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Big data processing systems (e.g., Hadoop, Spark, Storm) contain a vast number of configuration parame-
ters controlling parallelism, I/O behavior, memory settings, and compression. Improper parameter settings
can cause significant performance degradation and stability issues. However, regular users and even expert
administrators grapple with understanding and tuning them to achieve good performance. We investigate ex-
isting approaches on parameter tuning for both batch and stream data processing systems and classify them
into six categories: rule-based, cost modeling, simulation-based, experiment-driven, machine learning, and
adaptive tuning. We summarize the pros and cons of each approach and raise some open research problems
for automatic parameter tuning.

CCS Concepts: • Computer systems organization → Self-organizing autonomic computing; • Infor-

mation systems → Computing platforms;

Additional Key Words and Phrases: Parameter tuning, self-tuning, MapReduce, Spark, Storm, stream

ACM Reference format:

Herodotos Herodotou, Yuxing Chen, and Jiaheng Lu. 2020. A Survey on Automatic Parameter Tuning for Big
Data Processing Systems. ACM Comput. Surv. 53, 2, Article 43 (April 2020), 37 pages.
https://doi.org/10.1145/3381027

1 INTRODUCTION

The continuous growth of the World Wide Web, E-commerce, Internet of Things (IoT), and other
applications is generating massive amounts of ever-increasing raw data every day [88]. Large-scale
data analytics platforms, including both batch data processing systems (e.g., Hadoop MapReduce
[4], Spark [6]), as well as stream data processing systems (e.g., Apache Storm [11], Heron [75],
Flink [3], Samza [5]), have emerged to assist with the Big Data challenge, i.e., to efficiently col-
lect, process, and analyze massive volumes of heterogeneous data. Achieving good and robust
system performance at such a scale is the foundation for successfully performing timely and
cost-effective analytics (either offline or in real-time). However, system performance is directly
linked to a vast array of configuration parameters, which control various aspects of system execu-
tion, ranging from low-level memory settings and thread counts to higher-level decisions such as
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resource management and load balancing [88]. Improper settings of configuration parameters are
shown to have detrimental effects on the overall system performance and stability [39, 61, 103].

The use of automated parameter tuning techniques is a promising, yet challenging approach for
optimizing system performance. The major challenges are:

(1) Large and complex parameter space: Hadoop, Spark, and Storm have over 200 con-
figurable parameters each [22, 70, 103]. To make matters worse, some parameters might
affect the performance of different jobs in different ways, while certain groups of param-
eters may have dependent effects (i.e., a good setting for one parameter may depend on
the setting of a different parameter) [61, 66].

(2) System scale and complexity: As data analytics platforms have grown in scale and
complexity, system administrators may need to configure and tune hundreds to thousands
of nodes, some equipped with different CPUs, memory, storage media, and network stacks
[80]. In addition, executing MapReduce or Spark workloads with iterative stages and tasks
in parallel or serial makes it challenging to observe and model workload performance [46].

(3) Lack of input data statistics: Data statistics are almost never available for MapReduce
and Spark applications, since data often reside in semi- or un-structured files and are
opaque until accessed [58]. As for stream applications, the input data are a real-time data
stream that typically experiences significant variations in workload properties [34].

Classification of Approaches: A considerable amount of past research tackles the problem of
performance optimization by partially or fully automating the process of finding near-optimal
parameter values for executing jobs in big data processing systems. This survey performs a com-
prehensive study of existing parameter-tuning approaches, which address various challenges to-
wards high throughput and resource utilization, fast response time, and cost-effectiveness. Due to
the various challenges and scenarios addressed, different strategies or approaches are proposed
accordingly. We classify these approaches into the following six categories:

(1) Rule-based approaches assist users with tuning some system parameters based on the
experience of human experts, online tutorials, or tuning instructions. They usually require
no models or log information and are suitable for quickly bootstrapping the system.

(2) Cost modeling approaches build efficient performance prediction models by using an-
alytical (white-box) cost functions developed based on a deep understanding of system
internals. A few experimental logs and some input statistics are typically required to es-
tablish the model.

(3) Simulation-based approaches build performance prediction models based on modular
or complete system simulation, enabling users to simulate an execution under different
parameter settings or cluster resources.

(4) Experiment-driven approaches execute an application, i.e., an experiment, repeatedly
with different parameter settings, guided by a search algorithm and the feedback provided
by the logs of the actual runs.

(5) Machine learning approaches establish performance prediction models by employing
machine learning methods. They typically consider the complex system as a whole and
assume no (or limited) knowledge of system internals (i.e., they treat the system as a black
box).

(6) Adaptive approaches tune configuration parameters adaptively while an application is
running, i.e., they can adjust the parameter settings as the environment changes based on
a variety of methods. They enable tuning of ad hoc and long-running applications.
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Table 1. Feature Comparison among the Six Parameter Tuning Approaches

Feature Rule-based Cost modeling Simulation Experiment-driven Machine learning Adaptive

Key modeling technique rules cost functions simulation search algorithms ML models mixed
# of parameters modeled few some some many many some
System understanding strong strong strong light no strong
Need for history logs no light light strong strong light
Need for data input stats no light light no strong light
Real tests to run no some no yes yes yes
Time to build model efficient efficient medium slow slow medium
# of metrics predicted few few some few many some
Prediction accuracy low medium medium medium high medium
Adapt to workload adaptive light light no no adaptive
Adapt to system changes no no light no adaptive light

Table 1 summarizes and compares the various key features and functionalities provided by the
six approaches in terms of modeling (e.g., technique, number of parameter models, system under-
standing), need for statistics or runs, prediction accuracy, and adaptability to workload and system
changes. It is worth noting that by addressing the number of parameters, system understanding,
and need for data input statistics, we summarize the approaches’ pertinence concerning the three
aforementioned challenges. The six approaches will be analyzed in-depth and compared within
the context of both batch and stream data processing systems in the following sections. While
most approaches fit neatly into one of the aforementioned categories, some approaches may use
techniques that span more than one. For example, Starfish [58, 61] builds detailed cost models for
modeling the MapReduce execution process and uses a small simulator component for simulating
the task scheduling decisions. In such cases, we categorize the approach based on the predominant
technique. Thus, we classify Starfish as a cost modeling approach.

Main Contributions: This manuscript reviews the representative techniques of parameter tuning
on big data analytics systems. The comprehensive nature of this survey helps to motivate new
parameter-tuning techniques, to develop real-world tuning applications, as well as to serve as a
technical reference for selecting and comparing the existing tuning strategies. Particularly, the key
contributions of this survey are:

(1) We introduce the area of parameter tuning and provide a general classification of the
relevant approaches.

(2) We discuss parameter tuning from various perspectives for two different classes of sys-
tems; namely, batch and stream processing systems.

(3) We describe in detail the key features for existing representative tuning methods.
(4) We describe open research problems and showcase that parameter tuning forms a chal-

lenging research area, where solutions can be exploited in a variety of real-world use
cases.

Related Work: Several existing surveys deal with the performance optimization and/or efficient
resource management of large-scale data processing systems. Babu et al. [16] covered the core fea-
tures of several analytics platforms (e.g., Hadoop, Spark, Dryad), including resource management,
task scheduling, and query optimization. In terms of parameter tuning, it briefly discussed only the
Starfish line of work [58, 61], elaborated in Section 4.1. Two existing surveys [38, 77] on MapReduce
discuss how previous approaches address several of the weaknesses and limitations of MapReduce,
including high communication cost, inflexible access to input data, redundant processing, as well
as lack of iterations, interactive processing, and support for n-way operations. However, the issue
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of configuration parameter tuning is not addressed in either survey. Hirzel et al. [63] present a
list of optimizations for stream processing, such as task placement and load balancing. The only
relevant optimization discussed is tuning the batching size, which is only one of the many pa-
rameters that can impact performance in a streaming setting. Dayarathna et al. [34] focus on the
system architecture and use cases of stream processing platforms and only briefly discuss per-
formance scalability. A more recent survey [99] proposes a classification for parallelization and
elasticity methods in stream processing systems but lacks any discussion on automatic parameter
tuning. Autonomic computing brings together the work of computer science and control commu-
nities with the purpose of developing autonomic systems, i.e., systems that can manage themselves
automatically. An excellent survey [65] lists the key applications of autonomic computing and dis-
cusses the related approaches. Automatic parameter tuning shares a similar aim with autonomic
computing in that it improves the big data systems by decreasing human involvement in the pa-
rameter configuration process. However, the framework and methods in autonomic computing
are quite different from those surveyed here. To the best of our knowledge, no other manuscript
exists that deals with parameter tuning to an extent and depth comparable to this survey.

Outline: The remaining manuscript is organized as follows: Section 2 presents background infor-
mation on the execution and the configuration parameters of popular batch and stream processing
systems. Sections 3–8 offer a detailed description of parameter tuning approaches organized into
the aforementioned six categories. Section 9 concludes the survey while discussing challenges and
open research problems.

2 PRELIMINARIES

Existing large-scale data processing systems can be categorized into batch and stream process-
ing systems. In the batch model, data are typically collected and stored before being fed into an
analytics platform such as Hadoop MapReduce or Spark. In the stream model, however, data ar-
rive continuously and are processed immediately by a streaming platform such as Apache Storm,
Flink, or Spark Streaming. In both cases, the execution behavior and performance of the system are
controlled by dozens of configuration parameters. Sections 2.1 and 2.2 present the system architec-
ture in conjunction with important parameters for popular batch and stream processing systems,
respectively. Finally, Section 2.3 formalizes the problem of automatic parameter tuning.

2.1 Batch Processing Systems

In this survey, we focus on Hadoop MapReduce [4] and Apache Spark [6], the two most popular
platforms for big data analytics. MapReduce is both a programming model and an execution engine
for massive data analysis [35]. As a programming model, MapReduce consists of the map (k1,v1)
and the reduce (k2, list (v2)) user-defined functions. For every input key-value pair 〈k1,v1〉, the
map (k1,v1) function is used to output zero or more intermediate key-value pairs 〈k2,v2〉, as shown
in Figure 1. The intermediate values v2 are grouped together according to the key values k2 to
generate the pairs 〈k2, list (v2)〉. Next, the reduce (k2, list (v2)) function is invoked for each such
pair and produces zero or more output key-value pairs 〈k3,v3〉. The keys (k1–k3) and the values
(v1–v3) could be of any data type.

A Hadoop MapReduce job executes as a set of parallel map and reduce tasks on a compute
cluster (see Figure 1). Each map task processes one input split, which is a portion of the input
dataset to be processed by the job, and generates a portion of the intermediate data. After map
tasks complete, Hadoop uses an external sort-merge algorithm to group all intermediate key-value
pairs and shuffles (i.e., transfers) them to the cluster nodes that will run the reduce tasks. Finally,
the intermediate data will be processed by the reduce tasks, which will generate the final results
of the job [123]. The map and reduce tasks can be further decomposed into phases, as shown in
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Fig. 1. Execution of a MapReduce job as a set of map and reduce tasks. The map task execution is further
decomposed into “read,” “map,” “collect,” “spill,” and “merge” phases. The reduce task execution is further
decomposed into “shuffle,” “merge,” “reduce,” and “write” phases [58].

Figure 1. The map task execution is composed of five phases: (a) “read” for reading the data input
from the distributed file system; (b) “map” for executing the user-defined map function; (c) “collect”
for buffering and partitioning map outputs; (d) “spill” for sorting, combining, and writing map
outputs to local disk; and (e) “merge” for merging sorted spill files. The reduce task execution is
composed of four phases: (a) “shuffle” for copying map output data to the reduce node; (b) “merge”
for merging sorted map outputs; (c) “reduce” for executing the user-defined reduce function; and
(d) “write” for writing the final output to the distributed file system [58].

