Utilization of cloud RAN architecture with eCPRI fronthaul in 5G network

Abstract

With increased reliability, massive network capacity, and extremely reduced latency, 5G expands the mobile ecosystem into new realms. 5G impacts every industry and innovation, making transportation and conveyance safer, remote healthcare, accuracy agriculture, digitized logistics, and much more. In this age, 5G calls for new levels of flexibility and broadness in architecting, scaling, and deploying telecommunication networks, which need a further step ahead in technology and enter Cloud Technology. Cloud technology provides fascinating possibilities to complement the existing tried and tested technologies in the Radio Access Network (RAN) domain. Cloud RAN (CRAN) refers to relying on RAN functions over an inclusive platform instead of a purpose-built hardware platform. It represents a progression in wireless communication technology, leveraging the Common public radio interface (CPRI) standard, Dense Wavelength Division Multiplexing (DWDM) innovation, and millimeter wave (mmWave) propagation for extended-range signals. A CRAN network comprises of three fundamental elements. The initial element is the Distant Wireless Unit (DRU) or Remote Radio Component (RRH), utilized within a network to link wireless devices to entry points; these units are equipped with transceivers for transmitting and receiving signals. Next, a Baseband Unit (BBU) centre or hub serves as a centralized site functioning as a data processing hub. Separate BBU modules can be assembled independently or interconnected to distribute resources, adapting to the network's changing dynamics and needs. Communication among these modules boasts remarkably high bandwidth and exceptionally low latency. The BBU can be further segmented into DU (Distributed Unit) and CU (Centralized Unit). The third crucial component is a fronthaul or conveyance network – the connecting layer between a baseband unit (BBU) and a set of RRUs, utilizing optical fibres, cellular links, or mmWave communication. The goal of this thesis is to find a way to utilize the 5G RAN Architecture as efficiently as possible and for this purpose, Enhanced Common Public Radio Interface (eCPRI) or enhanced CPRI fronthaul is adopted instead of CPRI as it is a manner of splitting up the functions performed by baseband unit and putting some of that in the RRU so it can reduce the burden on the fibre. Enhanced CPRI makes it possible to send some data packets to a virtual Distributed Unit (vDU) and others to a virtual Centralized Unit (vCU) which results in reduced data traffic on fibre. The first part of this research paper focuses on considering and learning about the 5G Cloud RAN architecture's main components, some cloud RAN history, and important components included in the 5G Cloud RAN. In the second part, research goes in depth about the fronthaul gateway technology that is eCPRI structure, its functional split, its difference from CPRI in structure and functionality, and how it is enhanced and developed. Considering CRAN specifications, it will also include some eCPRI protocol delay management and timing studies. Finally, Test cases are developed that can authenticate the low latency and high throughput of data with eCPRI fronthaul in 5G Cloud RAN as compared to CPRI fronthaul. The inspiration behind this is to recreate the model with substantial changes that work with an ideal behaviour of a subsystem, with this a tool or an environment can be obtained that maximizes the efficiency of 5G CRAN. It will also permit network architects and designers to experiment with new features, which can reduce costs, save time, improve latency. It can also provide a tool to verification engineers that will help them to generate optimal replies of the system necessary for evaluating the practical realization of that system

    Similar works