula t ion mode l components offers the greatest po ten t ia l
speed-up in terms o f a single s imula t ion . A l so , the decomposi t ion o f the s imula t ion model can fol low
the s t ruc tu re o f the p rob lem mak ing i t easier t o unders tand and develop the models. I n the case of the
s imula t ion o f communica t ion networks we can also produce something ak in t o a sof tware emula t ion . T h e
synchroniza t ion p rob lem mars the po ten t i a l o f the approach, bu t guide-lines are beginning to appear as
to which w i l l be best for various types o f app l i ca t ion .

T h e ideal decomposit ion approach for a par t i cu la r appl ica t ion may wel l be a combined approach
in t eg ra t ing t w o or more o f the above. Several scenarios are possible. For instance, the use o f a paral le l iz ing
compiler could actual ly lead to a d i s t r ibu ted event approach depending on how the compiler d iv ided up
and scheduled the processes. However, i t is d i f f i c u l t t o imagine how these t w o approaches could in teract
w i t h the o ther approaches. B u t let us now consider wha t approaches m i g h t work effect ively together.

We could begin by decomposing our s imula t ion model in to our loosely coupled components and
mode l l i ng each w i t h a process. T h e n , instead o f p lacing each component i n a single processor, we could
decompose each process in to i ts s imula t ion func t ions and place each f u n c t i o n in a processor. Each
component process w i l l thus be executed in a cluster o f processors. T h i s seems a useful approach as the
research on d i s t r i bu t ed s imula t ion func t ions seems t o be most efficient us ing a smal l number o f processors.
Also we are exp lo i t i ng the paral lel ism o f the system at a fine gra in size. T h e disadvantages w i l l be w i t h
code generat ion, loading and lack o f f l e x i b i l i t y and scaleabili ty. T h e d i s t r i bu t ed s imula t ion func t ions
approach could also be exploi ted alongside d i s t r i bu t ed model components by using ex t r a processors to
handle g lobal results col lect ion, s ta t i s t ica l calculat ions and an ima t ion . T h i s combined approach is used in
one o f the te lecommunica t ion network s imula tors at D u r h a m [9]. T h e d i s t r i bu t ed experiments approach
may be combined w i t h the d i s t r ibu ted func t ions or d i s t r ibu ted model component approaches, or bo th .

9 / 3

This simulator could then run several different simulations in parallel as well as exploiting the parallelism
in each simulation.

4 Process Mapping
The mapping of software processes onto hardware processors can be an easy or difficult problem depending
on the relative numbers of each. If we have the same number, or more, processors than processes then
the mapping can be done fairly logically, particularly if the hardware topology is flexible. If however we
have more processes to allocate than processors then the ideal mapping is rarely obvious. The two factors
involved are the balance between processing loads and the amount of communication between processors.
Any scheme for mapping processes must take these two factors into account.

The number of processes to be placed and the structure of the simulation model are also significant.
If the number of processes is small or the simulation model has a structure which points to an obvious
placement, then the mapping is best done manually. If these criterion are not satisfied then an automatic
mapping strategy may be employed.

There are three static mapping strategies which are commonly used at present; random partitioning,
heuristic partitioning and simulated annealing. These are essentially a pre-processor approach to mapping
processes onto processors. The two performance measures considered by the strategies are processor load
and communications volume. They each work by starting at some random placement of processes and
running the simulation for a short time to ascertain the two performance measures. A new placement is
determined using the particular strategy and the run repeated. This is continued until a "best" placement
is arrived at. Dynamic strategies are also possible, but the overheads incurred in transferring processes
from one processor to another are considered to be too excessive in the vast majority of cases.

Random mapping concentrates entirely on load balancing and ignores communication considerations.
It can be effective if allowed sufficient time to explore the whole design space (i.e. a very long time).
Heuristic mapping attempts to minimise communication volume while maintaining a high degree of
processor load balancing. The heuristic strategy, which searches for the optimum mapping, can find
itself locked into a local minima depending on the initial placement. Simulated annealing weights load
balancing and communication volume equally, attempting to find the global optimum by perturbation
analysis. Thus avoiding the problem of the heuristic strategy. However, all of these strategies take
significant amounts of processing time to achieve good results and may not give significantly better results
than a manual placement done by a competent engineer [10]. It is believed that the use of automated and
manual process mapping needs to be integrated in much the same way as for printed circuit layout and
routeing in semi-custom integrated circuits. The automated mapping can be used to reduce the tedious
work but intervention by the engineer is required to sort out problems and apply common sense.

5 Simulation Synchronization
Before we discuss various synchronization schemes, it is important to review why it is such a difficult
problem. In a sequential simulation, the synchronization of the simulation is maintained by manipulation
of a data structure called the event list. This contains the pending events in the system in time stamped
order. The simulation progresses by removing the event with the earliest time stamp from the list and
processing it. If another event is generated, it is inserted into the event list at its time stamp position.
Thus the simulator processes the events in synchronized chronological order. If we now distribute the
simulation over several processes, it becomes possible for a processor to process an event which is not the
earliest. Also, in processing this event we may affect conditions for earlier, as yet un-simulated events.
Thus the future is affecting the past, which is clearly unacceptable, and is known as a causality error.

Thus, synchronization schemes fall into two categories; conservative approaches and optimistic ap­
proaches. Conservative approaches avoid causality errors ever occurring by relying on some strategy of
determining events which are "safe" to process. That is, they must determine when all events that could
affect the event in question have been processed. An added problem which categorises various conser­
vative approaches is that of deadlock. If processes do not have a "safe" event which they can process
then they are blocked and cannot progress. If a cycle of blocked processes occurs then we have dead­
lock and the simulation will grind to a halt unless the deadlock can be broken. Generally conservative
synchronization approaches can achieve good performance with sparsely connected systems which have
less opportunity for deadlock and/or an application which contains good lookahead properties (eg. [11]).
Lookahead refers to the ability to predict what will, or will not, happen in the simulated time future
based on application specific knowledge. The worst case for a conservative synchronization approach is to

9 / 4

be forced into almost sequential operation coupled with the synchronization mechanism overheads. This
situation is not uncommon in some applications which have used these approaches. In their favour are
simplicity, relative transparency to the user and their chronological execution.

Optimistic approaches allow causality errors rather than avoid them but when they are detected,
a roll-back mechanism is employed to recover by re-simulating from the time of the error. Therefore
optimistic approaches don't need to determine whether or not it is safe to proceed; they only need to
detect the error and recover. The advantage of this is that the simulator can exploit the parallelism fully
in applications which may produce causality errors but in reality rarely do. Obviously, the greater the
amount of causality errors that a simulation produces, the greater the synchronization overhead.

The original work on optimistic synchronization was done by Jefferson [12] on the mechanism called
time warp, based on a concept of virtual time. In this case, virtual time is synonymous with simulated
time. In the time warp mechanism, a causality error is detected whenever an event message is received by
a process that contains a time stamp earlier than the processes' clock (i.e. the time of the last processed
message). This is known as a straggler. Recovery is accomplished by undoing the effects of all events that
have been processed prematurely by the process receiving the straggler. This is known as roll-back. Two
things are affected by roll-back. The process state may be modified; this is accomplished by returning to
the correct old state which is taken from a store of previous states. Also, previously sent messages must
be unsent; this is achieved by sending anti-messages that cancel the effect of the original. If the original
message has already been processed then that process in turn must also roll-back. This process continues
until the effects of the causality error are cancelled. For even a moderate size of simulation this seems to
imply a large amount of memory to store states for each process. However, as the earliest time stamped
event is always safe to process, this is designated global virtual time and is used to discard all states
before this time. This process of reclaiming memory, which is irrevocable, is known as fossil collection.

A variation on the above approach, which is said to use aggressive cancellation, is an approach which
seeks to "repair the damage". This is known as lazy cancellation. In this case, instead of immediately
sending out anti-messages, the process waits to see which messages that the re-execution of the process
produces are different to those produced before. If the same message is produced, there is no need to send
out an anti-message. It has been found that, depending on the application, lazy cancellation may improve
or degrade the simulation performance. Improvement is usually due to processes with incorrect input
still producing correct output. Degradation can be due to the additional message checking overheads and
the fact that incorrect computations have longer to spread out.

The performance results for time warp approaches often look impressive. However it does have some
problems. Time warp approaches do not lend themselves to fine grain parallelism due to the memory
overheads required. Each process needs substantial memory capacity as well as the mechanism for fossil
collection. Also, it is unproven that a continuous cycle of roll-backs may be possible for a particular
simulation.

There are, at present, no established rules for determining which of these two approaches will allow
the greatest amount of speed-up for a given application. Much research effort is currently aimed at this
area benchmarking various simulation applications using different synchronization approaches. Reviews
of various synchronization approaches are to be found in [2, 13].

6 The Future
The future of parallel simulation will most probably come in three areas; modular simulators, cheap
microprocessors for parallel processing and artificial intelligence (AI).

The development of simulation models and the writing and debugging of the simulator code are the
two most costly simulation activities, in terms of both time and money. It is imperative in the future
that factors like re-usability, modularity, model definition and validation be seriously addressed. Future
simulators, whether they use multiprocessors or not, will need to be made of modular re-usable software
components. Much attention is currently being given to the definition of object-oriented sequential
languages. This work is also likely to be adapted for parallel processing applications including simulation.

We have already seen that the most flexible approach to distributed simulation is that of the dis­
tributed memory multiprocessor. Using cheap modern microprocessors and a standardized communi­
cation protocol, such as that used by the Inmos Transputer, a flexible, easily extensible and powerful
multiprocessor can be constructed. Future hardware developments lie with new parallel processing ele­
ments such as the Inmos HI Transputer and the Intel iWarp and N i l projects.

Useful applications of AI techniques in simulation seem to appear in three categories; model devel­
opment, simulation control and results analysis. Model development using a standard format could be

9 / 5

aided by a software tool akin to an expert system. This would provide an interface to the model format
for someone requiring to do a simulation who did not have the time to learn it. Also the tool could trans­
parently make use of existing models from a library. Simulation control could also aided by an embedded
expert system. This could control a number of simulation functions, for instance; the management of
simulation model and analytical model libraries, analysis of simulation output and choice of suitable
statistical methods to increase simulation efficiency, and the mapping of processes to processors. Results
analysis and presentation may also be aided in this manner. The expert system approach is ideally suited
where the knowledge domain is well defined and stable. This makes the approach more viable in the
simulation of existing systems rather than the exploration of the performance of new technologies.

Acknowledgements
The author would like to thank British Telecom Research Laboratories for both their technical and
financial support of this work.

References
[1] R. Duncan, "A Survey of Parallel Computer Architectures," IEEE Computer, pp. 5-16, February

1990.

[2] R. Righter and J . C . Walrand, "Distributed Simulation of Discrete Event Systems," Proceedings of
the IEEE, vol. 77, pp. 99-113, January 1989.

[3] A. Chandak and J . C . Browne, "Vectorization of Discrete Event Simulation," in Proceedings of the
IEEE International Conference on Parallel Processing, pp. 359-361, 1983.

[4] D. A. Reed, "Parallel Discrete Event Simulation: A Case Study," in Proceedings of the 18ih IEEE
Annual Simulation Symposium, pp. 95-107, 1985.

[5] V. S. Frost, W. W. Larue Jr. , and K. S. Shanmugan, "Efficient Techniques for the Simulation of
Computer Communications Networks," IEEE Transactions on Selected Areas in Communications,
vol. 6, pp. 146-157, January 1988.

[6] R. Rajagopal and J . C. Comfort, "Contrasting Distributed Simulation with Parallel Replication: A
Case Study of a Queueing Simulation with a Network of Transputers," in Proceedings of the IEEE
Winter Simulation Conference, pp. 746-755, 1989.

[7] J . C . Comfort and R. Rajagopal, "Environment Partitioned Distributed Simulation with Transput­
ers," in Proceedings of the SCS Multiconference on Distributed Simulation, pp. 8-13, 1985.

[8] S. V. Sheppard and C. K. Davis, "Parallel Emulation Environments for Multiprocessor Architec­
tures," in Proceedings of the SCS Multiconference on Distributed Simulation, pp. 109-114, 1988.

[9] R. T . Clarke, S. J . Nichols, and P. Mars, Transputer-based Simulation Tool for Performance Evalu­
ation of Wide Area Telecommunication Networks," Microprocessors and Microsystems, vol. 13, no. 3,
pp. 173-178, 1989.

[10] R. D. Chamberlain and M. A. Franklin, "Hierarchical Discrete Event Simulation on Hypercube
Architectures," IEEE Micro, pp. 10-20, August 1990.

[11] R. W. Earnshaw and P. Mars, "Simulation of ATM Networks on Transputer Arrays," in The 7th
IEE UK Teletraffic Symposium, pp. 1/1-1/5, April 1990.

[12] D. R. Jefferson, "Virtual Time," ACM Transactions on Programming Languages and Systems, vol. 7,
pp. 404-425, July 1985.

[13] R. M. Fujimoto, "Parallel Discrete Event Simulation," in Proceedings of the IEEE Winter Simulation
Conference, pp. 19-28, 1989.

9 / 6

Overview: Parallel Simulation techniques for
Telecommunication Network Modell ing

A. Hind D

1 In t roduct ion
The performance evaluation of telecommunication networks rapidly becomes analytically intractable as
the complexity of the network increases. Modern networks are often large, geographically spread and
subject to constant change and growth. They are increasingly likely to consist of interconnected net­
work types running diverse protocols on diverse platforms over diverse connection types. In addition to
this, the behaviour of interest to the performance engineer is often that which occurs under transient
conditions, such as traffic fluctuations or component failures which are known to be difficult to express
mathematically.

Under such conditions the use of simulation techniques to determine relevant performance parameters
becomes necessary. Conventional sequential simulations running on sequential (i.e. Von Neumann) com­
puter architectures suffer from limitations imposed by the excessive processing time required to achieve
the required depth of information and the intrinsic statistical nature of the results. These problems
increase as functions of the traffic intensity and the size and complexity of the network. This leads
to detailed simulations, of traffic intensive and very large networks, often being economically and even
physically impossible to implement.

Parallel simulation makes use of multiprocessor hardware architectures and various techniques to
achieve execution speed-up. This paper reviews the current state of the art in parallel simulation indi­
cating existing techniques and their known application to telecommunication network simulation. This
is followed by a discussion of the problems still to be resolved.

2 Overview of Parallel Simulation
Parallel Simulation, sometimes called distributed simulation, refers to the execution of a single discrete
event simulation program on a parallel multiprocessor computer. It has received much attention in
recent years due to the number of disciplines which use discrete event simulation to study large scale
systems; these include economics, computer science, engineering, transport and military studies as well
as telecommunications. However, it has been found that, even though many such applications contain
substantial amounts of parallelism, it is surprisingly difficult to realise significant speed-up when moving
to a multiprocessor.

There are many additional issues to resolve in the development of a parallel simulator; these include
the hardware architecture of the multiprocessor, the decomposition approach used to produce the parallel
tasks (processes), mapping these tasks onto the processors and the synchronization of the resulting parallel
simulation. This paper follows on from the review paper given on this subject at this symposium last
year [1] Excellent general reviews of parallel simulation can be found in [2, 3].

