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Abstract
In this paper, we introduce the first verification method which is able to provide weakly-hard
real-time guarantees for tasks and task chains in systems with multiple resources under parti-
tioned scheduling with fixed priorities. Existing weakly-hard real-time verification techniques are
restricted today to systems with a single resource. A weakly-hard real-time guarantee specifies
an upper bound on the maximum number m of deadline misses of a task in a sequence of k
consecutive executions. Such a guarantee is useful if a task can experience a bounded number of
deadline misses without impacting the system mission. We present our verification method in the
context of switched networks with traffic streams between nodes, and demonstrate its practical
applicability in an automotive case study.
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1 Introduction

Modern embedded systems often have a distributed hardware platform, where the individual
processing resources are linked by data buses or switched networks. A software application,
which is mapped to such a platform, consists of a set of communicating tasks and has often
to provide results within a limited response time. Timely communication between sender
and receiver tasks is therefore a critical aspect in design and verification. In this paper, we
concentrate on the timing behavior of traffic streams in switched networks like Switched
Ethernet. By traffic stream we understand an infinite sequence of data transmissions between
a sender and a receiver node of the network.
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15:2 Verifying Weakly-Hard Real-Time Properties of Traffic Streams

If the classical hard real-time paradigm is applied to a traffic stream, then the duration of
a data transmission over the network must not violate a given end-to-end deadline. However,
with increasing functionality and growing bandwidth demand of data transmission in modern
embedded systems in the automotive or industrial domain, it becomes more and more difficult
to fulfill the end-to-end deadlines of all traffic streams in unfavorable scheduling scenarios. A
promising option is the shift to the weakly-hard real-time paradigm [1] which relaxes these
timing requirements. Here a traffic stream is feasible from a timing perspective, if it does
not exceed a certain budget of end-to-end deadline misses. For instance, a traffic stream may
not miss more than m end-to-end deadlines in any k consecutive transmissions. The traffic
stream is said to be (m, k)-constrained.

The practical justification of weakly-hard real-time paradigm in the context of communic-
ation builds on the observed robustness of many real-time software systems. In the field of
image processing, a late transmission may result in a skipped frame. Given that the number
and distribution of frame skips is appropriately bounded, it will not be noticeable to the
human eye. In the field of control, an end-to-end deadline miss may cause the calculation of
the control law to fail at time instant k so that no new control input is sent to the actuator
at this instant. Several works could show that under given (m, k)-constraints the required
control performance could be maintained [15] [9] [8] . Blind et al. [2] could show stability
in the classical sense of Lyapunov for a networked control system, where the network is
unreliable in the (m,k)-sense.

So far, verification techniques have been developed which allow to derive (m, k)-guarantees
for tasks which are executed on a system with a single service-providing resource. A switched
network, however, comprises several service-providing resources as detailed in Section 2.
In this paper, we therefore provide a compositional verification method which is able to
provide (m,k)-guarantees for multi-resource problems. The main challenge in extending an
existing (m,k)-verification method to the multi-resource setting is to deal with inter-resource
dependencies. Our approach builds on both
1. Compositional Performance Analysis (CPA). CPA [11] is a compositional framework to

verify classical hard real-time properties, e.g., worst case response times. It deals with
inter-resource dependencies by the formulation of a fixed-point problem.

2. Typical Worst Case Analysis (TWCA) TWCA [21] is one of the existing (m,k)-verification
techniques for single resource systems.

We adapt and extend CPA and TWCA, calling the resulting procedure TypicalCPA. The
paper is structured as follows. We begin by defining our system model, and then introduce
the CPA approach. We continue by explaining the basic principle of TWCA, and reason how
CPA and TWCA can be coupled. Finally, we perform and discuss experiments. An overview
of related work is given before the conclusion.

2 Network Model

The system model represents a real-time network setting with unicast, multicast and broadcast
streams and is depicted in Figure 1. The scope of the model includes, for instance, Switched
Ethernet but is not limited to it. The main components of the network model are switches
and nodes. A pair of nodes may communicate by sending frames over the network which
are forwarded by the switches using appropriate output ports. The service of output ports
for frame transmission is scarce and has to be arbitrated according to a static priority
non-preemptive (SPNP) scheduling policy. The output ports therefore represent the service-
providing resources Rk in the system [6].
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An infinite sequence of frames between a source node and 1 [a subset of resp. all]
destination node(s) is called a unicast [multicast resp. broadcast] stream. A unicast [multicast
resp. broadcast] stream si is modeled as a linear [forked] chain of N tasks, where each task
represents a hop in the route and is mapped to the output port of the respective switch. We
call the set of N tasks contained in the stream si Tsi

= {τi,1, τi,2, . . . τi,N} and define the
respective precedence constraints, e.g. for a unicast stream as τi,1 ≺ τi,2 ≺ . . . ≺ τi,N . The
first task in the stream si, is activated by an external event source. All successor tasks are
activated by the termination events of their respective predecessor task in the chain. Each
task τi,j in stream si has a non-unique priority pi. The best case execution time (BCET)
resp. worst case execution time (WCET) of task τi,j , denoted as C−i,j resp. C

+
i,j , represents

the minimum resp. maximum frame delay in the switch plus the constant wire transmission
time, and is independent of other traffic in the network. Dynamic delays resulting from
contention at the switch output ports are considered in the response time computation of
tasks. The maximum response time of a task τi,j is constrained by the relative deadline
di,j , while the maximum network traversal time w.r.t. a stream si should not exceed the
end-to-end deadline Di =

∑
j di,j .

We describe the occurrence of activation events over time w.r.t. a task τi,j by the concept
of event flows as well as by minimum and maximum event models.

I Definition 1 (Event flow). An event flow ei,j(t) is a function which returns the number of
events which activate task τi,j within the time interval [0, t) in a given execution run.

I Definition 2 (Event model). The minimum and maximum event models η−i,j(∆t) and
η+
i,j(∆t) indicate a lower and upper bound, respectively, on the number of activation events
for task τi,j in any time interval [t, t + ∆t). Any event flow ei,j(t) of task τi,j is therefore
constrained by

∀t1, t2 : t1 ≤ t2 : η−i,j(t2 − t1) ≤ ei,j(t2)− ei,j(t1) ≤ η+
i,j(t2 − t1).

If convenient, we also use the pseudo-inverses of event models, i.e., the event distance
functions. The event distance function δ−i,j(n) [δ+

i,j(n)] is the pseudo-inverse of event model
η+
i,j(∆t) [η−i,j(∆t)].

I Definition 3 (Event distance functions). The minimum and maximum distance functions
δ−i,j(n) and δ+

i,j(n) indicate a lower and upper bound, respectively, on the temporal distance
between the first and the last event of a sequence of n activation events for task τi,j . For the
special case n ∈ {0, 1}, the definition δ−i,j(n) = δ+

i,j(n) = 0 applies.