In the early versions of Hadoop (up to v1.2.1; 2014), map and reduce tasks were running in a
predefined number of map and reduce slots per cluster node. However, a MapReduce job typically
requires many map slots when it starts, while it needs to reduce slots after the map tasks complete
[16]. Hence, the static allocation of resources into map and reduce slots often leads to lowered
cluster utilization. In the next versions, named Apache YARN [111], Hadoop created two separate
functional layers: one for allocating resources to running applications and one for managing the
application’s life-cycle. The resource allocation model in YARN introduced the notion of resource
containers, which describe node resources such as CPU and memory. In this model, applications
can ask for different container specifications at different points of their execution, giving rise to
interesting research problems on how to determine the appropriate amounts of resources for each
task as well as how to allocate resources among them [16]. Several follow-up works developed
extended resource allocation and scheduling mechanisms for geographically distributed big data
processing frameworks based on Hadoop MapReduce and Spark [37].

The Hadoop configuration parameters (in both versions) impact several aspects of job execu-
tion at the different phases, such as task concurrency, memory allocation, I/O performance, and
network bandwidth usage. Currently, Hadoop has over 200 parameters, from which about 30 can
have a substantial effect on job performance [16]. Table 2 lists some of the most influential configu-
ration parameters (valid up to Hadoop v3.2.1), which are used in optimizing Hadoop performance.
Default parameter values are either provided by Hadoop or are specified by a system administrator
and are used unless the user explicitly specifies parameter values during job submission.

An early comparative study between Hadoop and two parallel database systems revealed
that Hadoop was slower by a factor of 3.1 to 6.5 in processing several data-intensive analytical
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Table 2. Key Performance-aware Configuration Parameters for Hadoop [48]

Parameter Name Parameter Description Default

“dfs.block.size” The default block size for files stored on HDFS 128 MB

“mapreduce.job.maps” Number of map tasks 2

“mapreduce.job.reduces” Number of reduce tasks 1

“mapreduce.combine.class” A combine function for preaggregating map outputs before the shuffle phase null

“mapreduce.map.combine.
minspills”

Min number of map output spill files present for using the combine function 3

“mapreduce.map.output.
compress”

Flag for enabling compression of map output data FALSE

“mapreduce.map.sort.spill.
percent”

Percent of “mapreduce.task.io.sort.mb” buffer to fill before spilling the map
output to local disk

0.8

“mapreduce.output.
fileoutputformat.compress”

Flag for enabling compression of job output data FALSE

“mapreduce.reduce.input.
buffer.percent”

Percent of reducer’s memory devoted to buffering map output data while
executing the reduce task

0

“mapreduce.reduce.merge.
inmem.threshold”

Max number of shuffled map output pairs before initiating merging during
the shuffle

1000

“mapreduce.reduce.shuffle.
input.buffer.percent”

Percent of reducer’s memory devoted to buffering map output data during
the shuffle

0.7

“mapreduce.reduce.shuffle.
merge.percent”

Percent of reduce task’s memory to fill before initiating merging during the
shuffle

0.66

“mapreduce.reduce.shuffle.
parallelcopies”

Max number of parallel threads that transfer data from map tasks to a
reduce task

5

“mapreduce.task.io.sort.factor” Max number of data streams to merge during external sorting 10

“mapreduce.task.io.sort.mb” Size of memory buffer that stores the map output data 100MB

“mapreduce.tasktracker.map.
tasks.maximum”

Max number of map tasks executed concurrently at a cluster node (number
of map slots)

2

“mapreduce.tasktracker.reduce.
tasks.maximum”

Max number of reduce tasks executed concurrently at a cluster node
(number of reduce slots)

2

workloads [94]. Motivated by these results, two performance studies [15, 68] conducted in-depth
analyses of Hadoop to find the most critical factors and configuration parameters that affect its
performance. Both studies concluded that by meticulously tuning these factors and parameters,
the performance of Hadoop could be dramatically improved and be more comparable to the per-
formance of parallel database systems.

A follow-up study [126] performed Principal Component Analysis (PCA) to determine the
Hadoop configuration parameters that significantly affect system performance, yielding three
principal components. The first one is composed of configuration settings that directly affect the
I/O performance of MapReduce jobs: io.sort.factor and parameters for compressing map and
final output. The second component contains settings that control the memory size used to buffer
intermediate data (i.e., JVM memory and buffer sizes for intermediate data stored in map and re-
duce tasks). The final component reflects the parallelism in the MapReduce job and contains the
number of tasks and data copiers during the shuffle.

Apache Spark [6] is an open-source distributed framework that simplifies the development of
applications that execute in parallel on computing clusters in a fault-tolerant way. Its interface
is based on the notion of the RDD (“Resilient Distributed Dataset”), which is a multiset of objects
with a read-only property spread over a cluster and maintained in a fault-tolerant way [132]. As
a programming abstraction, an RDD represents a multiset of objects that can be split through
a high-performance computing cluster. Operations on RDDs are also divided and executed in
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Fig. 2. A Spark job execution consists of multiple parallel or sequential stages and each stage is composed
of multiple tasks. The performance of each task is influenced by several factors at each task phase [46, 103].

parallel across the cluster, leading to fast and scalable parallel processing. The overall architec-
ture is composed of the Spark Core and a set of libraries, presented next.

Spark Core: Spark Core is the fundamental framework, providing task distribution, scheduling,
as well as basic I/O functionalities. It also exposes an application programming interface (API)
for the RDD data objects. The interface involves several operations (e.g., map, filter, reduce) on
RDDs by calling a function on Spark in a developer-friendly fashion, concealing the complexity of
distributed processing. Figure 2 presents the execution of a Spark job decomposed into stages and
tasks [46, 103]. In a specific task, the overall computation time consists of procedures for input
read, shuffle read, computing, shuffle write, and output write times. The computation time for
each of these procedures may be affected by different factors. For example, computing time may
be affected by the input data size and the number of assigned CPU cores.

Spark Libraries: Spark’s popularity as a big data analytics platform has grown mainly due to its
mature libraries, which are widely used in academia and industry. The four main libraries are:

(1) Spark SQL [14], which supports standard SQL connectivity as well as a standard interface
for reading from and writing to other data stores including HDFS, Apache Hive, Apache
ORC, JDBC, and Apache Parquet, all of which are natively supported.

(2) Spark MLlib [90], which is a framework for running machine learning (ML) algorithms
distributedly on Spark. Due to its distributed in-memory nature, it can significantly speed
up iterative tasks, commonly found in ML applications. Many popular ML and statistical
algorithms have been implemented, including regression, classification, and clustering.

(3) Spark GraphX [89], which is a distributed graph processing framework on Apache Spark,
providing two different APIs for implementing large-scale parallel algorithms: (i) a Pregel
abstraction and (ii) a general MapReduce style API.

(4) Spark Streaming [7], which employs Spark fast scheduling capability to enable streaming
analytics by ingesting and performing RDD transformations on data in a mini-batch fash-
ion. In this way, batch and streaming operations can share the same code and run on the
same framework, thus increasing development efficiency.

Spark Configuration: Table 3 lists some of the most common parameters (valid up to Spark v2.4.4)
that need to be configured by the users and that can have a remarkable impact on performance.
These parameters mainly affect some aspects of execution and allocation of computing resources,
including CPU, memory, disk bandwidth, and network utilization.
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Table 3. Key Performance-aware Configuration Parameters for Spark Applications [104]

Parameter Name Brief Description and Use Default

“spark.default.parallelism” Number of RDD partitions created by transformations depends on scheduler

“spark.driver.cores” Number of cores used by the Spark driver process 1

“spark.driver.maxResultSize” Max size of serialized results per Spark action 1GB

“spark.driver.memory” (DM) Memory size for driver process 1GB

“spark.driver.memoryOverhead” Off-heap memory size per driver DM*0.10 (min 384 MB)

“spark.executor.cores” Number of cores for each executor 1

“spark.executor.memory” (EM) Memory size for each executor process 1 GB

“spark.executor.memoryOverhead” Off-heap memory size for each executor. It increases with
the executor size (often 6-10%)

EM*0.10 (min 384 MB)

“spark.executor.pyspark.memory” Memory size to PySpark in each executor in MiB Unlimited

“spark.files.maxPartitionBytes” Max number of bytes to group into one partition during
file reading

128 MB

“spark.memory.fraction” Fraction for execution and storage memory. It may cause
frequent spills or cached data eviction if set too low

0.6

“spark.memory.storageFraction” Storage memory percent exempt from eviction. When set
too high, tasks spill to disk more often

0.5

“spark.reducer.maxSizeInFlight” Max map outputs to collect concurrently from every
reduce task

48 m

“spark.shuffle.compress” Boolean flag to compress files of map output true

“spark.shuffle.file.buffer” In-memory buffer size per shuffle output stream 32 KB

“spark.shuffle.spill.compress” Boolean flag for compressing data spilled during shuffles true

2.2 Stream Processing Systems

Distributed stream processing systems are designed to analyze potentially unbounded streams of
continuous data in real (or near-real) time [105]. There are two main processing models: per-record
(or continuous operator streaming) and microbatching (or batched streaming) [34]. In the former,
applications fetch and process each record individually, providing typically very low latencies,
albeit lower throughput compared to microbatching. Apache Storm [11], Heron [75], and Flink
[3] are example platforms following the per-record model. With microbatching, the data stream is
divided into mini-batches, with each mini-batch processed through the entire application at once.
Thus, microbatching can lead to higher throughput but also higher average latencies. Example
systems that implement microbatching are Spark Streaming [7] and Storm Trident [13].

Apache Storm [11] is a popular distributed stream processing system that supports real-time
computation on clusters of commodity machines. The core unit of data in Storm is a tuple, an or-
dered list of named field values based on a schema. An unbounded sequence of tuples (with the
same schema) is called a stream. The programming model in Storm entails the creation of a topol-
ogy, a directed acyclic graph (DAG) of spouts and bolts that implement a particular application,
as shown in Figure 3. A spout is a source of one or more streams. It typically reads tuples from
an external source (e.g., web crawler, Kafka topic, sensor) and emits them into the topology. A
bolt then receives one or more streams, performs a streaming computation (e.g., filtering, aggre-
gations, joins), and may output one or more streams to downstream bolts. Each spout or bolt can
have multiple instantiations as individual tasks that run in parallel. Incoming streams are split and
routed among the tasks based on stream groupings. For instance, with shuffle grouping, streams
are distributed randomly to the bolt’s tasks, whereas fields grouping routes a stream based on a
subset of its fields. A Storm topology will run continuously on incoming data until it is terminated.
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Fig. 3. Storm topology (left) and architecture (right).

Table 4. Key Performance-aware Configuration Parameters for Storm Topologies [12]

Parameter Name Parameter Description Default

“supervisor.slots.ports” Number of Worker processes per machine 4

“topology.workers” Number of Worker processes for the entire topology 1

“parallelism hint (ph)” Number of Executor threads per spout or bolt in a topology 1

“topology.tasks” Number of tasks per spout or bolt in a topology ph

“topology.max.task.parallelism” Max number of Executor threads for any spout or bolt null

“topology.worker.receiver.thread.count” Number of tuple receiver threads per worker 1

“topology.acker.executors” Number of Acker threads to spawn for the topology null

“topology.max.spout.pending” Max number of tuples to be pending on a spout task null

“topology.executor.receive.buffer.size” Size of receive queue per Executor 32,768

“topology.transfer.buffer.size” Size of outbound message (transfer) queue per Worker 1,024

“topology.producer.batch.size” Number of tuples to batch before sending to destination Executor 1

“topology.transfer.batch.size” Number of tuples to batch before sending to destination Worker 1

The Storm architecture depicted in Figure 3 consists of three key components—namely, the state
manager (Nimbus), the coordinator (ZooKeeper), and a processing node (Supervisor) running on
each worker machine. Nimbus is responsible for scheduling tasks to machines as well as handling
various types of node and task failures. A Supervisor receives work assigned to its machine and
creates Worker processes. In each Worker, multiple Executor threads run the actual spout and bolt
tasks of a specific topology. Workers also execute the optional “acker” threads for handling tuple
acknowledgments and instructing spouts to resend a given tuple in case of failure. Acker threads
implement the at-least-once processing guarantees of Storm [109]. Finally, Zookeeper handles all
communication between the Nimbus and the Supervisors and maintains all their state.

