
 

 

 

 

 

 

Hadoop Performance Modeling and Job 

Optimization for Big Data Analytics 

 

 

A Thesis submitted for the Degree of 

Doctor of Philosophy 

 

 

 

 

 

By 

 

Mukhtaj Khan 

 

 

 

 

 

 

 
 

Department of Electronic and Computer Engineering 

College of Engineering, Design and Physical Sciences 

Brunel University London, UK 

March 2015 



Hadoop performance modeling and job optimization for big data analytics                                        i 

 

Abstract 

Big data has received a momentum from both academia and industry. The MapReduce 

model has emerged into a major computing model in support of big data analytics. 

Hadoop, which is an open source implementation of the MapReduce model, has been 

widely taken up by the community. Cloud service providers such as Amazon EC2 cloud 

have now supported Hadoop user applications. However, a key challenge is that the 

cloud service providers do not a have resource provisioning mechanism to satisfy user 

jobs with deadline requirements. Currently, it is solely the user responsibility to estimate 

the require amount of resources for their job running in a public cloud. This thesis 

presents a Hadoop performance model that accurately estimates the execution duration of 

a job and further provisions the required amount of resources for a job to be completed 

within a deadline. The proposed model employs Locally Weighted Linear Regression 

(LWLR) model to estimate execution time of a job and Lagrange Multiplier technique 

for resource provisioning to satisfy user job with a given deadline. The performance of 

the propose model is extensively evaluated in both in-house Hadoop cluster and Amazon 

EC2 Cloud. Experimental results show that the proposed model is highly accurate in job 

execution estimation and jobs are completed within the required deadlines following on 

the resource provisioning scheme of the proposed model.     

In addition, the Hadoop framework has over 190 configuration parameters and some of 

them have significant effects on the performance of a Hadoop job. Manually setting the 

optimum values for these parameters is a challenging task and also a time consuming 

process. This thesis presents optimization works that enhances the performance of 

Hadoop by automatically tuning its parameter values. It employs Gene Expression 

Programming (GEP) technique to build an objective function that represents the 

performance of a job and the correlation among the configuration parameters. For the 

purpose of optimization, Particle Swarm Optimization (PSO) is employed to find 

automatically an optimal or a near optimal configuration settings. The performance of the 

proposed work is intensively evaluated on a Hadoop cluster and the experimental results 

show that the proposed work enhances the performance of Hadoop significantly 

compared with the default settings.  
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Chapter 1  

Introduction 

We are living in the era of Big Data. Today a vast amount of data is generating 

everywhere due to advances in the Internet and communication technologies and the 

interests of people using smartphones, social media, Internet of Things, sensor devices, 

online services and many more. Similarly, in improvements in data applications and wide 

distribution of software, several government and commercial organizations such as 

financial institutions, healthcare organization, education and research department, energy 

sectors, retail sectors, life sciences and environmental departments are all producing a 

large amount of data every day. For examples, International Data Corporation (IDC) 

reported that 2.8 ZB (zettabytes) data of universe were stored in the year of 2012 and this 

will reach up to 40 ZB by 2020 [1]. Similarly Facebook processes around 500 TB 

(terabytes) data per day [2] and Twitter generates 8 TB data every day [3].  The huge 

datasets not only include structured form of data but more than 75% of the dataset 

includes raw, semi-structured and unstructured form of data [4]. This massive amount of 

data with different formats can be considered as Big Data. 

The derivation of Big Data is vague and there are a lot of definitions on Big Data. For 

examples, Matt Aslett defined Big Data as “Big Data is now almost universally 

understood to refer to the realization of greater business intelligence by storing, 

processing, and analyzing data that was previously ignored due to limitation of 

traditional data management technologies” [5].  Recently, the term of Big Data has 

received a remarkable momentum from governments, industry and research communities. 

In [6], Big Data is defined as a term that encompasses  the  use  of  techniques  to  

capture,  process,  analyse  and visualize  potentially  large  datasets  in  a reasonable 

timeframe not accessible to standard IT technologies. The term Big Data is basically 

characterized with 3 Vs [4]: 
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 Volume, the sheer amount of data generated (i.e. from terabytes to zettabytes), 

 Velocity, the rate the data is being generated (i.e. from batch data to streaming 

data), and 

 Variety, the heterogeneity of data sources (i.e. from structured data to 

unstructured data). 

There are several factors that are involved in producing Big Data. One factor is the 

Internet and communication technology as it has been advanced to enable people and 

devices to be increasingly interconnected not only some time but all the time. Small 

integrated circuits are now so economical that people are using in almost every object to 

make them intelligent which is another reason of generating of mountains of data. The 

continuous reduction in the prices of storage devices is also a factor for Big Data. 

Many organizations have realized the real-value benefits of Big Data and today they do 

have access to Big Data but they are facing significant challenges in processing and 

analyzing the wealth amount of data timely and effectively. More importantly, how to 

extract important information and knowledge from Big Data due to the sheer volume of 

the data in different forms (i.e. structured, semi-structured and unstructured) is a 

extremely challenging task.  For many decades, the organizations have successfully 

applied relational database management systems (DBMS) for data storage and analysis. 

However, managing Big Data with its associative characteristics such as volume, velocity 

and variety is a challenging task for traditional DBMS because DBMS are hard to scale 

with ever increasing data and only support structured data format. However, opportunity 

is available with the right technology platform, to store and analyze the Big Data timely 

and effectively. The recent studies show that the right technology platform could be the 

use of a massive parallel and distributed computing platform. This platform can be found 

by implementing Hadoop MapReduce framework on cloud computing environment. 

Cloud computing is a concept that involves sharing of computer resources over the 

Internet among multiple users in order to maximized effectiveness and utilization of the 

resources. The resources are not only shared among the users but it can be dynamically 
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allocated and de-allocated on a demand basis. Normally, the users acquire the virtual 

computation resources from cloud service providers following a pay-as-you-go policy 

and run their applications on the allocated resources [7]–[9]. The MapReduce computing 

model has become a representative enabling technology in support of data intensive 

Cloud computing applications [10].      

The Hadoop framework [11] is an open-source implementation of the MapReduce 

paradigm that is originally proposed by Google [12]. It offers an effective distributed 

computing environment that is capable of storing and processing a huge amount of 

unstructured data. Hadoop has received a wide acceptance from the community due to its 

opens source nature and extensively used for data intensive applications [13]–[19]. It 

offers remarkable features such as scalability, fault-tolerance and automatic code 

parallelization using commodity computers. Furthermore, cloud service providers such as 

Amazon has designed Elastic MapReduce (EMR) that enables users to execute their 

Hadoop applications across its Elastic Cloud Computing (EC2) nodes [20].      

1.1 Motivations  

There were three major motivations that drove the PhD research.  

 Sustainability in power systems is so vital that an enormous effort must be made 

to avert power system breakdown scenarios. The blackout in North East America 

(August, 14 2003) and previous critical events all over the world are driving the 

industry to develop more automatic, adaptive and efficient computational tools for 

power system stability and monitoring analysis. It is becoming highly impossible 

for traditional supervisory control and data acquisition (SCADA) systems to 

predict or avert eventualities in a timely manner which may lead to power system 

catastrophes [21], [22]. One solution to these challenges is the development of the 

Wide Area Monitoring System (WAMS). A WAMS consists of a network of 

synchronized Phasor Measurement Units (PMUs) [21], [23] which provide a high 

sampling rate up to 60 samples per second that can be used to enhance the 
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reliability, stability and security of the power systems. For this reason the PMUs 

are being rapidly deployed in the power systems globally. Tang et al. [24]  

pointed out that hundreds of PMUs have been deployed in the U.S. power grid 

and worldwide in the past few years. The large scale and rapid deployment of 

PMUs in power grids has led to Big Data issues. A PMU sampling at 60 samples 

per second generates about 300MB per day. A reasonable size of a power grid 

network with a few hundred PMUs would generate a big data at TB scale per day. 

The UK National Grid expects the measurements of the PMUs to be stored for a 

minimum period of one year which will pose a huge challenge for computation, 

analysis and storage. In addition, the power system community is expecting a 

scalable, resilient and fault-tolerant computing platform that can effectively store 

and timely process massive volumes of PMU data.  

 As the Hadoop framework supports public Cloud computing such as Amazon 

EC2. This feature enables the organization to utilize the Cloud services as a pay-

as-you-go manner. To use the EC2 Cloud, users have to configure the required 

amount of resources (virtual nodes) for their applications. However, the EC2 

Cloud in its current form does not support Hadoop jobs with deadline 

requirements. It is purely the user's responsibility to estimate their job execution 

time and the amount of require resources to complete their jobs within deadline. 

Hence, Hadoop performance modeling has become a necessity in estimating the 

job completion time and provisioning the right amount of resources for a user jobs 

with deadline requirements.     

 Hadoop MapReduce has become the most widely adopted computing framework 

for big data analytics. However, the performance of a Hadoop job is highly 

affected by configuration parameter settings. The recent research shows that the 

configuration parameter settings play a key role in the performance of a Hadoop, 

i.e. a small change on one of the parameter settings can have a huge impact on the 

performance of a Hadoop job. Hadoop has more than 190 configuration 

parameters that manage the execution flow of a Hadoop job. Most of Hadoop 

users even do not know about these configuration parameters and if they do not 
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supply any values to the configuration parameters, the system will automatically 

assign default values. However, on default configuration settings a Hadoop job 

does not effectively utilize the underlying resources and as a result Hadoop might 

not produce an optimal or a near optimal performance. Furthermore, it is highly 

challenging to find a mathematical model or a fitness function that can correlate 

the inter-dependencies among the Hadoop parameters. Moreover, the large set of 

parameters and the complex inter-connections among the configuration 

parameters further increase the complexity of manually tuning these parameter 

settings. Hence, an efficient, effective and automatic approach to parameter 

tuning is highly needed.          

1.2 Methodology 

This research first evaluates the performance of Hadoop in parallelization of detrended 

fluctuation analysis for fast event detection on massive PMU data [28]. It investigates in-

depth the execution principles of Hadoop and mathematically models the three core 

execution phases of Hadoop (the map phase, the reduce phase and the shuffle phase) and 

based on that it applies locally weighted linear regression to estimate the execution time 

of a Hadoop job [29]. It employs Lagrange Multipliers technique for resource 

provisioning to satisfy jobs with deadline requirements. Finally, it employs particle 

swarm optimization technique to enhance the performance of Hadoop by automatically 

optimizing its parameter settings. 

An experimental Hadoop cluster with two Intel servers was set up to evaluate the 

proposed works presented in this thesis. The specifications and configurations of the two 

server machines are presented in Chapter 4. The Oracle Virtual Box was installed on the 

two server machines and 8 Virtual Machines (VMs) were configured on each server 

machine. Each VM was assigned with 4 CPU cores, 8GB RAM and 150GB hard disk 

storage. The Ubuntu 12.04 TLS operating system was installed on every VM. The 

Hadoop-1.2.1 version was configured on VMs and Starfish [30] software was used to 

collect jobs profile information whenever is required. 
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To further evaluate the works presented in this study, another Hadoop cluster was setup 

on Amazon EC2 Cloud using 20 m1.large instances. Each instance was configured with 

2vCPUs, 420GB hard disk and 7.5GB physical memory. The same Hadoop version, 

operating system and Starfish were installed on each instance.                

1.3 Major Contributions to Knowledge 

The major contributions of the thesis can be summarized as follows: 

 The thesis presents a scalable, resilient and fault-tolerant computing 

framework for massive PMU data storage and analysis. The proposed 

framework is based on the Hadoop framework and the open-source OpenPDC 

software [27]. A small Java based application is developed to automatically 

stream the PMU data into the Hadoop Distributed File System (HDFS). An 

event detection algorithm based on Detrended Fluctuation Analysis (DFA) is 

parallelized in the Hadoop MapReduce cluster to process large volumes of 

PMU data. The parallel DFA algorithm is evaluated from the aspect of 

speedup, scalability and accuracy in comparison with standard DFA. The 

speedup of parallel DFA in computation is initially analysed through Amdahl’s 

Law, a revision to the law is then proposed, suggesting enhancement to its 

capability to analyse the performance gain in computation when parallelizing 

data intensive application in a cluster computing environment.   

  It presents an improved HP model for Hadoop job execution estimation and 

resource provisioning. The improved HP model mathematically models all the 

three core phases of a Hadoop job including the overlapping and non-

overlapping stages of the job. Furthermore, the model employs Locally 

Weighted Linear Regression (LWLR) technique to estimate the execution time 

of a Hadoop job with a varied number of reduce tasks. Based on job execution 

estimation, the improved HP model employs Lagrange Multipliers technique to 

provision the amount of resources for a Hadoop job to complete within a given 
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deadline. The performance of the purpose model is extensively evaluated on 

both the in-house Hadoop cluster and the Amazon EC2 cloud.  

 The thesis optimizes the performance of Hadoop by automatically tuning its 

parameter configuration settings. This work employs Gene Expression 

Programming (GEP) to build an objective function based on a training dataset. 

The objective function represents the correlations and inter-dependencies of 

the parameters. The fitness function is used to work as an objective function 

for Hadoop performance optimization. For this purpose of optimization 

Particle Swarm Optimization technique is employed to search for a set of 

optimum values of the configuration parameters within a search space. Unlike 

other works which divide the search space into sub-spaces, the proposed work 

considers the entire search space in the optimization process in order to 

maintain the inter-dependencies among the configuration parameters.   

 The proposed works presented in this thesis have been intensively evaluated on 

both an in-house Hadoop cluster and the Amazon EC2 Cloud. Evaluation 

results are presented and analyzed in depth. 

1.4 Thesis Organization 

The remainder of the thesis is organized as follows: 

Chapter 2 provides a general background on both the MapReduce programming model 

and the Hadoop MapReduce computing framework. It also introduces the Hadoop 

framework optimization approaches from the aspects of job scheduling, data locality and 

configuration parameter settings. 

Chapter 3 introduces the design and implementation of a Parallel Detrended Fluctuation 

Analysis (PDFA) algorithm. The performance of the PDFA is evaluated from the aspects 

of speedup, accuracy and salability in comparison with the sequential DFA approach. The 

speedup of the PDFA is analyzed following Amdahl’s Law. This Chapter also presents a 
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revision to the Amdahl’s Law to enhance its capability in analyzing the performance gain 

in computation when computation is parallelized in cluster environments. 

Chapter 4 presents the design, implementation and evaluation of a Hadoop job 

performance model that accurately estimates a job execution time and further provisions 

the require amount of resource for a job to be completed within a deadline. The proposed 

model mathematically models three core phases of a job execution and employs Locally 

Weighted Linear Regression (LWLR) model to estimates the job completion time. 

Furthermore, the proposed model employs Lagrange Multipliers for the resource 

provisions to satisfy jobs with deadline requirements.    

Chapter 5 first presents empirical evidence that configuration parameters do have 

significant effects on the performance of Hadoop. It then presents the design and 

implementation of a Hadoop job optimization model that improve the performance of a 

Hadoop by automatically tuning the configuration parameter settings. The model 

employs Gene Expression Programming (GEP) technique to develop a fitness function 

based on historical job profile information. Particle Swarm Optimization is employed to 

search for the optimal or near optimal values for these configuration parameters. The 

performance of the proposed work is compared with the default settings, Rule-of-Thumb 

settings and Starfish recommendations for Hadoop jobs. 

Chapter 6 concludes the thesis and discusses some limitations of the research. In 

addition, a number of future works are pointed out for further improvements and 

extensions.  
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Chapter 2  

Background  

The MapReduce programming model has become a major computing platform that 

supports parallel and distributed processing for data-intensive applications such as 

network traffic analysis, machine learning, web data processing, and scientific 

simulation. Hadoop is the most prevalent open-source implementation of the MapReduce 

programming model and it has been taken up by an increasingly wide user community for 

big data analytics. This chapter first provides an overview of the MapReduce 

programming model and its implementation systems. It then introduces the Hadoop 

MapReduce framework and its optimization techniques. This Chapter also describes 

some recent developments of Hadoop including Hadoop 2 and the eco-system of Hadoop.   

2.1   MapReduce Programming Model 

The MapReduce programming model originally proposed by Google in 2004, has 

become a major programming model for parallel and distributed process of a large scale 

dataset in computer cluster environments [1]. In the MapReduce programming model, the 

computation is specified in the form of a map function and a reduce function. The map 

function process a block of dataset as a (key, value) pair and produces map output in the 

form of a list of (key, value) pairs. The intermediate values are grouped together based on 

the same key e.g. 2k and then pass to the reduce function. The reduce function takes the 

intermediate key 2k  along with its associated values and processes them to produce a 

new list of values as final output. The map function and the reduce function are executed 

independently on allocated resources which shows high parallelism.     
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The logical dataflow diagram of the MapReduce programming model is shown in Figure 2.1 which 

presents a weather dataset with various air temperatures in different years. The program needs to find the 

highest air temperature in each year. The year is represented as the key and the air temperature is 

represented as the value in the dataset [2]. 

 

Figure 2.1: A logical data flow of the MapReduce programming model. 

The MapReduce programming model was initially developed for Web base data 

processing but now it has been applied in other domains of data intensive applications 

such as machine learning, scientific simulation, healthcare data analysis, and Web data 
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mining. The remarkable features of the MapReduce programming model include fault-

tolerance, simplicity and scalability. MapReduce is a highly scalable computing model to 

enable thousands of inexpensive commodity computers to be used as an effective 

computing platform for distributed and parallel computing. The model provides facilities 

to automatically detect and handle node failures scenario without any effect on the 

computation completion. It is a simple programming model because it allows the 

application developers to provide only a sequential implementation of application logic 

expressed in functional-style (i.e. map function and reduce function) and the runtime 

system deals with low-level parallelization details, i.e. partitioning input dataset, 

scheduling program execution across multiple nodes of a computer cluster, handling node 

failures and managing inter-nodes communications. Hence, the MapReduce 

programming model reduces difficulties of parallel programming, so that programmers 

can easily achieve the low level parallelism on cluster nodes for complex tasks.  

The MapReduce programming model has a number of implementations such as Hadoop 

[3], Dryad [4], Phoenix [5], Mars [6] and Sector/Sphere [7]. The Dryad  [4] is a general 

purpose distributed execution system proposed by Microsoft. The Dryad engine is based 

on dataflow graph where computations are expressed as vertices. The vertices can be 

executed on a set of computers and inter-computer communication can be achieved 

through channels that connect the vertices. The Phoenix [5] was proposed by Stanford 

University, a programming API and runtime system based on Google MapReduce 

programming model. It can automatically create threads and dynamically schedule the 

threads on multiple processors. The processor failure is automatically handled in the 

Phoenix system for fault tolerance. It is mainly designed for multi-core and 

multiprocessor systems [8]. He et al. proposed Mars [6], a MapReduce implementation 

on Graphic Processor Unites (GPUs). The Mars APIs automatically parallelize the map 

function and the reduce function on GPUs threads. The Mars can perform better than 

CPU-based MapReduce implementations because GPUs can provide massive parallelism. 

Gu et al. proposed Sector/Sphere [7] for graphic processing applications. In the 

Sector/Sphere system, sector is a distributed file system across commodity machines and 
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used for data storage. It also provides scalability and fault-tolerance facilities. The data 

parallel computation is achieved through sphere i.e. the sphere can be used to process 

data stored in the sector in parallel.  Among the aforementioned implementation systems 

of the MapReduce programming model, the Hadoop framework is the most widely used 

MapReduce platform due to its open source nature. The details of the Hadoop framework 

are given in the next section. 

2.2   Hadoop MapReduce Framework 

Hadoop [3] is an opens source implementation of the MapReduce programming model 

and has become the foremost computing platform for big data analytics. It was originally 

developed by Doug Cutting
1
 and Mike Cafarella

2
 in 2005. Cutting was working that time 

at Yahoo. Since then, Hadoop has become a core project of Apache™.   The Apache™ 

Hadoop is a framework written in Java that distributes and parallelizes computation on 

massive datasets across a cluster of computers using simple programming model 

(MapReduce programming model). It has become the most prevalent framework for big 

data analytics and it is being used by many organization such as Yahoo, Facebook, 

YouTube, Twitter, Google, LinkedIn [9] to process and analyze their massive amounts of 

data . Today popular big data analytics service providers such as IBM, Oracle, Microsoft, 

Dell, Cloudera and Hortonworks either have been offering Hadoop-related products (such 

as Infosphere BigInsights and Exadata)  or providing support to users on Hadoop 

MapReduce (Cloudera, HortonWorks) [10]–[14]. 

The Hadoop MapReduce framework is highly scalable and it can be scaled up from a 

single machine to tens of thousands machines, each of which offering local computation 

and data storage. The size of the Hadoop cluster can shrink or expand dynamically based 

on workload. The Hadoop MapReduce framework is developed with fundamental 

hypothesis that machine failure is common in cluster computing and it should be handled 

                                                 
1
 http://en.wikipedia.org/wiki/Doug_Cutting 

2
 http://web.eecs.umich.edu/~michjc/bio.html 
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automatically in software level by the framework. Therefore, fault-tolerance and 

automatically machine failure handling techniques are included in the framework.  

2.2.1  Hadoop Architecture  

The Hadoop MapReduce framework mainly includes: MapReduce and Hadoop 

Distributed File System (HDFS). The architecture of the Hadoop MapReduce framework 

is shown in Figure 2.2.      

 

Figure 2.2. Architecture of the Hadoop MapReduce 

The MapReduce divides the computation into map tasks and reduce tasks and executes 

them parallel on a cluster of nodes. It consist of a job tracker and a number of task 

trackers services. The job tracker is running on the master node (Name Node) and it is 

responsible for controlling the overall operation of the MapReduce framework. It 

manages the task tracker, assigns tasks to a task tracker, monitoring the progress of 

running tasks and dealing with node failure situations.  The task trackers run on the slave 
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nodes (worker nodes / Data Nodes) which actually execute all the map tasks and the 

reduce tasks i.e. all the map tasks and the reduce tasks run on the worker nodes. The task 

tracker periodically coordinates with the job tracker through a heartbeat message to 

updates on the progress of the running tasks. If the job tracker is not receiving the 

heartbeat message from a particular task tracker for a certain period of time, then the job 

tracker declares that the particular task trackers is a dead worker and automatically 

assigns the running tasks to the next available worker node.  

2.2.1.1   MapReduce  

MapReduce is a processing engine of the Hadoop MapReduce framework. A Hadoop 

MapReduce job is a unit of works that executes across multiple computing nodes and it 

completes in multiple phases i.e. map phase and reduce phase. The details of these phases 

are available in Chapter 4. In the map phase, each map task processes a block of input 

dataset that is generally stored in a distributed file system. The input dataset is typically 

divided into blocks of pre-defined size (i.e. 64MB or 128MB), and distributed over 

cluster nodes. The map tasks read the data blocks and applies the user-defined map 

function. The map output (intermediate files) produced by the map function is collected 

in physical memory. It is written periodically from the physical memory into a local disk 

of a processing node that executes the map task. The locations of the map output are 

passed to the master node that is responsible to forward to a node that executes the reduce 

task. In the reduce phase, the reduce tasks read the map output from remote locations, 

sort it by the map output key, so that all the values of the same key are grouped together. 

