1,047 research outputs found

    A Survey on Automatic Parameter Tuning for Big Data Processing Systems

    Get PDF
    Big data processing systems (e.g., Hadoop, Spark, Storm) contain a vast number of configuration parameters controlling parallelism, I/O behavior, memory settings, and compression. Improper parameter settings can cause significant performance degradation and stability issues. However, regular users and even expert administrators grapple with understanding and tuning them to achieve good performance. We investigate existing approaches on parameter tuning for both batch and stream data processing systems and classify them into six categories: rule-based, cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. We summarize the pros and cons of each approach and raise some open research problems for automatic parameter tuning.Peer reviewe

    Scheduling in Mapreduce Clusters

    Get PDF
    MapReduce is a framework proposed by Google for processing huge amounts of data in a distributed environment. The simplicity of the programming model and the fault-tolerance feature of the framework make it very popular in Big Data processing. As MapReduce clusters get popular, their scheduling becomes increasingly important. On one hand, many MapReduce applications have high performance requirements, for example, on response time and/or throughput. On the other hand, with the increasing size of MapReduce clusters, the energy-efficient scheduling of MapReduce clusters becomes inevitable. These scheduling challenges, however, have not been systematically studied. The objective of this dissertation is to provide MapReduce applications with low cost and energy consumption through the development of scheduling theory and algorithms, energy models, and energy-aware resource management. In particular, we will investigate energy-efficient scheduling in hybrid CPU-GPU MapReduce clusters. This research work is expected to have a breakthrough in Big Data processing, particularly in providing green computing to Big Data applications such as social network analysis, medical care data mining, and financial fraud detection. The tools we propose to develop are expected to increase utilization and reduce energy consumption for MapReduce clusters. In this PhD dissertation, we propose to address the aforementioned challenges by investigating and developing 1) a match-making scheduling algorithm for improving the data locality of Map- Reduce applications, 2) a real-time scheduling algorithm for heterogeneous Map- Reduce clusters, and 3) an energy-efficient scheduler for hybrid CPU-GPU Map- Reduce cluster. Advisers: Ying Lu and David Swanso

    MAPREDUCE CHALLENGES ON PERVASIVE GRIDS

    No full text
    International audienceThis study presents the advances on designing and implementing scalable techniques to support the development and execution of MapReduce application in pervasive distributed computing infrastructures, in the context of the PER-MARE project. A pervasive framework for MapReduce applications is very useful in practice, especially in those scientific, enterprises and educational centers which have many unused or underused computing resources, which can be fully exploited to solve relevant problems that demand large computing power, such as scientific computing applications, big data processing, etc. In this study, we pro-pose the study of multiple techniques to support volatility and heterogeneity on MapReduce, by applying two complementary approaches: Improving the Apache Hadoop middleware by including context-awareness and fault-tolerance features; and providing an alternative pervasive grid implementation, fully adapted to dynamic environments. The main design and implementation decisions for both alternatives are described and validated through experiments, demonstrating that our approaches provide high reliability when executing on pervasive environments. The analysis of the experiments also leads to several insights on the requirements and constraints from dynamic and volatile systems, reinforcing the importance of context-aware information and advanced fault-tolerance features to provide efficient and reliable MapReduce services on pervasive grids

    Performance evaluation of Map-reduce jar pig hive and spark with machine learning using big data

    Get PDF
    Big data is the biggest challenges as we need huge processing power system and good algorithms to make an decision. We need Hadoop environment with pig hive, machine learning and hadoopecosystem components. The data comes from industries. Many devices around us and sensor, and from social media sites. According to McKinsey There will be a shortage of 15000000 big data professionals by the end of 2020. There are lots of technologies to solve the problem of big data Storage and processing. Such technologies are Apache Hadoop, Apache Spark, Apache Kafka, and many more. Here we analyse the processing speed for the 4GB data on cloudx lab with Hadoop mapreduce with varing mappers and reducers and with pig script and Hive querries and spark environment along with machine learning technology and from the results we can say that machine learning with Hadoop will enhance the processing performance along with with spark, and also we can say that spark is better than Hadoop mapreduce pig and hive, spark with hive and machine learning will be the best performance enhanced compared with pig and hive, Hadoop mapreduce jar