Table 4 lists some of the key configuration parameters (valid up to Storm v2.1.0) that can impact
the performance of a Storm topology (i.e., application). Among them, the degree of parallelism
(DoP) has been shown to influence the performance of streaming systems the most [22, 108]. In
Storm, the DoP is configured in three ways: (i) a topology is processed by multiple Workers in
parallel; (ii) a Worker runs multiple Executor threads in parallel; and (iii) an Executor thread runs
multiple Tasks in parallel. Moreover, the number of Executors and Tasks are set individually for
each spout and bolt in a topology. Hence, the topology size determines the number of parameters
to be tuned.

Heron [75] has been developed and open-sourced by Twitter as a re-implementation and suc-
cessor of Apache Storm with several architectural improvements to achieve higher throughput
and lower latencies. Some of the key changes involve using process-based resource isolation for
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better reliability as well as cluster resources on demand for better resource efficiency. The overall
data flow, though, remained similar to Storm as described above, while Heron is fully backward
compatible with Storm. In addition, Heron introduced rate control using a backpressure mecha-
nism, with which a bolt can slow down upstream operators when it is unable to keep up with
the current data rate. This action avoids the accumulation of tuples in long queues, which could
have resulted in increased latencies. The existence of backpressure can be used as an indication of
performance saturation and, hence, as a signal for updating the current performance models [17,
71] and changing configuration parameters [42] for returning the topology to a healthy state.

Spark Streaming [7] follows the microbatching model, which represents stream computations
as a sequence of micro-batch computations on predefined small time intervals. The underlying
abstraction is a discretized stream (DStream), which is represented as a sequence of resilient dis-
tributed datasets (RDDs), each containing data from one time interval. Any Spark transformation
applied on a DStream translates to transformations on the underlying RDDs, which are contin-
uously executed on each micro-batch and always contain the same set of stages and tasks [74].
Apart from the Spark parameters listed in Table 3, Spark Streaming applications need to set the
very important batch interval parameter. A larger batch interval may enable Spark to process data
at higher throughput but may also increase the end-to-end latency of processing each record [32].

2.3 Parameter Tuning Problem Statement

A job J executing on a batch or stream data processing system is of the form J = 〈p,d, r , c〉, wherep
denotes the program running as part of the job, d the input data properties, r the cluster resources,
and c the set of configuration parameter settings used by J . Let ci denote the ith configuration
parameter, taking values from a finite domain D (ci ). The configuration space S is the Cartesian
product of the domains, i.e., S = D (c1) × · · · × D (cn ) and c = 〈c1, . . . , cn〉. The performance of job
J is portrayed as perf = F (p,d, r , c ), where perf is a performance metric of interest such as through-
put, latency, or resource efficiency.

The parameter tuning problem is defined as follows: Given a program p to process input data
d over cluster resources r , find the optimal configuration parameter settings c∗ that maximizes F
over the configuration space S:

c∗ = argmax
c ∈S

F (p,d, r , c ). (1)

The performance function F is usually unknown or partially known from past measurements,
while several experiments with Hadoop, Spark, and Storm have shown it to be non-convex and
multi-modal [46, 61, 66]. Moreover, finding an optimal solution in such a setting is NP-hard [122].
Despite the many differences between batch and stream processing systems, the parameter tuning
problem formulation is identical in both cases. The key difference lies in the performance function
F : Batch systems typically focus on optimizing the execution time and/or throughput of jobs, while
stream systems focus on end-to-end latency of records or microbatches.

Several past approaches have addressed the general issue of parameter tuning, each trying to
resolve one or more of the following specific (sub)problems:

(1) Avoidance: to identify and avoid error-prone configuration settings.
(2) Ranking: to rank parameters according to the performance impact they exert on the

system.
(3) Profiling: to collect useful information from previous runs for later prediction and use.
(4) Prediction: to predict the workload performance under hypothetical parameter changes.
(5) Tuning: to recommend parameter values to achieve objective goals.
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3 RULE-BASED APPROACH

Irrespective of the platform used, data analysts and system administrators often struggle with
finding proper parameter settings for their applications, so they typically rely upon intuition, ex-
perience, data domain knowledge, and advise on best practices from other experts or tuning guides
to tune their applications [16]. These rule-based tuning guides range from books and websites to
automated systems offering suggestions, as outlined in this section.

3.1 Batch Processing Systems

Hadoop books [123], online tutorials [50, 51], and parameter tuning guides proposed by the indus-
try (e.g., by Hortonworks [91] and Cloudera [31]) offer several rules of thumb for setting configu-
ration parameter settings. For example, the Hadoop parameter controlling the number of reduce
tasks should be set to approximately 0.95 or 1.75 times the number of reduce slots available in the
cluster. The reasoning is to make certain that reduce tasks can execute concurrently but still have
slots available for re-executing failed or slow tasks. Other tuning advice requires executing a job
first for collecting some information to work effectively. For instance, the average map output size
obtained only after execution is needed to set “io.sort.mb” effectively.

Various white papers [2, 50, 54] are also helpful to MapReduce non-experts for setting desir-
able parameter values for their applications. Most of them provide step-by-step guidelines on how
to set up a Hadoop MapReduce cluster and manually test settings for various configuration pa-
rameters until the desired performance is reached. After a MapReduce job completes execution,
post-job performance analysis and diagnostics can be useful in identifying performance bottle-
necks. Hadoop Performance Monitoring UI [49] and Hadoop Vaidya [52] parse the job execution
log and utilize a set of predefined diagnostic rules to recommend a set of tuning qualitative actions
for any performance problems that they identify. For instance, Vaidya will recommend increasing
parameter io.sort.mb when the number of map spilled records divided by total map output records
is larger than a predefined threshold, but without specifying by how much.

The official Spark website hosts a dedicated tuning guide offering best practices on how to tune
a Spark application [10]. Parameter tuning guides are also proposed by various industry vendors
such as Cloudera [30], Databricks [9], and DZone [8]. Particular emphasis is placed on memory
tuning, shuffling, and partition tuning, which are common sources of performance issues.

Memory tuning: Finding good memory parameter settings is crucial for performance due to
the in-memory computing nature of Spark. Memory consumption mainly consists of two kinds:
execution and storage. Memory in execution refers to consumption in shuffle, join, sort, and ag-
gregation stages, while memory in storage refers to consumption for caching and propagating
input or intermediate data across the cluster. Both categories are designed to share a unified re-
gion, M , meaning that storage can acquire all available memory when no execution memory is
used and vice versa. During execution, the memory may evict storage when required, but only
when there remains a certain threshold R of storage memory available. R specifies a sub-region
within the unified regionM , where a cached block is never evicted. The two most relevant memory
configurations are: (i) spark.memory.fraction, which represents the fraction of memory to use
for M , set to 0.6 by default. The rest is reserved for data structures, metadata, and safeguarding;
(ii) spark.memory.storageFraction, which represents the threshold size R set to 0.5 by default.

Shuffle: Shuffles are costly operations, since shuffle data have to be written to disks and then
transported across the network. Therefore, avoiding common pitfalls and picking the right ar-
rangement can significantly reduce the number of shuffles and improve an application’s perfor-
mance. Repartition, cogroup, join, and all of the *By or *ByKey transformations may lead to shuffles.
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These transformations should be considered for use in an appropriate way: (a) groupByKey per-
forms an associative reductive operation, which transfers the entire dataset across the network;
(b) reduceByKey aggregates the value by keys, which computes the aggregate for each key in each
partition; (c) flatMap-join-groupBy should be avoided—it is better to use cogroup when two datasets
have been involved in a groupByKey, because of the unpacking and repacking of the groups.

Partition tuning: The number of tasks (i.e., the degree of parallelism) in a Spark application is
determined based on the number of partitions from input RDD. Tuning the number of the partitions
is essential, because setting a good value helps to better utilize the cores available in the cluster
and avoids excessive overhead in managing small tasks. For example, if the number of tasks is
smaller than the number of slots available to execute them, then CPU resources are wasted.

3.2 Stream Processing Systems

Similar to the case of Hadoop and Spark, books [1], online resources [12], and professional tuning
guides [93] offer advice on how to tune Apache Storm and other stream processing systems. As the
degree of parallelism is crucial to good performance, there is a particular emphasis on parallelism-
related parameters. For example, it is recommended that the number of Executor threads for bolts
should be a multiple of the number of worker machines, while for spouts, it should be a factor of
the number of partitions of the source [86]. Such settings are expected to improve load balancing in
the cluster. Other suggestions include maintaining a ratio of one task per Executor to prevent the
context switching overhead among tasks, as well as having one Acker thread per Worker process
[41]. Besides, the total number of CPU-bound tasks should not exceed the total number of Workers
to avoid CPU contention, while I/O-bound tasks could exceed that limit [1]. However, following
such rules requires a deep understanding of the performance characteristics of each spout and bolt
in a topology; something that the average data analyst may not possess.

Dhalion [42] is a recent rule-based auto-tuning system for Twitter Heron [75]. A user can define
three sets of policies for detecting symptoms, generating a diagnosis, and applying resolution ac-
tions. The first policy set consumes system metrics and tries to detect anomalies in the execution
of the topology, such as the presence of backpressure or skew. The second set combines the symp-
toms and attempts to generate a diagnosis that describes the root cause of the problem, such as the
existence of a slow process or lack of resources. Finally, a corresponding resolution action is taken
to resolve the identified problem, such as increasing the parallelism for a particular bolt. While
Dhalion offers a flexible architecture and enables rule-based automation, defining the appropriate
policies requires substantial human expertise in performance engineering.

3.3 Discussion

Rule-based approaches are often used in production environments, as they are typically simple to
implement, they do not require extra specialized software, and can often be effective in avoiding
very bad execution performance [16]. In addition, some parameters are fairly easy to adjust, as
they depend on the (fixed) cluster resources, such as setting the number of reducers in Hadoop
or the number of Executors in Storm (as discussed above). Using simple but efficient rules for
some parameters makes it easy to identify and avoid error-prone configuration settings, as well
as to provide tuning towards better performance. However, the overall process of tuning is often
time-consuming and labor-intensive, since it typically requires several trial-and-error executions,
some of which involve the risk of performance degradation. Finally, most rules are suggested by
experts and require in-depth knowledge of system internals to be applied [108]. Overall, rule-based
approaches are useful for bootstrapping an application and avoiding bad parameter settings, but
are hard to use for obtaining near-optimal performance.
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Table 5. An Overview of Cost Modeling Approaches for Optimizing Configuration Parameter Settings

Approach Profiling Prediction Optimization

H
ad

oo
p

M
ap

R
ed

u
ce

Starfish [58, 61] Dynamic instrumentation Analytical models, black-box models, and
simulation

Recursive Random
Search

Predator [121] Dynamic instrumentation Analytical models Grid Hill Climbing

MRTuner [102] Information from logs Producer-Transporter-Consumer analytical model Grid-based Search

MR-COF [84] Dynamic instrumentation Analytical models/MRPerf [118] simulations Genetic Algorithm

ARIA [114] Information from logs Analytical models Lagrange Multipliers

Zhang et al. [133] Dynamic instrumentation Platform- and job-level analytical models N/A

HPM [116] Information from logs Scaling analytical models and linear regression Brute-force Search

IHPM [73] Information from logs Scaling models and locally weighted linear
regression

Lagrange Multipliers

CRESP [26] Information from logs Analytical models and linear regression Brute-force Search

Elastisizer [60] Dynamic instrumentation Same as Starfish and M5 regression-tree model Recursive Random
Search

Sp
ar

k

Wang [120] Sample job execution Analytical model N/A

Ernest [113] Sample job execution Parametric model & NNLS N/A

Dione [131] Sample job execution and
Graph Edit Distance

Parametric model & NNLS N/A

Singhal [103] Sample job execution Analytical models Grid Search

DynamiConf [46] Profile benchmarks Parametric models Iterated Local Search

Chen et al. [28] Sample job execution Analytical models Range Search

St
or

m Sax et al. [101] Performance metrics Analytical model Direct Algorithm

Bedini et al. [20] Performance metrics Fine-grained cost model N/A

H
er

on Trevor [17] Performance metrics Linear models & Net flow N/A

Caladrius [71] Performance metrics Timeseries & Cost models Topological Sorting

4 COST MODELING APPROACH

Cost-based optimization is a well-established technique in database management systems that
uses cost functions and data/cost statistics to find a near-optimal query execution plan for an
SQL query. However, most of that work cannot be transferred and reused in the big data setting
due to the following major challenges: (1) the user-defined functions are developed using high-
level programming languages such as Java, Python, or Scala; (2) the absence of data schema and
statistics for the input data; and (3) the high-dimensionality of the configuration parameter space
[15]. The work presented in this section (and summarized in Table 5) is an attempt to overcome
these challenges and use a cost modeling approach for optimizing parameter settings for big data
systems.