After that, the reduce tasks iterate through sorted map output files and passes unique 

intermediate key and the associated values to the reduce function. The output of the 

reduce function is written into a distributed file system as a final output. The number of 

final output files are depended on the number of the reduce tasks initiated. The Hadoop 

job execution flow is shown in Figure 2.3. 
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Figure 2.3: The Hadoop MapReduce job execution flow
3
 

The MapReduce programming model executes the map function and the reduce function 

on multiple computing nodes in order to achieve parallelism. The number of map tasks 

and the reduce tasks that can run simultaneously on a cluster nodes is depended on the 

number of map slots and reduce slots configured on the worker nodes. A slot is a unit of 

resources (CPU, physical memory) that can be assigned to a task.  The number of slots 

(i.e. map slots and reduce slots) can be configured through a configuration file. For 

examples, a cluster has 10 worker nodes, and if 2 map slots and 2 reduce slots are 

configured on each worker node. Then total 20 map tasks and 20 reduce tasks will be 

executed parallel. If the number of map slots and the number of reduce slots are less than 

the number of map tasks and the number of reduce tasks then a job will be completed in 

multiple waves. The job waves are more explained in Chapter 4.   

                                                 

3
 Simplified Data Processing on Large Clusters, http://dl.acm.org/citation.cfm?id=1327492 
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2.2.1.2 Hadoop Distributed File System 

When a dataset is continuously growing, it might not be possible for a single computer to 

store and process the continuously growing dataset. It becomes compulsory to partition 

the dataset and distributes across a network of computers. File systems that manage 

storage across a network of computers are called distributed file systems. Hadoop has its 

own distributed file system called HDFS (Hadoop Distributed File System) which is 

designed for storing massive amounts of data across a cluster of nodes [15][2] . The 

HDFS is designed based on Google File System (GFS) [16], [17] with the idea that the 

most effective way of data writing and reading as write-once and read-many times. It is a 

highly fault-tolerant system and provides high throughput access to application data. The 

HDFS system is mainly designed for batch processing rather than interactive system [18]. 

When a dataset is copied to the HDFS, the HDFS divides the dataset into blocks of an 

equal size, makes multiple replicas of each block and distributes throughout a cluster of 

nodes (Data Node) as an independent units. The replicas of the block are stored on 

different nodes and racks.  The default size of a data block is 64MB and the number of 

replicas is 3, however, a user can change the size of block and number of replica in 

HDFS configuration file. The multiple replicas support fault-tolerance and availability of 

a data. For examples, if a node is crashed, the data blocks stored on it will be available on 

other nodes.  

The HDFS system consists of a single Name Node service and several Data Node 

services as shown in Figure 2.4. The Name Node service is running on the master node 

and is responsible for managing the file system namespace and standardizes access to 

files. The Data Node services are running on slave nodes and are responsible for storing 

the data files, creating and deleting the blocks as well the replicas upon instructions 

received from the Name Node. A detail about the HDFS system is available in Chapter 3.        
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Figure 2.4: The HDFS architecture
4
 

2.2.2    Hadoop MapReduce Framework Optimization Approaches  

The performance of the Hadoop MapReduce framework can be improved from different 

aspects such as: 

 Job scheduling / Task scheduling 

 Data locality algorithms 

 Configuration parameters tunings 

2.2.2.1   Job Scheduling or Task Scheduling 

Job scheduling or task scheduling in the Hadoop MapReduce is employed to efficiently 

manage workload among the processing nodes and effectively share the resources of a 

Hadoop cluster between different jobs and users. With the help of scheduling techniques, 

more than one user can execute multiple jobs in parallel and as a result the cluster 

resources would be utilized effectively. On the other hand, without a sophisticated 

                                                 

4
 http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html 
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scheduling mechanism, the performance of the Hadoop cluster can be affected due to 

imbalance workload distribution and unfair resources sharing. Moreover, the Hadoop 

framework supports both homogeneous and heterogamous environments. Distribution of 

the workload among the processing nodes in the homogeneous environment is relative 

simple and easy, however, in the heterogeneous environment, the workload is distributed 

based on the processing capacity of the nodes.    

To effectively share the resources between the jobs and balance the workload among the 

processing nodes, Hadoop framework has come with default schedulers such as First-

Come-First-Serve (FCFS) [19], [20], Fair Scheduler [21] and Capacity Scheduler [22] . 

The FCFS allocates all resources to a job on receipt, i.e. a job submitted first will get all 

the resources and a job submitted later will wait until the first job is completed. The Fair 

Scheduler divides the jobs into pools and fairly allocates the resource shares to each pool 

so that all jobs acquire an equal share of the cluster resources over time. It also solves the 

problem of FCFS where short execution jobs have to wait for a long execution job to 

complete. The Capacity Scheduler is similar to Fair Scheduler; however, the Capacity 

Scheduler is used in a large cluster and shares resources among multiple organization and 

organizes the jobs into queues. Apart from the default Hadoop scheduling, researchers 

have proposed job/task scheduling techniques to enhance the performance of the Hadoop 

framework. Sandholm et al. [23] proposed a dynamic priority mechanism that allows 

scheduler to allocate resources dynamically to multiple users based on their priorities and 

demands. It assigns the resources on a proportional basis in the form of map slots and 

reduce slots. It also gives incentives to users to optimize and customize their allocated 

resources in order to fulfill their job requirements. Kc et al. proposed [24] a constrain-

based scheduler that considers the users deadlines as input and schedules only those jobs 

that meet the specified deadlines. It employed cost model that estimates the job execution 

time and it schedules the job if the job completes within a deadline. Nguyen [25] 

proposed a hybrid scheduling algorithm  based on a dynamic priority to minimize the 

response time of a variable length of concurrent running jobs. The dynamic priority is 

calculated based on three factors, i.e. the waiting time of a job, the length of execution 



Chapter 2: Background                                                                                                                            22      

 

time of the job, and unscheduled tasks of the job. The algorithm relaxes the ordering of 

tasks assignment in order to achieve data locality. The aforementioned schedulers try to 

improve the performance of a Hadoop framework with the assumption that the processing 

nodes of the cluster are homogeneous and thus they do not consider the heterogeneity of 

the underlying resources.  

For a heterogeneous environment of the Hadoop cluster, several researchers have 

proposed scheduling algorithms in order to improve the performance of the Hadoop 

cluster.  Zaharia et al. proposed LATE [26] and Chen et al. proposed  SAMR [27] to 

improve the performance of the Hadoop in heterogeneous environment. Both approaches 

deals with straggler tasks (a task which has slow progress) and executes speculative tasks 

(backup task) of the straggler tasks on another machine in order to minimize the overall 

execution time of a job because the straggler tasks significantly increase the execution of 

the job. Both the approaches find strangler task by estimating the execution completion 

time of all the running tasks. The LATE algorithm estimates the execution time of the 

tasks in a static way while SAMR algorithm uses dynamic approach to estimate the 

execution time of the running tasks. Furthermore, SAMR classified the cluster nodes into 

fast nodes and slow nodes and initiates the backup task only on the fast nodes. Sun et al.  

further improved the SAMR and proposed ESAMR [28] which takes the types of the jobs 

into consideration because different types of the jobs have different task execution  time 

in the map phase and reduce phase. The ESAMR employs k-mean to classify the jobs 

into different classes.   Rasooli et al. [29] proposed a hybrid scheduling approach for 

Hadoop heterogeneous environments. The approach is based on three scheduling 

algorithm such as FCFS, Fair Scheduler and COSHH [30] scheduler. The selection of the 

scheduler is made based on the current utilization of the resources and the total number of 

waiting tasks. If the system is under-utilized (i.e. the number of available slots is greater 

than the number of submitted tasks) then the hybrid approach will pick up FCFS 

scheduler. If the system utilization is balanced then the system will use Fair Scheduler 

otherwise the system will employ COSHH scheduler. Kumar et al. [31] proposed a 

Context Aware Scheduler for Hadoop (CASH) to improve the performance of the 
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framework. The CASH schedules the tasks based on job characteristics (i.e. CPU-

intensive or I/O intensive) and processing nodes characteristics (i.e. Computation good or 

I/O good). It classifies the jobs and the processing nodes based on their characteristics. 

The tasks are scheduled on the processing nodes that fulfill the requirements. Further 

readings on Hadoop scheduling are available in [32]. 

2.2.2.2   Data Locality Algorithms 

Hadoop has become a major computing platform for intensive-data applications. To 

efficiently process a large amount of data, Hadoop should provide an efficient data 

locality scheduling mechanism for enhancing the performance of the Hadoop system in a 

shared cluster environment. One of the Hadoop principles is that moving computation is 

cheaper then moving data when dealing with large amounts of datasets. This principle 

indicates that it is often better to move the computation close to where the data is located 

rather than to move the data to the computation node where the application is running. 

This is especially true when the size of data is very large because migration of 

computation reduces the network congestion and improves the overall performance of the 

system. When a computation task is moved closer to data it consumes, this is called data 

locality. Today a cluster can have thousands of shared nodes which transmit massive data 

that impose network load and create congestion, so an efficient scheduler must avoid 

unnecessarily data transmission. Scheduler considers the data locality as it is a 

determining factor for the MapReduce performance mechanisms because network 

bandwidth is scarce resource for these systems. In fact, a high locality of data enhances 

the throughput of the system [61].    

For each node, all map tasks are classified into three levels of locality according to the 

distance between the input data and computation nodes. The most efficient locality is the 

first level locality where the processing map task is launched on the node holding the task 

input data called the node level locality. When a task cannot achieve the first level 

locality then scheduler executes the task on the node where the computation node and 

data node located in the same rack called rack level locality (second level). If the task still 
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fails to achieve the second level locality then a scheduler launches the task on a node in a 

different rack which is called off-the-rack level locality (third level).  If the data locality 

is not achieved, data transferring and I/O cost can seriously affect the performance 

because of the shared network bandwidth. 

As the data locality is a determining factor in Hadoop. There are several factors that 

affect date locality such as the size of a Hadoop cluster, the number of data replications 

(replicas) and job execution stage.  In a large cluster with a small number of jobs, the 

probability of the data locality is low. For example, if a job has 5 map tasks and is 

submitted to a cluster with 100 nodes, it is unlikely to get a high locality rate. Since each 

task has 3 copies of the input data which are distributed on 3 different nodes, therefore, at 

most 15 out of the 100 nodes have input data for the job. That is, the probability of the 

data locality for the job is 15%. If number of nodes is decreased to 50 then the data 

locality of the job will be increased to 30%.  

Similarly, the number of replicas and job execution stage also affect the data locality. 

Increasing the number of replicas of input data improves the data locality but it consumes 

extra storage. At the job initialization stage, the probability of a job data locality is high 

because there are a large number of unmapped tasks and the required input data of these 

unmapped tasks are available on large number of nodes. While at the job end stag, the 

probability of a job data locality is low because a small number of unmapped tasks are 

left and the required input data of these tasks are available on small number of nodes.  

The Hadoop default scheduler schedules jobs using FCFS and already considers data 

locality [33].  When the master node receives a heartbeat from a slave node which 

indicates that a free map slot is available, the job tracker on the master node first tries to 

find the map task in the head-of-line job whose input data is stored on that node.  If it is 

found then a node level locality is achieved and task will be launched on that node. When 

node level locality is impossible then the job tracker tries to seek a rack level locality. If it 

is still fail then task is arbitrary picked up and launched on as off-the-rack node. This 

simple scheduling algorithm favors data locality but has deficiencies. For example, this 
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algorithm strictly follows the FCFS policy where tasks are scheduled one by one and 

each task is scheduled without considering its impact on other tasks.  

Let us consider a Hadoop cluster of three nodes (N1, N2 and N3) as shown in Figure 2.5. 

Each node has at least one free map slot. Let us assume that there are three tasks (t1, t2 

and t3). Each task input data has multiple copies which are stored over multiple nodes for 

reliability purpose. Task t1 input data is stored on nodes N1, N2 and N3 (DT1), task t2 

input data is stored on nodes N1 and N2 (DT2) and task t3 input data is stored on node 

N1 (DT3) as shown in Figure 2.6.  

 

Figure 2.5: A Hadoop cluster with 3 nodes. 

The Hadoop scheduler assigns task t1 to node N1 and achieves the node level locality, 

task t2 is assigned to node N2 and it also achieves the node level locality. There is now 

only node C that has the idle slot and only one unscheduled task t3 and this task must be 

assigned to node C, as shown in the Figure 2.6. To summarize, both tasks t1 and t2 

achieve data locality while task t3 loses data locality. The reason is that the Hadoop 

scheduler processes the tasks one by one rather than considers the tasks on all the 
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available idle slots. All the tasks can achieve the data locality if the scheduler processes 

all the tasks on all available idle slots at once as shown in Figure 2.7. 

 

Figure 2.6: Task 3 is assigned without data locality. 

 

Figure 2.7: All the 3 tasks are assigned with data locality. 
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The default Hadoop scheduler provides some mechanisms to improve data locality but 

have some inherent deficiencies. To improve the performance of the Hadoop system, 

researchers have proposed numerous data locality aware scheduling algorithms.  

Abad et al. designed DARE (Adaptive Data Replication) algorithm [34] to improve data 

locality by dynamically replicating the popular data on different nodes. They have 

proposed (i) a greedy approach and (ii) a probabilistic approach. In the current 

implementation, when it is impossible for a map task to gain local data, the MapReduce 

framework fetches data from a remote node (data located at a different node) for 

processing and discards when map task is completed. The greedy approach takes the 

advantage of remotely fetched data, makes subset of that data and inserted into HDFS at 

the node that fetched it. However, the greedy approach cost huge disk storage due to 

replicating all the fetched data. To address this issue, the DARE using eviction 

mechanism using LRU (Least Recently Used) policy that delete least recently used data 

blocks to make space for the new replica. Unlike the greedy approach, the probabilistic 

approach does not replicate remotely fetched data immediately but replicate only popular 

data. In this approach, an individual node runs algorithm independently to generate 

replica of most popular data. The knowledge of dynamically replicated data is transmitted 

to the Name Node, so that this information will be made available to the scheduler and 

other users of file system to achieve better data locality. This approach also applies the 

aging eviction mechanism, to quickly evict the files with a decreasing popularity.  

Zaharia et al. [33] developed an algorithm called delay scheduling to enhance the data 

locality rate in a Hadoop environment. The delay scheduler is applied into Fair Scheduler 

in Hadoop. Fair Scheduler has changed from allocating equal share (time slot) to each job 

to allocating equal share to each user. Each user has its own pool in a shared cluster and a 

minimum share (a minimum number of slots) is assigned to each user. If a user cannot 

use their time slots, other users can use these slots instead. If a user cannot get the 

minimum share, preemption occurs, which reallocates the resources among the users. 

There are two approaches of preemption (i) killing the running jobs or (ii) wait for 

running jobs to complete. Killing a running job immediately scarifies the time it had been 
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running while the waiting approach does not have such an issue but scarifies the fairness. 

The delay scheduling algorithm uses the waiting approach to achieve data locality and it 

defines as “when a job cannot launch a local-map task then it wait for small amount time, 

letting the other jobs launch the task instead”. The delay scheduling relaxes the strict job 

order for task assignment and delays jobs execution if the job has no map task local to the 

available slave node. The maximum delay time D is specified. If a job map task has been 

skipped for a longer time (i.e. longer than the D time unit), it is allowed to launch a rack-

level task. If it is skipped for further longer times then it is allowed to launch an off-rack 

level task. These skip times are called delay times and are an important factor in this 

algorithm. The values of the delay time are set either by default which is 1.5 times to 

slave node heartbeat or based on a rate at which the slots free up which is less than 

average task length.  

He et al [35] developed a matchmaking scheduling algorithm to enhance data locality in a 

MapReduce cluster. The main idea behind this algorithm is to give every node a fair 

chance to grab a local task before assigning a non-local task. Like the delay scheduling, 

the matchmaking algorithm also relaxes the strict job order when assigning a map task to 

a node. That is, if a node fails to find a local job in the queue; the algorithm will continue 

to search the succeeding jobs. To give a fair chance to every node to get a local map task, 

when a node cannot find a local map task for the first heartbeat, no non-local task will be 

assigned to the node i.e. the node gets no task for this heartbeat interval. If a node still 

fails to find a local map task for the second heartbeat interval, the matchmaking 

technique will assign a non-local task to the node to avoid wasting computation 

resources. This algorithm assigns a locality marker value to every node to mark its status. 

If none of jobs in the queue has a local map task to a node, depending on the status of this 

node (locality marker value), the matchmaking algorithm will decide whether or not to 

assign the node to a non-local task. When a new job is added, all the slave node locality 

marker values will be cleared because the new job may comprise a local map task for 

some slave nodes.  



Chapter 2: Background                                                                                                                            29      

 

Sangwon et al. [36] proposed two innovative techniques, i.e. Prefetching and Pre-

shuffling that can enhance the overall performance of a MapReduce cluster. The 

prefetching technique enhances data locality while the pre-shuffling reduces the shuffling 

of intermediate result data produced by a map function. The prefetching is a bi-

directional technique where on one side the complex computation is performed and on 

the other side to be required data is prefetched and assigned to the corresponding task. 

This technique prefetched the required data block of map tasks close to the computation 

node or to the local rack in pipeline manner. The prefetcher module also monitors the 

synchronization status between the computation and prefetches as both activities are 

performed simultaneously. The pre-shuffling technique tries to predict the target reducer 

where the intermediate result data are partitioned before the execution of mapper, in order 

to reduce the network overhead. 

Zhang at el. [37] designed Next-K-Node scheduling (NKS) algorithm to improve data 

locality of map task in homogeneous environment and has been implemented in Hadoop 

0.20.2. The algorithm first preferentially schedules the tasks which satisfies the node 

level locality. If no such a map task is available then the NKS method calculates the 

probabilities of each task and schedules the one with the highest probability.  The NKS 

method generates the low probabilities for the tasks of whose input data is stored on the 

next k nodes, so that it can reserve these tasks for these nodes. In this method the main 

factor is the next k node which is predicted node to issue requests for the next task. In this 

method the next k node is determined based on the progress report of the running task. In 

Hadoop, task trackers periodically report the progress of the running tasks to the job 

tracker. To calculate the progress of the running task, the size of the processed data is 

divided by the size of the whole input data. In homogeneous environment all the nodes 

are identical in term of processing and disk capacities and therefore process the task at 

the same speed.  So the task with highest progress will be completed first and the node 

running this task will issue a request for the next task earlier than other nodes. Therefore, 

the NKS method predicts the next k node on the basis of progress of the running tasks. 

However, in the case of different input data sizes of the map tasks, the NKS method 
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cannot predict the next k node correctly on the basis of tasks progress because these tasks 

will be completed at different times. In this case the NKS method takes an imaginary task 

of whose input data size is equal to the map task. To correctly predict the next k node, the 

progress of the imaginary task is mapped with original task progress.  

2.2.2.3   Configuration Parameters Tunings  

Hadoop has extraordinary features such as scalability, resilience and automatic code 

parallelization. Despite that, Hadoop is a large and complex framework including a 

number of components that interact with each other across multiple machines. The 

performance of a Hadoop job is sensitive to each component of the Hadoop framework, 

underlying hardware, network infrastructure and Hadoop configuration parameter 

settings. It is becoming difficult for Hadoop users to setup an optimized Hadoop cluster 

due to the large number of configuration parameters. The current version of the Hadoop 

framework has more than 190 configuration parameters and some of them have a 

significant effect on the performance of a Hadoop job. Recent research shows that a small 

change in one of the configuration parameter values can have a huge impact on the 

performance of a Hadoop job when the job runs on the same amounts of resources and 

process the same size of an input dataset [38]. In addition, there are complex inter-

dependencies among the configuration parameters, i.e. changing the value of one 

configuration parameter can have a huge impact on the other configuration parameters 

[39]. This thesis provides empirical evidence in Chapter 5 to demonstrate that how the 

performance of a Hadoop is affected by changing the values of the configuration 

parameters. 

The performance of the Hadoop framework is sensitive to the configuration parameters. 

Therefore, numerous performance models and guidelines have been proposed in 

literature. The guidelines proposed in [2], [40], [41] consider only the processing capacity 

(i.e. CPUs and physical memory) of nodes for recommending optimum values for the 

configuration parameters . The models presented in [42]–[44]  have targeted specific jobs 

(i.e. query based jobs and short jobs). Enhancing the performance of the Hadoop system 
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based on resource provisioning is presented in [45]–[47]. There are some sophisticated 

performance models presented in [48]–[51] that automatically recommend optimum 

configuration parameters based on historical job profile information.  

This thesis also presents an optimization work (details are presented in Chapter 5) that 

recommends optimum configuration parameter settings in order to improve the 

performance of a Hadoop job. The optimization work first employs Gene Expression 

Programming (GEP) to construct an objective function. It then employs Particle Swarm 

Optimization (PSO) technique to search an optimum values for the configuration settings.  

The complex inter-relation among the configuration parameters are considered during the 

optimization process.  

2.3 Hadoop Ecosystem 

The Hadoop paradigm is a major computing platform for large data storage and analysis, 

however, it is not effective for all problems that comprising huge datasets. The Hadoop 

main components i.e. MapReduce and HDFS are mainly designed to process unstructured 

datasets, though, the performance of the Hadoop is affected when it processes old-fashion 

structured datasets. This is because the Hadoop paradigm is not originally designed to 

processes structured datasets. In addition, Hadoop system is unable to process the 

datasets that are stored outside the HDFS. To overcome these issues, several Hadoop 

ecosystems have been developed over the past few years. A brief introduction of some of 

them is given below:      

Apache Pig: Pig is a scripting language (data flow language) that is developed by Yahoo 

for analyzed large amount of datasets in parallel through a language called Pig Latin [52]. 

The Pig compiler automatically converts the Pig script into series of MapReduce 

programs so that it can be executed on a Hadoop cluster. Pig script can run on a single 

virtual machine using JVM or it can be executed on cluster of nodes. In Pig script, 

commands such as filtering, grouping and joining can be expressed in the form of user-

defined functions. Pig is basically developed for batch processing. It is not appropriate 
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for all types of data processing applications. If a user query only touch a small portion of 

data in a huge dataset, the Pig will not perform better because it will scan the whole 

dataset or at least a huge portion of the dataset (because the Pig does not support random 

access). The Pig commands (i.e. filtering, grouping, describe and joining) are showing 

the impression that the Pig is similar to the SQL, however there is significant difference 

between Pig and the SQL as presented in [2]   

Apache Hive: Hive is a query language for data warehousing on top of Hadoop. It is 

designed by Facebook to execute SQL like statements on a large volume of datasets 

generated by Facebook every day and stored in HDFS. Hive interacts with dataset via 

HiveQL, a Hive query language based on SQL. Hive can be fitted between Pig and 

traditional RDBMS because like the RDBMS, Hive uses relation (table) with a schema to 

store the dataset and similar to the Pig, Hive use distributed storage (HDFS) to store the 

tables. Users who are familiar with map/reduce programming can express the logic into 

map functions and reduce functions and plug into Hive, if it is difficult for them to 

express the logic in HiveQL [2], [53]. 