3 Compositional Performance Analysis

CPA [11] is a verification framework which derives lower and upper bounds on the timing
properties of distributed real-time software systems with partitioned scheduling. Computed
timing properties include in particular the best case response times (BCRTs) and worst case
response times (WCRTs) of tasks. CPA is implemented in Python as pyCPA [4], the basic
libraries of pyCPA are available on-line [5]. The CPA method breaks the verification problem
down into a set of local, i.e. resource-related, analysis problems. A subsequent analysis step
then relates the local verification problems such that inter-resource dependencies are taken
into account and a global fixed point problem is formulated.

I Definition 4 (Attributes local & global). The attribute «local» refers to parameters,
properties etc. of a specific resource Rk and the associated (mapped) task set TRk

.
The attribute «global» refers, on the contrary, to parameters, properties etc. of the processing
platform P =

⋃
k Rk and the entire task set T =

⋃
k TRk

.

ECRTS 2018
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Figure 1 Network model. The figure illustrates a network with six nodes and two switches. The
output ports of a switch are named after the points of the compass. Four exemplary unicast streams
are represented.

3.1 Local Analysis
The local analysis focuses on the isolated resource Rk and derives the timing properties of
the associated task set TRk

. The analysis objective is in particular to compute (a) the BCRT
and WCRT for each task τi,j ∈ TRk

, and (b) the output event model of each task τi,j ∈ TRk
.

Port E
scope of local analysis

input event models: output event models:

Figure 2 Scope and interface of the local CPA. The figure shows as an example the output port
E of switch 1 with mapped tasks.

3.1.1 Computation of Response Times
In the following, we very briefly sketch the response time analysis for a task τi,j which is
mapped to an SPNP-scheduled resource Rk. For a detailed presentation, please refer to [7].
To find the WCRT of task τi,j , a scheduling scenario has to be known which induces the
longest response time of task τi,j . This worst case scenario is often called the maximum
level-τi,j busy period. It is known to start if τi,j ∪hsp(τi,j)1are activated synchronously and a

1 We use hsp(τi,j) to denote the set of tasks which have higher or same priority than task τi,j ∈ TRk

and are mapped to the same resource Rk. Likewise we write lp(τi,j) to denote the set of tasks which
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task in lp(τi,j), which has just been activated before, causes the maximum blocking delay [3].
It closes as soon as the resource becomes idle w.r.t. τi,j and hsp(τi,j)-tasks. The processing
behavior of task τi,j within the maximum level-τi,j busy period can be described by the so
called multiple event busy times B+

i,j(q).

I Definition 5. The maximum q-event busy time B+
i,j(q) indicates the processing time of q

consecutive activation events of task τi,j within the maximum level-τi,j busy period. B+
i,j(q)

always starts with the beginning of the maximum level-τi,j busy period [17].

The busy times B+
i,j(q) depend on the input event models and WCETs of the tasks TRk

. It
has been shown that the WCRT R+

i,j of task τi,j is among its response times in the maximum
level-τi,j busy period, such that we can write

R+
i,j = max

1≤q≤Ki,j

{
B+
i,j(q)− δ

−
i,j(q)

}
(1)

where Ki,j is the maximum number of jobs of task τi,j contained in the maximum level-τi,j
busy period. The BCRT of task τi,j can be approximated by its BCET R−i,j = C−i,j .

3.1.2 Computation of Output Event Distance Functions and Output
Event Models

The local analysis problems are linked because precedence relations extend over tasks on
different resources as illustrated in Figure 1. According to the synchronous task chain
semantics, a termination event of a task τi,j is interpreted as an activation event by the
successor task τi,j+1. This interaction between tasks τi,j and τi,j+1 can be quantified by
the distance functions δ+

i,j+1(n) resp. δ−i,j+1(n) indicating the maximum resp. minimum
number of distance between any n consecutive termination events of task τi,j or, equivalently,
activation events of task τi,j+1. Firstly, let us present safe, easy-to-interpret bounds for the
distance functions with n ≥ 2 using the jitter method [16]

δ−i,j+1(n) ≥ max
{

(n− 1) · C−i,j , δ
−
i,j(n)− J+

i,j

}
(2)

δ+
i,j+1(n) ≤ δ+

i,j(n) + J+
i,j (3)

Eq. 2 expresses that, in the worst case, n termination events at the output of task τi,j are
closer by the maximum response time jitter J+

i,j = R+
i,j − R

−
i,j than n activation events at

the input of the same task. Also, the density of activation events increases with every stage
of the task chain due to the accumulation of response jitter. Eq. 3 describes that, in the
best case, the distance of n termination events grows with every stage of a task chain by the
jitter J+

i,j . Secondly, we introduce more accurate but less intuitive bounds which have been
derived in [18] (busy window method)

δ−i,j+1(n) ≥max{B−i,j(n− 1), min
1≤q≤q+

i,j

{
δ−i,j(n+ q − 1)−B+

i,j(q)
}

+B−i,j(1)} (4)

δ+
i,j+1(n) ≤ max

1≤q≤q+
i

{
δ+
i,j(n− q + 1) +B+

i,j(q)
}
−B−i,j(1)}. (5)

According to the rules of network calculus [12], the event distance function δ−i,j+1(n) resp.
δ+
i,j+1(n) can even be more improved in accuracy if replaced by its superadditive closure

have lower priority than task τi,j ∈ TRk
and are mapped to the same resource Rk.

ECRTS 2018
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δ̄−i,j+1(n) resp. subadditive closure δ̄+
i,j+1(n). In the following, we continue to write δ−i,j+1(n)

resp. δ+
i,j+1(n) (without bar) stating explicitly when we make use of the superadditivity

property (δ−i,j+1(m+ n) ≥ δ−i,j+1(m) + δ−i,j+1(n)) or subadditivity property (δ+
i,j+1(m+ n) ≤

δ+
i,j+1(m) + δ+

i,j+1(n)). Note again that the output event models η+
i,j+1(∆t), η−i,j+1(∆t) can

be obtained from the output event distance functions by pseudo-inversion.

It is desirable for efficiency reasons to have a finite representation of event distance
functions, meaning that it is possible to construct the event distance functions for every n
on the basis of a limited number of l known points. This can be achieved by approximat-
ing δ−i,j+1(n), δ+

i,j+1(n) by bounds with a repetitive behavior. The approximation is very
acceptable with regard to accuracy, if the repetition period is chosen large enough. In the
particular context of this paper, repetitive bounds restrict the value range that needs to be
processed by the algorithm given in Theorem 23. We concentrate in the following on δ−(n)
and its pseudo-inverse η+(∆), but analogous rules can be applied to δ+(n) and η−(∆).