4.1 Batch Processing Systems

The Starfish line of work [57, 58, 61] pioneered cost-based optimization in MapReduce and offered
a comprehensive solution for automatically finding good values for the configuration parameters
of MapReduce jobs. Starfish proposes a profile-predict-optimize approach using a variety of analyt-
ical and cost-based models. In particular, a Profiler is introduced for collecting detailed statistical
information from MapReduce job executions to learn their runtime behavior. The Profiler employs
dynamic instrumentation for collecting this information from unmodified MapReduce programs
using the BTrace tool [23]. The generated job profile includes detailed dataflow counters and statis-
tics (e.g., number of map output records, average record size) as well as cost counters and statistics
(e.g., shuffle execution time, average time to generate a record). Further, a What-if Engine [59]
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Fig. 4. Overall process used by Starfish to predict a virtual job profile.

deploys appropriate cost models for estimating the effect of hypothetical tuning choices on job
performance and generates a virtual job profile, as shown in Figure 4. Specifically, the What-if En-
gine uses cardinality models from database query optimization for estimating dataflow statistics,
relative black-box models for estimating the cost statistics, and analytical models for estimating
dataflow and cost counters [56]. Next, a light-weight custom simulator is used along with the vir-
tual job profile to calculate the expected total job execution time. Finally, a Cost-based Optimizer
uses Recursive Random Search (RSS) [127] for searching the large space of configuration settings
efficiently and finding near-optimal MapReduce configuration settings.

Predator [121] is a Hadoop configuration optimizer that follows Starfish’s profile-predict-
optimize approach but focuses on the optimization step. Similar to Starfish, Predator uses the
BTrace tool [23] for collecting detailed information about executed MapReduce jobs, while it im-
plements its own (yet similar) performance models [83]. Unlike Starfish, Predator exploits param-
eter tuning experience from best practices (recall Section 3.1) to assist the optimization process via
narrowing down the search space for some parameters based on cluster resources or input data
properties. For example, the values for the parameter “mapreduce.job.reduces” (i.e., the number
of reduce tasks in a job) are constrained in the set between 0.95 to 1.75 times the number of reduce
slots in the cluster. Finally, Predator replaces Starfish’s RSS with a Grid Hill Climbing (GHC) al-
gorithm when searching for near-optimal configuration settings, which is better at avoiding local
optimum points.

MRTuner [102] is a toolkit for optimizing Hadoop configuration parameters that focuses on the
parallel execution of MapReduce tasks. MRTuner uses an execution model to designate the re-
lations among tasks, which are affected by four key factors: (i) the number of map task waves
(i.e., number of map tasks divided by number of map slots), (ii) the parameter to compressed
map output, (iii) the copy speed in the shuffle phase (affected by number of parallel copy threads
and number of reduce tasks), and (iv) the number of reduce task waves (i.e., number of reduce
tasks divided by number of reduce slots). These findings motivated the introduction of the PTC
(“Producer-Transporter-Consumer”) cost model to predict the execution time of a MapReduce job.
The key intuition of the PTC model is that the Producer (i.e., the generation of map outputs),
the Transporter (i.e., the shuffling of map outputs), and the Consumer (i.e., the consumption of
map outputs) must be optimized together to improve the utilization of system resources as well as
reduce job running time. In addition, MRTuner investigated the complicated relations among 20
performance-sensitive parameters, which facilitated the reduction of the search space. This dimen-
sionality reduction allowed MRTuner to develop a faster grid-based search algorithm for finding
optimal parameter settings for the execution of MapReduce jobs.
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MR-COF [84] proposes a MapReduce parameter optimization framework that also follows
Starfish’s profile-predict-optimize approach. MR-COF monitors the runtime behavior of executed
MapReduce jobs using the BTrace tool [23]. Next, the framework utilizes a cost-based performance
model similar to Starfish and uses MRPerf [118], a Hadoop simulator (discussed in Section 5.1), to
predict the MapReduce job performance. Finally, MR-COF replaces Starfish’s RRS algorithm with a
Genetic Algorithm (GA) that tunes parameters iteratively in an attempt to find near-optimal ones.
The main reported benefit of GSA over RRS is the avoidance of falling into local optima.

The ARIA framework [114] addresses the problem of estimating and allocating resources to dif-
ferent MapReduce jobs to achieve their service level objectives (SLOs) based on job completion
deadlines. In doing so, ARIA will first build a job profile to capture in a compact way the most
important performance attributes of the job during its map and reduce phases. Next, ARIA intro-
duces a cost model for estimating the amount of resources needed to complete the job within the
requested deadline. The estimates are finally used by a new SLO-based Hadoop scheduler, which
decides the ordering of jobs as well as the amount of resources allocated to each job. In essence,
ARIA optimizes two key configuration parameter settings (namely, the number of map and reduce
tasks) for executing a given MapReduce job by using the Lagrange Multipliers method.

In all aforementioned works, profiling is performed for each MapReduce job j separately to
build a job profile for j, which is then used for predicting j’s completion time under different
settings. Zhang et al. [133] propose a framework that divided the performance characterization of
the Hadoop cluster from the performance properties of different MapReduce jobs. In particular,
Zhang uses a set of microbenchmarks for measuring the performance of all MapReduce phases
other than the user-defined map and reduce functions (recall Figure 1) to generate a platform
profile of a given Hadoop cluster. Note that the running time of these phases depends only on
the amount of processed data and the performance of the underlying cluster. Next, a concise job
profile for each job can be compiled from the logs of past executions to capture the inherent job
properties. Finally, a MapReduce cost model combining the platform and job profiles is derived for
estimating the completion time of jobs processing new datasets.

Cloud computing is now growing rapidly as a successful paradigm for hosting MapReduce ap-
plications, enabling on-demand elasticity, cost reduction, and pay-as-you-go resources. The ease
with which non-expert users can launch a cluster of their preferred size on the cloud has intro-
duced new challenges with regards to parameter tuning. Specifically, users must also select the
number and type of VMs to allocate along with platform-specific parameters such as the number
of map and reduce slots. HPM [116] is one of the first works that addresses the problem of finding
the optimal number of map and reduce slots using a cost-based approach. HPM builds a compact
job profile by executing a MapReduce job on a small dataset on a small cluster and collecting the
Hadoop job logs. Then, by using linear regression and applying a scaling technique, HPM can com-
pute the number of map and reduce slots necessary for processing a large dataset while meeting
a certain time deadline. Specifically, HPM will iterate over the range of map slot allocations and
find the most appropriate value of reduce slots required to execute and finish the job before the
deadline.

IHPM [73] builds on the HPM work by improving the performance model to consider (i) the non-
overlapping shuffle phase during map executions and (ii) a varied number of reduce tasks. Instead
of linear regression, IHPM employs LWLR (“Locally Weighted Linear Regression”) for estimating the
running time of a MapReduce job. Based on this estimation, the IHPM model utilizes the Lagrange
Multiplier method for calculating the number of map and reduce slots needed by a job to finish
execution before a deadline.

Similar to HPM, CRESP [26] also tackles the problem of finding the optimal number of map and
reduce slots for executing a given MapReduce job. CRESP proposes a MapReduce job cost model
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that takes the form of a weighted linear combination of a set of non-linear functions, which model
the association between running time, input data size, and free system resources (i.e., map and
reduce slots). The model parameters are learned using linear regression after performing several
(25–60) diverse test runs on small clusters and small sample datasets. CRESP then uses the learned
cost model to determine the (near) optimal number of map and reduce slots that (a) minimize
monetary cost while respecting a job deadline or (b) minimize running time while staying within
a monetary budget. Both optimization problems are solved using brute-force search techniques.

Elastisizer [60] extended Starfish by intertwining job-level optimization decisions with resource
provisioning decisions, including determining the optimal number and type of VM instances to
allocate to meet user requirements. Similar to CRESP, Elastisizer relies on multiple executions of
a MapReduce job on a small cluster and small dataset for building an M5 regression-tree model.
However, the generated model is only used to predict some cost statistics rather than the overall
execution time. Elastisizer combines the M5 tree model with other white-box models and simula-
tion for estimating the full job behavior. In addition, Elastisizer uses Recursive Random Search for
simultaneously determining the optimal cluster size and job configuration parameters for execut-
ing a MapReduce job within a request time or monetary budget.

As far as Spark is concerned, Wang et al. [120] build an analytical model to estimate execution
time, memory consumption, and the I/O cost for a Spark job. Specifically, to estimate the overall
job performance, they first execute the job on a small cluster using an input data sample and then
gather performance measures (e.g., runtime, I/O, and memory cost) for each task. To ensure the
collection of useful metrics, the small cluster must contain one node for each node type present
in the production cluster, and the sample input data must be large enough so that each CPU core
processes one input data block. Finally, the collected metrics are plugged into the analytical models
to estimate the job runtime on the production cluster.

Ernest [113] builds performance models on Spark according to the performance of a job J on a
small data sample and uses them to predict J ’s performance on large data and cluster sizes. Specif-
ically, it builds a linear parametric cost model based on four terms: (i) a fixed cost representing the
computation time of serial tasks; (ii) a linear term of input data capturing the interplay between
the number of data records and the inverse of the number of cluster nodes; (iii) a log(machines)
term to capture some communication patterns; and (iv) a linear term for machines to capture
fixed overheads such as scheduling and serializing tasks. Ernest uses a statistical technique to
select the most valuable data points to train a model within a given budget. Finally, it employs
NNLS (“Non-Negative Least Squares”) to obtain the most appropriate model based on the training
data.

Dione [131] is a profiling framework that builds performance models similar to Ernest to effi-
ciently estimate the execution time of a Spark job. The key difference from Ernest is that Dione
uses a graph similarity technique—namely, Graph Edit Distance—to detect whether a new Spark
job jnew is similar to an already executed one jold . If a match is found, then Dione will reuse the
prediction models built for jold to predict the execution time of jnew . Hence, Dione avoids the
profiling overheads associated with building a different prediction model for each job.

Singhal et al. [103] propose a technique for predicting the job execution time on a Spark cluster
by using statistics collected after running the job on smaller data sizes in a smaller-size cluster.
Compared to Ernest, this work builds more complex analytical models to capture the overall job
execution behavior, task scheduler delay, task JVM time, and task shuffle time. In addition, the
approach employs a simulator that simulates the execution time of each stage based on the parallel
execution of tasks. The simulator also enables handling of data skew and node heterogeneity.
The prediction model captures the effect of input data size, cluster resource size, and three core
parameters: the number of executors, cores for each executor, and memory size for each executor.
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DynamiConf [46] proposes parametric models for representing the running time of a job as a
function of the degree of partitioning and the number of cluster nodes employed. Unlike the afore-
mentioned approaches, its goal is to configure the degree of partitioning for minimizing resource
consumption while bounding any increase in execution time. DynamiConf formalizes this prob-
lem into a Flow Activity Allocation (FAA) problem (proved NP-hard). Next, they propose a greedy
algorithm for solving it that comes in three variations, as well as an approach using Iterated Local
Search (ILS), which strikes trade-offs between execution time and resource usage.

Chen et al. [28] propose a cost model for Spark performance predictions, which utilize Monte
Carlo (MC) simulation to achieve low-cost training. Specifically, MC uses a small amount of data
and resources to make a reliable prediction for larger datasets and clusters, even if some data sam-
ples exhibit skewness and runtime deviations, because repeated simulations yield reliable profiling
characteristics. Compared to Ernest, this work considers network and disk bounds so that it per-
forms better with I/O-bounded workloads.