Apache HBase: HBase is a scalable distributed column-oriented table inspired from 

Google BigTable [54] and designed on top of HDFS. As the Hadoop MapReduce does 

not support random access to data, Hadoop applications can access massive datasets in 

real-time with random read/write access via HBase. It is not a RDBMS and does not 

support SQL but it has the ability to address the problems that the RDBMS cannot. For 

examples, it can store a large dataset and distributes the table on a cluster of nodes. 

HBase is basically used to store a large number of web pages (billion) as a WebTable and 

MapReduce programs are executed against the WebTable to retrieve information. The 

WebTable is accessed randomly and in real-time as users click on a websites. HBase 

automatically divides the table horizontally into multiple regions and distributes it on 

regional server machines. Each region consists of a subsection of a table. Initially, there 

is a one region (table), however, when the size of the table grows and reaches to a 

configurable threshold, the system automatically partitions the table in row-wise into two 

equal regions. In case of a very large table, HBase can have a cluster of servers and these 
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servers can be managed through ZooKeeper services. ZooKeeper is discussed below. 

More readings on HBase system are available in [2][55].  

Apache ZooKeeper: ZooKeeper is a centralized distributed coordination service for 

distributed applications. It is originally developed by Yahoo and later it has become part 

of the Hadoop ecosystem. The services provide by ZooKeeper include configuration 

management, synchronization, naming and group membership. HBase, Flume and HDFS 

HA (high availability) all depend on ZooKeeper [2], [56].    

  Apache Sqoop: Hadoop processes a vast dataset when it is stored in HDFS. If the 

dataset is stored outside HDFS e.g. in a relational database, then Hadoop program needs 

to employ external APIs. Sqoop is an open-source tool that provides facilities to users to 

efficiently fetch a huge dataset from a relational database into Hadoop for onward 

processing. In addition,  Sqoop can transfer data from a relational database system into 

the HBase system. It currently works with the relational databases including MySQL, 

SQL server, Oracle, DB2 and Postgre SQL [2], [57]. 

 Apache Flume: Apache Flume is a highly reliable and distributed service which can be 

used to automatically collect and aggregate a huge streaming data from different sources 

and transfer into HDFS. Initially it was developed to collect streaming data from web log 

but now it can be used to collect datasets from different sources and transfer into HDFS. 

The Flume architecture mainly includes source, sink (which delivers the data to HDFS), 

channel (a conduit which connects the source and sink) and agent (JVM that runs Flume 

services) [58]. 

2.4  Hadoop 2  

Currently, there are two branches of Hadoop releases, i.e. Hadoop 1 and Hadoop 2. The 

current stable version of the Hadoop1, i.e. Hadoop-1.2.1-1 was released in November 

2014 and the current stable version of the Hadoop 2, i.e. Hadoop-2.6.0 was released in 

November 2014 [59].  
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Hadoop1 is the most popular Hadoop framework for batch processing and shows the 

potential value of big data distributed processing. However, the Hadoop 1 is not attractive 

for interactive applications, machine learning applications and memory intensive 

applications. To support the above mentioned applications, Apache Hadoop developers 

have modified the major modules of the HDFS and the MapReduce, and presented 

Hadoop 2. The major advancements made in Hadoop 2 over Hadoop 1 includes (a) the 

HDFS federation and (b) the resource manager (YARN) and (c) HDFS HA (High 

Availability) [32]  [60]. 

The Hadoop 1 supports only single Name Node that manages the whole cluster 

namespaces. Using HDFS federation feature, Hadoop 2 can support multiple Name 

Nodes in a single cluster, i.e. the entire cluster namespaces can be managed with multiple 

Name Nodes. The second inclusion in Hadoop 2 is YARN (Hadoop NextGen) which is a 

resource manager and works like Hadoop operating system. It is designed to separate 

resource management from data processing. Prior to Hadoop 2, the resource management 

and data processing was managed by MapReduce. Now, in Hadoop 2, MapReduce only 

handling the data processing and the resource management is managed by YARN. 

Another addition in Hadoop 2 is the HDFS HA that supports high availability of HDFS. 

Hadoop 1 suffers from a single point of failure as it supports only a single Name Node 

and the failures of it can make the HDFS cluster inaccessible. To overcome the single 

point of failure, the HDFS HA feature provides an option of redundant Name Nodes 

which can be configured in an active/passive mode.    

2.5 Summary    

This chapter presented the background of the MapReduce programming model and 

Hadoop MapReduce framework. This chapter also extensively reviewed a number of 

Hadoop job optimization approaches which are related to job scheduling, data locality 

and configuration parameter settings. 
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Chapter 3  

Parallel Detrended Fluctuation Analysis for Fast 

Event Detection on Massive PMU Data 

Phasor measurement units (PMUs) are being rapidly deployed in power grids due to their 

high sampling rates and synchronized measurements. The devices high data reporting 

rates present major computational challenges in the requirement to process potentially 

massive volumes of data, in addition to new issues surrounding data storage. Fast 

algorithms capable of processing massive volumes of data are now required in the field of 

power systems. This chapter presents a novel parallel detrended fluctuation analysis 

(PDFA) approach for fast event detection on massive volumes of PMU data, taking 

advantage of a cluster computing platform. The PDFA algorithm is evaluated using data 

from installed PMUs on the transmission system of Great Britain from the aspects of 

speedup, scalability, and accuracy. The speedup of the PDFA in computation is initially 

analyzed through Amdahl’s Law. A revision to the law is then proposed, suggesting 

enhancements to its capability to analyze the performance gain in computation when 

parallelizing data intensive applications in a cluster computing environment. 

3.1   Introduction 

Security in power systems is so vital that major efforts must be taken in order to avert 

potential power system blackout scenarios. The blackout in North East America on the 

14
th

 August 2003 and other critical grid events all over the world are driving the industry 

to develop more automatic, adaptive and efficient computational tools for power system 

monitoring and stability analysis. It is becoming highly impractical for traditional 

supervisory control and data acquisition (SCADA) systems to predict or avert 

eventualities in a timely manner that may lead to power system catastrophes [1]–[3].  

One solution to these challenges is presented in the ongoing development of wide area 

monitoring systems (WAMS). WAMS comprise a network of synchronized phasor 
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measurement units (PMUs) [1], [4], which provide data at sampling rates typically 

equivalent to one cycle of the power systems fundamental frequency (50 Hz on the Great 

Britain (GB) system). This data, if efficiently managed and processed, can be used to 

enhance the reliability, stability and security of power systems. For these reasons PMUs 

are being deployed in power systems globally, resulting in rapidly growing volumes of 

data, posing network operators with new challenges in terms of data storage and timely 

analysis of the potentially massive datasets.  

As a result of the growing complexities in power systems from the increased integration 

of renewable generation sources and the networks ongoing expansions, it is now vital that 

data surrounding power system events, such as generation losses, are accurately captured. 

These events provide the only reliable source of information on the true power system 

dynamics, providing greater understanding of system inertia, something that is of 

growing concern on the power system of GB. Timely analysis of these events is critical to 

understanding the necessary generation response and reserve requirements for a secure 

network [5]. They also permit the analysis of any trends in the behavior of the power 

system under different operating conditions and provide means to validate or improve 

offline system modeling tools.  

A number of research works have been proposed for the detection of system events with 

PMU data. The work described in [6] details an approach based on finite impulse 

response (FIR) filtering that is concerned with detecting transient power system events, 

as a means of determining steady-state information from PMUs to improve situational 

awareness. Whereas, the work presented in [7] uses a generator clustering approach to 

determine the source of an event based on detecting the largest initial rotor swing. Other 

works have dealt with screening volumes of data for significant events, applying 

algorithms based on Fourier transforms and Yule Walker methods [8], [9].  

In this chapter the design and implementation of a parallel detrended fluctuation analysis 

(PDFA) algorithm, for fast event detection on massive volumes of PMU data, is 

presented. The approach is implemented in the MapReduce programming model [10], 
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which has become a major software technology in the support of data intensive 

applications, making use of a cluster of inexpensive commodity computers. The work 

develops some of the authors’ previous studies [11], on the use of detrended fluctuation 

analysis (DFA) for the detection of power system events on small datasets, more 

specifically for the detection of instantaneous generation losses, as a requirement for 

power system inertia estimation [5]. In contrast with previous works, the methodology 

presented in this chapter is focused with determining the exact instant a specific event 

starts, so that the event can be isolated for additional analysis. Flagging the presence of 

an event is intended, in the online sense, to act as a trigger for the running of steady-state 

estimators [11].  

The PDFA is tested and demonstrated in two stages, the first providing details of a 

laboratory based online setup, using a PMU installed at the domestic supply and the 

openPDC platform [12] with a localized Data Historian (DH) to collect and store 50 Hz 

resolution data. The second, details the application to the WAMS installed on the 

transmission system of GB, whereby an offline data mining approach is demonstrated. 

The performance of the PDFA is compared with the original sequential DFA in terms of 

efficiency and accuracy, using PMU data from the GB WAMS. The speedup of the 

PDFA in computation is analyzed with Amdahl’s Law, and based on this analysis, a 

revision to Amdahl’s Law is then proposed. The revision aims to enhance the capability 

of analyzing the performance gain in computation when parallelizing data intensive 

applications in cluster computing environments.  

3.2   Over View of HPC and Big Data Analytics 

With the advent of the smart grid the power system is becoming increasingly complex 

and computationally intensive. The power systems community faces the challenge of 

finding suitable methods to solve growing computational issues, for instance, processing 

massive volumes of PMU data. Such methods can be found in the field of high 

performance computing (HPC) through parallel processing.  
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The message passing interface (MPI) is a parallel programming model used to parallelize 

computation across multiple processors or computers. The MPI model has been used to 

distribute computation tasks over grid computing nodes [13] and in [14] it was deployed 

in the HPC environment to parallelize a contingency analysis algorithm. However, the 

MPI model still requires improvement in areas such as parallel I/O, scalability, fault-

tolerance and topology awareness [15]. It is worth noting that the MPI forum added the 

advanced feature of dynamic process management to MPI version 2.0, with the intention 

to dynamically add or remove the processes when running MPI jobs. However, the 

existing fault-tolerance capabilities are not the property of the MPI but of the program 

that couples within the MPI implementation [16]. The latest version of MPI (3.0) does 

not currently have fault-tolerance capabilities, rather it is proposed for future versions 

[17], [18].  

An alternative approach can be found in cluster computing. In [19] a High-Performance 

Hybrid Computing approach was applied to reduce the execution time of massive 

contingency analysis algorithms. In [19] the algorithm was parallelized using a XMT 

multithread C/C++ compiler on Gray XMT (multithread HPC computing platform) and 

conventional cluster computers. In addition, the work in [20] proposed a large scale smart 

grid stability monitoring application using a conventional cluster of computers to speed 

up the analysis of PMU measurements. These two separate approaches can increase the 

speed of program execution by adding more processing nodes however, they rely on 

centralized management, which can be vulnerable to node failure.  

Gao and Chen [21] used the parallel computing toolbox within MATLABs Distributed 

Computer Server (MDCS) to parallelize their contingency analysis algorithm on multiple 

processors, whilst in [22] a parallel processing method for two monitoring techniques in 

Prony analysis and an extended complex Kalman filter on multicore systems is explored. 

Similarly in [23] a genetic algorithm was parallelized. However, these approaches are not 

resilient and fault-tolerant. The aforementioned approaches can significantly reduce the 

execution time of large complex computation however, applying these approaches in 

power system applications is not simply a case of adding more processing units, they 
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require careful design of programs and middleware to make the applications compatible 

with underlying hardware and software. Furthermore, these approaches (cluster and MPI 

based) can be scaled by adding more processing nodes. However, they lack the ability to 

respond to node failures. For example, if any processing node fails as a result of a 

hardware or software problem, they do not have any remedy to migrate the running tasks 

to another available node.  

Alternatively the work in [22] and [24] proposes the cloud computing platform for smart 

grid data storage and real-time analysis. They parallelize the processing in cloud 

computing environments to achieve faster computation. To reduce the risk of data 

accessibility during node failures, data is replicated on multiple machines however, in the 

instance of node failures no solution is provided to gracefully assign the running 

computation to another node.  

A solution to these issues can be found in the Hadoop MapReduce framework, proposed 

in a number of areas [25]–[28], offering a reliable, fault-tolerant, scalable and resilient 

framework for storing and processing massive datasets. In [25] a machine learning 

technique is applied whilst in [26] simple statistic calculations (maximum, minimum, and 

average) are used to process PMU datasets. However, both of these works leave out the 

implementation details and provide no evaluation of their methodology or results. The 

work in [27] and [28] uses the Hadoop distributed file system (HDFS) for storing data 

and Pig scripting language for simple statistical calculations. The main focus of both 

works is to compare the performance of the Hadoop distributed processing with the 

Multicore system. 

3.3   Wide Area Monitoring GB System 

The WAMS running on the GB National Grid is in the early stages of its deployment. 

Around 40 PMUs have been installed on the transmission system of England and Wales 

through a series of upgrades to digital fault recorders (DFRs) and the installation of four 
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dedicated PMUs, the majority of which are configured to report back to a central phasor 

data concentrator (PDC) at the national control center.  

The primary role of the system is to monitor for any oscillatory behavior between the 

generators in Scotland and those of England and Wales. An interarea mode had been 

previously identified at around 0.5 Hz involving all of the GB system and remains a 

cause for concern across a major system constraint boundary; in the two 120 km 400 kV 

double circuits that connect the Scottish Network with the North of England. Alarms are 

sent from this system in real-time to the energy management system (EMS), to alert the 

network operators when the system is believed to be approaching instability. This 

constraint is considered to hinder the transfer of future renewable generation in Scotland 

to the main demand centers in England and Wales.  

The PDC is configured to store the 50 Hz PMU data at maximum resolution for a rolling 

one year period, after this time the data is to be archived off at a reduced resolution of 10 

Hz for upto 10 years. With the amount of PMUs set to increase on the GB system, as 

additional DFRs are upgraded and new dedicated PMUs are installed [2], this represents a 

growing challenge in terms of data storage. In addition it is now of vital importance to 

capture data surrounding system events as they provide the only reliable source of 

information on the response of the power system, these events need to be captured at full 

resolution to assist in inertia estimation methods [5] and continuing validation of the 

offline network model. Due to the growing volumes of data, importance is therefore 

placed on timely analysis through fast algorithms and identification of such events.  

In addition PMUs have also been deployed at the domestic supply at four U.K. 

Universities, Brunel, Birmingham, Manchester and Strathclyde. Synchrophasor data, in 

voltage (magnitude and phase), frequency and rate of change of frequency (RoCoF), is 

measured locally at 50 Hz and sent via the Internet to a server in Ljubljana, Slovenia 

hosted by ELPROS. This system provides good geographical visibility of the GB 

transmission system with PMUs well distributed across the network, providing good 

visibility with regard to the impact of any system events through the Anglo-Scottish 
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connection. In addition, a laboratory setup exists at Brunel University where a PMU is 

configured to communicate data locally to a PDC. The server is running the openPDC 

software [12], designed by the Tennessee Valley Authority (TVA) and administered by 

the Grid Protection Alliance (GPA). The openPDC is used to collect, manage and process 

real-time synchrophasor measured values. This system is an example of a low cost, easy 

installation alternative to the larger scale WAMS solutions.  

3.4   Design of PDFA 

The PDFA proposed in this chapter works by detrending a dataset of PMU frequency 

measurements on a sample-by-sample sliding window. The window is configured to be 

50 samples long, this is to detect for changes over an one second  period (at 50 Hz), 

looking for a specific loss shape in frequency, following an instantaneous loss in 

generation. The loss shape typically lasts for one second, before primary response 

services take over and arrest the drop in frequency [5]. A root mean square (RMS) value 

is then taken of the fluctuation, F for every window, as shown in Eq. (3.1), this value is 

then compared with a threshold value, predetermined through a number of previous 

baseline studies, F = 0.2x10−3 to detect for the presence of an event. 
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where n is the size of the window (50 samples), k is the sample number and e(k) is the 

detrended signal.  

Previous works on detrending power system data [29] have focused on removing trends 

or denoising power system data for the purposes of processing transient oscillations, 

other work [30] and the original implementation of DFA [31] have focused on the 

detection of long-range correlations in data series. This is all separate from the work 

described in this chapter. The purpose of detrending the data for this application is to 

highlight the specific changes in the PMUs measured values as a result of captured 
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transients on the network; the process has the affect of filtering the normal variations in 

the signal that are predominantly a feature of the high resolution measurements, placing 

the focus on extreme changes over relatively short time spans.  

The PDFA approach is the development of the DFA method to operate efficiently on 

massive volumes of PMU data, using MapReduce cluster computing. It is very important 

to note that the inherent sample by sample sliding window approach of the presented 

DFA method is highly disposed to HPC and Big Data Analytics. 

3.4.1 MapReduce Programming Model 

MapReduce is a parallel and distributed programming model originally developed by 

Google for processing massive amounts of data in a cluster computing environment [10], 

[32]. Due to its remarkable features such as fault-tolerance, simplicity and scalability, 

MapReduce has become a major software technology in support of data intensive 

applications [33]. MapReduce is a highly scalable model; thousands of commodity 

computers can be used as an effective platform for parallel and distributed computing.  

As shown in Figure 3.1, the MapReduce model divides computational tasks into Map and 

Reduce stages. In the Map stage, the computation is divided into several Map tasks to be 

executed in parallel on cluster computing nodes or virtual machines (VMs). Each Map 

task (a user-define Map function) processes a block of the input dataset and produces an 

intermediate result (IR) in the form of key/value pairs, which are then saved in local 

storage. In the Reduce phase, each Reduce task (a user-define Reduce function) collects 

the IR and combines the values together corresponding to a single key to produce the 

final result. It should be noted that the Map and Reduce functions are executed 

independently. 
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Figure 3.1: MapReduce model 

3.4.2 MapReduce Implementation with Hadoop 

The MapReduce programming model has been implemented in a number of systems such 

as Mars [34], Phoenix [35], Dryad [36], and Hadoop [37]. Hadoop is the most popular 

implementation of MapReduce and has been widely employed by the community due to 

its open source nature. Hadoop was originally developed by Yahoo to process huge 

amounts of data (over 300 TB) across a cluster of low-cost commodity computers [38]. It 

is worth noting that Hadoop not only works in cluster computing environments, but also 

in cloud computing systems such as the Amazon EC2 Cloud [39].  

The architecture of the Hadoop framework, as shown in Figure 3.2, comprises its own 

file system, HDFS [40]. HDFS is designed to store massive amounts of data (terabytes or 

petabytes) over a large number of computer clusters and provides fast, scalable access to 

data. HDFS follows a client server architecture, where there is a Name Node acting as the 

server and multiple Data Nodes that act as clients. The HDFS has high availability (HA) 

features by providing the option to configure two Name Nodes in the same cluster in the 

form of active Name Node or passive Name Node (Standby Name Node). This feature is 

used to reduce the risk of single points of failure. The passive Name Node deals with fast 
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failover in case the active Name Node crashes as a result of software or hardware 

malfunction [41].  

 

Figure 3.2: Hadoop framework. 

HDFS automatically splits input files into equal size blocks (64 MB or 128 MB by 

default) that are distributed across the Data Nodes. Each data block has multiple replicas 

(3 by default), which are stored on different data nodes. If the cluster network topology 

has more than one rack then the block replicas will be stored on different rack machines. 

The purpose of data replication and distribution on different machines is to maximize 

reliability and availability of data.  
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The Name Node manages the namespace of the file system and regulates the client’s 

access to files. It does not store data itself, but rather maintains metadata files that contain 

information such as file name, block id, number of replicas, mapping between blocks and 

Data Nodes on which the blocks are stored and the location of each block replica. The 

Data Nodes manage the storage directly attached to each Data Node and execute Map and 

Reduce tasks.  

The Job Tracker runs on the Name Node and is responsible for dividing user jobs into 

multiple tasks, scheduling the tasks on the Data Nodes, monitoring the tasks and 

reassigning the tasks in the instance of a failure. The Task Tracker runs on Data Nodes, 

receiving the Map and Reduce tasks from the Job Tracker and periodically contacts with 

the Job Tracker to report the task completion progress and requests for new tasks.  

3.4.3    PDFA Implementation 

The original DFA was implemented in MATLAB specifically for the offline application 

of event detection, focusing on small datasets and the determination of the t = t0 moment 

or exact start time of a specific event.  

The PDFA, as described in this chapter, is intended for the analysis of massive volumes 

of PMU data. It was implemented in the Hadoop MapReduce framework using the 

Python programming language due to its flexibility and open source. The algorithm was 

implemented, as depicted in Figure 3.3, through the following two staged data collection 

approaches.  

1) Online Data Collection: The laboratory based setup at Brunel University comprises a 

domestic supply connected PMU measuring positive sequence voltage values, frequency 

and RoCoF. This data is sent through a local area network (LAN) to an openPDC 

historian. The openPDC software is configured in such a way that when the historian data 

size reaches 100 MB, a new data storage file is created in .d format with a corresponding 

time-stamp.  
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A data agent has been created in the Java programming language using a number of 

Hadoop core libraries and the Java directory watch service package. The application code 

is encapsulated in the while loop statement to execute continuously, monitoring the 

historian folder to detect for the presence of new .d files. Once the new file is created in 

the historian folder, the data agent application automatically moves it to the Hadoop 

cluster HDFS storage. 

 

Figure 3.3: Architecture of PDFA implementation. 

2) Offline Analysis—Big Data: Having proven the online data collection side of the 

system, the following analysis can either be performed as a complement to this process or 
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alternatively it can work in a Data Mining sense where massive datasets are provided 

directly to the HDFS storage. It should be noted that the HDFS storage system is not 

capable of working with the .d file format provided during the online data collection 

process. At present this file is manually converted to .csv format offline using the 

historian playback module within the openPDC software. This process will be automated 

at a later stage as part of further work, to allow the entire process to be carried out online 

in near real-time.  

The Hadoop MapReduce supports a number of programming languages such as Java, 

Python, and C++. Java is the native language of Hadoop and so programs written in Java 

can be directly executed. Programs written in any other language require application 

program interfaces (APIs) to execute. For example, programs written in C++ are 

executed through the Pipes API and programs written in Python will execute through the 

Streaming API [42].  

PDFA has been written in Python in the form of Map and Reduce functions, as Python is 

open source and unlike Java contains a large amount of the required mathematical 

functionality. The PDFA is then executed through the Streaming API in the Hadoop 

MapReduce environment.  

