
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- �fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- �subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41241889?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evaluating Parsers with

Dependency Constraints

Dominick Ng

Supervisor: James R. Curran

A thesis submitted

in fulfilment of the requirements

for the degree of Doctor of Philosophy at

The University of Sydney

School of Information Technologies

2016

iii

Abstract

Many syntactic parsers now score over 90%onEnglish in-domain evaluation, but the

remaining errors have been challenging to address and difficult to quantify. Standard

parsing metrics provide a consistent basis for comparison between parsers, but do not

illuminate what errors remain to be addressed. This thesis develops a constraint-based

evaluation for dependency and Combinatory Categorial Grammar (ccg) parsers to
address this deficiency.

We examine the constrained and cascading impact, representing the direct and indi-

rect effects of errors on parsing accuracy. This identifies errors that are the underlying

source of problems in parses, compared to those which are a consequence of those

problems. Kummerfeld et al. (2012) propose a static post-parsing analysis to categorise

groups of errors into abstract classes, but this cannot account for cascading changes

resulting from repairing errors, or limitations which may prevent the parser from ap-

plying a repair. In contrast, our technique is based on enforcing the presence of certain

dependencies during parsing, whilst allowing the parser to choose the remainder of

the analysis according to its grammar and model. We draw constraints for this process

from gold-standard annotated corpora, grouping them into abstract error classes such

as np attachment, pp attachment, and clause attachment. By applying constraints from

each error class in turn, we can examine how parsers respond when forced to correctly

analyse each class.

We show how to apply dependency constraints in three parsers: the graph-based

MSTParser (McDonald and Pereira, 2006) and the transition-based ZPar (Zhang and

Clark, 2011b) dependency parsers, and the C&C ccg parser (Clark and Curran, 2007b).

Each is widely-used and influential in the field, and each generates some form of

predicate-argument dependencies. We compare the parsers, identifying common

sources of error, and differences in the distribution of errors between constrained and

cascaded impact. Our work allows us to contrast the implementations of each parser,

and how they respond to constraint application.

iv

Using our analysis, we experiment with new features for dependency parsing,

which encode the frequency of proposed arcs in large-scale corpora derived from

scanned books. These features are inspired by and extend on the work of Bansal and

Klein (2011). We target these features at the most notable errors, and show how they

address some, but not all of the difficult attachments across newswire and web text.

ccg parsing is particularly challenging, as different derivations do not always

generate different dependencies. We develop dependency hashing to address seman-

tically redundant parses in n-best ccg parsing, and demonstrate its necessity and

effectiveness. Dependency hashing substantially improves the diversity of n-best ccg
parses, and improves a ccg reranker when used for creating training and test data.

We show the intricacies of applying constraints to C&C, and describe instances

where applying constraints causes the parser to produce a worse analysis. These results

illustrate how algorithms which are relatively straightforward for constituency and

dependency parsers are non-trivial to implement in ccg.
This work has explored dependencies as constraints in dependency and ccg pars-

ing. We have shown how dependency hashing can efficiently eliminate semantically

redundant ccg n-best parses, and presented a new evaluation framework based on

enforcing the presence of dependencies in the output of the parser. By otherwise

allowing the parser to proceed as it would have, we avoid the assumptions inherent

in other work. We hope this work will provide insights into the remaining errors in

parsing, and target efforts to address those errors, creating better syntactic analysis for

downstream applications.

Acknowledgements

I am indebted to my supervisor, James Curran, who has been a mentor, inspiration, and

guidance counsellor for eight years. It is thanks to James that I even contemplated a

doctorate, and received so many opportunities to travel for my research. This work was

driven by his never-ending stream of suggestions and questions, and refined through

his review. Over the years that I have known him, he has never let me stop wondering

about what the next opportunity might be.

My time as a PhD student was divided into three distinct phases. In the first, I

worked closely with Mac Kim, Mark Johnson, Matthew Honnibal, and Daniel Tse, all

of whom have left an imprint in this work. Thank you for your time, knowledge, and

patience with me as an early researcher.

In the second phase, I was fortunate to be awarded a Fulbright Scholarship to

spend a year at UC Berkeley, and this experience was life-changing. I would like to

acknowledge the Berkeley NLP Group — Dan Klein, David Burkett, Greg Durrett,

David Golland, David Hall, Taylor Berg-Kirkpatrick, and Jonathan Kummerfeld, who

helped arrange the complexities of the visit — for a stimulating and thought-provoking

year over the pond. I am particularly appreciative of Mohit Bansal, who provided great

assistance once I returned home and strove to extend his work. My thanks also go to

the Australian-American Fulbright Commission for granting me the scholarship and

this time abroad.

Throughout my PhD, but particularly in the third phase, it has been a privilege

to be a member of e-lab, amongst outstanding friends and researchers. To James

v

vi

Constable, Ben Hachey, Joel Nothman, Glen Pink, Will Radford, Nicky Ringland, and

Kellie Webster, thank you for the many lunches, paper and thesis readings, the banter,

the ideas, and the fun of being a group. This thesis was made infinitely better due to

your comments, insights, advice, and presence. A particular acknowledgement must

go to Tim Dawborn, who completed his thesis alongside me. Thanks for the many long

days and nights spent co-commiserating in the lab over our respective products, code

bugs, and formatting frustrations. Thanks also for keeping our servers alive under the

weight of my experiments.

This thesis was wholly improved by the comments and feedback from many e-lab

members (thanks especially toWill, Kellie, Glen, and Joel), but also Dominic Balasuriya,

who was kind enough to offer editorial assistance, and meticulous in combing out

small grammatical mistakes.

A PhD is a long journey, and there are many unexpected twists and turns along

the road. My sincerest gratitude to those friends who helped me when I stumbled

along the way —most particularly Stephen Merity, Tara McIntosh, and James Kane.

Thanks to my closest friends Sophie Liang, Bin Zhou, David Rizzuto, Jinna Kim, and

Dom B for the good times and special moments. I’m also grateful for the philosophical

discussions over many a game of squash with Jimmy Bai and Louis Gregory.

My parents, Alson and Esther, have always been there for me, as have my siblings

Patrick and Samantha. We share a bond no matter the distance between us.

Finally, to Liz and Toby Toriola, thank you for everything. I love you both very

much.

Statement of compliance

I certify that:

• I have read and understood the University of Sydney Student

Plagiarism: Coursework Policy and Procedure;

• I understand that failure to comply with the Student Plagiarism:

Coursework Policy and Procedure can lead to the University

commencing proceedings against me for potential student mis-

conduct under Chapter 8 of the University of Sydney By-Law

1999 (as amended);

• this Work is substantially my own, and to the extent that any part

of this Work is not my own I have indicated that it is not my own

by Acknowledging the Source of that part or those parts of the

Work.

Name: Dominick Ng

Signature: Date: 15th March 2016

vii

© 2015 Dominick Ng
All rights reserved.

Contents

1 Introduction 1

1.1 Contributions . 4

1.2 Outline . 5

1.3 Publications Associated with this Thesis 6

2 Grammars, Corpora, and Evaluation 7

2.1 Constituency Grammars . 8

2.1.1 Constituency Trees . 8

2.2 Dependency Grammars . 11

2.2.1 Dependency Graphs . 12

2.3 Combinatory Categorial Grammar . 14

2.3.1 ccg Categories . 15

2.3.2 Combinatory Rules . 16

2.3.3 ccg Dependencies . 21

2.3.4 Ambiguity in ccg . 25

2.4 Corpora and Corpus Conversions . 27

2.4.1 Constituency Grammar Corpora 27

2.4.2 Dependency Corpora . 31

2.4.3 ccg Corpora . 35

2.5 Parser Evaluation . 40

2.5.1 Constituency Evaluation . 40

ix

x CONTENTS

2.5.2 Dependency Evaluation . 41

2.5.3 ccg Evaluation . 43

2.6 Summary . 43

3 Constraint-based Error Analysis for Dependency Parsing 45

3.1 A Brief History of Computational Parsing 47

3.2 Dependency Parsing . 51

3.2.1 MSTParser: Graph-based Dependency Parsing 51

3.2.2 ZPar: Transition-based Dependency Parsing 56

3.3 Analysing Parser Errors . 58

3.4 Motivation . 62

3.5 Constraint-driven Analysis of Parser Performance 64

3.5.1 Experimental Setup . 65

3.5.2 Error Classes . 66

3.6 Applying Constraints in Parsers . 70

3.6.1 MSTParser implementation . 70

3.6.2 ZPar implementation . 72

3.7 Evaluation . 74

3.7.1 Constrained and Cascaded Arcs 74

3.8 Comparing MSTParser and ZPar . 77

3.8.1 Newswire . 77

3.8.2 Web Text . 85

3.9 MSTParser at Full Coverage . 88

3.10 Summary . 90

4 Surface and Syntactic n-gram Features for Dependency Parsing 93

4.1 Background . 96

4.1.1 N-gram Corpora . 96

4.1.2 Using n-grams for Syntax . 101

CONTENTS xi

4.2 Features in MSTParser . 103

4.3 Surface n-gram Features . 104

4.3.1 First-order surface n-gram features 105

4.3.2 Second-order surface n-gram features 106

4.4 Syntactic n-gram Features . 107

4.4.1 First-order syntactic n-gram features 108

4.4.2 Second-order syntactic n-gram features 111

4.5 Experimental Setup . 111

4.5.1 Dependency schemes . 112

4.6 Results . 115

4.6.1 Surface n-gram Features . 116

4.6.2 Syntactic n-gram Features . 117

4.6.3 Combining Surface and Syntactic n-gram Features 117

4.7 Analysis . 119

4.7.1 Corpora . 121

4.8 Constraint-based Evaluation . 122

4.9 Summary . 124

5 Dependency Hashing for ccg 127

5.1 Parsing with ccg . 128

5.2 The C&C Parser . 131

5.2.1 Supertagging . 131

5.2.2 Parsing ccg with the Cocke-Kasami-Younger Algorithm 133

5.2.3 Decoding . 137

5.2.4 Parser Performance and Output 139

5.2.5 Extensions to C&C . 141

5.3 Experimental Setup . 143

5.4 n-best Parsing and Reranking . 144

5.4.1 The n-best Algorithms of Huang and Chiang (2005) 146

xii CONTENTS

5.5 Dependency Hashing . 152

5.5.1 Hashing Implementation . 153

5.5.2 Hashing Performance . 159

5.5.3 Speed . 162

5.5.4 ccg reranking performance . 164

5.6 Summary . 165

6 Dependency Constraints for ccg 167

6.1 ccg Constraints . 168

6.2 Implementation . 171

6.3 Creating Constraints . 176

6.3.1 Error Classes . 176

6.3.2 Constraints from ccgbank . 178

6.3.3 Constraint Statistics . 182

6.4 Summary . 183

7 Evaluating with ccg Constraints 185

7.1 Evaluation Procedure . 186

7.2 Experimental Setup . 192

7.2.1 Configuration Examples . 193

7.3 Results . 196

7.3.1 Applying all constraints . 196

7.3.2 np attachment constraints . 201

7.3.3 np internal constraints . 202

7.3.4 Modifier attachment constraints 203

7.3.5 Clause attachment constraints 204

7.3.6 pp attachment constraints . 205

7.3.7 Coordination attachment constraints 205

7.3.8 Root attachment constraints . 207

CONTENTS xiii

7.4 Constraints for Parser Debugging . 208

7.4.1 Supertagger Errors . 208

7.4.2 Non-standard ccg Rules in ccgbank 210

7.4.3 Inconsistencies between dependencies and the derivation 211

7.4.4 Co-indexation Inconsistencies in Categories 213

7.4.5 Categories Not Implemented in the Parser 215

7.5 Summary . 215

8 Conclusion 219

8.1 Future Work . 221

8.2 Summary . 222

Bibliography 223

List of Figures

2.1 The list of dependencies depicted in the dependency tree in Parse 2.2. . 13

2.2 Fully annotated ccg categories. 22

2.3 The full set of ccg dependencies generated by the derivation in Parse 2.6. 24

2.4 The full set of ccg dependencies generated by the derivation in Parse 2.7. 25

2.5 The Penn Treebank bracketed string representation. 29

2.6 Different np structures for a sentence from the Penn Treebank. 30

2.7 The grammatical relations hierarchy, reproduced from Briscoe (2006). . 33

2.8 The tabular dependency tree format. 34

2.9 The ccgbank string representation of a ccg derivation. 36

3.1 The construction of complete spans in Eisner’s algorithm. 54

3.2 The construction of incomplete spans in Eisner’s algorithm. 54

4.1 Raw 3-grams and their frequencies taken fromWeb1T. 97

4.2 Raw 3-grams and their frequencies taken from Google Books Ngrams. . 98

4.3 Raw 1-grams and their frequencies taken from Google Syntactic Ngrams. 99

4.4 Stanford attachment errors by gold argument pos tag. 120

5.1 A partially filled ccg chart. 134

6.1 A ccgbank tree with the path to the root bolded. 180

7.1 Baseline and constrained output for C&C. 188

7.2 Constrained and cascaded dependency sets for C&C. 191

xv

List of Parses

2.1 A constituency tree for the sentence in Example 1. 9

2.2 A dependency tree for the sentence in Parse 2.1. 13

2.3 A dependency tree with prepositional coordination. 14

2.4 An example ccg tree using forward application. 17

2.5 The ccg type-raising combinator. 19

2.6 The ccg derivation of the sentence in Parse 2.1. 21

2.7 A ccg derivation with prepositional coordination. 24

2.8 Absorption ambiguity in ccg. 26

2.9 A ccg analysis of a relative clause. 38

3.1 MSTParser output compared to the gold-standard parse. 63

3.2 Constraining root to its correct position in MSTParser. 75

4.1 MSTParser’s second-order factorisation. 104

4.2 Paraphrase-style context words in syntactic n-grams. 110

4.3 lth and Stanford dependency analyses of a sentence. 113

6.1 A ccg derivation with a pp adjunct, adapted from Villavicencio (2002). 169

6.2 A ccg derivation with a pp argument. 169

6.3 A ccgbank tree with coordination. 179

7.1 A baseline ccg derivation with a pp argument. 187

7.2 A constrained ccg derivation with a pp adjunct. 187

xvii

xviii LIST OF PARSES

7.3 A C&C parse corrected by applying constraints. 194

7.4 An incorrect C&C parse due to a missing supertagger category. 195

7.5 A C&C parse which is made worse by applying constraints. 209

7.6 The constrained analysis when applying conj constraints. 209

7.7 Non-equivalent coordination in ccgbank. 210

7.8 A ccg derivation that is inconsistent with a required dependency. . . . 212

7.9 A ccg derivation featuring subject control. 213

7.10 A ccg derivation where co-indexation blocks the correct parse. 214

List of Tables

3.1 Baseline MSTParser and ZPar parsing results over wsj section 22. . . . 62

3.2 Constraints per error class over wsj section 22. 68

3.3 Constraints per dependency label in Other attachments. 69

3.4 The impact of applying constraints to the sentence in Parse 3.1. 76

3.5 The results of applying constraints to MSTParser over wsj 22. 78

3.6 The results of applying constraints to ZPar over wsj 22. 78

3.7 Cascaded errors repaired per error class using np constraints. 81

3.8 Cascaded errors repaired per error class using punctuation constraints. 84

3.9 The results of applying constraints to MSTParser over the Web Treebank. 85

3.10 The results of applying constraints to ZPar over the Web Treebank. . . . 86

3.11 Constraint evaluation for the baseline MSTParser. 89

4.1 Source text token counts for the n-gram corpora. 100

4.2 n-gram distribution by length in Web1T and Google Books. 100

4.3 First-order syntactic n-gram features and their counts. 109

4.4 Common and different unlabeled arcs between lth and Stanford. . . . 114

4.5 lth MSTParser surface and syntactic n-gram feature addition results. . 115

4.6 Stanford MSTParser surface and syntactic n-gram feature addition results.116

4.7 lth MSTParser test results with n-gram features. 117

4.8 Stanford MSTParser test results with n-gram features. 118

4.9 Comparing our combined features against the SANCL 2012 participants. 118

xix

xx LIST OF TABLES

4.10 Surface n-gram queries missing in Web1T and Google Books Ngrams. . 121

4.11 Constraint evaluation for the best combined feature set. 123

5.1 Baseline C&C parser performance. 140

5.2 The default β, k, and other parameters used in the C&C parser. 144

5.3 Oracle n-best C&C parsing results. 152

5.4 Dependency diversity results for the n-best C&C parser. 153

5.5 gr diversity results for the n-best C&C parser. 153

5.6 Dependency hash collisions and comparisons over ccgbank section 00. 161

5.7 Dependency diversity results using dependency hashing. 162

5.8 gr diversity results using dependency hashing. 162

5.9 Oracle n-best C&C parsing results with dependency hashing. 163

5.10 Parsing speed with and without dependency hashing. 163

5.11 ccg reranking performance with and without dependency hashing. . . 165

6.1 ccg constraints per error class over ccgbank section 00. 183

7.1 C&C results for all constraints on automatic pos. 197

7.2 C&C results for np attachment constraints on automatic pos. 201

7.3 C&C results for np internal constraints on automatic pos. 202

7.4 C&C results for modifier constraints on automatic pos. 203

7.5 C&C results for clause constraints on automatic pos. 204

7.6 C&C results for pp attachment constraints on automatic pos. 205

7.7 C&C results for coordination constraints on automatic pos. 206

7.8 C&C results for root constraints on automatic pos. 207

List of Algorithms

3.1 Eisner’s Algorithm . 55

3.2 Transition-based Beam Search Parsing 58

3.3 constrained-label . 71

3.4 Constrained Eisner’s Algorithm . 71

3.5 ConstrainedArcLeft . 72

3.6 ConstrainedArcRight . 73

5.1 cky ccg Parsing . 137

5.2 decodenf . 138

5.3 best-equiv . 138

5.4 best-score . 139

5.5 multn . 147

5.6 mergen . 147

5.7 new-multn . 148

5.8 find-bestn . 149

5.9 get-candidatesn . 150

5.10 lazy-bestn . 150

5.11 lazy-best-equivn . 151

5.12 lazy-nextn . 151

5.13 hash-rule . 156

5.14 hash-category . 156

5.15 hash-multn . 157

xxi

xxii LIST OF ALGORITHMS

5.16 hash-mergen . 158

5.17 new-hash-multn . 159

5.18 hash-find-bestn . 159

5.19 hash-get-candidatesn . 160

5.20 lazy-best-equivn . 160

5.21 lazy-nextn . 161

6.1 load-constraints . 171

6.2 decode-constrainednf . 172

6.3 best-equiv-constrained . 173

6.4 best-score-constrained . 174

6.5 check-satisfaction . 175

6.6 violates-variables . 175

6.7 extract-conj-deps . 180

6.8 extract-root-deps . 181

6.9 apply-root-constraints . 181

7.1 make-dep-sets . 190

1 Introduction

Identifying syntactic structure in language is important for many downstream applica-

tions in computational linguistics. Accurate parsing has been the target of research for

decades, and state-of-the-art English parsers now score over 90% on standard newswire

metrics across different formalisms (Charniak and Johnson, 2005; McClosky et al., 2006;

Petrov and Klein, 2007; Zhang and Clark, 2011b; Zhang andMcDonald, 2014). However,

the remaining errors have been challenging to address and difficult to quantify. Stan-

dard parsing evaluation metrics provide consistent measures of performance between

different parsers, but do little to identify the kinds of errors each parser makes. They

also cannot identify whether groups of errors have a common underlying cause, even

though such diagnostic evaluation is crucial for improving parsing performance.

Kummerfeld et al. (2012) proposed a evaluation procedure to analyse the errors

made by constituency parsers, and group them into abstract higher-level classes, such

as incorrect noun phrase, prepositional phrase, or clause attachments. They group each

error class based on the operations that repair each error — movement, addition, and

deletion of nodes in the tree structure. They use this to statically analyse the output of

several parsers and classify their errors. The weakness of this approach is that when

parsers are run with constraints dynamically, there is no guarantee that other sections

of the parse will remain the same. Higher-order features, structural constraints, and the

parser model can all trigger cascading changes based on a single different attachment.

These cascading changes may repair other errors in the tree, or they may create new

errors where there were previously none.

1

2 Chapter 1. Introduction

In this thesis, we propose a constraint-based evaluation procedure using dependen-

cies. We group gold-standard dependency labels into error classes, and force parsers

to produce the attachments in each error class. For the remainder of the parse, we

allow each parser to produce the most probable analysis under its grammar and model,

without making assumptions about its behaviour. We investigate the constrained im-

pact produced directly by applying dependencies as constraints, as well as the cascaded

impact induced elsewhere in the tree. Our approach avoids the issues of Kummerfeld

et al. (2012) by not interfering with the parser’s decoding other than enforcing the

presence of constrained arcs. In this way, we establish a sound basis for diagnosing

parsing errors as being sources or consequences of higher-level issues in the tree.

We implement our procedure forMSTParser (McDonald and Pereira, 2006) and ZPar

(Zhang and Clark, 2011b), two widely-used dependency parsers based on two different

and popular representations of the task. We also implement our procedure for the C&C

parser (Clark and Curran, 2007b), an efficient Combinatory Categorial Grammar (ccg;
Steedman, 2000) parser which produces predicate-argument dependencies as a primary

output. We describe the modifications required for each parser to apply constraints,

and compare the characteristics of each parser’s performance using constraints.

Our evaluation found that np and pp attachments are particular challenges across

all parsers, but affect parsing accuracy in different ways. For dependency parsers, pps
are relatively localised errorswith limited influence, but incorrectnp attachment causes

cascading error through the remainder of the parse, causing furthermisattachments. The

opposite is true for evaluation in ccg parsing due to the presence of head categories

in dependencies: np attachments are more localised, while pp attachments cause

substantial cascading errors.

Punctuation errors are frequently ignored in parser evaluation (Yamada and Mat-

sumoto, 2003; Buchholz and Marsi, 2006), and have limited or inconsistent treatment

in corpora. However, incorrect punctuation is a strong indicator of an erroneous

dependency parse, causing substantial cascading impact in both MSTParser and ZPar.

3

ccg parsing is particularly challenging, as different derivation structures do not nec-

essarily generate unique semantic structures. Algorithms developed on constituency

and dependency parsers are more difficult to apply to ccg. We illustrate how our

constraint evaluation is non-trivial to implement for ccg, necessitating special care

with the logical form that underpins all ccg analyses. We show how applying con-

straints serves as an evaluation not only of ccg parser performance, but also the

implementation of the parser itself. Experiments with n-best ccg parsing show that

it is another task where different derivations generating the same dependencies af-

fects performance; we find that n-best parsing algorithms designed without ccg’s
dependency formulation in mind are insufficient, producing considerable numbers of

semantically redundant parses. We design dependency hashing as an efficient solution

to this issue, and demonstrate how it improves a ccg reranker.

Features from large unannotated corpora have been shown to assist with np and

pp attachments (Volk, 2001; Nakov and Hearst, 2005a), which our constraint-based

evaluation identified as being large sources of errors for parsers. Building on the surface

n-gram features of Bansal and Klein (2011), we attack these errors for MSTParser by

experimenting with higher-order features based on different n-gram sources. We

develop new features based on syntactic n-grams, subtree fragments from parsed

English books, and compare their effectiveness with surface n-gram features.

All our feature types perform similarly in isolation across dependency schemes

and domains, and are also complementary; a combined system of surface and syntactic

n-gram features outperforms all other feature types in all configurations and across

domains, achieving up to 1.3% uas improvements in-domain and 1.6% out-of-domain.

The features are also successful at addressing some of the largest error classes, specifi-

cally np and pp attachments. However they do not fundamentally change the overall

error distribution, and primarily serve to correct constrained errors rather than reduce

cascaded impact.

4 Chapter 1. Introduction

1.1 Contributions

We describe how dependency-level constraints can be applied to graph-based and

transition-based dependency parsers for evaluation. By grouping dependency labels

into meaningful error classes, we can applying each group in turn and examine the

accuracy of the parser with respect to the constraints, and their cascading impact

through a sentence. This technique allows us to identify the relative constrained

and cascaded impact of each error class, and provides an informative platform for

comparing dependency parser performance.

Our in-depth investigation of dependency parser performance shows how the

transition-based ZPar outperforms the graph-based MSTParser, despite examining

only a fraction of the entire search space. We also show how ZPar is better able to use

constraints to create cascading improvements elsewhere in the parse.

We develop dependency parsing features for MSTParser using the Google Books

Ngrams and Google Syntactic Ngrams corpora, which are large-scale n-gram resources

extracted from scanned English books. We show how syntactic features, despite being

better aligned to the task, perform no better than surface features on in-domain text.

However, syntactic features improve accuracy out of domain. The two features types

also stack; we achieve up to 1.3% accuracy improvements on newswire, and 1.6% on

web text, significantly more than either type in isolation.

Our examination of n-best ccg parsing reveals that the standard n-best parsing

algorithms are deficient, as they do not account for different ccg derivations potentially

generating the same dependencies. We describe dependency hashing to eliminate this

issue, and implement new n-best ccg parsing algorithms using this technique. We

demonstrate the effectiveness of dependency hashing in efficiently generating distinct

ccg parses without costly semantic equivalence checks, and show how this leads to

improved ccg reranking performance.

1.2. Outline 5

We take our constraint evaluation procedure for dependency parsers and implement

it for the C&C ccg parser. We describe the complexities of the implementation, and the

attributes of ccg which make applying such constraints difficult. Applying a similar

evaluation for ccg reveals broad similarities in error distribution to dependency

parsers, but also allows us to investigate the implementation of C&C itself.

In summary, this work demonstrates the utility of diagnostic evaluation without

assumptions about parser behaviour. We illustrate how different error classes behave

differently in parsers, beyond the simple metrics of attachment accuracy. Some er-

rors cause much more cascading impact than others, suggesting that they should be

prioritised in further efforts to address parser performance.

1.2 Outline

We begin by surveying the grammars, corpora, and evaluation procedures used in

this thesis in Chapter 2, contrasting the features of constituency, dependency, and

Combinatory Categorial Grammars across these areas.

Chapter 3 continues with an examination of parsing, focusing on graph-based and

transition-based techniques. We describe the implementation of our constraint-based

evaluation procedure, and compare the results of applying constraints to MSTParser

and ZPar.

In Chapter 4, we takeMSTParser, and experiment with surface and syntactic n-gram

features extracted from Google Books. We evaluate the features with our constraint-

based procedure from Chapter 3.

We turn our focus fromdependency parsing toccg parsing in Chapter 5, examining

the inadequacy of standard n-best parsing algorithms forccg. Wepropose dependency

hashing as a solution, and demonstrate its correctness and effectiveness. We use the

distinct parses to improve a ccg reranker for English.

6 Chapter 1. Introduction

Chapters 6 and 7 unify our work on dependency parsing and ccg parsing by

implementing constraints on ccg dependencies in the C&C parser. We discuss the

relative complexities of this process compared to the dependency parsers, and show

how constraints can be used not only for analysing a ccg parser’s performance, but

also the implementation of the parser itself.

Finally, Chapter 8 discusses the avenues for future work, and summarises the core

findings of this thesis.

1.3 Publications Associated with this Thesis

The constraint-based error analysis technique for dependency parsers described in

Chapter 3 was published as Identifying Cascading Errors using Constraints in Dependency

Parsing at the 53rd Annual Meeting of the Association for Computational Linguistics

(Ng and Curran, 2015).

The work on surface and syntactic n-gram features for dependency parsing in

Chapter 4wasmade available on arXiv asWeb-scale Surface and Syntactic n-gram Features

for Dependency Parsing (Ng et al., 2015).

The dependency hashing technique described in Chapter 5 was published as De-

pendency Hashing for n-best ccg Parsing at the 50th Annual Meeting of the Association

for Computational Linguistics (Ng and Curran, 2012).

Our n-best ccg parser using dependency hashing was used for the ccg reranker

published as Improving Combinatory Categorial Grammar Parse Reranking with Depen-

dency Grammar Features at the 24th International Conference on Computational Linguis-

tics (Kim et al., 2012).

2 Grammars, Corpora, andEvaluation

All natural languages are structured, and it is this structure that allows people to

accurately communicate. The structure of language is referred to as syntax, and it

describes how the surface form words interact with one another to form sentences with

meaning. For example,

(1) The bank employs 8,000 people in Spain and 2,000 abroad ; and

(2) The bank employs 2,000 people in Spain and 8,000 abroad

convey different meanings using the same words, and

(3) 8,000 people in Spain and 2,000 abroad are employed by the bank

implies the meaning of Example 1.

All three example sentences convey that the bank employs 10,000 people in total.

Examples 1 and 3 place 8,000 of those people in Spain, with 2,000 in other countries.

Example 2 reverses the distribution, with 2,000 in Spain and 8,000 elsewhere.

Natural language processing (nlp) is the branch of artificial intelligence concerned

with the automatic interpretation of human utterances and records. Within nlp,
syntactic parsing recognises the structure of language and identifies how words interact

and fit together according to some underlying grammar.

Language typically exhibits compositional semantics, whereby the meaning of a sen-

tence is derived from the meanings of its components. Language is inherently syn-

tactically ambiguous, as words many be combined in many different ways. Accurate

7

8 Chapter 2. Grammars, Corpora, and Evaluation

parsing is crucial for resolving these ambiguities for downstream applications. Parsing

is one of the oldest and most deeply researched areas of nlp. From its earliest days as

a rule-driven process to today’s strongly statistical focus, parsing has grown with nlp
and remains a common component of many language processing pipelines that seek a

deeper understanding of textual meaning.

Research in parsing is intimately entwined with the underlying grammars and

annotated data used for training and testing. This work spans across a number of

grammar formalisms for English, and so we begin by discussing grammars, the corpora

based on them, and the evaluation procedures for parsers using the corpora.

2.1 Constituency Grammars

A grammar defines a set of rules describing the syntax of a language. These rules may

be used to determine whether text belongs to the language or not. They are also used

by parsers to construct derivations of sentences under the grammar, commonly depicted

in the form of a syntax tree or dependency tree illustrating how subcomponents of the

analysis interact with each other.

Grammars vary in their expressiveness and completeness. In this thesis, we utilise

data originally created using an English constituency grammar, but we work primarily

with dependency grammars and Combinatory Categorial Grammar. We now present a

broad background of these three classes of grammar, and describe their properties.

2.1.1 Constituency Trees

Constituency grammars decompose sentences into hierarchical groupings of smaller

constituents. Each constituent, also known as a phrase, represents a cohesive unit of

syntax. These phrases are progressively combined together into larger units in a tree

structure that spans the entire sentence. Parse 2.1 depicts an example constituency tree

2.1. Constituency Grammars 9

S

VP

VP

ADVP=2

RB

abroad

NP=1

CD

2,000

CC

and

VP

PP2

NP

NNP

Spain

IN

in

NP1

NNS

people

CD

8,000

VBZ

employs

NP

NN

bank

DT

The

Parse 2.1: A constituency tree for the sentence in Example 1.

for the sentence in Example 1 using the OntoNotes annotation (discussed further in

Section 2.4.1).

Constituency grammars work well for languages with fairly rigid word order,

such as English. The smallest typical constituents in English are individual words.

These are labeled with a part-of-speech (pos) tag specifying their grammatical form

or function (such as noun, verb, or preposition). These tags are then used in context-free

production rules that describe howwords of each form combine into progressively larger

constructions. The defining difference between any two constituency grammars is the

set of these rules that is used; different grammars may combine constituents in different

orders or specify completely different constructions. Some examples of the context-free

production rules used in Parse 2.1 include:

S → NP VP

NP →
{
DT JJ∗ NN

NN

}

VP → VBZ NP PP

PP → IN NP

10 Chapter 2. Grammars, Corpora, and Evaluation

where S = sentence, NP = noun phrase, DT = determiner, JJ = adjective, NN = noun,

VP = verb phrase, VBZ = singular third-person verb, PP = prepositional phrase, and

IN = preposition.

The application of production rules produces a syntax tree, where the left hand

side of each rule is a subtree root, and the right hand side of the rule are that root’s

children. These rules effectively link each word and phrase in a sentence with zero or

more closest siblings and its parent.

Constituency grammars group the words of a sentence into the clusters with which

they interact most closely, and are sometimes termed context-free grammars (cfgs).
However, the context-free property requires that constructions only contain consecutive

words in the sentence. This is insufficient to explain many phenomena in natural

language. For example, in Parse 2.1, the object of the main verb phrase is coordinated:

the sentence implies both employs 8,000 people in Spain and employs 2,000 people abroad .

The verb phrase headed by employs has a parallel structure over the coordination in

a process known as gapping. This is a problem in the constituency tree, as Parse 2.1

shows that the components 8,000 people in Spain and 2,000 abroad are not equivalent,

despite both functioning as an object of the verb. The latter is termed a non-constituent,

as it has a ‘hole’ where a verb is required to form a phrase. Such constituents cannot be

coordinated together.

There are two possible solutions to this issue. The first is to include rules in the

grammar that allow such non-equivalent (but functionally identical) components to

be coordinated. This is unappealing, as it would lead to a large proliferation of rules

to account for all of the possible ways in which this kind of coordination could occur.

The second solution is to employ markers in the tree to indicate the movement of

constituents. These markers take the form of co-indexation variables, traces, and null

elements, which indicate where missing elements occur, and where in the sentence they

were actually placed. This approach is typically used in constituency corpora, as it

2.2. Dependency Grammars 11

avoids rule proliferation and enables the recovery of the underlying predicate-argument

structure (discussed in further detail below).