3 Hardware Architecture
Parallel simulation of telecommunication systems tends to result in a relatively coarse grain model.
That is, the software tasks written to model the system tend to be relatively large and complex. The
communication volume between software tasks is high and the amount of memory required is also high.
Discrete event simulation is also, by it's very nature, irregular and data-dependent. Thus, along with
other disciplines, parallel simulation of telecommunication networks has proved to be an application area
where parallelization or vectorization techniques using supercomputer hardware has had little success.
These factors push us towards the use of multiprocessor architectures using shared or distributed memory.

* Alan Hind is the British Telecom Research Fellow, Telecommunication Networks Research Group, School of Engineering
and Computer Science, University of Durham, South Road, Durham, U.K. DHl 3LE.

5/1

The software tasks executing on eacli processor are then synchronized by passing messages either via an
interconnection network or via shared memory.

A distributed memory architecture needs the processing nodes (processor plus local cache memory) to
be connected using some interconnection network. This network may be static, dynamic or programmable.
Various static topologies have been explored to support various applications, e.g. pipelines, meshes, trees,
rings, cubes, hypercubes etc. Dynamic or programmable topologies are also possible by using some form
of programmable switching matrix. These can be single-, multi-stage or a crossbar. A disadvantage is that
the communication overhead associated with this architecture can significantly reduce the performance,
particularly where data has to be queued and forwarded by many intermediate nodes.

Shared memory architectures allow communication between processors via a common shared memory
which each processor can access. Shared memory architectures thus replace message processing problems
with data access synchronization and cache coherency problems. As in the case of distributed memory
architectures, there are several alternatives for the interconnection of the processors to the shared memory.
Some major examples are the time-shared bus, crossbar and various forms of multi-stage network.

Both types of architecture are available "off-the-shelf" [4] for those who don't wish to develop their own
machine. Distributed memory multiprocessors are available either as complete systems with languages,
tools and operating system, or as sets of parallel processor "building blocks". The latter are usually
plug-in cards to workstations. Shared memory multiprocessors are normally only available as complete
systems with their own operating system etc. This is now often a version of the Unix operating system,
with it's associated set of software tools, allowing the machine to also be used as a general purpose
computer. Comparing the two architectures, the distributed memory architecture gives greater overall
flexibility. Generally it is easier to develop, more easily extensible and, with the advent of more powerful
microprocessors, gives a higher performance/cost ratio.

The processor of choice for building distributed memory multiprocessor machines has for the last few
years been the Inmos transputer. It still has much to recommend it in terms of hardware support for
multitasking, concurrency and communications. However, it has now been surpassed in terms of raw
processing power by a new crop of microprocessors such as Intel's i860 and i486. Inmos are seeking to
redress this with the development of the T9000 transputer, which will also hopefully solve some of the
outstanding communication difficulties with transputer networks with the provision of hardware support
for message passing. In the mean time, it is interesting to note the number of processing cards now
available which couple the communications and parallel processing capability of the transputer with the
computing power of another, more modern, microprocessor.

Competitors for the transputer's parallel processing niche in the market have been slow in coming. But
now there are the Texas Instruments TMS320C40 and the Intel iWarp. The Texas processor is primarily
intended for parallel digital signal processing applications but could be used for novel communication
simulation/emulation applications. The Intel iWarp is more of a direct competitor though it is currently
being aimed at a finer grain applications than the transputer and a commercially available system based
on it has yet to appear. Both are still unproven as far as parallel simulation is concerned.

4 Mode l Decomposition
For a given simulation model, five ways of decomposing it for processing on a multiprocessor architecture
have been identified [2]. A parallelizing compiler approach, distributed experiments, distributed functions,
distributed events and distributed model components. Some combinations of these approaches are also
possible.

4.1 The Parallelizing Compiler Approach
A parallelizing compiler is a software tool that can be used to compile an application written in a
conventional sequential language so that it will execute on a particular multiprocessor. The compiler
thus has the responsibility to recognise sequences in the source code which can be executed in parallel
and scheduled to run concurrently on separate processors. This definition thus distinguishes it from a
compiler which takes a high-level parallel language and compiles it to run on multiple processors. The
overwhelming advantage of the approach is it's transparency. A new parallel language does not have to
be learned, the multiprocessor architecture should not impact the program structure and existing '"dusty-
decks" may be ported. The disadvantage is that is that the application has been coded in sequential
form, often using inherently sequential algorithms, thus ignoring any potential parallelism. This results in
relatively small portions of the available parallelism being exploited and (hence) the speed-up in moving
to the multiprocessor is generally disappointing. Results for this approach are discussed in some detail

5/2

in [5] elsewhere in these proceedings. This paper also explores the parallelization of a sequential circuit-
switched network simulator. The results show that given a simple enough model, in this case one which
involves a great deal of matrix manipulation, significant speed-up can be achieved if there is sufficient
parallelism in the model to mask synchronization overheads.

An alternative approach to converting sequential code to run on a multiprocessor is to provide the
user with a programming environment, intelligent run-time analysis tools and parallel function libraries.
This approach is thus a few steps further on than re-writing the application from scratch in a parallel
language. This approach is typified by commercial products such as Express and Linda.

4 .2 The Distributed Experiments Approach
Distributed experiments, often known as parallel replications, may be conducted by running the simula­
tions on separate processors in parallel. This is particularly efficient for stochastic simulations, as results
can be averaged at the end of the run, and also for doing several "what-if" simulations simultaneously
with slightly different parameters. This approach seems extremely efficient as no co-ordination is required
between processors except for results averaging and presentation. Hence, for n processors we may ap­
proach an ideal speed-up of n. The only other overhead is loading the model into each processor which
is often negligible compared with the simulation run time.

In terms of the hardware required, distributed experiments may not be possible due to the memory
requirements. This has led to the use of networks of uniprocessors to realise the approach. Nevertheless,
if these memory deficiencies do not apply to the particular simulation application, the distributed ex­
periments approach can be very efficient and can also use existing sequential simulation programs. Also
variance reduction techniques such as antithetic sampling and common random number streams may be
used to improve statistical efficiency [6]. The relative unpopularity of the approach is perhaps due to
the most common need from simulations being fast and accurate results. As we are not exploiting any
parallelism in the problem, speed-up is more in terms of statistical efficiency and simulation throughput.

4.3 The Distributed Functions Approach
Distributed functions involves different tasks of a simulation being placed on separate processors. For
instance, processors may be dedicated to random number generation, event list processing, statistics
collection etc. Each of these functions may be supported by distributing them to individual processors.
The processors may be identical, or may be tailored to each individual function. The work on this
approach seems to indicate that it can be fruitful if the number of tasks involved is small. The law
of diminishing returns sets in at an early stage above a handful of processors due to communication
overheads.

4.4 The Distributed Events Approach
Distributed events uses a global event list, as in sequential simulation, to schedule available processors
to process the next event on the list. The difficulty is maintaining consistency in the simulation as the
next event available on the list may be pre-empted by other events currently being processed by other
processors. The need for global simulation control points very much towards the use of a shared memory
multiprocessor architecture so that all processors can have access to the global event list. The results for
this approach seem to indicate that it is reasonable if there are only a small number of tasks required
and a large amount of global information used by the components of the system.

4.5 The Distributed Model Components Approach
The final, and most popular, method of decomposing a simulation is to decompose the simulation model
into a number of components and assign the simulation of each component to a task. One, or many,
tasks can then be assigned to execute on each processor. Model decomposition usually follows the
logical structure of the real system being simulated. Therefore this approach can take advantage of any
parallelism inherent in the system to be modelled, so it seems to promise significant speed-up. However,
this only holds if the simulation does not require a significant amount of global information and control.
The major overhead will be communication between tasks executing on different processors. The other
major problem is the synchronization of events during the simulation. Generally speaking, the more
loosely coupled the tasks can be (i.e. asynchronous requiring little communication), the more likely the
simulation is to be processor bound. On the other hand, the more tightly coupled the tasks are, the more
likely the simulation is to be communication bound.

5/3

The two major problems with distributed model components is the development of the model tasks
themselves and the synchronization of the tasks during simulation. Model building is essentially a soft­
ware problem, synchronization is a problem of both simulation and software. The method employed
to synchronize the distributed model impacts the way the model is developed and the performance of
the simulation. The performance is affected as it is the synchronization overhead which prevents ideal
speed-up. Distributed simulation model components still offers the greatest potential speed-up in terms
of a single simulation. Also, the decomposition of the simulation model can follow the structure of the
problem making it easier to understand and develop the models. In the case of the simulation of com­
munication networks we can also produce something akin to a software emulation. Synchronization is
discussed in section 6.

4.6 Combined Approaches
The ideal decomposition approach for a particular application may well be a combined approach integrat­
ing two or more of the above. Firstly, let us discount the parallelizing compiler and the distributed event
approaches as it is difficult to imagine how these two approaches could interact with any of the others.
But let us consider what approaches might work effectively together. We could begin by decomposing our
simulation model into our loosely coupled components and modelling each with a software task. Then,
instead of placing each component in a single processor, we could decompose each task into its simulation
functions and place each function in a processor. Each component task will thus be executed in a cluster
of processors. This seems a useful approach as the research on distributed simulation functions seems to
be most efficient using a small number of processors. Also we are exploiting the parallelism of the system
at a finer grain size. The disadvantages will be with code generation, loading and lack of flexibility and
scaleability. The distributed simulation functions approach could also be exploited alongside distributed
model components by using extra processors to handle global results collection, statistical calculations
or animation. The distributed experiments approach may be combined with the distributed functions
or distributed model component approaches, or both. This simulator could then run several different
simulations in parallel as well as exploiting the parallelism in each simulation.

5 Process Mapping
The mapping of software tasks onto hardware processors can be an easy or difficult problem depending
on the relative numbers of each. If we have the same number (or more) processors than tasks then the
mapping can be done fairly logically, particularly if the hardware topology is flexible. If however we
have more tasks to allocate than processors then the ideal mapping is rarely obvious. The three factors
involved are the balance between processing loads, the amount of communication between processors and
the scheduling of the tasks when running. Any scheme for mapping tasks must take these factors into
account. The structure of the simulation model is also significant. If the number of tasks is small or
the simulation model has a structure which points to an obvious placement, then the mapping is best
done manually. If these criterion are not satisfied then an automatic mapping strategy may be employed.
However, automatic strategies take significant amounts of processing time to achieve good results and
may not give significantly better results than a manual placement done by a competent engineer. It is
believed that the use of automated and manual process mapping needs to be integrated in much the
same way as for lacement and routeing for printed circuit layout and semi-custom integrated circuits.
Automated mapping can be used to reduce the tedious work but intervention by the engineer is required
to sort out problems and apply common sense.

6 Simulation Synchronization
Before we discuss various synchronization schemes, it is important to review why it is such a difficult
problem. In a sequential simulation, the synchronization of the simulation is maintained by manipulation
of a data structure called the event list. This contains the pending events in the system in time-stamp
order. The simulation progresses by removing the event with the earliest time-stamp from the list and
processing it. If another event is generated, it is inserted into the event list at its time-stamp position.
Thus the simulator processes the events in synchronized chronological order. If we now distribute the
simulation over several tasks executing on separate processors, it becomes possible for a processor to
process an event which is not the earliest. Also, in processing this event we may affect conditions for
earlier, as yet unsimulated events. Thus the future is affecting the past, which is clearly unacceptable, and

5/4

is known as a causality error. Thus, synchronization schemes fall into two categories, conservative and
optimistic approaches, which are distinguished by how they handle causality errors. Reviews of various
synchronization approaches are to be found in [2, 3].

6.1 Conservative Synchronization
Conservative approaches avoid causality errors ever occurring by relying on some strategy of determining
events which are safe to process. That is, they must determine when all events that could affect the event
in question have been processed. An added problem which categorises various conservative approaches
is that of deadlock. If tasks do not have a safe event which they can process then they are blocked and
cannot progress. If a cycle of blocked tasks occurs then we have deadlock and the simulation will grind to
a halt unless the deadlock can be broken. Generally conservative synchronization approaches can achieve
good performance with sparsely connected systems which have less opportunity for deadlock and/or an
application which contains good lookahead properties. Lookahead refers to the ability to predict what
will, or will not, happen in the simulated time future based on application specific knowledge. The worst
case for a conservative synchronization approach is to be forced into almost sequential operation coupled
with the synchronization mechanism overheads. This situation is not uncommon in some applications
which have used these approaches. In their favour are simplicity, relative transparency to the user and
their chronological execution.

6.2 Optimistic Synchronization
Optimistic approaches allow task to proceed asynchronously but incorporate a detection and roll-back
mechanism to catch causality errors and recover by re-simulating from the time of the error. Therefore
optimistic approaches don't need to determine whether or not it is safe to proceed. The advantage of
this is that the simulator can exploit the parallelism fully in applications which may produce causality
errors but in reality rarely do. Obviously, the greater the amount of causality errors that a simulation
produces, the greater the synchronization overhead due to roll-backs.

The original work on optimistic synchronization was done by Jefferson [7] on the mechanism called
time-warp, based on a concept of virtual time. In this case, virtual time is synonymous with simulated
time. In the time-warp mechanism, a causality error is detected whenever an event message is received
by a task that contains a time-stamp earlier than the tasks' local clock. This is known as a straggler.
Recovery is accomplished by undoing the effects of all events that have been processed prematurely by
the task receiving the straggler. This is known as roll-back. Two things are affected by roll-back. The
process state may be modified; this is accomplished by returning to the correct old state which is taken
from a store of previous states. Also, previously sent messages must be unsent; this is achieved by sending
anti-messages that cancel out the effect of the original. If the original message has already been processed
then that task in turn must also roll back. This process continues until the effects of the causality error are
cancelled. For even a moderate size of simulation this implies a large amount of memory to store states
for each task. However, as the earliest time-stamped event is always safe to process, this is designated
as the global virtual time and is used to discard all states before this time. This process of reclaiming
memory, which is irrevocable, is known as fossil collection.

A variation on the above approach, which is said to use aggressive cancellation, is an approach which
seeks to "repair the damage". This is known as lazy cancellation. In this case, instead of immediately
sending out anti-messages, the task waits to see which messages that the re-execution of the task produces
are different to those produced before. If the same message is produced, there is no need to send out
an anti-message. It has been found that, depending on the application, lazy cancellation may improve
or degrade the simulation performance. Improvement is usually due to tasks with incorrect input still
producing correct output. Degradation can be due to the additional message checking overheads and the
fact that incorrect computations have longer to spread out.

The performance results for optimistic approaches often look impressive. However it does have some
problems. Optimistic approaches do not lend themselves to fine grain parallelism due to the memory
overheads required. Each task needs substantial memory capacity as well as a mechanism for fossil
collection. This problem has been addressed analytically by Lin and Lazowska [8] and also experimentally
by Preiss et. al. (9]. The work of Lin and Lazowska showed that reducing the frequency of state saving
(i.e. increasing the so called checkpoint interval) can save memory and also reduce simulation run time.
This was borne out by the work of Preiss et. al. in their simulation of queueing networks. Further, they

5/5

showed that there can be a trade-off between memory and run-time, that there is an optimum checkpoint
interval for a given simulation and that this point is predictable from the analytical model of Lin and
Lazowska.