4.2 Stream Processing Systems

Sax et al. [101] propose simple analytical models for calculating the optimal batch size along with
the optimal degree of parallelism for bolt operators to maximize the throughput of a Storm topol-
ogy. (Note that batching was implemented by the authors as a library on top of Storm.) The key
intuition behind the models is that both of these parameters depend on some measurable proper-
ties of the operator (e.g., processing time, output data rate) and the network stack (e.g., network
message cost). The proposed algorithm would then use the models to optimize a topology starting
from the spouts and moving towards the leaves of the topology graph.

Bedini et al. [20] present comprehensive analytical cost models for Storm that capture (i) data
flow costs (i.e., the amount of data transferred between the topology operators and the network
cost); (ii) data processing costs (i.e., the execution and I/O cost of the operators); and (iii) system
management costs (i.e., the communication overhead between the system components and opera-
tors). The models are fairly fine-grained and are demonstrated to provide accurate predictions for
latency, throughput, and resource consumption.

Trevor [17] is a model-based tuner built on top of Heron and is composed of a modeling com-
ponent and an optimizer. The modeling component takes as input runtime metrics data and uses
linear models to learn (i) the relation between CPU utilization and input data rate and (ii) the
output-to-input ratio for each operator in the topology. Next, Trevor creates and solves a network
flow problem containing the topology and the learned models to predict the data rate for each
component and the entire topology. The final models and a target data rate are used as input to
the optimizer, which outputs an efficient configuration for achieving the target, containing the
degree of parallelism for each operator, container dimensions, and container count. The optimizer
algorithm is based on the insight that rate matching the operator leads to good configurations and
thus uses topological sorting for optimizing critical paths successively.

Caladrius [71] is a performance modeling service for Heron that can predict (i) the future traffic
load and (ii) the performance in terms of throughput and backpressure for a stream processing job.
For traffic load prediction, Caladrius uses time-series modeling based on additive models that fit
non-linear and periodic trends together. Such modeling is robust to missing data, trend shifts, and
outliers. However, analytical models are used to predict the topology performance in two key sce-
narios: (1) given the current configuration, how is the performance affected under potential future
traffic loads?; and (2) given the current traffic load, how is the performance affected using a differ-
ent configuration? The performance is predicted at various granularities ranging from individual
tasks to the entire topology.
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4.3 Discussion

Cost modeling is a typical white-box technique that uses a set of mathematical formulae for pre-
dicting job performance. As shown in Table 5, model parameters are typically calculated from log
information or sample job executions, while the various approaches use different analytical mod-
els. Such models are computationally very efficient to use for finding proper parameter settings,
with tuning times ranging from milliseconds to a few seconds, depending on the optimization al-
gorithm used [46, 61]. Moreover, cost modeling can yield predictions with good accuracy, as the
plethora of aforementioned approaches have shown. Overall, all cost-modeling approaches focus
on profiling and performance predictions, while most of them also offer automatic tuning (see
Table 5). However, it is hard for mathematical formulae to capture the complexity of system in-
ternals, especially since all big data analytics systems are distributed in nature and have several
moving parts and pluggable components. Hence, models often rely on simplified assumptions such
as the proportionality assumption (i.e., the output data size of an operator is proportional to its
input size) or that all cluster nodes are homogeneous [58, 80]. Finally, cost-based approaches typ-
ically model a particular version of the frameworks, and it is hard to adapt them after changes to
the underlying execution engine are made [80].

5 SIMULATION-BASED APPROACH

A simulation-based approach can drastically reduce the time needed to study the behavior of
applications under different scenarios. Even though such approaches do not tune configuration
parameters automatically, they provide the means to estimate application performance on given
configurations. At the same time, a simulator can be used for evaluating workload management,
new scheduling algorithms, or resource optimization decisions in distributed environments.

5.1 Batch Processing Systems

MRPerf [118] is a pioneer of the Hadoop simulator that provides a fine-grained MapReduce sim-
ulation at the level of task phases (recall Figure 1). MRPerf models both inter-rack and intra-rack
network interactions, as well as the processing and I/O times of tasks running on individual nodes.
Internally, it employs the widely used ns-2 network simulator [107] and performs discrete event
simulation to model the complicated interactions of multiple factors that influence a MapReduce
job execution. The input to the simulator consists of node specifications (e.g., CPU, RAM, disk char-
acteristics), cluster topology (i.e., the arrangement of nodes into racks), data layout (e.g., input size,
block size, replication factor), and job description (e.g., number of map and reduce tasks, average
record size). This input is then used to simulate job performance and generate a detailed execution
trace (at the level of task phases) that includes the job running time, bytes of transferred data, and
a timeline of all task phases. Over the years, a set of simplifying assumptions and limitations have
been identified such as modeling only one storage device per node and only one output replica,
not modeling speculative execution, modeling the task compute time to be proportional to the data
size rather than depend on the data content, and only supporting homogeneous environments [87,
115, 118].

Another discrete event MapReduce simulator is MRSim [53], which simulates network topol-
ogy and traffic using GridSim [24], while it models the remaining Hadoop components using the
discrete event engine SimJava [64]. Compared to MRPerf, MRSim can provide a more detailed
simulation that includes multi-core CPUs, multiple HDDs, as well as the effects of several Hadoop
configuration parameters (almost all from Table 2) on job completion times. The input to MRSim
consists of (1) a cluster topology file containing the network topology and node specifications; and
(2) a job specifications file containing the number of MapReduce tasks, the layout of input data
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(e.g., number and size of input splits), cost descriptions (e.g., time to process a map record), and
the job configuration parameters. The input information is used by MRSim to estimate various
task-level counters and timings of a MapReduce job.

Apache Mumak [92] is a MapReduce simulator that can replay traces generated by Rumen [100],
an Apache log processing tool. A Rumen trace contains job-related information describing task du-
rations and processed data (e.g., number of bytes read, number of records written). Unlike MRPerf
or MRSim, Mumak cannot simulate the execution of a job using different numbers of map and re-
duce tasks or for a different cluster size compared to what is captured in the execution trace [58].
Rather, Mumak can only reproduce a previously finished experiment for verifying the Hadoop
system design or estimating running time for Map and Reduce tasks when using other schedulers.
Finally, it simulates the map and reduce tasks but does not model the shuffling phase.

SimMR [115] is another simulation environment for MapReduce clusters that focuses on sim-
ulating the task slot allocations and scheduling decisions for multiple MapReduce jobs. SimMR
consists of three interconnected modules: (i) a trace generator for creating a replayable workload
based on historical logs or a user-defined workload description; (ii) a discrete event simulator en-
gine for emulating the Hadoop MapReduce execution process; and (iii) a pluggable scheduling
policy for making scheduling and provisioning decisions. The simulator engine takes as input the
job trace and scheduling policy, replays the trace, and generates an output log that describes the
behavior of all map and reduce tasks. Compared to Mumak, SimMR is able to replay both real and
synthetic traces as well as model the shuffle phase. However, SimMR does not simulate hardware
details of the node clusters (e.g., network transfers or HDDs) as done by MRSim and MRPerf, nor
does it model several of the Hadoop configuration parameters.

SimMapReduce [106] has a similar design as MRSim in that it is a discrete event simulator de-
veloped over GridSim [24] and SimJava [64], while it shares the same goal as SimMR: to ease
the testing of different resource allocation and scheduling policies. The user input consists of node
specifications (e.g., CPU speed, memory), network topology, data storage (e.g., input size), job con-
figuration with some basic parameters (e.g., number of map/reduce tasks), and three schedulers
(user-, job-, and task-level). Unlike the other simulators, SimMapReduce models file transmission
times from the filesystem, which are taken into account as part of the job completion time.

HSim [87] is a Hadoop MapReduce simulator that models several parameters that can impact the
behavior of MapReduce jobs, including node parameters (e.g., processors, memory, HDDs), cluster
parameters (e.g., network topology, schedulers), and Hadoop system parameters (e.g., JVM settings,
io.sort.factor, io.sort.mb). HSim can be used to investigate the effect of the aforementioned
parameters on job performance to study the scalability of the job and tune its performance. HSim
seems to be the evolution of MRSim, providing finer-grained modeling of the task phases in a
MapReduce job execution, support for more Hadoop configuration parameters, as well as support
for two task schedulers—namely, FIFO and FAIR [44].

ABS-YARN [82] is a YARN simulator that models the performance of MapReduce workloads by
taking advantaging of a deployed virtualized software for executable modeling, called Real-Time
ABS. ABS-YARN models and simulates the resource scheduling process, including the ResourceM-
anager, ApplicationMaster, and containers. With ABS-YARN, users can configure the cluster size
and per-node resource capacity as well as evaluate their deployment decisions under different job
workloads, job inter-arrival patterns, and configuration parameters.

5.2 Stream Processing Systems

CEPSim [62] is a simulator that focuses on simulating complex event processing and stream pro-
cessing in a cloud environment. CEPSim introduces a query engine based on the Directed Acyclic
Graphs (DAGs) model and develops a simulation algorithm based on the event-set abstraction.
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Table 6. A Comparison of the Simulation Support Provided by the Various Simulators

Simulator
Network
Traffic

Hardware
Properties

System
Execution

System
Scheduling

Configuration
Parameters

B
at

ch

MRPerf [118] Yes (ns-2) Yes Task sub-phases No Only basic ones

MRSim [53] Yes (GridSim) Yes Task sub-phases No Most of Table 2

Mumak [92] No No Only task level No Only basic ones

SimMR [115] No No Task sub-phases FIFO, Deadline Only basic ones

SimMapReduce [106] Yes (GridSim) Yes Task sub-phases Yes Only basic ones

HSim [87] Yes (GridSim) Yes Task sub-phases FIFO, FAIR Most of Table 2

ABS-YARN [82] No No Task sub-phases FIFO Only basic ones

St
re

am

CEPSim [62] No Yes Task sub-phases Yes Only basic ones

Requeno et al. [98] No No Task Level Yes Many from Table 4

Kroß et al. [74] No No Task Level Yes Only basic ones

SSP [81] No No Task Level FIFO Only basic ones

The design principle of CEPSim consists of generality, extensibility, multi-cloud, and reusability.
CEPSim can be customized so that it can be applied to different operator placements, different task
schedulers, as well as multiple types of cloud environments.

Requeno et al. [98] propose a formal method to simulate the performance of Apache Storm appli-
cations. Specifically, they introduce a modeling approach using UML to capture the performance
characteristics of the Storm architecture. Next, they apply transformation patterns to convert the
UML to performance models using Generalized Stochastic Petri Nets. The final models are then
used in an event-driven simulation for predicting throughput and latency.

Kroß et al. [74] propose a general performance model to simulate both batch and streaming
processing on Spark. Unlike previous approaches that predict response time, they also model re-
source utilization. Specifically, they extended the Palladio Component Model (a formal modeling
framework to describe performance factors in software) to simulate parallel operations as well as
the cluster resources on top of the general simulation platform SimuCom.

SSP [81] is a configurable and executable model of Spark Streaming written in ABS, a formal
executable language for modeling distributed systems and virtualized software. SSP models not
only the Spark stream processing framework itself, but also stream workloads. Through simula-
tions, users are able to evaluate various deployment decisions and to predict reliable performance
metrics such as processing and scheduling delay times.