I Lemma 6 (Repetitive extension of an event distance function). Given the superadditive event
distance function δ−(n) for 1 ≤ n ≤ l, an l-repetitive extension δ̂−(n) is defined by

δ̂−(n) =
{

0 for 0 ≤ n ≤ 1⌊
n−2
l

⌋
· δ−(l) + δ−(n−

⌊
n−2
l

⌋
· l) for n ≥ 2.

.

The l-repetitive extension δ̂−(n) is a lower bound for δ−(n), s.t. ∀n : δ̂−(n) ≤ δ−(n).

Proof. We have δ̂−(n) = δ−(n) = 0 for n ∈ {0, 1}, and δ̂−(n) = δ−(n) for 2 ≤ n ≤ l + 2.
For n > l + 2, we make use of the superadditivity property δ−(n1) + δ−(n2) ≤ δ−(n1 + n2)
and set x =

⌊
n−2
l

⌋
: δ̂−(n) = x · δ−(l) + δ−(n− x · l) ≤ δ−(x · l) + δ−(n− x · l) ≤ δ−(n). J

I Lemma 7 (Repetitive extension of an event model). Given the subadditive event model
function η+(∆t), a T -repetitive extension η̂+

l (∆t) is defined by

η̂+
l (∆t) =

⌊
∆t
T

⌋
· η+(T ) + η+(∆t−

⌊
∆t
T

⌋
· T ).

If δ̂−(n) is l-repetitive, then its pseudo-inverse η̂+
l (∆t) must be T = δ̂−(l)-repetitive.

Proof. This results from the symmetry of function inversion. J

3.2 Global Analysis
The global analysis now couples the local analysis problems according to the following iterative
procedure, which is also depicted in Figure 3 (box entitled “original CPA”). Firstly, each
header task of a stream τi,1 has a known activation behavior bounded by η−i,1(∆t), η+

i,1(∆t)
and imposed by external event sources. Since initially no event models are available for
successor tasks in the stream, i.e. for τi,j with j > 1, they are initialized with the event model
assigned to the header task τi,1. The local analysis is then performed for each resource, such
that response time bounds and output event models are obtained. The computed output
event models are then propagated to the direct successor tasks, where they are interpreted as
input event models. The local analysis is then repeated with the updated event models. If
all propagated event models are identical to the event models used in the previous analysis
run, a global fixed point is reached and the analysis terminates.
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Derive initial input event models

Perform local analysis

Compare computed output event 
models with those from the 
previous iteration. Convergence? 

Propagate
Output Event Models

yes

no

Output final analysis results:
 BCRT and WCRT
 converged event models

Perform 
local
TWCA

Perform 
local
TWCA

Perform 
local
TWCA

Perform local analysis
Perform local analysis

original CPA

TWCA

typicalCPA

Derive initial typical input event models

Perform local analysis

Compare computed output event 
models with those from the 
previous iteration. Convergence? 

Propagate
Output Event Models

yes

no

Output final analysis results:
 typical BCRT and WCRT
 converged typical event models

Perform local analysis
Perform local analysis

CPA

Perform 
local
TWCA

Perform 
local
TWCA

Derive 
overload 
event 
models

extended CPA

Figure 3 TypicalCPA. The extended CPA also derives typical and overload event models as
detailed in Section 5, which are then processed by a TWCA for each component. New or adapted
elements of CPA and TWCA are marked in red.

4 Typical Worst Case Analysis

Typical Worst Case Analysis (TWCA) models and analyzes systems with a single service-
providing resource Rk under transient overload conditions. It provides weakly-hard real-time
guarantees for tasks TRk

. In this section, we firstly present which extensions to the CPA
system model presented in Section 2 are necessary to apply TWCA. Then the TWCA
procedure is introduced together with a needed generalization of a schedulability criterion.

4.1 Extended System Model

The system model of CPA presented in Section 2 is a subset of the TWCA system model.
The important extension of the CPA model by TWCA is that each task τi,j may be activated
by events of two distinct classes, namely by typical and overload events. The idea is that
in the exclusive presence of typical events, the task set TRk

is schedulable. In contrast, the
supplementary overload events are a potential cause for transient overload.

ECRTS 2018
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Port E
scope of TWCA

input event models: output event models:

Figure 4 Scope and interface of TWCA.

I Definition 8 (Local typical worst case). If every task τi,j ∈ TRk
is only activated by typical

events, then the task set TRk
is schedulable even in the most unfavorable scheduling scenario

(local typical worst case).

I Definition 9 (Local worst case). If every task τi,j ∈ TRk
is activated by both typical and

overload events, then in the most unfavorable scheduling scenario (local worst case) the task
set TRk

is possibly unschedulable.

The occurrence of typical or overload activation events over time w.r.t. a task τi,j is also
modeled by the concept of event flows, while the minimum and maximum frequency of typical
and overload event arrival is described by event models. The corresponding definitions are
given below, while Figure 4 shows the extended system model with the additional event
models.

I Definition 10 (Typical and overload event flows). A typical event flow e
(t)
i,j (t), resp. overload

event flow e
(o)
i,j (t), is a function which returns the number of typical, resp. overload, events

which activate task τi,j within the time interval [0, t) in a given execution run.

I Definition 11 (Typical and overload event models). The event models η−,(t)i,j (∆t), η+,(t)
i,j (∆t),

resp. η−,(o)i,j (∆t), η+,(o)
i,j (∆t), indicate a lower and an upper bound on the number of typical,

resp. overload, events which activate task τi,j within ∆t.

I Definition 12 (Decomposition). Any observed event flow of task τi,j which satisfies the
lower and upper bounds η−i,j(∆t), η

+
i,j(∆t) can be partitioned in

(1) an event flow of typical events satisfying η−,(t)i,j (∆t), η+,(t)
i,j (∆t) and

(2) an event flow of overload events satisfying η−,(o)i,j (∆t), η+,(o)
i,j (∆t).

This implies that the maximum event model η+
i,j(∆t) is decomposable, s.t. η+

i,j(∆t) ≤
η

+,(t)
i,j (∆t) + η

+,(o)
i,j (∆t). If η+

i,j(∆t) = η
+,(t)
i,j (∆t) + η

+,(o)
i,j (∆t) holds, then the maximum event

model is said to be exactly decomposable. Please refer for illustration to Figure 5c.

The intuition related to the system model is that a computing platform may be designed
to provide sufficient processing service for a typical workload. For instance, if all tasks have
a periodic (= typical) activation pattern, then the task set is schedulable. If, however, some
tasks experience additional sporadic (= overload) activations, then the task set may become
unschedulable in unfavorable scheduling scenarios.
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4.2 Basic Procedure
The objective of TWCA is to determine weakly-hard real-time guarantees for all tasks in the
task set. More precisely, a deadline miss model (DMM) is obtained for every task τi,j ∈ TRk

.