7 Exist ing Problems
The most successful parallel simulation speed-up results have been obtained using the distributed model
components approach which leaves us with the issue of synchronization. There are, at present, no
established rules for determining which of the basic synchronization approaches will lead to the greatest
amount of speed-up for a given application. The consensus of opinion seems to be that optimistic
synchronization is the more generally applicable of the two. Much research effort is currently aimed at
this area analysing parallel simulation behaviour and benchmarking various simulation applications.

The behaviour of optimistic synchronization mechanisms is still not fully understood particularly with
regard to the prediction of memory requirements and the occurrence of roll-back. The most worrying
aspect of all is that it is difficult (if not impossible) to prove that a particular simulation may be prone to
excessive cycles of roll-backs. However, it has seldom been reported by simulationists. Some analytical
work has already been done in this area [10, 8].

Little work has been done in the area of process mapping and scheduling for parallel simulation. This
is partly due to most simulators having a relatively small number of processors and tasks. However, it is
known that these factors can have a significant impact on the simulation performance [9, 8].

Acknowledgements
The author would like to thank British Telecom Research Laboratories for both their technical and
financial support of this work.

References
[1] A. Hind, "Parallel Simulation for Performance Modelling of Telecommunication Networks," in Pro­

ceedings of the Eighth IEE UK Teletraffic Symposium, pp. 9/1-9/6, April 1991.

[2] R. Righter and J . C. Walrand, "Distributed Simulation of Discrete Event Systems," Proceedings of
the IEEE, vol. 77, pp. 99-113, January 1989.

[3] R. M. Fujimoto, "Parallel Discrete Event Simulation," Communications of the ACM, vol. 33, pp. 30-
53, October 1990.

[4] A. Trew and G. Wilson, eds., Past, present and Parallel: a survey of available parallel computing
systems. Springer-Verlag, 1991.

[5] A. Hind, "Parallelization of a Circuit-Switched Telecommunication Network Simulator," in Proceed­
ings of the Ninth IEE UK Teletraffic Symposium, pp. 7/1-7/7, April 1992.

[6] V. S. Frost, W. W. Larue Jr. , and K. S. Shanmugan, "Efficient Techniques for the Simulation of
Computer Communications Networks," IEEE Transactions on Selected Areas in Communications,
vol. 6, pp. 146-157, January 1988.

[7] D. R. Jefferson, "Virtual Time," ACM Transactions on Programming Languages and Systems, vol. 7,
pp. 404-425, July 1985.

[8] Y . Lin and E . D. Lazowska, "A Study of Time Warp Rollback Mechanisms," ACM Transactions on
Modelling and Computer Simulation, vol. 1, pp. 51-72, January 1991.

[9] B. R. Preiss, I. D. Maclntyre, and VV. M. Loucks, "On the trade-off between Time and Space
in Optimistic Parallel Discrete-Event Simulation," in Proceedings of the SCS Multiconference on
Parallel and Distributed Simulation, pp. 1-9, January 1992.

[10] B. Lubachevsky, A. Weiss, and A. Shwartz, "An Analysis of Rollback-based Simulation," ACM
Transactions on Modelling and Computer Simulation, vol. 1, pp. 154-193, April 1991.

5/6

Parallelization of a Circuit-Switcfaed Telecommunication
Network Simulator

A. Hind"

1 In t roduc t ion
The need for parallel simulation is now well established (1]. However, there is still a marked reluctance for
performance engineers to learn and use parallel languages and, indeed, to purchase or construct specialised
multiprocessor hardware. This situation is gradually changing as many shared memory multiprocessor
machines (see figure 1) are now appearing which can function as general purpose Unix machines or as
parallel processing platforms, see table 1. Such machines are now becoming more competitively priced
and, hence, more common [2].

Company Mark Operating System
Alliant Computer Systems FX/2800 Concentrix (4.3 BSD)

or AT&T System V.4
BBN Advanced Computers Inc. ACI TC2000 nX or pSOS+m (4.3 BSD)
Convex Computer Corporation C2 Convex Unix (4.3 BSD)
Encore Computer Corporation Multimax and 91 UMAX 4.3 (4.3 BSD)

or UMAX V (AT&T System V)
FPS Computing System 500 F P X (4.3 or 4.4 BSD)
Sequent Computer Systems Balance and Symmetry DYNIX (4.2 BSD

and AT&T System V)

Table 1: Currently available shared memory multiprocessor machines.

This paper explores the use of a parallelizing compiler on such a shared memory multiprocessor
to speed-up the execution of a circuit-switched telecommunication network simulator. A parallelizing
compiler is denned as one which takes an application written in a conventional sequential programming
language, determines which parts can be executed in parallel, and produces the machine level code to run
on the multiple processors. Thus, speed-up may be achieved without necessarily learning a new parallel
language and re-writing the whole simulation, or knowing too much about the underlying hardware.

The approach taken was to discover the "path-of-least-resistance" to achieving significant speed-up.
That is, to find out how to get the most speed-up from a simulation with the minimum of effort. With
any multiprocessor architecture, the best way of fully exploiting the parallelism available is to re-write the
application in the machine's own parallel language using inherently parallel algorithms wherever possible.
In this case, we are trying to exploit the automated facilities to minimise development time as well as
execution time.

The nearest relevant research to this exercise is that of Chandak and Browne [3] and that of Reed [4].
The work done by Chandak and Browne, showed that discrete event simulation cannot always be par­
allelized using this approach and, more specifically, that the discrete event simulation of any network
of queues containing feedback loops cannot be parallelized. As most simulation models of any interest
are almost bound to contain feedback this was a disappointing result. On a positive note though, they
showed that careful optimization of event-list processing could produce a speed-up of two on a C D C
Cyber 205 even for non-parallelized code. This result was born out by Reed. He used a Cray X-MP and
Cray's Fortran 77 vectorizing compiler (see footnote over) to investigate the discrete event simulation
of queueing networks. The results were compared with the simulation's performance on a Vax 11/780
using the same sequential code. The results showed a speed-up of about a hundred which is almost the
same as the two computers rated performance on sequential code. It was suspected that the amount of
vectorization was small and using an execution monitor it was found to be between one and five percent
for different simulation models.

"Britioh Telecom Research Fellow, Telecommunication Networks Research Group, School of Engineering and Computer
Science, University of Durham, South Road, Durham, U.K. DHl 3LE.

7/1

Nevertheless, Reed did hold out some hope for this approach as he believed the current limitations were
with the Cray Fortran vectorizing' compiler. There were many loops in the simulation which potentially
could have been vectorized but weren't because the compiler couldn't vectorize any loops containing IF
statements, function calls or data dependencies; even by rearrangement of the code. From a cursory
study of the Cray and the Encore compilers it was felt that the Encore compiler offered better facilities
for overcoming these problems (see section 2.2).

2 The Tsstbed Architecture

2.1 Hardware Architecture
The shared memory multiprocessor used in these experiments was an Encore Multimax. This was first
designed in 1983 and is produced in several versions. The version available at the University of Newcastle's
Computing Laboratory is a 520, known locally as Newton, with fourteen main processors and 160 Mbytes
of shared memory. The basic architecture is illustrated in figure 1.

1 C a c h e]

Shared Memory

Figure 1: Shared memory multiprocessor architecture with a single bus and local caches.

The Multimax is controlled by a central processor which provides general monitoring and diagnostic
facilities. This is based on a National Semiconductor NS32016 running at 10 MHz. The main processors
are based on a processor/co-processor pair, the NS32532 and NS32381, running at 30 MHz. Encore
claim a peak performance of 4 MFlops for a main processor. Each main processor has a 256 kbyte cache
memory controlled from the memory management circuitry in the NSC32532.

The complete system is built around & bus designed by Encore called the nanobus. It is made up of
three individual buses; a 32 bit address bus, & 64 bit data bus and a 14 bit vector bus. In addition, each
bus has an extra byte wide channel for parity checking. The Multimax 520 is so called as it has space for
20 card slots on the nanobus. The clock speed of the bus is nominally 12.5 Mhz giving a total memory
bandwidth of 100 Mbytes per second. Inevitably, the bus is the bottleneck for this type of machine
partially alleviated by the local cache memories.

2.2 Software Architecture
For the Multimax, Encore developed two varieties of UNIX: UMAX 4.3 and UMAX V. The former is
based on Berkeley UNIX 4.3 BSD and the latter is an implementation of the System V UNIX from
AT&T. UMAX 4.3 is the system available on Newton. The languages available are C , UMAX Fortran
and Encore Parallel Fortran (E P F) .

The UMAX Fortran compiler can produce standard sequential code for running on a single processor,
or parallel code for running on multiple processors using E P F . The sequential Fortran meets the ANSI
Fortran 77 standard and also includes most of the V A X / V M S extensions. In order to support the
parallelism of the machine, a number of Fortran 90 features have also been included. Parallelizatton
of programs may either be done manually or automatically by the parallel optimizer. The optimizer is
implemented as a preprocessor to the compiler. If required, the programmer may take the output from
the preprocessor to perform further parallelization by hand. The compiler also has an option to generate
execution profiling code. Thus, when the program is executed a trace file is produced which can be
analysed using the utility gprof to produce a report. The report will contain exact call counts, call graph
arcs and statistically approximate timing data for a process as well as other data to aid in optimizing the
program.

' Vectorization and parallelization are not quite synonymous. ParaUelii&tion is a generic term for the automatic distri­
bution of software tasks over a number of processors; vectoriiation also implies that the tasks are rendered suitable for
execution on vector processors.

7/2

E P F analyses the source code to determine which program segments can be executed in parallel and
converts them into parallel Fortran constructs. E P F uses explicit synchronization statements and local
variables to improve concurrency automatically. Among the optimizations which E P F can perform are
the following;

o Loop spreading
o Loop splitting
o Statement re-ordering
o Variable initiation

o Synchronization

conversion of DO loops into D O A L L (parallel) loops
loops split into simplified loops more amenable to loop spreading
to enable loop splitting and spreading
introduction of new variables to eliminate dependencies
and enable loop spreading
introduction of explicit synchronization and ordering controls

The extent to which any program can be parallelized in this manner is limited by four primary forms
of data dependency.

Flow dependency
Anti-dependence
Output dependency
Control dependency

assignment modifies a variable used in a later statement
assignment is made after a variable is altered
assignment must complete before another is made
conditional statement dependent on prior statements

3 Model l ing Speed-up
The speed-up, S(n), of a multiprocessor with n processors is defined to be the ratio of the total execution
time on a uniprocessor to the total execution time on the multiprocessor. In this case, we qualify this by
stating that the uniprocessor version will not contain any optimizations to aid a parallelizing compiler.
A hierarchy of terms has also appeared to describe various levels of speed-up [5]; Superunitary speed-up
(S(n) > n), Unitary speed-up (S(n) — n) and Subunitary speed-up (S(n) < n).

Let us now define a simple model for the multiprocessor in order to gauge the success (or failure) of
the exercise. Such models are defined in more detail in [5]. We define the total number of operations
performed by the complete program as W. Various types of operation are involved, so we define W,- as
the number of times that operations of type J are performed. Each operation has a cost in processor
time, so we can define C,(n) as the time taken by all the processors to perform one operation of type i
on an n processor system. Let W„ represent the number of sequential operations and C«(n) the cost of
performing a single sequential operation on an n processor system. Likewise, let Wp and Cp{n) be the
amount and cost of work which exhibits n-fold parallelism. Therefore, speed-up is defined as;

W . C . (l) + WPCP(D m

n n

If we define the cost of one sequential operation to be one unit of processor time, then C„(l) = 1.
Also we can assume that when performing a single sequential operation on an n processor system, one
processor is working and the other n — 1 are idle; hence C„(n) = n C , (l) = n. Further, if we assume that
the cost of one operation is the same for sequential and parallel operation then equation (1) reduces to
Amdahl's law 1.

5 (n) = (2)

Amdahl's law for various values of Wp, where Wp and We are expressed as a fraction of the total
number of operations, is shown graphically in figure 2. Amdahl's law also leads to a theoretical upper-
bound for speed-up for this model of;

l i m 5 (n) = ™L+WlL = (3)

n —oo W„ 1 — Wp

However, this model does not take any account of any overheads. In the case of our shared memory
multiprocessor there will be synchronization (sync) overheads and memory reference overheads due to
cache misses. Therefore, we modify the work to be done as follows;

'In this particular case, given the software architecture of the Encore Multimax, both of these assumptions are valid.

7/3

W = W, + Wp + Wm + H ' , y n c (4)

where W 7

m is the number of parallelizable memory reference operations, \V,ync is the number of sync
operations and Wp is now the number of non-memory and non-sync parallel operations. The extra cost
functions are;

Cm(n) = 1 + an™iss(n) (5)

Cs,jnc(n) = 1 -}- ^switch (6)

where Q„ is the fraction of memory references which cannot be satisfied by the cache. The cost of
a miss is miss(n). 0„ is the fraction of times that a task must stop at a sync point. The cost of the
subsequent context switch is switch.

Both the cache miss ratio an and the sync ratio Pn will depend on n and the size of the program
and it's data. In this particular application it would seem sensible to expect or„ to decrease and 0„ to
increase as n increases. These trends were in fact confirmed by the performance monitor traces though
there was no discernible pattern to the increase/decrease.

Both of the above models would seem to indicate that superunitary speed-up is not possible in this
case and that Amdahl's law (2) and it's limit (3) can be treated as true upper-bounds. A more realistic
model based on (4), (5) and (6) would indicate lower values of speed-up than for Amdahl's law.

4 The Slmuxlatoir
The simulator used for these experiments was written by Nadereh Eshragh at Durham University Telecom­
munication Networks Research Group as part of her Ph.D. thesis looking into dynamic routeing in circuit-
switched telecommunication networks [6]. The simulator was written in Fortran 77 for execution on an
Amdahl 470 mainframe. The simulator was designed to handle a network of up to ten fully-connected
exchanges, or nodes, though it can easily be extended to any number of nodes and also to networks
which are not fully-connected. The routeing strategies available are fixed routeing, random routeing, au­
tomatic alternative routeing (AAR), least busy alternative (LBA) , dynamic alternative routeing (DAR)
and stochastic learning automata (SLA) using linear reward inaction (L R I) or linear reward penalty
(L R P) . These strategies, and their relative performance in are described in [7] and [6].

The information supplied to the simulator consists of the number of nodes, random number seeds,
capacity and traffic matrices, simulation run title, routeing information, an overload factor (scaling factor
for network traffic) and a trunk reservation parameter. Results are written into an output file along with
the input information.

The simulation consists of a number of time units (usually taken to be seconds), each time unit
consisting of a cycle of the following actions. Firstly, the inter-arrival time, and the origin-destination
pair of the next call arrival are generated. Next, the calls which have been completed during this inter-
arrival time are cleared down. Then, an attempt to route the new call is made according to the specified
routeing algorithm. Finally, the acceptance or rejection (blocking) of the call, along with the origin-
destination pair information, is recorded into the appropriate arrays. Results are written to the screen
and the output file at the end of each time unit.

Thu6, we are dealing with very simple model of a circuit-switched network. Many operational details
of the network are ignored in order to focus on the performance of the routeing algorithms in relation to
the overall blocking probability. As this model involves a great deal of matrix manipulation there seemed
a good possibility that some speed-up would be possible using a parallelizing compiler.