In Parse 2.1, the verb employs is placed in a phrase with 8,000 people in Spain, where

the np 8,000 people is assigned the variable 1. This is then co-indexed with the same

variable on 2,000 , indicating that the second component reuses the structure from the

first. Similarly, the modifier in Spain is co-indexed with abroad using variable 2. This

allows the gapped second fragment to be associated with its verb.

2.2 Dependency Grammars

The need for co-indexed variables to indicate the gapped shared structure in Parse 2.1

illustrates one of the primary issues with constituency grammars: that the phrase struc-

ture of a sentence alone is not always a sufficient proxy for the functional relationships

between the words. Dependency grammars abstract away from the phrase structure, and

focus on these functional relationships. This is particularly useful for languages with

more flexible word order, where constituency grammars are cumbersome.

In a constituency grammar, each phrase has a head that indicates its semantic or

functional core. Phrases are typically named for the grammatical form of their head:

e.g. noun phrases are headed by nouns, and verb phrases are headed by verbs. The

non-head components of a phrase are dependents of the head; that is, their presence in

the sentence is as a modifier or a complement to the head. Thus, each phrase contains a

number of head-dependent relationships, which can be termed as dependencies.

Dependencies are directed binary relations between a head and dependent word in

a sentence, with a label describing the relationship between the head and dependent,

e.g. a verb to noun dependency may be labelled as a subject or object relation. Each

head may have multiple dependents, and one word (typically the main verb) is denoted

as the root, or the head of the entire sentence.

12 Chapter 2. Grammars, Corpora, and Evaluation

Whilst we have described dependencies in terms of heads of phrases, it is important

to note that they are not constrained to the phrase structure of a sentence, and may

be created between any pair of words in a sentence. Dependency grammars differ in

the labels they assign to dependencies, and how they define which words are heads

and which are dependents. The various choices and linguistic motivations for those

choices have given rise to several different dependency grammars for English. In this

thesis, we work most closely with the grammar described in Johansson and Nugues

(2007) (known as lth), and the basic variant of the Stanford dependency grammar

described in de Marneffe and Manning (2008b). We will discuss both of these schemes

in more detail in Section 2.4.2.

2.2.1 Dependency Graphs

A dependency graph illustrates the dependency analysis of a sentence. Typically, the

words are depicted in sentence order, and the dependencies are indicated by arcs

issuing from the head word and pointing to the argument word. Depending on the

properties of the dependency grammar used for an analysis, this graph may take the

form of a dependency tree, a directed acyclic connected graph where each word has a

single head. The grammar may specify a root node, an invisible addition to the sentence

which serves as the head of any (or the only) word without a head. The graph may

reveal the grammar to be projective, where no dependency arcs cross over one another,

or non-projective, where there are crossing arcs in the graph.

Parse 2.2 depicts a dependency tree for the sentence in Parse 2.1 using the basic

variant of Stanford dependencies. The depicted sentence is projective, with the gram-

mar requiring each word in the sentence to have a single head, with a single root

word overall. Some of the labels used in this grammar include det (determiner), nsubj

(nominal subject), dobj (direct object), and pobj (prepositional object).

Instead of a graphical representation, a dependency analysis may also be repre-

sented as a list of the head-dependent relationships (Figure 2.1).

2.3. Combinatory Categorial Grammar 13

The bank employs 8,000 people in Spain and 2,000 abroad .

det nsubj num

dobj

prep

pobj

cc

conj

advmod

punct

root

Parse 2.2: A dependency tree for the sentence in Parse 2.1.

〈det bank The〉

〈det bank The〉

〈nsubj employs bank〉

〈dobj employs people〉

〈prep employs in〉

〈cc employs and〉

〈conj employs 2,000 〉

〈num people 8,000 〉

〈pobj in Spain〉

〈advmod 2,000 abroad〉

Figure 2.1: The list of dependencies depicted in the dependency tree in Parse 2.2.

Unlike the constituency grammar, which associated words most closely with their

siblings in each phrase, the dependency grammar directly associates each word with

its closest functional partner — which may or may not be close to it in the sentence.

For example, the coordinator and is headed by employs in the dependency tree, whilst

it lies in a separate phrase in the constituency tree. The main verb, employs is the root

of the sentence, with the noun bank being the subject. The phrases 8,000 people and

2,000 abroad are directly linked to employs , showing a different approximation of the

coordinated vp structure. However, there is no longer any indication of the parallel

structure of the coordination: the pp in Spain attaches directly to employs , but the

modifier abroad does not.

14 Chapter 2. Grammars, Corpora, and Evaluation

The bank opened 8 branches on time and under budget .

det nsubj num

dobj

prep

pobj

cc

conj

pobj

punct

root

Parse 2.3: A dependency tree that is isomorphic to Parse 2.2, but features prepositional coordi-

nation rather than verb coordination.

2.3 Combinatory Categorial Grammar

Whilst the dependency grammar analysis has clearly shown the coordination of the

noun phrases 8,000 people in Spain and 2,000 abroad , the restriction of one head per

word in this particular scheme introduces potential ambiguities. Parse 2.3 depicts a

dependency representation of a similar sentence to Parse 2.2, except the object coor-

dination has been replaced with a prepositional phrase coordination (of on time and

under budget). The two trees are isomorphic to each other, with only one label different

between the two. Whilst it is possible to infer the coordinated phrases from the label

change and the pos tags assigned to the words, it is not immediately clear from the

tree which case is which. Other phenomena such as right node raising and control are

also challenging to represent with one head per word (Johansson and Nugues, 2007).

CombinatoryCategorial Grammar (ccg; Steedman, 2000) is a linguistically-motivated

grammar formalism based on formal logic. ccg is a lexicalised grammar; each word is

assigned a lexical category that describes its syntactic behaviour in the sentence. Cate-

gories differ from pos tags in that they contain far more information about the word’s

behaviour; the production rules used to specify the behaviour of a constituency gram-

mar are encoded directly within the category. The grammar can then use simple rules

to allow categories to combine together to form an analysis of a sentence.

2.3. Combinatory Categorial Grammar 15

Categories also encode a semantic interpretation that is applied as they are com-

bined together in an analysis. This gives rise to a transparent interface between the

syntax of a sentence (represented by the successive category combinations) and its

semantic interpretation (Steedman, 2000). This transparency has driven recent work

in semantic analysis using ccg, particularly in semantic parsing (Kwiatkowski et al.,

2011; Artzi et al., 2014) question-answering (Kwiatkowski et al., 2013; Reddy et al.,

2014) and distributional semantics (Lewis and Steedman, 2013).

2.3.1 ccg Categories

ccg categories may be atomic or complex. Atomic categories represent constituents that

are syntactically complete, such as S (sentence), N (noun), NP (noun phrase), and PP

(prepositional phrase).

Complex categories represent constituents as functors that require arguments to

become syntactically complete. They are recursively constructed from other categories

and take the form X\Y or X/Y, where X and Y may in turn be atomic or complex.

X is the result category produced when the complex category is combined with the

argument Y. The slash directionality indicates whether Y is expected to the right

(forward slash) or left (backward slash) of the category respectively. For example,

English intransitive verbs consume a noun phrase to the left (typically denoted the

subject) to form a sentence:

sneezes := S\NP

Multiple arguments are specified using nesting. English transitive verbs consume one

noun phrase to the right (the object) and one noun phrase to the left (the subject) to

form a sentence. In other words, they take one noun phrase to the right to form an

intransitive verb:

employs := (S\NP)/NP

16 Chapter 2. Grammars, Corpora, and Evaluation

Ditransitive verbs consume one additional noun phrase to the right (a second object)

and produce a transitive verb:

told := ((S\NP)/NP)/NP

Modifier categories consume a category as an argument, and return the same category

as a result. For example, adverbs modify intransitive verbs, and adjectives modify

nouns as follows:

quickly := (S\NP)\(S\NP)

large := N/N

All ccg categories include head information in the form of variables. At the word

level, each word is its own head. For words that have complex categories, the head of

the result is indicated using variables on the subparts of each argument category. For

example, the word the bears the category (NPY/NY)the. This indicates that the word is

its own head, and that it combines with a word to the right with category N and head

Y to product a constituent with category NP and head Y. In Parse 2.4, the head of the

noun phrase the bank is bank .

Words performing the same syntactic functionwould ideally take the same category

at all times. However, ambiguity means that some words may be assigned different

categories in different situations. We will return to the problems posed by ambiguity in

ccg later in this work. For example, homonymswith identical lexical form, but different

syntactic functions must take different categories in their different roles:

row (c.f. pew) := N

row (c.f. boat) := (S\NP)/NP

2.3.2 Combinatory Rules

Categories are combined together using a small set of combinatory rules to form a

derivation. In contrast to constituency grammars, where subcategorisation information

2.3. Combinatory Categorial Grammar 17

NP

N

bank

NP/N

The

The bank

NP/N N
>

NP

Parse 2.4: An example ccg tree using the forward application combinatory rule with the

determiner The. The tree is equivalent to the derivation depicted to the right, which is the

conventional presentation of ccg analyses.

is expressed in the context-free rules of the grammar, ccg categories directly specify

the expected syntactic structure of their arguments, and thus the grammar requires

few rules. Combinatory rules describe how complex categories may be combined with

their arguments (application), composed together in a currying fashion (composition),

or changed into functors (type-raising). These rules reflect the influence of formal logic

on ccg as they can be described in terms of functors acting upon arguments.

The most common combinatory rules in ccg are function application rules, which

describe the simple process of a complex category consuming its outermost argument

to form its result category. Forward (>) and backward (<) application respectively refer

to consuming an argument to the right and left of a complex category, denoted with:

X/Y Y ⇒ X (>)

Y X\Y ⇒ X (<)

Parse 2.4 depicts a ccg tree on the left, and its equivalent derivation convention on

the right. If viewed upside down, the derivation is a tree, where each category corre-

sponds to a node. Each step of the derivation depicts the rule application combining

two categories together, eventually building the final analysis. The binary branching

trees mean that ccg analyses are typically much deeper than constituency trees.

Forward and backward application may be viewed as abstractions over the entire

space of context-free production rules in constituent grammars. Whilst each production

rule must be explicitly specified for it to be used in a constituency grammar, the

18 Chapter 2. Grammars, Corpora, and Evaluation

specification is pushed into the category level in ccg. This allows the rules to operate

independently of the lexicon and the grammar, dramatically reducing redundancy.

The category structure combined with forward and backward application rules

alone form the Categorial grammar, or AB grammar, after Adjukiewicz (1935) and Bar-

Hillel (1953). Bar-Hillel et al. (1960) proved that this grammar is weakly equivalent to a

cfg, as both are capable of generating the same formal languages.

Parse 2.6 depicts a ccg derivation of a sentence, introducing several additional

combinatory rules. These rules increase the expressive power of the grammar from

context-free to mildly context-sensitive (Vijay-Shanker and Weir, 1994), and they allow

the grammar to account for a diverse range of linguistic phenomena through rebracket-

ing, such as the non-constituent coordination Example 1 which causes problems for

constituency and dependency grammars.

The first new rule introduced is coordination, which allows two equivalent con-

stituents separated by a conj category (e.g. and) to be combined together to form a new

constituent with the same category:

X conj X⇒ X (<Φ>)

The challenge remains to transform the non-equivalent constructions 8,000 people

in Spain and 2,000 abroad into entities which can be coordinated. The key observation

is that each construction is effectively looking for a transitive verb to its left, and upon

finding one will produce an intransitive verb. However, application rules alone cannot

produce this category from those assigned to the words:

employs 8,000 people in Spain

(S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
>

(S\NP)\(S\NP)
>?

(S\NP)\((S\NP)/NP)

Consider the noun phrase 8,000 people. Its category is the atomic NP, which

does not specify any arguments, and so can only be consumed by a complex category.

2.3. Combinatory Categorial Grammar 19

employs 8,000 people

(S\NP)/NP NP
>

S\NP

employs 8,000 people

(S\NP)/NP NP
<T

(S\NP)\((S\NP)/NP)
<

S\NP

Parse 2.5: The ccg type-raising combinator transforms a category (here an NP) into a category

consuming the category that would have originally consumed it.

However, the ccg type-raising rule allows the category to be rewritten as a complex

category by effectively imprinting the behaviour of a complex category onto it. It

becomes a category that consumes the category that would have consumed it originally.

For example, when an NP is in object position, it can be thought of as a constituent that

can consume a transitive verb to its left to produce an intransitive verb

The fragment on the left in Parse 2.5 depicts the typical behaviour of a transitive

verb consuming the object NP. The fragment on the right type-raises the NP, allowing

it to consume the transitive verb instead to produce the same result in a non-canonical

way. The blue NP argument in the type-raise result is the original category. More

generally, the type-raising rules are defined as follows, with forward and backward

variants specifying on which side the type-raised category is expecting its argument:

X ⇒ T/(T\X) (>T)

X ⇒ T\(T/X) (<T)

Alone, type-raising simply generates derivational ambiguity. However, type-raising

combined with the composition rules allow for constituents to be rebracketed:

employs 8,000 people in Spain

(S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
<T >

(S\NP)\((S\NP)/NP) (S\NP)\(S\NP)
<B

(S\NP)\((S\NP)/NP)

20 Chapter 2. Grammars, Corpora, and Evaluation

Composition has allowed the outermost categories (coloured blue) to be the factors

upon which combination can occur. The four composition rules allow categories to

combine when the result of one category is the same as the argument of the other.

Forward composition calls for the argument of the left category to be the same as the

result of the right category, while backward composition requires the result of the left

category to be the same as the argument of the right category. Harmonic composition

is order preserving as the input categories must still occur in canonical order for the

combination to succeed. Crossed composition is order permuting, and is used to analyse

constructions such as heavy np shift in English, where an object np is sufficiently large

enough to swap positions with an intervening pp (e.g. gave to the bank an extremely

large and valuable ancient artefact).

Forward composition

X/Y Y/Z ⇒ X/Z (>B)

Backward composition

Y\Z X\Y ⇒ X\Z (<B)

Forward crossed composition

X/Y Y\Z ⇒ X\Z (>BX)

Backward crossed composition

Y/Z X\Y ⇒ X/Z (<BX)

Steedman (2000) bans the use of forward crossed composition in English as it leads

to overgeneration. By applying the same set of type-raising and composition rules to

2,000 abroad , we can produce equivalent (non-constituent) constructions which can be

coordinated together with the coordination rule. The resulting constituent can then

consume the verb employs to produce the desired final analysis, depicted in Parse 2.6.

2.3. Combinatory Categorial Grammar 21

The bank employs 8,000 people in Spain and 2,000 abroad

NP/N N (S\NP)/NP N/N N ((S\NP)\(S\NP))/NP N conj N (S\NP)\(S\NP)
> >

NP N⇒NP NP NP

<T > <T
(S\NP)\((S\NP)/NP) (S\NP)\(S\NP) (S\NP)\((S\NP)/NP)

<B <B
(S\NP)\((S\NP)/NP) (S\NP)\((S\NP)/NP)

<Φ>
(S\NP)\((S\NP)/NP)

<
S\NP

<
S

Parse 2.6: The ccg analysis of the sentence in Parse 2.1, demonstrating the application, type-

raising, composition, and coordination rules.

2.3.3 ccg Dependencies

As complex categories are combined with their arguments, they create a logical form

representing the semantics of the sentence. Each combinatory rule corresponds to

a semantic interpretation which propagates the logical form through the derivation.

There are different approaches to representing the semantics, and a commonly used

one is the dependencies used in ccgbank (Hockenmaier and Steedman, 2007), the

primary corpus of English ccg derivations. Using this mechanism, ccg derivations

can generate head-argument dependencies similar to those of Section 2.2.

Dependencies in ccg are created by complex categories. Each argument slot in

a complex category is numbered and associated with a corresponding head variable.

The dependencies themselves are 5-tuples 〈h, c, s, f , l〉. In this notation, c is the ccg
category which creates the dependency; h is the word to which that category was

assigned; s specifies which slot is being filled; and f is the head word of the constituent

filling slot s; f will fill the variable that is co-indexed with slot s. Finally, l may contain

either (−) or another category, indicating whether the dependency is local or long range.

Long-range dependencies occur when the structures that are related are separated by

22 Chapter 2. Grammars, Corpora, and Evaluation

The := (NPY/N1
Y)The

bank := Nbank

employs := ((Semploys\NP1
Y)/NP2

Z)employs

Figure 2.2: The fully annotated categories for The, bank , and employs in Parse 2.6. Subscript

variables Y and Z show the co-indexation mechanism and superscripts indicate slot numbers;

combinator application triggers unification of all co-indexed variables on a category.

intervening constituents. If the dependency is long-range, then l contains the ccg
category via which the dependency was formed.

ccg dependency creation is driven by the interaction of categories. Unlike in

constituency or dependency grammars, where head-argument relationships are usually

defined outside the lexicon, the category assigned to a word specifies precisely the

dependencies that the word will head, and indirectly specifies the dependencies that

the word will be an argument in. Words may head multiple dependencies, or be an

argument in multiple dependencies.

Figure 2.2 gives the fully annotated categories used in the C&C parser (discussed

further in Chapters 5 to 7) for some of the words from Parse 2.6. The, a determiner,

requires a noun argument to its right to produce a noun phrase result category. Its fully

annotated category is (NPY/N1
Y)The, indicating that its argument slot 1 is co-indexed

with the head of the N argument category that it is seeking. This head will be stored in

the variable Y on the category, and is said to be a filler of the variable. Upon combination

with the N, the result NP is then returned. The co-indexed Y variable indicates that

the resulting np has the same head as the argument N category (bank), and that the

head word will be available as variable X on that category for further dependencies

to use. The variable on the result is denoted as an active variable; this is in contrast

to inactive variables, which have become dormant after combination and are thus no

2.3. Combinatory Categorial Grammar 23

longer available for dependencies to be formed. The process of passing variables during

category combination is termed unification, as set and unset variables on the argument

are unified through co-indexation with those on the result category.

The transitive verb employs requires a subject np argument and an object np argu-

ment. Its fully annotated category is ((Semploys\NP1
Y)employs/NP2

Z)employs. This category

indicates that argument slot 1 is associated with variable Y, unified with the variable

heading the subject NP, and so when the slot is filled a dependency will be established

between employs and the word that is assigned to Y. In Parse 2.6, slot 1 of employs is

filled by bank , which is the head of the left NP absorbed by the transitive verb. Slot 2

is associated with variable Z, and this is filled twice (by people and 2,000) due to the

coordination rule, which creates multiple filler words for a particular variable and thus

allows multiple words to fill a particular slot. This process has created dependencies

between the words that are similar to the subject and object relations present in most

dependency schemes. However, ccg has given a clear representation for the impact

of the coordinated nps, showing exactly which heads are coordinated, and what syn-

tactic role each plays in the derivation. The parallel structure is also captured in the

derivation. The full set of dependencies for the derivation in Parse 2.6 is depicted in

Figure 2.3, with the dependencies in blue being those headed by employs .

Parse 2.7 depicts the ccg analysis of the ambiguous pp coordination from Parse 2.3.

Different lexical categories have been assigned to the words, allowing the prepositions

on and under to be combined using the coordination combinator into a single con-

stituent, which then modifies the verb phrase opened 8 branches . The common element

of interaction with employs is maintained by ccg in Parses 2.6 and 2.7, but the different

parallel structure resulting from the coordination is also represented, in contrast to the

dependency grammar. The resulting dependencies from the derivation in Parse 2.7 are

depicted in Figure 2.4.

24 Chapter 2. Grammars, Corpora, and Evaluation

〈The, NP[nb]/N1, 1, bank , −〉

〈employs , (S[dcl]\NP1)/NP2, 1, bank , −〉

〈employs , (S[dcl]\NP1)/NP2, 2, people, −〉

〈employs , (S[dcl]\NP1)/NP2, 2, 2,000 , −〉

〈8,000 , N/N1, 1, people, −〉

〈in, ((S\NP)\(S2\NP))/NP3, 2, employs , −〉

〈in, ((S\NP)\(S2\NP))/NP3, 3, Spain, −〉

〈and , conj, 1, people, −〉

〈and , conj, 1, 2,000 , −〉

〈abroad , (S\NP)\(S2\NP), 2, employs , −〉

Figure 2.3: The full set of ccg dependencies generated by the derivation in Parse 2.6.

The bank opened 8 branches on time and under budget

NP/N N (S\NP)/NP N/N N ((S\NP)\(S\NP))/NP N conj ((S\NP)\(S\NP))/NP N
> >

NP N NP NP
> >

NP (S\NP)\(S\NP) (S\NP)\(S\NP)
> <Φ>

S\NP (S\NP)\(S\NP)
<

S\NP
<

S

Parse 2.7: The ccg analysis of the sentence in Parse 2.3. The different underlying coordination

is readily identifiable through the different lexical categories assigned to words and the different

final derivation.

2.3. Combinatory Categorial Grammar 25

〈The, NP[nb]/N1, 1, bank , −〉

〈opened , (S[dcl]\NP1)/NP2, 1, bank , −〉

〈opened , (S[dcl]\NP1)/NP2, 2, branches , −〉

〈8 , N/N1, 1, branches , −〉

〈on, ((S\NP1)\(S2\NP))/NP3, 1, opened , −〉

〈on, ((S\NP1)\(S2\NP))/NP3, 3, time, −〉

〈and , conj, 1, on, −〉

〈and , conj, 1, under , −〉

〈under , ((S\NP1)\(S2\NP))/NP3, 3, budget , −〉

〈under , ((S\NP1)\(S2\NP))/NP3, 1, opened , −〉

Figure 2.4: The full set of ccg dependencies generated by the derivation in Parse 2.7.

2.3.4 Ambiguity in ccg

The expressiveness afforded by ccg’s combinatory rules leads to what has been termed

spurious ambiguity (Wittenburg, 1986), where a sentence may have multiple, semanti-

cally equivalent derivations. In particular, the type-raising and composition combina-

tors allow the same categories to be combined in different ways by rewriting atomic

categories. This functionality is necessary for linguistic phenomena such as the non-

constituent coordination of Parse 2.6. However, these combinators allow alternative

analyses for forward and backward application, though each derivation still generates

the same dependencies and underlying logical form (hence the term ‘spurious’).

Spurious ambiguity led to criticisms that ccg could not be efficient, as it exponen-

tially increases the potential search space of a parser. Wittenburg (1987) suggested

replacing the type-raising and composition combinators with predictive forms that

are only used when necessary. Eisner (1996b) noted that this proposal introduced non-

26 Chapter 2. Grammars, Corpora, and Evaluation

8,000 qualified people ,

N/N N/N N ,
>

N
>

N
>

N

8,000 qualified people ,

N/N N/N N ,
>

N
>

N
>

N

8,000 qualified people ,

N/N N/N N ,
>

N
>

N
>

N

Parse 2.8: Absorption ambiguity in ccg, where all three derivations have a different syntactic

structure, but generate identical dependencies.

standard constituents rejected by traditional ccg, and instead described a technique

that defined a single normal-form derivation for each semantically equivalent analysis

(termed an equivalence class). The normal-form constraints proposed by Eisner apply

to the result categories of composition:

1) No category produced by forward composition may serve as the left child to

forward composition or application.

2) No category produced by backward composition rule may serve as the right

child to backward composition or application.

Applying these rules during ccg parsing completely eliminates ambiguity when

type-raising is not used, and significantly reduces the number of potential derivations

when it is used (Clark and Curran, 2004a). They also remove the need for costly

semantic equivalence checks during parsing.1

Absorption ambiguity in ccg occurs when constituents may be placed in several

locations in the derivation without affecting the logical form. That is, the absorption of

the constituent generates no dependencies. Punctuation such as commas, brackets, and

periods are particularly prone to absorption ambiguity in ccg as the formalism will

only assign them a lexical category if they are syntactically important in the sentence

(e.g. a comma acting as a coordinator will be assigned the category conj). In all other
1Hockenmaier and Bisk (2010) point out that the Eisner rules do not preserve all interpretations when

the degree of composition is bounded, and present a modified set of constraints satisfying this property.

2.4. Corpora and Corpus Conversions 27

cases, punctuation is assigned a category based on its pos tag, and will typically be

absorbed into another constituent using a number of non-standard rules. Parse 2.8

depicts three possible derivations of a short sentence fragment suffixed with a comma,

where all three generate identical dependencies.

White and Rajkumar (2008) have shown that absorption ambiguity causes punctua-

tion to overgenerate in a ccg realiser. By assigning lexical categories to punctuation

and integrating it more closely into the grammar, they are able to constrain overgen-

eration and improve realisation coverage and bleu scores. However, this would not

affect all of the ambiguities in Parse 2.8, as they are created by the order of combina-

tor application. Also, within parsing, punctuation is often inconsistently treated in

grammars and corpora, and is commonly excluded from parser evaluation (Black et al.,

1991; Yamada and Matsumoto, 2003; Buchholz and Marsi, 2006; Clark et al., 2002).

2.4 Corpora and Corpus Conversions

Statistical modelling has engendered wide-coverage, accurate parsers. The most accu-

rate parsers use supervised machine learning techniques to extract a model from an

annotated dataset. Unsupervised parsers have been the subject of substantial research

over the last decade, but still perform significantly worse than supervised parsers.

Thus, the quality of parsing is strongly reliant on the quality of the available anno-

tated data. In this section we briefly introduce constituency, dependency, and ccg
corpora and corpus conversion tools that have become widely used for research in

parsing, including the Penn Treebank, OntoNotes, lth and Stanford dependencies,

and ccgbank.

2.4.1 Constituency Grammar Corpora

English parsing has been defined for over two decades by one corpus: the Penn Tree-

bank (ptb; Marcus et al., 1993). Released in the early 1990s, the Treebank is a syntacti-

28 Chapter 2. Grammars, Corpora, and Evaluation

cally annotated corpus of English, and its primary component is the 1.1 million words

of newswire from the Wall Street Journal (wsj). English parsing research has focused

heavily on the wsj data, and the development of the Treebank drove the adoption of

statistical parsing using supervised machine learning algorithms.

The Penn Treebank annotation was performed by linguistically-trained annotators

correcting and combining fragments from the output of the Fidditch parser (Hindle,

1983). The corpus is distributed in a bracketed-string format representing the con-

stituency trees. An example sentence from the Treebank is presented in Figure 2.5,

depicting the sentence in Parse 2.1. pos tags form the preterminals of each node in the

tree, with phrasal labels serving as the nonterminals. Co-indexed variables to represent

the gapped verb are present, as well as additional function tags indicating the subject

(SBJ) of the sentence, and that the fragments Spain and abroad indicate locations (LOC).

The exact annotation scheme was motivated by cost-effectiveness, particularly

the time expense of correcting the Fidditch output. For example, null elements were

retained in the corpus as theywere already produced by the parser, and it was relatively

simple to verify them. Marcus et al. (1993) notes that this decision had already enabled

early work on recovering predicate-argument dependencies from the Treebank, and

the presence of null elements would be crucial for the later conversions of the Penn

Treebank to dependency and linguistically-motivated grammar formalisms. On the

other hand, the distinction between complements and adjuncts could not be made

consistently by annotators, and the effort required for this slowed down the annotation

process considerably.

Noun phrases were also deficiently bracketed due to the unacceptable cost of insert-

ing more fine-grained brackets than those provided by the parser. Thus, the original

Treebank assumes that all nps have a flat structure with all constituents at the same

level, though this is clearly not always the case in language, e.g. ((Air Force) contracts)

and ((crude oil) prices).

2.4. Corpora and Corpus Conversions 29

((S
(NP-SBJ (DT The) (NN bank))
(VP
(VP (VBZ employs)

(NP-1 (CD 8,000) (NNS people))
(PP-LOC-2 (IN in)
(NP (NNP Spain))))

(CC and)
(VP
(NP=1 (CD 2,000))
(ADVP-LOC=2 (RB abroad))))

(. .)))

Figure 2.5: The Penn Treebank bracketed string representation of the tree in Parse 2.1.

The Treebank was unmatched in scale and detail at the time of its release, and

provided the missing resource required for statistical parsing. It quickly became a de-

facto standard, and corpora for many other grammars, including dependency schemes

(Johansson and Nugues, 2007; de Marneffe and Manning, 2008a), ccg (Hockenmaier

and Steedman, 2007), Lexicalised Tree-Adjoining Grammar (Shen et al., 2008), and

Head-driven Phrase Structured Grammar (Miyao et al., 2004) have been automatically

and semi-automatically derived from the Treebank.

There has been considerable attention paid to the wsj data since the initial release

of the Penn Treebank, with several augmentations to the corpus annotation. Vadas and

Curran (2007) added complete noun phrase bracketing to the treebank, enriching the

internal np structure and allowing parsers built on the corpus to model the syntactic

and semantic structure inside. As we will discuss later, this work has proved important

for converting the Treebank data to different grammar formalisms. Meanwhile, differ-

ent types of annotation have been applied on top of the syntactic trees in the corpus,

including semantic roles (Palmer et al., 2005) and nominals (Meyers et al., 2004).

The OntoNotes project has sought to create a holistic, semantically enriched cor-

pus that combines syntactic annotation with shallow semantics (Hovy et al., 2006;

Weischedel et al., 2011). The Penn Treebank wsj data is included in the OntoNotes

30 Chapter 2. Grammars, Corpora, and Evaluation

NP

NNP

Inc.

NNPS

Cars

NNP

Motor

NNP

Rolls-Royce

(a) Penn Treebank

NP

NNP

Inc.

NML

NNPS

Cars

NNP

Motor

NNP

Rolls-Royce

(b) Vadas and Curran (2007)

NP

NNP

Inc.

NNPS

Cars

NNP

Motor

NNP

Royce

HYPH

-

NNP

Rolls

(c) OntoNotes 4

Figure 2.6: The noun phrase structure assigned under three different annotations of the Penn

Treebank data. Each phrase is headed by Inc.

release, though the original annotation has been changed in several ways, and some

sentences have been excluded. The raw newswire sentences were retokenised with

slightly different rules, most notably splitting hyphenated words into separate tokens

(Warner et al., 2004). Additional HYPH and AFX pos tags were added to account for

the new tokens introduced from splitting hyphens. The syntactic annotation guidelines

were also updated to improve the detail provided in nps. However, these changes

are not always compatible with those of Vadas and Curran (2007) due to the tokenisa-

tion changes. Figure 2.6 depicts the differences between the original Penn Treebank,

the Vadas and Curran (2007) version, and the OntoNotes 4 release for a noun phrase

containing a hyphenated proper noun.

Parsers have been shown to display domain dependence, where they performmuch

better on text taken from the same domain as their training data compared to text from

outside that domain (Sekine, 1997; Gildea, 2001). An ongoing challenge is to improve

out-of-domain performance, particularly on web text, which presents its own unique

2.4. Corpora and Corpus Conversions 31

challenges. Unlike heavily-edited newswire, web text sourced from blogs, discussion

forums, and qa sites often display inconsistent capitalisation and punctuation usage,

spelling and grammatical mistakes, and heavy use of jargon and slang. Syntactic

constructions such as questions, imperatives, lists, and fragments are also much more

common in web text than newswire.

The English Web Treebank (ewt) is a collection of 16,624 sentences of web text

annotated with similar syntactic structure to the Penn Treebank (Bies et al., 2012). It is

the largest syntactically annotated corpus of web text currently available, and it was

used for the first shared task of the Syntactic Analysis of Non-Canonical Language

workshop (SANCL; Petrov andMcDonald, 2012). The data in the corpus is split roughly

evenly across five domains:

• question-answers taken from Yahoo! Answers, a community-driven qa site;

• newsgroup discussion threads pertaining to a variety of topics and interest area;

• online reviews of businesses and services taken from various Google websites;

• email messages sent by employees of the Enron Corporation, taken from the
Enronsent Corpus (Styler, 2011);

• weblog posts and articles.

The SANCL 2012 Shared Task provided development and test splits of the English

Web Treebank by partitioning the sentences in each domain in half. The first half of

each domain is used as development data, and the second half as test data.2

2.4.2 Dependency Corpora

Dependency treebanks are typically developed in two ways. Some treebanks are man-

ually constructed over raw data, and others are semi-manually produced by correcting

or adapting the output of an existing parser. Other dependency treebanks are automati-

cally induced from existing corpora, most notably the Penn Treebank and its variations.
2Slav Petrov, p.c.

32 Chapter 2. Grammars, Corpora, and Evaluation

The automatic conversion process is typically developed following some amount of

manual inspection and experimentation with the existing corpus.

The Prague Dependency Treebank (pdt) contains over 38,000 sentences of Czech
text, sourced from newspapers and magazines (Hajič, 1998). Inspired by the Penn

Treebank, it is manually annotated with morphological information, dependency

structures, and linguistic meanings. The pdt set a de-facto standard for dependency

treebank representation, and has seen continuing updates since its introduction – the

most recent of which is the pdt 3.0 (Bejček et al., 2013). The pdt also set a precedent

in providing a large annotated corpus in a language other than English – a forerunner

to the widespread recent work in multilingual dependency parsing.

The parc 700 Dependency Bank (DepBank) consists of 700 randomly chosen sen-

tences from section 23 of the original Penn Treebank. Each sentence was parsed using

a Lexical-Functional Grammar parser before manual correction and adjustment to

produce a gold-standard dependency output (King et al., 2003). The grammar used in

DepBank is broadly similar to the grammatical relations (grs) scheme of Briscoe (2006),

used in the rasp unlexicalised grammar parser (Briscoe et al., 2006). In both the Dep-

Bank and gr schemes, dependencies are binary-labeled relations between head and

argument. However, DepBank includes more detailed feature-based information, such

as noun plurality, number type, and form (Briscoe and Carroll, 2006). Both grammars

produce dependency graphswithout an explicit root, and eachwordmay havemultiple

heads. The gr hierarchy is depicted in Figure 2.7.