I Definition 13 (Deadline miss model). A deadline miss model for a task τi,j is a function
dmmi,j : N→ N with the property that out of any k consecutive jobs of task τi,j , at most
dmmi,j(k) might miss their deadline di,j .

To compute dmmi,j(k) under SPNP scheduling, TWCA quantifies the impact of overload
activations. We summarize the procedure in the following steps.
1. Firstly TWCA derives the maximum impact which a single overload activation of a task

τm,n ∈ hsp(τi,j) can have on the task τi,j . The impact is counted by the maximum
number jobs of task τi,j which can miss their deadline due to this overload activation,
and is denoted as Ni,j .

2. It is computed how many overload activations of task τm,n can at most influence the
k-sequence of task τi,j . This number is given by η+,(o)

m,n (∆T i,jk ), where ∆T i,jk describes the
maximum time interval during which a k-sequence of task τi,j is sensitive to overload
events.

3. The overall impact of task τm,n is then derived as the product Ni,j · η+,(o)
m,n (∆T i,jk ).

4. Finally, the impact of all τm,n tasks which may interfere with task τi,j is summed.
Interfering tasks have higher or same priority (hsp) than task τi,j .

Thus we have

dmmi,j(k) =
∑

τm,n∈hsp(τi,j)

Ni,j · η+,(o)
m,n (∆T i,jk ) (6)

where
Ni,j = #

{
q ∈ N+|1 ≤ q ≤ Ki,j ∧ di,j < R+

i,j(q)
}

(7)

∆T i,jk ≤ B
+
i,j(Ki,j) + δ+

i,j(k) + (R+
i,j − C

+
i,j) (8)

Please refer for a detailed explanation to [10].

4.3 Improved Procedure
The presented basic TWCA assumes that every isolated overload activation of a task τm,n
which interferes with task τi,j causes at most Ni,j deadline misses. The approach presented
in [21] improves over the basic TWCA by considering that often actually the combined effect
of overload from several interferer tasks is required to cause a deadline miss of task τi,j . We
introduce therefore the following definitions.

I Definition 14 (Combination). A local combination C ⊆ TRk
is a set of tasks which may

experience both typical as well as overload activation events, whereas the tasks of the
complementary set, TRk

\ C, experience only typical activation events.

I Definition 15 (Unschedulable combinations). R+,C
i,j denotes the longest response time of

task τi,j ∈ TR, assuming that only tasks in C experience overload activations. A combination
C is said to be schedulable w.r.t. to task τi,j , if R+,C

i,j ≤ di,j , otherwise it is unschedulable.
The set of unschedulable combinations w.r.t. to task τi,j is called Ui,j .

ECRTS 2018
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Note that special local combinations are C = ∅ and C = TRk
. In this context, R+,TRk

i,j is the
usual worst case response time and R+,∅

i,j is called typical worst case response time.
The improved TWCA [21] is now based on the fact that the sensitivity interval ∆T i,jk of

the k-sequence of task τi,j can be divided into a sequence of busy periods [13]. The timing
behavior of busy periods is mutually independent, because of the idle times which separate
them. Within in any such busy period, an unschedulable combination is necessary to cause
at most Ni,j deadline misses of task τi,j within this interval. A single task τm,n can be part
of unschedulable combinations at most Ωm,n = η

+,(o)
m,n (∆T i,jk ) times, which corresponds to

the maximum number of overload activations in ∆T i,jk .
Let xC ∈ N count the number of busy periods in ∆T i,jk , which suffer from an unschedulable

combination C ∈ Ui,j . Then the DMM can be obtained by solving the following optimization
problem

dmmi,j(k) = max Ni,j
∑

C: C∈Ui,j

xC (9)

s.t.
∑

C,(m,n)

xC ≤ Ωm,n (10)

with C, (m,n) : (τm,n ∈ hsp(τi,j) ∪ τi,j) ∧ (τm,n ∈ C) ∧ (C ∈ Ui,j)

To determine whether a combination C is schedulable or not, a fast schedulability criterion
is required. We rely on the criterion presented in [21], but generalize it for (1) non-unique
priorities, and (2) the general relation where the maximum event models are not exactly
decomposable. The generalization is presented in Theorem 16; notation and explanations of
the theorem contents are given in the corresponding proof and Figure 5.

I Theorem 16 (Generalized schedulability criterion). Equation 11 formulates a schedulability
criterion for task τi,j under a given combination C.

∀l ∈ Ki,j :
∑

∀τm,n:τm,n∈hsp(τi,j)∪τi,j∧τm,n /∈C

wl(m,n),l
over ≥ Λli,j − Γli,j . (11)

The following abbreviations are used

Λli,j = B+
i,j(l)− δ

−
i,j(l)− di,j

Γli,j =
∑

τm,n∈hp(τi,j)

C+
m,n · [η+

m,n(B+
i,j(l)− C

+
i,j)− η

+
m,n(∆tli,j)]

∆tli,j = δ−i,j(l) + di,j − C+
i,j

wl(m,n),l
over =

C
+
m,n ·

(
η+
m,n(∆tli,j)− η

+,(t)
m,n (∆tli,j)

)
for τm,n ∈ hp(τi,j)

C+
m,n ·

(
η

+]
m,n(δ−i,j(l))− η

+],(t)
m,n (δ−i,j(l))

)
for τm,n ∈ sp(τi,j) ∪ τi,j

Proof. Let us verify the schedulability of task τi,j under a given combination C, i.e. we verify
whether R+,C

i,j ≤ di,j is true. We start from the unschedulable local worst case with C ′ = TRk
,

which is represented by the maximum level-τi,j busy period which contains Ki,j jobs of task
τi,j (cf. Figure 5a). If the task τi,j is schedulable in the local worst case, then it schedulable
for every combination and the problem is solved. If, however, task τi,j is unschedulable in
the local worst case, then some of the Ki,j jobs of task τi,j miss their deadline. The lth job
of τi,j exceeds its deadline in the local worst case by (cf. also Figure 5)

Λli,j = R+
i,j(l)− di,j = B+

i,j(l)− δ
−
i,j(l)− di,j .
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If its deadline is enforced by removing overload, an amount of workload Γli,j will disappear
automatically. Namely the workload from interfering activations which occur after the
deadline but before the non-preemptive execution of the lth job. Jobs of tasks with the same
priority (sp) as τi,j do not contribute to Γli,j , because they influence the response time of the
lth job only if they have arrived earlier than or simultaneously with this job.