The test network models used were of five-, ten- and twenty-node fully-connected networks. The figures
for the five- and ten-node networks were chosen to reflect reasonably busy trunks in a realistic network.
The link capacities were obtained using fixed route dimensioning using Erlang's formula constrained by a
modularity factor of thirty circuits and random effects due to periodic upgrading of trunks. The twenty-
node network was less realistic as the link capacities and traffic volumes needed to be much smaller to
give lower overall network traffic and hence a reasonable execution time.

7/4

5 Results

5.1 Uniprocessor Simulation Results
For these simulations the fixed routeing strategy was used and the same random number seeds. Initial
runs were done with various routeing options but there was little to choose between them in execution
time and the fixed routeing strategy was generally the shortest. The simulation run length was 200
time units (seconds). The only change between implementations on different machines was the Fortran
R E A D and W R I T E statements which needed to be different depending on the Fortran implementation.
In each case the results were checked against those obtained from the original implementation to ensure
consistency. There were no problems observed in this respect for the uniprocessor or multiprocessor
simulations. Execution times were obtained using the Unix Time command and the operating system
(MTS) logging facilities on the Amdahl. The uniprocessor execution times are shown in Table 2.

A single processor on the Encore Multimax using the sequential option to compile the code yields
roughly the same performance as the Amdahl mainframe. Thus the Encore Multimax times were used
as the reference for the speed-up calculations. The more modern Sun SPARCstation is easily the fastest,
as much as four times faster than the Amdahl or Encore Multimax.

Machine five-node model ien-node model twenty-node model
Amdahl 470 607 | 782 3212
Encore Multimax 520 675 | 844 3308
Sun 4/460 SPARCstation 126 j 256 1173

Table 2: Execution times for the uniprocessor simulations in seconds.

5.2 Multiprocessor Simulation Results for the Five-node Model
The multiprocessor simulations were begun by using the parallelizing compiler E P F without any modi­
fications to the source code. The results, in the form of a speed-up graph is shown in figure 2. Overall,
the results are disappointing with no speed-up and with the trend being downwards as n increases.

These results were investigated by re-running the simulations with the profiler option. From careful
examination of the profile reports the most expensive subroutines and functions could be noted, including
the compiler generated functions which manage parallel execution. One of these, mtask-ibrk, which man­
ages the re-synchronization of tasks before and after parallel execution phases, becomes more expensive
as n increases. The overheads of this function effectively stifle any potential speed-up.

At this point, it was decided that work must be concentrated on reducing the cost of the most
expensive tasks of the original program thereby reducing the impact of the mtaskJbrk. Only two tasks
were involved, clearing down calls and calculating link loads, which were by far the most expensive.
This was achieved in both cases by hand coding. Data dependencies which couldn't be removed by the
compiler were removed using local independent variables and coding some of the function calls in-line.
This allowed the compiler to achieve greater parallelization in the tasks by loop spreading.

This new version of the simulator yielded slightly better results as shown in figure 2. However, there
is still no evidence of speed-up and the trend is still downwards as n increases.

The simulations were again profiled showing that the execution times of the hand-coded functions
had decreased but the number of calls to mtaskJbrk were considerably increased due to the increased
parallelism. Thus the synchronization overheads still stifled the speed-up as n increased. Therefore it was
decided that a larger simulation model might lead to more significant speed-up as the synchronization
overheads would remain about the same but the amount of parallelism would increase.

5.3 Multiprocessor Simulation Results for the Ten-node Model
The results shown in figure 2 using the new version of the simulator are much more encouraging with a
net speed-up for all n. There is an intriguing dip in the speed-up graph for 6, 7 and 8 processors, picking
up again for 9, peaking at 10 and dipping again above 10. This type of behaviour is not uncommon
with machines employing parallelizing compilers. The greatest speed-up is most often observed when
n coincides numerically with the granularity of the application's parallelism. Where it doesn't match
more overheads are incurred as extra tasks are run on less than the full complement of processors. This
decreases the effective utilization of the processors available. This phenomenon is described for Cray
Parallel Fortran in [8].

7/5

The execution profiles bore out the assumption made fter the five-node model experiments in that
the compiler generated functions had much less impact on the execution time. That is, the processors
spend much more time, than previously with the five-node model, executing tasks in parallel; thus making
the synchronization overheads less significant. The fastest executions of the ten-node model were with 4,
5 and 10 processors which were equal to the nearest three seconds of execution time.

5.4 Multiprocessor Simulation Results for the Twenty-node Model
The twenty-node model was created to investigate whether the encouraging results found with the ten-
node model would scale for larger models. The results shown in figure 2 would indicate that they do.

6 Conclusions
These experiments have highlighted the fact that there needs to be sufficient parallelism in a problem to
make it possible to achieve reasonable speed-up when porting it to a multiprocessor architecture. The
results for the five-node model were poor as the model did not contain enough parallelism to offset the
cost of the parallel synchronization overheads. The threshold, or break-even point, was obviously passed
with the ten-node model. The results for the twenty-node model indicate that this approach will scale to
larger network models though ultimately more processors would be needed to take full advantage of the
available parallelism.

As a measure of the "success" of the ten-node simulations, consider the following. The "worst"
simulation was with 7 processors giving a speed-up of 1.65. This indicates, using Amdahl's law (2),
that the percentage of the program parallelized was 45.6% giving a theoretical maximum speed-up, using
equation (3), of 1.84. The "best" simulation was with 4 processors yielding a speed-up of 1.99. This
indicates a percentage parallelized of 66.3% and a theoretical maximum speed-up of 2.97. These measures
make the the results obtained look quite reasonable.

The complicating factor is of course due to the parallel synchronization overheads which are assumed to
be negligible in the derivation of Amdahl's law, as has been shown. Interestingly, when the profile reports
for the ten-node simulations were examined, between 22.6% (n — 4) and 44.3% (n = 14) of the execution
times were expended on synchronization operations. Removing these overheads would yield speed-ups of
2.57 and 3.12 respectively. Furthermore, the percentage of the program parallelized indicated by these
revised figures is closely grouped between 71.7% (n = 6) and 76.7% (n = 10); a theoretical maximum
speed-up of 4.30. Thus, a revised graph of speed-up against n for the ten-node model would follow
Amdahl's law for Wp — 0.75 quite closely. It must be noted, however, that overheads due to cache misses
have not been removed though their effect must be much lower than the synchronization overheads.

The Encore Parallel Fortran package would seem to be quite reasonable for this kind of exercise. The
most difficult aspect, as always with parallel processing, is debugging. In this case, the parallel simulation
can be run on one processor with the debugging tool fdb. This was never severerly put to the test in
this case. The other debugging alternative is to write the application as a sequential program initially
and debug this with the standard tools before proceeding with the parallelization. The profiler gprof
proved to be an essential tool in highlighting problem areas and assessing performance, echoing again the
findings of Reed [4]. The hand coding performed as part of the exercise was not particularly arduous,
only occupying a couple of working days for finding out how to do it, doing it and debugging successfully.
The interesting point to note is that the key to success was knowledge, not of the machine's architecture,
but of the compiler's "hooks".

Acknowledgements
The author would like to thank British Telecom Research Laboratories for both their technical and
financial support of this work and also the staff of the Computing Laboratory at the University of
Newcastle-upon-Tyne.

References
[1] A. Hind, "Parallel simulation for performance modelling of telecommunication networks," in Proceed­

ings of the 9th IEE UK Teleiraffic Symposium, pp. 9/1-9/6, April 1991.

7/6

[2] A. Trew and G. Wilson, eds., Past, present and Parallel: a survey of available parallel computing
systems. Springer-Verlag, 1991.

[3] A. Chandak and J . C . Browne, "Vectorization of discrete event simulation," in Proceedings of the
IEEE International Conference on Parallel Processing, pp. 359-361, 1983.

[4] D. A. Reed, "Parallel discrete event simulation: a case study," in Proceedings of the 18ih IEEE Annual
Simulation Symposium, pp. 95-107, 1985.

[5] D. P. Helmbold and C . E . McDowell, "Modeling speedup (n) greater than n," IEEE Transactions on
Parallel and Distributed Systems, vol. 1, pp. 250-256, April 1990.

[6] N. Eshragh, Dynamic routemg in circuit-switched non-hierarchical networks. PhD thesis, School of
Engineering and Applied Science, University of Durham, May 1989.

[7] N. Eshragh and P. Mars, "Performance evaluation of de-centralized routeing strategies in circuit-
switched networks," in Proceedings of the 4th IEE UK Teleiraffic Symposium, May 1987.

[8] G. S. Almaai and A. 3. Gottlieb, eds., Highly Parallel computing. Benjamin/Curnmings, 1989.

S-n»de modsl (original)

S-ecds model (BSO)

10-node model (nec)

•0= 20-node model (new)

4

zn

WpzC.7

CO
WD=0J6

D =

1
4

=2

8 10 12 14 6 4

Number of processors - n

Figure 2. Speed-up graph for multiprocessor simulations

7/7

Parallel Simulation of Asynchronous Transfer Mode Networks

R. W. Earnshaw and A. Hind °

1 Introduction
The performance evaluation of telecommunication networks rapidly becomes analytically intractable as the
complexity of the network increases. In addition to this, the behaviour of interest to the performance engineer
is often that which occurs under transient conditions, such as traffic fluctuations or component failures which
are known to be difficult to express mathematically.

Under such conditions the use of simulation techniques to determine relevant performance parameters be­
comes necessary. Conventional sequential simulations running on sequential (i.e. Von Neumann) computer
architectures suffer from limitations imposed by the excessive processing time required to achieve the required
depth of information and the intrinsic statistical nature of the results. These problems increase as functions of
the traffic intensity and the size and complexity of the network. This leads to detailed simulations, of traffic
intensive and very large networks, often being economically and even physically impossible to implement. Such
problems have led to growing interest in parallel simulation using multiprocessor hardware.

The argument becomes most pointed when considering the performance evaluation of asynchronous transfer
node (ATM) networks. The complexity, traffic intensity and the potential size of the networks are all large.
Simulation studies of A T M have thus far largely centred on the behaviour of single traffic sources, multiplexers
>r switching nodes. When complete A T M networks have been studied i t has usually been at the call- or burst-
evel since cell-level simulation involves levels of complexity (and hence processing time) which are orders of
magnitude greater.

Nevertheless, for many investigations of A T M network behaviour, cell-level simulation is unavoidable and
las motivated the development of a parallel multiprocessor simulator by the University of Durham Telecom-
nunication Networks Research Group. The simulator is being used for the study of network behaviour and,
>articularly, for studying of the integration of mobile communication protocols into the A T M environment [1].

The use of parallel simulation introduces many additional issues into the simulation design process. These
uclude the hardware architecture, the decomposition approach used to produce the parallel software processes,
napping these processes onto the processors and the synchronization of the resulting parallel simulation. A
eview of the application of parallel simulation techniques to the performance evaluation of telecommunication
etworks can be found in [2]. An excellent general review of parallel simulation can be found in [3].

ATM Networks
The CCITT define an integrated services digital network (ISDN) as one " . . . that provides end-to-end digital

lonnectivity to support a wide range of services, including voice and non-voice services, to which users have
Iccess by a limited set of standard multi-purpose user-network interfaces" [4]. Initially, basic access was centred
Iround two 64 kbits/s B channels and one 16 kbits/s signalling D channel. The requirement for supporting
|iore advanced multi-media services within ISDN has led to the development of broadband ISDN (D-ISDN).

The asynchronous transfer mode is the CCITT's target solution for B-ISDN. A T M networks use a fixed-size
lata packet, known as a cell, which consists of 48 octets of data and 5 octets of header. They are typically
pansmitted, within the network, using multi-megabit-per-second media, such as fibre-optic links; such links will
['pically be running at data rates in excess of 150 Mbit /s . Further background on B-ISDN, and A T M networks

particular, can be found in [5].
The ATM switch used in the simulation study is based on the Orwell ring protocol which is a slotted ring

^-otocol. The ring is divided into slots which circulate around the ring; a node wishing to transmit a message
lits until an unfilled slot is found, changes the slot header and transmits the message in the body of the slot. A

[pical implementation of a slotted ring is the Cambridge ring protocol (British Standard BS6531). Examination
existing protocols has indicated that those based on a slotted ring are probably the best suited for carrying

klay-sensitive speech, but simulation studies of high-bandwidth Cambridge Rings have indicated that there are

| "Richard Earnsliaw is a Research Assistant and Alan Hind is British Telecom Research Fellow. Telecommunication Networks
search Group, School of Engineering and Computer Science, University of Durham, South Road, Durham, U.K. DHl 3LE.

58

still significant limitations when operated under high load [6] and, further, load control is difficult since there
is no relevant parameter that can easily be extracted from the ring. The Orwell protocol was developed after
making a detailed study of the limitations of the Cambridge ring protocol: i t was found that by introducing
destination release of slots, and by adding a novel, distributed, load control mechanism to bound access delays,
a viable level of performance could be obtained [7, 8]. For higher capacity networks multiple, synchronized,
rings can be used and such a network is known as an Orwell Torus.

Whilst detailed simulations of a single ring have been made, under a variety of load and traffic services,
there has, as yet, been very little investigation made into the behaviour of an Orwell torus, or ring behaviour
in multi-ring systems. The reason for this, at least in part, is because of the large amount of simulation time
required to investigate networks of Orwell rings: a single simulation run of one ring takes, typically, a couple
of hours on a V a x 11/750, or three times as long on a Sun 3/50 workstation for just a couple of seconds of
simulated time.

3 The Multiprocessor Testbed
The multiprocessor testbed used for the A T M simulator is based on a network of Inmos transputers. This
was originally designed for use as a high speed circuit-switched network simulator, with code written in occam;
subsequently, a traditional packet-switched network simulator was also developed using the same language [9, 10].
The transputer network consists of up to 31 simulation transputers, each with up to 16 Mbytes of memory (the
current implementation consists of 13 T800 processors each with 1Mbyte of memory). The transputers are
connected with a double layer of C004 cross-point link switches which enables any link on each of the simulation
processors to be connected to a link on any of the other processors; this flexibility enables the network to be
configured in arbitrary topologies so that the system being simulated can be mapped closely onto the processor
network, and enables the path length required when passing messages between processors to be kept to a
minimum. Finally, a layer of control processors are used to connect between the host transputer and the
link switches; one is connected to the link-switch programming interface, while both can be connected, via
the switches, to any of the simulation transputers. An optional transputer-based graphics card can also be
connected at this layer.

4 The Software Architecture
To isolate the simulation model, as far as possible, from the implementation details of the hardware, the
simulator was structured in a hierarchical manner; each layer builds on the abstraction of the layer below in a
similar approach to that of the ISO seven layer model. At the lowest layer lie the transputer processors in a
dynamically reconftgurable array. On top of this a multiplexor task on each processor provides the abstraction of
virtual channels between each task in the simulation, regardless of where the tasks are mapped in the processor
network. A simple packetizer layer hides the fact that the channels in the multiplexor (and, indeed, the physical
channels of the transputer itself) work most efficiently when presented with large packets as opposed to a series
of very small ones. A synchronization layer uses the packet layer processes; i t ensures that each message is
correctly marked with a time-stamp on dispatch and uses this at the receiver to maintain synchronization: the
layer is optional, if there is no definable synchronization between two tasks (for example, diagnostic messages
destined for the console) then the channel can be declared asynchronous and the packet layer accessed direct.
Finally, in parallel with the simulation model and the synchronization layer, an event manager is responsible for
scheduling components of the simulation model in the correct sequence. The overall hierarchy is summarised in
figure 1. Further implementation details can be found in [11].