When a dataset is moved onto a Hadoop cluster, the HDFS automatically divides it up 

into blocks B, shown in Figure 3.3. The block size is specified in the cluster configuration 

file (hdfs-site. xml), for instance, if a historian dataset is 16 MB and the block size value 

has been set to 2 MB, then the total number of blocks for that dataset will be 8 (16/2 = 8). 

The total number of Map tasks is equal to the total number of blocks.  

When the PDFA program is submitted to the Hadoop framework, the framework 

automatically divides the PDFA program into a number of Map and Reduce tasks. A 

block of the PMU dataset is assigned to each Map task and the number of Map tasks 

executed in parallel to process the dataset depends upon the number of Map slots 

specified in the cluster configuration file (mapred-site.xml). For the PDFA, one slot was 
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configured on each VM, as a result eight Map slots were configured in the cluster and so 

eight Map tasks were executed in parallel to process the historian dataset. The number of 

Map slots configured in a VM depends on the processing capacity (physical memory and 

number of CPU cores) of the VM.  

Each Map task processes the assigned data block on a sliding window of 50 samples (as 

per the DFA algorithm) and calculates the fluctuation value F. The F values are buffered 

in memory of size 100 MB, which can also be set in the configuration file. When the 

content of the buffer memory reaches a threshold value of 80% (80 MB) a background 

thread is started to spill the contents of the memory buffer to a local disk as an 

intermediate result (IR). The number of IR files is equal to the number of Reduce tasks.  

After completion of the Map phase, the PDFA Reduce tasks are initiated and collect the 

calculated F values. The number of Reduce tasks is also configurable by the user in the 

configuration file. The number of Reduce tasks to be executed in parallel depends on the 

number of Reduce slots configured in the configuration file. For the PDFA, eight Reduce 

tasks and eight Reduce slots were configured, so as to fully utilize all the available 

Reduce slots. Each Reduce task compares every value of F with the threshold value F = 

0.2x10−3, any value greater than this threshold is flagged as an event for further analysis.  

Most of the conventional cluster-based approaches have issues of reliability and fault-

tolerance. The PDFA is implemented in a Hadoop based cluster computing environment, 

as it offers built-in remarkable features such as high availability, fault-tolerance and 

scalability. The framework supports multiple replicas of the data blocks and distributes 

them on different computers/VMs to overcome any fail situations and delays. The cluster 

can easily be scaled by adding more processing nodes to increase the speedup of 

computation. During the job execution, if any processing nodes crash due to software or 

hardware failures, the Job Tracker will automatically detect it and assign the running 

tasks to another available node.   
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3.5   Evaluation and Experiment Results 

We have compared the performance of the PDFA with that of the sequential DFA from 

the aspects of both efficiency in computation and accuracy. The performance was 

evaluated using 6000 samples of frequency data (2 min at 50 Hz), provided by National 

Grid. The data contained a known system event, in the loss of a generator exporting 

approximately 1000 MW. In order to create a Big Data scenario, this dataset was 

replicated a number of times to provide a relatively large dataset with over 32 million 

samples. 

3.5.1     Experiment Setup 

The experiments were carried out using a high performance Intel Server machine 

comprising four Intel Nehalem-EX processors running at 2.27 GHz each with 128 GB of 

physical memory. Each processor has ten CPU cores with hyper thread technology 

enabled in each core. The specific details of the hardware and software implementation 

are displayed in Table 3.I. The analysis of the sequential DFA was carried out on just one 

of the VMs, whereas the PDFA was run on upto 8 VMs. 

Table 3.1: Experimental configuration of Hadoop cluster. 

Hardware CPU 40 Cores 

Processor 2.27GHz 

Storage 2TB and 320GB 

Connectivity 100Mbps Ethernet LAN 

Software Operating System Ubuntu 12.04 TLS 

Python Version 3.3 

JDK Version 1.6 

Hadoop CDH 4.5 

Oracle Virtual Box Version 4.2.8 

OpenPDC Version 1.5 
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3.5.2    Results 

A number of experiments were carried out to evaluate the efficiency and accuracy of the 

PDFA method. From Figure 3.4, it can be seen that the PDFA outperforms the sequential 

DFA in computation significantly using 8 VMs. The execution time of the sequential 

DFA increases with an increasing number of data samples, while the execution time of 

the PDFA remains relatively constant. 

 

Figure 3.4: Analysis of PDFA efficiency 

The DFA algorithm works on a sliding window, so when comparing the output of the 

sequential DFA with PDFA it is important to note the possibility of discrepancies in 

results caused by data portioning due to the way in which the datasets are divided up for 

parallelization. This does not affect the PDFA ability to detect events; it just means that 

the F values could differ slightly from the DFA results. The results of the PDFA are 

compared with that of the DFA and are displayed in Figure 3.5, the relative accuracy of 

PDFA is very close to that of the sequential DFA, especially in the cases of larger 

datasets, as the difference converges to zero. 
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Figure 3.5: Relative accuracy of PDFA compared to DFA. 

The scalability of the PDFA in terms of a varied number of both VMs and data samples 

was evaluated. Figure 3.6 shows the execution times of the PDFA when processing three 

different sizes of dataset and a varied number of VMs from 1 to 8. The PDFA clearly 

performs best in scalability on the largest dataset with 32 million data samples. It can be 

observed that the execution time of the PDFA on each dataset decreases with an 

increasing number of VMs employed. When processing 8 M data samples, 4 VMs 

generated 2 times speedup, whereas 8 VMs generated 2.5 times of speedup. However, 

when the number of data samples is increased to 32 M, 4 VMs generated 3.3 times of 

speedup whereas 8 VMs generated 5.4 times of speedup. With increasing numbers of 

data samples, the times of speedup will be increased closer to the number of VMs. 
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Figure 3.6: Scalability of PDFA, execution time against number of mapper nodes (VMs) 

Based on the results presented in the Figure 3.6, the speedup of the PDFA in terms of 

computation when processing the three different sized datasets was calculated using 

N

S

T

T
Speedup                (3.2) 

Where, ST  is the execution time of the PDFA on a single VM and NT  represents the 

execution time of the PDFA on N number of VMs. The results of this calculation are 

displayed in Figure 3.7. Again, the PDFA achieves the best speedup in computation on 

the largest dataset with 32 million data samples. However, as shown in the figure by the 

dotted line, the results never achieve that which are to be expected from Amdahl’s law 

[43]. 
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Figure 3.7: Speedup analysis of the PDFA algorithm. 

3.5.3 Speedup Analysis 

When parallelizing a sequential program, the speedup in computation can be calculated 

using Amdahl’s Law [43], defined in 

N

P
P

Speedup





)1(

1
                                                       (3.3) 

where P, represents the portion of the sequential program in percentage that can be 

parallelized and N represents the number of computers used in the computation. 
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Theoretically, in the case when a sequential program can be fully parallelized (P = 1), as 

was the case with PDFA, the speedup of the parallelized program should be equal to the 

number of computers used in the computation N. Therefore, we have 

N

N

P
P

Speedup 





)1(

1
                                                           (3.4) 

However, as shown in Figure 3.7, the closest speedup to  Eq.(3.4) that the PDFA 

achieved in all the computation scenarios was 3.3 times faster than the sequential DFA 

when 4 VMs were used in the process. The speedup of the PDFA never achieved N times 

in a Hadoop cluster with N computers even though the sequential DFA was fully 

parallelized. This means that Amdahl’s Law in the form of Eq. (3.4) is not sufficient in 

calculating the speedup of a parallelized program that is executed in a cluster computing 

environment. This is because Amdahl’s Law in this form does not consider the 

communication overhead of a user job in cluster computing. For this purpose, a revision 

to Amdahl’s Law is proposed in the form of Eq. (3.5), to better reflect the speedup gain 

when parallelizing a sequential program in cluster computing. 

N

R
N

P
P

Speedup 





)1(

1
                                         (3.5) 

where R, represents the ratio of the communication overhead to the computation of a user 

job, and R > 0. 

The revised Amdahl’s Law Eq.  (3.5) better explains the speedup of a parallel program 

running in cluster computing. The larger a dataset is, the higher overhead in computation 

will be incurred. As a result, the lower the ratio of communication to computation would 

be achieved, which leads to a higher speed up in computation. This well explains the 

speedup of the PDFA in computation when processing the three datasets with varied 

sizes. 
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To achieve an optimal performance in speedup, the ratio of communication to the 

communication of a parallel program should be minimized. In the case of Hadoop 

MapReduce clusters, the size of the segmented data blocks shall be large. On one hand, a 

large size of data block will generate a small number of tasks that incurs a small overhead 

in communication. On the other hand, a large size of data block will lead to a high 

workload in computation. Therefore, a large size of data block will lead to a low 

communication to computation ratio generating a high speedup. 

 

Figure 3.8: Computational overhead of PDFA against data block size. 

To evaluate how the size of a data block affects the computational performance of PDFA, 

the algorithm was run on a dataset of 352 MB using 8 VMs with varied sizes of data 

blocks ranging from 2 to 32 MB. From Figure 3.8 it can be observed that the execution 

time of PDFA decreases with an increasing size of data block.  
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Figure 3.9: Speedup of PDFA against data block size. 

The speedup of PDFA in computation goes up with an increasing size of data block, as 

shown in Figure 3.9. It can be seen that PDFA is 2.04 times faster in computation using 

32 MB data blocks than when using 2 MB data blocks, thus confirming a greater 

improvement in performance with larger block size.  

3.6   Summary 

This chapter presented a novel PDFA approach, for fast events detection on massive 

PMU datasets. The PDFA was implemented in two stages, in the first stage, it was 

implemented in the form of a laboratory based setup for online data collection. In the 

second stage, it was implemented as an offline approach in the context of data mining. It 

was built on Hadoop model for data partitioning and distribution amongst a cluster of 

computer nodes. The performance of the PDFA was evaluated from aspect of scalability, 
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speedup and accuracy. The experimental results have shown the scalability and the 

speedup of the PDFA in computation whilst maintained relative accuracy in comparison 

with the sequential DFA. Moreover, the speedup of the PDFA was evaluated through 

Amdahl’s Law and based on the analysis in the speedup of computation, an improvement 

to Amdahl’s law was proposed, introducing the ratio of communication to computation to 

enhance its capability to analyze the performance gain in computation when parallelizing 

data intensive applications in a cluster computing environment.  
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Chapter 4  

Hadoop Performance Modeling for Job 

Estimation and Resource Provisioning 

MapReduce has become a major computing model for data intensive applications. 

Hadoop, an open source implementation of MapReduce, has been adopted by an 

increasingly growing user community. Cloud computing service providers such as 

Amazon EC2 Cloud offer the opportunities for Hadoop users to lease a certain amount of 

resources and pay for their use. However, a key challenge is that cloud service providers 

do not have a resource provisioning mechanism to satisfy user jobs with deadline 

requirements. Currently, it is solely the user's responsibility to estimate the required 

amount of resources for running a job in the cloud. This chapter presents a Hadoop job 

performance model that accurately estimates job completion time and further provisions 

the required amount of resources for a job to be completed within a deadline. The 

proposed model builds on historical job execution records and employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the execution time of a job. 

Furthermore, it employs Lagrange Multipliers technique for resource provisioning to 

satisfy jobs with deadline requirements. The proposed model is initially evaluated on an 

in-house Hadoop cluster and subsequently evaluated in the Amazon EC2 Cloud. 

Experimental results show that the accuracy of the proposed model in job execution 

estimation is in the range of 94.97% and 95.51%, and jobs are completed within the 

required deadlines following on the resource provisioning scheme of the proposed model. 

4.1    Introduction 

Many organizations are continuously collecting massive amounts of datasets from 

various sources such as the World Wide Web, sensor networks and social networks. The 

ability to perform scalable and timely analytics on these unstructured datasets is a high 

priority task for many enterprises. It has become difficult for traditional network storage 

and database systems to process these continuously growing datasets. MapReduce [1], 
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originally developed by Google, has become a major computing model in support of data 

intensive applications. It is a highly scalable, fault-tolerant and data parallel model that 

automatically distributes the data and parallelizes the computation across a cluster of 

computers [2]. Among its implementations such as Mars [3], Phoenix [4], Dryad [5] and 

Hadoop [6], Hadoop has received a wide uptake by the community due to its open source 

nature [7][8][9][10].  

One feature of Hadoop MapReduce is its support of public cloud computing that enables 

the organizations to utilize cloud services in a pay-as-you-go manner. This facility is 

beneficial to small and medium size organizations where the setup of a large scale and 

complex private cloud is not feasible due to financial constraints. Hence, executing 

Hadoop MapReduce applications in a cloud environment for big data analytics has 

become a realistic option for both the industrial practitioners and academic researchers. 

For example, Amazon has designed Elastic MapReduce (EMR) that enables users to run 

Hadoop applications across its Elastic Cloud Computing (EC2) nodes. 

The EC2 Cloud makes it easier for users to set up and run Hadoop applications on a 

large-scale virtual cluster. To use the EC2 Cloud, users have to configure the required 

amount of resources (virtual nodes) for their applications. However, the EC2 Cloud in its 

current form does not support Hadoop jobs with deadline requirements. It is purely the 

user's responsibility to estimate the amount of resources to complete their jobs which is a 

highly challenging task. Hence, Hadoop performance modeling has become a necessity in 

estimating the right amount of resources for user jobs with deadline requirements. It 

should be pointed out that modeling Hadoop performance is challenging because Hadoop 

jobs normally involve multiple processing phases including three core phases (i.e. map 

phase, shuffle phase and reduce phase). Moreover, the first wave of the shuffle phase is 

normally processed in parallel with the map phase (i.e. overlapping stage) and the other 

waves of the shuffle phase are processed after the map phase is completed (i.e. non-

overlapping stage).  
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To effectively manage cloud resources, several Hadoop performance models have been 

proposed [11][12][13][14].  However, these models do not consider the overlapping and 

non-overlapping stages of the shuffle phase which leads to an inaccurate estimation of 

job execution. 

Recently, a number of sophisticated Hadoop performance models are proposed 

[15][16][17][18]. Starfish [15] collects a running Hadoop job profile at a fine granularity 

with detailed information for job estimation and optimization. On the top of Starfish, 

Elasticiser [16] is proposed for resource provisioning in terms of virtual machines. 

However, collecting the detailed execution profile of a Hadoop job incurs a high 

overhead which leads to an overestimated job execution time. The HP model [17] 

considers both the overlapping and non-overlapping stages and uses simple linear 

regression for job estimation. This model also estimates the amount of resources for jobs 

with deadline requirements. CRESP [18] estimates job execution and supports resource 

provisioning in terms of map and reduce slots. However, both the HP model and CRESP 

ignore the impact of the number of reduce tasks on job performance. The HP model is 

restricted to a constant number of reduce tasks, whereas CRESP only considers a single 

wave of the reduce phase. In CRESP, the number of reduce tasks has to be equal to 

number of reduce slots. It is unrealistic to configure either the same number of reduce 

tasks or the single wave of the reduce phase for all the jobs. It can be argued that in 

practice, the number of reduce tasks varies depending on the size of the input dataset, the 

type of a Hadoop application (e.g. CPU intensive, or disk I/O intensive) and user 

requirements. Furthermore, for the reduce phase, using multiple waves generates better 

performance than using a single wave especially when Hadoop processes a large dataset 

on a small amount of resources. While a single wave reduces the task setup overhead, 

multiple waves improve the utilization of the disk I/O.   

Building on the HP model, this chapter presents an improved HP model for Hadoop job 

execution estimation and resource provisioning. The major contributions of this chapter 

are as follows: 
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 The improved HP work mathematically models all the three core phases of a 

Hadoop job. In contrast, the HP work does not mathematically model the non-

overlapping shuffle phase in the first wave. 

 The improved HP model employs Locally Weighted Linear Regression (LWLR) 

technique to estimate the execution time of a Hadoop job with a varied number of 

reduce tasks. In contrast, the HP model employs a simple linear regress technique 

for job execution estimation which restricts to a constant number of reduce tasks. 

 Based on job execution estimation, the improved HP model employs Lagrange 

Multiplier technique to provision the amount of resources for a Hadoop job to 

complete within a given deadline. 

The performance of the improved HP model is initially evaluated on an in-house Hadoop 

cluster and subsequently on Amazon EC2 Cloud. The evaluation results show that the 

improved HP model outperforms both the HP model and Starfish in job execution 

estimation with an accuracy of level in the range of 94.97% and 95.51%. For resource 

provisioning, 4 job scenarios are considered with a varied number of map slots and 

reduce slots. The experimental results show that the improved HP model is more 

economical in resource provisioning than the HP model. 

4.2 Modeling Job Phases in Hadoop 

Normally a Hadoop job execution is divided into a map phase and a reduce phase. The 

reduce phase involves data shuffling; data sorting and user-defined reduce functions. 

Data shuffling and sorting are performed simultaneously. Therefore, the reduce phase can 

be further divided into a shuffle (or sort) phase and a reduce phase performing user-

defined functions. As a result, an overall Hadoop job execution work flow consists of a 

map phase, a shuffle phase and a reduce phase as shown in Figure 4.1. Map tasks are 

executed in map slots at a map phase and reduce tasks run in reduce slots at a reduce 

phase. Every task runs in one slot at a time. A slot is allocated with a certain amount of 

resources in terms of CPU and RAM. A Hadoop job phase can be completed in a single 

wave or multiple waves. Tasks in a wave run in parallel on the assigned slots. 
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Herodotou presented a detailed set of mathematical models on Hadoop performance at a 

fine granularity [19]. For the purpose of simplicity, we only consider the three core 

phases (i.e. map phase, shuffle phase and reduce phase) in modeling the performance of 

Hadoop jobs. Table 4.1 defines the variables used in Hadoop job performance modeling. 

4.2.1 Modeling Map Phase 

In this phase, a Hadoop job reads an input dataset from Hadoop Distributed File System 

(HDFS), splits the input dataset into data chunks based on a specified size and then 

passes the data chunks to a user-define map function. The map function processes the 

data chunks and produces a map output. The map output is called intermediate data. The 

average map output and the total map phase execution time can be computed using Eq. 

(4.1) and Eq. (4.2) respectively. 
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Figure 4.1: Hadoop job execution flow. 

4.2.2 Modeling Shuffle Phase 

In this phase, a Hadoop job fetches the intermediate data, sorts it and copies it to one or 

more reducers. The shuffle tasks and sort tasks are performed simultaneously; therefore, 

we generally consider them as a shuffle phase. The average size of shuffled data can be 

computed using Eq. (4.3). 
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rr NN   then the shuffle phase will be completed in a single wave. The total 

execution time of a shuffle phase can be computed using Eq. (4.4).
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Table 4.1: Defined variables in modeling job phases 

Variables Expressions 
output

avgmD 
 The average output data size of a map task. 

total

m
T  

The total execution time of a map phase. 

input

avgmD 
 The average input data size of a map task. 

yselectivitM  The map selectivity which is the ratio of a map output to a map input. 

mN  The total number of map tasks. 

avg

mT  The average execution time of a map task. 

slot

mN  The total number of configured map slots. 

avgshD   The average size of a shuffled data. 

total

sh
T  

The total execution time of a shuffle phase. 

r
N  The total number of reduce tasks. 

avg

sh
T  

The average execution duration of a shuffle task. 

slot

rN  The total number of configured reduce slots. 

1w

sh
N  

The total number of shuffle tasks that complete in the first wave. 

2w

sh
N  

The total number of shuffle tasks that complete in other waves. 

avg
wT 1  

The average execution time of a shuffle task that completes in the first wave. 

avg
wT 2

 

The average execution time of a shuffle task that completes in other waves. 

output

avgrD 
 

The average output data size of a reduce task. 

total

r
T

 

The total execution time of a reduce phase. 

input

avgrD   
The average input size of a reduce task.  

yselectivit
R

 
The reduce selectivity which is the ratio of a reduce output to a reduce input. 

avg
rT

 
The average execution time of a reduce task. 

Otherwise, the shuffle phase will be completed in multiple waves and its execution time 

can be computed using Eq. (5.5). 

slot

r

w

sh

avg

w

w

sh

avg

wtotal

sh N

NTNT

T

)()(
2

2

1

1
 

          (5.5) 
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4.2.3    Modeling Reduce Phase 

In this phase, a job reads the sorted intermediate data as input and passes to a user-

defined reduce function. The reduce function processes the intermediate data and 

produces a final output. In general, the reduce output is written back into the HDFS. The 

average output of the reduce tasks and the total execution time of the reduce phase can be 

computed using Eq. (4.6) and Eq. (4.7) respectively. 

yselectivit
input

avgr
output

avgr RDD                   (4.6) 

slot

r

avg

rtotal

r
N

T
T r

N
         (4.7) 

4.3    An Improved HP Performance Model 

As also mentioned before, Hadoop jobs have three core execution phases – map phase, 

shuffle phase and reduce phase. The map phase and the shuffle phase can have 

overlapping and non-overlapping stages. In this section, we present an improved HP 

model which takes into account both overlapping stage and non-overlapping stage of the 

shuffle phase during the execution of a Hadoop job. We consider single Hadoop jobs 

without logical dependencies. 

4.3.1    Design Rationale 

A Hadoop job normally runs with multiple phases in a single wave or in multiple waves. 

If a job runs in a single wave then all the phases will be completed without overlapping 

stages as shown in Figure 4.2. 
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Figure 4.2: A Hadoop job running in a single wave (16 map tasks and 16 reduce tasks). 

However, if a job runs in multiple waves, then the job will be progressed through both overlapping 

(parallel) and non-overlapping (sequential) stages among the phases as show in Figure 4.3.  

In the case of multiple waves, the first wave of the shuffle phase starts immediately after the first map task 

completes. Furthermore, the first wave of the shuffle phase continues until all the map tasks complete and 

all the intermediate data is shuffled and sorted. Thus, the first wave of the shuffle phase is progressed in 

parallel with the other waves of the map phase as shown in Figure 4.3. After completion of the first wave of 

the shuffle phase, the reduce tasks start running and produce output. Afterwards, these reduce slots will 

become available to the shuffle tasks running in other waves. It can be observed from Figure 4.3 that the 

shuffle phase takes longer to complete in the first wave than in other waves. In order to estimate the 

execution time of a job in multiple waves, we need to estimate two sets of parameters for the shuffle phase 

- the average and the maximum durations of the first wave, together with the average and the maximum 

durations of the other waves. Moreover, there is no significant difference between the durations of the map 

tasks running in non-overlapping and overlapping stages due to the equal size of data chunks. Therefore, 

we only estimate one set of parameters for the map phase which are the average and the maximum 

durations of the map tasks. The reduce tasks run in a non-overlapping stage, therefore we only estimate one 

set of parameters for the reduce phase which are the average and the maximum durations of the reduce 

tasks. Finally, we aggregate the durations of all the three phases to estimate the overall job execution time. 
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It should be pointed out that the Figure 4.3 also shows the differences between the HP 

model and the improved model in Hadoop job modeling. The HP work mathematically 

models the whole map phase which includes the non-overlapping stage of the map phase 

and the stage overlapping with the shuffle phase, but it does not provide any 

mathematical equations to model the non-overlapping stage of the shuffle phase in the 

first wave. 