Early research on statistical parsing with the Penn Treebank identified phrase head

words as an important feature. BothMagerman (1994) and Collins (1999) provide perco-

lation “head-finding” rules for the Treebank to heuristically locate heads based on the

labels assigned to the phrase and the constituents it contained. Recursively extracting

the head-modifier relationships from each phrase using these heuristics gives a set of

dependencies spanning the sentence (as described in Section 2.2). These unlabeled

dependencies, extracted over the Penn Treebank, formed a projective, automatically-

2.4. Corpora and Corpus Conversions 33

!!!!!
"""""

#
##

$
$$

%%%%
&&&&

%%%
'''

#
#

##
((

&&&&&&&&)
)

)
))

$
$$

+++++++++

""""",,--
!!!!!

.........
$

$$
/////
0000000
++++++++++

dependent

ta arg mod det aux conj

mod arg

ncmod xmod cmod pmod
subj dobj

subj
comp

ncsubj xsubj csubj
obj pcomp clausal

dobj obj2 iobj xcomp ccomp

Figure 1: The GR hierarchy

(Grover et al, 1993). The following contains a brief description of each GR type, its
subtypes and intended use.

conj encodes relations between a coordinator and the head of a conjunct. There will be
as many such binary relations as there are conjuncts of a specific coordinator. It has no
additional fields.
Kim likes oranges, apples, and satsumas or clementines

(ncsubj likes Kim _) (dobj likes and)

(conj and oranges) (conj and apples) (conj and or)

(conj or satsumas) (conj or clementines)

aux encodes relations between main verbs as (semantic) head and auxiliary dependents.
It has no additional fields. There will be as many such binary relations as there are
auxiliaries. If a copular or main verb form of an auxiliary is present then it is the head of
any such aux relation. The head of aux can be ellip(tical) as in Kim will.
Kim has been sleeping

(ncsubj sleeping Kim _) (aux sleeping has) (aux sleeping been)

det encodes a binary relation between articles, quantifiers, partitives and other single
word forms which can begin NPs and the head of the NP. It has no additional fields.
Some men came

(det men Some) (ncsubj came men _)

ncmod encodes binary relations between non-clausal modifiers and their heads. There are
subtypes: default (), part(itive), prt(particle), poss(essive), num(ber), ta(text adjunct),
and ij(interjection). The default case covers most pre-/post-modification.
the old man in the barn slept

(ncmod _ man old) (ncmod _ man in) (dobj in barn)

17

Figure 2.7: The grammatical relations hierarchy, reproduced from Briscoe (2006).

extractable dataset that was used in early dependency parsers, such as Eisner (1996c).

Yamada andMatsumoto (2003) provided a set of heuristics extendingMagerman (1994).

Nivre (2006) reimplemented their algorithm, incorporating heuristics to infer labels

for each of the dependency arcs. The dependency scheme came to be known after the

name of the Nivre (2006) tool to produce it, Penn2Malt.

More recent dependency schemes have sought to improve on the early heuristic head-

finding rules in a number ofways. The lth scheme focused on producing dependencies

with improved linguistic fidelity whilst maintaining the constraint of a single head

per word. It took advantage of the traces, co-indexation, and null elements in the

Treebank that were essentially ignored by earlier converters (Johansson and Nugues,

2007). The scheme also utilised the improved Treebank np annotation of Vadas and

Curran (2007) to more accurately model np internal structure. The resulting scheme

has a richer set of labels than Penn2Malt, and can handle long-distance phenomena

such as the gapping example presented in Section 2.2, wh-movement, and expletives.

Johansson and Nugues (2007) note that raising and control are challenging to model

with only one head per word. Due to the increased syntactic detail, the scheme can

produce trees which are non-projective. However, the majority of analyses in English

are projective, and prior work with these dependencies in English has used projective

parsing algorithms to good effect (Bansal and Klein, 2011).

34 Chapter 2. Grammars, Corpora, and Evaluation

1 The DT 2 det

2 bank NN 3 nsubj

3 employs VBZ 0 root

4 8,000 CD 5 num

5 people NNS 3 dobj

6 in IN 3 prep

7 Spain NNP 6 pobj

8 and CC 3 cc

9 2,000 CD 3 conj

10 abroad RB 9 advmod

Figure 2.8: A compressed tabular representation of the Stanford dependency tree in Parse 2.2,

based on the CoNLL format. Each word of the sentence is given an index, with the head of each

word indicated by the appropriate index. By convention, the root word is headed by index 0.

lth has seen widespread use in recent work, including the 2007, 2008, and 2009

CoNLL Shared Tasks on dependency parsing. These tasks spurred an increased research

focus onmultilingual parsing (Nivre et al., 2007; Surdeanu et al., 2008; Hajič et al., 2009).

The grammar has also been shown to improve the performance of downstream tasks

due to its richer linguistic information (Elming et al., 2013). The pennconverter tool3

accepts bracketed constituency trees for sentences in Penn Treebank-like formats, and

produces lth dependencies for those sentences in the tabular CoNLL format, depicted

in Figure 2.8.

The Stanford dependency scheme (sd; de Marneffe and Manning, 2008a) has also

become widely popular for dependency parsing work (McDonald et al., 2013). Stanford

dependencies have proved to be useful for a wide variety of tasks, including parser

evaluation (Cer et al., 2010; Nivre et al., 2010), recognising textual entailments (Dagan

et al., 2009), and biomedical natural language processing (Pyysalo et al., 2007). Stanford

dependency corpora have been produced for a variety of different languages, culmi-

3http://nlp.cs.lth.se/software/treebank_converter/

http://nlp.cs.lth.se/software/treebank_converter/

2.4. Corpora and Corpus Conversions 35

nating in the recent development of a Universal Dependency Scheme based upon it

(McDonald et al., 2013).

Stanford dependencies were designed with the intention of producing semantically

contentful relations useful in downstream tasks. For example, the distinction between

complements and adjuncts is syntactically important, but is less useful in relation

extraction tasks. In contrast, np internal relationships are much more critical, and so

Stanford dependencies largely ignore the former and include many labels for the latter

(de Marneffe and Manning, 2008b).

Stanford dependencies can be extracted in two main flavours. The basic variant

produces projective trees, with a single word per each head. The collapsed variant

removes intervening functionwords from the representation. For instance, coordinators

are changed into relations under the collapsed variant, having the effect directly linking

coordinated works and removing the less semantically useful conjunction dependency.

The Stanford parser4 (de Marneffe et al., 2006) provides the canonical converter from

Penn Treebank-style constituency trees to Stanford dependencies in basic and collapsed

forms. Unlike lth, the Vadas and Curran (2007) enriched np brackets is not mandated,

and the conversion does not make use of the trace information in the Treebank.

2.4.3 ccg Corpora

ccgbank (Hockenmaier and Steedman, 2007) is the primary corpus used for English

parsing with ccg. It was derived from the Penn Treebank wsj data through a semi-

automated process (Hockenmaier, 2003b). Similar ccg treebanks have been induced

for German (Hockenmaier, 2006) and Chinese (Tse and Curran, 2010).

Hockenmaier (2003a) describes the process used to transform the Penn Treebank

into ccgbank. The process converted 99.44% of the wsj sentences, with the remainder

being fragments, failed derivations due to the adjunct-finding heuristics used in the

procedure, or sentences exhibiting linguistic phenomena that were not covered by

4http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml

36 Chapter 2. Grammars, Corpora, and Evaluation

(<T S[dcl] 0 2>
(<T S[dcl] 1 2>

(<T NP 1 2>
(<L NP[nb]/N DT The>)
(<L N NN bank>))

(<T S[dcl]\NP 0 2>
(<L (S[dcl]\NP)/NP VBZ employs>)
(<T (S\NP)\((S\NP)/NP) 1 2>
(<T (S\NP)\((S\NP)/NP) 0 2>
(<T (S\NP)\((S\NP)/NP) 0 1>
(<T NP 0 1>
(<T N 1 2>
(<L N/N CD 8,000>)
(<L N NNS people>))))

(<T (S\NP)\(S\NP) 0 2>
(<L ((S\NP)\(S\NP))/NP IN in>)
(<T NP 0 1>
(<L N NNP Spain>))))

(<T (S\NP)\((S\NP)/NP)[conj] 1 2>
(<L conj CC and>)
(<T (S\NP)\((S\NP)/NP) 0 2>
(<T (S\NP)\((S\NP)/NP) 0 1>
(<T NP 0 1>
(<L N CD 2,000>)))

(<L (S\NP)\(S\NP) RB abroad>))))))
(<L>))

Figure 2.9: The ccgbank representation of the derivation in Parse 2.6, which is much deeper

than the ptb representation in Figure 2.5 due to the binary-branching. factor. Internal nodes

(<T) specify category, headedness (0 = left child head), and number of children.

the algorithm. ccgbank contains 48,934 sentences of ccg normal-form derivations,

represented as binary-branching trees. Leaves in the tree specify the words of the

sentence with their pos tags and categories. Internal nodes represent the results of

combinations, and specify the result category, headedness (with a 0 indicating the node

is headed by its left child, and 1 indicating the right child), and the number of children.

Figure 2.9 gives the ccgbank representation of the ccg derivation in Parse 2.6.

ccgbank introduces features to atomic categories, which convey additional linguis-

tic information. For example, declarative clauses are labelled S[dcl], while passive

2.4. Corpora and Corpus Conversions 37

clauses are labelled S[pss]. Noun phrases beginning with a determiner are labelled

NP[nb] to indicate that they are non-bare.

Parallel to the normal-form derivations, ccgbank also lists the ccg dependencies

generated by each derivation, and the co-indexation and variable-passing behaviour

for each category required to create dependencies. These gold dependencies are the

standard data used for evaluating ccg parsers, and the co-indexation information

is crucial for developing a ccg parser itself. One deficiency of the co-indexation

mechanism is that it assumes all words bearing a category yield the same dependencies;

that is, co-indexation information is unique given the category. Hockenmaier and

Steedman (2007) notes that this is most obviously incorrect in the case of control verbs,

such as promise and persuade, which are annotated with the same category, but should

be co-indexed differently and produce different dependencies.

A number of non-standard rules and adaptations of ccg’s combinators were in-

troduced in ccgbank to handle idiosyncrasies in the Penn Treebank annotation, as

well as constructions that cannot be elegantly analysed by ccg. The most prevalent

amongst these are a number of unary type-changing rules that allow several kinds of

vp constituents to become modifiers of nps and vps. These constructions are called
clausal adjuncts, and are challenging to encode in ccg as the clausal adjunct exhibits

different syntactic behaviour to the verb phrase, necessitating a different category.

Some of the unary type-changing rules used in ccgbank are listed below:

N ⇒ NP

S[pss]\NP ⇒ NP\NP

S[adj]\NP ⇒ NP\NP

S[ng]\NP ⇒ NP\NP

S[ng]\NP ⇒ (S\NP)\(S\NP)

S[dcl]/NP ⇒ NP\NP

38 Chapter 2. Grammars, Corpora, and Evaluation

the house that Jack inexplicably built

NP/N N (NP\NP)/(S/NP) NP (S\NP)/(S\NP) (S\NP)/NP
> >T >B

NP S/(S\NP) (S\NP)/NP
>B

S/NP
>

NP\NP
<

NP

the house Jack inexplicably built

NP/N N NP (S\NP)/(S\NP) (S\NP)/NP
> >T >B

NP S/(S\NP) (S\NP)/NP
>B

S/NP

NP\NP
<

NP

Parse 2.9: A ccg analysis of a relative clause and a reduced relative clause excluding the

relativiser that . A unary rule is necessary to perform the syntactic function of that , otherwise

the canonical categories assigned to built and its modifier inexplicably must be changed.

These rules are included to prevent excessive category proliferation, as all verbs

which could be used as modifiers would require alternative categories when they

appeared in the modifier role. These additional categories would then propagate

through categories which modify those verbs. This problem illustrates a weakness of

ccg, in that it is difficult to encode syntactic behaviour without a corresponding lexical

unit. Parse 2.9 depicts a reduced relative clause where the unary rule performs the role

of the omitted relativiser, that . This allows the same categories as the non-reduced

clause to be used.

Containing the category set size using unary rules decreases the ambiguity of the

lexicon, and increases generalisation. However, these unary type-changing rules bring

syntactic behaviour out of the lexicon and into the grammar, interfering with a core

aim of the formalism. They also affect the dependency creation process, as the result

2.4. Corpora and Corpus Conversions 39

category of the unary rule must mediate any dependencies projected from within the

adjunct clause — dependencies which may not be consistent across all applications of

the rule. The impact of these inconsistencies has not been well studied in ccg parsing.

Honnibal (2010) proposed an alternative to unary type-changing rules in the form

of hat categories, which incorporate the type-changing rules as a feature of the verb

category itself. The desired modifier category is modeled as a different ‘hat’ which

the verb can wear if required. However, using hat categories increases the size of the

lexicon, and reduces parsing accuracy compared to using the unary rules. We do not

make use of hat categories in this thesis.

Rather than the ternary coordination rule presented in Section 2.3.2, ccgbank
represents coordination with a set of binary rules as follows:

conj X ⇒ X[conj]

, X ⇒ X[conj]

X X[conj] ⇒ X

These rules can be seen in the ccgbank derivation of Figure 2.9, where the ternary

rule presented in Parse 2.6 has been binarised. This has the advantage of ensuring that

all trees in ccgbank are at most binary-branching, rather than including ternary trees

where coordination is present.

As ccgbank was induced from the original Penn Treebank, it inherits some prob-

lems from the source corpus, such as the lack of np structure. While the Penn Treebank

annotates nps as flat constructions, ccg is binary branching, and so the conversion

algorithm simply assumed that all nps were exclusively right-branching. This creates

incorrect analyses for left-branching noun phrases and has unwelcome side-effects

when combined with coordination within the phrase. The following nonstandard conj

absorption rule is included in ccgbank to handle these cases:

conj N ⇒ N

40 Chapter 2. Grammars, Corpora, and Evaluation

The improvements in np annotation from Vadas and Curran (2007)’s reannotated

version of the Penn Treebank were transferred to ccgbank by Vadas and Curran (2008),

though we do not make use of these changes in this thesis.

2.5 Parser Evaluation

Evaluation is typically performed by running a parser over a dataset with known correct

annotations, and comparing the parser output against the annotated gold standard.

The reliance on linguist-annotated corpora has led to a standardisation in methodology

and evaluation in parsing. In particular, the ptb wsj has become the de-facto standard

corpus for training and evaluating supervised constituency parsers. In English, the

corpus is divided into 25 sections, numbered from 00 to 24; historically, sections 02-21

have been used as parser training data, sections 00 and 22 for parser development, and

section 23 for parser evaluation.

Dependency parsers and ccg parsers are commonly evaluated on converted Penn

Treebank data. However, the precise mechanics of the evaluation process are very dif-

ferent for these parsers. In this section, we describe how parsers for different grammars

are evaluated, and discuss a variety of issues with the current evaluation practices.

2.5.1 Constituency Evaluation

The standard evaluationmetric for constituency parsers are the parseval scores (Black

et al., 1991) over a held-out section of the ptb. parseval measures the constituent

accuracy of each individual sentence — how similar the constituents in the analysis

produced by the parser are to the gold standard. However, as erroneous constituents

in the parser output may not necessarily correspond directly to the constituents in the

gold standard, constituent accuracy alone is not a meaningful result. Instead, precision

and recall metrics are calculated to identify the percentage of correct constituents in the

2.5. Parser Evaluation 41

parser output, and the percentage of expected constituents that appear in the parser

output. The harmonic mean of these gives the parseval F-score for the sentence.

The parseval metric is extremely sensitive as it is calculated on a per-bracket

per-sentence basis. A change of a few tenths of a percent is usually sufficient to be

statistically significant over the standard evaluation dataset. However, it is also ex-

tremely coarse; Lin (1995) notes that a single misplaced constituent can trigger multiple

precision and recall errors, and all constituents are given equal weighting, rather than

assigning semantically crucial constituents more importance. Long-distance depen-

dencies are also difficult to measure, as they rely on traces or co-indexation which is

commonly not present in constituency output.

The nature of the ptb data typically usedwith parseval creates further drawbacks.

Manning and Carpenter (2000) point out that parses in the Treebank are typically quite

flat, meaning that there are relatively few internal constituents. The lack of internal

np structure is a widespread example where the Treebank does not provide detailed

constituencies. Additionally, the way in which the often ambiguous pp constituent is

annotated in the Treebank allows for mistaken attachments to go lightly punished by

parseval.
Despite these flaws, calculating the parseval score aggregated over all sentences

in the ptb section 23 allows a direct comparison with over twenty years of results in

constituency parsing research (Magerman, 1995; Collins, 1996, 1997; Charniak, 2000;

Charniak and Johnson, 2005; McClosky et al., 2006; Petrov and Klein, 2007).

2.5.2 Dependency Evaluation

Dependency parsers have been traditionally evaluated directly on the accuracy of head

attachment decisions, or attachment score. Unlabeled attachment scores (uas) evaluate
only whether the head and argument of a dependency is correct, and labeled attachment

scores (las) also require the assigned label to the dependency to be correct. Unlike

constituency parsers, dependency grammars that assign a single head to each word

42 Chapter 2. Grammars, Corpora, and Evaluation

can be meaningfully evaluated on accuracy alone as there is a direct correspondence

between the parser-produced output and the gold standard. Under this, every word

contributes equally to the overall accuracy.

Unlabeled attachment scores have been widely used to evaluate parsers on several

dependency schemes, including Penn2Malt dependencies (Yamada and Matsumoto,

2003; McDonald et al., 2005a; Nivre, 2006), lth dependencies (Bansal and Klein, 2011;

Pitler, 2012a), and Stanford dependencies (de Marneffe et al., 2006; Cer et al., 2010).

Lin (1995) and Carroll et al. (1998) argue for a dependency-based evaluation regime

for all parsers, citing the weaknesses of the parseval constituency metric, and advo-

cating the cross-formalism potential of a relatively simple, but semantically meaningful

dependency scheme. They propose precision, recall, and F-score metrics over the

parser-recovered dependencies as compared to the gold standard dependencies. The

scheme generalises over each parser’s internal representation, and allows for long-

distance dependencies to be evaluated. The disadvantage of this cross-parser scheme

is the requirement for parsers to convert their native output to the evaluation scheme,

potentially introducing errors and artificial performance limits.

Rimell et al. (2009) argue that a single combinedmetric such as parseval F-score or

uas offers a skewed view of parser performance. Parsers that perform similarly on an

aggregated metric may perform very differently on rare constructions as this difference

is masked by their low frequency. They propose a cross-formalism evaluation based on

the recovered of unbounded dependencies, where any number of intervening constituents

may be placed between the head and argument of a dependency. These dependencies

are important for building the complete predicate-argument structure of a sentence in

downstream tasks, and are difficult to recover using shallow parsing methods.

Rimell et al. build a Stanford dependency corpus of 700 sentences, specifically

chosen due to the presence of unbounded dependencies. Most parsers did quite poorly

on the evaluation, illustrating the difficulty of recovering unbounded dependencies.

2.6. Summary 43

However, a key challenge was extracting the unbounded dependencies from parser

output, due to the different dependency representation conventions across each parser.

2.5.3 ccg Evaluation

ccg combines both a constituency- and dependency-type analysis in its output. How-

ever, both the parseval and head attachment metrics are of little use in evaluating

ccg parsers. As the grammar is binary branching, ccg trees are deeper and contain

more constituents (i.e. brackets) than most constituency grammars – particularly the

ptb. Additionally, many different derivations may generate the same underlying de-

pendencies, rendering them semantically equivalent. Such equivalent analyses should

be scored identically, rather than being penalised for differing from the gold-standard

derivation. While this implies a dependency-based evaluation for ccg, such an evalua-

tion cannot be purely based on attachment accuracy, as each word in a sentence is not

restricted to having only one head.

Instead, the standard evaluation for ccg parsers calculates precision, recall, and

F-score over the dependencies returned by the parser, similar to Lin (1995) and Carroll

et al. (1998). The final evaluation for ccg parsers is typically undertaken over ccgbank
section 23 Clark et al. (2002).

2.6 Summary

In this chapter, we have briefly covered the grammars, corpora, and evaluation proce-

dures used in this thesis. We have contrasted the properties of a number of grammar

formalisms, described how they are created, and how the data in each formalism can

be used for training and evaluating parsers.

We now focus on English dependency parsing, and develop a comprehensive

classification of errors made by parsers based on applying constraints during parsing.

3 Constraint-basedErrorAnalysis for

Dependency Parsing

In this chapter, we implement dependency-level constraints in graph-based and transition-

based dependency parsers, and use the constraints to perform an in-depth exploration

of how the parsers respond when forced to generate specific arcs. By grouping depen-

dencies into error classes, we determine the relative constrained performance of the

parser on each error class on newswire and web text, as well as the cascading influence

of each class on the remainder of the sentence. This abstracts over the raw attach-

ment scores, and provides a deeper understanding of the comparative performance of

the parsers in- and out-of-domain, identifying the highest impact areas to target for

potential improvement.

We begin by building upon the background in the previous chapter, sketching a

brief history of parsing using the Penn Treebank, and introducing the widely-used

graph-based and transition-based approaches to dependency parsing. We motivate

the implementation of dependency-level constraints on individual arcs in each parser,

describing how we apply constraints to the parsers to force them to produce certain

arcs, whilst otherwise continuing with their decoding process. We group dependencies

into high-level error classes, and use them to perform an in-depth error analysis of the

parsers, comparing their performance across domains.

Dependency parsers are evaluated by measuring the word-level attachment ac-

curacy of heads and labels. Whilst this is easily interpreted and comparable across

45

46 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

systems, it does not provide insights into the types of errors made by the parser, why

they are being made, or what cascading impact they have. For example, misidentifying

the head of a modifier may only introduce a single attachment error, while misplacing

the root of a sentence will create substantially more errors elsewhere. Erroneous arcs

can also interfere with tree constraints, impeding the selection of correct arcs in both

projective- and non-projective dependency parsing.

Kummerfeld et al. (2012) abstracted away from individual bracket errors in con-

stituency parsing and identified broader error classes spanning acrossmultiple brackets

(such as clause attachment and modifier attachment). These error classes are grouped

with tree repair operations, allowing parser output to be analysed by repeatedly identi-

fying the error class and repair operation that fixes the most incorrect brackets. Imple-

mented as a post-processing script, the algorithm assumes that the remainder of the

parse is static as each error class is repaired. However, it is unclear whether the parser

will apply the repair operation in its entirety, or if it will introduce other changes in

response to the repairs.

We develop an evaluation procedure to evaluate the influence of each error class in

dependency parsing without making assumptions about how the parser will behave.

We define error classes based on dependency labels, and use the dependencies in

each class as arc constraints specifying the correct head and label for particular words

in each sentence. We adapt parsers to apply these arc constraints, enforcing correct

attachments for those words, whilst otherwise proceeding with decoding under its

grammar and model. By evaluating performance with and without constraints, we can

directly observe how each constraint set affects the parser, and identify the cascading

impact of repairing those errors.

We implement our procedure for the graph-based MSTParser (McDonald and

Pereira, 2006) and the transition-based ZPar (Zhang and Clark, 2011b), two widely-used

and representative dependency parsers. We evaluate over basic Stanford dependencies

generated over the OntoNotes 4.0 release of the wsj Penn Treebank data. We group

3.1. A Brief History of Computational Parsing 47

Stanford labels into error classes, and test constraints on words bearing each label in

turn. Our results show that erroneously attaching nps, pps, modifiers, and punctuation

have the largest overall impact on uas. Of those, nps and punctuation have the most

substantial cascading impact, indicating that these errors have the most effect on the

remainder of the parse. Enforcing correct punctuation arcs has a particularly large

impact on accuracy, even though most evaluation scripts ignore punctuation. We find

that punctuation arcs are commonly misplaced by large distances in the final parse,

crossing over and forcing other arcs to be incorrect in the process.

3.1 A Brief History of Computational Parsing

The earliest parsers used a rule-based approach. Linguists would curate a grammar

(typically using context-free productions) describing how sentences could be legally

formed in a language. This grammar would then be encoded in software and applied to

natural language directly. Some examples of such systems include the IBM Computer

Manuals constituency parser of Black et al. (1993), and the dependency-like Link

Grammar parser of Sleator and Temperley (1991).

Unfortunately, manual grammar curation is labour-intensive, and expert linguistic

knowledge is required to create the grammar and maintain it as the language evolves.

Resolving ambiguity is difficult in rule-based grammars, and even the most complete

grammar will grow obsolete over time.

The deficiencies of rule-based parsing influenced a move to statistical parsing,

which continues to dominate the field today. The role of the linguist has shifted from

defining rules for parsing to creating the annotated resources necessary for training

parsers. Annotated data has the advantage of being applicable to many different

parsers; the Penn Treebank in particular has convincingly demonstrated the utility of a

large syntactically-annotated dataset for multiple grammar formalisms. Standardising

48 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

constituency parser evaluation on the parseval metric over wsj section 23 also

contributed to an intense interest in statistical parsing.

Magerman (1995) describes spatter, the first parser trained on the wsj data.
spatter used decision tree models predicated on word clustering to construct a

constituent tree for each sentence. Statistics for the word clustering were gathered

from the wsj. spatter outperformed all existing rule-based parsers on the parseval
metrics, including some that had been under development for a decade. This result

convincingly demonstrated that statistical parsing using large treebanks for training

data was more viable and robust than grammar engineering.

Magerman’s work opened a new era of research work on statistical parsing, along-

side renewed development of large annotated corpora across different languages.

Collins (1996) and Collins (1997) describe parsing models that decompose the construc-

tion of tree constituents into a sequence of steps based on generating the head child

first, followed by each other child constituent outward from the head. The generation of

each child is assumed to be independent and is conditioned on all previously generated

children. This approach is an extension of the process of parsing probabilistic context-

free grammars, where probabilities for the model are estimated from the ptb. The
parser became known as the Collins parser (Model 1) and it outperformed spatter
on parseval. Continued enhancements aimed at capturing more detailed linguistic

phenomena such as subcategorisation and wh-movement resulted in Models 2 and 3 of

the parser (Collins, 1999), which further improved performance. The Collins parser

(particularly Model 2) has been widely-used and its generative head-driven parsing

process is particularly influential in the field.

Eisner (1996a,c) proposed probabilistic dependency parsing algorithms that were

trained and evaluated on the Penn Treebank, achieving comparable accuracies to the

contemporary work on statistical constituency parsing. Eisner (2000) further gener-

alised these models and many other dependency formulations as bilexical grammars

with efficient parsing algorithms. Eisner’s work, particularly the seminal parsing algo-

3.1. A Brief History of Computational Parsing 49

rithm now known as Eisner’s algorithm (discussed further in Section 3.2.1.1), was highly

influential in the development of statistical dependency parsing.

Charniak (1997) describes a probabilistic constituency parser that improved over

spatter and the early Collins parser on parseval. Charniak’s key improvement

was the extraction of a context-free grammar as well as probabilities from the wsj,
allowing a finer level of control over the generated structures. Like the Collins parser,

the Charniak parser underwent iterative improvement as new techniques emerged in

parsing. Charniak (2000) added a maximum-entropy inspired model (influenced by

Ratnaparkhi (1997)’s work on linear-time parsing) and Charniak and Johnson (2005)

proposed a reranking system that reordered the top n-best parses for each sentence

with a secondary model. The Charniak parser is widely-used and accurate; McClosky

et al. (2006)’s work on reranking and self-training for the Charniak parser make it

the current state-of-the-art in English constituency parsing with a parseval labelled

F-score of 92.1%.

Klein and Manning (2003b) describe the Stanford unlexicalised parser, which out-

performed the early lexicalised parsers of Magerman (1995) and Collins (1996), despite

encoding no word-specific information. They illustrated how simple, linguistically-

motivated state-splits could capture structural regularities in the ptb, avoiding the

sparseness of lexical and bilexical probabilities. Klein and Manning (2003c) use fac-

torisation to combine the unlexicalised model with a lexicalised dependency parser,

allowing the structural and predicate-argument features to be scored independently

before being combined into an overall probability for each parse. An additional advan-

tage of the resulting Stanford factored parser is that it permits efficient exact inference

using the A* search algorithm, as the simpler sub-models can be used to prune the

search space of the overall parser.

Petrov et al. (2006) extend the manual state-splitting annotations of Klein and Man-

ning (2003b) into an automatic process, developing a unlexicalised split-merge parser

known as the Berkeley parser. The system begins with a coarse X-bar grammar, and

50 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

repeatedly splits, re-trains, and merges the symbols over the ptb using the Expectation-

Maximisation algorithm. The iterative refinements and compactions result in a parser

of comparable performance to the most accurate lexicalised systems. Petrov and Klein

(2007) further improve inference in the Berkeley parser, experimenting with reranking

and dynamic programming algorithms in place of Viterbi decoding.

A particular interest in multilingual constituency and dependency parsing devel-

oped as corpora in multiple languages became available. Collins et al. (1999) describes

a dependency parser for Czech, based on the Prague Dependency Treebank (Hajič,

1998). Adapting the model of Collins (1997), the parser converted the dependency

structures in the Treebank to linguistic trees internally before extracting dependencies

for evaluation. Influenced by this work, Collins’ models were widely applied to con-

stituency parsing in many languages, including Chinese (Bikel, 2002), German (Dubey

and Keller, 2003), French (Arun and Keller, 2005), and Spanish (Cowan and Collins,

2005). Meanwhile, dependency parsing models were also developed for many lan-

guages as corpora became available, including Japanese (Kudo and Matsumoto, 2000),

Swedish (Nivre et al., 2004), Bulgarian (Marinov and Nivre, 2005), Chinese (Cheng

et al., 2005), and Danish (McDonald and Pereira, 2006). Recent CoNLL Shared Tasks on

Multilingual Dependency Parsing (Buchholz and Marsi, 2006; Nivre et al., 2007; Hajič

et al., 2009) have led to the creation of dependency corpora with consistent formats,

as well as a widespread focus on the challenges of dependency parsing in different

languages.

We will discuss ccg parsing in more detail in Chapters 5 to 7. In the next section,

we will discuss dependency parsing algorithms in more detail, focusing on the widely-

used graph-based and transition-based approaches.

3.2. Dependency Parsing 51

3.2 Dependency Parsing

In this thesis, we work with a graph-based parser (MSTParser), and a transition-based

parser (ZPar). These two contrasting systems represent the most common approaches

to dependency parsing in the recent literature. In this section we will briefly describe

both parsing methodologies and the decoding algorithms that underpin them.

3.2.1 MSTParser: Graph-based Dependency Parsing

Graph-based techniques cast dependency parsing as the assembly of a well-formed

dependency tree from smaller tree fragments. The parsing task is directly factored over

the smaller fragments, which are typically the dependency arcs of the tree. First-order

techniques assemble the tree by repeatedly combining the best-scoring individual arcs

according to the parser model. The total score for the tree is usually the sum of the

scores of all individual arcs used to construct the tree. Second-order and third-order

techniques additionally factor over pairs and triples of arcs respectively, but require

more complex decoding algorithms to maintain acceptable time complexity.

MSTParser (McDonald et al., 2005a,b; McDonald and Pereira, 2006) is a popular

graph-based dependency parser. It uses a second-order model, factoring its parsing

decisions over individual dependency arcs and parent-sibling relationships (two words

which both have a dependency arc to a common parent). If S is a set of arcs used in

the factorisation of the tree, the score of a S is determined by the dot product of its

high-dimensional feature representation, and a weight vector as follows:

score(S) = w · f(S)

f(S) encodes properties of the endpoints of the arcs, such as the words, pos tags,

suffixes, or information incorporated from external resources, with most features being

binary indicators that can be active (1) or inactive (0). The weight vector is determined

52 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

during training using a modified discriminative perceptron procedure, the Margin-

Infused Relaxed Algorithm (mira).

MSTParser has been widely-used in the field, and we use it for its popularity and

ease of modification; However, more recent work on graph-based parsing has yielded

better performance though more complex algorithms such as variational inference

(Martins et al., 2010), matrix tensor-factorisation (Lei et al., 2014), and cube pruning

(Zhang and McDonald, 2014).

MSTParser draws its name from the notion of dependency parsing as searching

for maximum-weight spanning trees in a weighted, directed graph. This generalises

the projective and non-projective parsing algorithms commonly used by graph-based

systems. Following previous work by Bansal and Klein (2011) and Pitler (2012a), we use

the projective parsing mode of MSTParser for all of our experiments. We did not use

the non-projective Chu-Liu-Edmonds algorithm described in McDonald et al. (2005b);

for English, which generates primarily projective dependency trees, non-projective

decoding algorithms perform significantly worse than projective ones. MSTParser uses

Eisner’s algorithm for projective decoding, which we will now describe.

3.2.1.1 Eisner’s Algorithm for Projective Decoding

Projective graph-based parsing is strongly equivalent to context-free parsing. Given

an extrinsic root node added to the far left of the sentence, there is an equivalence

between the set of all possible projective dependency trees rooted at the new node

and the set of all possible nested constituents (Kübler et al., 2009). Early graph-based

methods used variants of the dynamic programming cky algorithm for context-free

grammar parsing (described in detail for ccg parsing in Chapter 5). The heart of the

procedure is a table data structure C, where the item C[s][t][i] records the best-scoring

projective tree spanning the words ws . . . wt and rooted at wi, where s ≤ i ≤ t. The

item at C[0][n][0], where n is the length of the sentence, represents the root of the

highest-scoring tree over the entire sentence.