5 The Synchronization Mechanism
In a sequential discrete event simulation, the synchronization of the simulation is maintained by manipulation
of a data structure called the event list. This contains the pending events in the system in time-stamped order.
The simulation progresses by removing the event with the earliest time-stamp from the list and processing i t .
If another event is generated, it is inserted into the event list at its time-stamp position. Thus the simulator
processes the events in synchronized chronological order. I f we now distribute the simulation over several
processors, each having a local event list, i t becomes possible for a processor to process an event which is not
the earliest. Also, in processing this event we may affect conditions for earlier, as yet unsimulated events. Thus
the future is affecting the past, which is clearly unacceptable, and is known as a causality error.

59

Thus, synchronization schemes can fall into one of two categories; conservative approaches and optimistic
approaches, see [3] for a fuller explanation of these terms. Conservative approaches avoid causality errors ever
occurring by relying on some strategy of determining events which are "safe" to process. That is, they must
determine when all events that could affect the event in question have been processed. An added problem which
categorises various conservative approaches is that of deadlock. I f processes do not have a "safe" event which
they can process then they are blocked and cannot progress. I f a cycle of blocked processes occurs then we have
deadlock and the simulation wil l grind to a halt unless the deadlock can be broken. N U L L messages can be used
to avoid deadlock situations occurring. N U L L messages are only used for synchronization purposes and do not
:orrespond to any activity in the physical system being simulated and, hence, have no message content only a
iime-stamp tNun. Thus, it is essentially a promise that the sending process wil l not send a real message to the
destination process with a time-stamp less than [jv uu< N U L L messages are sent on each outgoing port whenever
i process finishes processing an event; ijv„i/ being a lower bound on the time-stamp of the next outgoing
nessage on each outgoing port calculated from the time-stamp value associated with each incoming port and
cnowledge of the simulation performed by the process. Generally conservative synchronization approaches can
ichieve good performance with sparsely connected systems which have less opportunity for deadlock and/or an
ipplication which contains good lookahead properties. Lookahead refers to the ability to predict who.;, wi l l , or
will not, happen in the simulated time future based on application specific knowledge.

For an ATM link it is possible to derive a simple formula that describes the number of cells that wil l be in
ransit across a given length at any one time (the link can be considered as a delay line):

ic

vhere L is the length of the link, 5 is its speed (adjusted to account for overheads such as framing), n is
he refractive index of the transmission media (typically, about 1.5 for a glass fibre), / is the cell size and c is
he speed of light. Considering, for example, a 15 km link running at 150 Mbi t / s , then there may be up to
wenty-six cells in transmission across the link at any time; longer, or faster, links would have correspondingly
rger numbers of cells in transit. This "pipeline" is used to advantage as a method of lookahead within the

imulator. Effectively, a destination task can see a small amount of future behaviour for the link: this can
hen be exploited for two ends; the avoidance of deadlock with fewer N U L L messages and the improvement of
joncurrency between the processes.

The Simulator Results
?he results produced by the simulator consists of sets of statistics for the simulator performance, the traffic
jatterns and the switching-node activity. The simulator performance can be assessed from the run time,
Irocessor usage and link usages. The performance of the synchronization mechanism is also monitored, along
j i t h several other aspects, by an event profiling process. This gives the number of instances and and percentage
Irocessing time spent on various simulation events. Such profiling is made easier as the transputer has hardware
liners which allows the profiler to be run at fixed time intervals. Traffic patterns are reported as a set of
jistograms of the voice delay statistics for each source in the network. Switching-node activities are also
sported as histograms of the input queue lengths to the Orwell rings, the ring reset and cell delay statistics.

Performance Analysis of the Simulator
rith parallel simulation, the ultimate goal is to obtain a simulator that runs as fast as possible; i f the speed of
Le parallel simulator is less than that of a sequential simulator then there is no reason for using it (and many
j)od reasons for not doing so). However, i t is normally impossible to directly compare parallel and conventional

lulators since the two are written in an entirely different manner and the programmer rarely wants to write
bth. A good indication of the possible behaviour of the conventional simulator can sometimes be obtained,
lough, by running an optimised version of the distributed simulator on a single processor. The time taken for
le single processor version to run can be compared with that for the multiprocessor version and the speed-up
1 the simulator is then the ratio of the time for the multiprocessor version to that for the single processor.
Irmally this should lie in the range between one and n, when the multiprocessor version is run on n processors;
ppeed-up of >i is said to be linear.

The performance results given here are for the A T M network simulator modelling the network shown in
|ure 2: the network consists of four A T M exchanges in a ful ly connected trunk network and eight "local"
dianges each of which is dual-parented onto two trunk exchanges; each local exchange has two traffic gener-
xs The exchanges were all running the Orwell ring protocol and the traffic generated was voice only. The

60

ring speed was 600 Mbits/s and the link speed was 150 Mbit /s ; the propagation delay on all the links waa sec to
1 x 10~ 4 s (equivalent to about 20 km of glass fibre, or about 35 cells). The simulation time was 7.5 seconds with
the statistics reset after 2.5 seconds. Two single processor simulations were run for each load: one with identical
code to the multiprocessor version; the other an optimised version with the redundant multiplexors removed to
speed message transfer. In the following graphs the load is shown expressed as the average percentage capacity
of a single link.

Figure 3 shows the speed-up of the simulator as a function of load; it shows that, even for a load of just 15%
of maximum capacity, the speed-up is approaching the ideal value of twelve for the unoptimised version, and
is starting to level out at just over ten when compared with the optimised version. The difference between the
two curves represents the proportion of the processing time that is taken up in switching the messages from one
processor to another. The speed-up of the simulator relative to the unoptimised version can also be estimated
from the CPU activity monitoring of each of the transputers in use: the results f rom doing this agree well with
the upper curve shown. Unfortunately, the capacity of the trunk exchanges wag not sufficient to permit higher
loads than 50% to be simulated. I t can be seen from figure 4, that the N U L L message ratio remains very low for
a large range of the load. This indicates, along with the impressive speed-up figures, that the synchronization
mechanism works very efficiently.

8 Conclusions
The simulation of A T M networks at the cell-level would be prohibitive on anything but the highest performance
sequential uniprocessor. The work described in this paper has shown that parallel simulation of such networks
is not only possible but yields good performance for relatively little cost in hardware.

Acknowledgements
The authors would like to thank British Telecom Research Laboratories and the Science and Engineering
Research Council for their technical and financial support of this work.

References
(1] R. W. Earnshaw and P. Mars, "Footprints for Mobile Communica t ions in Proceedings of the eighth IEE

UK Tele traffic Symposium, pp. 22/1-22/5, Apr i l 1991.

[2] A. Hind, "Parallel Simulation for Performance Modelling of Telecommunication Networks," in Proceedings
of the Eighth IEE UK Teletraffic Symposium, pp. 9/1-9/6, Apr i l 1991.

[3] R. M . Fujimoto, "Parallel Discrete Event Simulation," Communications of the ACM, vol. 33, pp. 30-53,
October 1990.

[4] CC1TT: COM X V I I I , 228-E. Geneva, March 1984.

[5] R. Handel and M . N. Huber, Integrated Broadband Networks: An Introduction to ATM-based Networks.
Addison-Wesley, 1991.

[6] R. M . Falconer, J. L. Adams, and G. M . Walley, "A Simulation Study of the Cambridge Ring with Voice
Traffic," British Telecom Technology Journal, vol. 3, Apri l 1985.

[7] J. L. Adams and R. M. Falconer, "Orwell: A Protocol for Carrying Integrated Services on a Digital
Communictions Ring," Electronics Letters, vol. 20, pp. 970-971, November 1984.

[8] R. M . Falconer and J. L. Adams, "Orwell: A Protocol for an Integrated Services Local Network," British
Telecom Technology Journal, vol. 3, October 1985.

[9] S. J. Nichols, Simulation and Analysis of Adaptive Routeing and Flow Control in Wide Area Communication
Networks. PhD thesis, University of Durham, March 1990.

[10] R. T. Clarke, S. J. Nichols, and P. Mars, "Transputer-based Simulation Tool for Performance Evaluation of
Wide Area Telecommunications Networks," Microprocessors and Microsystems, vol. 13, pp. 173-178, April
1989.

[11] R. W. Earnshaw and P. Mars, "Simulation of A T M Networks on Transputer Arrays," in Proceedings of the
Seventh IEE UK Teletraffic Symposium, pp. 1/1-1/5, Apri l 1990.

61

FSgnire 1 FSgsir® 2

Model I d

Sync Sync

I/O I/O
I

Multiplexer 1
Transputer Links

/ \ Trunk Exchange
3̂ Local Exchange

Q Traffic Source
|) Transputer

igure 3 Figure 4

Unoptimised Optimised

14 -

co 10 -
X

. /

X

. x - - x - -x • -x

QJ

CO

8 - X +

X'
!/

6 T

10 20 30 40

Link load (/%)

50

i
o

1 X

0.1

0.01 -

0.001

0.0001

X .

10 20 30 40

Link load (/%)

50

6 2

Proceedings of ihe 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsm&n, R. C. Crain, and J. R. Wilson

A P A R A L L E L S I M U L A T O R . F O R P E R F O R M A N C E M O D E L L I N G OF
B R O A D B A N D T E L E C O M M U N I C A T I O N N E T W O R K S

Richard W. Earnshaw Alan Hind

Computing Laboratory School of Engineering and Computer Science
University of Cambridge University of Durham

Cambridge, CB2 3QG, U.K. Durham, DH1 3LE, U .K.

A B S T R A C T

This paper describes the otructure of a parallel simulator
' developed to investigate the performance of broadband
telecommunication networks. The simulator hardware is
based on a reconfigurable array of Inmoa transputers. The
software has a layered architecture and issues of efficient
communication, deadlock avoidance and message route-
ing have been addressed. The synchronization mechanism
used is conservative, based on the Ch&ndy-Misra model,
and exploits lookahead. The speed-up results are almost
linear when compared with the same parallel simulation
run on a single transputer and are still impressive when
compared with an optimized single processor version.

1 I N T R O D U C T I O N

The performance evaluation of telecommunication net­
works rapidly becomes analytically intractable as the
complexity of the network increases. In addition to this,
the behaviour of interest to the performance engineer is of­
ten that which occurs under transient conditions, such as
traffic fluctuations or component failures which are known
to be difficult to express mathematically.

Under such conditions the use of simulation techniques
to determine relevant performance parameters becomes
necessary. Conventional sequential simulations running
on sequential computer architectures suffer from limita­
tions imposed by the excessive processing time required
to achieve the required depth of information and the in­
trinsic statistical nature of the results. These problems
increase as functions of the traffic intensity and the size
and complexity of the network. This leads to detailed
simulations, of traffic intensive and very large networks,
often being economically and even physically impossible
to implement. Such problems have led to growing interest
in parallel simulation using multiprocessor hardware.

The argument becomes most pointed when considering
the performance evaluation of broadband networks. The
omplexity, traffic intensity and the potential size of the
etworks are all large. Simulation studies of systems of
his nature have thus far largely centred on the behaviour
f single traffic sources, multiplexers or switching nodes,

hen complete networks have been studied it has usually

been at the call- or burst-level since lower-level simulation
involves levels of complexity (and hence processing time)
which are orders of magnitude greater.

Nevertheless, for many investigations of network be­
haviour, lower-level simulation is unavoidable and has mo­
tivated the development of a parallel multiprocessor sim­
ulator by the University of Durham Telecommunication
Networks Research Group. The simulator is being used
for the study of network behaviour and, particularly, for
studying the integration of mobile communication proto­
cols into the broadband environment (Earnshaw and Mars
1991).

The use of parallel simulation introduces many addi­
tional issues into the simulation design process. These
include the hardware architecture, the decomposition ap­
proach used to produce the parallel software processes,
mapping these processes onto the processors and the syn­
chronization of the resulting parallel simulation. Reviews
of the application of parallel simulation techniques to the
performance evaluation of communication networks have
been written by Mouftah and Sturgeon (1991) and by
Hind (1991). An excellent general review of parallel sim­
ulation has been written by Fujimoto (1990).

2 B R O A D B A N D N E T W O R K S

The C C I T T define an integrated services digital network
(ISDN) as one " . . . that provides end-to-end digital con­
nectivity to support a wide range of services, including
voice and non-voice services, to which users have access
by a limited set of standard multi-purpose user-network
interfaces'* (C C I T T 1984). Initially, italic acceee was cen­
tred around two 64 kbits/s B channels and one 16 kbits/s
signalling D channel. The requirement for supporting
more advanced multi-media services within ISDN has led
to the development of broadband ISDN (B-ISDN).

The asynchronous transfer mode (ATM) is the tar­
get solution for B-ISDN defined by the C C I T T . A T M
networks use a fixed-size data packet, known as a cell,
which consists of 48 octets of data and 5 octets of header.
They are typically transmitted, within the network, using
multi-megabit-per-second media, such as fibre-optic links;
such links will typically be running at data rates in excess
of ISO Mbit/s. A good background text on B-ISDN, and

1 3 6 5

1366 Earnsh&w and Hind

ATM networks in particular, has recently been published
by Handel -id Huber (1991).

The ATM switch used in the simulation study is based
on the Orwell ring protocol which is a slotted ring proto­
col described by Chauhan, King and Mic&Uef (1990). The
ring is divided into slots which circulate around the ring;
a node wishing to transmit a message waits until an un­
filled slot is found, changes the slot header and transmits
the message in the body of the slot. Slotted ring protocols
have been unpopular in the past for several reasons. A
monitor node is required to ensure that olots which be­
come corrupted can be identified and regenerated, thus
correct behaviour of the ring is critically dependent on
correct behaviour of the monitor. To get a reasonable
number of slots onto the ring delays have to be inserted at
each node and one node, normally the monitor, has to be
able to adjust its delay go that there are an integral num­
ber of slots. Finally, the efficiency of slotted rings is gen­
erally poor since the ratio of header to body is normally
high. Its greatest advantage over token-based protocols,
however, is that more that one node can be transmitting
information at a time, using different slots on the ring.
Acknowledgement of delivery is normally made by releas­
ing the slot at the source (correct receipt there is taken to
imply correct delivery at the destination); the node may
not refill a slot that it has just released, ensuring that the
ilot is passed to the next node and thereby ensures fair
access to all nodes on the ring. An earlier implementation
of a slotted ring is the Cambridge ring protocol (British
Standard BS6531).

Examination of existing protocols has indicated that
ihose based on a slotted ring are probably the best suited

•or carrying delay-sensitive traffic such as speech, but sim­
ulation studies of high-bandwidth Cambridge Rings have
Sndicated that there are still significant limitations when
operated under high load (Falconer, Adams and Walley
• 985). Further, load control is difficult since there is no
Relevant parameter that can easily be extracted from the
Ring. The Orwell protocol was developed after making a
Detailed study of the limitations of the Cambridge Ring
nrotocol: it was found that by introducing destination
lelease of slots, and by adding a novel, distributed, load
lontrol mechanism to bound access delays, a viable level
Bf performance could be obtained. These developments
Bre discussed by Adams and Falconer (1984) and Falconer
I n d Adams (1985). For higher capacity networks multi-
l i e , synchronized, rings can be used and such a network
m known as an Orwell Torus.