Whereas the improved HP work mathematically models the non-overlapping map phase 

in the first wave, and the shuffle phase in the first wave which includes both the stage 

overlapping with the map phase and the non-overlapping stage. This can be reflected in 

the mathematical equations of the improved HP model which are different from the HP 

model. 

Figure 4.3: A Hadoop job running in multiple waves (80 map tasks, 32 reduce tasks). 

map phase(non-overlapping and overlapping)

non-overlapping 
shuffle phase  

in the first wave 

HP model

non-overlapping 
map phase

in the first wave 

shuffle phase in the first wave 
(overlapping  and non-overlapping)

Improved HP model

shuffle and reduce phases

shuffle and reduce phases
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4.3.2    Mathematical Expression 

In this section, we present the mathematical expressions of the improved HP work in 

modeling a Hadoop job which completes in multiple waves. Table 4.2 defines the 

variables used in the improved model. 

In practice, job tasks in different waves may not complete exactly at the same time due to 

varied overhead in disk I/O operations and network communication. Therefore, the 

improved HP model estimates the lower bound and the upper bound of the execution time 

for each phase to cover the best-case and the worse-case scenarios respectively. 

We consider a job that runs in both non-overlapping and overlapping stages. The lower 

bound and the upper bound of the map phase in the first wave which is a non-overlapping 

stage can be computed using Eq.(4.8) and Eq.(4.9) respectively.   

slot

m

w

m

avg

mlow

wm
N

NT

T

1

1





              (4.8)

slot

m

w

m
mup

wm
N

NT
T

1max

1




                   (4.9) 

Table 4.2: Defined variables in the improved HP model 

Variables Expressions 

low

wmT 1  The lower bound duration of the map phase in the first wave (non-

overlapping). 

up

wm
T

1
 The upper bound duration of the map phase in the first wave (non-

overlapping). 

1w

mN  The number of map tasks that complete in the first wave of the map 

phase. 

2w

mN
 

The number of map tasks that complete in other waves of the map 

phase. 

max

m
T  The maximum execution time of a map task. 
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low

wsh
T

1
 The lower bound duration of the shuffle phase in the first wave 

(overlapping with the map phase). 

up

wsh
T

1
 The upper bound duration of the shuffle phase in the first wave 

(overlapping with the map phase). 

avg

wsh

T
1

 
The average execution time of a shuffle task that completes in the 

first wave of the shuffle phase.  

max

1wsh

T


 
The maximum execution time of a shuffle task that completes in the 

first wave of the shuffle phase. 

low

wsh

T
2

 
The lower bound duration of the shuffle phase in other waves (non-

overlapping) 

up

wsh

T
2  

The upper bound duration of the shuffle phase in other waves (non-

overlapping). 

avg

wsh
T

2
 

The average execution time of a shuffle task that completes in other 

waves of the shuffle phase. 

max

wsh

T
2

 
The maximum execution time of a shuffle task that completes in 

other waves of the shuffle phase.  

low

rT  
The lower bound duration of the reduce phase. 

up

rT  The upper bound duration of the reduce phase. 

max

r
T  

The maximum execution time of a reduce task. 

low

jobT  The lower bound execution time of a Hadoop job. 

up

jobT
 

The upper bound execution time of a Hadoop job. 

avg

job
T

 
The average execution time of a Hadoop job. 

In the overlapping stage of a running job, the map phase overlaps with the shuffle phase. 

Specifically, the tasks running in other waves of the map phase run in parallel with the 

tasks running in the first wave of the shuffle phase. As the shuffle phase always 

completes after the map phase which means that the shuffle phase takes longer than the 

map phase, therefore we use the duration of the shuffle phase in the first wave to compute 

the lower bound and the upper bound of the overlapping stage of the job using Eq. (4.10) 

and Eq. (4.11) respectively. 
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                              (4.11) 

In other waves of the shuffle phase, the tasks run in a non-overlapping stage. Hence, the 

lower bound and the upper bound of the non-overlapping stage of the shuffle phase can 

be computed using Eq. (4.12) and Eq. (4.13) respectively. 

slot

r

w

sh

avg

wshlow

wsh
N

NT
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2
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
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

       (4.12) 

slot

r

w

shwshup

wsh
N

NT
T

2max

2
2


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

                  (4.13) 

The reduce tasks start after completion of the shuffle tasks. Therefore, the reduce tasks 

complete in a non-overlapping stage. The lower bound and the upper bound of the reduce 

phase can be computed using Eq. (4.14) and Eq. (4.15) respectively. 

slot

r

r

avg

rlow

r
N

NT
T




        (4.14) 

slot

r

rrup

r
N

NT
T




max

          (4.15) 

As a result, the lower bound and upper bound of the execution time of a Hadoop job can 

be computed by combining the execution durations of all the three phases using Eq. 

(4.16) and Eq. (4.17) respectively. 
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low

r

low

wsh

low

wsh

low

wm

low

job TTTTT   211               (4.16) 

up

r

up

wsh

up

wsh

up

wm

up

job TTTTT   211                             (4.17) 

By substituting the values in Eq. (4.16) and Eq. (4.17), we have 
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Finally, we take an average of Eq. (4.18) and Eq. (4.19) to estimate the execution time of 

a Hadoop job using Eq. (4.20). 

2

up

job

low

jobavg

job

TT
T




                                    (4.20) 

4.3.3 Job Execution Estimation 

In the previous section, we have presented the mathematical expressions of the improved 

HP model. The lower bound and the upper bound of a map phase can be computed using 

Eq. (4.8) and Eq. (4.9) respectively. However, the durations of the shuffle phase and the 

reduce phase have to be estimated based on the running records of a Hadoop job. 

When a job processes an increasing size of an input dataset, the number of map tasks is 

proportionally increased while the number of reduce tasks is specified by a user in the 

configuration file. The number of reduce tasks can vary depending on user's 

configurations. When the number of reduce tasks is kept constant, the execution durations 

of both the shuffle tasks and the reduce tasks are linearly increased with the increasing 



Chapter 4: Hadoop performance modeling for job estimation and resource provisioning             82      

 

size of the input dataset as considered in the HP model. This is because the volume of an 

intermediate data block equals to the total volume of the generated intermediate data 

divided by the number of reduce tasks. As a result, the volume of an intermediate data 

block is also linearly increased with the increasing size of the input dataset. However, 

when the number of reduce tasks varies, the execution durations of both the shuffle tasks 

and the reduce tasks are not linear to the increasing size of an input dataset.  

In either the shuffle phase or the reduce phase, we consider the tasks running in both 

overlapping and non-overlapping stages. Unlike the HP model, the improved model 

considers a varied number of reduce tasks. As a result, the durations of both the shuffle 

tasks and the reduce tasks are nonlinear to the size of an input dataset. Therefore, instead 

of using a simple linear regression as adopted by the HP model, we apply Locally 

Weighted Linear Regression (LWLR) [20][21] in the improved model to estimate the 

execution durations of both the shuffle tasks and the reduce tasks.  

The LWLR model assigns a weight to each instance x  according to its Euclidean 

distance from the query instance qx . The LWLR assigns a high weight to an instance x  

which is close to the query instance qx  and a low weight to the instances that are far 

away from the query instance qx . The weight of an instance can be computed using a 

Gaussian function as illustrated in Eq. (4.21).  

),....,3,2,1(),
2

)),(tan(
exp(

2

2

mk
h

xxcedis
w

qk

k               (4.21) 

where, 

kw is the weight of the training instance at location k . 

kx  is the training instance at location k .  

m is the total number of the training instances.  
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h  is a smoothing parameter which determines the width of the local neighborhood of the 

query instance  

The value of h is crucial to LWLR. Users have the option of using a new value of h for 

each estimation or a single global value of h. However, finding an optimal value for h is a 

challenging issue itself [22]. In the improved HP model, a single global value of h is used 

to minimize the estimated mean square errors.   

In the improved HP model, the LWLR is used to estimate the durations of both the 

shuffle tasks and the reduce tasks. First, we estimate
avg

wshT 1 , which is the average duration 

of the shuffle tasks running in the first wave of the shuffle phase. To estimate
avg

wshT 1 , we 

define a matrix nmX   whose rows contain the training dataset mxxxx .....,,, 321  and n  is 

the number of feature variables which is set to 2 (i.e. the size of an intermediate dataset 

and the number of reduce tasks). We define a vector  myyyY ...,, 21 of dependent 

variables that are used for the average durations of the shuffle tasks. For example, iy

represents the average execution time of the shuffle task that corresponds to the training 

instance of ix . We define another matrix qX  whose rows are query instances. Each query 

instance qx contains both the size of the intermediate dataset newd  and the number of 

reduce tasks newr  of a new job. We calculate newd  based on the average input data size of a 

map task, the total number of map tasks and the map selectivity metric which is 

yselectivitm

avg

inputmnew MNDd   .  

For the estimation of
avg

wshT 1 , we calculate the weight for each training instance using Eq. 

(4.21) and then compute the parameter  using Eq. (4.22) which is the coefficient of the 

LWLR. 

)()( 1 YWXXWX TT                       (4.22) 
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Here )( kwdiagW   is the diagonal matrix where all the non-diagonal cells are 0 values. The 

value of a diagonal cell is increased when the distance between a training instance and 

the query instance is decreased.           

 Finally, the duration of a new shuffle task running in the first wave of the shuffle phase 

can be estimated using Eq. (4.23). 

 q

avg

wsh XT 1                   (4.23) 

Similarly, the durations of
max

wshT 1 ,
avg

wshT 2 , 
max

wshT 2 ,
avg

rT  and 
max

rT can be estimated. 

The estimated values of both the shuffle phase and the reduce phase are used in the 

improved HP model to estimate the overall execution time of a Hadoop job when 

processing a new input dataset. Figure 4.4 shows the overall architecture of the improved 

HP model, which summarizes the work of the improved HP model in job execution 

estimation. The boxes in gray represent the same work presented in the HP model. It is 

worth noting that the improved HP model works in an offline mode and estimates the 

execution time of a job based on the job profile. 



Chapter 4: Hadoop performance modeling for job estimation and resource provisioning             85      

 

Estimated time of first wave Estimated from profile

Job

First 

wave

Other 

wave

First 

wave

Other 

wave
Reduce

Estimate 

Time
Estimated 

Time

Estimated 

Time

Estimated 

Time

Overall Job Estimation

Job Profile

Locally 

Weighted Linear 

Regression

Estimated time of other wave

Estimate time of reduce tasks

Map 

Phase

Shuffle 

Phase

Reduce 

Phase

ov
er

la
p

 

Figure 4.4: The architecture of the improved HP model. 

4.4    Resource Provisioning 

The improved HP model presented in Section 4.3 can estimate the execution time of a 

Hadoop job based on the job execution profile, allocated resources (i.e. map slots and 

reduce slots), and the size of an input dataset. The improved HP model is further 

enhanced to estimate the amount of resources for Hadoop jobs with deadline 

requirements.  

Consider a deadline for a job that is targeted at the lower bound of the execution time. To 

estimate the number of map slots and reduce slots, we consider the non-overlapping map 

phase in the first wave, the map phase in other waves together with the overlapped 

shuffle phase in the first wave, the shuffle phase in other waves and the reduce phase. 
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Therefore we simplify Eq. (4.18) into Eq. (4.24) with a modification of Eq. (4.10) for 

resource estimation. 
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The method of Lagrange Multipliers [23] is used to estimate the amounts of resources 

(i.e. map slots and the reduce slots) for a job to complete within a deadline. Lagrange 

Multipliers is an optimization technique in multivariable calculus that minimizes or 

maximizes the objective function subject to a constraint function. The objective function 

is rmrmf ),(  and the constraint function is 0),( rmg , where 

t
r

d

r

c

rm

b

m

a
rmg 


),(  is derived from Eq. (4.24). To minimize the objective 

function, the Lagrangian function is expressed as Eq. (4.25). 

),(),(),,( rmgrmfrmL  
         (4.25) 
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Where  is the Lagrange Multiplier. We take partial differentiation of Eq.(4.25) with 

respect to m, r,  , we have 
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Solving Eq.(4.26), Eq.(4.27), and Eq.(4.28) simultaneously for m and r, we have 
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Here, the values of m  and r are the numbers of map slots and reduce slots respectively. 

As we have targeted at the lower bound of the execution time of a job, the estimated 

amount of resources might not be sufficient for the job to complete within the deadline. 
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This is because the lower bound corresponds to the best-case scenario which is hardly 

achievable in a real Hadoop environment. Therefore, we also target at the upper bound of 

the execution time of a job. For this purpose we use Eq.(4.19) as a constraint function in 

Lagrange Multipliers, and apply the same method as applied to Eq.(4.18) to compute the 

values of both m  and r . In this case, the amounts of resources might be overestimated 

for a job to complete within the deadline. This is because the upper bound corresponds to 

the worst-case execution of a job. As a result, an average amount of resources between 

the lower and the upper bounds might be more sensible for resource provisioning for a 

job to complete within a deadline.  

4.5    Performance Evaluation 

The performance of the improved HP model was initially evaluated on an in-house 

Hadoop cluster and subsequently on Amazon EC2 cloud. In this section, we present the 

evaluation results. First, we give a brief description on the experimental environments 

that were used in the evaluation process. 

4.5.1     Experimental Setup 

We set up an in-house Hadoop cluster using an Intel Xeon server machine. The 

specifications and configurations of the server are shown in Table 4.3. We installed 

Oracle Virtual Box and configured 8 Virtual Machines (VMs) on the server. Each VM 

was assigned with 4 CPU cores, 8GB RAM and 150GB hard disk storage. We used 

Hadoop-1.2.1 and configured one VM as the Name Node and the remaining 7 VMs as 

Data Nodes. The Name Node was also used as a Data Node. The data block size of the 

HDFS was set to 64MB and the replication level of data block was set to 2. Two map 

slots and two reduce slots were configured on each VM. We employed two typical 

MapReduce applications, i.e. the WordCount application and the Sort application which 

are CPU intensive and IO intensive applications respectively. The teraGen application 

was used to generate input datasets of different sizes.  
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The second experimental Hadoop cluster was setup on Amazon EC2 Cloud using 20 

m1.large instances. The specifications of the m1.large are shown in Table 4.3. In this 

cluster, we used Hadoop-1.2.1 and configured one instance as Name Node and other 19 

instances as Data Nodes. The Name Node was also used as a Data Node. The data block 

size of the HDFS was set to 64MB and the replication level of data block was set to 3. 

Each instance was configured with one map slot and one reduce slot. 

Table 4.3: Experimental Hadoop cluster 

Intel Xeon Server 1 

CPU 40 cores 

Processor 2.27GHz 

Hard disk 2TB  

Connectivity 100Mbps Ethernet LAN 

Memory 128GB 

Amazon 

m1.large instance 

vCPU 2 

Hard disk 420GB 

Memory 7.5GB 

Software 

Operating System Ubuntu 12.04 TLS 

JDK 1.6 

Hadoop 1.2.1 

Oracle Virtual Box 4.2.8 

Starfish 0.3.0 

 

4.5.2 Job Profile Information 

We run both the WordCount and the Sort applications on the two Hadoop clusters 

respectively and employed Starfish to collect the job profiles. For each application 

running on each cluster, we conducted 10 tests. For each test, we run 5 times and took the 

average durations of the phases. Table 4.4 and Table 4.5 present the job profiles of the 

two applications that run on the EC2 Cloud. 

 

 



Chapter 4: Hadoop performance modeling for job estimation and resource provisioning             90      

 

Table 4.4: The job profile of the WordCount application in EC2 environment. 

Data 

size 

(GB) 

Map 

tasks 

Map task    

duration (s) 

Shuffle duration(s)  

in the first wave 

(overlapping) 

Shuffle duration(s) 

in other waves 

(non-overlapping) 

Reduce 

duration (s) 

Avg. Max Avg. Max Avg. Max Avg. Max 

5 80 12 23 69 73 20 22 18 25 

10 160 12 24 139 143 26 29 20 32 

15 240 13 23 212 215 38 44 23 35 

20 320 13 23 274 278 34 39 17 26 

25 400 11 25 346 350 41 47 20 27 

30 480 11 24 408 411 47 57 22 41 

35 560 12 27 486 489 59 71 27 42 

40 640 12 24 545 549 45 52 19 30 

45 720 11 23 625 629 50 58 20 32 

50 800 14 24 693 696 55 65 23 37 

Table 4.5:The profile of the Sort application in EC2 environment 

Data 

Size 

(GB) 

Map 

tasks 

Map task    

duration (s) 

Shuffle duration(s) in 

the first wave 

(overlapping) 

Shuffle duration(s) in 

other waves 

(non-overlapping) 

Reduce duration 

(s) 

Avg. Max Avg. Max Avg. Max Avg. Max 

5 80 11 15 48 50 15 18 13 24 

10 160 12 24 108 111 23 32 30 42 

15 240 12 20 161 165 31 41 50 68 

20 320 12 22 218 221 29 35 44 63 

25 400 13 22 277 281 37 63 57 73 

30 480 13 33 325 330 42 56 75 112 

35 560 12 27 375 378 55 82 87 132 

40 640 13 26 424 428 52 74 71 104 

45 720 13 26 484 488 63 94 97 128 

50 800 13 29 537 541 71 102 104 144 

 

4.5.2.1  Evaluating the Impact of the Number of Reduce Tasks on Job Performance 

In this section we evaluate the impact of the number of reduce tasks on job performance. 

We run both the WordCount and the Sort applications on the in-house Hadoop cluster 

with a varied number of reduce tasks. The experimental results are shown in Figure 4.5 

and Figure 4.6 respectively. For both applications, it can be observed that when the size 

of the input dataset is small (e.g. 10GB), using a small number of reduce tasks (e.g. 16) 

generates less execution time than the case of using a large number of reduce tasks (e.g. 



Chapter 4: Hadoop performance modeling for job estimation and resource provisioning             91      

 

64). However, when the size of the input dataset is large (e.g. 25GB), using a large 

number of reduce tasks (e.g. 64) generates less execution time than the case of using a 

small number of reduce tasks (e.g. 16). It can also be observed that when the size of the 

input dataset is small (e.g. 10GB or 15GB), using a single wave of reduce tasks (i.e. the 

number of reduce tasks is equal to the number of reduce slots which is 16) performs 

better than the case of using multiple waves of reduce tasks (i.e. the number of reduce 

tasks is larger than the number of reduce slots).  However, when the size of the input 

dataset is large (e.g. 25GB), both the WordCount and the Sort applications perform better 

in the case of using multiple waves of reduce tasks than the case of using a single wave of 

reduce tasks. While a single wave reduces the task setup overhead on a small dataset, 

multiple waves improve the utilization of the disk I/O on a large dataset. As a result, the 

number of reduce tasks affects the performance of a Hadoop application.   

 

Figure 4.5: The performance of the WordCount application with a varied number of reduce tasks. 



Chapter 4: Hadoop performance modeling for job estimation and resource provisioning             92      

 

 

Figure 4.6: The performance of the Sort application with a varied number of reduce tasks. 

4.5.2.2   Estimating the Execution Times of Shuffle Tasks and Reduce Tasks 

Both the WordCount and the Sort applications processed a dataset on the in-house 

Hadoop cluster with a varied number of reduce tasks from 32 to 64. The size of the 

dataset was varied from 2GB to 20GB. Both applications also processed another dataset 

from 5GB to 50GB on the EC2 Cloud with the number of reduce tasks varying from 40 

to 80. The LWLR regression model presented in Section 4.3.3 was employed to estimate 

the execution times of both the shuffle tasks and the reduce tasks of a new job. The 

estimated values were used in Eq. (4.18) and Eq. (4.19) to estimate the overall job 

execution time.  

Figure 4.7 and Figure 4.8 show respectively the estimated execution times of both the 

shuffle tasks and the reduce tasks for both applications running on the Hadoop cluster in 

EC2. Similar evaluation results were obtained from both applications running on the in-

house Hadoop cluster.  We can observe that the execution times of both the shuffle tasks  
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Figure 4.7: The estimated durations of both the shuffle phase (non-overlapping stage) and the reduce phase 

in the WordCount application. The points represent the actual execution time and dashed lines represent the 

estimated durations. 

(non-overlapping stage) and reduce tasks are not linear to the size of an input dataset. It 

should be noted that the execution times of the shuffle tasks that run in an overlapping 

stage are linear to the size of an input dataset because the durations of these tasks depend 

on the number of map waves, as shown in Table 4.4 and Table 4.5.   

 

Figure 4.8:The estimated durations of both the shuffle phase (non-overlapping stage) and the reduce phase 

in the Sort application. The points represent the actual execution time and dashed lines represent the 

estimated duration. 
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4.5.3   Job Execution Estimation  

A number of experiments were carried out on both the in-house Hadoop cluster and the 

EC2 Cloud to evaluate the performance of the improved HP model. First, we evaluated 

the performance of the improved HP model on the in-house cluster and subsequently 

evaluated the performance of the model on the EC2 Cloud.  

For the in-house cluster, the experimental results obtained from both the WordCount and 

the Sort applications are shown in Figure 4.9 and Figure 4.10 respectively. From these 

two figures we can observe that the improved HP model outperforms the HP model in 

both applications. The overall accuracy of the improved HP model in job estimation is 

within 95% compared with the actual job execution times, whereas the overall accuracy 

of the HP model is less than 89% which uses a simple linear regression. It is worth noting 

that the HP model does not generate a straight line in performance as shown in [17]. This 

is because a varied number of reduce tasks was used in the tests whereas the work 

presented in [17] used a constant number of reduce tasks. 

 

Figure 4.9: The performance of the improved HP model in job estimation of running the WordCount 

application on the in-house cluster 
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Figure 4.10: The performance of the improved HP model in job estimation of running the Sort application 

on the in-house cluster. 

Next, we evaluated the performance of the improved HP model on the EC2 Cloud. The 

experimental results in running both applications are shown in Figure 4.11 and Figure 

4.12 respectively. It can be observed that the improved HP model also performs better 

than the HP model. The overall accuracy of the improved HP model in job estimation is 

over 94% compared with the actual job execution times, whereas the overall accuracy of 

the HP model is less than 88%. The HP model performs better on small datasets but its 

accuracy level is decreased to 76.15% when the dataset is large (e.g. 40GB). The reason 

is that the HP model employs a simple linear regression which cannot accurately estimate 

the execution times of the shuffle tasks and the reduce tasks which are not linear to the 

size of an input dataset. 
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Figure 4.11: The performance of the improved HP model in job estimation of running the WordCount 

application on the EC2 Cloud. 

 

Figure 4.12: The performance of the improved HP model in job estimation of running the Sort application 

on the EC2 Cloud. 