Γli,j =
∑

τm,n∈hp(τi,j)

C+
m,n · [η+

m,n(B+
i,j(l)− C

+
i,j)− η

+
m,n(δ−i,j(l) + di,j − C+

i,j)]

The RHS of inequality 11 describes the smallest amount of overload of interfering tasks that
needs removed for sufficient schedulability of the lth job of τi,j in the maximum busy period.
The LHS of Eq. 11 describes how much overload is removed compared to the local worst
case, if we assume combination C (cf. Figure 5b for C = ∅). Under combination C, all tasks
τm,n /∈ C experience only typical activations and their overload is not present. In other
words, the tasks τm,n /∈ C follow their event model η+,(t)

m,n (∆t). In particular, an amount of
overload per task τm,n

wl(m,n),l
over =

C
+
i,j ·

(
η+
m,n(∆tli,j)− η

+,(t)
m,n (∆tli,j)

)
for τm,n ∈ hp(τi,j)

C+
i,j ·

(
η

+]
m,n(δ−i (l))− η+],(t)

m,n (δ−i (l))
)

for τm,n ∈ sp(τi,j) ∪ τi,j

is removed which impacts the response time of the lth job of task τi,j . Namely, the interfering
overload of hp(τi,j)-tasks until the timely nonpreemptive execution of job τi,j(l) is absent.
Likewise, the overload of all sp(τi,j)-jobs and overload jobs of τi,j are absent, which interfere
if they arrive before or simultaneously with job τi,j(l).2 J

5 Typical Compositional Performance Analysis

The new framework TypicalCPA, which we develop in this paper, combines CPA and TWCA
such that weakly-hard real-time guarantees can be given for tasks in a multi-resource system.
More concretely, the local analysis method TWCA will performed for each component after
an extended CPA has terminated. This is illustrated in Figure 3. To apply TWCA as a
local analysis method, for each task minimum and maximum event models together with
the corresponding minimum and maximum typical and overload event models have to be
provided. The state-of-the-art CPA, however, computes as a result, besides BCRT and
WCRT, so far only the converged minimum and maximum event models of each task (not
their typical and overload variants) and thus has to be extended.

In the following we assume that the complete set of event models – (η−i,1(∆t), η+
i,1(∆t)),

(η−,(t)i,1 (∆t), η+,(t)
i,1 (∆t)) and (η−,(o)i,1 (∆t), η+,(o)

i,1 (∆t)) – is given for the header tasks τi,1, since
they are activated by external event sources. The problem to be addressed is how to derive
these event models for all successor tasks in the context of CPA such that they can be used
for the subsequent TWCA.

5.1 Basic Definitions
We begin by introducing the concept of a global combination describing the activation behavior
of each task τi,j contained in the global task set T . Due to the existing precedence constraints
in a stream si, the activation behavior of any task τi,j with j > 1 is fully determined by

2 The notation η+](∆t) expresses that the maximum event model refers to the closed time interval [0, t].
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(a) Local worst case busy window with C = Tk,
Ki,j = 1.

(b) Local typical worst case busy window with
C = ∅.

(c) Exemplary decomposition of the maximum event model η+
m,n(∆t) in the maximum overload event

model η+,(o)
m,n (∆t) and the maximum typical event model η+,(t)

m,n (∆t) for task τm,n.

Figure 5 Theorem 16: Generalized schedulability criterion.

the respective predecessor task and therefore in the end by the header task τi,1. It is thus
sufficient to include the activation behavior of the header tasks in the definition of a global
combination.

I Definition 17 (Global combination). A global combination Cg ⊆ {τi,1| ∀i : τi,1 ∈ T } is a
set of header tasks which may experience both typical as well as overload activations. All
other header tasks follow their typical event model.

Special global combinations are the global typical combination with Cg = ∅, and the global
worst case combination with Cg = {τi,1| ∀i : τi,1 ∈ T }.

I Definition 18 (Schedulability of a global combination). We say a global combination Cg is
schedulable if and only if under all possible scheduling scenarios (1) all streams can satisfy
their end-to-end deadlines Di,j and (2) every task meets its local deadline di,j .

We require that the given event models of the header tasks are such that the following
schedulability constraints are respected.

I Definition 19 (Global typical worst case). If the system behaves according to the global
typical combination, then the task set T is schedulable even in the most unfavorable scenario
(global typical worst case).

I Definition 20 (Global worst case). If the system behaves according to the global worst
case combination, the task set T is possibly unschedulable in the most unfavorable scenario
(global worst case).

We would like to mention that for computing weakly-hard real-time guarantees, naturally
only systems which are unschedulable in the global worst case are of interest.
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5.2 Computation of Minimum and Maximum Event Models
While for the header tasks the minimum and maximum event model η−i,j(∆t), η

+
i,j(∆t) is

given by the system specification, it has to be derived for successor tasks τi,j with j > 1.
The classical CPA is capable of deriving these event models for all successor tasks from
the original CPA input model as defined in Section 2. Thus CPA explores here the most
favorable and the most unfavorable behavior of the global worst case combination.

5.3 Computation of Minimum and Maximum Typical Event Models
The minimum and maximum typical event model η−,(t)i,j (∆t), η+,(t)

i,j (∆t) have also to be
computed for the successor tasks τi,j with j > 1. Our claim is that CPA can also be used
for this purpose, given that in the input model the worst case bounds η−i,1(∆t), η+

i,1(∆t) are
replaced by the typical event models η−,(t)i,1 (∆t), η+,(t)

i,1 (∆t). In other words, CPA is now
applied for the best case and worst case scenario where all header tasks see only typical
events (global typical combination). CPA, which is agnostic of event types, computes the
converged minimum and maximum event models for all stream tasks. We assume in this
paper that all typical events that are injected at the head of a stream keep their typical
nature while propagating through the system. Knowing that only typical events have served
for stream activation, we can interpret the CPA-derived event models as typical and have
thus η−,(t)i,j (∆t) and η+,(t)

i,j (∆t) for all stream tasks.

5.4 Computation of Minimum and Maximum Overload Event Models
Finally, our intention is to obtain the minimum and maximum overload event models for
each successor task τi,j with j > 1. We begin by describing how an arbitrary event flow
ei,j(t) can be decomposed in a typical event flow e

(t)
i,j (t) and an overload event flow e

(o)
i,j (t).

In this context, we use the concept of a sliding window function which returns a maximum
event model for a specific event flow.

I Definition 21 (Sliding window function). A sliding window function fslw takes a specific
event flow ei,j(t) of task τi,j defined on 0 ≤ t ≤ T as an input, and returns a maximum event
model for ei,j(t), denoted as η+

ei,j ,T
(∆t) for any interval size 0 ≤ ∆t ≤ T . This maximum

event model η+
ei,j ,T

(∆t) is derived by passing a window of size ∆t over the event flow ei,j(t)
of length T and noting down the maximum number events contained in any position of the
window ∆t such that

η+
ei,j ,T

(∆t) = max
t1,t2 : 0≤t1≤t2≤T∧t2−t1=∆t

{ei,j(t2)− ei,j(t1)} .