I Whilst detailed simulations of a single Orwell ring have
Been made, under a variety of load and traffic services,
Hiere has, as yet, been very little investigation made into
H e behaviour of an Orwell torus, or ring behaviour in
Hulti-ring systems. The reason for this, at least in part,
I because of the large amount of simulation time required
I investigate networks of Orwell rings: a single simulation
H n of one ring takes, typically, a couple of hours on a V a x
•J/750, or three times as long on a Sun 3/50 workstation
H - just a couple of seconds of simulated time.

3 S I M U L A T O R A R C H I T E C T U R E

3.1 T h e Mul t i p roces so r Tes tbed

The multiprocessor testbed used for the ATM simulator is
based on a network of Inmos transputers. This was orig-
iaally designed for use as a high-speed circuit-switched
network simulator, with code written in oeeam; oubse-
quently, a traditional packet-switched network simulator
was also developed using the same language (Nichols 1990
and Clarke, Nichols and Mars 1989). The transputer net­
work consists of up to 31 simulation transputers, each
with up to 16 Mbytes of memory (the current implemen­
tation consists of 13 T800 processors each with 1Mbyte of
memory). The transputers are connected with a double
layer of cross-point link switches which enables any link
on each of the simulation processors to be connected to a
link on any of the other processors; this flexibility enables
the network to be configured in arbitrary topologies so
that the system being simulated can be mapped closely
onto the processor network, and enables the path length
required when passing messages between processors to
be kept to a minimum. Finally, a layer of control pro­
cessors are used to connect between the host transputer
and the link switches; one is connected to the link-switch
programming interface, while both can be connected, via
the switches, to any of the simulation transputers. An
optional transputer-based graphics card can also be con­
nected at this layer.

3.2 Tlhe Sof tware A r c h i t e c t u r e

To isolate the simulation model, as far as possible, from
the implementation details of the hardware, the simula­
tor was structured in a hierarchical manner; each layer
building on the abstraction of the layer below in a simi­
lar approach to that of the ISO seven layer model. At the
lowest layer lie the transputer processors in a dynamically
reconfigurable array. On top of this a multiplexer task on
each processor provides the abstraction of virtual chan­
nels between each task in the simulation, regardless of
where the tasks are mapped in the processor network. A
simple packetizer layer hides the fact that the channels in
the multiplexer (and, indeed, the physical channels of the
transputer itself) work most efficiently when presented
with large packets as opposed to a series of very small
ones. A synchronization layer uses the packet layer pro­
cesses; it ensures that each message is correctly marked
with a time-stamp on dispatch and uses this at the re­
ceiver to maintain synchronization: the layer is optional,
if there is no definable synchronization between two tasks
(for example, diagnostic messages destined for the con­
sole) then the channel can be declared asynchronous and
the packet layer accessed direct. Finally, in parallel with
the simulation model and the synchronization layer, an
event manager is responsible for scheduling components
of the simulation model in the correct sequence. The
overall hierarchy is summarised in figure 1. The imple­
mentation is described by the authors in more detail else-

Parallel Simulator for Broadband Telecommunication Networks 1367

where (E&rnshaw aad Mars 1990, Hind 1990 and Earn
shaw 1992).

A B

E
l MUX

I 3 f Kay MUX
Sjee TYCS3TOCS7

Lfart -at) ^ r

LcrccalPcsfo PillhHr-"nr7

33

Figure 1: The overall hierarchy of the simulation
model. The Event scheduler is a control-plane for
the upper layers.

3.2.1 T h e M u l t i p l e x e r

The multiplexer ia the lowest layer of the simulator ker­
nel; it is responsible for the delivery of messages from one
task in the simulator to another, regardless of the topo­
logical mapping of either the tasks or the processors upon
which they are running. Each transputer in the network is
allocated exactly one multiplexer task; all other tasks de­
siring to communicate with tasks on another processor do
so by communicating indirectly via the multiplexer (fig­
ure 2). If two tasks that communicate are on the same
processor then i t is, of course, possible for them to be
directly connected. The result is that for large simula­
tions a simulation task may have many of its channels
connected to the multiplexer; the routeing decisions that
the multiplexer makes are based solely upon the channel
from which each message is received.

3.2.2 T h e F l o w C o n t r o l Mechan i sm

The flow control mechanism has to ensure two things:
firstly that the multiplexer routeing, as a whole, can oper­
ate within a fixed amount of memory, i.e. a finite number
sf buffers (deadlock free); and secondly that all messages
will be eventually delivered, regardless of the other traffic
n the multiplexer (livelock free). The algorithm adopted
or the implementation of the deadlock- and livelock-free

Bouteing is based on that of Toueg and Ullman (1979),
Hising a forward state controller.

Figure 2: Multiplexer processes run on each node to
provide virtual links between each task in the simu­
lator.

3.2.3 T h e Packefcizes-

Messages between the simulation tasks commonly consist
of several small pieces of information: for example, & cell
has associated with it not only the time of transmission
and the data and header fields but also the time of cre­
ation, the size of the data field in use (for efficiency) and
an optional series of trace information packets that can be
used when debugging the simulator. If each item were to
be transmitted individually across the processor network
then the efficiency of the multiplexer would be extremely
poor; each packet in the multiplexer would contain per­
haps as little as four bytes of information and an overhead
of eight bytes (four bytes for each of the packet-header
and the packet-size fields). To overcome this inefficiency,
each simulation message (e.g. a cell) is concatenated into
a single packet (or a series of packets if this would exceed
the maximum size of a single multiplexer packet) which
is then transmitted to the receiving process.

In addition to the inefficiency associated with using the
multiplexer with small units of data there would also be an
overhead due to the establishment of the occam channel
for passing data between one task and the next. Each
communication requires that both ends (the sender and
the receiver) are ready to proceed before any data can be
sent: if one end is not ready the other task blocks whilst
waiting. Because of the way in which the transputer's
process scheduler works this can mean a large number
of process switches, each switch having an overhead in
terms of processor time; in addition, each time a process
is descheduled it is placed at the back of the relevant
queue (either high or low priority) and has to wait its

1368 Earnshaw and Hind

turn for further access to the processor. It is clearly more
efficient if the number of times a channel communication
has to be initiated is kept to a minimum; work by Gould,
Bowler and Purvis (1989) has shown that the throughput
of the channels increases dramatically as the size of the
data block is increased.

3.2.4 The Evem4 M a n a g e r

The event list is normally maintained using the twin-
list method described by Blackstone, Hogg and Phillips
(1981), but it is possible to convert the procedures to be
functionally the some cs a single list manager by setting
the initial length of the first list to infinity. It was found
that for the T4 series of transputers (which do not support
floating-point arithmetic in hardware), using the twin list
method approximately halved the amount of time spent
maintaining the event list, but for the T800 transputer
(which does support floating-point arithmetic) the change
was negligible; indeed, for some configurations, the twin
list procedure was slower by about 0.5%.

I 3.2.5 C o n f i g u r i n g the S i m u l a t o r

For any simulation tool to be useful it must be capable of
being run with a series of different configurations, the ex­
tent of which has to be borne in mind when the simulator
is designed. For a truly flexible system it is not normally
sufficient for these to be parameters that are 'hard coded'
into the simulator itself; instead, they should be made
available from a separate file (or by interactive prompt­
ing) at the time the simulator is invoked. In the ultimate
case, not only parameters such as load and various de­
lays should be configurable, but also the entire topology
of the network itself: this can require substantial effort
being expended on making the simulator easier to use,
but, consequently, significantly more powerful.

The method employed here is a parse-able grammar
that describes the simulation parameters (and some of
their dependencies) in a human comprehensible format:
in such environments it is rarely necessary for the infor­
mation to be in a totally fixed order since each param­
eter will have a tag associated with it that describes it
uniquely. Comments are normally easily supported. An
example entry might contain:

I l i nk S:
I % Linft between nodes 1 and 6
• prop-dalay ° lOOu S
I speed ° 100H b i tpa

I Parsers for grammars of this type are easily produced
• s i n g tools such as yacc and lex and would, probably, be
Inplemented using a preprocessor for the simulator that
Hroduces the configuration tables that the simulator itself
Bads. Another advantage of this approach is that default
Hdues can now be used: a special entry (for example ' l i n k
K f a u l t : ') might contain a series of fields that should be
H e d when a real definition omits a parameter.

The A T M Network Simulator currently parses two files
when it starts to run: the first describes the topology
of the network being simulated and how the individual
processes should be mapped onto the processors of the
transputer network; the second contains the various pa­
rameters required by each individual process. Both files
ore of the 'table of values format'. A parser is available
for generating the first file that understands a superset of
the 3L configurer language (Parallel C User Guide 1989);
the extensions are mainly aimed at supporting the recon-
figurability of the transputer array seed. The cecond file
has to be generated by hand, but a built-in preprocessor
parses the special symbols 'Xdate' and '%seed', replacing
them with the current date and an unique seed respec­
tively. The seeds ore generated using a different random
number generator from the one used during simulation in
order to avoid, as far as possible, correlations between the
random number streams.

The compiler package supplied by 3L Ltd is described
in the Parallel C User Guide (1989) and consists of three
main components for use with multi-transputer networks:
the compiler, which produces object modules from the
source files; a linker, which links object modules and li­
braries to create tasks; and a configurer, which binds sev­
eral tasks together to form an executable application. A
task is a program in its own right: it is allocated a stack
and on area of memory, and has its own global variables; it
must always run on one processor, but can spawn threads
which execute part of the code of the task in parallel and
share the memory (they each, however, have their own
stack); a task can only communicate with other tasks by
using the occam channels implemented in the processor
hardware: the collection of program threads in a task
are collectively referred to as a process. The configurer
is responsible for allocating tasks to processors, creating
initial stacks and heap areas, and for mapping the con­
nexions between tasks onto occam channels (both internal
and external).

Unfortunately the configurer supplied with the com­
piler does not support the link-switch mechanism in the
transputer network used and, therefore, cannot be used
in the traditional sense to boot the entire network. The
approach used in the simulator, is to have a small main
application, which runs on the fixed topology part of the
network, and a series of un-configured tasks. The main
application does on-the-fly configuration of the remain­
der of the application using a Bingle file that describes the
simulation run. To do this it uses the low-level configurer
execution primitives to load the tasks directly into each
processor.

Once each task has been loaded and has started to run,
the simulation parameter files have to be loaded. Unlike
traditional simulators this poses a large problem: part of
the information contained in the parameter file is used
by the multiplexers to control the switching of messages;
until this is loaded they cannot operate properly. Simi­
larly, none of the other tasks knows any information about
where it lies in the overall topology, since to provide this
information would require 'hard coding'. Indeed, the only

Parallel Simulator for Broadband Telecommunication Networks 1 3 6 9

information that each process has is its own array of chan­
nels for use in communicating, but even this has little
meaning unless come conventions are need. Fortunately,
'false' channels can be created during the configuration
process and their values set to represent something other
than a genuine channel. With this information, known as
a 'tag', each task in the simulator can be uniquely identi­
fied, enabling it to extract the relevant information from
the parameters file.

At this stage a task still does not know on which in­
put channel it will receive the configuration information;
further, it does not know on which output channels, if
any, it must forward the information so that it can reach
its neighbours. To obtain this information a boot-tree is
built which starts at the task connected to the fixed topol­
ogy part of the network (there is exactly one such task)
and extends outwards until all the tasks know a parent
and any children they might have. The protocol for doing
this in the presence of loops is quite complex if the use of
timeouts are to be avoided; the petri-net in figure 3 rep­
resents the code running on just one channel pair of one
task (all of the channels in the simulator are paired, one
input and one output, to the same remote task), the same
code runs on each channel pair throughout the simulator.

Offer of i w n f l l o
(Ona fo r ecxfc ttifocd

d c=£=»cstod p t i -lol

' Do tea off<

I ttcsd bcatfUo

•5 r Do tea o f f o

AflECS)j£C7

i £>n't »c=a b=*fiio
I o a t roJc*ttea

I ton coaly best Ilia tea to
I DlU to c:-=ac3tocl

Cs caccai* t coed

6 6
ea rceoIvor U n u a a t c a

Key:

Figure 3: Petri-net showing the state transitions for &
single channel while determining the download path
for the simulator. The 'square' states are shared by all
of the channels, which have been omitted for clarity,
making i t impossible for more than one channel to be
activated as a receiver.

The parameters file contains a few lines of global infor­
mation, such as the title of the simulation run, the size of
the network, and for how long the run must last, followed
by a series of entries, one for each took in the simulator.
To avoid the need for each task to have to be able to in­
terpret information for other tasks (which may well be of
a different class), each task scans the parameters file look­
ing for a string of the form 'close kkx :', where the clooo
is the type of task (' S R C E ' for a traffic generator, 'MUX*
for a multiplexer, etc.) and k e s is the tog-value that wao
bound to the false link. On finding this striag, the task
then interprets the following parameters as its personal
configuration file. Special routines ore used to pores the
file while ensuring that at the some time the entire file is
passed on to its children in the boot-tree without mod­
ification or loss. Once the entire file has been read and
interpreted, the configuration process is complete and the
simulation can begin.

4 T H E S Y N C H R O N I Z A T I O N M E C H A ­

N I S M

In a sequential discrete event simulation, the synchroniz­
ation of the simulation is maintained by manipulation of
a data structure called the event list. This contains the
pending events in the system in time-stamped order. The
simulation progresses by removing the event with the ear­
liest time-stamp from the list and processing it. If another
event is generated, it is inserted into the event list at its
time-stamp position. Thus the simulator processes the
events in synchronized chronological order. If we now dis­
tribute the simulation over several processors, each having
a local event list, it becomes possible for a processor to
process an event which is not the earliest. Also, in pro­
cessing this event we may affect conditions for earlier, as
yet unsimulated events. Thus the future is affecting the
past, which is clearly unacceptable, and is known as a
causality error.

Thus, synchronization schemes can fall into one of two
categories; conservative approaches and optimistic ap­
proaches, see Fujimoto (1990) for a fuller explanation of
these terms. Conservative approaches avoid causality er­
rors ever occurring by relying on some strategy of de­
termining events which are "safe'' to process. That is,
they must determine when all events that could affect the
event in question have been processed. An added prob­
lem which categorises various conservative approaches is
that of deadlock. If processes do not have a "safe" event
which they can process then they are blocked and can­
not progress. If a cycle of blocked processes occurs then
we have deadlock and the simulation will grind to a
halt unless the deadlock can be broken. In the Chandy-
Misra conservative approach used here (Chandy, Holmes
and Misra 1979, Chandy and Misra 1979 and Chandy
and Misra 1981), NuLL-messages are used to avoid dead­
lock situations occurring. NULL-messages are only used
for synchronization purposes and do not correspond to
any activity in the physical system being simulated and,
hence, have no message content only a time-stamp < w u i i -

1370 Earnshaw and Hind

Thus, it is essentially & promise that the sending process
will not send a real message to the destination process
with a time-stamp less than <w«n. NuLb-mesoages are
sent on each outgoing port whenever a process finishes
processing an event; Swaii being a lower bound on the
time-stamp of the nest outgoing message on each outgoing
port calculated from the time-stamp value associated with
each incoming port and knowledge of the simulation per­
formed by the process. Generally conservative synchro­
nization approaches can achieve good performance with
sparsely-connected systems which have less opportunity
for deadlock and/or on application which contains good
lookahead properties. Lookahead refers to the ability to
predict what will, or will not, happen in the simulated
time future based on application specific knowledge.