3.2. Dependency Parsing 53

cky-based dependency parsing fills the table based on the observation that any

projective subtree rooted at wi and spanning ws to wt must be composed of smaller

subtrees. These smaller subtrees may be combined to build larger subtrees by pro-

gressively adding dependency arcs between them; that is, a tree spanning ws . . . wq−1

headed by wi, s ≤ i < q, and a tree spanning wq . . . wt headed by wj, q ≤ j ≤ t can be

combined into one tree spanning ws . . . wt and headed by wi by adding the dependency

arc between ws and wj. Here, q is denoted as a split point between s and t. This gives

rise to the following recurrence over the split points q and subtree heads j to calculate

the best score for a projective tree headed by wi between ws and wt:

C[s][t][i] = max
s≤q<t, s≤j<t


C[s][q][i] + C[q + 1][t][j] + score(wi, wj) if j > i

C[s][q][j] + C[q + 1][t][i] + score(wi, wj) if j < i
(3.1)

Thecky algorithm for dependency parsing has a runtime ofO(n5), as it must fillO(n3)

entries in the table, and for each one consider O(n2) split points and subtree heads.

Eisner (1996b) proposed a substantially faster O(n3) algorithm which is equivalent to

the cky technique. Widely known as Eisner’s algorithm, it is used in many parsers

today, including MSTParser for projective dependency parsing. The algorithm is based

on the observation that for a headws, its left dependentsmay be gathered independently

from its right dependents without affecting the globally optimal score under the arc

factorisation. This creates two types of subtrees (or spans in Eisner’s notation):

• complete spans over ws . . . wt, which represent:

– a span headed by ws with a complete set of dependents on its right; or

– a span headed by wt with a complete set of dependents on its left;

• incomplete spans over ws . . . wj, which represent:

– a span headed by ws, with a dependency between ws and wj and potentially

more dependents to be picked up to the right;

54 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

ws wt ws wj wj wt

= +

(a) Complete span headed by ws

ws wt ws wj wj wt

= +

(b) Complete span headed by wt

Figure 3.1: Left- and right headed complete spans in Eisner’s algorithm.

ws wj ws wq wq+1 wj

= +

(a) Incomplete span headed by ws

ws wj ws wq wq+1 wj

= +

(b) Incomplete span headed by wj

Figure 3.2: Left- and right headed incomplete spans in Eisner’s algorithm. The dashed arc is

the dependency created by the operation.

– a span headed by wj, with a dependency between wj and ws and potentially

more dependents to be picked up to the left.

The root of the sentence is the head of a complete span with all of its dependents

to the right. Each smaller span is recursively constructed from subsequently smaller

spans; complete and incomplete spans are recursively constructed from one another.

Figures 3.1 and 3.2 depict how complete spans (represented by triangles) and incom-

plete spans (represented by trapezoids) are combined together to form larger spans.

The operations creating incomplete spans from two complete spans form dependency

3.2. Dependency Parsing 55

Algorithm 3.1 Eisner’s Algorithm
Require: a sentence S = w1, w2, . . . , wn

Require: a scoring function s(wi, wj) over the arc (wi, wj)

Require: a function label(wi, wj) returning the best label over the arc (wi, wj)

Ensure: the best score for a tree over S in E[0][n][L][C]
1 Initialise all entries of E[n + 1][n + 1][2][2] = 0.0
2 Initialise all entries of L[n + 1][n + 1][2] = null
3 for all m from 0 to n do
4 for all s from 0 to n do
5 t = s + m
6 if t > n then
7 break
8 � Create incomplete spans

9 L[s][t][R]← label(wt, ws)

10 E[s][t][R][I]← maxs≤q<t(E[s][q][L][C] + E[q + 1][t][R][C] + s(wt, ws))

11 L[s][t][L]← label(ws, wt)

12 E[s][t][L][I]← maxs≤q<t(E[s][q][L][C] + E[q + 1][t][R][C] + s(ws, wt))

13 � Create complete spans

14 E[s][t][R][C]← maxs≤j<t(E[s][j][R][C] + E[j][t][R][I])
15 E[s][t][L][C]← maxs<j≤t(E[s][j][L][I] + E[j][t][L][C])

arcs between the heads at opposite ends of the spans; forming a complete span does

not yield any further dependency arcs.

The key optimisation in Eisner’s algorithm is that the head of each subtree must

be one of its peripheries. This allows the cky factorisation over split points and

intermediate heads to be collapsed into a factorisation over the type of span, and

whether it is headed to the left or right. This relies on a table E, where E[s][t][d][c]

records the best-scoring projective span spanning ws . . . wt, headed by ws if d = L,

or wt if d = R. c = I indicates that the span is incomplete, and c = C indicates that

the span is complete. Thus, E[0][n][L][C] contains the score of the best parse over the

entire sentence.

cky and Eisner’s algorithm may be easily extended to labeled dependency parsing

by adding a secondary table L to record the best-scoring label for each arc in E. Algo-

rithm 3.1 gives the pseudocode for the labeled Eisner’s algorithm, describing how the

56 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

span combination operations in Figures 3.1 and 3.2 are used to find the best score of a

tree spanning the input sentence.

McDonald and Pereira (2006) describes a straightforward second-order extension

to Eisner’s algorithm which is implemented in MSTParser, allowing it to include the

most recent sibling attached in the score calculation at each step of the algorithm.

Further work has developed more expressive extensions to Eisner’s algorithm at the

cost of increased computational complexity. Notably, Carreras (2007) describes an

extended second-order model incorporating dependents of dependents, while Koo and

Collins (2010) implements a third-order model considering heads of heads in addition

to dependents.

3.2.2 ZPar: Transition-based Dependency Parsing

Transition-based techniques cast the dependency parsing problem as a series of decisions

made over each word in a sentence, passing from left to right. The name stems from

the transition system or state machine at the heart of such parsers, which encompasses a

set of states, and transitions between them. Unlike graph-based parsers, which score

dependency arcs directly, transition-based parsers are optimised over the series of

transitions leading to the formation of a parse.

The most popular approach for dependency parsing uses states to encompass

incomplete analyses of a sentence. A state C = 〈T, B, A, s〉, where T is a stack holding

partially processed words, which may be used as the target or source of dependency

arcs; B is a buffer holding the remaining words of the sentence which have not yet been

processed in the state; A is the set of dependency arcs which have been created in the

state; and s is the score of the state.

Each transition decision operates over two items in a state: the word at the top

of the stack, and the word at the front of the buffer. The transition decides whether

to move these items between the data structures, create arcs between them, or retire

them entirely in the parse. Transition-based parsers are distinguished by the set of

3.2. Dependency Parsing 57

transitions that they use, and the methodology they use to select the best transition at

each stage of the parsing process.

ZPar (Zhang and Clark, 2011b) is a labelled transition parser with four transitions:

• Shift the front word of the buffer to the top of the stack;

• Reduce the top word of the stack, removing and discarding it;

• ArcRight to create a dependency arc headed by the top of the stack to the front

word of the buffer, then Shift;

• ArcLeft to create a dependency arc headed by the front word of the buffer to the

top of the stack, then Reduce;

This system of transitions is known as arc-eager projective shift-reduce parsing, and

it was popularised by Nivre and Scholz (2004).

In ZPar, labels are assigned by parameterising eachArcRight andArcLeft transition

with a dependency label, meaning that there are 2k + 2 transitions in total, where k is

the number of dependency labels. As a sentence is parsed, each word must be shifted

onto the stack once and reduced from the stack once, meaning that the transition model

runs in linear time. This is asymptotically faster than the cubic-time Eisner’s algorithm,

contributing to the growth in popularity of transition-based techniques.

ZPar chooses transitions using an averaged perceptron model (Collins, 2002). At

each decision point, the parser extracts features based on the current parser state,

primarily from the words on top of the stack and at the front of the buffer. These

features are used to score all possible transitions from the current state, with the

most likely transition under the model selected and applied. Early transition-based

parsers used one-best transition selections (Yamada and Matsumoto, 2003; Nivre and

Scholz, 2004), but this has the disadvantage of not allowing the parser to recover from

an incorrect transition which may score highly based on its local context, but is less

optimal later in the parsing process.

By contrast, ZPar uses beam search, and keeps the top M scoring transitions and

states in a beam. At each decision point, ZPar calculates the best transition that can

58 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Algorithm 3.2 Transition-based Beam Search Parsing
Require: a sentence S = w1, w2, . . . , wn

Require: a set of transitions T = τ1, τ2, . . . , each of which takes a state and returns a
new state

Require: a beam size M
Ensure: the best final state for a dependency tree over S

1 T ← empty stack
2 B← buffer filled with words of S in order
3 A← empty set of arcs
4 beam← priority queue containing C, sorted descending by score
5 agenda← empty priority queue, sorted descending by score
6 � Create the initial state

7 C← (T, I, A, 0)
8 for all states C in beam do
9 for all transitions τ ∈ T do

10 C′ ← τ(C)
11 if C′ is not null then
12 add C′ to agenda

13 (T′, B′, A′, s′)← the top item in agenda
14 if there is one item in T′ and no items in B′ then
15 return the top item in agenda

16 beam← the top M items in agenda

be applied to each state, retaining the top M overall for the next step. Beam search is

an approximation that has the advantage of retaining some degree of backtracking

capability without causing a combinatorial explosion in the number of states which

must be tracked. Zhang and Clark (2011b) find that a beam of size 64 offers a good

combination between parsing speed and accuracy for English dependency parsing.

Algorithm 3.2 gives the pseudocode for transition-based beam search parsing.

3.3 Analysing Parser Errors

Dependency representations have long been associated with more analytical parser

evaluation metrics. Lin (1995) and Briscoe et al. (2002) argue that constituency parser

evaluation is overly focused on irrelevant details of tree topology, and advocate for

3.3. Analysing Parser Errors 59

parser evaluation based on a conversion to dependencies. Rimell et al. (2009) proposed

a parser evaluation based on unbounded dependencies, which may have any number

of intervening words between the head and the dependent. However, these evaluations

do not explain why particular attachments are incorrect, or whether the presence of

one attachment results in other errors in the parse.

Nilsson (2009) categorises dependency parser errors using two metrics: error propa-

gation, and error clustering. Both measures attempt to capture whether an initial error

causes further errors later in a sentence. Error propagation divides the sentence into

two: a pre section consisting of all tokens up to and including the first error, and a post

section with all of the remaining tokens. The metric then compares the proportion of

errors in the pre and post sections. Error clustering measures the average error rate

for tokens immediately following an error. While informative, these measures only

imply a relationship between errors – a relationship that only exists in the forward

direction. This linearity is not guaranteed to hold in more complex parsing models,

where features can be extracted over higher-order relationships.

McDonald and Nivre (2011) perform an in-depth comparison of the graph-based

MSTParser and transition-based MaltParser. However, MaltParser uses support vector

machines to deterministically predict the next transition, rather than storing the most

probable options in a beam like ZPar. Additionally, they do not focus on the cascading

impact of errors, and instead concentrate on higher-level error classification (e.g. by

pos tag, labels and dependency lengths) in lieu of examining how the parsers respond

to forced corrections.

Nivre et al. (2014) describe several uses for arc-level constraints in transition-based

parsing. However, these applications focus on improving parsing accuracy when

constraints can be readily identified, e.g. imperatives at the beginning of a sentence

are likely to be the root. We focus our constraints on evaluation, attempting to identify

important sources of error in dependency parsers.

60 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Our constraint-based approach shares similarities to oracle training and decoding

methods, where an external source of truth is used to verify parser decisions. An oracle

source of parser actions is a necessary component for training transition-based parsers

(Nivre, 2009). Oracle decoding, where a system is forced to produce correct output if

possible, can be used to assess its upper performance bounds (Ng and Curran, 2012).

Constraining the parser’s internal search space is akin to an optimal pruning opera-

tion— a common technique for increasing parsing speed. Charniak and Johnson (2005)

use a coarse-to-fine, iterative pruning approach for efficiently generating high-quality

n-best parses for a discriminative reranker. Koo and Collins (2010) and Rush and Petrov

(2012) use a similar coarse-to-fine pruning algorithm with dependency parsing; the

former prunes arcs to decrease training times, while the latter prunes vine grammars

(Eisner and Smith, 2005) to accelerate graph-based dependency parsing, achieving

parsing speeds close to linear-time transition parsers despite encoding more complex

features.

Pruning can also be implementedusing single-pass, rather than iterative approaches.

These techniques typically rely on fast tagging or classification stages to reduce the

search space of the more expensive parsing step. Roark and Hollingshead (2008) clas-

sify word positions based onwhether they can grammatically begin or end constituents.

Based on this classifier, they close chart cells to new entries, reducing computational

complexity and increasing speed in the Charniak parser. Roark and Hollingshead

(2009) extend this work, applying hard constraints from an initial tagging pass over a

sentence to the chart itself, further improving parsing speed. Supertagging (Clark and

Curran, 2007a) and chart pruning (Zhang et al., 2010) have also been used to constrain

the search space of a ccg parser, removing unlikely or forbidden spans from repeated

consideration. In our work, we use pruning not for parsing speed, but evaluation, and

so we prune items based on gold-standard constraints rather than heuristics.

Kummerfeld et al. (2012) perform a comprehensive classification of constituency

bracket errors and their cascading impact, and their work is the most philosophically

3.3. Analysing Parser Errors 61

similar to ours. They associate groups of bracket errors in the parse with abstract error

types, and identify the tree operations that repair these error types. Specifically, the

repair operations include the insertion, deletion, or substitution of nodes in the parse

tree, and their error categories include:

pp attachment: any error where the repair operation moves a pp, or the incorrect

bracket is over a pp;

np attachment: an error where an np node must be moved in the tree, particularly for

appositional mistakes and incorrect attachments inside verb phrases;

modifier attachment: any error involving missing or incorrectly placed adjective and

adverb nodes;

clause attachment: any error which requires the movement of an S node;

unary: any error involving a unary production;

coordination: any error where a coordinator is an immediate sibling of the nodes being

moved, or is one of the outermost nodes being moved;

np internal structure: errors involving node types existing only within nps;

different label: an error where the node structure is correct, but its label is incorrect;

single word phrase: an error which does not fall into a different category, and spans a

single word;

other: all other errors.

The error types in a particular parser’s output are identified through a heuristic

procedure that repeatedly applies the repair operation that removes the largest number

of bracket errors. The list of error types associated with the operations form the

canonical set of errors made in the parse. Kummerfeld et al. (2012) use this to perform

an in-depth investigation of the errors made by a wide variety of constituency parsers.

The weakness of the Kummerfeld et al. (2012) approach is the assumption that,

when an error is detected, repairing that error will have no impact on the remainder of

the sentence. However, it is possible that the parser may not perform the repair in full,

or be incapable of constructing the repaired tree due to limitations in its grammar or

62 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Parser uas las
MSTParser 91.3 87.5
ZPar 91.7 89.3

Table 3.1: Baseline unlabeled and labeled attachment scores on Stanford dependencies over

OntoNotes wsj section 22.

parsing model. Cascading changes also cannot be ruled out, depending on whether

the repair affects head words or phrase boundaries. Parsing is a complex process, and

it is difficult to assume that an ad hoc, though principled, rearrangement of nodes will

always occur perfectly. The reverse is also true: repairing one type of error completely

may cause the model to select a different attachment elsewhere, which can improve or

worsen performance.

3.4 Motivation

Table 3.1 summarises the performance of MSTParser and ZPar on Stanford dependen-

cies over OntoNotes 4 wsj section 22. ZPar performs slightly better than MSTParser

on unlabeled attachments, and substantially better in labeled attachments. However,

these numbers do not show what types of errors are being made by each parser, what

errors remain to be addressed, or hint at what underlying problems cause each error.

Parse 3.1 depicts a wsj section 22 sentence as parsed by MSTParser, and the gold

parse. The unlabeled attachment metric reports a score of 47.1%, with 8 of 17 arcs

correct. By contrast, ZPar (parse not shown) scores 94.1%, with the sole attachment

error being on LME (as with MSTParser).

While there are nine incorrect arcs overall, MSTParser seems to have made only

two underlying errors:

• LME attached to decline rather than stocks (np internal). Correcting this repairs

one error;

3.4. Motivation 63

The LME stocks decline was about as expected , but the Comex gain was n’t .

det

amod

nn

nsubjpass

auxpass

auxpass

advmod punct

cc det

nn nsubj

ccomp

neg

punctroot

det

nn nn nsubj

advmod

advmod

ccomp

punct

cc

det

nn nsubj

conj

neg

punctroot

Parse 3.1: MSTParser output (top) and the gold parse (bottom) for awsj 22 sentence. MSTParser

has produced two independent errors: an np bracketing error (red, dotted), and an incorrect

root (blue, dashed).

• expected being chosen as the root rather than was . Correcting the root and

moving all attachments to it from the old root repairs the remaining eight errors.

Intuitively, it seems that the impact of the np error is limited — the incorrect struc-

ture is isolated within the np and does not cause any other errors in the sentence. By

contrast, the root selection error has a substantial impact on the second half of the

sentence, causing a misplaced subject, misattached punctuation, and incorrect coor-

dination. It appears that these cascaded errors have occurred because of the incorrect

root, rather than in isolation from it.

What we do not know is whether these intuitions actually hold in the context

of the parsing process. Many dependency parsers, including MSTParser and ZPar,

construct trees by repeatedly combining smaller tree fragments together, beginning

from individual words until a spanning analysis is found. The local context used by

Eisner’s algorithm or the arc-eager transition process means that only a small window

of information is used to make each arc decision. An error in one part of the tree

may have no influence on a different part of the tree. Alternatively, if the feature

representation and decoding algorithm is sufficiently rich, errors may exert long-range

64 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

influence — particularly if there are higher-order features or algorithmic constraints

such as projectivity over the tree. Given the complex interactions in parsing algorithms,

we wish to define a method to repair various error types in isolation without otherwise

assuming the subsequent actions of the parser.

3.5 Constraint-driven Analysis of Parser Performance

We aim to investigate the way each parser reacts when certain errors in the tree are

corrected. To do this, we force each parser to select the correct head and label for certain

words, but otherwise allow it to construct its best parse. Given a set of constraints, each

of which lists a word with the head and label to which it must be attached, we can

investigate two measures:

1) the number of errors directly corrected by the set of constraints. We call this the

constrained accuracy impact;

2) the indirect impact of the constraints, including the number of errors indirectly cor-

rected, and the number of correct arcs indirectly destroyed. We call this the cascaded

accuracy impact.

The constrained accuracy impact tells us how often the parser makes errors in the

set of words covered by the constraints, measured using the per-word attachment

accuracy calculated over only the words covered by the constraint set.

The cascaded accuracy impact is the less predictable figure, as it tells us what effect

the errors made over the constrained set of arcs have over the rest of the sentence. It

is the influence of the set of constraints over the other attachments, and answers the

question of what the parser would do when it is forced to correctly attach constrained

fillers. This influence may be felt through projectivity requirements, or changes in the

context used for other parsing decisions.

The core of our procedure is adapting each parser to accept constraints specifying

the correct head and label for certain words in a sentence. Unlike Kummerfeld et al.

3.5. Constraint-driven Analysis of Parser Performance 65

(2012), whose post-processing error identification assumes the parser would respond

perfectly to each repair, our constraint methodology makes no assumptions about what

the parser will do when an error is repaired.

3.5.1 Experimental Setup

We use the OntoNotes 4 release of the ptb wsj data and the English Web Treebank, as

described in Section 2.4.1. This data is consistent with the SANCL 2012 Shared Task

(Petrov and McDonald, 2012), and means that our procedure can be easily ported to

the many systems participating in the task.

We changed all marker tokens in the corpora (e.g. -LRB- and -LCB-) to their equiva-

lent unescaped punctuationmarks ([and {) to ensure correct evaluation. The organisers

of the SANCL task provided both corpora converted to basic Stanford dependencies

using the Stanford Parser v2.0.1

The wsj sections 02-21 are used for training each parser, while section 22 is used

as the basis of our evaluation procedure. The gold-standard annotations of section

22 are the source of the constraints and the data used to evaluate each parser. We

do not use any of the Web Treebank data to train the parsers, but we concatenate the

development splits of the five Web Treebank domains as supplied by the SANCL 2012

Task to implement our evaluation on web text.

We generated pos tags for the corpus using mxpost, a maximum-entropy Markov

tagger (Ratnaparkhi, 1996). We trained mxpost over the gold-standard pos tags from

OntoNotes 4 wsj sections 02-21 on default settings, and used the resulting model to tag

the development data for both corpora. We used ten-fold jackknife training as follows

to tag the training data:

• mxpost was trained using all of the gold-standard OntoNotes 4 wsj training
data, except the first two sections;

1http://nlp.stanford.edu/software/lex-parser.shtml

http://nlp.stanford.edu/software/lex-parser.shtml

66 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

• the resulting model was used to tag the first two sections of the training data;

• this process was repeated in turn for the next two sections of the training data,

totalling ten splits and training sections overall.

MSTParser uses features of both coarse-grained pos tags and fine-grained pos
tags, both of which were provided by the CoNLL-X Shared Task on Multilingual

Dependency Parsing (Buchholz and Marsi, 2006). We approximate the coarse-grained

pos tags by taking the first character of the pos tag assigned to the word by mxpost,
a technique also used by Bansal et al. (2014).2

3.5.2 Error Classes

Following Kummerfeld et al. (2012), we define meaningful error classes grouped with

the operations that repair them. In the dependency parser setting, error classes are

groups of Stanford dependency labels, rather than groups of node repair operations.

The Stanford labels provide a rich distinction in np internal structure, clauses, and

modifiers, and map very well to the error categories of Kummerfeld et al. (2012),

allowing us to avoid excessive heuristics in the mapping process. Our technique can

be applied to other dependency schemes such as lth (Johansson and Nugues, 2007)

by defining new mappings from labels to error types.

The difficulty of the mapping task depends on the intricacies of each formalism. For

example, the major challenge with lth dependencies is the enormous skew towards

the nominal modifier NMOD label. This label occurs 11,335 times in the wsj section
22, more than twice as frequently as the next most frequent punctuation P. By contrast,

the most common Stanford label is punctuation, at 4,731 occurrences. The NMOD

label is split into many smaller, but more informative nominal labels in the Stanford

scheme, making it better suited for our goal of error analysis.

2Mohit Bansal, p.c.

3.5. Constraint-driven Analysis of Parser Performance 67

The label grouping was performed with reference to the Stanford dependencies

manual v2.04 (de Marneffe and Manning, 2008a, updated 2012). For each error class,

we generate a set of constraints over section 22 for all words with a gold-standard label

in the category associated with the class. Our types are defined as follows:

np attachment: any label specifically attaching an np, includes appos, dobj, iobj, nsubj,

nsubjpass, pobj, and xsubj.

np internal: any label marking nominal structure (not including adjectival modifiers),

includes abbrev, det, nn, number, poss, possessive, and predet.

pp attachment: any label attaching a prepositional phrase, includes prep. Also includes

pcomp if the pos of the word is TO or IN.

Clause attachment: any label attaching a clause, includes advcl, ccomp, csubj, csubjpass,

purpcl, rcmod, and xcomp. Also includes pcomp if the pos of the word is not TO or

IN.

Modifier attachment: any label attaching an adverbial or adjectival modifier, includes

advmod, amod, infmod, npadvmod, num, partmod, quantmod, and tmod.

Coordination attachment: conj, cc, and preconj.

Root attachment: the root label.

Punctuation attachment: the punct label.

Other attachment: all other Stanford labels, specifically acomp, attr, aux, auxpass,

complm, cop, dep, expl, mark, mwe, neg, parataxis, prt, ref , and rel.

For example, Root constraints specify which words in each sentence are roots, while

pp constraints specify which words are heads of prepositions.

One deficiency of our implementation is that we apply constraints to all arcs of a

particular error type in each sentence, and do not attempt to isolate multiple instances

of the same error class in a sentence. We do this since applying a single constraint to a

sentence one at a time would require modifications to the standard evaluation regime.

Table 3.2 gives the distribution of constraints over each error class in wsj section 22

and the combined development sets of the English Web Treebank. In the wsj, Root

68 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

wsj 22 ewt Dev

Constraint Type Freq. % Freq. %

np attachment 6789 21.2 27864 21.7
np internal 6682 20.8 19171 14.9
Modifier attachment 4274 13.3 14776 11.5
Punctuation attachment 3724 11.6 14413 11.2
Other attachment 3323 10.4 18021 14.1
pp attachment 2974 9.3 10885 8.5
Coordination attachment 1628 5.1 8293 6.5
Clause attachment 1362 4.2 6501 5.1
Root attachment 1336 4.2 8314 6.5

Total 32092 100.0 128238 100.0

Table 3.2: The number of constraints (dependencies) in each error type over the OntoNotes 4

wsj section 22 and the combined development sections of the Web Treebank. The total number

of sentences in each is the number of Root attachment constraints.

attachment and Clause attachment are the smallest classes, with 1,336 constraints

(one for each sentence in the data) and 1,362 constraints each. np attachment and np
internal are the two largest classes, with 6,789 and 6,682 constraints respectively. The

remaining constraints are spread roughly evenly between the other classes.

For the Web Treebank, the conversion to Stanford dependencies has resulted in

more constraints in the Other attachment class. Table 3.3 gives the breakdown of label

frequency in the class across thewsj andWeb Treebank, showing that there is a marked

increase in acomp (adjectival complements), attr (attributives), aux (auxiliary verbs) and

neg (negation) labels between the newswire and web domains. This reflects the typical

style of web text, particularly the more informal genres such as question-answers,

reviews, and newsgroups.

There are substantially fewernp internal constraints in theWeb Treebank compared

to the wsj data, suggesting a reduced complexity in np structure. There is also a higher

proportion of Root attachment constraints, signifying a shorter average sentence length.

Coordination attachment and Clause attachment constraints have also increased as

a proportion of the overall constraint set, while all other error classes have declined

3.5. Constraint-driven Analysis of Parser Performance 69

wsj 22 ewt Dev

Label Freq. % Freq. %

dep 1031 31.0 5549 30.8
aux 1007 30.3 5671 31.5
auxpass 231 7.0 851 4.7
mark 212 6.4 1017 5.6
acomp 184 5.5 1500 8.3
neg 153 4.6 1037 5.8
attr 151 4.5 953 5.3
complm 128 3.9 561 3.1
prt 104 3.1 385 2.1
parataxis 43 1.3 53 0.3
mwe 37 1.1 113 0.6
expl 29 0.9 249 1.4
rel 12 0.4 56 0.3
cop 1 0.0 26 0.1

Total 3323 100.0 18021 100.0

Table 3.3: The number of constraints per label of the Other attachment error class over

OntoNotes 4 wsj section 22 and the combined development sections of the Web Treebank.

slightly. However the overall similarity in distribution to newswire text reinforce that

English has distributional regularities in syntax even across these diverse domains.

70 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

3.6 Applying Constraints in Parsers

In this section, we describe how we implement constraints in MSTParser and ZPar.

3.6.1 MSTParser implementation

We enforce constraints using MSTParser’s projective decoding mode by modifying

when incomplete spans (which create dependencies) are permitted to form in Eisner’s

algorithm. Incomplete spans are only allowed from constrained words to their correct

heads with the correct labels. Any incomplete span between an incorrect head and

the constrained words is forbidden. The algorithm is forced to choose the constrained

spans as it builds the parse, taking advantage of the single head assigned per word.

Thus, as long as the constraints are consistent, they have no impact on the parser’s

coverage as all other possible head selections are considered.

This approach is similar to that employed by Rush and Petrov (2012), who use

a coarse-to-fine approach to filter the words available for combination in Eisner’s

algorithm. However, while they employ a linear-time vine parser to eliminate unlikely

words from consideration in the creation of incomplete spans, we explicitly forbid

any spans which are inconsistent with the set of constraints. Algorithms 3.3 and 3.4

describe the constrained decoding algorithm.

All MSTParser experiments in this thesis are run with the following arguments:

order:2, training-k:5, iters:10, and loss-type:nopunc, mirroring the configuration used by

Bansal and Klein (2011).

3.6. Applying Constraints in Parsers 71

Algorithm 3.3 constrained-label
Require: a list of arc constraints constraints = [(wh, w f , l′), . . .]
Require: the dependency label l to be assigned to the arc (h, f)
Require: a head index h and filler index f
Ensure: null if (h, f) violates a constraint, l if there is no constraint on (h, f), or the

constrained label l′ otherwise
1 if constraints contains a constraint with f as the filler then
2 (head, filler, l′)← the constraint where f is the filler
3 if head == h then
4 return l′

5 else
6 return null
7 else
8 return l

Algorithm 3.4 Constrained Eisner’s Algorithm
Require: a sentence S = w1, w2, . . . , wn

Require: a scoring function s(wi, wj) over the arc (wi, wj)

Require: a list of arc constraints constraints = [(wh, w f , label), . . .]
Ensure: the best score for a tree over S in E[0][n][L][C] containing all arcs in l

1 Initialise all entries of E[n + 1][n + 1][2][2] = 0.0
2 Initialise all entries of L[n + 1][n + 1][2] = null
3 for all m from 0 to n do
4 for all s from 0 to n do
5 t = s + m
6 if t > n then
7 break
8 � Create incomplete spans if they are permissible

9 label← constrained-label (constraints, label(wt, ws), t, s)
10 if label is not null then
11 L[s][t][R]← label
12 E[s][t][R][I]=maxs≤q<t(E[s][q][L][C] + E[q+1][t][R][C] + s(wt, ws))

13 label← constrained-label (constraints, label(ws, wt), s, t)
14 if label is not null then
15 L[s][t][L]← label
16 E[s][t][L][I]=maxs≤q<t(E[s][q][L][C] + E[q+1][t][R][C] + s(ws, wt))

17 � Create complete spans

18 E[s][t][R][C] = maxs≤j<t(E[s][j][R][C] + E[j][t][R][I])
19 E[s][t][L][C] = maxs<j≤t(E[s][j][L][I] + E[j][t][L][C])

72 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

3.6.2 ZPar implementation

Algorithm 3.5 ConstrainedArcLeft
Require: a dependency label l to be assigned to the arc
Require: a list of arc constraints constraints = [(wh, w f , label), . . .]
Require: a parser configuration C = (T, B, A, s)
Ensure: a parser configuration C′ = (T′, B′, A′, s′) if the new arc is permitted and

compatible with l, otherwise null
1 if there are no more words in T or B then
2 return null
3 h← the index of the word at the front of the buffer B
4 f ← the index of the word on top of the stack T
5 label← constrained-label (constraints, l, h, f)
6 if label is not null then
7 (T′, B′, A′)← clone(T, B, A)
8 add (h, f , label) to A′

9 pop h from T′

10 s′ ← s + score(T′, B′, A′)
11 return C′ = (T′, B′, A′, s′)
12 else
13 return null

We enforce constraints for ZPar in a similar way to that of Nivre et al. (2014), who

apply span-level and arc-level constraints to an arc-eager dependency parser. We

disallow any ArcLeft or ArcRight action creating an arc that conflicts with a provided

constraint. However, unlike MSTParser, these constraints may have an impact on the

parser’s coverage due to their interaction with beam search. Even when a constraint is

fulfilled by an arc action, it may not be scored highly enough to stay within the beam.

It is also not guaranteed that each action will consume a word in the sentence. This

means that the beam may be filled with states that could eventually satisfy a constraint,

and so cannot be eliminated, even if the parser will never score the eventual states with

constraints high enough for them to stay in the beam. Thus, it is possible for the parser

to evict all states containing an enforced arc from the beam, leaving only states which

3.6. Applying Constraints in Parsers 73

Algorithm 3.6 ConstrainedArcRight
Require: a dependency label l to be assigned to the arc
Require: a list of arc constraints constraints = [(wh, w f , label), . . .]
Require: a parser configuration C = (T, B, A, s)
Ensure: a parser configuration C′ = (T′, B′, A′, s′) if the new arc is permitted and

compatible with l, otherwise null
1 if there are no more words in T or B then
2 return null
3 h← the index of the word on top of the stack T
4 f ← the index of the word at the front of the buffer B
5 label← constrained-label (constraints, l, h, f)
6 if label is not null then
7 (T′, B′, A′)← clone((T, B, A))
8 add (h, f , label) to A′

9 push h onto T′ and remove it from B′

10 s′ ← s + score(T′, B′, A′)
11 return C′ = (T′, B′, A′, s′)
12 else
13 return null

will not satisfy the constraints. When this happens, no correct analysis is retrievable,

and the parser will fail to find an analysis for the sentence.

ZPar also implements manually-crafted rules on which pos tags are allowed to

attach to one another, in order to reduce the search space and improve accuracy. In

the case where we specify a constraint enforcing an arc that is not permitted by the

parser’s pos tag constraints, the correct arc will be disallowed, and the parser will fail

to parse the sentence.

Counteracting these problems is not possible without compromising our analysis,

or altering the ordinary behaviour of the parser. We can choose to make the parser fall

back on the baseline parse when it fails to find an analysis using constraints. However,

this affects the comparison between MSTParser and ZPar, as the former will seem to

accept more constraints due to its higher coverage. Alternatively, the pos tag rules

may be removed, and the beam size increased from its default value of 64 to reduce the

74 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

number of “dead ends” in the beam. This second option has the downside of changing

the decisions of the parser, which is undesirable for our analysis.

All ZPar experiments in this thesis are trained with 10 iterations of the averaged

perceptron algorithm and a beam size of 64.

We ensured that our modifications were working correctly for both parsers through

two experiments. First, we utilised zero constraints, and verified that the output for

each parser was identical to the baseline. We then utilised every possible constraint,

and verified that the output was 100% correct.

