64 research outputs found

    Global Transition-based Non-projective Dependency Parsing

    Get PDF
    Shi, Huang, and Lee (2017) obtained state-of-the-art results for English and Chinese dependency parsing by combining dynamic-programming implementations of transition-based dependency parsers with a minimal set of bidirectional LSTM features. However, their results were limited to projective parsing. In this paper, we extend their approach to support non-projectivity by providing the first practical implementation of the MH_4 algorithm, an O(n4)O(n^4) mildly nonprojective dynamic-programming parser with very high coverage on non-projective treebanks. To make MH_4 compatible with minimal transition-based feature sets, we introduce a transition-based interpretation of it in which parser items are mapped to sequences of transitions. We thus obtain the first implementation of global decoding for non-projective transition-based parsing, and demonstrate empirically that it is more effective than its projective counterpart in parsing a number of highly non-projective languagesComment: Proceedings of ACL 2018. 13 page

    An Unsolicited Soliloquy on Dependency Parsing

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Abstract] This thesis presents work on dependency parsing covering two distinct lines of research. The first aims to develop efficient parsers so that they can be fast enough to parse large amounts of data while still maintaining decent accuracy. We investigate two techniques to achieve this. The first is a cognitively-inspired method and the second uses a model distillation method. The first technique proved to be utterly dismal, while the second was somewhat of a success. The second line of research presented in this thesis evaluates parsers. This is also done in two ways. We aim to evaluate what causes variation in parsing performance for different algorithms and also different treebanks. This evaluation is grounded in dependency displacements (the directed distance between a dependent and its head) and the subsequent distributions associated with algorithms and the distributions found in treebanks. This work sheds some light on the variation in performance for both different algorithms and different treebanks. And the second part of this area focuses on the utility of part-of-speech tags when used with parsing systems and questions the standard position of assuming that they might help but they certainly won’t hurt.[Resumen] Esta tesis presenta trabajo sobre análisis de dependencias que cubre dos líneas de investigación distintas. La primera tiene como objetivo desarrollar analizadores eficientes, de modo que sean suficientemente rápidos como para analizar grandes volúmenes de datos y, al mismo tiempo, sean suficientemente precisos. Investigamos dos métodos. El primero se basa en teorías cognitivas y el segundo usa una técnica de destilación. La primera técnica resultó un enorme fracaso, mientras que la segunda fue en cierto modo un ´éxito. La otra línea evalúa los analizadores sintácticos. Esto también se hace de dos maneras. Evaluamos la causa de la variación en el rendimiento de los analizadores para distintos algoritmos y corpus. Esta evaluación utiliza la diferencia entre las distribuciones del desplazamiento de arista (la distancia dirigida de las aristas) correspondientes a cada algoritmo y corpus. También evalúa la diferencia entre las distribuciones del desplazamiento de arista en los datos de entrenamiento y prueba. Este trabajo esclarece las variaciones en el rendimiento para algoritmos y corpus diferentes. La segunda parte de esta línea investiga la utilidad de las etiquetas gramaticales para los analizadores sintácticos.[Resumo] Esta tese presenta traballo sobre análise sintáctica, cubrindo dúas liñas de investigación. A primeira aspira a desenvolver analizadores eficientes, de maneira que sexan suficientemente rápidos para procesar grandes volumes de datos e á vez sexan precisos. Investigamos dous métodos. O primeiro baséase nunha teoría cognitiva, e o segundo usa unha técnica de destilación. O primeiro método foi un enorme fracaso, mentres que o segundo foi en certo modo un éxito. A outra liña avalúa os analizadores sintácticos. Esto tamén se fai de dúas maneiras. Avaliamos a causa da variación no rendemento dos analizadores para distintos algoritmos e corpus. Esta avaliaci´on usa a diferencia entre as distribucións do desprazamento de arista (a distancia dirixida das aristas) correspondentes aos algoritmos e aos corpus. Tamén avalía a diferencia entre as distribucións do desprazamento de arista nos datos de adestramento e proba. Este traballo esclarece as variacións no rendemento para algoritmos e corpus diferentes. A segunda parte desta liña investiga a utilidade das etiquetas gramaticais para os analizadores sintácticos.This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150) and from the Centro de Investigación de Galicia (CITIC) which is funded by the Xunta de Galicia and the European Union (ERDF - Galicia 2014-2020 Program) by grant ED431G 2019/01.Xunta de Galicia; ED431G 2019/0