5.3 Discussion

Performance evaluation of a system is critical for users to achieve good performance for work-
loads. When users lack information on the characteristic of data, workloads, framework, and/or
resources, a simulator enables them to evaluate performance in a relatively safe simulation envi-
ronment, as well as to make resource or cost decisions for a production environment. The tech-
niques presented in this section are summarized in Table 6. Most of the existing simulators tackle
task sub-phases but only involve some basic configurations. Support for network traffic, hardware
properties, and scheduling varies across the simulators. Overall, the simulation helps to accurately
learn characteristics with a reasonably low training overhead. Hence, simulation-based approaches
target the avoidance and prediction aspects of the parameter tuning problem (recall Section 2.3).
However, increasing the involved parameters may degrade the simulation quality, while building
a simulator requires comprehensively understanding the internal system dynamics as well as data
and workloads.
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6 EXPERIMENT-DRIVEN APPROACH

Experiment-driven approaches for parameter tuning are typically motivated by the inability of
cost models to accurately predict the performance of different applications given their black-box
nature and the presence of clusters containing different CPU, memory, storage media, and net-
work stacks [80]. An experiment-driven approach repeatedly executes an application on a cluster
with different settings each time, until it converges to some proper settings. So, the critical chal-
lenge of these approaches is to reduce experimental runs required to achieve the desired perfor-
mance. While experiment-driven approaches may yield better parameter settings, they typically
take much longer due to the repeated actual executions of applications.

6.1 Batch Processing Systems

Panacea [85] is a compiler-guided software that combines static analysis with trace analysis to
perform two types of optimizations for MapReduce jobs. The first one involves bytecode transfor-
mations to reduce overheads of iterative applications while the other one tunes job configuration
parameters. For parameter tuning optimization, Panacea employs four main components: (1) a
Trace Instrumenter that modifies application bytecode to include selective trace generation; (2) a
Parameter Instrumenter that adds statements in the bytecode for setting parameter values; (3) an
Application Executer that executes the application on sample input datasets and measures the ex-
ecution time; and (4) a Parameter Tuner that defines the search space and invokes the other three
components iteratively for different parameter values. The settings that yield the lowest execution
time are then coded into the MapReduce job. In an attempt to lower the high dimensionality of
the search space, Panacea identifies subsets of parameters that can be searched independently and
achieves search times in the order of a few hours [85].

Gunther [80] is a search-based tuning system for Hadoop, which treats automatic parameter
tuning as a black-box optimization problem that can be answered using a search algorithm. In
particular, Gunther employs a Genetic Algorithm that iteratively selects different configuration
settings and evaluates their impact on the MapReduce job performance via test runs. The search
terminates after a convergence criterion is reached or a certain number of trials are performed.
According to the authors, Gunther can find near-optimal parameter settings with less than 30 trial
runs. Also, Gunther includes a methodology for lowering the search space dimensionality, which
ignores parameters with little effect on performance. Their approach involves using job counters
to categorize MapReduce jobs into four categories that are affected by the same or almost the same
subset of parameters. After a job is classified into one of the four groups, Gunther limits the search
to the group’s corresponding subset of parameters for reducing the search time.

Petridis et al. [95] presents a trial-and-error methodology for tuning Spark parameters based on
the performance of a small number of experiments. Specifically, based on documentation and past
execution experience, the authors first select 12 important performance-aware parameters, then
test the performance impact of these parameters on three benchmark applications (namely, sort-
by-key, shuffling, and k-means). Based on these results, they develop a methodology in the form
of a block diagram containing the seven most impactful parameters. Parameter tuning involves
executing a Spark application using different settings derived from following the block diagram.

BestConfig [134] is a general tool that can search for proper parameters within a deadline for
several big data platforms such as Spark, Hadoop, and Hive. To overcome the high-dimensionality
challenge of parameters, BestConfig first uses divide and diverge sampling to (i) guarantee a broad
coverage of parameters by covering most of the area regions and (ii) pick representative samples
from regions instead of using all samples. Next, BestConfig deploys a recursive bound-and-search
algorithm to explore the possible optimal configuration among the space. BestConfig also provides
a theoretical explanation of the advantages of combining their sampling and search algorithms.
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Gounaris et al. [47] presents a systematic tuning methodology divided into an offline and an on-
line phase. In the offline phase, the authors propose selecting three benchmark applications (i.e.,
“sort-by-key,” “shuffling,” and “k-means”) and executing them using different configuration set-
tings. The settings are generated by varying each parameter separately and in pairs, generating 117
runs (using 15 parameters) for each application. The collected results are analyzed using a graph
algorithm to compose nine complex candidate configurations. In the online phase, a new Spark
application is executed nine times using the candidate configurations to determine the best one.

AutoTune [18] is a parameter tuning tool for Hadoop and Spark. AutoTune executes experiments
on both the production cluster and on a smaller-scale testbed to perform more test runs. The over-
all approach consists of three main steps. First, AutoTune executes the application using different
data sizes and numbers of machines to build a parametric model similar to Ernest [113]. The model
is used to select the data and cluster size for running the experiments within a time budget. The
second step involves (i) exploration via using latin hypercube sampling (LHS) for generating dif-
ferent configurations to execute and (ii) exploitation via building and employing a Random Forest
model for finding promising configurations to execute. In the final step, the best q configurations
are used for executing the application on the production and determining the best one.

Yu et al. [129] introduce an auto-tuning method for in-memory data processing frameworks (e.g.,
Spark) that considers data size and high dimensional parameters. They first propose a hierarchical
predictive model, which consists of many sub-models arranged in a hierarchy. The central idea of
a hierarchical model is to build several simpler models rather than a single complex model. Next,
they employ a Genetic Algorithm to guide the experimental search for the optimal configuration.

6.2 Stream Processing Systems

BO4CO [66] is an experimental-driven method for finding optimal configurations from a large
number of parameters that can influence the performance for stream processing systems. Specifi-
cally, BO4CO bootstraps the optimization using Latin Hypercube Design to choose a representative
configuration from the whole space. Then, BO4CO employs Gaussian Processes (GPs) to iteratively
predict the average and confidence interval of a response variable at unknown configuration ar-
eas. For better exploration, BO4CO takes advantage of Bayesian networks to make use of previous
information of historical logs, and kernel estimators to better seek optimal configuration.

Fischer et al. [41] proposed a method to automatically choose configuration for distributed
stream processing. In particular, they leverage a Bayesian network to predict the parameters with
good performance. Bayesian Optimization is an iterative process for repeatedly estimating an ob-
jective function. In each iteration, the next configuration is predicted based on the known prior
historical information. Bayesian Optimization also supports pausing and resuming the processes
so that a decision can be made whether to proceed or terminate the tuning.

Bilal et al. [22] introduce a parameter tuning framework for stream processing systems. This
framework combines a black-box prediction technique and a rule-based optimization method.
They initialize the configuration by Latin Hypercube Sampling (LHS), then leverage a Hill Climb-
ing Algorithm (HCA) to explore the configuration space. The stages in HCA consist of initial
sampling, local search, potential best configurations, shrink, and restart. To further speed up the
search, the authors heuristically rank the parameters and provide feedback for the configuration.

Liu et al. [86] introduce a stepwise profiling method to tune workload performance on stream
processing platforms. To capture the workload characteristics and link it to the resources, they
leverage a profiling approach that auto-scales the provisioned resources. The designed paradigm
of profiling is a trial-and-error method, which uses feedback flow to iteratively improve the scala-
bility and applicability. The profiling further enables users to make cost-effective or efficient per-
formance decisions for resource provisioning.
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6.3 Discussion

Experiment-driven approaches enable the exploration of unknown configuration areas and work
independently of system versions or hardware configurations. The knowledge gained from real test
runs on real systems helps to further understand the performance implications of data, workloads,
systems, and resources. The trial-and-error strategy enables identifying and avoiding error-prone
configuration settings, while the experimental results empower profiling and tuning. Generally,
most of the methods used in experiment-driven approaches are search-based algorithms, which
enable global and local search for the optimal configuration. One primary goal is to reduce the
number of experimental runs but still cover all critical areas of the configuration space. However,
it remains challenging to find an optimal configuration among such a large configuration space.
The repeated experiments lead to expensive resource consumption and time delays, while the test
results may lose their effectiveness for dynamic workloads.

7 MACHINE LEARNING APPROACH

When analytical models cannot meet the complexity of systems, jobs, or data, researchers explore
alternative black-box techniques to model performance. The typical techniques are machine learn-
ing (ML) models, which offer two main benefits: (i) there is no need to understand the internals of
the systems, jobs, and data; and (ii) the model itself improves with more training data. However,
ML approaches also face two core challenges related to parameter and model selection.

Parameter selection: Even though there exist over 200 configuration parameters in Apache Spark
[6], not all of them significantly influence the performance of Spark jobs. Hence, it is crucial to iden-
tify the most impactful parameters that control resource allocations (e.g., CPU, disk, memory), job
scheduling (e.g., shuffle, parallelism), and data (e.g., compression, task partition). The common way
is to select parameters based on experts’ experience [119], industry guides (e.g., Databricks [33]), or
based on experimental runs. A smarter way is to use machine learning techniques to rank or iden-
tify the important parameters that have a strong correlation with performance. Factor Analysis
[110] and Principal Component Analysis (PCA) [126] have been used in the past for this purpose.

Model selection: There exist several ML methods to fit the tuning context. Some common ones
are: (i) Decision Trees, which use a tree-like model of options to decide which parameters might in-
fluence performance negatively or positively; (ii) Logistic or Tree-based Regression, which measures
the relationship between the dependent variables (i.e., parameters) and one or more independent
variables such as execution time; and (iii) Artificial Neural Networks, which form a collection of
connected nodes that can transmit signals to each other, leading to some prediction [55, 119].

Several research efforts have focused on employing machine learning–based performance mod-
eling and tuning, listed in Table 7. We describe the details of this work below.

7.1 Batch Processing Systems

One of the earliest ML approaches is based on insights gained after analyzing 10 months of MapRe-
duce workload traces from a 400-node Hadoop production cluster at Yahoo! [72]. The proposed
algorithm follows an instance-based learning approach composed of two steps: (i) identifying a
set of comparable recent jobs using K-Nearest-Neighbors and (ii) predicting the runtime of a new
MapReduce job using regression models and the completion times of similar jobs. For the first step,
the authors used the Heterogeneous Euclidean Overlap Metric as a similarity measure for jobs based
on seven input features: job submission time, job name, user name, number of map/reduce tasks,
and map input bytes/records [72]. For the latter step, they used locally weighted linear regression to
model job running time as a multi-variate linear function of only four input features: the number
of map/reduce tasks and map input bytes/records. The key limitation here is the inability to model
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Table 7. Machine Learning Techniques, Their Input Features, and Models for Predicting Job Performance

Approach Input Features ML Technique

Kavulya et al. [72] Job submission time, job name, user name, number of
map/reduce tasks, and map input bytes/records

K-Nearest-Neighbors

Number of map/reduce tasks and map input bytes/records
and weights based on job similarity

Locally weighted Linear Regression

Kadirvel et al. [70] Number of nodes, map input size, number of reduce tasks,
I/O sort record percent, and the shuffle parallel copies

Gaussian Processes, Multilayer
Perception, Discretization regressor,
M5 Pruned Model Tree

Yigitbasi et al. [128] mapreduce.task.io.sort.mb, number of map and reduce
slots, number of reduce tasks, and map input size

Support Vector Regression

AROMA [76] CPU, disk, and network utilization patterns k-mediod Clustering

Input data size, resource allocations, and several parameters Support Vector Machine

PPABS [124] CPU, memory, and disk utilization statistics k-means++ Clustering

CPU, memory, and disk utilization statistics Pattern Recognition

PStorM [40] Features from code analysis (e.g., map class name) and
execution profile (e.g., map size selectivity)

Gradient Boosted Regression Trees

Chen et al. [25] A set of several configuration parameter values Tree-based Regression

RFHOC [21] A set of several configuration parameter values Random-Forest Approach

Wang et al. [119] CPU cores, memory, max map output, compress, shuffle,
block size, parallelism, input data size, etc.

Decision tree (C5.0), Recursive
Random Search

Hernández et al. [55] CPU cores, memory, parallelism Gradient Boosting Regressors

PBDST [67] Simultaneous multi-threading (SMT) configurations k-means, logistic regression

d-Simplexed [27] CPU, memory, data size Delaunay Triangulation

Zacheilas et al. [130] A set of several configuration parameter values Gaussian Processes

Li et al. [79] Memory sizes and number of cores & threads in various
stages

Support Vector Regression

Trotter et al. [108] Number of worker processes, number of executors Genetic Algorithm, Bayesian
Optimization

Trotter et al. [109] Workers, spout parallelism, bolt parallelism, acker
parallelism

Genetic Algorithm, Support Vector
Machines

OrientStream [117] Variety of data-, plan-, operator-, and cluster-level features Ensemble/Incremental ML

Vaquero et al. [110] Parameters/metrics selected based on Factor Analysis Reinforcement Learning

the different types of processing performed by different jobs, even though they might have the
same number of tasks and consume similar amounts of input data.