For an A T M link it is possible to derive a simple formula
that describes the number of cells that will be in transit
across a link of given length at any one time (the link can
be considered as a delay line):

N = ±p-ic

where L is the length of the link, 5 is its speed (adjusted
to account for overheads such as framing), n is the re­
fractive index of the transmission media (typically, about
1.5 for a glass fibre), / is the cell size and c is the speed
of light. Considering, for example, a 15 km link running
at 150 Mbit/s, then there may be up to twenty-six cells
in transmission across the link at any time; longer, or
faster, links would have correspondingly larger numbers
of cells in transit. This "pipeline" is used to advantage
as a method of lookahead within the simulator. Effec­
tively, a destination task can see a small amount of fu­
ture behaviour for the link: this can then be exploited
for two ends; the avoidance of deadlock with fewer N U L L -
m ess ages and the improvement of concurrency between
the processes.

In the Chandy-Misra simulation, there is not normally
an event processor in the classical sense. Instead, events
are replaced exclusively by messages and the order of pro­
cessing is determined by selecting the message with the
oldest time-stamp: there must be a message available
from each incoming link in order to be able to do this;
the absence of a message causes the node to block. In the
ATM Network Simulator an event manager is used; con-

uently, in addition to adding dependence on the link
echanisms to the code of the event manager, monitor-

ng for messages would be inefficient. To overcome this,
he synchronization routines are implemented as normal
vents that run in the same manner as all other events in
he simulator: two events are required for each link to a
emote process; these are a NuLL-message generator and

process blocker.
The NULL-message generator runs on the output of a

nk: it compares the current simulation time with the
ime when a message was last sent to the remote process;

this is less than a propagation delay it simply resched-
les itself to a time one propagation delay later than the
me at which the last message was sent; otherwise, it

must be exactly one propagation delay since a message
was last sent, so a NULL-meoaage is generated to the
remote process and the generator reschedules itself one
propagation delay later. The process blocker compares
the cumulation time against the time when a raeosage was
last received across a link from the remote process; if this
io lets than a propagation delay then it dimply resched­
ules itself for one propagation delay after the time the last
message was received; otherwise it blocks the current pro­
cess until a message is received and then reschedules itself
accordingly. The process blocker appears to the rest of the
oimulation as a routine that takes just ouffidently long to
execute that the process remains in synchronization with
its neighbours; however, while blocking, it consumes no
processing time.

5 T H E S I M U L A T O R R E S U L T S

The results produced by the simulator consists of sets of
otatistics for the simulator performance, the traffic pat­
terns and the switching-node activity. The simulator per­
formance can be assessed from the run time, processor
usage and link usages. The performance of the synchro­
nization mechanism is also monitored, along with several
other aspects, by on event profiling process. This gives
the number of instances and and percentage processing
time spent on various simulation events. Such profiling is
made easier as the transputer has hardware timers which
allows the profiler to be run at fixed time intervals. Traffic
patterns are reported as a set of histograms of the voice
delay statistics for each source in the network. Switching-
node activities are also reported as histograms of the input
queue lengths to the Orwell rings, the ring reset and cell
delay statistics.

6 P E R F O R M A N C E A N A L Y S I S O F T H E

S I M U L A T O R

The ultimate goal with parallel simulation is to obtain a
simulator that runs ss quickly as possible; if the speed
of the parallel simulator is less than that of a conven­
tional simulator then there is no reason for using it (and
many good reasons for not doing so). However, it is nor­
mally impossible to directly compare parallel and sequen­
tial simulators since the two are written in an entirely
different manner and the programmer rarely wants to
write both. A good indication of the possible behaviour
of the conventional simulator can sometimes be obtained,
though, by running an optimized version of the paral­
lel simulator on a single processor. The time taken for
the single processor version to run can be compared with
that for the multiprocessor version and the speed-up of the
simulator is then the ratio of the time for the multipro­
cessor version to that for the single processor: normally
this should lie in the range between one and n, when the
multiprocessor version is run on n processors; a speed-up
of n is said to be linear, as defined by Helmbold and Mc­
Dowell (1990). If the speed-up is greater than n we have

Parallel Simulator for Broadband Telecommunication Networks 1 3 7 1

I "
e o

1 '
B

C O G3E9 V

13 T

I
I P

. - ' V
d

SO »
Link Load (% of capacity)

Figure 4: Simulation times for the twelve-node net­
works of 150 and 600 Mbi t / s rings on twelve trans­
puters.

a o

2 - •

*D.

\ o
\

tl

- o - U0Mt3i)Bfc3

&0S9I 6.1

Null Message Ratio (NMR)

Figure 6: Speed-up as a function of NuLL-message
ratio. The difference between the two curves repre­
sents the extra parallelism that can be extracted f rom
the higher speed rings.

p

C O

i
U 9

U
C O

of

11

••if

• • e- -

. . a.. 600feCaefc

— t> - ISOMfailaA)-

— ©• — ISObttaoA -

Link Load (% of capacity)

1 ?

61 ••

©
1

0LOO1 - -

1 1

- o - ISO MtalA Bfcg

Link Load (% of capacity)

Figure 5: Speed-up for the 150 Mbit /s rings carrying
mixed mobile and voice traffic and the 600 Mbi t / s
rings carrying voice traffic only.

Figure 7: NuLL-message ratio (NMR) as a function of
load. As might be expected, the ratio is independent
of the ring speed.

1 3 7 2 Earnshaw and Hind

ouperlinear speed-up and, if the speed-up is less than n,
we have sub-linear opsed-up.

K

/ \ Tfuak Eaehaige
Local EgrivTipe
TtafScSsaics

Figure 8: Network topology used for the simulator
performance analysis runs. The basic processor as­
signments are also shown; a traffic source presents a
very small load to a processor so i t may be safely com­
bined with a local exchange without unduly affecting
the load balance.

The performance results given here are for the A T M
Network Simulator configured as shown in figure 8: the
letwork consists of four A T M exchanges in a fully-
onnected trunk network and eight 'local' exchanges each
I which is dual-parented onto two trunk exchanges; each

local exchange has two traffic generators. The exchanges
ere all running the Orwell ring protocol (see section 2).
wo sets of results were taken with differing switch ca-
acities and traffic mixes. In both cases the links were
unning at 150 Mbit/s and the propagation delay was set

;o 1 x 10"' s (equivalent to about 20 km of glass fibre,
r about 35 cells). The results for the lower traffic loads
ere taken using 150 Mbit/s Orwell rings for the switches
d with a mixture of voice and mobile traffic; the re­
ts for the higher loads used purely voice traffic and

ring speed of 600 Mbit/s. With the smaller capacity
tches the maximum link loading was about 15%, but

as increased to about 50% for the high-capacity rings,
wo single processor simulations were run for each load:
e with identical code to the multiprocessor version, the
optimized version; the other with the redundant multi-

[exers removed to speed message transfer, the optimized
rsion. In the following graphs, when the load is shown
is expressed as the average percentage of the capacity
a link.

Figure 4 shows the time taken to simulate the two mod­

els on twelve processors. The fact that the two curves do
not pass through the origin has two causes: the N U L L -
raeocage traffic for low loads and the overhead of simulat­
ing the ring slot-rotation action for the Orwell protocol.
That it is the latter that represents the largest factor can
be inferred from the fact that the NuLL-mecsage traffic
generated for each of the two curves is almost identical
for a given link loading (see figure 7) ; so if this was the
cause the two curves would cut the axis at the same point.

Figure 5 shows the speed-up of the simulator as a func­
tion of load. It shows, for the 150 Mbit/s rings, that even
for a load of just 15% of maximum capacity, the speed-up
is approaching the ideal linear value of 12 for the unop-
timized version, and is starting to level out at just over
10 when compared with the optimized version. The dif­
ference between the two curves represents the proportion
of the processing time that is taken up in switching the
messages from one processor to another. The speed-up
of the simulator relative to the unoptimized version can
also be estimated from the processor activity monitoring
of each of the transputers in use: the results from do­
ing this agree well with the upper curve shown. Figure 5
shows, for the 600 Mbit/s rings that in comparison with
the unoptimized single processor version the speed-up is
greater than 9 for all loads simulated, and for link loads
greater than 30% it is almost linear.

It can be seen from figure 6 that the speed-up degrades
gracefully with increasing NULL-message ratio; but, for­
tunately, as can be seen from figure 7 , the NuLt-message
ratio remains very low for a large range of the load.

A C K N O W L E D G E M E N T S

The authors would like to thank British Telecom Research
Laboratories and the Science and Engineering Research
Council for both their technical and financial support of
this work.

R E F E R E N C E S

3L Ltd, Parallel C User Guide, Version 2.1. Peel House,
Lady well, Livingston E H 54 6AG, Scotland, 1989.

J . L . Adams and R. M. Falconer, "Orwell: A Protocol for
Carrying Integrated Services on a Digital Communica­
tions Ring," Electronics Letters, vol. 20, pp. 970-971,
November 1984.

J . H. Blackstone Jr, G . L . Hogg, and D. T . Phillips, "A
Two-List Synchronization Procedure for Discrete Event
Simulation, 0 Communications of the ACM, vol. 24,
pp. 825-829, December 1981.

C C I T T : C O M X V I I I , 22S-E. Geneva, March 1984.
K . M. Chandy, V . Holmes, and J . Misra, "Distributed

Simulation of Networks," Computer Networks, vol. 3,
pp. 105-113, 1979.

K. M. Chandy and J . Misra, "Distributed Simulation: A
Case Study in Design and Verification of Distributed
Programs," IEEE Transactions on Software Engineer­
ing, vol. SE-5, pp. 440-452, September 1979.

Parallel Simulator for Broadband Telecommunication Networks 1 3 7 3

K. M. Chandy and J. Misra, "Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,"
Communication!) of the ACM, vol. 24, pp. 198-206,
April 1981.

J. Chauhan, T. King, aad A. C. Micallef, Specification
of the Orwell Protocol. British Telecom Laboratories,
Martlesham Heath, Ipswich, Suffolk, UK. IP5 7RE,
May 1990. Revision C.l(05/90).

R. T. Clarke, S. J. Nichols, and P. Mars, "Transputer-
based Simulation Tool for Performance Evaluation of
Wide Area Telecommunications Networks," Micropro­
cessors and Microsystems, vol. 13, pp. 173-178, April
1989.

R. W. Earnshaw and P. Mara, "Simulation of ATM Net­
works on Transputer Arrays," in Proceedings of the Sev­
enth IEE UK Teletraffic Symposium, pp. 1/1-1/5, April
1990.

R. W. Earnshaw and P. Mars, "Footprints for Mobile
Communications," in Proceedings of the Eighth IEE UK
Teletraffic Symposium, pp. 22/1-22/5, April 1991.

R. W. Earnshaw, Simulation of Packet- and Cell-based
Communication Networks. PhD thesis, University of
Durham, UK, May 1992.

R. M . Falconer, J . L. Adams, and G. M. Walley, °A Simul­
ation Study of the Cambridge Ring with Voice Traffic,"
British Telecom Technology Journal, vol. 3, April 1985.

R. M. Falconer and J. L. Adams, "Orwell: A Protocol for
an Integrated Services Local Network," British Telecom
Technology Journal, vol. 3, October 1985.

R. M. Fujimoto, "Parallel Discrete Event Simulation,"
Communications of the ACM, vol. 33, pp. 30-53, Oc­
tober 1990.

L. Gould, I . Bowler, and A. Purvis, "Real-Time, Multi-
Channel Digital Filtering on the Transputer," in Pro­
ceedings of the 1989 International Symposium on Com­
puter Architecture and Digital Signal Processing, 1989.

R. Handel and M. N. Huber, Integrated Broadband
Networks: An Introduction to ATM-based Networks.
Addison-Wesley, 1991.

D. P. Helmbold and C. E. McDowell, "Modeling Speedup
(n) Greater than n," IEEE Transactions on Parallel
and Distributed Systems, vol. 1, pp. 250-256, April
1990.

. Hind, "A Multiprocessor Testbed for Parallel Simul­
ation of Telecommunication Networks," technical re­
port, University of Durham (SEAS), December 1990.

. Hind, "Parallel Simulation for Performance Modelling
of Telecommunication Networks," in Proceedings of the
Eighth IEE UK Teletraffic Symposium, pp. 9/1-9/6,
April 1991.
T. Mouftah and R. T. Sturgeon, "Distributed Dis­

crete Event Simulation for Communications Networks,"
IEEE Journal on Selected Areas in Communications,
vol. 8, pp. 1723-1734, December 1991.
J. Nichols, Simulation and Analysis of Adaptive Route-
ing and Flow Control in Wide Area Communication
Networks. PhD thesis, University of Durham, UK,
March 1990.

S. Toueg and J. D. Ullraaa, "Deadlock-Free Packet
Switching Networks,0 in Proceedings of the ACM Sym­
posium on the Theory of Computing, Atlanta, Georgia,
pp. 89-98, May 1979.

A U T H O R B I O G R A P H I E S

Richard W. Earnshaw received the degree of B.Sc. in Ap­
plied Physics from the University of Durham, UK, in 1987
and the degree of Ph.D. from the University of Durham,
UK, in June 1992. His research interests include perfor­
mance engineering of telecommunication networks, partic­
ularly broadband ISDN and mobile systems, and parallel
discrete event simulation. He is currently a Research As­
sistant in the Computing Laboratory at the University of
Cambridge, UK, where he is engaged on the Fairisle fast
packet switching project.

Alan Hind received the B.Sc. degree in Electronic Com­
munications from the University of Salford, UK, in 1982.
He is currently the British Telecom Research Fellow in
Parallel Simulation in the School of Engineering and Com­
puter Science at the University of Durham, UK. His re­
search interests include parallel discrete event simulation
and the performance engineering of telecommunication
networks. He is a member of the Institute of Electrical
and Electronic Engineering, the Association of Comput­
ing Machinery and the Society for Computer Simulation
and an associate member of the Institute of Electrical En­
gineers in the UK.

Perforaainice o f paraBkl §5mnmiiBator§ f o r A T M iraettw©irlks„

Johini MdEor and Aflara Hind
Telecommumicffltion Networks Research Group

University of Durham, UK.

Abstract

Recent work has concentrated on the use of parallel processing to achieve high speed
simulation of Asynchronous Transfer Mode (ATM) networks. Initially a model for a
network of ATM switches based upon the Orwell ring was developed. Near linear
speed up of processing with the addition of further processors was achieved through
the exploitation of physical network parameters during the design of the
synchronisation mechanism. This technology was then applied to a burst level ATM
simulator. The implementation of a conservative synchronisation scheme and the
mapping of B-ISDN functions to the parallel discrete event simulator have been
achieved through the design of a layered modular architecture.