I Theorem 22 (Decomposition of an event flow). Let ei,j(t) be an arbitrary event flow of
length T belonging to task τi,j. Known bounds for the activation frequency of task τi,j are
i.a. η+

ei,j ,t(∆t) for all (sub)lengths of the event flow with 0 ≤ t ≤ T and the maximum typical
event model η+,(t)

i,j (∆t). A valid decomposition of ei,j(t) in a typical and overload event flow
is given by

e
(o)
i,j (t) = max

0≤∆t≤t

{
0, η+

ei,j , t(∆t)− η
+,(t)
i,j (∆t)

}
e

(t)
i,j (t) = ei,j(t)− e(o)

i,j (t). (12)

Proof. The event flow ei,j(t) cannot contain more than η
+,(t)
i,j (∆t) typical events in the

observed interval [0, t) by Def. 11, where ∆t = t− 0 . All events that occur additionally to
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the maximum number of typical events η+,(t)
i,j (∆t) in [0, t) are a potential source of overload

in the system and can therefore be safely interpreted as overload events.
To determine the number overload events in ei,j(t), we (1) apply the sliding window

function to ei,j(t) within [0, t) which results in η+
ei,j , t(∆t), and then (2) compare point-

wise η+
ei,j , t(∆t) with η+,(t)

i,j (∆t). Pointwise comparison is done chronologically by increas-
ing continuously the size of ∆t with 0 ≤ ∆t ≤ t. The largest nonnegative difference
max

0≤∆t≤t

{
0, η+

ei,j , t(∆t)− η
+,(t)
i,j (∆t)

}
, is the number of overload events in ei,j(t).

Why is it not sufficient to compute max
{

0, η+
ei,j , t(∆t)− η

+,(t)
i,j (∆t)

}
for ∆t = t? Let ∆t′

be the first interval, where the maximum budget of typical events is exceeded by the event
flow such that η+

ei,j , t(∆t
′)− η+,(t)

i,j (∆t′) > 0. This information should not be contradicted
by a later smaller value of overload events derived at ∆t′′ > ∆t′. This, however, may
happen due to the cumulative representation of event arrival within ∆t by event models,
where information on the alignment of events gets lost with increasing interval size. The
alignment information is however important to distinguish overload from typical events. The
formulation e(o)

i,j (t) = max
0≤∆t∗≤t

{
0, η+

ei,j , t(∆t
∗)− η+,(t)

i,j (∆t∗)
}

preserves the information on

the maximum number of overload events once gained at ∆t∗. Also, e(o)
i,j (t) is a wide-sense

increasing function which accumulates the number of occurred overload events over time, and
therefore satisfies Def. 10 of an event flow. Furthermore, we have e(t)

i,j (t) = ei,j(t)− e(o)
i,j (t)

since an event in an event flow can either be overload or typical. J

In the following Theorem 23, we state how to compute a maximum overload event model. We
would like to note that the minimum overload event model is the zero function η+,(o)

i,j (∆t) = 0
since overload events can be completely absent cf. global typical combination.

I Theorem 23 (Obtaining an overload event model). A maximum overload event model is

η
+,(o)
i,j (∆t) = fslw

(
max

0≤∆t∗≤∆t

{
η+
i,j(∆t

∗)− η+,(t)
i,j (∆t∗)

})
where fslw is a sliding window function.

Proof. An upper bound for all event flow-specific maximum event models η+
ei,j , T

(∆t) of task
τi,j is the maximum event model η+

i,j(∆t) by Def. 2. Thus we have

max
0≤∆t∗≤t

{
0, η+

ei,j , t(∆t
∗)− η+,(t)

i,j (∆t∗)
}
≤ max

0≤∆t∗≤∆t

{
η+
i,j(∆t

∗)− η+,(t)
i,j (∆t∗)

}
.

In other words, the overload event flow ẽ
(o)
i,j (t) = max

0≤∆t∗≤t

{
η+
i,j(∆t∗)− η

+,(t)
i,j (∆t∗)

}
is always

larger than any other arbitrary overload event flow e
(o)
i,j (t). To derive from the largest overload

event flow ẽ
(o)
i,j (t) the corresponding maximum overload event model, we apply once again the

sliding window function such that ẽ(o)
i,j (t2)− ẽ(o)

i,j (t1) ≤ η+,(o)
i,j (t2 − t1) = fslw

(
ẽ

(o)
i,j (t2 − t1)

)
.

The computation of the overload event model η+,(o)
i,j (∆t) is illustrated in Figure 6. J

Calculating a maximum overload event model according to Theorem 23 requires a high
computational effort since the sliding window approach has to be applied to the infinitely
long event flow ẽ

(o)
i,j (t) = max

0≤∆t∗≤t

{
η+
i,j(∆t∗)− η

+,(t)
i,j (∆t∗)

}
. Fortunately most event flows

have a repetitive behavior or can be approximated by repetitive functions, so that the effort
to derive overload event models is significantly reduced. In the following, we discuss special
and practically relevant cases for the computation of overload event models.
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Δt
1

Figure 6 Computing a maximum overload event model.

I Case 1 (Zero typical event model). In this trivial but important case, the task τi,j has a
zero typical event model η+,(t)

i,j (∆t) = 0. Obviously, we have η+,(o)
i,j (∆t) = η+

i,j(∆t). This case
is relevant for header tasks, which have the character of a sporadic interferer.

I Case 2 (Zero overload event model). In a second trivial but important case, the maximum
and maximum typical event model of task τi,j are identical such that η+

i,j(∆t) = η
+,(t)
i,j (∆t).

Consequently, we have a zero overload event model η+,(o)
i,j (∆t) = 0. Header tasks with a

periodic activation have often this behavior.

I Case 3 (Repetitive overload event flow). If the overload event flow ẽ
(o)
i,j (t) is T -repetitive

possibly with an offset (cf. Lemma 7), then applying the sliding window algorithm can be
restricted to the interval [0, 2T ) to construct the maximum overload event model. In the
following Theorem 24, we show that a T -repetitive overload event flow is obtained if the event
model η+

i,j(∆t) and the typical event model η+,(t)
i,j (∆t) are both T -repetitive extensions (which

can be achieved by appropriate output model computation described Section 3.1.2).

I Theorem 24 (Repetitive overload event flow). If the event model η+(∆t) and the typical
event model η+,(t)(∆t) are both T -repetitive extensions, then the resulting overload event flow
ẽ

(o)
i,j (t) is likewise T -repetitive, such that

ẽ
(o)
i,j (t) = max

0≤∆t∗≤t
{
⌊

∆t∗

T

⌋
·
(
η+(T )− η+,(t)(T )

)
+ η+(∆t∗ −

⌊
∆t∗

T

⌋
T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
T )}.