    Neural Techniques for German Dependency Parsing

    Get PDF
    Syntactic parsing is the task of analyzing the structure of a sentence based on some predefined formal assumption. It is a key component in many natural language processing (NLP) pipelines and is of great benefit for natural language understanding (NLU) tasks such as information retrieval or sentiment analysis. Despite achieving very high results with neural network techniques, most syntactic parsing research pays attention to only a few prominent languages (such as English or Chinese) or language-agnostic settings. Thus, we still lack studies that focus on just one language and design specific parsing strategies for that language with regards to its linguistic properties. In this thesis, we take German as the language of interest and develop more accurate methods for German dependency parsing by combining state-of-the-art neural network methods with techniques that address the specific challenges posed by the language-specific properties of German. Compared to English, German has richer morphology, semi-free word order, and case syncretism. It is the combination of those characteristics that makes parsing German an interesting and challenging task. Because syntactic parsing is a task that requires many levels of language understanding, we propose to study and improve the knowledge of parsing models at each level in order to improve syntactic parsing for German. These levels are: (sub)word level, syntactic level, semantic level, and sentence level. At the (sub)word level, we look into a surge in out-of-vocabulary words in German data caused by compounding. We propose a new type of embeddings for compounds that is a compositional model of the embeddings of individual components. Our experiments show that character-based embeddings are superior to word and compound embeddings in dependency parsing, and compound embeddings only outperform word embeddings when the part-of-speech (POS) information is unavailable. Thus, we conclude that it is the morpho-syntactic information of unknown compounds, not the semantic one, that is crucial for parsing German. At the syntax level, we investigate challenges for local grammatical function labeler that are caused by case syncretism. In detail, we augment the grammatical function labeling component in a neural dependency parser that labels each head-dependent pair independently with a new labeler that includes a decision history, using Long Short-Term Memory networks (LSTMs). All our proposed models significantly outperformed the baseline on three languages: English, German and Czech. However, the impact of the new models is not the same for all languages: the improvement for English is smaller than for the non-configurational languages (German and Czech). Our analysis suggests that the success of the history-based models is not due to better handling of long dependencies but that they are better in dealing with the uncertainty in head direction. We study the interaction of syntactic parsing with the semantic level via the problem of PP attachment disambiguation. Our motivation is to provide a realistic evaluation of the task where gold information is not available and compare the results of disambiguation systems against the output of a strong neural parser. To our best knowledge, this is the first time that PP attachment disambiguation is evaluated and compared against neural dependency parsing on predicted information. In addition, we present a novel approach for PP attachment disambiguation that uses biaffine attention and utilizes pre-trained contextualized word embeddings as semantic knowledge. Our end-to-end system outperformed the previous pipeline approach on German by a large margin simply by avoiding error propagation caused by predicted information. In the end, we show that parsing systems (with the same semantic knowledge) are in general superior to systems specialized for PP attachment disambiguation. Lastly, we improve dependency parsing at the sentence level using reranking techniques. So far, previous work on neural reranking has been evaluated on English and Chinese only, both languages with a configurational word order and poor morphology. We re-assess the potential of successful neural reranking models from the literature on English and on two morphologically rich(er) languages, German and Czech. In addition, we introduce a new variation of a discriminative reranker based on graph convolutional networks (GCNs). Our proposed reranker not only outperforms previous models on English but is the only model that is able to improve results over the baselines on German and Czech. Our analysis points out that the failure is due to the lower quality of the k-best lists, where the gold tree ratio and the diversity of the list play an important role