Another work performed an empirical evaluation of how several supervised machine learning
(ML) approaches can predict the completion time of MapReduce jobs [70]. The overall approach
is decomposed into three steps: (1) identifying a set of factors that can influence job performance;
(2) selecting an appropriate set of features to use by establishing which factors have the best pre-
dictive capability; and (3) predicting the job execution time using an ML technique. The first step
was done via empirically evaluating multiple MapReduce jobs. The factors were organized into six
categories: resources (e.g., number of nodes), data (e.g., input size), program (e.g., CPU or I/O inten-
sive), configuration (e.g., number of MR tasks), faults (e.g., number of node failures), and environ-
ment (e.g., disturbance from co-located virtual machines). From the feature selection step, the most
important factors identified were the number of nodes, map input size, number of reduce tasks, I/O
sort record percent, and the shuffle parallel copies [70]. Finally, the best approaches were Gaussian
Process Regression, Multilayer Perceptron, Regression by Discretization, and M5 Pruned Model Tree,
all with a mean percentage prediction error ranging between 4.4% and 11.9%.
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A later work investigated several ML-based performance models for predicting MapReduce job
execution time and concluded that an SVR (“Support Vector Regression”) model has good compu-
tational performance as well as good accuracy [128]. Instead of performing any feature selection
process, the authors relied on their domain expertise and selected five parameters to use as input
to the models: io.sort.mb, number of map and reduce slots, number of reduce tasks, and map
input size. The training data collection is performed separately for each application and involves
a sparse sampling approach. For selecting the best parameter settings to use for a MapReduce job,
the authors currently perform an exhaustive search over the performance surface produced by the
SVR model (even though they recognize the need for using smarter search algorithms such as a
Recursive Random Sampling or a Genetic Algorithm for searching) [128].

AROMA [76] is a job provisioning system for finding proper resource allocation (i.e., number
and type of VMs) and Hadoop configuration parameters for executing a MapReduce job to achieve
a service-level objective. MapReduce jobs exhibiting similar performance behavior were found to
have comparable resource consumption characteristics. Driven by this observation, AROMA em-
ploys a two-phase approach. In the first offline phase, the jobs are grouped using the k-mediod
clustering algorithm along with the Longest Common Subsequence (LCSS) distance metric. The jobs
within each cluster exhibit a similar CPU, disk, and network utilization behaviors. An SVM (“Sup-
port Vector Machine”) model is then trained for each cluster to predict the job’s performance given
input data sizes, several configuration parameters, and resource allocation. Note that AROMA also
applies a stepwise regression approach for detecting the set of features that are the leading pre-
dictors for the job performance. In the second online phase, AROMA executes a submitted job
on a small cluster with sample input data to obtain its resource utilization pattern, which in turn
is used to find the job’s cluster and corresponding SVM model. Finally, a pattern search-based
optimization approach is applied to the selected SVM model for determining near-optimal con-
figuration parameters and resource allocations that minimize resource cost while respecting the
job’s execution deadline.

The PPABS (“Profiling and Performance Analysis-based System”) framework utilizes k-means++
clustering and Simulated Annealing for finding near-optimal configuration settings for Hadoop
jobs [124]. Similar to AROMA, it consists of an offline and an online phase, performed by the Ana-
lyzer and Recognizer, respectively. The Analyzer executes various MapReduce jobs under different
settings and collects CPU, memory, and disk utilization statistics. By using these attributes, the jobs
are classified into a set of equivalence classes using an adapted k-means++ clustering algorithm.
For each equivalence class, the problem of finding optimal configuration settings is formulated as
a Combinatorial Optimization problem, and Simulated Annealing is used for finding a near-optimal
solution. In the online phase, the Recognizer executes an incoming job on a small input sample
to collect CPU, memory, and disk utilization statistics and then applies pattern recognition tech-
niques to categorize it under one of the equivalence classes. Finally, the job is executed using the
configuration settings that correspond to the identified equivalence class.

PStorM (“Profile Store and Matcher”) [40] is a system that can create execution profiles for newly
submitted MapReduce jobs by utilizing information gathered from previous executions of other
jobs. For each submitted job, PStorM runs a sample job with one map task and multiple reduce
tasks to collect the job’s profile using the Starfish Profiler (recall Section 4.1). This profile is used
to build a feature vector containing a set of static features obtained by analyzing the code (e.g., map
class name) and a set of dynamic features from the execution profile (e.g., map size selectivity).
Next, the profile store is searched using the feature vector and Gradient Boosted Regression Trees
in an attempt to find a matching job profile. If one exists, then the Starfish Cost-based Optimizer
will use it to search for optimal parameter settings. Otherwise, the Starfish Profiler is employed to
execute the job, collect its profile, and save it in the profile store for future use.
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Another work [25] proposes a tree-based regression approach consisting of a prediction and an
optimization phase. The former one estimates the execution time of a MapReduce job by building
three prediction models. The first two models make predictions about the behavior of the map and
reduce tasks, respectively. In particular, each model takes as input a set of configuration parameter
values and outputs three task features—namely, the median task execution time, the deviation of
the task execution times, and the number of task waves. The predicted task features are then
used by the third model to predict the overall job completion time. Training data are collected for
each MapReduce job by executing it multiple times with randomly generated parameter settings.
Finally, the optimization phase searches the space of configuration parameters using Random Hill
Climbing (RHC), a combination of Random Sampling and Hill Climbing.

RFHOC [21] proposes a Random-forest Approach to tune the parameters of Hadoop jobs that
are repeatedly run and/or have long duration. Specifically, RFHOC uses random forest learning to
train an ensemble model for each MapReduce task phase (recall Figure 1). The input for each model
is a set of several Hadoop parameters (see Table 2), while the output is a performance prediction
for that phase. The sum of these predictions serves as an approximation for the total running time.
To generate the relevant training data, a MapReduce job is repeatedly run 2K times using different
(random) configuration settings each time. Finally, RFHOC utilizes the generated models along
with a Genetic Algorithm for searching the configuration space of Hadoop.

Wang et al. [119] present a method for tuning Spark parameters using binary and multi-
classification. In the binary classification step, a model is trained and used to predict whether a set of
parameters will improve performance. For the cases where the answer is yes, a multi-classification
model is trained and used to predict by how much the performance will improve (e.g., by 5%, 10%).
This article investigates several common binary and multi-classification algorithms and finds the
decision tree model (C5.0) to work best. Finally, the authors use Recursive Random Search (RRS)
[127] for enumerating the space of possible options and finding the best one.

Hernández et al. [55] utilize a machine learning model for predicting the completion time
of Spark workloads based on a set of metrics at both system and application level. In particu-
lar, the features used are related to parallelism (e.g., Executor cores and memory), application
(e.g., number of tasks, bytes shuffled), and system (e.g., CPU load). The authors experimented
with several regression models such as Bayesian Ridge, Linear Regression, SGD Regressor, Lasso,
and so on, and concluded that Gradient Boosting Regressor has the best accuracy. The prediction
model is then leveraged by a heuristic algorithm to recommend near-optimal parameters for task
parallelism.

PBDST [67] is a framework for tuning Simultaneous MultiThreading (SMT) configurations (i.e.,
the thread count in SMT cores) on POWER8 processor architectures for Spark-based workloads.
Specifically, PBDST consists of an offline component that is responsible for training the models
and an online component that is responsible for predicting a near-optimal SMT configuration in
each stage of a Spark application to achieve better performance. The training data are collected
using microarchitecture-level profiling and are used to train a classifier for predicting SMT config-
urations. PBDST implemented several predictors and found that K-Nearest Neighbor and Logistic
Regression led to lower prediction errors.
d-Simplexed [27] is a performance prediction framework for tuning Spark workloads. Unlike

other black-box ML methods, d-Simplexed leverages a d-dimensional mesh using Delaunay Tri-
angulation over a selected set of d parameters. The key idea is that piece-wise linear regression
models could be built faster and yield better prediction than complex models such as Gaussian
processing or Neural Networks. To further speed up model construction time, d-Simplexed pro-
poses an adaptive sampling technique to collect as few training points as required for accurate
prediction.
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7.2 Stream Processing Systems

Zacheilas et al. [130] focus on the proactive adjustment of operator parallelism in stream processing
systems. Specifically, they employ Gaussian Processes for predicting the future load and estimated
latency based on historical data. These estimations are then used to construct a state transition
graph that models the impact of actions (e.g., changing the degree of parallelism) to the system
performance. Finally, the graph is utilized for selecting the appropriate transition actions that
minimize a cost function and ensures maximum performance while the resources are neither over-
utilized nor over-assigned.

Li et al. [79] aims to not only model the workload performance but also offer a scheduling
solution for Storm. First, they use a non-parametric regression method called Support Vector Re-
gression (SVR) to model the performance surface of a given workload. The modeling part involves
estimating the mean tuple processing latency of each task and the mean tuple transfer latency
among tasks. Then, based on the modeled surface and predicted performance, they heuristically
search for a scheduling plan that includes the best degree of parallelism for each operator.

Trotter et al. [108] propose to accelerate the exploration of the configuration space in Storm
stream processing via employing either Genetic Algorithms or Bayesian Optimization. The system
includes two components. The first one, the sensors, collect the relevant performance metrics
from Storm and the Java Virtual Machines. The second one, the optimizers, takes advantage of the
collected profiles to search the configuration space and find a good configuration point. In follow-
up work, Trotter et al. [109] refine their Genetic Algorithm and employ a classifier to reduce the
search time over the configuration space. In particular, they use Support Vector Machines to filter
out candidate configurations that are less likely to produce a good result.

OrientStream [117] is a framework that uses incremental machine learning approaches for mod-
eling and predicting the resource usage (i.e., CPU, memory, latency, and throughput) of workloads
in distributed stream processing systems. Specifically, OrientStream uses an ensemble of four in-
cremental learning models—namely, Naive Bayes, HoeffdingTree, Online bagging, and Nearest
neighbors, which are trained using a variety of data-, plan-, operator-, and cluster-level features.
To further improve the training process, OrientStream detects and discards abnormal training data.
Finally, OrientStream can automatically adjust operator parallelism and obtain better performance.

Vaquero et al. [110] apply reinforcement learning to auto-tune Spark Streaming workloads. The
authors first use a range of synthetic and real workloads to generate training data. Next, Factor
Analysis is used for identifying the most relevant metrics and and k-means for clustering them into
meaningful groups. Lasso path analysis is then used to generate a ranked list of parameters based
on the impact on latency. Finally, given live metrics and the current configuration, a reinforcement
learning module explores the configuration space and selects new configurations iteratively.

7.3 Discussion

We summarize the aforementioned ML-based approaches in Table 7. These papers propose to use
different types of ML techniques to predict the performance of several or all parameters by using
historical logs or execution metrics as training data. In this context, parameters and metrics are
typically treated the same way, all feeding into the models. By leveraging ML methods, users treat
the problem as a black-box that is independent of system internals and hardware, in spite of the
complexity and scale of data, workloads, systems, and resources. Most of the ML-based approaches
focus on building predictive models and tuning performance based on them. During model train-
ing, the performance-sensitive parameters and essential metrics can be ranked automatically. With
increasing training data sizes, the models can achieve high prediction accuracy and near-optimal
recommendations. However, obtaining training data can be a costly process, as it requires runs
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Table 8. The Unique Features and Methodology of Adaptive Approaches for Parameter Tuning

Approach Unique Features Methodology

B
at

ch

Polo et al. [97] Adjusts number of allocated map/reduce slots Cost functions

MROnline [78] Supports aggressive and conservative tuning Gray-box Hill Climbing

Ant [29] Supports heterogeneous cluster nodes Genetic Algorithm

JellyFish [36] Performs dimensionality reduction of search space Model-based Hill Climbing

KERMIT [45] Optimizes CPU and memory for workloads Global and local search

St
re

am

T-Storm [125] Optimizes number of Worker processes in Storm Traffic-aware Scheduling

Das et al. [32] Adapts batch size in Spark Streaming Fixed-Point Iteration

DRS [43] Adapts # of Workers and parallelism hint per operator Queueing Theory

Drizzle [112] Adapts batch size and grouping in Spark Streaming Group and pre-scheduling

Petrov et al. [96] Decides # of AWS worker nodes and Spark Executors Cost performance model

under different settings to avoid under-fitting. The situation becomes worse as workloads can
change dynamically, and unseen applications appear.