3.7 Evaluation

We implement a custom evaluation script to facilitate a straightforward comparative

analysis between the cascaded and constrained output. The script is based on and

produces identical scores to eval06.pl, the official evaluation for the CoNLL-X Shared

Task on Multilingual Dependency Parsing (Buchholz and Marsi, 2006). We ignore

punctuation as defined by eval06.pl in our evaluation; experiments with constraints

over punctuation tokens constrain those tokens in the parse, but ignore the punctuation

dependencies during evaluation.

We run the modified parsers over wsj section 22 with and without each set of

constraints. We examine the overall unlabeled and labeled attachment scores (uas
and las), as well as identifying the contribution to the overall uas improvement

from constrained accuracy impact and cascaded accuracy impact. When examining

MSTParser and ZPar side by side, we evaluate only over the sentences covered by ZPar

to ensure a fair comparison.

3.7.1 Constrained and Cascaded Arcs

When comparing the baseline parse of a sentence to one where constraints have been

applied, we can identify three disjoint groups of dependencies:

3.7. Evaluation 75

The LME stocks decline was about as expected , but the Comex gain was n’t .

det

amod

nn nsubj prep advmod

pobj

punct

cc

det

nn nsubj

conj

neg

punct

root

Parse 3.2: MSTParser output for the sentence in Parse 3.1, where the root arc is forced to its

correct position. The np error is unaffected by the constraint (dashed, red), six attachment

errors are repaired (solid, blue), and two new errors are introduced (dotted, purple).

• unchanged dependencies, which are identical in the baseline parse and the con-

strained parse. These dependencies were either already correct in the baseline

(and hence applying a constraint to them had no effect), or were not constrained;

• constrained dependencies, which were incorrect in the baseline, but have been

forced to be correct in the constrained parse;

• cascaded dependencies, which have changed compared to the baseline. There are

two cases:

– the dependency was incorrect in the baseline, but is corrected in the con-

strained parse;

– the dependency was correct in the baseline, but has become incorrect in the

constrained parse.

Parse 3.2 and Table 3.4 show the impact of applying constraints on tokens with

various labels to MSTParser for the sentence in Parse 3.1. We can see that enforcing

the gold nn arc between decline and LME repairs the np error, but does not affect any

of the other errors. This matches our intuition, and the constraint has resulted in one

constrained dependency, and sixteen unchanged dependencies.

Conversely, enforcing the gold root arc does not affect the np error, but repairs

nearly every other error in the parse. Unfortunately, the constrained root arc introduces

76 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Constraints 3 7 Remaining Errors

None 8 9 see Parse 3.1

nn 9 8 All except decline→ LME

root 14 3 decline→ LME
about → expected
was → about

punct 14 3 decline→ LME
about → expected
was → about

ccomp 16 1 decline→ LME

Table 3.4: Correct and incorrect arcs, and the remaining errors after applying various sets of

constraints to the sentence in Parse 3.1.

two new errors, with the parser incorrectly attaching the clausal complement headed

by expected and the modifier headed by about . There is one constrained dependency,

eight unchanged dependencies, and eight cascaded dependencies, with six of the

cascaded dependencies being correct, and two being incorrect. While our intuition

regarding the underlying root attachment error repair seems to have held under the

context of the parsing process, the parser has also introduced new errors.

Enforcing the correct attachment for the two punctuation marks has an identical

impact to enforcing the root dependency. As punctuation often attaches to phrasal

heads or roots in dependency formalisms, these constraints act as a proxy for the root

constraint in this sentence.

Enforcing the correct ccomp arc in isolation rather than the root arc leads to MST-

Parser producing the full correct analysis for the second half of the sentence (though

again, this single constraint does not repair the separate np error). There is one

constrained dependency, eight cascaded correct dependencies, and eight unchanged

dependencies due to the constraints. This runs counter to our initial expectations; spec-

3.8. Comparing MSTParser and ZPar 77

ifying the ccomp arc seems to have indirectly specified the root word in MSTParser as

well as avoided the additional errors that constraining the root word alone introduced.

This example demonstrates why we have chosen to implement our evaluation as a

set of constraints in the parser, rather than Kummerfeld et al. (2012)’s post-processing

approach. We cannot know how the parser will react when repairing errors, and the

impact of the parser model is difficult to quantify after parsing is completed. While

it seemed that the incorrect root attachment was the underlying cause of most of the

errors in the parser, applying a constraint to the clausal complement was actually what

corrected the errors entirely.

3.8 Comparing MSTParser and ZPar

3.8.1 Newswire

Tables 3.5 and 3.6 summarise our results on MSTParser and ZPar over wsj section 22.

Each set of results is calculated over the sentences covered by ZPar to ensure that they

are comparable (MSTParser has perfect coverage due to its graph-based nature). We

primarily discuss uas results in this thesis, as las results are largely consistent.

The uas of constrained arcs in each experiment is the expected 100%. Effective

constraints is the number of constraints which repaired an error in the baseline, and

the effective constraint percentage is the percentage of the constraints applied which

repaired an error. These two metrics show how many mistakes the baseline parser

made in the error class associated with the constraints; thus the percentage can also be

viewed as the error rate. The error displacement is the average number of words that

effective constraints moved an attachment point. A large error displacement indicates

that incorrect arcs were moved a longer distance in the sentence when constraints were

applied — the parser had misplaced the attachment by a longer distance.

The overall ∆uas improvement is divided into ∆c, the constrained impact, and ∆u,

the cascaded impact. The ratio of these two values with respect to each other shows

78 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Error class cover eff eff % disp uas las ∆uas ∆c ∆u

Baseline 100.0 - - - 91.3 87.5 - - -

np attachment 95.6 312 4.9 5.2 94.1 90.7 2.3 1.2 1.1
np internal 98.2 206 3.2 2.8 92.6 89.2 1.1 0.8 0.3
Modifier attachment 96.8 321 7.9 3.8 93.4 90.3 1.7 1.2 0.5
pp attachment 98.3 378 13.1 4.3 93.2 89.5 1.7 1.4 0.3
Coordination attachment 97.7 238 16.0 5.8 92.9 89.5 1.3 0.9 0.4
Clause attachment 96.7 228 17.9 6.9 93.0 89.6 1.4 0.9 0.5
Root attachment 99.1 77 5.8 9.3 92.2 88.3 0.8 0.3 0.5
Punctuation attachment 93.2 469 14.2 7.4 93.9 89.9 1.8 0.1 1.7
Other attachment 94.3 210 7.0 6.1 93.5 90.8 1.4 0.8 0.6
All attachments 98.5 2912 9.3 5.8 100.0 100.0 8.6 8.6 0.0

Table 3.5: The coverage, effective constraints and percentage, error displacement, uas, las,
∆uas over the corrected arcs, and the constrained and cascaded ∆ for MSTParser over the wsj

22 sentences covered by ZPar.

Error class cover eff eff % disp uas las ∆uas ∆c ∆u

Baseline 100.0 - - - 91.7 89.2 - - -

np attachment 95.6 277 4.3 4.8 94.9 92.7 2.4 1.0 1.4
np internal 98.2 197 3.0 3.0 93.2 91.1 1.2 0.7 0.5
Modifier attachment 96.8 303 7.5 3.9 94.0 92.3 1.8 1.1 0.7
pp attachment 98.3 357 12.4 3.9 93.8 91.4 1.7 1.3 0.4
Coordination attachment 97.7 240 16.2 5.8 93.5 91.1 1.3 0.9 0.4
Clause attachment 96.7 166 13.0 5.6 93.4 91.2 1.2 0.6 0.6
Root attachment 99.1 57 4.3 9.9 92.4 89.9 0.5 0.2 0.3
Punctuation attachment 93.2 430 13.0 7.3 94.5 92.1 1.6 0.2 1.5
Other attachment 94.3 187 6.3 5.5 94.2 92.7 1.3 0.7 0.6
All attachments 98.5 2760 8.8 5.8 100.0 100.0 8.0 8.0 0.0

Table 3.6: The coverage, effective constraints and percentage, error displacement, uas, las,
∆uas over the baseline, and the constrained and cascaded ∆ for ZPar over wsj 22.

3.8. Comparing MSTParser and ZPar 79

the influence of each error class; the larger ∆u is relative to ∆c, then the greater the

cascading impact from applying constraints.

It is important to note that a parser may make a substantial number of mistakes

on a particular error class (large effective constraint percentage), but correcting those

mistakes may have very little cascading impact (small ∆u), limiting the overall ∆uas
improvement. Conversely, there may be a class with a small effective constraint percent-

age, but a large ∆uas due to a large cascading impact from the corrections, or simply

because the class contains more constraints.

When applying all constraints, ZPar has a 8.8% effective constraint percentage

compared to 9.3% for MSTParser. This is directly related to the uas difference between

the parsers. Aside from coordination, where the parsers made a nearly identical

number of errors, ZPar is more accurate across the board. It makes substantially fewer

mistakes on clause attachments, punctuation dependencies, andnp attachments, whilst

maintaining a small advantage across all of the other categories.

The relative rank of the effective constraint percentage per error category is similar

across the parsers, with pp attachment, punctuation, modifiers, and coordination

recording the largest number of effective constraints, and thus the most errors. This

illustrates that the behaviour of both parsers is very consistent, despite one considering

every possible attachment point, and the other using a linear transition-based beam

search. ZPar is able to make fewer mistakes across each error category, suggesting

that the beam search pruning is maintaining more desired states than the graph-based

parser is able to rank during its search.

ZPar’s coverage is 98.5% when applying all constraints. However, as the number of

constraints is reduced, coverage also drops. This seems counter-intuitive, but applying

more constraints has the effect of eliminating more undesired states, leaving more

space in the beam for satisfying states. Reducing the number of constraints permits

more states which do not yet violate a constraint, but only yield undesired states later.

80 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Punctuation constraints have the largest impact on coverage, reducing it to 93.2%.

np attachments, clauses, and modifier attachments also incur substantial coverage

reductions. This suggests that ZPar’s performance will degrade substantially over

the sentences which it cannot cover, as they must contain constructions which are

dispreferred by the model and fall out of the beam. Constraints with the smallest effect

on coverage include root attachments, which only occur once per sentence and are

rarely incorrect, and np internal and pp attachments. For the latter two, the small error

displacements suggests that alternate attachment points typically lie within the same

projective span, limiting the changes required to attach them correctly.

Noun phrases

Applying np attachment constraints causes a 4.4% drop in coverage for ZPar, and the

effective constraint percentage is below 5% for both parsers. However, these constraints

still result in the largest ∆uas for both parsers, at 2.6% for MSTParser and 2.2% for

ZPar. This reflects the prevalence of np attachments in the corpus, despite the low

error rates.

∆uas is split very evenly between correcting constrained arcs (1.4%) and cascaded

arcs (1.2%) for MSTParser, while it skews more towards cascaded arcs for ZPar (1.0%

and 1.4%). Most of the other error classes skew in the other direction. Repairing one

np attachment error typically repairs another non-np attachment error, contributing

to the large ∆uas.

Fornp internal attachments, both parsers have a similar error rate, with 206 effective

constraints for MSTParser and 197 for ZPar. Although this class contains the second

largest number of constraints, applying them gives the second smallest ∆u for both

parsers. This suggests that determining np internal structure is a strength, even given

the more complex OntoNotes 4 np structure. ∆c is also very small for both parsers,

reinforcing the limited displacement and cascading impact of np internal errors.

3.8. Comparing MSTParser and ZPar 81

np attachment np internal

Error class MSTParser ZPar MSTParser ZPar

np attachment - - 45 69
np internal 43 80 - -
Modifier attachment 65 68 24 30
pp attachment 26 36 2 10
Coordination attachment 37 67 20 41
Clause attachment 59 65 1 1
Root attachment 24 21 2 1
Punctuation attachment 79 80 26 41
Other attachment 68 76 7 11

Total 401 493 127 204

Table 3.7: The number of cascaded errors repaired per error class when enforcing np attach-

ment and np internal constraints for MSTParser and ZPar over wsj 22.

Despite fewer effective constraints (i.e. less errors to fix), ZPar exhibits more cascad-

ing repair than MSTParser using both np and np internal constraints. This will be a

common theme through this evaluation: the transition-based ZPar is better at prop-

agating effective constraints into cascaded impact than the graph-based MSTParser,

even though ZPar almost always begins with fewer effective constraints due to its

better baseline performance. One possibility to explain this is that the beam is actually

pruning away other erroneous states, while the graph-based MSTParser must still

consider all of them.

Table 3.7 summarises error classes of the corrected cascaded arcs for the two np
constraint types. It is important to note that these constraints are closely related.

np attachment constraints directly identify the head of the np as well as its correct

attachment, providing strong cues for determining the internal structure. np internal

constraints implicitly identify the head of an np. We can see that for both types of

constraints, a large number of the cascaded corrections come from the other np error

class, illustrating this connection.

Table 3.7 also shows that, compared to MSTParser, ZPar repairs nearly twice as

many np internal and coordination errors when using np attachment constraints,

82 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

and vice versa when using np internal constraints. This suggests that ZPar has more

difficulty identifying the correct heads for nominal coordination, and often chooses a

word which should be a nominal modifier instead.

Coordination, Prepositional Phrases, and Modifiers

These three categories are large error classes for both parsers, with constraints leading

to uas improvements of 1.3 to 1.7% for each class in both parsers.

pps and coordination have large effective constraint percentages relative to the

other error classes for both parsers. However, they are also amongst the most isolated

errors, with only 0.3% and 0.4% ∆u for MSTParser and ZPar respectively across both

classes. They also have a minimal impact on ZPar’s coverage. This is surprising, and

suggests that both classes have relatively contained attachment options within a limited

projective span. The small error displacements for the classes reinforce this theory.

Modifiers are relatively isolated errors for MSTParser (0.5% ∆u), but have slightly

more cascading impact for ZPar (0.7% ∆u). There are substantially more modifier

constraints than pp or coordination, despite all of these yielding a similar uas increase.

This suggests that modifiers are actually relatively well analysed by both parsers, but

there are so many of them that they are a relatively large source of error.

Clause attachments

MSTParser performs substantially worse than ZPar on clause attachments, with an

effective constraint percentage of 17.9% compared to 13.0%, and ∆c of 0.9% compared

with 0.6%. MSTParser’s error rate is the worst of any error class on clause attachments,

while it is second to coordination attachments for ZPar. Attaching clauses is very

challenging for dependency parsers, particularly considering the small size of the class.

ZPar again achieves a slightly larger cascaded impact than MSTParser (0.6% to

0.5%), despite having far fewer effective constraints. This suggests that the additional

3.8. Comparing MSTParser and ZPar 83

clause errors being made by MSTParser are largely self-contained, as they have not

triggered a corresponding increase in ∆u.

Root attachment

Both parsers make few root attachment errors, though MSTParser is less accurate than

ZPar. However, root constraints provide the largest uas improvement per number of

constraints for both parsers. Root errors are also the most displaced of any error class,

at 9.3 words for MSTParser and 9.9 for ZPar. When the root is incorrect, it is often very

far from its correct location, and causes substantial cascading errors.

Punctuation

Despite ignoring punctuation dependencies in evaluation, applying punctuation con-

straints led to substantial uas improvements. On MSTParser, ∆u is 0.1% (due to some

punctuation not being excluded from evaluation), but ∆c is 1.7%. On ZPar, the equiva-

lent metrics are 0.2% and 1.5%. Enforcing correct punctuation has a disproportionate

impact on the remainder of the parse.

For both parsers, punctuation errors occur more frequently than any other error

type, with 469 and 430 effective constraints respectively (though the majority of these

corrected errors are on non-evaluated arcs). ZPar’s coverage is worst of all when

enforcing punctuation constraints, suggesting that the remaining uncovered sentences

will contain even more punctuation errors.

Incorrect punctuation heads are displaced from their correct locations by 7.4 words

for MSTParser and 7.3 words for ZPar on average, second only to root attachments.

Given that we are using projective parsers and a projective grammar, the large average

displacement caused by errors suggests that punctuation affects and is in turn affected

by the requirement for non-crossing arcs.

Table 3.8 summarises the error classes of the repaired cascaded arcs when punc-

tuation constraints are applied. MSTParser has a more even distribution of repairs,

84 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Error class MSTParser ZPar

np attachment 75 51
np internal 25 27
Modifier attachment 33 43
pp attachment 45 55
Coordination attachment 87 106
Clause attachment 66 48
Root attachment 59 27
Other attachment 65 69

Total 455 426

Table 3.8: The number of cascaded errors repaired per error category when enforcing punctu-

ation constraints for MSTParser and ZPar over wsj 22.

while ZPar’s repairs are concentrated in coordination attachment. This suggests that

MSTParser is relatively better at coordination as a proportion of its overall performance

compared to ZPar. It also indicates that the majority of punctuation errors in both

parsers (and especially ZPar) stem from incorrectly identified coordination markers

such as commas.

Punctuation is commonly ignored in dependency parser evaluation (Yamada and

Matsumoto, 2003; Buchholz andMarsi, 2006), and they are inconsistently treated across

different grammars. Our results show that enforcing the correct punctuation attach-

ments in a sentence has a substantial cascading impact, suggesting that punctuation

errors are highly correlated with errors elsewhere in the analysis. Given the broad simi-

larities between Stanford dependencies and other dependency schemes commonly used

in parsing (Søgaard, 2013), we anticipate that the problems with roots and punctuation

will carry across different treebanks and schemes.

Punctuation is often placed at phrasal boundaries and serves to split sentences

into smaller sections within a projective parser. Graph-based and transition-based

parsers, both of which use a limited local context to make parsing decisions, are

equally prone to the cascading impact of erroneous punctuation. Influenced by poor

punctuation parsing results, Ma et al. (2014) demonstrate how treating punctuation

3.8. Comparing MSTParser and ZPar 85

Error class cover eff eff % disp uas las ∆uas ∆c ∆u

Baseline 100.0 - - - 83.1 77.4 - - -

np attachment 92.3 1673 7.0 3.9 87.9 82.8 3.0 1.7 1.3
np internal 96.7 1326 7.5 2.6 85.8 80.5 1.8 1.2 0.5
Modifier attachment 93.4 1860 14.7 3.8 87.2 82.6 2.6 1.8 0.7
pp attachment 96.9 1747 17.4 3.9 85.6 80.0 2.0 1.6 0.4
Coordination attachment 97.1 1968 26.8 5.8 86.1 80.9 2.4 1.8 0.6
Clause attachment 93.7 1172 22.5 6.2 85.9 80.9 1.9 1.2 0.7
Root attachment 98.5 1556 19.0 6.2 86.6 80.2 3.1 1.4 1.7
Punctuation attachment 84.0 2314 23.4 6.0 88.8 82.3 2.7 0.0 2.7
Other attachment 85.7 1673 12.7 4.2 89.4 85.3 2.9 1.8 1.1
All attachments 94.5 19426 17.4 4.8 100.0 100.0 15.6 15.6 0.0

Table 3.9: The coverage, effective constraints and percentage, error displacement, uas, las,
∆uas over the baseline, and the constrained and cascaded ∆ for MSTParser over the sentences

in the ewt development sections covered by ZPar.

tokens as properties of their neighbouring tokens rather than tokens in their own right

can improve unlabeled dependency parsing accuracy. Other potential approaches

could treat punctuation attachment as a global post-process, or incorporate more

punctuation-specific features to try and account for its myriad roles in syntax could

serve to improve performance.

3.8.2 Web Text

Tables 3.9 and 3.10 summarise the performance of applying constraints to MSTParser

and ZPar over the combined development sections of the English Web Treebank. ZPar

outperforms MSTParser by a slightly larger margin on web text, with the baseline

systems scoring 83.7% and 83.1% uas respectively. uas falls by at least 8% for both

parsers when run on web text, while the effective constraint percentage nearly doubles.

A contributing factor is the pos tag quality — Petrov and McDonald (2012) found that

many approaches to improving the parsing of web text focused on improvement pos
tagging. Our mxpost newswire pos tagger model scores only 90% accuracy on pos

86 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

Error class cover eff eff % disp uas las ∆uas ∆c ∆u

Baseline 100.0 - - - 83.7 79.4 - - -

np attachment 92.3 1509 6.3 3.7 88.9 85.2 3.2 1.5 1.6
np internal 96.7 1281 7.2 2.6 86.5 82.6 1.8 1.2 0.6
Modifier attachment 93.4 1659 13.1 3.6 87.8 84.7 2.5 1.6 0.8
pp attachment 96.9 1663 16.6 3.8 86.3 82.0 1.9 1.6 0.4
Coordination attachment 97.1 1774 24.2 5.7 86.7 82.3 2.2 1.7 0.5
Clause attachment 93.7 938 18.0 5.3 86.5 82.5 1.6 0.9 0.6
Root attachment 98.5 1512 18.5 6.5 87.2 82.2 3.0 1.4 1.7
Punctuation attachment 84.0 2024 20.5 5.9 89.7 84.8 2.6 0.0 2.6
Other attachment 85.7 1574 11.9 4.1 90.3 87.6 2.8 1.7 1.2
All attachments 94.5 18514 16.6 4.8 100.0 100.0 14.8 14.8 0.0

Table 3.10: The coverage, effective constraints and percentage, error displacement, uas, las,
∆uas over the baseline, and the constrained and cascaded ∆ for ZPar over the ewt development

sections.

tags over the combined Web Treebank development sections, compared to 96.3% over

the wsj section 22.

Error displacements are smaller across all error classes compared to newswire,

though this is probably because of the shorter average sentence length in the Web

Treebank. ZPar’s coverage has also dropped across every error class. compared to

newswire text, a sign of the increased divergence from the out-of-domain model and

test texts. Punctuation attachment and Other attachment have the most impact on

coverage, with reductions to 84.0% and 85.7% respectively. Both classes exhibit more

complex behaviour in web text, though punctuation also recorded the lowest covered

on newswire.

Noun phrases

np attachment contributes 3.2% ∆uas for ZPar and 3.0% for MSTParser, the largest

and second largest improvements respectively despite both parsers exhibiting the

lowest effective constraint percentage on this error class. Similar to newswire, ZPar’s

improvement skews towards cascaded arcs, while MSTParser’s skews to constrained

3.8. Comparing MSTParser and ZPar 87

arcs, though both parsers record a ∆u greater than 1.3%. np internal constraints exhibit

much the same behaviour as they did on newswire, though both parsers make more

than twice the number of errors on web text.

Coordination, Prepositional Phrases, Modifiers, and Clauses

Coordination is more prevalent in the Web Treebank than the wsj, and it is the least

accurate class for both MSTParser and ZPar with constraint percentages of 26.8% and

24.2% respectively. Overall ∆uas improvements are 2.4% and 2.2%. Unlike newswire,

ZPar markedly outperforms MSTParser. Coupled with the reduced number of np
internal constraints, it seems that the weakness of nominal coordinations in newswire

is reduced (relatively) in web text for ZPar.

Conversely, pps are rarer in web text than on newswire, and this class exhibits the

smallest ∆uas difference compared to newswire for both parsers. ZPar moves from

1.7% to 1.9% ∆uas, and MSTParser from 1.8% to 2.0%, both of which are amongst the

smallest over all error classes on web text. This is in spite of the effective constraint per-

centage being above 20% for both parsers. pps are commonly incorrect, but infrequent

enough to have less impact when they are incorrect on web text.

Aside from the increases in effective percentage and the ∆ improvements over

the baseline, modifier and clause attachments on web text perform very similarly

to newswire. As on newswire, MSTParser performs substantially worse on clause

attachment compared to ZPar, at 22.5% effective constraint percentage to 18.0%. The

contribution of ∆u and ∆c to the overall uas improvements, and the tendency for ZPar

to extract more cascading impact from fewer effective constraints also continues to hold

across these classes.

Root and Punctuation

All of the previous error classes on web text exhibited increased ∆uas compared to

their newswire equivalents. However, the bulk of these increases have come from ∆c.

88 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

∆u is surprisingly static compared to newswire, increasing by at most 0.2% for both

parsers, and only on classes with larger ∆c values. Curiously, more effective constraints

do not have a more pronounced cascading impact in web text.

By contrast, both the effective constraint percentage and ∆u of root constraints rise

substantially on web text. While ZPar was more accurate than MSTParser on newswire,

the two systems are virtually tied on the Web Treebank. For both parsers, ∆c is 1.4%

and ∆u is 1.7%, increases of over 1% from newswire. This is the highest ∆uas for

MSTParser, and second highest to np attachment for ZPar.

Petrov and McDonald (2012) note that constructions such as imperatives, questions,

and fragments are all more common in web text than newswire. All of these exhibit

very different syntactic properties compared to newswire text, most especially in the

movement of the root node closer to the front of the sentence. There are substantial

projectivity implications of a sentence-initial root, as each arc emanating from the root

divides the entire sentence into two disjoint components on either side. Nivre et al.

(2014) found that enforcing the first word of a sentence as the root in a shift-reduce

dependency parser dramatically improves the accuracy of parsing imperatives.

Applying punctuation constraints in web text also increases ∆u for both parsers by

over 1%, contributing to the largest cascading impact of any error class.

3.9 MSTParser at Full Coverage

Table 3.11 gives the breakdown of performance for MSTParser on all sentences in wsj
22 and the Web Treebank development sections. These results are based on the same

configuration as in Section 3.8.1, except we have not removed any sentences to match

ZPar’s coverage.

It can be seen that the parser makes more mistakes on all error classes, as expected.

Themost pronounced effects are on the two classes with the lowest coverage previously:

other attachments, and punctuation attachments. 35.9% of punctuation tokens are

3.9. MSTParser at Full Coverage 89

Error class eff eff % disp uas las ∆uas ∆c ∆u

wsj section 22
baseline - - - 91.3 87.5 - - -

np attachment 388 5.7 5.0 93.8 90.4 2.6 1.4 1.2
np internal 243 3.6 2.7 92.5 89.1 1.2 0.9 0.4
Modifier attachment 370 8.7 4.0 93.2 90.1 1.9 1.3 0.6
pp attachment 406 13.7 4.3 93.1 89.3 1.8 1.5 0.3
Coordination attachment 316 19.4 6.8 92.9 89.4 1.6 1.1 0.5
Clause attachment 266 19.5 7.2 92.9 89.5 1.7 1.0 0.7
Other attachment 311 9.4 6.6 93.2 90.4 1.9 1.1 0.8
Punctuation attachment 673 18.1 8.1 93.5 89.3 2.2 0.3 2.0
Root attachment 85 6.4 9.7 92.2 88.2 0.9 0.3 0.6
All attachments 3058 9.5 5.9 100.0 100.0 8.7 8.7 0.0

ewt development sections
Baseline - - - 83.1 77.4 - - -

np attachment 2613 9.4 4.4 87.1 81.9 4.1 2.3 1.8
np internal 1743 9.1 2.8 85.3 80.0 2.2 1.5 0.7
Modifier attachment 2739 18.5 4.2 86.5 81.9 3.5 2.4 1.1
pp attachment 2134 19.6 4.2 85.5 79.8 2.4 1.9 0.6
Coordination attachment 2543 30.7 6.4 86.1 80.8 3.0 2.2 0.8
Clause attachment 1836 28.2 7.3 85.7 80.7 2.7 1.6 1.0
Other attachment 4048 22.5 5.8 88.3 84.1 5.3 3.4 1.9
Punctuation attachment 5171 35.9 6.7 87.3 80.5 4.3 0.1 4.2
Root attachment 1671 20.1 6.5 86.4 79.9 3.3 1.5 1.8
All attachments 24498 19.1 5.5 100.0 100.0 16.9 16.9 0.0

Table 3.11: The effective constraints, difference to baseline, and percentage, error displacement,

uas, las, ∆uas over the baseline, and the constrained and cascaded ∆ for MSTParser over

wsj 22 and the concatenated ewt development sections.

90 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

incorrectly attached in the Web Treebank, while 30.7% of clauses and 28.2% of coordi-

nation are incorrect as well. The cascading impact of punctuation increases to 4.2% ∆u,

and the relatively infrequent punctuation error class records the largest overall ∆uas
from applying constraints, ahead of the far larger np attachment class.

3.10 Summary

We have developed a procedure to classify the importance of errors in dependency

parsers without any assumptions on how the parser will respond to attachment repairs.

Our approach forces the parser to choose only correct arcs for certain words, whilst

allowing it to otherwise form the highest scoring parse under its model. Compared to

Kummerfeld et al. (2012), we can observe exactly how the parser responds to the parse

repairs, though at the cost of requiring modifications to the parser itself.

Our results show that identifying the heads of nps and their attachment points

are challenges for both a graph-based and transition-based dependency parser. While

both parsers correctly attach over 95% of np in the wsj section 22, and over 93% in the

English Web Treebank development sections, correcting the remaining np attachment

errors contributes the largest total improvement to parsing accuracy of any of our

error classes. This is due to the prevalence of nps, as well as the substantial cascading

impact of erroneously attaching an np. Conversely, correcting np internal structure,

which implicitly specifies the np head but not its attachment point, has amongst the

smallest total impacts on parsing accuracy of all error classes, with little cascading

effect elsewhere in the parse.

pps, coordination, and modifiers are each large sources of error for both parsers.

But unlike np attachment, all of these error classes are relatively self-contained. Cor-

rected arcs are rarely a long distance away from the parser’s initial choice, limiting the

cascading improvement, meaning that substantial, but not maximal gains in accuracy

can be achieved by correcting each of these classes. Coordination and modifiers are

3.10. Summary 91

challenging on both newswire and web text, while pps are more prevalent on newswire

than web text, and decline in their contribution to accuracy improvements on web text

relative to the other error classes.

ZPar outperforms MSTParser overall and across most error types, though MST-

Parser is relatively better at disambiguating nominal coordination. Themost substantial

difference between the two parsers comes on clause attachments, which are infrequent,

but often erroneous in both newswire and web text. Beam search is capable of pruning

most of the irrelevant states exhaustively searched by MSTParser without negatively

affecting accuracy. However, beam search also causes ZPar to lose coverage when

constraints are applied, while MSTParser can cover any sentence with consistent con-

straints. There is no principled way to address this whilst maintaining the original

behaviour of the parser, though in practice, increasing the beam size and formulating

a strategy to keep desired states in the beam can address the coverage reduction.

ZPar is also better than MSTParser at propagating the information from constraints

into cascaded impact. Despite outperforming MSTParser, and thus having fewer

errors to fix across most error classes, ZPar is still able to produce larger cascading

contributions to the overall accuracy improvement from constraints. This may be due

to the beam pruning erroneous states overall, avoiding the exhaustive consideration of

the graph-based model in MSTParser.

Our results show that punctuation causes the largest cascading impact of all con-

straints across newswire and web text. Even when it is ignored in evaluation, incorrect

punctuation serves as a strong signal for other errors in the sentence due to its usual

placement at the edges of phrasal boundaries. Conversely, correctly attaching punctua-

tion helps the parser to correct many other errors. More attention should be paid to

punctuation in parsing, whether in the form of removing it entirely and re-adding it

later, or addressing it more directly through features that capture its diverse behaviours.

We implement a robust procedure to identify the cascading impact of dependency

parser errors. Our results provide insights into which errors are most damaging in

92 Chapter 3. Constraint-based Error Analysis for Dependency Parsing

parsing, and will drive further improvements in parsing accuracy. In the next chapter,

we develop features for MSTParser based on unannotated n-gram corpora which

attempt to address some of the issues discussed in this chapter.

4 Surface andSyntactic n-gramFeatures

for Dependency Parsing

In this chapter, we describe the implementation of n-gram-based features forMSTParser,

encoding the frequency of surface n-grams and dependency subtrees in large unanno-

tated text corpora. Such n-gram features have been shown to be effective in addressing

some of the major sources of parser error discussed in the previous chapter, such as np
and pp attachment (Volk, 2001; Nakov and Hearst, 2005a). We use our constraint-based

procedure to compare the performance of various feature types, investigating their

effectiveness in addressing the issues we identified.

We use two large corpora extracted from scanned books: the Google Books Ngrams

corpus (Michel et al., 2011), and the Google Syntactic Ngrams corpus (Goldberg and

Orwant, 2013). The former is a collection of surface n-grams and their frequencies

collected over 468 billion words of English scanned books. The latter is a collection of

dependency subtrees and their frequencies collated over 345 billion words of scanned

English books parsed with a shift-reduce parser and Stanford dependencies.

Features from surface n-gram counts over large web corpora such as Web1T (Brants

and Franz, 2006) have proven to be useful syntactic hints (Bansal and Klein, 2011; Pitler,

2012a), but the impact of these features on out-of-domain text remains an open question.

Additionally, prior feature analysis was restricted to examining error reductions based

on pos tags of fillers. This is informative, but lacks the greater abstraction of our

93

94 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

dependency constraint error classes, and does not showwhether the additional features

also affected the cascading impact of each error class.

Surface n-gram features also rely on linear word order, and are unable to distinguish

between syntactic and random co-occurrence. In contrast, longer n-grams are noisier

and sparser, limiting potential features.

We develop features based on counts of syntactic n-grams from the Google corpus,

trading off potential systemic parser errors for data that is aligned with the parsing

task. Our work extends that of Bansal and Klein (2011, B&K), who found that surface

n-gram features extracted over web text from Web1T frequencies were very effective in

improving the accuracy of MSTParser. This success was in spite of the deficiency of

surface n-grams for parsing. Additionally, we create second-order variants of B&K’s

surface n-gram features in parallel to second-order syntactic n-gram features, investi-

gating whether the information captured in higher-order structures are useful for the

parser.

We evaluate surface and syntactic n-gram features over newswire and web text

across the lth and Stanford dependency schemes. We also apply the constraint-based

evaluation developed in Chapter 3 over our Stanford models, identifying which types

of errors each feature set affects most, and whether they change the cascading impact

of each error class.