Finally, we compared the performance of the improved HP model in job estimation with 

that of both Starfish and the HP model collectively. Figure 4.13 and Figure 4.14 show the 
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comparison results of the three models running the two applications on the EC2 Cloud 

respectively. 

It can be observed that the improved HP model produces the best results in job estimation 

for both applications. Starfish performs better than the HP model on the Sort application 

in some cases as shown in Figure 4.14. However, Starfish overestimates the job execution 

times of the WordCount application as shown in Figure 4.13. This is mainly due to the 

high overhead of Starfish in collecting a large set of profile information of a running job.  

The Starfish profiler generates a high overhead for CPU intensive applications like 

WordCount because the Starfish uses Btrace to collect job profiles which requires 

additional CPU cycles [16]. Starfish performs better on the Sort application because Sort 

is less CPU-intensive than the WordCount application. 

 

Figure 4.13: A performance comparison among the improved HP model, the HP model and Starfish in 

running the WordCount application on the EC2 Cloud. 
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Figure 4.14:A performance comparison among the improved HP model, the HP model and Starfish in 

running the Sort application on the EC2 Cloud. 

We have validated the LWLR regression model in job execution estimation using 10-fold 

cross validation technique. We considered the execution of an entire job with three 

phases (i.e. map phase, shuffle phase and reduce phase). The mean absolute percentage 

errors of the WordCount application and the Sort application are 2.37% and 1.89% 

respectively which show high generalizability of the LWLR in job execution estimation. 

Furthermore, the R-squared values of the two applications are 0.9986 and 0.9979 

respectively which reflects the goodness of fit of LWLR. 

4.5.4    Resource Provisioning 
 

This section present the evaluation results of the improved HP model in resource 

provisioning using the in-house Hadoop cluster. We considered 4 scenarios as shown in 

Table 4.6. The intention of varying the number of both map slots and reduce slots from 1 

to 4 was twofold. One was to evaluate the impact of the resources available on the 

performance of the improved HP model in resource estimation. The other was to evaluate 
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the performance of the Hadoop cluster in resource utilization with a varied number of 

map and reduce slots. 

Table 4.6:Scenario configurations. 

Scenarios Number of map slots on 

each VM 

Number of reduce slots  

on each VM 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

To compare the performance of the improved HP model with the HP model in resource 

estimation in the 4 scenarios, we employed the WordCount application as a Hadoop job 

processing 9.41GB input dataset. In each scenario, we set 7 completion deadlines for the 

job which are 920, 750, 590, 500, 450, 390 and 350 in seconds. We first built a job 

profile in each scenario. We set a deadline for the job, and employed both the HP model 

and the improved HP model to estimate the amount of resources (i.e. the number of map 

slots and the number of reduce slots). We then assigned the estimated resources to the job 

using the in-house Hadoop cluster and measured the actual upper bound and the lower 

bound execution durations. We took an average of an upper bound and a lower bound and 

compared it with the given deadline. It should be noted that for resource provisioning 

experiments we configured 16VMs to satisfy the requirement of a job. Therefore, we 

employed another Xeon server machine with the same specification of the first server as 

shown in Table 4.3. We installed the Oracle Virtual Box and configured 8 VMs on the 

second server. Figure from 4.15 to Figure 4.18 shows the results in resource provisioning 

of the 4 scenarios respectively. 
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Figure 4.15:  Resource provisioning in Scenario 1 

 

Figure 4.16: Resource provisioning in Scenario 2. 

From the 4 scenarios we can see that overall the improved HP model slightly performs 

better than the HP model in resource provisioning due to its high accuracy in job 
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execution estimation. Both models perform well in the first two scenarios especially in 

Scenario 1 where the two models generate a near optimal performance. However, the two 

models over-provision resources in both Scenario 3 and Scenario 4 especially in the cases 

where the job deadlines are large. The reason is that when we built the training dataset for 

resource estimation, we run all the VMs in the tests. One rationale was that we consider 

the worst cases in resource provisioning to make sure all the user job deadlines would be 

met. However, the overhead incurred in running all the VMs was high and included in 

resource provisioning for all the jobs. As a result, for jobs with large deadlines, both 

models overestimate the overhead of the VMs involved. Therefore, both models over-

provision the amounts of resources for jobs with large deadlines which can be completed 

using a small number of VMs instead of all the VMs. 

 

Figure 4.17: Resource provisioning in Scenario 3. 

It is worth noting that all the job deadlines are met in the 4 scenarios except the last job 

deadline in Scenario 4 where t=350. This could be caused by the communication 

overhead incurred among the VMs running across the two server machines. Although 

both the improved HP model and the HP model include communication overhead in 
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resource provisioning when the training dataset was built, they only consider static 

communication overhead. It can be expected that the communication overhead varies 

from time to time due to the dynamic nature of a communication network. 

 

Figure 4.18: Resource provisioning in Scenario 4. 

Table 4.7 summarizes the resources estimated by both the HP model and the improved 

HP model in the 4 scenarios. It can be observed that the HP model recommends more 

resources in terms of map slots, especially in Scenario 3. This is because the HP model 

largely considers the map slots in resource provisioning. As a result, the jobs following 

the HP model are completed quicker than the jobs following the improved HP model but 

with larger gaps from the given deadlines. Therefore, the improved HP model is more 

economical than the HP model in resource provisioning due to its recommendations of 

less map slots. 
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Table 4.7: The amounts of resources estimated by the HP model and the improved HP model. 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Deadlines 

HP 

model        

(m, r) 

Improved  

HP model 

(m, r) 

HP 

model        

(m, r) 

Improved  

HP model 

(m, r) 

HP 

model        

(m, r) 

Improved  

HP model 

(m, r) 

HP 

model        

(m, r) 

Improved  

HP model 

(m, r) 

920 (5,1) (4,4) (8,2) (6,5) (18,4) (11,5) (20,5) (19,5) 

750 (5,2) (5,5) (9,3) (7,6) (22,5) (12,6) (24,6) (23,6) 

590 (7,2) (6,6) (12,4) (9,8) (28,5) (16,8) (30,6) (29,8) 

500 (8,2) (7,7) (14,4) (10,9) (33,6) (19,9) (36,7) (34,10) 

450 (9,3) (8,8) (15,5) (11,10) (37,7) (21,10) (40,8) (39,10) 

390 (10,3) (9,9) (18,5) (13,11) (42,8) (24,12) (46,9) (44,11) 

350 (11,3) (10,10) (20,6) (14,13) (47,9) (27,13) (51,10) (49,13) 

 

4.6   Related Work 

Hadoop performance modeling is an emerging topic that deals with job optimization, 

scheduling, estimation and resource provisioning. Recently this topic has received a great 

attention from the research community and a number of models have been proposed. 

Morton et al. proposed the parallax model [24] and later the ParaTimer model [25] that 

estimates the performance of the Pig parallel queries, which can be translated into series 

of MapReduce jobs. They use debug runs of the same query on input data samples to 

predict the relative progress of the map and reduce phases. This work is based on 

simplified suppositions that the durations of the map tasks and the reduce tasks are the 

same for a MapReduce application. However, in reality, the durations of the map tasks 

and the reduce tasks cannot be the same because the durations of these tasks are 

depended on a number of factors. More importantly, the durations of the reduce tasks in 

overlapping and non-overlapping stages are very different. Ganapathi et al. [26] 

employed a multivariate Kernel Canonical Correlation Analysis (KCCA) regression 

technique to predict the performance of Hive query. However, their intention was to 

show the applicability of KCCA technique in the context of MapReduce.   
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Kadirvel et al. [27] proposed Machine Learning (ML) techniques to predict the 

performance of Hadoop jobs. However, this work does not have a comprehensive 

mathematical model for job estimation. Lin et al. [11] proposed a cost vector which 

contains the cost of disk I/O, network traffic, computational complexity, CPU and 

internal sort. The cost vector is used to estimate the execution durations of the map and 

reduce tasks. It is challenging to accurately estimate the cost of these factors in a situation 

where multiple tasks compete for resources. Furthermore, this work is only evaluated to 

estimate the execution times of the map tasks and no estimations on reduce tasks are 

presented. The later work [12] considers resource contention and tasks failure situations. 

A simulator is employed to evaluate the effectiveness of the model. However, simulator 

base approaches are potentially error-prone because it is challenging to design an 

accurate simulator that can comprehensively simulate the internal dynamics of complex 

MapReduce applications. 

 Virajith et al. [13] proposed a system called Bazaar that predicts Hadoop job 

performance and provisions resources in term of VMs to satisfy user requirements. The 

work presented in [14] uses the Principle Component Analysis technique to optimize 

Hadoop jobs based on various configuration parameters. However, these models leave 

out both the overlapping and non-overlapping stages of the shuffle phase.  

There is body of work that focuses on optimal resource provisioning for Hadoop jobs. 

Tian et al. [28] proposed a cost model that estimates the performance of a job and 

provisions the resources for the job using a simple regression technique. Chen et al. [18] 

further improved the cost model and proposed CRESP which employs the brute-force 

search technique for provisioning the optimal cluster resources in term of map slots and 

reduce slots for Hadoop jobs. The proposed cost model is able to predict the performance 

of a job and provisions the resources needed. However, in the two models , the number of 

reduce tasks have to be equal to the number of reduce slots which means that these two 

models only consider a single wave of the reduce phase. It is arguable that a Hadoop job 

performs better when multiple waves of the reduce phase are used in comparison with the 

use of a single, especially in situations where a small amount of resources is available but 
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processing a large dataset. Lama et al. [29] proposed AROMA, a system that 

automatically provisions the optimal resources and optimizes the configuration 

parameters of Hadoop for a job to achieve the service level objectives. AROMA uses 

clustering techniques to group the jobs with similar behaviors. AROMA uses Support 

Vector Machine to predict the performance of a Hadoop job and uses a pattern search 

technique to find the optimal set of resources for a job to achieve the required deadline 

with a minimum cost. However, AROMA cannot predict the performance of a Hadoop 

job whose resource utilization pattern is different from any previous ones. More 

importantly, AROMA does not provide a comprehensive mathematical model to estimate 

a job execution time as well as optimal configuration parameter values of Hadoop. 

There are a few other sophisticated models such as [15][16][17][30] that are similar to the 

improve HP model in the sense that they use the previous executed job profiles for 

performance prediction. Herodotou et al. proposed Starfish [15] which collects the past 

executed jobs profile information at a fine granularity for job estimation and automatic 

optimization. On the top of the Starfish, Herodotou et al. proposed Elasticiser [16] which 

provisions a Hadoop cluster resources in term of VMs. However, collecting detailed job 

profile information with a large set of metrics generates an extra overhead, especially for 

CPU-intensive applications. As a result, Starfish overestimate the execution time of a 

Hadoop job.  Verma  et al. [30] presented the ARIA model for job execution estimations 

and resource provisioning. The HP model [17] extends the ARIA mode by adding scaling 

factors to estimate the job execution time on larger datasets using a simple linear 

regression. The work presented in [31] divides the map phase and reduce phase into six 

generic sub-phases (i.e. read, collect, spill, merge, shuffle and write), and uses a 

regression technique to estimate the durations of these sub-phases. The estimated values 

are then used in the analytical model presented in [30] to estimate the overall job 

execution time. In [32], Zhang et al. employed the bound-based approach [30] in 

heterogeneous Hadoop cluster environments.  

It should be pointed out that the aforementioned models are limited to the case that they 

only consider a constant number of the reduce tasks. As a result, the impact of the 
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number of reduce tasks on the performance of a Hadoop job is ignored. The improved HP 

model considers a varied number of reduce tasks and employs a sophisticated LWLR 

technique to estimate the overall execution time of a Hadoop job. 

4.7    Summary 

This chapter proposed an improved HP model. The improved HP model mathematically 

modeled three core phases i.e. map phase, shuffle phase and reduce phase included 

overlapping and non-overlapping stages of a Hadoop job. The proposed model employed 

LWLR to estimates execution duration of a job that takes into account a varied number of 

reduce tasks The LWLR model was validated through 10-fold cross-validation technique 

and its goodness of fit was assessed using R-Squared. For resources provisioning, the 

model applied Lagrange Multiplier technique to provision right amount of resources for a 

job to be completed within a given deadline. The performance of the improved HP model 

in resource provisioning was evaluated in 4 scenarios. The intention was to extensively 

analyzed the performance of a Hadoop cluster in resource utilization with varied number 

of map slots and reduce slots.  The performance of the improved HP model was 

intensively evaluated on both an in-house Hadoop cluster and on the EC2 Cloud. The 

experimental results have shown that the improved HP model outperforms both the 

Starfish and the HP model in job execution estimation. Both the HP model and the 

improved HP model provisioned resources for Hadoop jobs with deadline requirements. 

However, the improved HP model was more economical in resource provisioning than 

the HP model.  
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Chapter 5  

Optimizing Hadoop Configuration Parameter 

Settings for Enhanced Performance  
 

Hadoop MapReduce has become a major computing technology in support of big data 

analytics. The Hadoop framework has over 190 configuration parameters and some of 

them can have a significant effect on the performance of a Hadoop job. Manually tuning 

the optimum or near optimum values of these parameters is a challenging task and also a 

time consuming process. This chapter optimizes the performance of Hadoop by 

automatically tuning its configuration parameter settings. The proposed work first 

employs Gene Expression Programming technique to build an objective function based 

on historical job running records, which represents a correlation among the Hadoop 

configuration parameters. It then employs Particle Swarm Optimization technique which 

makes use of the objective function to search for optimal or near optimal parameter 

settings. Experimental results show that the proposed work enhances the performance of 

Hadoop significantly compared with the default settings. Moreover, it outperforms both 

Rule-Of-Thumb settings and the Starfish model in Hadoop performance optimization.  

5.1 Introduction  

Many organizations are continuously collecting massive amounts of datasets from 

various sources such as the World Wide Web, sensor networks and social networks. The 

ability to perform scalable and timely analytics on these unstructured datasets is a high 

priority for many enterprises. It has become difficult for traditional database systems to 

process these continuously growing datasets. Hadoop MapReduce has become a major 

computing technology in support of big data analytics [1] [2]. Hadoop has received a 

wide uptake from the community due to its remarkable features such as high scalability, 

fault-tolerance and data parallelization. It automatically distributes data and parallelizes 

computation across a cluster of computer nodes [3]–[7].  
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 Despite these remarkable features, Hadoop is a large and complex framework which has 

a number of components that interact with each other across multiple computer nodes. 

The performance of a Hadoop job is sensitive to each component of the Hadoop 

framework including the underlying hardware, network infrastructure and Hadoop 

configuration parameters which are over 190. Recent researches show that the parameter 

settings of the Hadoop framework play a critical role in the performance of Hadoop. A 

small change in the configuration parameter settings can have a significant impact on the 

performance of a Hadoop job [8]. Manually tuning the optimum or near optimum values 

of these parameters is a challenging task and also a time consuming process. In addition, 

the Hadoop framework has a black box like feature which makes it extremely difficult to 

find a mathematical model or an objective function which represents a correlation among 

the parameters. The large parameter space together with the complex correlations among 

the configuration parameters further increases the complexity of a manual tuning process. 

Therefore, an effective and automatic approach to tuning Hadoop parameters has become 

a necessity.      

A number of research works have been proposed to automatically tune Hadoop parameter 

settings. The Rule-Of-Thumb (ROT) proposed by industrial professionals [9][10][11] is 

just a common practice to tune Hadoop parameter settings. The Starfish optimizer 

[12][13] optimizes the performance of a Hadoop job based on the job profile and a cost 

model [14]. The job profile is collected at a fine granularity with detailed information. 

However, collecting the detailed execution profile of a job incurs a high overhead which 

overestimates the values for some configuration parameters. Moreover, the Starfish 

optimizer divides the search space into subspaces in the optimization process which 

ignores the correlations among the configuration parameters. PPABS [15] automatically 

tunes Hadoop parameter settings based on the executed job profiles. PPABS employs K-

means++ to classify the jobs into equivalent classes. It applies Simulated Annealing to 

search for optimum parameter values and implements a pattern recognition technique to 

determine the class that a new job belongs to. However, PPABS is unable to tune the 

parameter settings for a new job which does not belong to any of the pre-classified 
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classes. Gunther, a search based system proposed in [16] automatically searches for 

optimum parameter values for the configuration parameters using Genetic Algorithm. 

One critical limitation of Gunther is that it does not have a fitness function in the 

implemented Genetic Algorithm. Gunther evaluates the fitness of a set of parameter 

values by running a Hadoop job physically which is a time consuming process. Panacea 

[17] optimizes Hadoop applications based on a process of tuning the configuration 

parameter settings. Similar to Starfish, Panacea also divides the search space into 

subspaces and then searches for optimal values within pre-defined ranges. The work 

presented in [18] proposes a performance evaluation model which focuses on the impact 

of the Hadoop configuration settings from the aspects of hardware, software and network.   

Tuning the configuration parameters of Hadoop requires the knowledge of the internal 

dynamics of the Hadoop framework and the inter-dependencies among its configuration 

parameters. This is because the value of one parameter can have a significant impact on 

the other parameters. It should be pointed out that none of the aforementioned works 

considers the inter-dependencies among Hadoop configuration parameters. In this paper, 

we optimize the performance of Hadoop by automatically tuning its configuration 

parameter settings. The major contributions of this chapter are as follows: 

 Based on the running records of Hadoop jobs which can be either CPU intensive 

or IO intensive, we employ Gene Expression Programming technique (GEP) to 

build an objective function which represents a correlation among the Hadoop 

configuration parameters. To the best of our knowledge, this is the first work that 

mathematically describes the inter-dependencies among the Hadoop configuration 

parameters when tuning the performance of Hadoop.  

 

 For the purpose of configuration parameter optimization, Particle Swarm 

Optimization (PSO) [19], [20] is employed that makes use of the GEP constructed 

objective function to search for a set of optimal or near optimal values of the 

configuration parameters. Unlike other optimization works that divide the search 

space into subspaces, the implemented PSO considers the whole search space in 
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the optimization process in order to maintain the inter-dependencies among the 

configuration parameters.    

To evaluate the performance of the proposed work, we run two typical Hadoop 

MapReduce applications, i.e. WordCount and Sort which are CPU and IO intensive 

respectively. The performance of the proposed work is initially evaluated on an 

experimental Hadoop cluster configured with 8 Virtual Machines (VMs) and 

subsequently on another Hadoop cluster configured with 16 VMs. The experimental 

results show that the proposed work enhances the performance of Hadoop by on average 

67% on the WordCount application and 46% on the Sort application respectively 

compared with its default settings. The proposed work also outperforms both ROT and 

the Starfish model in Hadoop performance optimization.  

5.2 Hadoop Core Parameters 

The Hadoop framework has more than 190 tunable configuration parameters that 

allow users to manage the flow of a Hadoop job in different phases during the execution 

process. Some of them are core parameters and have a significant impact on the 

performance of a Hadoop job [12][16]. The core parameters are briefly presented in 

Table 5.1.  

Table 5.1: Hadoop core configuration parameters 

Configuration Parameters  Default Values Brief Descriptions 

io.sort.factor 10 
The number of streams that can be merged while 

sorting. 

io.sort.mb 100 The size of the in-memory buffer assigned to each 

task.
 

io.sort.spill.percent 0.8 A threshold which determines when to start the spill 

process, transferring the in-memory data into the hard 

disk. 

mapred.reduce.tasks 1 The number of reduce task(s) configured for a Hadoop 

job. 

mapreduce.tasktracker. 2 The number of map slots configured on each worker 
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map.tasks.maximum node. 

mapreduce.tasktracker. 

reduce.tasks.maximum 

2 The number of reduce slots configured on each worker 

node. 

mapred.child.java.opts 200 The maximum size of the physical memory of JVM 

for each task. 

mapreduce.reduce.shuffle.input.

buffer.percent 

0.70 The amount of memory in percentage assigned to a 

reducer to store map results during the shuffle process. 

mapred.reduce.parallel.copies 5 The number of parallel data transfers running in the 

reduce phase. 

mapred.compress.map.output False Compression of map task outputs. 

mapred.output.compress False Compression of reduce task outputs. 

io.sort.factor: This parameter determines the number of files (streams) to be merged 

during the sorting process of map tasks. The default value is 10, but increasing its value 

improves the utilization of the physical memory and reduces the overhead in IO 

operations.  

io.sort.mb: During a job execution, the output of a map task is not directly written into 

the hard disk but is written into an in-memory buffer which is assigned to each map task. 

The size of the in-memory buffer is specified through the io.sort.mb parameter. The 

default value of this parameter is 100MB. The recommended value for this parameter is 

between 30% and 40% of the Java_Opts value and should be larger than the output size 

of a map task which minimizes the number of spill records [11].   

io.sort.spill.percent: The default value of this parameter is 0.8 (80%). When an in-

memory buffer is filled up to 80%, the data of the in-memory buffer (io.sort.mb) should 

be spilled into the hard disk. It is recommended that the value of io.sort.spill.percent 

should not be less than 0.50. 

mapred.reduce.tasks: This parameter can have a significant impact on the performance 

of a Hadoop job [21]. The default value is 1. The optimum value of this parameter is 

mainly dependent on the size of an input dataset and the number of reduce slots 

configured in a Hadoop cluster. Setting a small number of reduce tasks for a job 
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decreases the overhead in setting up tasks on a small input dataset while setting a large 

number of reduce tasks improves the hard disk IO utilization on a large input dataset. The 

recommended number of reduce tasks is 90% of the total number of reduce slots 

configured in a cluster [8].  

mapreduce.tasktracker.map.tasks.maximum, 

mapreduce.tasktracker.reduce.tasks.maximum:  

These parameters define the number of the map and reduce tasks that can be executed 

simultaneously on each cluster node. Increasing the values of these parameters increases 

the utilization of CPUs and physical memory of the cluster node which can improve the 

performance of a Hadoop job. The optimum values of these parameters are dependent on 

the number of CPUs, the number of cores in each CPU, multi-threading capability and 

the computational complexity of a job. The recommended values for these parameters are 

the number of CPU cores minus 1 as long as the cluster node has sufficient physical 

memory [9], [11]. One CPU is reserved for other services in Hadoop such as DataNode 

and TaskTracker.  

mapred.child.java.opts: This is a memory related parameter and the main candidate for 

JVM tuning. The default value is –Xmx200m which gives at most 200MB physical 

memory to each child task. Increasing the value of Java_Opt reduces spill operations to 

output map results into the hard disk which can improve the performance of a job. By 

default, each work node utilizes 2.8GB physical memory [11]. The worker node assigns 

400MB to the map phase (i.e. 2 map slots), 400MB to the reduce phase (i.e. 2 reduce 

slots) and 1000MB to each DataNode and TaskTracker that run on the worker node.  

mapred.compress.map.output, mapred.output.compress:  

These two parameters are related to the hard disk IO and network data transfer 

operations. Boolean values are used to determine whether or not the map output and the 

reduce output need to be compressed. Enabling the compression of the map and reduce 
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outputs for a job can speed up the hard disk IO and minimize the overhead in data 

shuffling across the network.  