8 ADAPTIVE APPROACH

All aforementioned approaches for parameter tuning require information from past job executions
to predict and optimize the performance of a workload. However, past executions might not be
available or may be inaccurate (e.g., the job was executed over a different dataset), while running
the job is computationally expensive. The adaptive approaches discussed in this section and listed
in Table 8 avoid extra job executions by tracking the execution of a currently running job and
changing its configuration in an online fashion to dynamically improve performance or meet a
predefined deadline.

8.1 Batch Processing Systems

Polo et al. [97] presented an adaptive estimator for job completion time and a task scheduler that
can be used for adjusting the number of allocated task slots for different MapReduce jobs to meet
their completion time goals. The key hypothesis is that the execution time ei of any task i not yet
started will equal the mean execution time of the tasks that have completed until then. With ei ,
it is also feasible to estimate the remaining execution time r j of a currently running task j. Given
all ei and r j estimates for a job as well as a completion time goal, the scheduler can calculate how
many slots to concurrently allocate to the job (over time) for the job to meet its deadline. However,
the estimator only monitors the progress of map tasks and makes the (often incorrect) assumption
that map tasks have the same computational cost as reduce tasks.

MROnline [78] is a system that supports dynamic parameter tuning at the level of tasks for im-
proving the performance of Hadoop jobs. In particular, it enables having different configurations
for each task and can even change some task settings on the fly. MROnline differentiates between
aggressive and conservative tuning. In the former, MROnline tries out multiple configurations
within a single job execution and collects runtime statistics such as MapReduce counters as well
as CPU, memory, and I/O utilization. The collected information along with a gray-box hill-climbing
algorithm determine the parameter settings to try out in the next run, and the process continues
until it converges to near-optimal settings. With conservative tuning, the goal is to boost job per-
formance within a single execution. In this case, the job uses default parameter values during the
first wave as it collects profiling information, while subsequent waves use tuned parameters.

Ant [29] is an adaptive self-tuning approach for finding near-optimal settings for individual
tasks executed in heterogeneous environments. Initially, Ant categorizes nodes into clusters based
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on their hardware capabilities and then applies the self-tuning approach on each cluster indepen-
dently. Upon a MapReduce job submission, Ant will execute the first task wave with randomly
selected configurations and collect runtime statistics. When the wave completes, Ant will adap-
tively alter the settings of the next task wave according to the best-performing tasks for each
cluster. To increase the rate of tuning and avoid local optima, Ant employs a Genetic Algorithm for
re-configuring the task parameters. Since it might take several rounds of tuning for task settings
to converge, Ant performs well when jobs consist of many map tasks to be executed in multiple
waves.

JellyFish [36] is another online performance tuning system that tries out different configura-
tion settings per task until it converges to the desired settings. The overall process is similar to
MROnline and Ant: Jellyfish runs each task with different parameter settings, gathers runtime in-
formation, executes the next task wave with new configuration settings, and reiterates. The two
main differences to the previous approaches are that Jellyfish (1) reduces the dimensionality of
search space by dividing the parameters into two groups, one for map- and one for reduce-relevant
parameters; and (2) uses a model-based hill-climbing algorithm that takes into account interplay
between different Hadoop components and the effect of parameter values.

KERMIT [45] is an online tuning system that optimizes memory and CPU assignment to individ-
ual containers by interpreting the performance of containers in terms of response time in Apache
YARN. As KERMIT works at the level of YARN, it can perform performance optimization of both
Hadoop MapReduce jobs and Spark applications. In particular, YARN intercepts resource demands
coming from other platforms (e.g., MapReduce, Spark) and modifies memory sizes and CPU cores
allocated to containers. KERMIT operates in either an “observe” mode or a “search” mode. In the
first mode, it simply observes the effects of memory and CPU settings on the container perfor-
mance and tries to discover whether a notable change in container performance has happened. If
it has, then it switches to the search mode, during which KERMIT will randomly change either
memory or CPU value slightly in a configurable range. By adjusting these settings, KERMIT affects
container density, which affects the number of concurrent tasks executing on the cluster.

8.2 Stream Processing Systems

T-Storm [125] is a new stream data processing system based on (and backwards compatible to)
Storm. T-Storm improves the throughput by proposing a new traffic-aware scheduler, which aims
at minimizing the traffic between nodes and processes. The scheduler will occasionally determine
the number of Workers to use for each topology and then assign/re-assign tasks dynamically. Also,
T-Storm introduces a consolidation approach for using as few worker nodes as possible.

Das et al. [32] propose an adaptive algorithm for automatically determining the most suitable
batch size in Spark Streaming as the environment varies. The algorithm is based on Fixed-Point
Iteration, a numerical optimization technique that can continuously learn from previous batch
statistics and provide low latency. The key intuition is to ensure that the batch processing time
is less than the batch interval (i.e., size) so that a batch finishes processing before the next one
arrives. This online algorithm is lightweight and requires no tuning on specific workloads.

DRS [43] is a dynamic resource scheduler for cloud-based data stream processing. The goal
of DRS is to dynamically assign resources (i.e., workers and parallelism hint for each operator)
to workloads in a cost-effective way, while the deadline requirements are met. Specifically, DRS
employs performance models based on queueing theory for predicting the required resources for
a given workload. Next, DRS uses a greedy algorithm for searching for an optimal scheduling plan
after mapping the problem into a minimization problem.

Drizzle [112] is a system that aims to improve fault tolerance and adaptability for stream pro-
cessing by decoupling the coordination interval from the processing interval in Spark Streaming.
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Table 9. Strengths and Weaknesses of the Various Approaches for Automatic Parameter Tuning

Approach Strengths Weaknesses

Rule-based • Do not require extra specialized software
• Some parameters may be easy to adjust

• Time-consuming and labor-intensive process
• Requires in-depth knowledge of system

internals
• Higher risk of performance degradation

Cost Modeling • Very efficient for predicting performance
• Good accuracy in many (basic) scenarios

• Hard to capture complexity of system internals
& pluggable components (e.g., schedulers)
•Models often based on simplified assumptions
• Not effective on heterogeneous clusters

Simulation-based • High accuracy in simulating dynamic
system behaviors
• Efficient for predicting fine-grained

performance

• Hard to comprehensively simulate complex
internal dynamics
• Unable to capture dynamic cluster utilization
• Not very efficient for finding optimal settings

Experiment-driven • Find good settings based on real test runs
on real systems
•Work across different system versions and

hardware

• Very time-consuming as they require multiple
actual runs
• Not cost effective for ad hoc applications

Machine Learning • Ability to capture complex system dynamics
• Independence from system internals and

hardware
• Learning based on real observations of

system performance

• Require large training sets, which are
expensive to collect
• Training from history logs leads to data

under-fitting
• Typically low accuracy for unseen applications
• Hard to choose the proper model

Adaptive • Find good settings based on real test runs
on real systems
• Can adjust to dynamic runtime status
•Work well for ad hoc applications

• Only apply to long-running applications
• Inappropriate configuration can cause issues

(e.g., stragglers)
• Neglect efficient resource utilization in the

whole system

Specifically, Drizzle first introduces group scheduling by arranging batches concurrently to miti-
gate the centralized scheduling bottleneck. Next, Drizzle employs pre-scheduling by rearranging
the task queue based on task dependencies to alleviate the issue of straggler tasks for data de-
pendency. Last, to achieve higher throughput, Drizzle further implements various optimization
approaches both within and across batches.

Petrov et al. [96] propose a performance model for stream data processing to adaptively assign
optimal resources (i.e., number of worker nodes and Executors) to workloads. The framework
collects various statistics and system utilization metrics and then uses the models for deciding
when and how to scale the current application to maximize throughput. The authors implemented
the auto-scaling techniques in Spark Streaming over Amazon Web Services.

8.3 Discussion

An adaptive approach aims to dynamically adjust parameters and/or resources to ensure fault tol-
erance and required performance on the fly, possibly with the environment or workloads rapidly
changing. As shown in Table 8, most adaptive approaches utilize some form of performance mod-
eling for making predictions along with a search or scheduling algorithm for making tuning deci-
sions. The methods strategically observe workload changes and adapt the resources and configu-
ration in real-time. Such approaches work well for ad hoc and long-running (batch or streaming)
workloads. However, dynamically shifting configurations in an online system may cause various
performance or stability issues such as introducing stragglers or negatively affecting other con-
current workloads.
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9 CONCLUSIONS AND OPEN RESEARCH CHALLENGES

Despite many differences in architecture and system internals among big data analytics systems,
the key challenges related to automatic parameter tuning are the same: There is a vast number
of configuration parameters that can impact system performance in non-obvious and complicated
ways. To make matters worse, the performance implications vary across different applications run-
ning on clusters containing various types of CPUs, memory, storage media, and network software
stack. The performance of data processing applications is further influenced by the large sizes and
unstructured nature of input data, as well as variations in task execution times.

This survey presents a comprehensive study of several past approaches attempting to address
the aforementioned challenges for either accurately predicting the application performance un-
der different parameter settings or finding near-optimal parameter settings for various scenarios.
The approaches are divided into six broad categories: rule-based, cost modeling, simulation-based,
experiment-driven, machine learning, and adaptive tuning. Each of the six approaches excels in one
or more aspects, having its unique application scenarios. Beginning with no knowledge of param-
eter tuning, an experiment-driven method is the most approachable one. As more experience is
gained, rules or cost functions can be built to efficiently improve system performance. As the com-
plexity of systems increases, the simulation of small components helps to increase the understand-
ing of the system characteristics. When trying to tune very complex systems and applications with
a large parameter space, machine learning methods with appropriate training data can be useful,
as they typically ignore system internals. Finally, for ad hoc and long-running workloads, an adap-
tive approach is the best option. The strengths and weaknesses of each approach were discussed
in each section and are summarized in Table 9.

As big data analytics systems increase in size and complexity, there is a growing need for au-
tomatically ensuring good and robust system performance that can cope with the ever-increasing
data production rates, thus introducing more open challenges to researchers:

• Heterogeneity: As organizations often own multiple generations of hardware and data
centers are starting to consolidate servers, heterogeneous environments are becoming com-
mon in practice. Computing-wise, nodes can have CPUs with different capacities and num-
ber of cores, while storage-wise, nodes can have multiple hard drives, SSDs, and memory
of various sizes. This heterogeneity makes performance-based parameter tuning, resource
allocation, and workload scheduling extremely important and challenging at the same time
[69].

• Cloud environment: The proliferation of the Cloud and new trends such as containeriza-
tion and virtualization are introducing new challenges related to multi-tenancy, overheads,
and performance interactions. New Platform-as-a-Service and Software-as-a-Service offer-
ings give rise to additional challenges in making proper resource provisioning and perfor-
mance optimization decisions that can scale up to thousands of nodes, while taking eco-
nomic factors (e.g., References [46, 113]) into account.

• Real-time analytics: The latest trend in big data analytics is to develop real-time big data
pipelines [19] to enable organizations to make decisions on the fly. New challenges arise in
tuning such an environment, since they are typically composed of multiple big data systems
that simultaneously process data. For example, real-time analytics may use the HDFS file
system, Kafka, and Spark MLlib for storing, messaging, and analyzing data, respectively.

An in-depth understanding of the existing approaches—provided by this survey—is crucial for
addressing these new challenges in an effective and efficient way towards the ultimate goal of
developing truly self-tuning and self-configuring systems.
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