    Evaluating Parsers with Dependency Constraints

    Get PDF
    Many syntactic parsers now score over 90% on English in-domain evaluation, but the remaining errors have been challenging to address and difficult to quantify. Standard parsing metrics provide a consistent basis for comparison between parsers, but do not illuminate what errors remain to be addressed. This thesis develops a constraint-based evaluation for dependency and Combinatory Categorial Grammar (CCG) parsers to address this deficiency. We examine the constrained and cascading impact, representing the direct and indirect effects of errors on parsing accuracy. This identifies errors that are the underlying source of problems in parses, compared to those which are a consequence of those problems. Kummerfeld et al. (2012) propose a static post-parsing analysis to categorise groups of errors into abstract classes, but this cannot account for cascading changes resulting from repairing errors, or limitations which may prevent the parser from applying a repair. In contrast, our technique is based on enforcing the presence of certain dependencies during parsing, whilst allowing the parser to choose the remainder of the analysis according to its grammar and model. We draw constraints for this process from gold-standard annotated corpora, grouping them into abstract error classes such as NP attachment, PP attachment, and clause attachment. By applying constraints from each error class in turn, we can examine how parsers respond when forced to correctly analyse each class. We show how to apply dependency constraints in three parsers: the graph-based MSTParser (McDonald and Pereira, 2006) and the transition-based ZPar (Zhang and Clark, 2011b) dependency parsers, and the C&C CCG parser (Clark and Curran, 2007b). Each is widely-used and influential in the field, and each generates some form of predicate-argument dependencies. We compare the parsers, identifying common sources of error, and differences in the distribution of errors between constrained and cascaded impact. Our work allows us to contrast the implementations of each parser, and how they respond to constraint application. Using our analysis, we experiment with new features for dependency parsing, which encode the frequency of proposed arcs in large-scale corpora derived from scanned books. These features are inspired by and extend on the work of Bansal and Klein (2011). We target these features at the most notable errors, and show how they address some, but not all of the difficult attachments across newswire and web text. CCG parsing is particularly challenging, as different derivations do not always generate different dependencies. We develop dependency hashing to address semantically redundant parses in n-best CCG parsing, and demonstrate its necessity and effectiveness. Dependency hashing substantially improves the diversity of n-best CCG parses, and improves a CCG reranker when used for creating training and test data. We show the intricacies of applying constraints to C&C, and describe instances where applying constraints causes the parser to produce a worse analysis. These results illustrate how algorithms which are relatively straightforward for constituency and dependency parsers are non-trivial to implement in CCG. This work has explored dependencies as constraints in dependency and CCG parsing. We have shown how dependency hashing can efficiently eliminate semantically redundant CCG n-best parses, and presented a new evaluation framework based on enforcing the presence of dependencies in the output of the parser. By otherwise allowing the parser to proceed as it would have, we avoid the assumptions inherent in other work. We hope this work will provide insights into the remaining errors in parsing, and target efforts to address those errors, creating better syntactic analysis for downstream applications

    Methods for taking semantic graphs apart and putting them back together again

    Get PDF
    The thesis develops a competitive compositional semantic parser for Abstract Meaning Representation (AMR). This approach combines a neural model with mechanisms that echo ideas from compositional semantic construction in a new, simple dependency structure. The thesis first tackles the task of generating structured training data necessary for a compositional approach, by developing the linguistically motivated AM algebra. Encoding the terms over the AM algebra as dependency trees yields a simple semantic parsing model where neural tagging and dependency models predict interpretable, meaningful operations that construct the AMR.Diese Dissertation entwickelt einen kompositionellen semantischen Parser für den Graphformalismus Abstract Meaning Representation (AMR). Der Ansatz kombiniert ein neuronales Modell mit Mechanismen, die Ideen der klassischen kompositionellen semantischen Konstruktion widerspiegeln. Die Arbeit geht zunächst das Problem an, strukturierte latente Trainingsdaten zu erzeugen die für den kompositionellen Ansatz nötig sind. Für diesen Zweck wird die linguistisch motivierte AM Algebra entwickelt. Indem die Terme der AM Algebra als Dependenzbäume ausgedrückt werden, erhalten wir ein Modell für semantisches Parsen, in dem neuronale Tagging- und Dependenzmodelle interpretierbare, aussagekräftige Operationen vorhersagen die dann den AMR Graphen erzeugen. Damit erreicht das Modell starke Evaluationsergebnisse und deutliche Verbesserungen gegenüber einem weniger strukturierten Vergleichsmodell.DF

    Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision

    Get PDF
    Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it is established that the proposed methods can be used to create substantially more accurate tools for linguistic processing, compared to both unsupervised methods and to recently proposed cross-lingual methods. The empirical support for this claim is particularly strong in the latter case; our models for syntactic dependency parsing and part-of-speech tagging achieve the hitherto best published results for a wide number of target languages, in the setting where no annotated training data is available in the target language
    • …
    corecore