5.3  Mining Hadoop Parameter Correlations with GEP 

GEP [22] is a new type of Evolutionary Algorithm (EA) [23]. It is developed based on a 

similar idea to Genetic Algorithms (GA) [24] and Genetic Programming (GP) [25]. Using 

a special format of the solution representation structure, GEP overcomes some limitations 

of both GA and GP. GEP brings a significant improvement on problems such as 

combinatorial optimization, classification, time series prediction, parametric regression 

and symbolic regression. GEP has been applied to a variety of domains such as data 

analysis in high energy physics, traffic engineering for IP networks, designing electronic 

circuits, and evolving classification rules. It has also been applied to data mining field 

especially for the investigation of an internal correlation among the involved parameters.  

GEP uses a chromosome and expression tree combined structure [22] to represent a 

targeted problem being investigated. The factors of the targeted problem are encoded into 

a linear chromosome format together with some potential functions which can be used to 

describe a correlation of the factors. Each chromosome generates an expression tree, and 

the chromosomes containing these factors are evolved during the evolutionary process.     

5.3.1   GEP Design 
 

The execution time of a Hadoop job can be expressed in Eq.(5.1) where 𝑥0, 𝑥1, … , 𝑥𝑛 are 

the configuration parameters of Hadoop.   

 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 𝑓(𝑥0, 𝑥1, … , 𝑥𝑛)       (5.1) 

 

 

In this work, we consider 10 core parameters of Hadoop as listed in Table 5.2. 
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Table 5.2: Hadoop core configuration parameters in GEP. 

GEP 

Variables 
Hadoop Configuration Parameters 

 

Data Types 

𝑥0 io.sort.factor integer 

𝑥1 io.sort.mb
 

integer 

𝑥2 io.sort.spill.percent float 

𝑥3 mapred.reduce.tasks integer 

𝑥4 mapreduce.tasktracker.map. tasks.maximum integer 

𝑥5 mapreduce.tasktracker.reduce.tasks.maximum integer 

𝑥6 mapred.child.java.opts  integer 

𝑥7 mapreduce.reduce.shuffle.input.buffer.percent float 

𝑥8 mapred.reduce.parallel.copies  integer 

𝑥9 input dataset size (GB) integer 

Based on the data types of these Hadoop configuration parameters, the mathematic 

functions shown in Table 5.3 are used in GEP.  A correlation of the Hadoop parameters 

can be represented by a combination of these mathematical functions. Fig.5.1 shows an 

example of mining a correlation of 2 parameters (𝑥0 and 𝑥1) which is conducted in the 

following steps in GEP: 

 Based on the data types of 𝑥0 and  𝑥1, find a mathematical function which has the 

same input data type as either 𝑥0 or  𝑥1 and has 2 input parameters. 

 Calculate the estimated execution time of the selected mathematical function 

using the parameter setting samples. 

 Find the best mathematical function between 𝑥0  and 𝑥1  which produces the 

closest estimated execution time to the actual execution time. In this case, the 

Plus function is selected. 
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Table 5.3: Mathematic functions used in GEP. 

Functions Function Descriptions Input Data Types 

Plus f(a,b)= a + b integer or float 

Minus f(a,b)= a – b
 

integer or float
 

multiply f(a,b)= a * b integer or float 

Divide f(a,b)= a / b integer or float 

Sin f(a)= sin(a) integer or float 

Cos f(a)= cos(a) integer or float 

Tan f(a)= tan(a) integer or float 

Acos f(a)= acos(a) integer or float 

Asin f(a)= asin(a) integer or float 

Atan f(a)= atan(a) integer or float 

Exp f(a) returns the exponential 𝑒𝑎 integer or float 

Log f(a)= log(a) positive integer or float 

log10 f(a) returns the (base-10) logarithm of 

a  

positive integer or float 

Pow f(a,b) returns base a raised to the 

power exponent b 

integer or float 

Sqrt f(a)= sqrt(x) positive integer or float 

Fmod f(a,b) returns the floating-point 

remainder of a/b (rounded towards 

zero)  

integer or float 

pow10 f(a) returns base 10 raised to the power 

exponent a 

integer or float 

Inv f(a)= 1/a integer or float 

Abs f(a) returns absolute value of parameter 

a 

integer  

Neg f(a)= -a; integer or float 
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Figure 5.1: An example of parameter correlation mining. 

Similarly, a correlation of 𝑥0, 𝑥1, … , 𝑥𝑛  can be mined using the GEP method. The 

chromosome and expression tree structure of GEP is used to hold the parameters and 

mathematical functions. A combination of mathematical functions which takes 

𝑥0, 𝑥1, … , 𝑥𝑛   as inputs is encoded into a linear chromosome which is maintained and 

developed during the evolution process. Meanwhile, the expression tree generated from 

the linear chromosome produces a form of 𝑓(𝑥0, 𝑥1, … , 𝑥𝑛) based on which an estimated 

execution time is computed and compared with the actual execution time. A final form of  

𝑓(𝑥0, 𝑥1, … , 𝑥𝑛) will be produced at the end of the evolution process whose estimated 

execution time is the closest to the actual execution time. 

In GEP, a chromosome can consist of one or more genes. For simplicity in computation, 

each chromosome has only one gene in this work. A gene is composed of a head and a 

tail. The elements of the head are selected randomly from the set of Hadoop parameters 

(listed in Table 5.2) and the set of mathematical functions (listed in Table 5.3). However, 

the elements of the tail are selected only from the Hadoop parameter set. The length of a 

gene head is set to 20 which cover all the possible combinations of the mathematical 

functions. The length of a gene tail can be computed using Eq.(5.2). 

 

Correlation mining 

 0   ?   1 

 0  1 

 0   1 

parameter 

setting samples 

mathematical 

functions 
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𝐿𝑒𝑛𝑔𝑡ℎ(𝐺𝑒𝑛𝑒𝑇𝑎𝑖𝑙) = 𝐿𝑒𝑛𝑔𝑡ℎ(𝐺𝑒𝑛𝑒𝐻𝑒𝑎𝑑) × (𝑛 − 1)  1     (5.2) 

Where n is the number of input arguments of a mathematical function which has the most 

number of input arguments among the functions. Fig.5.2 shows an example of a 

chromosome and expression tree structure taking into account 5 parameters - 

𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4 . 

In Fig.5.2, the size of the gene head is 4 and n is 2. Then the size of the gene tail is 5 

based on Eq.(5.2). Four mathematical functions ( ,−,/, 𝑝𝑜𝑤) are selected to represent a 

correlation of the parameters  𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4. As a result, a form of 𝑓(𝑥0, 𝑥1, … , 𝑥𝑛) is 

generated from the expression tree as illustrated in Eq.(5.3). 

𝑓(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑝𝑜𝑤(𝑥3, 𝑥4) − 𝑥0)  (𝑥1/𝑥2)      (5.3) 

 

+ - ÷ pow x0 x1 x2 x3 x4

chromosome

+

- ÷ 

pow x0
x1 x2

x3 x4

head tail

expression tree

 

Figure 5.2: An example of chromosome and expression tree structure. 
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In the following section, we present how the GEP method evolves in mining a correlation 

among the Hadoop configuration parameters. 

5.3.2    GEP Implementation 
 

Algorithm 5.1 shows the implementation of the GEP method. The input of the Algorithm 

5.1 is a set of Hadoop job running samples which are used as a training dataset. To build 

the training dataset, we conducted 320 experiments on a Hadoop cluster which is 

presented in Section 5.5. We run two typical Hadoop applications (i.e. WordCount and 

Sort) to process an input dataset of different sizes ranging from 5GB to 15GB. For each 

experiment, we manually tuned the configuration parameter values and run the two 

applications 3 times each and took an average of the execution times. A small portion of 

the training dataset is presented in Table 5.4. 

In Algorithm 5.1, Lines 1 to 5 initialize the first generation of 500 chromosomes which 

represent 500 possible correlations among the Hadoop parameters. Lines 8 to 29 

implement an evolution process in which a single loop represents a generation of the 

evolution process. For each chromosome, it is translated into an expression tree. Lines 11 

to 17 calculate the fitness value of a chromosome. For each training sample, GEP 

produces an estimated execution time of a Hadoop job and makes a comparison with the 

actual execution time of the job. If the difference is less than a pre-defined bias window, 

the fitness value of the current chromosome will be increased by 1. 
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Table 5.4: Training data samples 

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 Time (s) 

20 70 0.70 4 2 2 150 0.70 5 5 539 

40 83 0.80 15 3 2 170 0.79 5 5 493 

40 80 0.81 16 3 1 200 0.80 8 5 518 

50 75 0.73 14 3 2 210 0.85 4 5 510 

100 75 0.83 8 2 2 150 0.73 5 5 452 

120 65 0.85 8 1 1 150 0.75 5 5 540 

140 90 0.75 12 2 1 200 0.83 7 5 536 

200 66 0.85 12 2 2 160 0.75 5 5 464 

200 70 0.80 8 2 1 180 0.71 5 5 454 

150 100 0.85 6 1 1 200 0.74 2 5 585 

200 73 0.82 8 3 3 260 0.79 8 10 898 

200 66 0.85 12 2 2 160 0.75 5 10 857 

200 70 0.81 8 2 1 180 0.73 5 10 877 

150 100 0.85 6 1 1 200 0.78 2 10 1044 

230 75 0.84 7 2 1 190 0.65 5 10 869 

100 100 0.66 16 2 2 200 0.70 5 15 1387 

30 75 0.73 16 2 2 140 0.69 5 15 1336 

 

Input: A set of Hadoop job running samples; 

Output: A correlation of the Hadoop parameters; 

1:  FOR x=1 TO size of population DO  

2:      create chromosome(x) with the combination of mathematic function and parameter ; 

3:      fitness value(x) = 0 ; 

4:      x++; 

5:  ENDFOR 

6:  best chromosome = chromosome(1); 

7:  best fitness value = 0; 

8:  WHILE  i< termination generation number DO 

9:        FOR  x=1 TO size of population DO 

10:          Translate chromosome(x) into expression tree(x); 
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11:    FOR y=1 TO the number of training samples DO 

12:                   evaluate the estimated execution time for case(y) 

13:   IF ABS(timeDiff)< bias window THEN 

14:    fitness value(x)++; 

15:   ENDIF 

16:                            y++; 

17:    ENDFOR 

18:    IF fitness value(x) = the number of training samples THEN 

19:                  best chromosome = Chromosome(x) GOTO 29; 

20:                       ELSE IF fitness value(x) > best fitness value THEN 

21:                           best chromosome = Chromosome(x); 

22:                           best fitness value = fitness value(x) ; 

23:                      ENDIF 

24:        Apply replication, selection and genetic modification on chromosome(x)   

                    proportionally; 

25:       Use the modified chromosome(x) to overwrite the original one;   

26:             x++; 

27:        ENDFOR 

28:     i++; 

29:   ENDWHILE 

30:  Return best chromosome
 

Algorithm 5.1: GEP implementation. 

The size of the bias window is set to 50 seconds which allows a maximum of 10% of the 

error space taking into account the actual execution time of a Hadoop job sample. Line 18 

shows that the evolution process terminates in an ideal case when the fitness value is 

equal to the number of training samples. Otherwise, the evolution process continues and 

the chromosome with the best fitness value will be kept as shown in Lines 20 to 23.  At 

the end of each generation as shown in Lines 24 to 25, a genetic modification is applied 

to the current generation to generate variations of the chromosomes for the next 

generation.  
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We varied the number of generations from 20000 to 80000 in the GEP evolution process 

and found that the quality of a chromosome (the ratio of the fitness value to the number 

of training samples) was finally higher than 90%. As a result, we set 80000 as the number 

of generations. The genetic modification parameters were set using the classic values [22] 

as shown in Table 5.5. 

Table 5.5: GEP parameter settings 

Genetic modification parameters of GEP Values 

one-point recombination rate 30% 

insertion sequence transposition rate 10% 

inversion rate 10% 

mutation rate 0.44% 

 

 

After 80000 generations, GEP generates Eq.(5.4) which represents a correlation of the Hadoop 

parameters listed in Table 5.2. 

 

𝑓(𝑥0, 𝑥1, … , 𝑥9) = (𝑥7 ∗ 𝑥6)  (𝑠𝑞𝑟𝑡(1/((𝑙𝑜𝑔10(𝑥6)  𝑚𝑜𝑑 (𝑠𝑞𝑟𝑡((𝑥0 ∗ 𝑥8)  

(𝑥3 ∗ 𝑥1)), 𝑝𝑜𝑤𝑒𝑟(𝑥5, (𝑥2  𝑥1))))  (𝑥6  𝑥4))) ∗ (𝑥8  𝑥9))                                 (5.4) 

5.4 Hadoop Parameter Optimization with PSO 

In this section, we employ PSO to optimize Hadoop parameter settings. We use Eq.(5.4) 

generated by the GEP method in Section 5.3 as an objective function in PSO 

optimization.  

PSO is a kind of an evolutionary computational algorithm introduced by Eberhart and 

Kennedy in 1995. The algorithm is inspired by the social behaviors of bird flocking, fish 

schooling, and swarm theory [19][20]. PSO has been successfully applied in a wide range 

of problem domains due to its rapid convergence process towards an optimum solution 

[26]–[30]. In PSO, particles can be considered as agents that fly through a 

multidimensional search space and record the best solution that they have discovered. 

Each particle of the swarm adjusts its path according to its own flying experience and 
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also the flying experiences of its neighborhood particles in a multidimensional search 

space.  

Let 

 d  be the number of dimensions of a search space. In this work, d is set to 9 which 

represents the 9 Hadoop configuration parameters listed in Table 5.2. 

 n be the total number of particles in a swarm. 

 jiX , be the list of positions of the particle i  , ),......,,( ,3,2,1,, diiiiji xxxxX  , j is a 

dimension of the search space. 

 jiP ,  be a list of the locally best positions of the particle i , ),.....,,,( ,3,2,1,, diiiiji ppppP  . 

 jiV , be the velocity of the particle i , ),....,,,( ,3,2,1,, diiiiji vvvvV  . 

 G be the list of the globally best positions of a swarm, ),......,,( 21 dgggG  . 

 To implement the PSO algorithm, we first initialize the positions of the particles 

randomly within the bounds of the search space so that the search space is uniformly 

covered, while the velocities of the particles are initialized to zeros as suggested in [31]. 

Then the PSO algorithm updates the swarm by updating the velocity and position of each 

particle in every dimension using Eq.(5.5) and Eq.(5.6) respectively. 

),(22),,(11,
1

,
t

jixt
jgrct

jixt
jiprct

jivwt
jiv       (5.5) 
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jix                          (5.6) 

Where  

 
1r

and
2r

are cognitive and social randomization parameters respectively. They 

have random values between 0 and 1. 
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 
1c

and
2c are local and global weights respectively. They are acceleration 

constants. 

 w  is an inertia weight that balances the global and local search capabilities [32].  

 t is a relative time index. 

 1
,
t
jiv is the velocity of the particle i  at time step t+1. 

 t
jiv ,  is the velocity of the particle i at time step t. 

 t
jip , is the locally best position of the particle i  at time step t. 

 t
jix , is the current position of the particle i  at time step t. 

 t
jg is the globally best position visited by any particle at time step t . 

 1
,
t
jix is the new position of the particle i  at time step t+1. 

 

In each iteration, the new position of a particle is evaluated using the objective function 

𝑓(𝑥0, 𝑥1, … , 𝑥9) . The locally best
 
value is compared with the new fitness value and 

updated accordingly. Similarly, the globally best position is updated. 

 

In the PSO algorithm, clamping the velocity and position of a particle within a feasible 

search area is a challenging task. This task becomes even more complicated if the 

optimization problem has bounds. If the optimization problem has bounds then it is 

important to handle the particle positions along with the velocities flying out of the 

feasible area (i.e. out of boundary). In addition, it has been shown that as the number of 

problem parameters increases, the probability of the particles flying out of the feasible 

space increases dramatically [33], [34]. For this purpose, we employ the nearest method 

presented in [34] to handle bound violations. 

 

To handle bound violations of a particle, we define
min,j

v and max,jv  which represent a 

lower bound and an upper bound of the velocity of the particle respectively. Similarly, we 
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define min,j
x   and max,jx  representing a lower bound and an upper bound of the 

position of the particle respectively. The values of the lower bound and the upper bound 

of the position of a particle are set according to the range of each Hadoop parameter 

listed in Table 5.6. 

Table 5.6: Hadoop parameter setting in PSO. 

Hadoop 

Parameters 

Values Explanations 

𝑥0 10~230 Empirically. 

𝑥1 65~100 Based on the block size of an input dataset. We use 

64MB block size in Hadoop. 

𝑥2 0.6 ~0 .85 Empirically. 

𝑥3 1~16  Based on the total number of reduce slots configured 

in a Hadoop cluster. 

𝑥4 1~3 Based on the specification of a worker node. 

𝑥5 1~3 Based on the specification of a worker node. 

𝑥6 180~6000 Based on the physical memory of a worker node and 

the 𝑥1 value. 

𝑥7 0.70~0.85 Empirically. 

𝑥8 1~10 Empirically. 

𝑥9 The size of an input dataset in 

MB 

Specified by user. 

 

However, setting the values for the lower bound and the upper bound of the velocity of a 

particle is problem dependent and the values can be found empirically. We set the value 

of 
min,j

v to (-10%) of (
min,max, j

xjx  ) and the value of max,jv  to (+10%) of (

min,max, j
xjx  ). Each particle moves in a search space following the upper and lower 

bounds of its position and velocity. If any particle is roaming then its velocity and 

position values are set back to the nearest bound values. Algorithm 5.2 shows the PSO 

implementation.  
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It is worth pointing out that sometimes PSO can be trapped in a local optimum. This issue 

can be avoided by adjusting the inertia weight ( w ) factor used in Eq.(5.5). Instead of 

using a constant value for w , we use a dynamic inertia weight that linearly decreases in 

every iteration to overcome the local optima problem [32]. The dynamic inertia weight 

can be computed using Eq.(5.7).   

 

)()_/_( minmaxmax wwiterationstotaliterationcurrentww         (5.7) 

where minw = 0 and maxw =1. 

Input: The size of an input dataset in MB; 

Output: A set of PSO recommended Hadoop parameter settings; 

 

1.  Initialization process;  

2.  FOR each particle i=1 to the number of particles   DO 

3.     FOR each dimension j=1 to the number of dimensions   DO 

4.          Initialize randomly the position
jix ,
 within a search space ; 

5.          Initialize the velocity jiv , = 0; 

6.       ENDFOR 

7.      fitness_value = ),( jixf ; 

8.       IF ( fitness_value <locally_best_value) THEN 

9.              locally_best _value = fitness_value; 

10.            locally_best _position= jix , ; 

11.       ENDIF 

12.       IF ( fitness_value <globally_best_value) THEN 

13.             globally_best_value = fitness_value; 

14.             globally_best _position= jix , ; 

15.        ENDIF 

16.    ENDFOR  

17.    WHILE (iteration < the number of iterations) DO  
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18.       Compute the new velocity ( jiv , ) using Eq.(5) 

19.        IF ( jiv , < 
min,j

v ) THEN 

20.               jiv ,  = 
min,j

v ; 

21.        ELSE IF ( jiv , > max,jv ) THEN   

22.               jiv , = max,jv ; 

23.        ENDIF  

24.       Compute the new position (
jix ,
) using Eq.(6)  ; 

25.        IF ( jix , < 
min,j

x ) THEN 

26.                jix ,  = 
min,j

x ; 

27.         ELSE IF ( jix , > max,jx ) THEN   

28.                jix , = max,jx ; 

29.          ENDIF 

30.       Evaluate the new position on fitness function f ; 

31.       Update locally_best _position and globally_best _position ; 

32.   ENDWHILE  

33.   Output globally_best _position ;
 

Algorithm 5.2. PSO implementation. 

5.5  Performance Evaluation 

The performance of the proposed optimization work was initially evaluated on an 

experimental Hadoop cluster using a single Intel Xeon server machine configured with 8 

VMs and subsequently on another Hadoop cluster using 2 Intel Xeon Server machines 

configured with 16 VMs. The intuition of using 2 Hadoop clusters was to intensively 

evaluate the performance of the proposed work by considering the network overhead 

across the 2 server machines. In this section, we first give a brief introduction to the 

experimental environments that were set up in the evaluation process and then present 

performance evaluation results. 
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5.5.1    Experimental Setup 

We set up a Hadoop cluster using one Intel Xeon server machine. The specification of the 

server is shown in Table 5.7. We installed Oracle Virtual Box and configured 8 VMs on 

the server. Each VM was assigned with 4 CPU cores, 8GB RAM and 150GB hard disk 

storage. We installed Hadoop-1.2.1 and configured one VM as the Name Node and the 

remaining 7 VMs as Data Nodes. The Name Node was also used as a Data Node. The 

data block size of the HDFS was set to 64MB and the replication level of data block was 

set to 2.  

Table 5.7: Hadoop cluster setup. 

Intel Xeon Server 1 and 

Server 2 

CPU 40 cores 

Processor 2.27GHz 

Hard disk 2TB 

Connectivity 100Mbps Ethernet LAN 

Memory 128GB 

Software Operating System Ubuntu 12.04 TLS 

JDK 1.6 

Hadoop 1.2.1 

Oracle Virtual Box 4.2.8 

Starfish 0.3.0 

The second experimental Hadoop cluster was set up on 2 Intel Xeon server machines. 

The specification of second server machine was the same as the first server machine as 

shown in Table 5.7. The total number of VMs in the second Hadoop cluster was 16. The 

Hadoop-1.2.1 version was installed and we configured one VM as Name Node and the 

remaining 15 VMs as Data Nodes. The data block size of the HDFS was set to 64MB and 

the replication level of data block was set to 3. We run two typical Hadoop applications 

(i.e. WordCount and Sort) as Hadoop jobs. The TeraGen application of Hadoop was used 

to generate an input dataset of different sizes. 
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5.5.2 The Impact of Hadoop Parameters on Performance 

We run the WordCount application as a Hadoop job to evaluate the impacts of the 

configuration parameters listed in Table 5.1 on Hadoop performance.  From Fig.5.3 it can 

be observed that the execution time of the job decreases with an increasing size of the 

io.sort.mb value. The larger size the parameter value has, the less operations will be 

incurred in writing the spill records to the hard disk leading to a less overhead in output.    

 

Figure 5.3: The impact of the io.sort.mb parameter 

The io-sort-factor parameter determines the number of data streams that can be merged 

in the sorting process. Initially, the execution time of the job goes down with an 

increasing value of the parameter as shown in Fig.5.4 that the value of 200 represents the 

best value of the parameter. Subsequently, the execution time goes up when the value of 

the parameter further increases. This is because that there is a tradeoff between the 

reduced overhead incurred in IO operations when the value of the parameter increases 

and the added overhead incurred in merging the data streams. 
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Figure 5.4: The impact of the io-sort-factor parameter. 