Introduction

The performance evaluation of telecommunication networks becomes analytically
intractable as the complexity of the network increases and transient conditions are
investigated. Conventional sequential simulations suffer from excessive processing
time which is required to gather sufficient data to achieve the required degree of
confidence. These problems increase as the size, complexity and traffic intensity of the
network increases and as behaviour of interest to the performance engineer such as
component failure is modelled in greater detail. The network is modelled by multiple
queues and servers operating concurrently. One approach to speeding up the
simulation in this parallel environment is to use a multiprocessor array as the
simulation engine.

The multiprocessor architecture described in this paper was initially developed to
study, at the cell level, the detailed operation of switch behaviour, network behaviour
and particularly the integration of mobile communication protocols into the
Broadband environment [7].

A research programme funded by the European Commission for Research in
Advanced Communication technologies in Europe (RACE) was charged with the
development of an ATM simulator. The RACE simulator was designed to operate at
the burst level to further speed up the simulation process [13]. Near real time
generation of results and interfacing to other projects would provide an ATM network
emulator. It incorporates features reflecting the growing understanding in the
Telecommunication Management Network (TMN) community of the likely
functioning of the Broadband Integrated Services Digital Network (B-ISDN). It may
be used to prove implementation issues such as the performance improvement in
switch processing that accrues from the use of virtual paths (VP).

The issues of parallel simulation have been widely studied. The hardware architecture,
the decomposition of the model to produce the parallel software processes, mapping
the processes onto the processors and the synchronisation have been reviewed by
Mouftah and Sturgeon [15] and by Hind [11]. A general review of parallel simulation
is provided by Fujimoto and Nicoi [9].

8/1

SimuBator Architecture

The general architecture chosen for the two simulators is basically similar. The
techniques were initially proved using networks of Orwell rings [1], [8] and toruses to
model a B-ISDN network at the cell level. Background information on ATM networks
and cell structure can be found in the books by Handel and Huber [10] and by Prycker
[17]. At the burst level of the RACE simulator there is no need to model the detailed
operation of the switch. This provides opportunities to investigate higher level issues
such as call acceptance functions and network management.

The simulators consist of multiprocessor simulation engines, a layered software
architecture which includes the messaging system and synchronisation, and a host
computer for user interaction.

Simulation engine.

The ATM simulation engine consists of a network of Inmos transputers. This was
initially developed as a high speed circuit-switched network simulator with code
written in OCCAM, and later as a traditional packet-switched simulator [3] . The
testbed consists of up to 31 transputers each with 16 Mbytes of memory. The results
given for the cell level simulator used 13 T800 processors, one with 16 Mbytes and
the others with 1 Mbyte. The testbed has a double layer of cross-point link switches
which enables the network to be configured in any arbitrary topology so that the
system being simulated can be mapped closely onto the processor network. This also
means that the path length for message passing is kept to a minimum; there is no
shared memory in the system.

A requirement for the RACE simulator was that it use commercially available and
supported components. The transputer arrays chosen for use in Sun and PC
workstations had less flexible connectivity but the arrays were smaller and the
messaging system was designed to achieve virtual full connectivity without the need
to physically reconfigure switches. The transputer is an ideal building block for
distributed memory multiprocessors employing message passing. It has hardware
support for multitasking, concurrency and communications.

Software architecture

Commercially available software ranges from general purpose simulation languages to
specific network simulation packages. The general purpose languages provide great
flexibility but consume large computing resources. The network packages are often
built from general purpose languages (and hence consume large amounts of
computing resource) and were found to have insufficient flexibility for our purposes.
The simulators were written using standard compilers. A graphical user interface was
provided for the RACE simulator to enhance 'ease of use'.

The simulators have been structured in a hierarchical manner. Functionality has been
separated into layers with each layer building upon the abstraction of the layer below.
The lowest layer consists of the physical links between the transputers. These links are
reconfigurable but are set to a given topology at the start of each simulation. Above
this is a multiplexor task. This runs on each processor and provides the abstraction of
virtual channels between each task regardless of where they are in the processor
network. The multiplexor provides message buffering, routeing, and a virtual topology
configuration that matches the simulated network. The cell level simulator contains a
simple packetizer layer that reduces the communication overhead by collecting cells
into larger and more efficient packets.

In the RACE simulator a processing node will typically host one or more simulated
network nodes The simulated network nodes consist of several processes and are

3/2

programmed during the initial configuration to represent switches, sources, network
management, sinks and loop-back nodes.

The synchronisation layer time stamps each message on despatch and uses this at the
receiver to maintain synchronisation. For control and diagnostic messages this layer
can be bypassed. An event manager for each node schedules the components of the
simulation model. A full description of the ATM cell level simulator is given in [5],
[6], and for the RACE simulator in [14].

Symcltsiroiniisattioe

Time in a discrete-event simulator is advanced upon the execution of each task from
the event list. The aim is for the simulation to move forward monotonically in time by
selecting the event that is the least distance into the future. The simulation of the event
will generate zero or more further events for execution at some time in the future.

I f a single event list is maintained no synchronisation is required although
management of the list can be a problem. For distributed simulation the event list is
maintained local to each processor and synchronisation is required to avoid causality
errors. Conservative synchronisation avoids causality error by only processing the
current event when there is certainty that no other event could affect it. There is a
possibility that the system could deadlock by waiting indefinitely until it is safe to
proceed.

Optimistic synchronisation proceeds with the local event list until a causality error
occurs at which point a rollback scheme is implemented to recover from the error. A
fuller explanation of these terms can be found in Fujimoto and Nicol [9].

A conservative approach was chosen because it gives good performance with sparsely
connected systems which have less opportunity for deadlock. Null messages are used
to avoid deadlock in the Chandy-Misra [2], [16] conservative scheme. These indicate
to connected processors that no event wil l arrive with a time stamp less than that of the
null message. Significant lookahead was possible because of the propagation delays of
an ATM network. This allowed greater concurrency to be achieved with fewer null
messages. It has also been shown analytically and in practice that the scheme is
deadlock free [4].

Performance of the cell level simulator

The performance of the cell level simulator has been determined from results gathered
during production runs. A useful network topology was constructed, a warm up period
was allowed before gathering results and the simulation run was long enough for the
statistics gathered to be significant. The results were used to validate the simulator,
examine the performance of the Orwell switches and verify the operation of the
protocol developed to manage mobile voice traffic on the network [7].

The speed-up of the cell level simulator relative to a single processor is shown as a
function of load in figure 1. In all the figures, traffic load is expressed as the average
percentage of the capacity of a single link. For the 600 Mbit/s rings the speed-up is
almost linear with link loads of greater than 30%. This shows that the communication
overheads in the parallel simulator are effectively hidden and that the synchronisation
method is very efficient.

Figure 2 shows that the speed-up degrades gracefully as the null message ratio (NMR)
is increased; fortunately the null message ratio remains low for a large range of the
link load as can be seen in figure 3.

3/3

Further performance measurements were taken using symmetrical distances between
switches of 2 km, 20 km and 200 km; and using a UK national network. The national
network has the same topology but the inter-switch distances range from 51 km to 343
km and the source to switch distances from 0.5 km to 7.5 km. The national network
thus has asymmetric propagation delays and lookahead. These measurements were
repeated with an asymmetric traffic pattern; half of the sources transmitted and
received at twice the rate of the other half. The network average load was 28.27%.

These experiments showed that lookahead was the key factor in speed-up. Figure 4
shows a large increase in speed-up between 2 km and 20 km, with a further smaller
increase between 20 km and 200 km. The speed-up for the national network was
comparatively low. Further results show that the number of null messages required
becomes large when the lookahead is low and this reduces the speed-up (figure 5).

RACE simulator features

Following the encouraging preliminary results from the Durham cell level simulator,
it was decided to utilise a similar architecture for the RACE simulator. A coarser
granularity of simulation was decided upon and a burst level was used for the traffic.
The simulator was targeted at several different users and this required a robust
modular construction so that different models and synchronisation schemes,
developed by different partners, could be used in particular configurations.

The programmable burst generator can be configured to represent one of the following
traffic profiles:

PCM coded telephony at 64 kbps leading to 171 cells per second.

Tasi coded telephony talk spurts of 32 kbps exponentially distributed with a mean
of 0.35 sec, and silence of 0 kbps exponentially distributed with a mean of 0.65
sec.

File transfer modelled as a call that consists of one or more bursts. In the case of
more than one burst the burst length and time between bursts are exponentially
distributed. The bit rate for these bursts is user selectable.

Video traffic is modelled as either one way as in video broadcast or two way as in
video conferencing. A separate PCM telephone connection may be used for sound.
The picture is characterised by bursts of 0.04 sec. duration with a mean bit rate of
22 Mbps and a maximum rate of 78 Mbps. In a three party conference there will
be six video and six sound connections to the conferencing node.

All messages between concurrent processes, whether they are on the same transputer
or not, are required to pass through a kernel, to simplify messaging and
synchronisation. The kernel orders task execution according to simulation needs. The
flow control mechanism has to ensure two things: first that the routeing can operate
with a finite number of buffers, i e. a fixed amount of memory (deadlock free); and
second that all messages will eventually be delivered, regardless of other traffic
(livelock free).

The RACE simulator thus has a highly structured hierarchy and parallelism is mainly
achieved through the kernel module. The other modules such as traffic profiles and
generation, burst processing in the switches and network management are C
programmes developed and tested in a conventional serial manner. Conversion to the
parallel environment often requires only minor changes such that a high degree of
confidence about the correct functioning of the module is gained before it is run on the
transputers.

S/4

Burst level processing allows the RACE simulator to generate results faster than real
time. However events of interest to network management occur infrequently in a well
designed B-ISDN due to the low bit error rate and general capabilities of the network.
Further speedup in the generation of events is achieved by abnormally loading the
network and setting call acceptance parameters so that they do not reject any calls.
This leads to buffer overflow and cell loss. Extensive work on the effects of scaling
has been conducted by Kesidis and Walrand [12] to show that when carefully applied
it can give a good indication of the likely performance of a real network.

ComiclaJiSDOinis

The results show that, when carefully optimised for a particular task, parallel
simulation can provide significant advantages. The results for the production runs with
the cell based simulator being particularly good. The RACE simulator was an
ambitious project built using software modules from different parties. The overhead
required to ensure encapsulation and interworking of the modules means that the
simulator hasn't reached its potential. Sequential simulators at Durham University
providing equivalent functionality currently outperform the parallel RACE simulator.

The transputer has been surpassed in terms of raw processing power by newer
microprocessors and certainly for less detailed simulations it is preferable to use single
sequential processors rather than transputer arrays. The attraction of a scaleable
parallel processing environment remains for high speed processing, however. Newer
processors are being equipped with features to support parallel operation.
Alternatively hybrid combinations of powerful processors with transputers for
messaging are possible. Inmos are seeking to redress the balance with the introduction
of the T9000, however we await delivery of the processor at the moment.

The approaches outlined in this paper have lead to the production of simulators that
can produce results faster than real time (depending on level of detail). The flow of
execution in the parallel processors is controlled by completion of communications
without the need for polling and interrupts which would add further processing
overheads and delay. The simulators have been used to assess the performance of
ATM switches, networks, call handling procedures and protocols for mobile
operation.

References

[1] Adams, J. L., and Falconer, R. M. 'Orwell; a protocol for carrying integrated
services on a digital communications ring'. Electronics Letters 20, 3
(November 1984), 970-971.

[2] Chandy K. M. and Misra J. 'Asynchronous distributed simulation via a
sequence of parallel computations.' Communications of the ACM 24, 4 (April
1981), 198-206.

[3] Clarke R. T., Nichols S. J. and Mars, P. 'A transputer-based simulation tool for
performance evaluation of wide area telecommunications networks.'
Microprocessors and Microsystems 13, 3 (April 1989), 173-178

[4] Earnshaw R. W. 'Simulation of Packet- and Cell-based Communication
Networks.' PhD Thesis, University of Durham, UK, May 1992.

[5] Earnshaw R W and Hind, A. 'A parallel simulator for performance modelling
of broadband telecommunication networks.' In proceedings of the Winter
Simulation Conference (1992), 1365-1373.

3/5

Earnshaw R. W. and Mars P. 'Simulation of ATM networks on transputer
arrays.' In Proceedings of the Eighth IEE UK Teletraffic Symposium (April
1991), 1/1-1/5.

Earnshaw R. W. and Mars P. 'Footprints for mobile communications.' In
Proceedings of the Eiahth IEE UK Teletraffic Symposium (April 1991), 22/1-
22/5.

Falconer R. M. and Adams J. L. 'Orwell; a protocol for an integrated services
local network.1 British Telecom Technology Journal 3, 4 (October 1985).

Fujimoto R. M. and Nicol D. 'State of the art in parallel simulation.' In
proceedings of the Winter Simulation Conference (1992), 246-254.

Handel R. and Huber M. N. 'Integrated Broadband Networks, an introduction
to ATM-based Networks.' Addison-Wesley, 1991.

Hind A. 'Overview: Parallel simulation techniques for telecommunication
network modelling.' in Proceedings of the Ninth IEE UK Teletraffic
Symposium (April 1992), 9/1-9/6.

Kesidis G. and Walrand J. 'Large deviations of traffic in high speed digital
networks with a view towards network control', EECS, University of
California, Berkeley, 1991.

Mellor J. 'A high speed simulation engine for BISDN' In proceedings of 3rd
Bangor Communications Symposium, May 1991, 219-224.

Mellor J., Chen J. R. and Hansen M. 'Simulation support for the management
network' In proceedings of the 6th RACE TMN Conference, 1992.

Mouftah H T. and Sturgeon R. T. 'Distributed discrete event simulation for
communications networks' IEEE Journal on Selected Areas in
Communications 8, 9 (December 1991), 1723-1734.

Reynolds P. F. 'A spectrum of options for parallel simulation' In proceedings
of the 1988 Winter Simulation Conference.

Prvcker M. D.. Ed. 'Asynchronous Transfer Mode, solution for Broadband
ISDN' Ellis Horwood, 1990.

8/6

C
5.

% -3
\a

o
•/-I

1

1
0 eg

z

c ©
Si

a
2 o o

(u)§ 'dn-paadg

= c

= 1
8 I

__ o

\
\

\ \
\ \
\ \

o

o

o

u a a. a o
s

M
o

J
J< e

.. o

e £
•2 S
a I
c •

^ ^ o -

(u)s 'dn-paads 5 I-

.Q / 7

•5

1 5 lio
i

ym
i

rs >
2 UJ z <
0 0

"
20

0
km

Ev

en
 E g

i t
6
1

D

E i

1

1
<

E 5 l l
•ts >
1

r J <

I

1
0

4 \
\

X

\

\

-I i ifll
o
o _££l_

o (3

©

o e

O

£ 2

*1

(u)s 'dn-paadg

a.
«

•a a o

o

o d c d
(«WN) °HBH aSnssa^ nnfyj

5 / 5

— o- - 2km — 20 km — ° - 200 km • " ° - " National
Even Even Even Even

° 2km A 20 km D 200 km 0 National
Asymm. Asymm. Asymm. Asymm.

o

0.1

\
\

\

si

3
2

0.01 —

0.001 —

0.0001

•o .
•o .

— - ©

-o - .
- -o .

0

\

\

\ \

\
\

\

\

H

-o - - . • - -o

-15

10 20 30

Link Load (% of capacity)

40 50

Figure 5: NULL message ratio (NMR) as a function of load for a range of lookahead values and symmetric
asymmetric traffic patterns.