Our results show that surface n-gram features using counts from Google Books

Ngrams are largely equivalent to counts from Web1T across domains and formalisms.

Syntactic n-gram features yielded slightly worse accuracy on in-domain text, but

worked better on out-of-domain text across formalisms compared to surface n-grams,

despite being better suited to the parsing task. Each type of n-gram feature also pro-

vided improvements for different error classes, consistent with the types of noise and

error inherent in the n-gram source corpora.

Our best lth system achieves 92.6% uas on newswire and 85.9% uas averaged

over web text on a baseline of 92.0% and 84.6%. On Stanford dependencies, our

95

combined system achieves 92.1% on newswire and 84.6% averaged over web text over

baselines of 91.3% and 83.1%. This combined system significantly outperforms each

individual surface and syntactic n-gram feature type in isolation, demonstrating the

complementary nature of these features.

Applying our constraint evaluation procedure shows that the combined system

successfully reduces parser errors in the problematic error classes from the previous

chapter — nps, pps, clause, and modifier attachments. The combined system is able

to draw upon the strengths of both surface and syntactic features whilst avoiding

their weaknesses. Surface n-gram features perform worse on coordination and verb

attachments, whilst syntactic n-grams are weaker on nominal and pp attachments —

structures that are known to be difficult to parse and hence more prone to erroneous

subtree counts. For surface n-grams, Web1T features are better suited to pps, and
Google Books perform better on nominals.

Notably, the combined system is able to reduce the errors across most of our er-

ror classes, but these improvements are restricted to constrained impact, and do not

markedly improve the cascaded impact of each class. This suggests that the features are

addressing the most isolated errors, rather than those which cause additional issues in

each sentence.

This is the first work to use features from the Syntactic Ngrams corpus in depen-

dency parsing, and analyze the impact of surface and syntactic n-gram features across

domains, parsing models, and dependency schemes. We hope that our results encour-

age further investigation into features from enormous parsed corpora, and demonstrate

when they are effective.

This chapter is organised as follows. First, we discuss the n-gram corpora used

in this work, and the literature on employing unannotated and automatically tagged

resources to improve syntactic analysis. We describe our new syntactic n-gram features

and the extraction process from the Google corpus. We discuss the B&K surface n-gram

features, and our extensions to them. Finally, we present the results of applying and

96 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

combining different features from different datasets, and analyse the results using our

constrained-based evaluation technique describe in Chapter 3, examining the impact

of features across our error classes.

4.1 Background

4.1.1 N-gram Corpora

N-gram corpora collect frequency counts of small fragments of text from a very large text

corpus. The arity of the n-gram is its size; for example, a unigram or 1-gram contains

one lexical unit, and a trigram or 3-gram contains three. Importantly, these corpora are

typically unannotated, and can be produced automatically through relatively simple

techniques. However, it is usually necessary to collate these counts over very large

collections of source documents, such as spidered websites or scanned books, in order

to achieve high n-gram coverage and more reliable statistics. The resources required to

create substantial n-gram corpora over web-scale text are prohibitive.

Despite the noise and lack of annotation, n-gram corpora can provide useful cues

for many tasks in nlp. In this section, we describe the three corpora used in this

thesis. Web1T and Google Books Ngrams are collections of surface n-grams, or plain

word sequences. Google Syntactic Ngrams is a collection of dependency parse subtrees.

These corpora were collected and produced by Google using their extensive data and

computational resources. We also describe previous work with n-gram corpora for

syntactic analysis.

4.1.1.1 Web1T

The Web1T corpus contains surface n-gram counts collated over approximately one

trillion words of English web text taken from Google’s web crawl (Brants and Franz,

2006). The counts represent the linear co-occurrence of words in web text. To produce

the counts, the raw text was tokenised using similar rules to the Penn Treebank wsj

4.1. Background 97

hold a healing 150
hold a health 972
hold a healthy 536
hold a heap 249
hold a hear 179
hold a hearing 113241
hold a hearings 96
hold a heart 408

Figure 4.1: Raw 3-grams and their frequencies taken fromWeb1T.

data, and non-English encodings and junk-like text was discarded. Automatic sentence

boundary detectionwas performed, and boundarymarkers <S> and </S>were inserted

to mark the beginning and end of sentences. Counts were collected for all unigrams

occurring more than 200 times in the source data, for n-grams of arity 2 to 5 occurring

more than 40 times in the source data. The sentence boundary markers are included in

the n-grams. All unigrams falling under the 200 frequency threshold were mapped to

the token <UNK>. Figure 4.1 gives an excerpt from the 3-grams provided by Web1T.

Lin et al. (2010) and Pitler et al. (2010) document a number of noise issues in the

source data of Web1T, which compromise the corpus integrity. Duplicate sentences,

such as legal disclaimers and boilerplate text, occur millions of times in the source.

Disproportionately short or long sentences, and primarily alphanumeric sentences are

also likely to be garbage text. Lin et al. (2010) describe Google V2, which is an n-gram

corpus developed from the same source documents as Web1T, but with additional

preprocessing steps to address some of these noise sources. However, the V2 corpus

has not seen widespread release as of writing, and so the original Web1T remains the

most widely-used source of n-grams from web text.

4.1.1.2 Google Books Ngrams

The Google Books Ngrams English corpus (2012) contains counts of surface n-grams

over 468 billion words sourced from scanned books published across three centuries

(Michel et al., 2011). Like Web1T, Google Books collects n-grams of arity 1 to 5. Unlike

98 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

hold a battleship 82 44 29
hold a cornucopia_NOUN 75 58 40
hold a custom_NOUN 60 34 27
hold a hearing 27027 24988 16754
hold a rain 85 64 31
hold a rope_NOUN 985 713 498
hold a sling 43 26 14
hold a theology_NOUN 62 47 43

Figure 4.2: Raw 3-grams and their collated frequencies taken from Google Books Ngrams,

including some n-grams with coarse pos tags.

Web1T, a uniform cutoff of 40 applies to all n-grams in this corpus, including unigrams,

and any n-grams below this threshold were excluded completely. Google Books also

leverages the temporal aspect of its source data, and provides a breakdown of n-gram

frequencies by year of publication. Later efforts added coarse part-of-speech tags and

syntactic labels to differentiate between different word senses in n-grams (Lin et al.,

2012).

While Web1T was affected by the noise of web text, Google Books is affected by the

accuracy of ocr and digitization tools, and the changing typography of books across

time is one issue that may create spurious co-occurrences and counts (Lin et al., 2012).

4.1.1.3 Google Syntactic Ngrams

The Google Syntactic Ngrams English (2013) corpus1 contains counts of dependency

tree fragments over a parsed 345 billion word extract of the Google Books data (Gold-

berg and Orwant, 2013). The source is roughly one third the size of Web1T’s, and three

quarters the size of Google Books Ngrams.

The text was parsed using a beam-search shift-reduce parser based on ZPar (Zhang

and Nivre, 2011) with the basic Stanford dependency scheme (de Marneffe and Man-

ning, 2008b), henceforth the Goldberg and Orwant (2013) parser. Crucially, this parser

and the first-order crf pos tagger used for tagging the source data were trained over

1http://commondatastorage.googleapis.com/books/syntactic-ngrams

http://commondatastorage.googleapis.com/books/syntactic-ngrams

4.1. Background 99

hold hold/VBP/ROOT/0 a/DT/det/3 harp/NN/dobj/1 11 1915,1...
hold hold/VBP/ROOT/0 a/DT/det/3 hat/NN/dobj/1 18 1873,3...
hold hold/VBP/ROOT/0 a/DT/det/3 hatred/NN/dobj/1 33 1899,1...
hold hold/VBP/ROOT/0 a/DT/det/3 head/NN/dobj/1 46 1794,1...
hold hold/VBP/ROOT/0 a/DT/det/3 hearing/NN/dobj/1 174 1920,3...
hold hold/VBP/ROOT/0 a/DT/det/3 heart/NN/dobj/1 49 1879,1...
hold hold/VBP/ROOT/0 a/DT/det/3 heaven/NN/dobj/1 11 1825,1...
hold hold/VBP/ROOT/0 a/DT/det/3 heresy/NN/dobj/1 49 1831,3...
hold hold/VBP/ROOT/0 a/DT/det/3 heretic/NN/dobj/1 21 1829,1...
hold hold/VBP/ROOT/0 a/DT/det/3 hide/NN/dobj/1 12 1884,1...

Figure 4.3: Syntactic 1-grams and their collated frequencies taken from the extended arcs set

of Google Syntactic Ngrams. Each n-gram contains two content words, and the non-content

determiner a. The fields are the head word, the n-gram, the total frequency, and the frequencies

by year (truncated).

the union of the ptb wsj section (Marcus et al., 1993), the Brown corpus (Kucera and

Francis, 1967), and the Questions Treebank (Judge et al., 2006) — substantially more

annotated data than typically used in dependency parsing. The use of so much extra

training data suggests that parsing accuracy will be improved over typical systems

trained only using the ptb. However, the Books source data is drawn from a differ-

ent domain than the training data, which is known to reduce parsing performance.

Our results from Chapter 3 show that ZPar trained on the OntoNotes 4 wsj produces
8% lower unlabeled accuracy scores when parsing web text, though accuracies per

each web domain varied substantially depending on how close the domain was to the

original newswire training data.

The counts in Google Syntactic Ngrams distinguish between content and non-

content words: non-content words are functional markers which serve to add polarity,

modality, or definiteness, and are identified by specific dependency labels. Goldberg

and Orwant (2013) note that the dependency labels det, poss, neg, aux, auxpass, ps,

mark, complm, and prt identify non-content words, and that all of these (bar poss) are

closed classes.

100 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

Corpus Source Source tokens

Web1T Web text 1,000 billion
Google Books Ngrams Scanned books 468 billion
Google Syntactic Ngrams Parsed scanned books 345 billion

Table 4.1: Source text token counts for the n-gram corpora.

n-grams Web1T Books

1-grams 13,588,391 10,398,254
2-grams 314,843,401 142,086,111
3-grams 977,069,902 541,872,406
4-grams 1,313,818,354 824,306,624
5-grams 1,176,470,663 710,664,070

Table 4.2: A comparison of the n-gram distribution in the Web1T and Google Books corpora.

A syntactic n-gram contains n content words and n− 1 arcs between those con-

tent words; the Syntactic Ngrams corpus provides counts over 2 to 5 content words

(internally labeled as arcs, biarcs, triarcs, and quadarcs respectively). An extended n-gram

also contains any non-content words which modify the content words; the corpus also

provides counts over extended variants of the four types previously listed.

Figure 4.3 gives an excerpt from Google Syntactic Ngrams taken from the extended

arcs dataset. The fields are the head word of the syntactic n-gram, the n-gram itself,

the total n-gram frequency, and a frequency breakdown by year. The n-gram format is

word/pos/label/head with a 1-based indexing scheme; the word with a 0 head index

is the root of the subtree. The words in the n-gram maintain their original sentence

ordering, but intervening words without a dependency arc to any word in the n-gram

are omitted (Goldberg and Orwant, 2013).

Each subtree in the Google Syntactic Ngrams corpusmust appear at least 10 times, a

much lower cutoff than either of the surface n-gram corpora used in this work. Subtrees

below this cutoff are not included in the corpus.

Table 4.1 lists the source size and type of each corpus, and Table 4.2 gives a break-

down of the unique surface n-grams of each size appearing in the Web1T and Google

4.1. Background 101

Books Ngrams corpus. It can be seen that despite the lower unigram frequency cutoff,

Web1T contains more distinct n-grams of every arity than Google Books. This reflects

the larger source corpus used for Web1T, as well as the vocabulary expansion inherent

in web text due to URLs, emoticons, and jargon.

4.1.2 Using n-grams for Syntax

The use of automatically parsed data for improving parser accuracy has been explored

in several different ways. Sarkar (2001) and Steedman et al. (2003) have applied co-

training techniques to constituency parsing. In co-training, two systems are iteratively

trained on a small amount of annotated data augmented with the most confident

predictions of the other system, allowing each to benefit from the insights of the other.

Both works found that co-training is best suited to situations where there is only a small

amount of labeled data available. Sagae and Tsujii (2007) have also found co-training

to be useful for domain adaptation, using parsed out-of-domain data to augment

annotated training data.

Volk (2001) addressed pp attachment ambiguities in a 3,000 sentence German

corpus by comparing the frequency of hits of different configurations of preposition,

attachment point, and noun from a web search API. The raw hit counts are little more

than an indicator of surface-form affinity, but they contribute to over a 10% improvement

in resolving pp attachments compared to simply setting the attachment point to the

most frequently observed.

Web search hit counts were also used by Lapata and Keller (2004) as cues for

determining noun compound bracketing. They compute a probability based on the ratio

of web page hit counts for query terms based on the fragment implied by competing

brackets. The most likely bracketing under this model is chosen and returned. Using

only these n-gram statistics, their system achieved an accuracy of 78.68%, competitive

with a state-of-the-art system that used a large predefined taxonomy of bracketings

and thesaurus.

102 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

Nakov and Hearst (2005a) further improved noun compound bracketing accuracy

to 89.34% on a larger version of the same task (using twice the test data) by greatly

expanding the number of web n-gram count features. In particular, they introduced

paraphrase-style features, where the query term is rewritten using a fixed set of static

rewritings. For example, for the nominal compound brain stem cells , two competing

paraphrases are stem cells found in the brain (right branching), or cells found in the brain

stem (left branching). High hit counts for the paraphrases associated with a particular

branching provide additional evidence for that branching. Nakov and Hearst (2005b)

extended these features to resolving pp and nominal coordination attachments in

English, achieving over 80% precision for both tasks.

Bansal and Klein (2011) adopted the idea of n-gram frequency statistics for full-scale

parsing. By this time, web search engines were introducing increasing limits to their

APIs, preventing n-gram statistics of individual query terms from being collected on a

wide-scale. The quadratic number of possible attachments in parsing also presented

scaling problems with querying systems.

Instead, they usedWeb1T as a static, offline source of web n-gram counts for parsing

feature. They represented competing attachments as surface n-grams of the attachment

point andword in their sentence order, and calculated the bucketed frequencies of these

n-grams efficiently by searching Web1T. They also used Nakov and Hearst (2005a)’s

paraphrase-style features, but rather than employing a fixed number of paraphrase pat-

terns, they mined all possible patterns using the Web1T 3-grams. Their work resulted

in a 0.6% ∆uas improvement baseline MSTParser to 92.0%, and a 1.2% improvement in

parseval F-score over the baseline Berkeley reranker. We use Bansal and Klein (2011)

as the basis for our new syntactic n-gram features, and it will be discussed further

throughout the remainder of this chapter.

Chen et al. (2009) achieves substantial parsing accuracy improvements in English

and Chinese using subtree-based features. They parse the 30 million word bllip
corpus using the first-order MSTParser, and count the frequency of subtrees containing

4.2. Features in MSTParser 103

up to 3 arcs. The subtree frequencies are coarsely bucketed, with new indicator features

developed for MSTParser that are fired when a stored subtree is encountered in the

parsing process. They achieve a 0.6% ∆uas improvement to 92.5% on Penn2Malt wsj
section 23 dependencies. Combining their features with the word cluster features of

Koo et al. (2008) yields a 1.4% increase to 93.2%, competitive with the state-of-the-art.

This work creates features that are similar in design to our syntactic n-gram features.

However, Chen et al. (2009) employ the same underlying parser and dependency

formalism to generate their subtree counts as they do for final evaluation. The counts

are also extracted over an in-domain newswire corpus that is orders of magnitude

smaller than Google Syntactic Ngrams.

Other recent work on improving dependency parsing using n-gram features include

Pitler (2012a), who exploits Brown clusters and point-wise mutual information of

surface n-gram counts to specifically address pp and coordination errors. Chen et al.

(2013) describe a novel way of generating meta-features by parsing a large corpus,

and counting the number of activations for each feature during parsing. The relative

bucketed activation frequencies are encoded with the original features to produce the

meta-features, emphasising the important feature types used by the parser.

4.2 Features in MSTParser

MSTParser factors its parsing decisions over individual and pairs of dependency arcs

originating from a common parent. First-order features may be defined over a head

and argument word pair, with access to the direction of the proposed arc, distance

between the words, the pos tags, and any other lexical information provided to the

parser for those words. Second-order features may be defined over a head and two of its

arguments, where both of the arguments must be immediately adjacent to each other

with respect to all of the arguments of the head. The arguments must also both be on

the same side of the head. Triple features refer to the head and two arguments together,

104 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

while sibling features refer only the two adjacent arguments The side on which the

arguments are relative to the head, the relative position of all three items, pos tags

and any other lexical information supplied to the parser are available for use in these

features. The restricted nature of the second-order features is due to the way they are

implemented within Eisner’s algorithm (McDonald and Pereira, 2006). Parse 4.1 gives

a visual depiction of the second-order factorisation.

could hold a public hearing next Tuesday

Parse 4.1: The second-order factorisation used in MSTParser, with a head and two adjacent

arguments, both on the same side of the head.

4.3 Surface n-gram Features

B&K demonstrate that features generated from bucketing simple surface n-gram counts

over Web1T are useful for almost all attachment decisions. However, this technique is

restricted to counts based purely on the linear order of adjacent word, and is unable to

incorporate disambiguating information such as pos tags to avoid spurious counts.

B&K also tested only on in-domain text, though these external count features should

be useful out of domain as well.

In this section, we describe the B&K first-order surface n-gram features, and present

our second-order extension, attempting to capture deeper syntactic relationships from

the co-occurrence statistics. We test the effectiveness of these features when extracted

fromWeb1T and Google Books Ngrams. Importantly, the same underlying features

are used in our comparison; the only difference is the source of the bucketed counts

encoded in the features.

4.3. Surface n-gram Features 105

4.3.1 First-order surface n-gram features

Affinity features rely on the intuition that frequently co-occurring words in large un-

labeled text collections are likely to be in a syntactic relationship (Nakov and Hearst,

2005a). Given a proposed dependency arc, the head and argument may be combined

to form a contiguous query n-gram, with the first word decided by the directional-

ity of the proposed arc. As both Web1T and Google Books Ngrams contain surface

n-grams of up to length 5, additional query n-grams may be formed by allowing up to

three intervening word between the head and argument. The total sum of the counts

of these query n-grams can be extracted from Web1T and Google Books, giving a

frequency-based cue for the likelihood of the proposed arc.

The raw frequencies extracted from the counts corpus are too sparse for direct use

as features. Instead, B&K use the following equation to discretise the count into a small

number of buckets that are encoded in the feature:

bucket =
⌊

log2(count)
5

⌋
(4.1)

Each surface n-gram feature includes the pos tags of the proposed head and argument,

the discretised count, dependency direction, and binned length as well as the bucket.

Additional cumulative features are generated with each bucket up to the maximum

bucket value observed in the training data to address sparsity in the data; features with

lower frequencies in the n-gram corpus will receive additional features through this.

B&K also extend the paraphrase-style features of Nakov andHearst (2005a). Instead

of static patterns, they generate these features automatically using n-gram frequencies.

For each proposed dependency, 3-grams of the form (? q1 q2), (q1 ? q2), and (q1 q2

?) are extracted, where q1 and q2 are the head and argument in their linear order of

appearance in the original sentence, and ? is any single context word appearing before,

in between, or after the query words respectively. The most frequent words appearing

106 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

in each of these configurations for each proposed dependency are encoded as features

with the head and argument pos tags.2

For example, given the arc hold → hearing in Parse 4.1, public is the most frequent

word appearing in the surface n-gram (hold ? hearing) in Web1T. Thus, a mid-word

paraphrase feature pos (hold) ∧ pos (hearing) ∧ public ∧ midwould be encoded for

this arc. The pos tags are used in the final feature to allow for generalisation beyond the

original words, while the context word itself mimics the static words in the templates

used by Nakov and Hearst (2005a).

A further generalisation substitutes the context word public with its pos tag, as

determined by a simple unigram pos tagger trained on the wsj training data.

The overhead of looking up surface n-gram queries is mitigated in our research

setting by pre-computing all possible dependency arcs in the training and test data,

which is simply all directed pairs of words in every sentence. Then, the n-grams are

extracted ahead of parsing and cached in lookup tables. These tables are loaded by

the parser at runtime, necessitating an in-memory query for each constructed n-gram

for its count. This is not a general solution in practice, but is sufficient to validate

our features. However, it is very memory intensive, requiring lookup tables to store

hundreds of thousands of arcs and their counts. Techniques such as feature hashing

and pruning to reduce the feature space would be useful in alleviating the memory

pressure for real-world use.

4.3.2 Second-order surface n-gram features

In this section, we describe how we extend B&K’s first-order features to second-order.

Reflecting the factorisation used in MSTParser, our second-order structures are triples

and siblings, where a triple is a head with two of its adjacent arguments on one side,

and siblings are the two arguments in a triple, excluding the head.

2The top 20 words in between and top 5 words before and after each query n-gram are used by Bansal
and Klein (2011), and we follow these settings in this thesis.

4.4. Syntactic n-gram Features 107

In Parse 4.1, there is a second-order structure involving hold , hearing , and Tuesday .

We extract a triple n-gram containing all three words in their sentence order, and

a sibling n-gram of only the argument words. We then scan the n-gram corpus for

each possible configuration (including intervening words) that the query n-gram may

appear in; for triples, these are:

• (q1 q2 q3)

• (q1 ? q2 q3)

• (q1 q2 ? q3)

• (q1 ? q2 ? q3)

• (q1 ? ? q2 q3)

• (q1 q2 ? ? q3)

where q1, q2, and q3 are the words of the triple in their linear order, and ? is a single

intervening word of any kind.

A limitation of higher-order surface n-gram features from a corpus of arity 5 is

that the maximum number of intervening words is reduced to two. This constricts

the range of these features compared to first-order, and prevents triple and siblings

structures extending over longer distances from receiving appropriate counts.

Once we have extracted the counts for triple structures, we sum and bucket them as

per Equation 4.1. The final feature names for the proposed second-order arcs include

the properties as the first-order features, along with the bucket and the binned distance

between the two children. As with first-order features, the query n-grams are pre-

computed and their counts pre-extracted and cached to avoid the overhead of scanning

the n-gram corpus during runtime.

Sibling structures only involve two words, and so we extract surface affinity and

paraphrase n-gram features for them as per Section 4.3.1.

4.4 Syntactic n-gram Features

Unlike surface n-grams, syntactic n-grams are not restricted to linearword order and are

not affected by random co-occurrence. Attachment decisions in parsing can commonly

108 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

span over distances longer than three intervening words, which is the maximum

distance which the Web1T and Google Books Ngrams corpora can support. Using

subtree fragments avoids the length limitations, as the subtreewill naturally extend over

asmanywords as is necessary. The trade-off is that syntactic n-grams are generatedwith

a parser over out-of-domain text, so there are undoubtedly systemic parser errors. The

question iswhether the scale of the corpus and the closer fit to the parsing task outweigh

the simpler word affinity available in surface n-gram corpora and the introduction of

parser error.

In this section we describe our first- and second-order syntactic n-gram features,

and show how they are extracted and applied in MSTParser.

4.4.1 First-order syntactic n-gram features

Our first-order syntactic n-gram features reinforce high-frequency dependencies identi-

fied in the corpus. Given a proposed dependency arc, we search the arcs component of

the Syntactic Ngrams corpus for subtrees which match it, summing their counts. The

total count is discretised, and encoded as a feature name for the arc, along with the

parameters used to find the count. Importantly, we search for unlabeled arcs, and do

not use the label for any features. This is done for two reasons: first, because MSTParser

assigns labels in a separate subroutine to the decoding of the most likely arc, and

second, some of our experiments use a different dependency scheme to the Syntactic

Ngrams corpus.

As Syntactic Ngrams contains pos tag and directionality information in its subtrees,

we can extract many more types of features based on different search parameterisa-

tions. We take different combinations of the words, pos tags, and directionality of the

proposed arc, and extract counts for each combination. For example, we can search for

all subtrees which:

• match the proposed arc exactly, including the relative ordering of head and

argument;

4.4. Syntactic n-gram Features 109

Feature Lookup Count Bucket

hold (head) 80,129k 4
hearing (arg) 7,839k 4
hold → hearing 15k 3
hold → hearing (head at left) 15k 3

VB (head) 20,996,911k 5
NN (arg) 22,163,825k 5
VB (child at right) 6,261,484k 5
NN (head at left) 15,478,472k 5
VB→ NN 1,784,891k 5
VB→ NN (head at left) 1,437,932k 5

hold → NN 7,362k 4
hold → NN (head at left) 6,248k 4
VB→ hearing 396k 3
VB→ hearing (head at left) 354k 3

Table 4.3: First-order syntactic n-gram features, their counts in the extended arcs dataset, and

the bucketed count for the hold→hearing arc in Parse 4.3.

• match the proposed arc, ignoring the relative ordering of head and argument;

• have the same pos tags for the head and argument as the proposed dependency;

• are headed by the head word of the proposed arc, but have any argument word;

• are headed by the head pos of the proposed arc, but have any head word.

This spectrum of additional features allows us to abstract away from the reliance on the

relative word-order of the head and argument, which is a critical limitation of using

surface n-gram features.

Table 4.3 summarises the individual first-order features extracted from the Syntac-

tic Ngrams corpus given the proposed dependency arc hold → hearing depicted in

Parse 4.2. Each feature is listed with its count in the extended arcs dataset along with

computed bucket value that will be encoded as a representation of its frequency. The

bucket value is calculated using Equation 4.1 as per the surface n-gram features.

110 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

The feature combines the head and argument pos tags, the dependency direction,

binned length, and bucket. We again encoded cumulative features for each bucket up

to the maximum value observed in the training data.

We also experiment with paraphrase-style features extracted from the extended

biarcs dataset. Unlike surface n-gram paraphrase features, which assume that any

word appearing before, in between, or after a query n-gram is a potential paraphrase,

the Syntactic Ngrams corpus allows us to only choose paraphrase targets which have a

direct syntactic link to either the head or argument word. We can also use the pos tag

of the paraphrase words directly as these tags are included in the Syntactic Ngrams

corpus, rather than use the output of the unigram tagger necessary for surface n-grams.

could hold a public hearing next week

aux

dobj

tmod

det

amod

Parse 4.2: The paraphrase-style context words around hold→hearing in a syntactic n-gram.

Context words are underlined and their arcs dashed.

Parse 4.2 depicts a sample subtree centred on a dependency arc hold→ hearing . The

potential context words are underlined; these are the words which are connected by a

dependency arc to either the head or argument word. Given the proposed dependency

arc, we search the biarcs Syntactic Ngrams data for all context words connected to the

proposed arc, and sum their counts. The most frequent words before, in between, and

after the query n-gram are encoded as features in the same manner as the first-order

surface n-gram paraphrase features described in Section 4.3.1.

We reduce the cost of searching for matching subtrees by using the same prepro-

cessing procedure as surface n-grams.

4.5. Experimental Setup 111

4.4.2 Second-order syntactic n-gram features

We experiment with a number of second-order features, mirroring those extracted

for triple and sibling structures and surface n-grams in Section 4.3.2. Analogous to

the first-order case, we can extract subtrees from the Syntactic Ngrams biarcs corpus

only when they precisely match the proposed triple and sibling structures, rather than

relying on linear word co-occurrence.

Given a sibling or triple structure, we search the Syntactic Ngrams corpus for

subtrees which match exactly, either for all three words, or all three pos tags. The

search is subject to the requirement that the relative order of the head and arguments

to each other is maintained. We sum the counts of all matching subtrees, and bucket

the sum as per Equation 4.1. The final generated features are analogous to Section 4.3.2,

with the only difference being the source of the counts.

The second-order syntactic n-gram features subsume some of the paraphrase-style

features described in Section 4.4.1, in that some of the context words extracted by the

paraphrase process will overlap with the triple and sibling structures. We discuss the

effectiveness of the features in isolation and together in our results.

4.5 Experimental Setup

We implement our features usingMSTParser, using the same configuration as described

in Chapter 3. We briefly attempted to implement the surface and syntactic n-gram

features described in this chapter for the transition-based ZPar system, which we used

for our constraints evaluation procedure in Chapter 3. Our intention was to perform a

cross-parser evaluation, comparing the impact of the features under a different parsing

algorithm. However, we were unable to achieve any substantial improvements over

the baseline parser with any combination of n-gram features. As ZPar also does not

support the lth formalism, we did not continue to pursue this line of research, and

note it as a point of future work.

112 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

We evaluate using uas over non-punctuation dependencies using the same evalu-

ation script as described in Section 3.5.1. We omit an extensive discussion of labeled

attachment scores in this thesis for brevity, but they are consistent with the reported

uas scores. Statistical significance is computed at p < 0.05 using Dan Bikel’s stratified

shuffling script and eval06.pl.3

4.5.1 Dependency schemes

LTH Dependencies

We used lth dependencies generated over the Vadas and Curran (2007) np-enriched
ptb, following Bansal and Klein (2011) and Pitler (2012a). We also followed the evalua-

tion procedure of the SANCL 2012 shared task using the answers, newsgroups, and re-

views sections of the English Web Treebank (described in Chapter 2) for out-of-domain

evaluation. Each section was converted to lth dependencies with pennconverter in a

similar fashion to the wsj data.
wsj section 22 and the Web Treebank development sections were used as develop-

ment data, and ran the best performing configurations as a final test over wsj section
23 and the Web Treebank test sections. The additional Web Treebank evaluation allows

us to test B&K’s original surface n-gram features and our own on an out-of-domain

corpus.

We generated pos tags for the data using mxpost (Ratnaparkhi, 1996) in an identi-

cal fashion as described in Section 3.5.1.

Stanford Dependencies

To test the effectiveness of our features across different dependency formalisms, we

also trained and evaluated MSTParser over the Stanford dependency configuration

described in Section 3.5.1. This involved a change in the wsj corpus from the Penn

Treebank to the OntoNotes 4 release; we used the pos tagging setup described in
3Available at http://ilk.uvt.nl/conll/software.html#eval

4.5. Experimental Setup 113

The Ways and Means Committee will hold a hearing next Tuesday .

NMOD

NMOD

COORD CONJ SBJ VC

P

TMP

OBJ

NMOD NMOD

ROOT

det

nn

cc

conj nsubj

aux

punct

tmod

dobj

det amod

root

Parse 4.3: lth (top) and Stanford (bottom) dependencies. Dashed arcs indicate unlabeled

differences between the schemes; solid arcs are isomorphic between both trees.

Section 3.5.1 to ensure consistent tags. There was no change in the Web Treebank

source data, other than using the original Stanford dependency release. All other

components of the evaluation procedure remained the same between the two schemes.

Stanford dependencies were used to produce the Google Syntactic Ngrams corpus,

so the evaluation on this scheme allows us to investigate whether the cross-dependency

scheme nature of the syntactic n-gram features helps or hinders performance. It also

allows us to judge the effectiveness of B&K’s original surface n-gram features and our

extensions to them across formalisms.

All features for each dependency scheme are generated and cached independently

due to the different training and test corpora.

Comparing lth and Stanford Dependencies

Parse 4.3 gives an lth and Stanford dependency analysis of a simplified sentence

from the ptb section 22. The most notable differences are the treatment of auxiliary or

main verbs as roots of the sentence (and the cascading attachment differences from

the root decision), and coordination attachment to the coordinator or the coordinated

word. In the lth scheme, sentences containing an auxiliary verb (will in this case) are

headed by that auxiliary, whilst the Stanford scheme treats the main predicate as the

114 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

Count %

Dependencies in common 707,812 74.5
Dependencies different 242,216 25.5

Total 950,028 100.0

Table 4.4: Common and different unlabeled dependencies between the lth and Stanford

schemes over ptb sections 02-21 with Vadas and Curran (2007)’s np brackets.

head and the auxiliary as a dependent of it. This distinction has a cascading effect

on many other dependency types which attach to the head of a sentence, including

punctuation, subject and object dependencies. Coordination is another important

source of difference; in the lth scheme, there is no direct link between coordinated

items, whilst the Stanford scheme explicitly links them together under a conj label.

Table 4.4 gives the summed total of common and different unlabeled dependencies

between the lth and Stanford schemes, as computed over ptb sections 02-21, enriched

with the Vadas and Curran (2007) np brackets. Nearly 75% of the dependencies have

the same head and argument, with most differences stemming from the cascading

impact of auxiliaries as roots. Coincidentally, this proportion almost exactly matches

the observed differences in Parse 4.3.

Søgaard (2013) conducts a detailed comparison of these schemes, concluding that

many differences are offset by the biases of parsers; comparing parser output across

schemes leads to higher correlation than comparing gold-standard dependencies. They

also find that lth and Stanford dependencies are similarly useful for a variety of

downstream applications, though lth is notably worse at sentence compression due

to its representation of coordination.

4.6. Results 115

wsj 22 ewt Dev

lth web1t books syn web1t books syn
Baseline 92.3 92.3 92.3 83.7 83.7 83.7

+1st - - 92.8 - - 84.5
+1st +para 92.8 92.8 92.8 84.6 84.5 84.4
+1st +2nd - - 92.9 - - 84.5
+1st +para +2nd 93.0 92.9 92.7 84.6 84.6 84.4

Table 4.5: lth uas on wsj 22 and the macro-averaged English Web Treebank answers, news-

groups, and reviews development sections for accumulative Web1T and Google Books surface

n-grams and syntactic n-grams features. All results are significant improvements over the

baseline, and bolded results are significant improvements over the column.

4.6 Results

In this section, we discuss our results, including the performance of different first- and

second-order feature types on the development sets, comparisons between surface and

syntactic n-gram features and different sources of surface n-grams, and the performance

of a system combining the best individual feature sets.

