63 research outputs found

    Delay measurements In live 5G cellular network

    Get PDF
    Abstract. 5G Network has many important properties, including increased bandwidth, increased data throughput, high reliability, high network density, and low latency. This thesis concentrate on the low latency attribute of the 5G Standalone (SA) mode and 5G Non-Standalone (NSA) mode. One of the most critical considerations in 5G is to have low latency network for various delay-sensitive applications, such as remote diagnostics and surgery in healthcare, self-driven cars, industrial factory automation, and live audio productions in the music industry. Therefore, 5G employs various retransmission algorithms and techniques to meet the low latency standards, a new frame structure with multiple subcarrier spacing (SCS) and time slots, and a new cloud-native core. For the low latency measurements, a test setup is built. A video is sent from the 5G User Equipment (UE) to the multimedia server deployed in the University of Oulu 5G test Network (5GTN) edge server. The University of Oulu 5GTN is operating both in NSA and SA modes. Delay is measured both for the downlink and the uplink direction with Qosium tool. When calculating millisecond-level transmission delays, clock synchronization is essential. Therefore, Precision Time Protocol daemon (PTPd) service is initiated on both the sending and receiving machines. The tests comply with the specifications developed at the University of Oulu 5GTN for both the SA and the NSA mode. When the delay measurement findings were compared between the two deployment modes, it was observed that the comparison was not appropriate. The primary reason for this is that in the 5GTN, the NSA and the SA have entirely different data routing paths and configurations. Additionally, the author did not have sufficient resources to make the required architectural changes

    Utilization of cloud RAN architecture with eCPRI fronthaul in 5G network

    Get PDF
    With increased reliability, massive network capacity, and extremely reduced latency, 5G expands the mobile ecosystem into new realms. 5G impacts every industry and innovation, making transportation and conveyance safer, remote healthcare, accuracy agriculture, digitized logistics, and much more. In this age, 5G calls for new levels of flexibility and broadness in architecting, scaling, and deploying telecommunication networks, which need a further step ahead in technology and enter Cloud Technology. Cloud technology provides fascinating possibilities to complement the existing tried and tested technologies in the Radio Access Network (RAN) domain. Cloud RAN (CRAN) refers to relying on RAN functions over an inclusive platform instead of a purpose-built hardware platform. It represents a progression in wireless communication technology, leveraging the Common public radio interface (CPRI) standard, Dense Wavelength Division Multiplexing (DWDM) innovation, and millimeter wave (mmWave) propagation for extended-range signals. A CRAN network comprises of three fundamental elements. The initial element is the Distant Wireless Unit (DRU) or Remote Radio Component (RRH), utilized within a network to link wireless devices to entry points; these units are equipped with transceivers for transmitting and receiving signals. Next, a Baseband Unit (BBU) centre or hub serves as a centralized site functioning as a data processing hub. Separate BBU modules can be assembled independently or interconnected to distribute resources, adapting to the network's changing dynamics and needs. Communication among these modules boasts remarkably high bandwidth and exceptionally low latency. The BBU can be further segmented into DU (Distributed Unit) and CU (Centralized Unit). The third crucial component is a fronthaul or conveyance network – the connecting layer between a baseband unit (BBU) and a set of RRUs, utilizing optical fibres, cellular links, or mmWave communication. The goal of this thesis is to find a way to utilize the 5G RAN Architecture as efficiently as possible and for this purpose, Enhanced Common Public Radio Interface (eCPRI) or enhanced CPRI fronthaul is adopted instead of CPRI as it is a manner of splitting up the functions performed by baseband unit and putting some of that in the RRU so it can reduce the burden on the fibre. Enhanced CPRI makes it possible to send some data packets to a virtual Distributed Unit (vDU) and others to a virtual Centralized Unit (vCU) which results in reduced data traffic on fibre. The first part of this research paper focuses on considering and learning about the 5G Cloud RAN architecture's main components, some cloud RAN history, and important components included in the 5G Cloud RAN. In the second part, research goes in depth about the fronthaul gateway technology that is eCPRI structure, its functional split, its difference from CPRI in structure and functionality, and how it is enhanced and developed. Considering CRAN specifications, it will also include some eCPRI protocol delay management and timing studies. Finally, Test cases are developed that can authenticate the low latency and high throughput of data with eCPRI fronthaul in 5G Cloud RAN as compared to CPRI fronthaul. The inspiration behind this is to recreate the model with substantial changes that work with an ideal behaviour of a subsystem, with this a tool or an environment can be obtained that maximizes the efficiency of 5G CRAN. It will also permit network architects and designers to experiment with new features, which can reduce costs, save time, improve latency. It can also provide a tool to verification engineers that will help them to generate optimal replies of the system necessary for evaluating the practical realization of that system

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Ultra-Wideband Secure Communications and Direct RF Sampling Transceivers

    Get PDF
    Larger wireless device bandwidth results in new capabilities in terms of higher data rates and security. The 5G evolution is focus on exploiting larger bandwidths for higher though-puts. Interference and co-existence issues can also be addressed by the larger bandwidth in the 5G and 6G evolution. This dissertation introduces of a novel Ultra-wideband (UWB) Code Division Multiple Access (CDMA) technique to exploit the largest bandwidth available in the upcoming wireless connectivity scenarios. The dissertation addresses interference immunity, secure communication at the physical layer and longer distance communication due to increased receiver sensitivity. The dissertation presents the design, workflow, simulations, hardware prototypes and experimental measurements to demonstrate the benefits of wideband Code-Division-Multiple-Access. Specifically, a description of each of the hardware and software stages is presented along with simulations of different scenarios using a test-bench and open-field measurements. The measurements provided experimental validation carried out to demonstrate the interference mitigation capabilities. In addition, Direct RF sampling techniques are employed to handle the larger bandwidth and avoid analog components. Additionally, a transmit and receive chain is designed and implemented at 28 GHz to provide a proof-of-concept for future 5G applications. The proposed wideband transceiver is also used to demonstrate higher accuracy direction finding, as much as 10 times improvement

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    corecore