Proof.

max
0≤∆t∗≤∆t

{η+(∆t∗)− η+,(t)(∆t∗)} = max
0≤∆t∗≤∆t

{
⌊

∆t∗

T

⌋
· η+(T ) + η+(∆t∗ −

⌊
∆t∗

T

⌋
· T )

−
⌊

∆t∗

T

⌋
· η+,(t)(T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
· T )} = max

0≤∆t∗≤∆t
{
⌊

∆t∗

T

⌋
·

(η+(T )− η+,(t)(T )) + η+(∆t∗ −
⌊

∆t∗

T

⌋
T )− η+,(t)(∆t∗ −

⌊
∆t∗

T

⌋
T )}

ηdiff (∆t)=η+(∆t)−η+,(t)(∆t)= max
0≤∆t∗≤∆t

{
⌊

∆t∗

T

⌋
· ηdiff (T ) + ηdiff (∆t∗ −

⌊
∆t∗

T

⌋
T )} J
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Figure 7 Network topologies. Thin lines represent links at 100 Mbit/s, while thick lines represent
links at 1 Gbit/s. A maximum wire length of 10 m is assumed, which translates to a maximum wire
propagation delay of 33 ns.

6 Experiments

The presented experiments focus on computing end-to-end (m, k)-guarantees for traffic
streams in realistic network settings, while exploring how a varying amount of overload
impacts the timing behavior of the investigated system.

6.1 System Generation
The case study presented in Thiele et al. [20] provides characteristics of future automotive
backbone networks by Daimler. Based on this data, we have randomly generated a set of
automotive switched Ethernet networks with mapped traffic streams. Firstly, let us present
the data used from the case study. Figure 7 illustrates three possible network topologies. The
topologies vary in the number of switches (SWs) which interconnect 8 electronic control units
(ECUs). Links operate at 100 Mbit/s, only ECU0 and ECU7 are equipped with 1Gbit/s
links due to high load. Stream characteristics are described statistically by [20], they are
summarized in Table 1a. There are 50 periodic control streams of highest priority and 4
periodic camera streams of lower priority. Control streams have relatively small payloads and
rather long periods, while camera streams have large payloads and shorter periods. Some of
the streams are unicast, others are multicast or broadcast. A periodically sent Ethernet frame
is mapped to exactly one stream. Information on the frame payload as well as on periods is
given by [20] only in form of minimum and maximum values, averages, and quartiles for the
purpose of data anonymization. In case of camera traffic, the number of streams is too small
for quantifying quartiles. IPv4/UDP is used at the network/transport layer, which adds
28 bytes of protocol overhead (not shown in Table 1a). Furthermore, the communication
matrix in Table 1b is given by [20] indicating the number of control and camera streams sent
between a tuple of nodes. We use a parser to translate the network described in terms of
topology and streams into a CPA/TWCA system model as defined in Sections 2 and 4.1.

Secondly, we describe the random generation of systems which conform to the presented
properties. The generation process is designed to produce a configurable number of systems
and consists of several runs. A single generation run first creates the set of 54 streams with
their respective source and destination ECUs, and then the streams are mapped to each of
the three topologies. A run thus creates 3 systems at once. However, this set of 3 systems is
discarded if at least one is not schedulable to enable meaningful comparisons between the
different topologies.

Generation of control streams. Periods and payloads of control streams are only described
by statistic figures. Therefore, we used fitting to find distributions which come closest
the indicated average and quartiles. For the periods, we opted for a Weibull distribution
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Table 1 Traffic properties as given in Thiele et al. [20].

control camera

streams
# total 50 4
# unicast 26 3
# 2-cast 13 1
# 3-cast 4 0
# 4-cast 1 0
# broad- 6 0
cast

frame payload in bytes
[min, max] [1, 250] B [875,

1400] B
average 54 B 1231 B
quartiles q0.25 = 8 B

q0.50 = 25 B
q0.75 = 74 B

period
[min, max] [5ms, 1s] [100us

1ms]
average 182ms 440us
quartiles q0.25 = 10ms

q0.50 = 40ms
q0.75

= 175ms
(a) Stream characteristics.
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(b) Communication matrix indicating the number
of control streams (black number, 1st entry) and
camera streams (blue number, 2nd entry) between
a pair of ECUs.

with the parameters shape = 0.54 and scale = 88.09. For the payload, an exponential
distribution with λ = 0.02 was used.
Generation of camera streams. The few, i.e. 4, camera streams scam,i are assigned
the same payloads and periods in each system generation run: scam,0 7→ (100µs, 875B);
scam,1 7→ (1ms, 1400B); scam,2 7→ (330µs, 1325B); scam,3 7→ (330µs, 1325B).
Generation of stream sources & destinations and topology mapping. The given communic-
ation matrix defines constraints on pairs of source-destination ECUs and on the number
of streams sent between them. Stream sources & destinations are generated randomly
respecting these constraints. The traffic is then mapped to each of the 3 topologies,
creating 3 different systems with identical streams.
Schedulability test. For control streams, local deadlines are set to the stream period and
the end-to-end deadline is the sum of the local deadlines. For camera streams, we choose
arbitrarily an end-to-end deadline of 2ms (scam,0, scam,2, scam,3) or 4ms (scam,1), such
that – without any overload in the system – worst case stream latencys (WCSLs) of
camera streams are already close to their end-to-end deadlines.3 Local camera deadlines

3 The worst case stream latency (WCSL) for a unicast stream is computed by summing the WCRTs of
tasks included in the stream. For multi- or broadcast streams, the WCSLs are computed separately for
each path from the source to a destination.
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are derived by uniform distribution of the end-to-end deadline. Based on these timing
constraints, the generated systems are filtered such that they are all schedulable as
mentioned above.

After a generation run, we dispose of a set of 3 systems in which no overload is present. We
then add sporadic control streams to each system as transient overload. We see this as a
realistic extension of the system description, representing event-triggered communication.
A sporadic control stream s′ is a duplicate of a randomly chosen control stream s from the
original stream set but with modified activation behavior. The typical activation behavior
of s′ is zero, while the nonzero overload activation behavior is modeled as sporadically
bursty [16]: A burst of b events with a minimum distance Tin is repeated after an outer

period Tout such that η+,(o)(∆t) =
⌊

∆t
Tout

⌋
· b+ min

{⌈
∆t−b ∆t

Tout
c·Tout

Tin

⌉
, b

}
. While the burst

length b is used as a variable parameter in the experiments, fixed parameters are Tin = 100µs
and Tout is 10-times the period of the original stream s.