Fig.5.5 shows the impact of the number of reduce tasks on the job performance. There is 

a tradeoff between the overhead incurred in setting up reduce tasks and the performance 

gain in utilizing resources. Initially increasing the number of reduce tasks better utilizes 

the available resources which leads to a decreased execution time. However, a large 

number of reduce tasks incurs a high overhead in the setting up process which leads to an 

increased execution time.  
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Figure 5.5: The impact of the number of reduce tasks. 

Increasing the number of map and reduce slots better utilizes available resources which 

leads to a decreased execution time which can be observed in Fig.5.6 when the number of 

slots increases from 1 to 2. However, resources might be over utilized when the number 

of slots further increases which slows down a job execution.  
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Figure 5.6: The impact of the number of map and reduce slots. 

Increasing the value of Java_opts parameter utilizes more memory which leads to a 

decreased execution time as shown in Fig.5.7. However, a large value of the parameter 

would over utilize the available memory space. In this case, the hard disk is used as a 

virtual memory which slows down a job execution. 
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Figure 5.7: The impact of the Java_opts parameter. 

. 

 Fig.5.8 shows the impact of the compression parameter on the performance of a Hadoop 

job. The results generated by map tasks or reduce tasks can be compressed to reduce the 

overhead in IO operations and data transfer across network which leads to a decreased 

execution time. It is worth noting that the performance gap between the case of using the 

compression feature and the case of using uncompressing feature gets large with an 

increasing size of the input data.  
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Figure 5.8: The impact of the compression parameter. 

5.5.3 PSO Setup 

The parameters used in the PSO algorithm are presented in Table 8. We set 20 for the 

particle swarm size and 100 for the number of iterations as suggested in the literature 

[35], [36]. The values of c1 and c2 were set to 1.4269 as proposed in [37],  the value of w 

was set dynamically between 0 and 1, and the values of r1 and r2 were selected randomly 

between 0 and 1 in every iteration. The PSO algorithm processes real number values 

while some of the Hadoop configuration parameters accept only integer number values 

(e.g. the number of map slots). We rounded the values of these PSO parameters to integer 

values. We set two configuration parameters which have a Boolean value (i.e. 

mapred.compress.map.output and mapred.out.compress) to True. This is because 

empirically we found that the True values of these two parameters showed a significant 

improvement on the performance of a Hadoop job as shown in Fig.5.8.  
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Table 5.8: PSO parameter settings. 

Swarm size 20 

No. of iterations 100 

c1 1.4269 

c2 1.4269 

W [0,1] 

r1 Random [0,1] 

r2 Random [0,1] 

 

Table 5.9 presents the PSO recommended configuration parameter settings for a Hadoop 

job with an input dataset of varied sizes ranging from 5GB to 20GB. 

Table 5.9: PSO recommend Hadoop parameter settings on 8 VMs. 

Configuration Parameters   Optimized Values 

input dataset (GB) 5 10 15 20 

io.sort.factor 230 228 213 155 

io.sort.mb 100 93 100 91 

io.sort.spill.percent 0.85 0.70 0.69 0.76 

mapred.reduce.tasks 16 9 10 9 

mapreduce.tasktracker.map. tasks.maximum 3 2 2 2 

mapreduce.tasktracker.reduce.tasks.maximum 3 2 2 2 

mapred.child.java.opts 280 335 420 553 

mapreduce.reduce.shuffle.input.buffer.percent 0.7 0.7 0.7 0.7 

mapred.reduce.parallel.copies 10 7 6 7 

mapred.compress.map. output True True True True 

mapred.output.compress True True True True 

 

5.5.4 Starfish Job Profile 

In order to collect a job profile for the Starfish optimizer, we first run both WordCount 

and Sort in the Starfish environment with profiler enabled. Both applications processed 

an input dataset of 5GB. Then the Starfish optimizer was invoked to generate 

configuration parameter settings. The recommended configuration parameter settings 
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recommended by Starfish for both applications are presented in Table 5.10 and Table 

5.11 respectively.       

Table 5.10: Starfish recommend parameter settings for the WordCount application on 8 VMs. 

Configuration Parameters Optimized Values 

input dataset (GB) 5  10  15  20  

io.sort.mb 117 129 128 120 

io.sort.factor 35 50 17 76 

mapred.reduce.tasks 32 128 176 192 

shuffle.input.buffer percentage 0.43 0.72 0.63 0.83 

min.num.spills.for.combine 3 3 3 3 

io.sort.spill.percent 0.86 0.85 0.79 .085 

io.sort.record.percent 0.23 0.33 0.33 0.31 

mapred.job.shuffle.merge.percent 0.86 0.85 0.83 0.69 

mapred.inmem.merge. threshold 660 816 827 765 

mapred.output.compress True True True True 

mapred.compress.map.output True True True True 

mapred.job.reduce. input.buffer.percent 0.42 0.43 0.60 0.77 

Table 5.11: Starfish recommend parameter settings for the Sort application on 8 VMs 

Configuration Parameters Optimized Values 

input dataset (GB) 5  10  15  20  

io.sort.mb 110 127 109 123 

io.sort.factor 48 35 54 27 

mapred.reduce.tasks 48 112 160 176 

shuffle.input.buffer percentage 0.76 0.66 0.63 0.88 

io.sort.spill.percent 0.84 0.68 0.87 0.82 

io.sort.record.percent 0.21 0.15 0.23 0.11 

mapred.job.shuffle.merge.percent 0.77 0.88 0.89 0.76 

mapred.inmem.merge. threshold 393 787 783 972 

mapred.output.compress True True True True 

mapred.compress.map.output True True True True 

mapred.job.reduce. input.buffer.percent 0.65 0.63 0.52 0.79 
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5.5.5    Experimental Results on Hadoop Performance 

In this section we compare the performance of the proposed work with that of Starfish, 

ROT and the default configuration parameter settings in Hadoop optimization. Both 

WordCount and Sort applications were deployed on the Hadoop cluster with 8 VMs to 

process an input dataset of 4 different sizes varying from 5GB to 20GB. We run both 

applications 3 times each using the PSO recommended parameter settings and an average 

of the execution times was taken. The performance results of the two applications are 

shown in Fig.5.9 and Fig.5.10 respectively.  

It can be observed that overall the implemented PSO improves the performance of the 

WordCount application by an average of 67% in the 4 input data scenarios compared 

with the default Hadoop parameter settings, 28% compared with Starfish and 26% 

compared with ROT. The improvement reaches a maximum of 71% when the input data 

size is 20GB. The performance improvement of the PSO optimization on the Sort 

application is on average 46% over the default Hadoop parameter settings, 16% over 

Starfish and 37% over ROT. The improvement reaches a maximum of 65% when the 

input data size is 20GB.   

 

Figure 5.9: The performance of the PSO optimized WordCount application using 8 VMs. 
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Figure 5.10: . The performance of the PSO optimized Sort application using 8 VMs. 

It should be pointed out that the implemented PSO algorithm considers both the 

underlying hardware resources and the size of an input dataset and then recommends 

configuration parameter settings for both applications. The ROT work only considers the 

underlying hardware resources (i.e. CPUs and physical memory) and ignores the size of 

an input dataset. The Starfish model also considers both the underlying hardware 

resources and the size of an input dataset. However, Starfish overestimates the number of 

reduce tasks. For example, Starfish recommended 192 reduce tasks for the WordCount 

application and 176 reduce tasks for the Sort application on a 20GB dataset. A large 

number of reduce tasks improves hard disk utilization through task parallelization but 

generates a high overhead in setting up these reduce tasks in Hadoop. ROT ignores the 

input dataset size, therefore, the recommended parameter settings of ROT are the same 

for all the input datasets as shown in Table 5.12. It is worth noting that ROT performs 

slightly better than Starfish on the WordCount application. This is because Starfish 

suggests a large number of reduce tasks which generates a high overhead in setting up 

these reduce tasks, especially in the case of using a small input dataset (e.g. 5GB). 

Whereas ROT suggests a small number of reduce tasks which are completed in a single 
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wave generating a low overhead in setting up the reduce tasks. ROT estimates the 

number of reduce tasks based on the total number of reduce slots configured in the 

Hadoop cluster.  

Table 5.12: ROT recommend parameter settings on 8 VMs. 

Configuration Parameter name Value 

io.sort.factor 25 

io.sort.mb 250  

io.sort.spill.percent 0.8 

mapred.reduce.Tasks 14 

mapreduce.tasktracker.map. tasks.maximum 3 

mapreduce.tasktracker.reduce.tasks.maximum 3 

mapred.child.java.opts 600  

mapreduce.job.shuffle.input.buffer.percent 0.7 

mapred.reduce.parallel.copies 20  

mapred.compress.map. output True 

mapred.output.compress False 

We have further evaluated the performance of the PSO optimization work on another 

Hadoop cluster configured with 16 VMs. From Fig.5.11 and Fig.5.12 it can be observed 

that the PSO work improves the performance of both applications on average by 65% and 

86% compared with ROT and the default Hadoop settings respectively. The improvement 

reaches a maximum of 87% when the input data size is 35GB on the WordCount 

application. The performance gains of the PSO work over the Starfish model on the 

WordCount application and the Sort application are on average 20% and 21 % 

respectively. It is worth noting that the Starfish model performs better than ROT in the 

case of using 16 VMs. In this case, a large dataset with a size varying from 25GB to 

40GB was used. ROT recommends False for the mapred.output.compress parameter (as 

shown in Table 5.12). As a result, both applications took a long time in the reduce phase 

when writing the reduce task outputs into the hard disk. For example, it took WordCount 

19 minutes to process the 40GB dataset in the map phase and 61 minutes in the reduce 

phase following the ROT recommended parameter settings. Whereas it took WordCount 
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13 minutes to process the same amount of data in the map phase and only 23 minutes in 

the reduce phase following the Starfish recommended parameter settings. This is because 

Starfish enabled the mapred.output.compress parameter which reduces the overhead in 

writing the reduce task outputs into the hard disk.            

 

Figure 5.11: The performance of PSO optimized WordCount application using 16 VMs. 
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Figure 5.12: The performance of the PSO optimized Sort application using 16 VMs. 

5.6   Related Work 

In recent years, numerous researches have been carried out to optimize the performance 

of Hadoop from different aspects. The methodologies of these studies are diverse and 

range from optimizing Hadoop job scheduling mechanisms to tuning the configuration 

parameter settings. For example, many researchers have focused on developing adaptive 

load balancing mechanisms [38]–[41]  and data locality algorithms [42]–[45]  to improve 

the performance of Hadoop.  

 A group of researchers have proposed optimization approaches for a particular type of 

jobs such as  short jobs and query based jobs [46]–[49]. Jahani et al. proposed the 

MANIMAL model [46] which automatically analyzes a Hadoop program using a static 

analyzer tool for optimization. However, the MANIMAL model only focuses on 

relational style programs employing the selection and projection operators and does not 

consider text-processing programs. Moreover, it only optimizes the map phase in 

Hadoop. Elmeleegy et al. presented Piranha [49], a system which optimizes short jobs 
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(i.e. query base jobs) by minimizing their response times. They suggested that fault-

tolerance facilities are not necessary for short running jobs because the jobs are small and 

they are unlikely to incur failures. The works presented in [47], [48] focus on optimizing 

short Hadoop jobs by enhancing tasks execution mechanisms. They optimized task 

initialization and termination stages by removing the constant heartbeat which is used for 

the tasks setup and cleanup process in Hadoop. They proposed a push-model for 

heartbeat communication to reduce delays between the JobTracker and a TaksTracker, 

and implemented an instance communication mechanism between the JobTraker and a 

TaskTracker in order to separate message communication from the heartbeat. 

Many researchers have also researched into resources provisioning for Hadoop jobs. 

Palanisamy et al. presented the Cura model [50] that allocates an optimum number of 

VMs to a user job. The model dynamically creates and destroys the VMs based on the 

user workload in order to minimize the overall cost of the VMs. Virajith et al. [51] 

proposed Bazaar that predicts Hadoop job performance and provisions the resources in 

term of VMs to satisfy user requirements. A model proposed in [52] optimizes Hadoop 

resource provisioning in the Cloud. The model employed a brute-force search to find 

optimum values for map slots and reduce slots over the resource configuration space. 

Tian et al. [53] proposed a cost model that estimates the performance of a Hadoop job 

and provisions the resources for the job using a simple regression technique. Chen et al. 

[54] further improved the cost model and proposed CRESP which employs a brute-force 

search technique for provisioning optimal resources in term of map slots and reduce slots 

for Hadoop jobs. Lama et al. [55] proposed AROMA, a system that automatically 

provisions the optimal resources of a job to achieve service level objectives. AROMA 

builds on a clustering technique to group the jobs with similar behaviors. It employed 

Support Vector Machine to predict the performance of a Hadoop job and a pattern search 

technique to find an optimal set of resources for a job to achieve the required deadline 

with a minimum cost. However, AROMA cannot predict the performance of a job whose 

resource utilization pattern is different from any previous ones. More importantly, 
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AROMA does not provide a comprehensive mathematical model to estimate a job 

execution time.   

There are a few other sophisticated models such as [12], [13], [15]–[17] that are similar 

to the proposed work in the sense that they optimize a Hadoop job by tuning the 

configuration parameter settings. Wu et al. proposed PPABS [15] which automatically 

tunes the Hadoop framework configuration parameter settings based on executed job 

profiles. The PPABS framework consists of Analyzer and Recognizer components. The 

Analyzer trains the PPABS to classify the jobs having similar performance into a set of 

equivalent classes. The Analyzer uses K-means++ to classify the jobs and Simulated 

Annealing to find optimal settings. The Recognizer classifies a new job into one of these 

equivalent classes using a pattern recognition technique. The Recognizer first runs the 

new job on a small dataset using default configuration settings and then applies the 

pattern recognition technique to classify it. Each class has the best configuration 

parameter settings. Once the Recognizer determines the class of a new job then it 

automatically uploads the best configuration settings for this job. However, PPABS is 

unable to find the fine-tuned configuration settings for a new job which does not belong 

to any of these equivalent classes. Moreover, PPABS does not consider the correlations 

among the configuration parameters. Herodotou et al. proposed Starfish [12], [13] that 

employs a mixture of cost model [14] and simulator to optimize a Hadoop job based on 

previously executed job profile information. Starfish divides the search space into 

subspaces. It considers the configuration parameters independently for optimization and 

combines the optimum configuration settings found in each subspace as a group of 

optimum configuration settings. Starfish collects the running job profile information at a 

fine-granularity for job estimation and automatic optimization. However, collecting 

detailed job profile information with a large set of metrics generates an extra overhead. 

As a result, the Starfish model is unable to accurately estimate the job execution time due 

to which it overestimates the values for some configuration parameters especially for the 

number of reduce tasks. As Starfish divides the configuration parameter space into 

subspaces which may ignore the correlations among the parameters. Liao et al. proposed 
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Gunther [16], a search based model that automatically tunes the configuration parameters 

using genetic algorithm. One critical limitation of Gunther is that it does not have a 

fitness function in the implemented genetic algorithm. The fitness of a set of parameter 

values is evaluated through physically running a Hadoop job using these parameters 

which is a time consuming process.  Liu et al. [17] proposed Panacea with two 

approaches to optimizing Hadoop applications. In the first approach, it optimizes the 

compiler at run time and a new API was developed on top of Soot [56] to reduce the 

overhead of iterative Hadoop applications. In the second approach, it optimizes a Hadoop 

application by tuning Hadoop configuration parameters. In this approach, it divides the 

parameters search space into sub-search spaces and then searches for optimum values by 

trying different values for parameters iteratively within the range. However, Panacea is 

unable to provide a sophisticated search technique and a mathematical function which 

represents a correlation of the Hadoop configuration parameters.  Li et al. [18] 

proposed a performance evaluation model for the whole system optimization of Hadoop. 

The model analyzes the hardware and software levels and explores the performance 

issues in these layers. The model mainly focuses on the impact of different configuration 

settings on a job performance instead of tuning the configuration parameters. 

5.7  Summary 

Hadoop framework has more than 190 configuration parameters and some of them can a 

have significant effect on the performance of a Hadoop job. Manually tuning of these 

parameters is a challenging task and also a time consuming process. This chapter 

optimizes the performance of a Hadoop job by automatically tuning its configuration 

parameter settings. The proposed work first employed GEP to build an objective function 

based on provided training dataset. The objective function represents the correlation 

among the parameters and also represents job execution duration. It then employed PSO 

which make use of the objective function to search a set of optimum or near optimum 

parameter settings. The advantage of the PSO algorithm over other algorithms on 

problem optimization is that the PSO is rapidly converging towards an optimum solution; 

however, sometimes it easily traps in local optima. This issue was avoided by using 
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dynamic inertia weight that linearly decreases in every iteration. The performance of the 

proposed model was extensively evaluated in comparison with the performance of default 

setting, the ROT settings and the Starfish model. The experimental results showed that 

the proposed model significantly enhanced the performance of a Hadoop job compared 

with default settings. Furthermore, the proposed model performed better than both the 

ROT and the Starfish model. 
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Chapter 6  

Conclusion and Future Work 

 

This chapter concludes the major contributions of the thesis. It also outlines potential 

opportunities to further improve or extend the work presented in the thesis.  

6.1 Conclusion  

To put it short, this thesis first evaluated the performance of Hadoop in parallelization of 

detrended fluctuation analysis algorithm for fast event detection on massive volumes of 

PMU data [1]. It then built a Hadoop performance model and employed LWLR for job 

execution estimation and Lagrange Multiplier for resource provisioning [2]. Finally, the 

thesis presented the research to enhance the performance of Hadoop by automatically 

tuning its configuration parameter settings.   

The PDFA was evaluated in comparison with the original sequential DFA from the 

aspects of accuracy, scalability and efficiency in computation. Experimental results have 

shown significant improvements of PDFA over DFA, especially the larger the dataset is, 

the better performance gain can be achieved using the parallel DFA. This work shows 

that the Hadoop framework is highly effective in support of data intensive applications, 

and it scales well with an increasing size of dataset. This work is one of the pioneering 

works in applying high performance computing techniques to smart grid for which big 

data has become a critical issue due to the rapid deployment of digital devices such as 

PMUs, smart meters etc. 

However, Hadoop only supports off-line data analytics. In this work, the PMU data was 

collected from the OpenPDC data concentrator and stored in the Hadoop file system 

(HDFS). A software agent was implemented for this purpose. It is worth noting that PMU 
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devices generate data in the form of streams. How to employ Hadoop to deal with online 

(real time) data analytics becomes a research issue which can be considered in the future 

work.  

The second work of the thesis was focused on Hadoop performance modeling. This work 

mathematically modeled the three core phases of a Hadoop job execution (i.e. the map 

phase, shuffle phase and reduce phase).  

It employed LWLR model for job execution estimation and Lagrange Multipliers 

technique for resources provisioning. The LWLR model generalization was validated 

through a 10-fold cross-validation and its goodness of fit was assessed using R-squared. 

The improved model works in an offline mode and considered a single Hadoop job 

without logical dependencies. The performance of the improved HP model was 

extensively evaluated on both an in-house Hadoop cluster and the Amazon EC2 Cloud. 

The performance was compared with both the HP model and the Starfish model and 

comparison results showed that the improve HP model outperforms both the HP model 

and the Starfish model. For resource provisioning, the improved model considered 4 

scenarios with a varied number of map slots and reduce slots. The experimental results 

showed that the improved HP model more cost-effective in resource provisioning than 

the HP model. 

The third research of the thesis was focused on Hadoop performance optimization by 

automatically tuning its configuration parameter settings. The Hadoop framework has 

more than 190 tunable configuration parameters that control the flow of a job execution. 

Some of them are critical to job performance i.e. a small change in one of the parameter 

values can have a huge impact on the performance of a job when the job runs on the same 

resources and processes the same amount of dataset. Manually tuning these parameters is 

a challenging task and also a time consuming process. Moreover, the large number of 

configuration parameters and the complex inter-connection among the parameters further 

increase the complexity of manual tuning process. This work employed GEP to build an 

objective function that represents the correlations among the configuration parameters. 
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This is a significant step in Hadoop performance optimization. To the best of our 

knowledge, this is the first work to find the dependencies among Hadoop parameters, 

albeit only 9 core parameters were considered in this work. Furthermore, PSO was 

employed to use the objective function to search for optimal or near optimal parameter 

settings. This work was initially evaluated on a single server machine with 8 VMs and 

subsequently on 2 server machines using 16 VMs. The performance of the proposed 

model was compared with default setting, ROT and Starfish model. The experimental 

results have shown that the presented work improve the performance of Hadoop 

significantly compared with the default settings. Furthermore, it performed better than 

both the ROT and the Starfish model. 

6.2 Future Work 

Although the contributions of the thesis are significant in modeling and optimizing 

Hadoop performance, a number of works can be explored for future considerations. For 

examples, the PDFA model collects online historian data from installed PMU through 

OpenPDC software and stream the data into HDFS. The OpenPDC collect the historian 

data in .d extension (compress format). The Hadoop MapReduce is unable to process a 

compressed dataset. Therefore, the PDFA model was manually converted .d format data 

into .csv format using the OpenPDC historian playback module. The manual process of 

the PDFA can be made automatic which further improve the competence of the PDFA.  

Similarly, the future work opportunities is exist in the improved HP model work, for 

examples,  

 The improved HP model only considers the three core phases i.e. map phase, 

shuffle phase and reduce phase.  These phases can be further divided into sub-

phases and then these sub-phases can be mathematically model accordingly. The 

fine granularity modeling of a job phases can further improve the performance of 

job modeling process.  
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 Currently the improved HP model only considers individual Hadoop job without 

logical dependencies. Modeling multiple Hadoop jobs with execution conditions 

would be a future work to further enhance the performance of the improved HP 

model. 

 Both the HP model and the improved HP model over-provision resources for a 

user jobs with large deadlines cases where VMs are configured with large number 

of both map slots and reduce slots. The reason of over-provisioning of resources 

is that both the models only consider static overhead of the VMs. Another future 

work in resources provisioning direction would be to consider dynamic overhead 

of the VMs involved in running the user jobs to minimize resource over-

provisioning. 

 The job optimization model presented in this thesis has built single objective function for 

both CPU-intensive jobs and I/O-intensive jobs. A future work in this direction could be 

to build multiple objective functions, one for each type of job (i.e. CPU-intensive, I/O-

intensive) and then classify the jobs into CPU-intensive and I/O-intensive classes. The 

classification can be performed based on the resources utilization. When a user submit a 

new job, first the job will run on a small dataset for a specific period of time and 

performance metric (i.e. CPU utilization, memory, disk I/O and network utilization) will 

be collected online (during execution of the job). The pattern recognition technique can 

be used to determine the equivalence class of the new job. Once the class of the new job 

is determined, the relevant objective function can be used to search a set of optimum 

values of the configuration parameter settings for the new job. K-mean technique can be 

used for the jobs classification purpose and dstate command can be used to collect online 

job performance metrics. Similar idea is presented in [3]. 
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