Tables 4.5 and 4.6 summarise the results of using different combinations of first-

and second-order surface and syntactic n-gram features over the wsj section 22 and

English Web Treebank development sets. We tested two configurations of surface

n-gram features: the affinity and paraphrase features defined by Bansal and Klein

(2011), and a combination of those features with our additional second-order surface

n-gram features. We tested four configurations of syntactic n-gram features, adding a

permutation over the paraphrase features.

All of our feature types were significant improvements over the baseline parser in

and out-of-domain. On lth dependencies, the best performing feature combination

from each n-gram source outperformed the baseline by 0.6 – 0.7% uas, reaching a best

score of 93.0%. Web text improvements were 0.8 – 0.9% uas, reaching 84.6% over a

baseline of 83.7%. On Stanford dependencies, surface n-gram features outperformed

116 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

wsj 22 ewt Dev

Stanford web1t books syn web1t books syn
Baseline 91.3 91.3 91.3 82.5 82.5 82.5

+1st - - 91.7 - - 83.6
+1st +para 91.8 92.0 91.6 83.4 83.5 83.4
+1st +2nd - - 91.8 - - 83.7
+1st +para +2nd 92.0 92.0 - 83.5 83.6 -

Table 4.6: Stanford uas on wsj 22 and the macro-averaged English Web Treebank answers,

newsgroups, and reviews development sections for Web1T and Google Books surface n-grams

and syntactic n-grams features. All results are significant improvements over the baseline, and

bolded results are significant improvements over the column.

syntactic n-gram features on newswire, with +0.7% ∆uas compared to +0.5% ∆uas.
However, syntactic n-gram features performed slightly better out-of-domain, with a

+1.2% ∆uas over the baseline to 83.7%, compared to 83.5% for Web1T surface n-grams

and 83.6% for Google Books surface n-grams.

4.6.1 Surface n-gram Features

We found that second-order features slightly improved uas for both lth and Stanford

dependencies and both corpora, and did not reduce uas for any configuration on top

of first-order and paraphrase features.

There was very little difference between choosing Web1T or Google Books as a

source of n-grams in these experiments. Web1T n-grams performed slightly better for

lth dependencies, while Google Books Ngrams performed slightly better for Stanford

dependencies. Most configurations saw no statistically significant differences between

the two.

4.6. Results 117

web1t
lth base web1t books syn syn ∆

wsj 23 92.0 92.4 92.5 92.4 92.6 +0.6

ewt Answers 83.5 84.3 84.0 84.5 84.8 +1.3
ewt Newsgroups 86.1 86.8 87.0 87.1 87.4 +1.3
ewt Reviews 84.3 85.0 84.8 85.3 85.7 +1.4

ewt Average 84.6 85.3 85.3 85.7 85.9 +1.3

Table 4.7: lth uas on the wsj and English Web Treebank (ewt) answers, newsgroups, and

reviews test corpora for the baseline, Web1T, Google Books, Syntactic, and combined feature

sets. All results are statistically significant improvements over the baseline.

4.6.2 Syntactic n-gram Features

On lth, there is no significant difference between between first-order surface and syn-

tactic n-gram features. For Stanford, syntactic n-gram features performed significantly

worse than surface n-grams, particularly when compared to Google Books Ngrams

features.

When adding second-order features to first-order features, uas improves slightly

across both schemes and domains. However, adding syntactic paraphrase features did

not improve accuracy over first- and second-order features, and reduced it in some

cases. Restricting paraphrase features to words only over syntactic links seems to

reduce their effectiveness — an interesting result, as Bansal and Klein (2011) found

these features were amongst the most informative for surface n-grams.

4.6.3 Combining Surface and Syntactic n-gram Features

Tables 4.7 and 4.8 summarise our best test set results for lth and Stanford depen-

dencies respectively, using the best performing features from the development sets:

first-order, paraphrase, and second-order features for surface n-grams, and first-order

and second-order features for syntactic n-grams. We also test a combined model of the

best performing surface and syntactic n-gram features together; on lth dependencies

118 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

books
Stanford base web1t books syn syn ∆

wsj 23 91.3 92.0 92.0 91.8 92.1 +0.8

ewt Answers 81.5 82.5 82.3 82.7 83.0 +1.5
ewt Newsgroups 85.3 86.6 86.4 86.7 87.1 +1.8
ewt Reviews 82.4 83.1 83.1 83.6 84.1 +1.7

ewt Average 83.1 84.1 83.9 84.4 84.7 +1.6

Table 4.8: Stanforduas on thewsj andEnglishWebTreebank (ewt) answers, newsgroups, and

reviews test corpora for the baseline (base), Web1T (web1t), Google Books (books), Syntactic
(syn), and combined (books + syn) feature sets. All results are statistically significant

improvements over the baseline.

ewt
System wsj 23 ans ngs rev Average

SANCL 2012 Baseline 91.5 81.6 85.2 83.3 83.4

Pitler (2012b) 92.0 82.3 86.1 82.9 83.8
McClosky et al. (2012) 92.0 82.6 87.2 84.4 84.7
Combined n-gram features 92.1 83.0 87.1 84.1 84.7

Table 4.9: The comparison of our system against systems from the SANCL 2012 shared task.

this combined surface features fromWeb1T, while on Stanford surface features from

Google Books Ngrams were used.

The development results are consistent on the test set. Each feature type in isolation

provides a significant 0.4 – 0.5%uas improvement over the baseline parser on newswire,

and 0.5 – 1.0% on web text. For lth dependencies, the combined model achieves +0.6%

∆uas over the baseline on newswire, and +1.3% averaged across the web text domains.

For Stanford dependencies, the combined system achieves +0.8% ∆uas on newswire

and +1.6% on web text, significantly outperforming all other types in isolation. These

results illustrate the complementary nature of surface and syntactic n-gram features.

Table 4.9 compares our combined system against the baseline and top performing

non-stacked dependency parsers from the SANCL 2012 shared task. We outperform

4.7. Analysis 119

all of these systems on newswire and the answers section of the Web Treebank, whilst

equalling the best average across the three web text domains. However, our combined

features and the non-stacked participants are well behind the best results in the task,

which used combinations of several constituency and dependency parsers together

with a variety of voting, bagging, and merging schemes. The best dependency parsing

combination also dramatically improved the pos tagging accuracy overweb text (Petrov

and McDonald, 2012), contributing to its large accuracy advantage (Zhang et al., 2012).

While our syntactic n-gram counts are computed using the Stanford dependency

scheme, the syn column in Tables 4.7 and 4.8 show these features produced roughly

equivalent absolute uas improvements in- and out-of-domain on both schemes. This

presents further evidence for the Søgaard (2013) hypothesis of parser bias smoothing

differences between schemes.

4.7 Analysis

We analyse performance on Stanford dependencies, as our constraint-based evaluation

developed in Chapter 3 uses this scheme. However, our observations are broadly

applicable across both dependency schemes.

Figure 4.4 gives an error breakdown over wsj 22 by high-frequency filler gold pos
tag on Stanford dependencies. The baseline, Web1T surface n-grams, syntactic n-grams,

and combined systems reported in Table 4.8 are compared in the table. We can see

that for most tags, the combined system outperforms the baseline and makes equal

or fewer errors than either the surface or syntactic n-gram features in isolation. We

can also see that the combined system is able to overcome situations where one of the

feature sets performs poorly, such as prepositions. Notably, the combined system has

little impact on coordination, where all feature types are weak.

Syntactic n-gram features are outperformed by surface n-gram features on Stanford

dependencies. We can see that prepositional attachments and some noun attachments

120 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

0 50 100 150 200 250 300 350 400 450 500

VBG

VBZ

VBN

VB

CC

RB

CD

VBD

JJ

NNS

DT

NNP

IN

NN

errors

Baseline
Web1T
Books
Syntactic
Combined

Figure 4.4: Stanford attachment errors by argument gold pos, sorted by tag frequency.

4.7. Analysis 121

Corpus Not present %

Google Books 1,714,631 32.5
Web1T 1,425,347 27.0

Intersection 1,301,090 24.7

Table 4.10: Surface n-gram queries from the wsj and English Web Treebank that do not receive

features fromWeb1T and Google Books.

are challenging for syntactic n-grams. We found in Chapter 3 that these were two of the

most substantial error classes for dependency parsers, and are the types of attachments

that previous work has tried to address using new features. The Goldberg and Orwant

(2013) parser did not use np enriched training data or additional features targeted at

nps, so it is unsurprising that the syntactic n-gram features are less effective on nps.
Google Books Ngrams is very evenly matched against Web1T as a source for surface

n-grams on Stanford dependencies. We can see in Figure 4.4 that Web1T n-grams are

slightly better on verbal pos, while BooksNgrams are ahead on nouns and prepositions.

Otherwise, there are no substantial differences between the two; given that Web1T

n-grams slightly outperformed Google Books on lth dependencies, the differences

may simply be subtle, rather than systemic variations.

4.7.1 Corpora

Web1T contains approximately double the total number of n-grams as Google Books,

and Table 4.10 shows that 27% and 32.5% of the n-gram queries from the wsj sections
02-23 (including the development and test sets) and the entire English Web Treebank

do not receive features fromWeb1T and Google Books respectively. The intersection

of these queries is 24.7% of the total, showing that the two corpora have small but

substantial differences in word distributions. However, the similar performance of

surface n-gram features from these sources suggests that the extra size of Web1T is

mainly noise in this task.

122 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

We had expected our syntactic n-gram features to perform better than they did

since they address many of the shortcomings of using surface n-grams. Syntactic

features are sensitive to the quality of the parser used to produce them, but in this

case the parser is difficult to assess as the source corpus is enormous and extracted

using ocr from scanned books. Even if the parser is state of the art, it is being used

to parse diverse texts spanning many genres across a wide time period, compounded

by potential scanning and digitization errors. Additionally, a post-hoc analysis of the

types of errors present in the corpus is impossible due to the exclusion of the full

parse trees, though Goldberg and Orwant (2013) note that processing this data would

almost certainly be computationally prohibitive without massive computing resources.

Despite this, our work has shown that counts from this corpus provide useful features

for parsing, though the magnitude of accuracy improvements is limited. Furthermore,

these features stack with surface n-gram features, providing more substantial overall

performance improvements.

4.8 Constraint-based Evaluation

Table 4.11 gives the constraint-based evaluation using our best performing Stanford

dependency model. The table is comparable to Table 3.11 in Section 3.9.

We can see that on newswire text, the combined model exhibits much the same

cascading behaviour as the baseline, despite outperforming it by 0.9% uas overall.

The most pronounced areas of improvement are pps, clause attachments, nps, and
modifiers. As described in Section 4.1.2, pps and nps have been extensively targeted in

work using web-scale n-gram corpora, and our results suggest that these error classes

benefit the most from using n-gram features. The combined model regresses slightly

compared to the baseline on root and coordination attachments, and improves slightly

on all other attachment types.

4.8. Constraint-based Evaluation 123

Error class eff ∆eff eff % disp uas las ∆uas ∆c ∆u

wsj section 22
Baseline - - - - 91.3 87.5 - - -

np attachment 338 -50 5.0 4.7 94.5 90.9 2.4 1.2 1.2
np internal 199 -44 3.0 3.5 93.1 89.6 1.0 0.7 0.3
Modifier attachment 341 -29 8.0 4.0 93.9 90.7 1.8 1.2 0.6
pp attachment 359 -47 12.1 4.5 93.7 89.8 1.6 1.3 0.3
Coordination attachment 310 -6 19.0 6.5 93.7 90.1 1.7 1.1 0.6
Clause attachment 237 -29 17.4 6.9 93.5 90.0 1.4 0.8 0.5
Other attachment 294 -17 8.8 6.7 93.9 91.0 1.9 1.0 0.9
Punctuation attachment 658 -15 17.7 8.4 94.2 89.8 2.1 0.3 1.9
Root attachment 81 -4 6.1 10.2 92.9 88.8 0.8 0.3 0.6
All attachments 2817 -241 8.8 6.1 100.0 100.0 7.9 7.9 0.0

ewt development sections
Baseline - - - - 83.1 77.4 - - -

np attachment 2235 -378 8.0 4.4 88.3 82.8 3.4 2.0 1.4
np internal 1383 -360 7.2 2.9 86.6 81.1 1.8 1.2 0.6
Modifier attachment 2340 -399 15.8 4.3 87.8 83.0 3.0 2.1 0.9
pp attachment 1915 -219 17.6 4.3 87.0 81.1 2.2 1.7 0.5
Coordination attachment 2323 -220 28.0 6.3 87.6 82.1 2.8 2.0 0.7
Clause attachment 1733 -103 26.7 7.4 87.3 82.0 2.5 1.5 1.0
Other attachment 3815 -233 21.2 5.8 89.8 85.3 5.0 3.2 1.8
Punctuation attachment 4989 -182 34.6 6.8 88.9 81.7 4.0 0.1 3.9
Root attachment 1551 -120 18.7 6.7 87.9 81.2 3.0 1.4 1.6
All attachments 22284 -2214 17.4 5.7 100.0 100.0 15.1 15.1 0.0

Table 4.11: The coverage, effective constraints and percentage, error displacement, uas, las,
∆uas over the baseline, and the constrained and cascaded ∆ for the combined Stanford model

over wsj 22 and the concatenated ewt development sections.

124 Chapter 4. Surface and Syntactic n-gram Features for Dependency Parsing

We can also see that on newswire, the new features have little impact on cascading

errors. ∆u for all error classes using the combinedmodel are within 0.1% of the baseline

model. However, the largest ∆c improvement made by the combined model is 0.3% for

clause attachments, so there are relatively few new arcs for cascading improvement to

draw from.

On web text, the combined model outperforms the baseline more substantially, at

84.8% uas compared to 83.1%. This carries over into a wider impact on each of our

error classes, with every class seeing a substantial reduction in effective constraint

percentage. Particularly notable is the impact on cascading errors: the combined model

substantially reduces ∆u for np attachments and punctuation attachments, from 1.8%

∆u to 1.4% for the former and 4.2% to 3.9% for the latter. All other error classes again

see small improvements across the board, though unlike newswire text, no error class

performs worse with the combined model than the baseline.

The constraint evaluation reveals that the new features have been particularly help-

ful for some error classes, but have not greatly reshaped the way in which MSTParser

handles each class.

4.9 Summary

Influenced by the findings in the previous chapter, we developed features for depen-

dency parsing using subtree counts from 345 billion parsedwords of scanned books. We

extended existing work on surface n-grams from first to second-order, and compared

the utility of web text and scanned books as surface n-gram sources. We evaluated our

work on two parsing models, two dependency schemes, and across multiple domains.

Our individual feature sets all perform similarly on MSTParser, providing signif-

icant improvements in parsing accuracy of about 0.5% on newswire and up to 1.0%

averaged across the web treebank domains. They are also complementary, with our

best system combining surface and syntactic n-gram features to achieve up to 1.3% uas

4.9. Summary 125

improvements on newswire and 1.6% on web text. These improvements are consistent

across both lth and Stanford dependencies.

Our constraint-based evaluation sheds further light on which error classes to which

the new features are best suited. However, it also shows that the relative importance of

each error class has not been changed by the features. Both surface and syntactic n-gram

features have substantially reduced the error rate for pp, np, and clause attachments,

and assist with all error classes to some extent. The features also do not have a large

impact on the constrained and cascading impact in each error class.

In the next chapter, we turn to ccg parsing, and investigate the necessity for ccg
dependencies as constraints in n-best parsing. This will lead into the implementation

of dependency-level constraints in ccg parsing.

5 Dependency Hashing for ccg

In this chapter, wemove fromdependency parsing toCombinatoryCategorial Grammar

(ccg) parsing, where a constituency-based parsing process generates dependency-

based output. We identify how n-best parsing algorithms which do not account for

the dependency generation process produce semantically redundant ccg parses. We

develop a technique called dependency hashing which efficiently addresses this issue,

and demonstrate its effectiveness for generating semantically distinct parses useful for

downstream reranking.

We begin this chapter by surveying ccg parsing, focusing on the C&C ccg parser

(Clark and Curran, 2007b) and the Brennan (2008) n-best parsing extension to C&C

using the algorithms of Huang and Chiang (2005). These algorithms generate n-best

parses under the assumption of derivational difference: the top n parses being sought

are to differ from each other with respect to their structure. However, the ability of

combinatory rules to license derivationally distinct by semantically equivalent deriva-

tions means that this assumption does not apply for ccg. Non-normal forms, different

choices of punctuation attachment points, and order of combinator applications have

no impact on the underlying dependencies generated by the derivation. We demon-

strate how the Huang and Chiang (2005) algorithms cannot be directly implemented

for ccg as they produce highly redundant parses which have identical dependencies,

reducing their effectiveness for downstream tasks such as reranking.

A straightforward method of addressing identical dependencies is to filter out

n-best parses which share the same dependencies as a previously returned parse. This

127

128 Chapter 5. Dependency Hashing for ccg

naïve method is highly inefficient, and cannot be effectively implemented in ccg
parsing as dependencies may be formed in different locations in two different parses.

We develop dependency hashing, a technique to ensure that n-best ccg parses have

unique dependencies without the cost of exhaustive comparison. Dependency hashing

completely eliminates redundant parses, and allows for the efficient production of

high-quality n-best parses in ccg. We present modified versions of Huang and Chiang

(2005)’s algorithms implementing our dependency hashing technique for n-best ccg
parsing. These algorithms are applicable to any other grammar formalism exhibiting

such derivational redundancy. We demonstrate the effectiveness of dependency hash-

ing in efficiently generating diverse n-best lists, and show how they improve a ccg
reranker.

5.1 Parsing with ccg

There has been substantial research on ccg parsing. Clark et al. (2002) developed an

early ccg parser with a probability model estimated over dependency structures. The

two-phase design of this system incorporated a supertagger for assigning lexical cate-

gories, and then a parser using the cky algorithm to combine the provided categories

into a derivation and produce dependencies. This design would strongly influence

later ccg parsers, most significantly the Clark and Curran (C&C) parser.

Hockenmaier and Steedman (2002) presented a generative model of ccg deriva-

tions based on the highly influential Collins (1999) constituency parser. ccg trees are

generated top-down and head-first, with the constituents in each phrase then condi-

tioned on the head. Additional features based on the tree structure, and the word-word

dependencies projected by the constituent structure are included in the model, which

is pruned using beam search. The parser outperformed Clark et al. (2002), despite not

modelling every dependency in the logical form. Hockenmaier (2003b) extended the

generative model to capture the ccg predicate-argument dependencies in ccgbank.

5.1. Parsing with ccg 129

Clark and Curran (2003, 2007b) followed the Clark et al. (2002) system design, but

applied discriminative log-linear models to both tagging and parsing. This allowed

for rich, arbitrary, and overlapping features to be seamlessly captured and integrated

together in the tagging and parsing models. Adaptive supertagging, whereby the su-

pertagger first provides a very limited set of categories, and progressively provides

more if the parser cannot combine them together leads to a highly efficient and accurate

system. The resulting C&C parser records a best labeled F-score of 87.7% over ccgbank
section 23 on gold pos tags, and 85.5% on automatic pos tags, compared to 84.4% and

83.3% respectively for the Hockenmaier (2003a) parser. C&C is the focus of the work in

this chapter, and it will be discussed in detail in Section 5.2.

Fowler and Penn (2010) observe that ccg rule instantiations from a corpus such

as ccgbank can be interpreted directly as phrase-structure rules, and also prove that

the set of such rules extracted from ccgbank is strongly context-free. They test the

implication that standard Penn Treebank-style parsers could be directly trained on

ccgbank by applying the Petrov and Klein (2007) split-merge Berkeley parser to the

corpus. By converting the resulting ccg derivations to dependencies, they demonstrate

a small performance improvement over the C&C parser,1 but with a system that is not

specifically designed for ccg. However, their parser is also several hundred times

slower than C&C.

Zhang and Clark (2011a) implement a wide-coverage shift-reduce transition-based

parser for ccg. The transition actions for the parser are extracted from the rule instan-

tiations in ccgbank in a similar manner to Fowler and Penn (2010). Categories are

assigned to words using the C&C supertagger. Similar to ZPar, used in Chapter 3, this

system employs the averaged perceptron (Collins, 2002) to predict the best transition

actions, with the top 16 actions kept in a beam to allow limited backtracking from

poor decisions. Following a conversion of its output to ccg dependencies, the system

achieves 85.5% labeled F-score on automatic pos tags over ccgbank section 23. This is

1A direct comparison is difficult due to coverage differences between the systems.

130 Chapter 5. Dependency Hashing for ccg

very competitive with the C&C parser, despite the enormous ambiguity in transition

actions for shift-reduce ccg parsing and the use of a small beam.

Merity and Curran (2011) describe another shift-reduce ccg parser, built as an

extension upon the C&C parser. The key difference is the use of a graph-structured

stack to explore all possible transition sequences in polynomial time, rather than using

heuristic linear-time greedy or beam search. This system is statistically indistinguish-

able from the baseline C&C parser, though slightly slower due to the highly engineered

nature of the baseline parser. However, the graph-structured stack allows for unlikely

derivations to be pruned at the frontiers of the parsing process, substantially improving

parsing speed at a very small cost in accuracy.

Auli and Lopez (2011b) extend the generative ccg parsing model of Hockenmaier

and Steedman (2002) by replacing beam search with the A* search algorithm and

heuristic of Klein and Manning (2003a). They showed that A* combined with the

adaptive supertagging of Clark and Curran (2007b) could reduce the amount of work

required to build a parse compared to the exhaustive cky algorithm. Lewis and

Steedman (2014a) also use A* for a very simple ccg parsingmodel factored on category

assignments to the words in a sentence. The parsing process is a search for the most

probably category sequence licensing a valid ccg derivation, admitting an efficient

heuristic for A*. The system is four times faster than C&C, whilst being slightly less

accurate on newswire and slightly more accurate on out-of-domain text. However,

parsing times increase linearly with the length of sentences, and the parser itself does

not model or produce the underlying ccg derivations or dependencies.

Xu et al. (2014) build on the work of Zhang and Clark (2011a) in developing a

dependency-based model for beam-search shift-reduce ccg parsing. An important

feature of the system is the use of a dependency oracle during training (similar to

Goldberg and Nivre (2012)), which allows dependencies to be modeled directly. They

observe significant performance improvements over the C&C parser and the Zhang

and Clark (2011a) parser, with a labeled F-score of 86.1% on ccgbank section 23 with

5.2. The C&C Parser 131

automatic pos tags and a beam size of 128. Despite the use of a linear-time algorithm,

both this parser and Zhang and Clark (2011a) are slower than C&C, as the latter is

highly engineered with a focus on speed.

In this and the following chapter, we investigate dependency-level constraints for a

variety of tasks in ccg parsing. This requires a parser which generates dependencies as

it builds the derivation, rather than first producing a full derivation and then extracting

the dependencies from it. In fact, most other ccg parsers in the recent literature use the

generate tool included with C&C to convert derivations to ccg dependencies. Thus,

we have used the C&C parser for the work in this chapter, though our investigations

are broadly applicable to cky-based ccg parsing in general.

5.2 The C&C Parser

The C&C parser (Clark and Curran, 2003, 2007b) is a fast, wide-coverage ccg parser. It

is highly efficient, with a design strongly influenced by ccgbank, the corpus on which

it is trained for English.

5.2.1 Supertagging

The C&C parser processes sentences using a two-phase process: first, ccg categories

are assigned to each word in the sentence, and then the categories are combined

together to form a spanning analysis over the sentence. In C&C, a supertagger performs

the first step, while the parser takes the categories produced by the supertagger to form

an analysis using the cky algorithm (described further in Section 5.2.2).

The supertagging process has been described as almost parsing (Bangalore and Joshi,

1999) since the lexical categories assigned by the supertagger encode detailed syntactic

information. As described in Section 2.3.1, categories describe the form and arity

of their arguments, constraining the combinations that the parser can employ. With

perfect categories, the parser only has to determine how to combine them to form a

132 Chapter 5. Dependency Hashing for ccg

correct analysis. The C&C supertagger is a maximum-entropy sequence tagger that can

process sentences in time linear in the number of words and quadratic in the category

set size. The system uses a restricted set of 425 categories determined by a frequency

cut-off of 10 in ccgbank sections 02-21. The category set has wide coverage, but still

allows the supertagger to run efficiently, dramatically cutting down on the 1,286 total

categories in ccgbank (Clark and Curran, 2004b).

The C&C supertagger achieves around 92% accuracy on ccgbank section 00 (Cur-

ran et al., 2006). Unfortunately, sentence accuracy (where all words in a sentence are

correctly tagged) is only 36.8%, which is too low for parsing — it is likely that the

parser will be unable to find any analysis for the sentence given so many incorrect

categories. To address this problem, C&C utilises multi-tagging, returning multiple

categories within some factor β of the highest probability category for each word. The

multi-tagger increases per-word accuracy to 98.5% and sentence accuracy to 78.4%

using all categories within 1% of the most probable category. On average this assigns

2.9 categories per word (Clark and Curran, 2004b).

The C&C supertagger also uses a tag dictionary, as described by Ratnaparkhi (1996),

and accepts a cutoff k to control this dictionary. Words seen more than k times in

training may only be assigned categories seen with that word more than 5 times, and

the category frequency must also be no less than 1/500th of the most frequent category

for that word. Words seen fewer than k times may only be assigned categories seen

with the pos tag of the word in training, subject to the cutoff and ratio constraint (Clark

and Curran, 2004b). The tag dictionary eliminates infrequent categories and improves

supertagger performance, but at the cost of removing unseen or infrequently seen

categories from consideration.

During parsing, the supertagger is initially run with a larger β value, which has

the effect of only allowing categories with a probability close to that of the most likely

to be returned. This assigns a highly restricted set of categories to each word, and the

parser attempts to find an analysis using this small set of categories. If an analysis

5.2. The C&C Parser 133

cannot be found, the supertagger is run again with a smaller, less restrictive β value to

return more categories per word. The parser then tries to find an analysis again using

this larger category set. This process continues for a fixed number of iterations until a

spanning analysis is found; if no analysis if found, or if the total number of tree nodes

exceeds a predefined limit, the parse fails.

Clark and Curran (2007b) show that this tight integration between parser and

supertagger leads to very efficient parsing with wide coverage and high accuracy. In

particular, the restricted set of categories that are initially provided to the parser serve

to prune the search space of highly unlikely options, allowing them only if the parser

finds that it needs them. This helps the parser deal with the substantial ambiguity of

words with many syntactic forms. Off-loading some of the disambiguation work to

the supertagger also increases parsing speed, as the supertagger has far lower time

complexity than the parser itself.

One potential issue with two-phase parsing is that if the supertagger does not

provide the correct categories to the parser, then the parser cannot possibly recover

the best parse. Supertagger accuracy is not perfect, and while multi-tagging improves

the category recall, there are still tags which are missed. It has been an ongoing

consideration as to how much of the parser’s error is caused by the supertagger, and

how much is caused by deficiencies in the parser model. One of the contributions of

this thesis is a thorough examination of this issue.

5.2.2 Parsing ccg with the Cocke-Kasami-Younger Algorithm

The Cocke-Kasami-Younger (cky) algorithm (Cocke and Schwartz, 1970; Kasami, 1965;

Younger, 1967) is a bottom-up dynamic programming algorithm that can be used to

identify whether a given sentence is parseable under a provided context-free grammar.

cky works by constructing all possible trees licensed by the grammar given a sentence.

A triangular data structure called a chart is used to cache equivalent subtree nodes and

their scores, allowing them to be reused as a sentence is analysed. Steedman (2000)

134 Chapter 5. Dependency Hashing for ccg

S7

6

5

4

S\NP3

NP
NP

N

(S\NP)\(S\NP)

NP\NP
2

NP/N
NP

N
(S\NP)/NP N/N N

(NP\NP)/NP

((S\NP)\(S\NP))/NP

NP

N
1

1

The
2

bank

3

employs
4

8,000
5

people
6

in

7

Spain

Figure 5.1: A partially filled ccg chart.

observes that the binary branching nature of ccg lends itself well to cky parsing, and

Section 5.1 describes several ccg parsers which use this algorithm, including the C&C

parser.

In the chart, the horizontal indices represent the position (pos), and indicate the start

index of a constituent. The vertical indices represent the span and indicate the size of

the yield of a constituent. Each block in the chart is called a cell. A cell with pos i and

span j contains subtree nodes covering the tokens at indices [i, i + j) in the sentence.

For example, the cell containing S in Figure 5.1 spans over the entire sentence as it

begins at position 1 with span 7. Conversely, the cells with span 1 cover only each

individual word.

A key optimisation is collapsing equivalent categories in a cell into equivalence classes

to produce a packed chart (Miyao and Tsujii, 2002). Each equivalence class contains all

categories with the same position, yield, active variables, and unfilled dependencies;

5.2. The C&C Parser 135

these categories which will behave identically to the rest of the derivation, though

each individual member of the equivalence class may yield a different derivation and

different dependencies. This reduces the number of possible combinations which the

parser must consider.

Each equivalent subtree node in each cell is represented by an equivalence class.

Every result category within an equivalence class is the product of different derivations

and combinatory rules, so each records an independent set of the following data:

• backpointers to the child equivalence classes that were combined;

• a set of active variables, co-indexed with words in the sentence that are are avail-

able (or desired) as heads or fillers for dependencies. They may be assigned or

unassigned.

• a set of unfilled dependencies, specifying the ccg dependencies to be created

when unassigned active variables are unified and given a value during category

combination;

• a set of filled dependencies, listing dependencies generated by the combinatory or

unary rule creating the category.

The full set of dependencies generated by a ccg derivation in the parser is found by

enumerating the maximum scoring tree using the backpointers on each result category,

collecting the filled dependencies at each category in the derivation.

When a cell (i, j) is built, the contents of all pairs of non-overlapping cells that

together span [i, i + j) are considered. The use of dynamic programming ensures

that each cell is only built once and memoised for further use; this also ensures that

considering pairs of non-overlapping cells is sufficient for enumerating all possible

analyses. In Figure 5.1, the pairs of colour-coded cells are those which are considered

when building the S cell — that is, these combinations of cells begin at position 0 and

span the entire sentence.

136 Chapter 5. Dependency Hashing for ccg

The chart parsing process in the C&C parser proceeds bottom-up from spans of

length 1 up to the sentence length. The categories from the supertagger are added to

the bottom row of cells in the chart (i.e. the cells with span 1). Then, for each increasing

span length j and position i, all possible pairs of equivalence classes (ax, ay) from pairs

of cells (x, y) that can cover the span [i, i + j) are considered by the parser. Combinable

pairs have their result category added to the appropriate equivalence class in (i, j).

The active variables from each child category are unified according to the combinator

used, any unfilled dependencies from the children that have an assigned variable are

marked as filled, and the new list of variables and dependencies are passed to the new

result category.

Once all pairs of possible children are considered, unary rules are applied to the

resulting categories in the chart cell, with their results added to the appropriate equiva-

lence classes in the cell as well. Unary rules have a single child from the same cell as the

result rather than two children from two different cells. The C&C parser implements a

subset of the unary rules present in ccgbank (described in Section 2.4.3), as well as a

limited set of ccg type-raising rules. The lack of full coverage contributes to grammar

errors that will be further discussed in the error analysis in Chapter 7.

A number of techniques are utilised in C&C to manage the proliferation of subtree

nodes and increase parsing speed. First, the seen rules constraint allows the parser

to only combine categories if they were seen to combine in ccgbank sections 02-21.

Second, the Eisner (1996b) normal-form rules (described in Section 2.3.4) are used to

contain the productivity of the composition and type-raising combinators, limiting

the impact of ccg’s spurious ambiguity. Finally, the maxsupercats value gives the

maximum possible number of subtree nodes which may be added to the chart before

the parse fails.

When the parser has finished filling the chart, all valid derivations over the sentence

will be found in the topmost cell. The chart is then decoded according to a parsingmodel;

5.2. The C&C Parser 137

Algorithm 5.1 cky ccg Parsing
Require: A sentence of length n
Ensure: All possible spanning analyses of the sentence

1 for all i from 0 to n do
2 assign one or more categories from supertagger to cell (i, 1)

3 � iterate over spans

4 for all j from 1 to n do
5 � iterate over pos

6 for all i from 0 to n− j do
7 � iterate over split points

8 for all pairs of cells x, y that span (i, i + j) do
9 for all equivalence classes ex, ey in cells x, y do

10 if ex and ey can be combined with a rule r to produce category c then
11 unify variables from ex and ey to c
12 add filled dependencies from ex and ey to c
13 add backpointers to ex and ey to c
14 add c to the appropriate equivalence class in cell (i, j)

15 for all equivalence classes ex in cell (i, j) do
16 if a unary rule r can be applied to ex to produce category c then
17 unify variables from ex to c
18 add filled dependencies from ex to c
19 add backpointers to ex to c
20 add c to the appropriate equivalence class in cell (i, j)

21 return the root cell (0, n)

each equivalence class is scored, with the optimal option at each node in the derivation

combined together to form the best-scoring derivation using dynamic programming.

Algorithm 5.1 describes the cky algorithm in the C&C parser.

5.2.3 Decoding

Once the chart is filled, it is then decoded according to a statistical model to find the high-

est scoring derivation. Clark and Curran (2007b) describe a number of discriminative

maximum entropy parsingmodels for the C&Cparser, including amodel based on ccg
dependency structures, a model based on the normal-form derivations in ccgbank,
and a hybrid model combining both. The dependency model involves summing the

138 Chapter 5. Dependency Hashing for ccg

Algorithm 5.2 decodenf
Require: A filled chart chart
Ensure: The most probable spanning analysis

1 max_e← ∅
2 max_score← 0
3 for all categories c in the root cell of chart do
4 score, equiv← best-equiv (c)
5 if score > max_score then
6 max_score← score
7 max_e← equiv

8 return max

probabilities of all possible derivations that yield a particular dependency structure,

including the non-standard derivations eliminated by normal-form constraints. The

normal-form model scores features only on from the derivations.