6.2 Experimental Results
In the experiments, we investigate the impact of overload on the timing behavior of the
generated systems. For each presented overload configuration, we randomly generated 50
systems of the same topology. We first present worst case stream latencys (WCSLs), and
then discuss the DMMs computed for streams. The results in this section are presented
in box plots as, for instance, in Figure 8a. This is done to summarize results (WCSLs or
DMMs) over all streams from a set of similar systems. A single box plot indicates the average
(red square) and the quartiles q0.25, q0.50, q0.75 of the results. The 1st and 3rd quartiles q0.25
and q0.75 are the top and the bottom of the blue framed box, while the red band inside the
box is the 2nd quartile (median). The whiskers indicate results outside the quartiles.

Worst Case Stream Latencies. The WCSLs depend both on the system characteristics as
well as on the amount of introduced overload. Figure 8 shows that the double star topology
has the shortest WCSLs, compared to to the tree topology with intermediate WCSLs and
the quadruple star topology with even higher WCSLs. This behavior is due to the varying
number and extent of contention points in the different topologies. Moreover, Figure 8
confirms the intuition that WCSLs increase with the amount of overload in the system, which
is controlled by the number of overload streams in the system and the number of burst events
b of each overload stream.

Deadline Miss Models of Streams. While the control streams satisfy their end-to-end
deadlines even in the presence of overload, camera streams suffer from occasional deadline
misses in particular in case of the quadruple star topology. A deadline miss in the context of
a camera stream can be interpreted as a frame loss which impacts then video quality. We
therefore focus on the DMMs of the camera streams. Figure 9 illustrates the DMMs for all
camera streams of generated systems with quadruple star topology. Overload is varied by
the number of overload streams and the burst length. We compute the DMM of a unicast
stream as the sum of the task DMMs included in the stream. In the case that one or more
local deadlines are violated but the global deadline is satisfied, the stream DMM is set to
zero. Multicast and broadcast streams are decomposed into unicast streams in order to
compute the DMMs according to the above rule. Figure 9a indicates DMMs for camera
streams in the presence of 5 sporadic overload streams, while Figure 9b shows DMMs for
an increased number of 10 sporadic overload streams. Table 2 lists the nonzero DMMs
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(a) Double star topology.
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(b) Tree topology.
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(c) Quadruple star topology.

Figure 8 Worst case latencies of control and camera streams under varying topologies and
overload. Each single box plot is based on the streams of 50 randomly generated systems with the
indicated properties (num. of bursts, num. of overload streams).
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(a) 5 overload streams.
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(b) 10 overload streams.

Figure 9 DMMs for camera streams under varying overload for the quadruple star topology.
Results evaluate camera streams in 50 systems. For a multicast camera stream with n destinations,
there are n end-to-end DMMs computed.

results for k = 100 to get a more detailed impression of the individual weakly-hard real-time
guarantees. The number of deadline misses grows as expected with the number of overload
streams. Furthermore, the m-k-ratio is improving for growing k.

For 5 overload streams many camera streams are schedulable for any burst length. Few
systems have camera streams that are not schedulable. Among these systems with late
camera streams, most of them have a very acceptable (m, k) behavior – in particular for
b ∈ {2, 3}.

For 10 overload streams more camera streams experience occasional deadline misses. For
b ∈ {2, 3}, the maximum number of deadline misses m in k executions is acceptable
for many camera streams depending on system requirements. For b ≥ 4 many of the
investigated systems are clearly overloaded.

A note on run times: On a PC with an Intel i5-4210M processor at 2.6 GHz and 8GB RAM,
the analysis of a single system is in the order of 15-30 seconds.
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Table 2 Details on nonzero DMM results for camera streams for k = 100.

bursts nonzero dmm(100) results with number of occurrence n in brackets (n)

5 overload streams
b = 2 2(6), 3(5), 4(15), 6(2)
b = 3 2(6), 3(5), 4(22), 5(1), 6(1), 7(6), 9(1), 13(1), 15(1)
b = 4 2(2), 3(3), 4(19), 5(4), 6(1), 7(1), 8(2), 9(1), 10(3), 11(2), 12(1), 13(1), 14(1), 16(1),

18(1), 30(1), 100(3)
10 overload streams
b = 2 2(2), 3(2), 4(31), 5(1), 6(6), 11(2), 12(1), 14(1), 16(1), 19(1), 100(3)
b = 3 4(15), 5(5), 7(2), 8(1), 9(1), 10(2), 12(5), 14(2), 15(4), 16(2), 100(23)
b = 4 4(2), 5(1), 8(1), 9(3), 10(1), 13(2), 14(10), 16(1), 20(2), 21(2), 30(1), 100(51)

7 Related Work

The seminal paper by Bernat et al. [1] has presented the principles of weakly-hard real-time
systems. It summarizes existing work in a similar direction, introduces (m,k)-constraints,
and derives (m,k)-guarantees for periodic task sets with known offsets under fixed priority
scheduling. More powerful verification techniques for weakly-hard real-time systems have
been subsequently developed. In particular, Quinton et al. [14] has introduced a method
called TWCA, which can handle more comprehensive system models covering, e.g., arbitrary
activation event models. The initial work [14] has been extended and refined in a sequence of
publications; the latest analysis version is presented in [21]. A new and recent development
is the verification technique for weakly-hard real-time systems presented by Sun et al. [19].
The work by Sun et al. [19] has only a limited focus on systems with fully periodic tasks with
unknown offsets under fixed priority scheduling, but it has a higher accuracy than TWCA
since it provides exact results. However, all of the verification techniques are restricted to
systems with a single service-providing resource. In this paper, we lift this restriction by
integrating TWCA as local analysis technique in the context of the CPA framework [11].
CPA is an established compositional analysis framework, which uses for each component
a dedicated scheduling analysis and specifies the coupling of the component-based results.
The advantage of using a compositional analysis framework is that large and heterogeneous
systems can be analyzed. The choice of the combination (TWCA, CPA) is due to the
similarities in the system models and interface definitions, which reduces the number of
compatibility issues.

8 Conclusion

In this paper, we presented TypicalCPA which is the first verification method for weakly-hard
real-time systems with multiple resources and we evaluated it in a network context with traffic
streams. Previous verification techniques providing weakly-hard real-time guarantees have
aimed at systems with only a single service-providing resource. The method builds on (1)
CPA, a compositional performance verification framework for hard real-time guarantees, and
(2) TWCA, an analysis method which derives weakly-hard real-time guarantees for systems
with a single resource. CPA allows to use different local scheduling analysis techniques for
each component in the investigated system, and defines a coupling mechanism between the
results provided by each component analysis. We have interpreted TWCA as such a local
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scheduling analysis technique, but we had to extend (1) elements of TWCA as well as (2) the
existing coupling mechanism to achieve compatibility of both CPA and TWCA. In particular,
the computation and propagation of typical and overload event models between tasks on
different resources has been introduced. In an industrial case study, focusing on automotive
switched Ethernet networks, we demonstrated the applicability of TypicalCPA to realistic
problems. In the future, we intend to work on improved accuracy of our results.
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