    Towards High-Performance Big Data Processing Systems

    Get PDF
    The amount of generated and stored data has been growing rapidly, It is estimated that 2.5 quintillion bytes of data are generated every day, and 90% of the data in the world today has been created in the last two years. How to solve these big data issues has become a hot topic in both industry and academia. Due to the complex of big data platform, we stratify it into four layers: storage layer, resource management layer, computing layer, and methodology layer. This dissertation proposes brand-new approaches to address the performance of big data platforms like Hadoop and Spark on these four layers. We first present an improved HDFS design called SMARTH, which optimizes the storage layer. It utilizes asynchronous multi-pipeline data transfers instead of a single pipeline stop-and-wait mechanism. SMARTH records the actual transfer speed of data blocks and sends this information to the namenode along with periodic heartbeat messages. The namenode sorts datanodes according to their past performance and tracks this information continuously. When a client initiates an upload request, the namenode will send it a list of \u27\u27high performance\u27\u27 datanodes that it thinks will yield the highest throughput for the client. By choosing higher performance datanodes relative to each client and by taking advantage of the multi-pipeline design, our experiments show that SMARTH significantly improves the performance of data write operations compared to HDFS. Specifically, SMARTH is able to improve the throughput of data transfer by 27-245% in a heterogeneous virtual cluster on Amazon EC2. Secondly, we propose an optimized Hadoop extension called MRapid, which significantly speeds up the execution of short jobs on the resource management layer. It is completely backward compatible to Hadoop, and imposes negligible overhead. Our experiments on Microsoft Azure public cloud show that MRapid can improve performance by up to 88% compared to the original Hadoop. Thirdly, we introduce an efficient 3-level sampling performance model, called Hedgehog, and focus on the relationship between resource and performance. This design is a brand new white-box model for Spark, which is more complex and challenging than Hadoop. In our tool, we employ a Java bytecode manipulation and analysis framework called ASM to reduce the profiling overhead dramatically. Fourthly, on the computing layer, we optimize the current implementation of SGD in Spark\u27s MLlib by reusing data partition for multiple times within a single iteration to find better candidate weights in a more efficient way. Whether using multiple local iterations within each partition is dynamically decided by the 68-95-99.7 rule. We also design a variant of momentum algorithm to optimize step size in every iteration. This method uses a new adaptive rule that decreases the step size whenever neighboring gradients show differing directions of significance. Experiments show that our adaptive algorithm is more efficient and can be 7 times faster compared to the original MLlib\u27s SGD. At last, on the application layer, we present a scalable and distributed geographic information system, called Dart, based on Hadoop and HBase. Dart provides a hybrid table schema to store spatial data in HBase so that the Reduce process can be omitted for operations like calculating the mean center and the median center. It employs reasonable pre-splitting and hash techniques to avoid data imbalance and hot region problems. It also supports massive spatial data analysis like K-Nearest Neighbors (KNN) and Geometric Median Distribution. In our experiments, we evaluate the performance of Dart by processing 160 GB Twitter data on an Amazon EC2 cluster. The experimental results show that Dart is very scalable and efficient

    Research Statement

    Get PDF
    My research centers around performance modeling, optimization and resource management for MapReduce workflows with completion time constrains. My work is motivated by (1) the popularity of MapReduce framework and its open source implementation Hadoop that provides an economically compelling alternative for efficient analytics over ”Big Data ” in the enterprise; and (2) the recent technological trend shift toward

    A Big Data Analyzer for Large Trace Logs

    Full text link
    Current generation of Internet-based services are typically hosted on large data centers that take the form of warehouse-size structures housing tens of thousands of servers. Continued availability of a modern data center is the result of a complex orchestration among many internal and external actors including computing hardware, multiple layers of intricate software, networking and storage devices, electrical power and cooling plants. During the course of their operation, many of these components produce large amounts of data in the form of event and error logs that are essential not only for identifying and resolving problems but also for improving data center efficiency and management. Most of these activities would benefit significantly from data analytics techniques to exploit hidden statistical patterns and correlations that may be present in the data. The sheer volume of data to be analyzed makes uncovering these correlations and patterns a challenging task. This paper presents BiDAl, a prototype Java tool for log-data analysis that incorporates several Big Data technologies in order to simplify the task of extracting information from data traces produced by large clusters and server farms. BiDAl provides the user with several analysis languages (SQL, R and Hadoop MapReduce) and storage backends (HDFS and SQLite) that can be freely mixed and matched so that a custom tool for a specific task can be easily constructed. BiDAl has a modular architecture so that it can be extended with other backends and analysis languages in the future. In this paper we present the design of BiDAl and describe our experience using it to analyze publicly-available traces from Google data clusters, with the goal of building a realistic model of a complex data center.Comment: 26 pages, 10 figure
    corecore