Algorithm 5.3 best-equiv
Require: An equivalence class e
Ensure: The best member category of the equivalence class

1 if e.max exists then
2 � memoising for dynamic programming

3 return e.score, e.max
4 max← ∅
5 max_score← −∞
6 for all categories c in e do
7 score← best-score (c)
8 if score > max_score then
9 max_score← score

10 max← c
11 e.max← max
12 e.score← max_score
13 return max_score, max

Algorithms 5.2 to 5.4 describe theViterbi decoding process for theC&Cnormal-form

model. The dependency model and hybrid models are decoded through a different

algorithm which aims to maximise the expected recall of dependencies in the final

analysis. As we exclusively use the normal-form model and decoder in this work, we

5.2. The C&C Parser 139

Algorithm 5.4 best-score
Require: A category c in the chart
Ensure: The best score for the subtree rooted at c

1 � use features on the current local subtree

2 score← score(c)
3 if c has a left child c.left then
4 � combined with scores on children

5 s, _← best-equiv (c.left)
6 score← score + s
7 if c has a right child c.right then
8 s, _← best-equiv (c.right)
9 score← score + s

10 return score

omit a detailed description of the dependency decoder, though our contributions are

naturally applicable to it as well.

5.2.4 Parser Performance and Output

Table 5.1 summarises the normal-form and hybrid parsing model performance of the

C&C parser. C&C accepts pos-tagged text as input; these tags are fixed and remain

unchanged throughout during the parsing pipeline. The pos tags are important

features for the supertagger; parsing accuracy using gold-standard pos tags is typically

2% higher than using automatically assigned pos tags (Clark and Curran, 2004b).

The hybrid model outperforms the normal-form model by 0.3-0.4% F-score across

all experiments. However, the normal-form model is easier to experiment with, as it is

faster to train and modify. All experiments in this thesis use the normal-form model

with the Viterbi decoder described previously.

The C&C parser provides output in several different formats. Given a sentence, it

can produce the normal-form ccg derivation, the ccg dependencies generated by

the derivation, and a sequence-tag style output of the lexical categories chosen by the

parser for each word in the sentence.

140 Chapter 5. Dependency Hashing for ccg

Gold pos Automatic pos

Corpus lf coverage lf coverage

Normal-form
ccgbank 00 86.84 99.16 84.91 99.06
ccgbank 23 87.36 99.58 85.07 99.58

Hybrid
ccgbank 00 87.20 99.16 85.20 99.06
ccgbank 23 87.68 99.58 85.50 99.58

Table 5.1: The labeled dependency recovery F-score and coverage of the normal-form and

hybrid C&C models under gold and automatic pos tags.

Clark and Curran (2007a) describe a formalism-independent comparison of C&C

against the Briscoe et al. (2006) rasp parser on DepBank. In order to perform this eval-

uation, Clark and Curran develop a many-to-many mapping from ccg dependencies

to the gr format used by rasp. grs provide a more formalism-neutral output, and

abstract away from the raw ccg dependencies and most importantly from the ccg
categories in each dependency. For instance, the ccg dependency with a subject np to

the left of an intransitive, transitive, or ditransitive verb would differ from each other.

The object relationship with an np to the right of a transitive or ditransitive verb would

also be different depending on the verb. grs allow generalisations such as subject and

object relationships to be extracted from all of these instances.

Despite both parsers producing head-argument dependencies, producing the map-

ping was a complex and time-consuming process, requiring the annotation of each

ccg category used in the parser with a template describing the gr (or multiple grs)
which the head and slot fillers would be converted into. However, C&C compared very

favourably against rasp in the evaluation, outperforming the unlexicalised parser

by over 5% overall despite an upper bound of 84.8% accuracy imposed by the conver-

5.2. The C&C Parser 141

sion process. As the mapping to grs is integrated into the system, C&C can natively

produce grs as well.

Dependency and gr creation in the C&C parser is controlled by the markedup file,

which describes the co-indexation annotations, slots, and dependency to gr mapping

described in the previous section. Changes to the markedup file will change the

dependencies that the parser can form, as well as the unification mechanism through

which categories are combined together. Rimell and Clark (2008) describe changing

the markedup file to allow C&C to produce Stanford dependencies, though substantial

additional post-processing was required to align the output with the scheme.

5.2.5 Extensions to C&C

Each time that C&C is unable to find a spanning analysis with the categories supplied

by the supertagger, it asks for supertagger for more categories, and tries the process

again. However, as the new categories are a superset of the previous, the parser is

guaranteed to construct at least the same derivations as the previous iteration. Instead

of discarding the chart and rebuilding it entirely, Djordjevic (2006) introduced chart

repair, where only the cells affected by the new categories are rebuilt as necessary.

Chart repair allows the derivations in the chart to be reused across the parser’s

iterations. Following a reattempt, the chart is retained, and any new categories from

the supertagger are added to the bottom row as usual. When the parser combines cells

during cky, it can skip any point where the two cells involved have not had any new

categories added since the previous iteration. Otherwise, it performs the combination,

and marks the result cell as having new categories. No other changes to the parser

or decoder are required, as a reattempt only occurs when the parser cannot find a

spanning analysis. At least one new equivalence class must be created somewhere in

the chart for a spanning analysis to be found; adding a new category to an existing

equivalence class cannot possibly create a spanning analysis as the class was available

142 Chapter 5. Dependency Hashing for ccg

during the previous attempt. Thus, the scores and optimal ancestor pointers calculated

during decoding can be cached and reused in the reattempt without issue.

On average, chart repair updates one third of the cells in the chart, and avoids

the redundancy of having to rebuild many of the same derivations. The technique

contributes to an 11% speed increase with no reduction of parsing accuracy.

Djordjevic (2006) also implements span-level constraints in the C&C parser. These

constraints indicate cells in the chart whichmust be used at some point in the derivation.

For example, a constraint may exist at span 3 and position 4, indicating that the cell

at that point in the chart must be used as part of a combinatory rule application in an

spanning analysis. These constraints are analogous to requiring that certain constituents

are present in the final ccg derivation.

The most successful constraint they used was a punctuation constraint, enforcing

that sentence final punctuation had to attach to the root. While this constraint had

no significant impact on parsing accuracy, it substantially increased parsing speed

by preventing the productive punctuation rules from overgenerating. More general

constraints, such as np boundaries derived from the output of a chunker, were less

effective, and substantially decreased parsing accuracy due to misalignments between

ccg constituents and those produced by the chunker.

Kummerfeld et al. (2010) describe a novel self-training technique to dramatically

improve parsing speed. In the baseline C&C parser, the supertagger provides a set of

possible categories for each word in the sentence to the parser, which attempts to find

a spanning analysis using those categories. Kummerfeld et al. make the observation

that by retraining the supertagger on the categories that the parser eventually uses (not

necessarily the correct gold-standard categories), the supertagger can be “adapted” to

the parser. This effectively trains the supertagger to provide the categories that the

parser would use anyway, leading to speed increases of up to 85% without no impact

on accuracy. More importantly, the extra speed could be traded off for greater accuracy

by relaxing the β values used by the supertagger.

5.3. Experimental Setup 143

Auli and Lopez (2011a) note that adaptive supertagging both prunes the search

space for the C&C parser of many bad alternatives, but also removes desired categories

from the parser’s view. To address this, they use loopy belief propagation and dual

decomposition to integrate the ccg supertagging phase into the parser itself. The

intuition is that this will give the parser more information to work with, as well as

prevent the supertagger from pruning good parses prematurely. Their best system

achieves an F-score of 86.7% on automatic pos tags over a reduced subset of ccgbank
23, a 1% increase over the baselineC&Cparser. On a similar theme, Lewis and Steedman

(2014b) describe a variety of semi-supervised approaches to supertagging, using vector-

space embeddings for features with neural network and crf models. By applying

these models in place of the C&C supertagger, they achieve 86.1% F-score on automatic

pos tags over the full section 23.

Auli and Lopez (2011c) replaces the usual log-linear loss function used for training

the C&C parser with a variety of other loss functions. Most notably, they implement a

softmax-margin that optimises the training process using the F-score as an objective.

They report an F-score of 87.2% over a reduced subset of ccgbank 23 on automatic pos
tags, the highest reported results for ccg parsing. However, the improved accuracy

comes with a very substantial speed and complexity penalty during training and

testing,2 which makes the modified parser unsuitable for large scale tasks.

5.3 Experimental Setup

We use the normal-form model and Viterbi decoding for the C&C parser described in

Section 5.2.3, as well as the pos tagger distributed with the C&C parser. We trained

the pos tagger, supertagger, and parser over ccgbank sections 02-21 using the scripts

and methodology described in Clark and Curran (2007b), and used those models for

all experiments.

2Michael Auli, p.c.

144 Chapter 5. Dependency Hashing for ccg

Level β k

1 0.075 20
2 0.03 20
3 0.01 20
4 0.005 20
5 0.001 150

Parameter Value

--parser-seen_rules true
--parser-eisner_nf true
--parser-maxsupercats 1000000
--super-forward_beam_ratio 0.1

Table 5.2: The default β, k, and other parameters used in the C&C parser.

We ran the parser following the configuration used by Clark and Curran in their

evaluation process. Table 5.2 lists the default β and k values for the C&C supertagger

used, as well as the value of all other pertinent parameters passed to the parser.

5.4 n-best Parsing and Reranking

The number of possible parses typically grows exponentially in the length of the

sentence, making exhaustive search in parsers intractable. Parsers instead use dynamic

programming or beam-search heuristics, extracting features from a limited context

around each node in the tree, and either memoising scores for later reuse or discarding

low-scoring states as unlikely.

Expanding the context used by parsers increases the parser search space and de-

creases efficiency. While excluding non-local and global features helps make parsing

tractable, they omit potentially useful long-range information from consideration. To

counter this, a parser can be modified to produce the top n parses of a sentence, or-

dered by the probability under its model, and an external reranker used to reorder those

parses. As the reranker only sees a limited subset of the search space considered by

the parser, it can tractably include arbitrary rich features over the entire parse.

Given an n-best list of parses, the oracle score is the evaluation score that the parser

would achieve if the best possible parse in the list was selected (Ratnaparkhi, 1997).

5.4. n-best Parsing and Reranking 145

Higher oracle scores provide more potential for reranking, and so the success of the

technique is predicated on high-quality n-best parse.

The major difficulty of n-best parsing is to retain the top n analyses whilst not

making the parsing task intractable. Collins (2000) extends his parser to produce

n-best output by disabling dynamic programming, and using beam search to prune

analyses instead. When parsing is completed, the analyses remaining in the beam are

returned. While the resulting parser produces an average of 27 parses per sentence,

the method is inefficient and inexact. Beam search is an approximation which may

discard high-quality parses if they do not score highly enough under the parser model.

The reranker built on the Collins (2000) n-best parser established conventions for

developing such systems. n-best parses of the ptb sections 02-21 are generated by

jackknifing: iteratively holding out two sections, training the parser on the remaining

data, and using the model to produce n-best parses of the held-out sections. This

data is then used to train the reranker. The features used in the system include lexical

heads and the distances between them, context-free rules in the tree, n-grams and their

ancestors, and parent-grandparent relationships. The reranker improves the accuracy

of the Collins parser from 88.20% to 89.75%.

Charniak and Johnson (2005) use a coarse-to-fine approach for n-best parsing that

retains dynamic programming. Initially, a coarse-grained grammar is used to find a

crude parse for a sentence, then this parse is iteratively refined whilst keeping the top

n most probable partial analyses. The initial coarse parse dramatically reduces the

number of analyses that must be considered. This model reliably returns at least 50

parses per sentence, and has an oracle F-score of 96.8%— substantially higher than the

94.9% scored by the Collins parser on the parseval metric (Huang and Chiang, 2005).

The accompanying reranker is trained using a similar setup to Collins, and includes

additional linguistic features based on subject-verb agreement, n-gram local trees, and

right-branching factors. In 50-best mode the parser has an oracle F-score of 96.8%, and

the reranker produces a final F-score of 91.0% (compared to an 89.7% baseline).

146 Chapter 5. Dependency Hashing for ccg

The n-best algorithms of Huang and Chiang (2005) are the standard for generating

n-best lists, and we will describe them in further detail in Section 5.4.1. These algo-

rithms have seen uses outside of parsing; Huang et al. (2006) develop a translation

reranking model using them, but faced the issue of different derivations yielding the

same translated string. This was overcome by storing a hashtable of strings at each

node in the tree, and rejecting any derivations that yielded a previously seen string.

Reranking has not found universal success across parsers. Johnson and Ural (2010)

shows that using the reranker of Charniak and Johnson (2005) on the Berkeley split-

merge constituency parser (Petrov and Klein, 2007) results in negligible accuracy im-

provements. In work prior to this thesis, we found that a direct implementation of

the Charniak and Johnson (2005) reranker for the C&C ccg parser performed poorly.

Substantial tuning and ccg-specific features were required to achieve relatively small

performance improvements of 0.2% F-score (Ng et al., 2010). The question of why so

much adaptation was required for such a small F-score gain inspired the work in this

chapter.

5.4.1 The n-best Algorithms of Huang and Chiang (2005)

Brennan (2008) describes an implementation of the n-best parsing algorithms of Huang

and Chiang (2005) for the C&C ccg parser. The algorithms were originally described

in terms of a general hypergraph parsing framework, and require some adaptation to

correctly implement them for ccg. In this section, we describe the n-best algorithms

as implemented by Brennan (2008).

5.4.1.1 Algorithm 0: Naïve n-best Parsing

The 1-best cky algorithm for ccg combines compatible categories together, collapsing

equivalent results into equivalence classes in each cell.

In n-best parsing, we must now store n sets of backpointers, representing the

best n ways of forming each category, rather than a single pair in 1-best parsing. We

5.4. n-best Parsing and Reranking 147

Algorithm 5.5 multn
Require: Two n-best lists ac = a1, a2, ..., an and bc = b1, b2, ..., bn for categories a and

b, where a and b combine into a result category r
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: An n-best list rc for r

1 rc ← array
2 for all ai in ac do
3 for all bi in bc do
4 score← score(r, ai, bi)
5 add (r, ai, bi, score) to rc

6 sort rc descending by score
7 return the first n elements of rc

Algorithm 5.6 mergen
Require: Sorted n-best lists ac = a1, ..., an and bc = b1, ..., bn for a result category r
Ensure: An n-best list rc for r

1 rc ← array
2 while rc does not contain n items and ac or bc have items do
3 (a, xa, ya, scorea)← a1

4 (b, xb, yb, scoreb)← b1

5 if scorea > scoreb then
6 remove a1 from ac and add it to rc

7 else
8 remove b1 from bc and add it to rc

9 return rc

must also store the score of each option, as the n-best list for each equivalence class

is sorted in descending order according to the scores. We must maintain this list for

each equivalence class, as all categories in a class are equivalent to each other. The

key operation is efficiently generating the n-best list of options when we combine two

categories together. As each child category has its own backpointer n-best list, the

simplest way to perform this is to generate all n2 possible pairs (taking one option

from each child), sort the pairs based on their score, and keep the best n of these. This

procedure is called multn, and is described in Algorithm 5.5.

Once we have generated a new result category and its n-best list, it will be added

to the appropriate equivalence class in the chart cell. If there is already a category in

148 Chapter 5. Dependency Hashing for ccg

Algorithm 5.7 new-multn
Require: Two n-best lists ac = a1, a2, ..., an and bc = b1, b2, ..., bn for categories a and

b, where a and b combine into a result category r
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: An n-best list rc for r

1 rc ← array
2 cand← max-heap
3 add (r, a1, b1, score(r, a1, b1)) to cand
4 while rc does not contain n items and cand contains items do
5 (r, ax, by, score)← the first item in cand
6 add (r, ax+1, by, score(r, ax+1, by)) to cand
7 add (r, ax, by+1, score(r, ax, by+1)) to cand
8 add (r, ax, by, score) to rc and remove it from cand

9 return rc

the equivalence class, there will already be a sorted n-best list of backpointers, and

so the existing and the new lists can be merged together in a procedure analogous to

mergesort called mergen.

Addingmultn andmergen to the 1-best cky algorithm gives us Huang and Chiang

(2005)’s Algorithm 0 for n-best parsing.

5.4.1.2 Algorithm 1: Speeding up multn

An obvious efficiency improvement for Algorithm 0 is to recognise that each n-best

list is sorted in descending order by score. When generating the new n-best list for a

new result category r from its child categories a and b, the local score at r must also

be the same for all n-best combinations, as they form an equivalent category. Thus,

it is not necessary to consider all n2 possible combinations from ac and bc. Consider

two n-best lists ac = a1, a2, ..., an and bc = b1, b2, ..., bn for a result category r. The best

option must be (a1, b1), as these are the highest scoring options for producing a and

b. Then, the next best option must be one of the two immediate successors to the best:

either (a2, b1) or (a1, b2), and so forth.

5.4. n-best Parsing and Reranking 149

Algorithm 5.8 find-bestn
Require: An equivalence class e
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: An n-best list ec for e

1 ec ← array
2 cand← get-candidatesn(e)
3 while ec does not contain n items and cand contains items do
4 (r, ax, by, score)← the first item in cand
5 add (r, ax+1, by, score(r, ax+1, by)) to cand
6 add (r, ax, by+1, score(r, ax, by+1)) to cand
7 add (r, ax, by, score) to ec and remove it from cand

8 return ec

InAlgorithm 1 ofHuang andChiang (2005), a candidate list ismaintained, containing

the successors of each n-best option. The candidate list is sorted in descending order by

score, as with the existing n-best lists. As a candidate is taken and added to the n-best

list, its two successors are then added to the candidate list in descending order by score.

This procedure is called new-multn, and it reduces the quadratic factor of enumerating

all possible n-best candidates to linear, whilst incurring the extra logarithmic factor of

maintaining a sorted candidate list.

5.4.1.3 Algorithm 2: Candidate Lists of Equivalence Classes

We now turn our attention to mergen. Even though we have sped up the n-best list

generation for each category, we must still repeatedly generate and merge lists for each

equivalence class in each cell. However, this is wasteful, as only the best n ways of

constructing each equivalence class in the cell will ever be required.

We can use this to improve the efficiency of candidate generation. Rather than

iteratively generating a new list for each member of each equivalence class, we can

generate a single n-best list for the entire equivalence class at once. To do this, we adapt

new-multn to maintain a candidate list over all categories in an equivalence class, itera-

tively adding the best option and then generating its successors. This combinesmergen

150 Chapter 5. Dependency Hashing for ccg

Algorithm 5.9 get-candidatesn
Require: An equivalence class e
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: A candidate list cand for e

1 cand← heap
2 for all categories r in e do
3 ac ← the n-best list from r’s left child
4 bc ← the n-best list from r’s right child
5 score← score(r, a1, b1)
6 add (r, a1, b1, score) to cand

7 return cand

Algorithm 5.10 lazy-bestn
Require: A chart C with a 1-best analysis decoded in C.root
Ensure: An n-best list of best spanning analyses for the chart

1 return lazy-best-equivn (C.root, n)

and new-multn together, and substantially reduces the number of n-best candidates

which must be considered. This procedure is described in Algorithms 5.8 and 5.9.

5.4.1.4 Algorithm 3: Lazy Computation

Algorithm 2works well when each equivalence class is large. However, it still calculates

an n-best list for every class in every cell of the chart, regardless of whether or not the

class actually appears in the final n-best list of parses for the sentence. Addressing

this deficiency requires lazy computation: running the 1-best parsing algorithm to

completion, and then computing the n-best list for only the required equivalence

classes.

Algorithms 5.10 to 5.12 describe the lazy n-best parsing approach of Algorithm

3. The important insight is that at any point in the 1-best derivation, the next best

option must differ from the 1-best in one location only. The main loop of lazy-best-

equivn, which drives the process, lazily generates the next best candidate for each

equivalence class in the derivation as it is required by calling lazy-nextn. Then, the

best existing candidate is removed from the candidate set and added to the n-best list,

5.4. n-best Parsing and Reranking 151

Algorithm 5.11 lazy-best-equivn
Require: An equivalence class e
Require: A limit l
Ensure: An n-best list ec for e

1 ec ← array
2 if e.cand does not exist then
3 e.cand← get-candidatesn(e)

4 while ec does not contain l items do
5 if ec contains at least one item then
6 last← last n-best item added to ec

7 lazy-nextn (e.cand, last)

8 if e.cand contains at least one item then
9 remove the first item from e.cand and add it to ec

10 else
11 break
12 return ec

Algorithm 5.12 lazy-nextn
Require: An n-best item ex = (r, ax, by, score) for an equivalence class e
Require: A candidate list cand for e
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: The candidate list cand is updated

1 lazy-best-equivn (ax, x + 1)
2 item← (r, ax+1, by, score(r, ax+1, by))

3 if item is not in cand then
4 add item to cand
5 lazy-best-equivn (by, y + 1)
6 item← (r, ax, by+1, score(r, ax, by+1))

7 if item is not in cand then
8 add item to cand

152 Chapter 5. Dependency Hashing for ccg

Configuration lp lr lf af

Baseline 87.27 86.41 86.84 84.91

Oracle 10-best 91.50 90.49 90.99 89.01
Oracle 50-best 93.17 92.04 92.60 90.68

Table 5.3: Oracle precision (lp), recall (lr), and F-score (lf) on gold pos and F-score (af) on
automatic pos for the C&C n-best parser over ccgbank section 00.

and the process is repeated until the required number of parses are generated. lazy-

nextn recursively calls lazy-best-equivn on the backpointers from the new candidate,

propagating the lazy generation to the bottom of the chart.

Each n-best algorithm produces an equivalent n-best list for a sentence, allowing

for tiebreaking procedures. Unless otherwise specified, we use Algorithm 3 for all

experiments in this thesis.

5.5 Dependency Hashing

Table 5.3 gives the baseline and oracle scores for the Brennan (2008) n-best parser.

We can see that on 50-best mode, the oracle score is 92.60% on gold pos tags, over a

baseline of 86.84%. In contrast, the Charniak parser reaches an oracle F-score of 96.80%

in 50-best mode (Charniak and Johnson, 2005). While these two metrics are calculated

differently, there is a very large 4.2% difference in oracle score between the two systems.

Additionally, the 7.4% deficit to a perfect F-score for ccg suggests that there may be

an issue with the quality of the ccg n-best parses.

The Huang and Chiang (2005) algorithms differentiate parses by their structure,

rather than the underlying logical form. To illustrate how this is insufficient for ccg,
we ran the n-best C&C parser with n = 10 and n = 50, and calculated how many

parses were semantically distinct (i.e. yield different dependencies). The results in

Table 5.4 are striking: just 52% of 10-best parses and 34% of 50-best parses contain

5.5. Dependency Hashing 153

Avg. Parsers/sent Distinct Parses/sent Distinct %

10-best 9.8 5.1 52
50-best 47.6 16.0 34

Table 5.4: Average and distinct parses per sentence over ccgbank section 00 with respect to

ccg dependencies.

Avg. Parsers/sent Distinct Parses/sent Distinct %

10-best 9.8 4.4 45
50-best 47.6 13.0 27

Table 5.5: Average and distinct parses per sentence over ccgbank 00 with respect to grs.

distinct sets of ccg dependencies. Evidently, this low percentage is a potential factor

in curtailing the oracle score of the n-best C&C parser. We can also see that fewer than

n parses are found on average for each sentence; this is mostly due to shorter sentences

that may only receive one or two different analyses.

We perform the same diversity experiment using the C&C gr output to abstract

away from the raw ccg dependencies and generate a more formalism-neutral com-

parison. There are even fewer distinct parses by grs in Table 5.5: just 45% of 10-best

parses and 27% of 50-best parses contain unique sets of grs.

There is a clear mismatch between the optimisation target of the Huang and Chiang

(2005) algorithms and the evaluation target for ccg. A naïve n-best ccg implemen-

tation is deficient because it does not provide sufficient differentiation in the set of

dependencies generated by the parser.

5.5.1 Hashing Implementation

To address the problemof semantically equivalent n-best parses, we define a uniqueness

constraint over all the n-best candidates:

154 Chapter 5. Dependency Hashing for ccg

Constraint. At any point in the derivation, any n-best candidate must not have the same

dependencies as any candidate already in the list.

In an n-best dependency parser, this constraint is trivially enforced, as the analysis

is defined over the dependencies. However, ccg parsing generates dependencies

from category combination in a derivation. Ambiguity and equivalence mean that it is

difficult to predict where in a tree dependencies will be generated, so an exhaustive

comparison is required.

At its most primitive, enforcing this constraint requires comparing every depen-

dency in one partial ccg subtree with every dependency in another subtree at every

point which an n-best list is generated. This is evidently expensive. Additionally, the

final set of dependencies in each n-best candidate can only be extracted during the

n-best decoding step, when the optimal tree is found. Up until this point, there is no

guarantee about what dependencies will be in a subtree. As parsing is already a com-

putationally expensive process, reducing the overhead from checking this constraint is

preferable.

We propose an alternative approach which represents all of the ccg dependencies

in a sub-derivation using a hash value. This allows us to compare the dependencies in

two derivations during decoding with a single numeric equality check rather than an

exhaustive comparison. Performing this check requires only one additional integer to

be stored with each n-best candidate, and one additional constant-time operation to

be performed at each time two n-best candidates are considered. We call this process

dependency hashing. In the following sections, we will describe the dependency hashing

implementation, and compare it to exhaustive comparison and a fallback schemewhere

we use exhaustive comparison only when two hash values collide.

Huang et al. (2006) propose an idea that is similar in spirit to dependency hashing

for n-best syntax-based translation reranking. They maintain a hashtable of unique

strings produced at each vertex of the syntax trees driving their reranker, and as new

strings are generated, any that already appear in the hash table are rejected as being

5.5. Dependency Hashing 155

duplicates. Our technique does not use a hashtable, and instead only stores a hash

value for each set of dependencies. In our task, a hash table is not suitable because

dependencies form sets rather than ordered strings, and this incurs greater overhead to

store in an external data structure. Our technique is faster and more memory efficient,

but runs the risk of filtering unique parses due to collisions.

Using a single hash value to represent all of the dependencies present in a subtree

requires three primary operations:

1) given a filled dependency, produce a consistent hash value;

2) given a category, produce a hash value representing all of its filled dependencies;

3) given a category and its n-th best children, combine the category’s hash value

with those of its children to produce a single hash value.

Recursively executing these operations from the bottom of the chart upwards will

ensure that the hash value for any n-best candidate at any position represents all of the

dependencies in the subtree rooted at that category.

Internally, the C&C parser stores filled dependencies as a set of four integers.

In a sentence, any two dependencies sharing the same values for these integers are

equivalent:

• the index of the head word of the dependency in the sentence;

• the index of the filler word of the dependency in the sentence;

• an identifier indicating the head category and filler slot;

• an identifier indicating whether the dependency originated from a given unary

rule.

We can easily perform operation (1) by feeding the four integers representing a filled

dependency to the C&C parser’s existing hash function, a modified Bernstein hash

156 Chapter 5. Dependency Hashing for ccg

Algorithm 5.13 hash-rule
Require: A result category r, and candidates ac = (a, xa, ya, scorea, hasha) and bc =

(b, xb, yb, scoreb, hashb), where a and b combine into r
Ensure: A hash value representing the filled dependencies in a, b, and r

1 hash← hash-category(r)
2 hash← hash ⊕ hasha

3 hash← hash ⊕ hashb

4 return hash

Algorithm 5.14 hash-category
Require: A category c from the chart
Ensure: A hash value representing the filled dependencies on the category

1 hash← 0
2 for all filled dependencies f on c do
3 hash← hash ⊕ hash-dependency (f)

4 return hash

with a prime constant of 31.3 This gives us a consistent hash value for all dependencies

in a sentence, independent of where the dependency is generated in the chart.

Operations (2) and (3) are similar to each other, as both must effectively take two

hash values representing one or more dependencies, and combine them into a single

value. The key to both operations is a consistent combination operator, which can take

integral hashes and combine them in an order-independentmanner. Order independence

is important as it does not matter in what order dependencies are generated in the tree.

Given a set of dependencies, the final computed hash must be equal, no matter what

order the dependencies are hashed. We use the exclusive OR (xor, ⊕) operator for
this purpose. Algorithms 5.13 and 5.14 describe the hashing operations.

We now present modifications of the Huang and Chiang (2005) algorithms incor-

porating our dependency hashing technique for ccg parsing. Highlighted lines have

been modified to include dependency hashing.

3Empirical testing found this to work well (James Curran, p.c.)

5.5. Dependency Hashing 157

Algorithm 5.15 hash-multn

Require: Two n-best lists ac = a1, a2, ..., an and bc = b1, b2, ..., bn for categories a and
b, where a and b combine into a result category r

Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: An n-best list rc for r

1 rc ← array
2 cand← max-heap, sorted descending by score
3 for all ai in ac do
4 for all bi in bc do
5 score← score(r, ai, bi)
6 hash← hash-rule (r, ai, bi)
7 add (r, ai, bi, score, hash) to l

8 for all c in cand do
9 (r, ai, bi, score, hash)← c

10 if no item in rc has a hash value equalling hash then
11 add c to rc

12 return the first n elements of rc

5.5.1.1 Algorithm 0

In Algorithm 0, the key change is the introduction of hash generation in the quadratic

loop generating the possible n-best candidates, and the checking for hash value exclu-

sivity in both the generation and merging steps. Algorithms 5.15 and 5.16 depict the

revised procedures.

A hash uniqueness check is required every time that a candidate is considered for

addition. This is necessary to ensure that the best candidates per each hash value are

retained, and all other candidates with non-unique hash values are discarded. We have

implemented this check by sorting the list of candidates by their scores, and iteratively

adding each one as long as it has a unique hash. This allows us to remove the final sort

in the base implementation. The simple iteration over the list of candidates is bounded

by the small constant n representing the total number of parses required. For larger n,

using a bloom filter to perform the hash equality checks will improve this performance.

158 Chapter 5. Dependency Hashing for ccg

Algorithm 5.16 hash-mergen

Require: Sorted n-best lists ac = a1, ..., an and bc = b1, ..., bn for a result category r
Ensure: An n-best list rc for r

1 rc ← array
2 while rc does not contain n items and ac or bc have items do
3 (a, xa, ya, scorea, hasha)← a1

4 (b, xb, yb, scoreb, hashb)← b1

5 if scorea > scoreb and no item in rc has a hash equalling hasha then
6 remove a1 from ac and add it to rc

7 else if scoreb > scorea and no item in rc has a hash equalling hashb then
8 remove b1 from bc and add it to rc

9 return rc

5.5.1.2 Algorithm 1

Algorithm 5.17 describes the modified Huang and Chiang (2005) Algorithm 1. Each

item in the candidate n-best lists now contains the hash value summarising the depen-

dencies contained in the subtree rooted at that category. As each new candidate is

generated, a new hash value is computed and stored, representing the dependencies

in the new subtree under consideration. As before, candidates with non-unique hash

values are discarded.

As ccg dependencies may be formed in various locations in the tree, the filled

dependencies on each candidate may differ. Thus, we must still expand the successors

of discarded candidates to ensure correctness.

5.5.1.3 Algorithms 2 and 3

The hashing implementation of Algorithms 2 and 3 are straightforward extensions of

their non-hashing counterparts, using the principles established in the adaptations

of Algorithms 0 and 1. Algorithm 2 with our dependency hashing is presented in

Algorithms 5.18 and 5.19, andAlgorithm 3with hashing is presented inAlgorithms 5.20

and 5.21.

5.5. Dependency Hashing 159

Algorithm 5.17 new-hash-multn

Require: Two n-best lists ac = a1, a2, ..., an and bc = b1, b2, ..., bn for categories a and
b, where a and b combine into a result category r

Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: An n-best list rc for r

1 rc ← array
2 cand← max-heap
3 add (r, a1, b1, score(r, a1, b1), hash-rule (r, a1, b1)) to cand
4 while rc does not contain n items and cand contains items do
5 (r, ax, by, score, hash)← the first item in cand
6 add (r, ax+1, by, score(r, ax+1, by), hash-rule (r, ax+1, by)) to cand
7 add (r, ax, by+1, score(r, ax, by+1), hash-rule (r, ax, by+1)) to cand
8 if no item in rc has a hash value equalling hash then
9 add (r, ax, by, score, hash) to rc

10 remove the first item from cand
11 return rc

Algorithm 5.18 hash-find-bestn

Require: An equivalence class e
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: An n-best list ec for e

1 ec ← array
2 cand← hash-get-candidatesn(e)
3 while ec does not contain n items and cand contains items do
4 (r, ax, by, score, hash)← the first item in cand
5 add (r, ax+1, by, score(r, ax+1, by), hash-rule (r, ax+1, by)) to cand
6 add (r, ax, by+1, score(r, ax, by+1), hash-rule (r, ax, by+1)) to cand
7 if no item in rc has a hash value equalling hash then
8 add (r, ax, by, score, hash) to rc

9 remove the first item from cand
10 return ec

5.5.2 Hashing Performance

We evaluate our hashing technique with several experiments. A simple test is to

measure the number of collisions that occur, i.e. where two partial trees with different

dependencies have the same hash value. We parsed ccgbank section 00 with n = 10

160 Chapter 5. Dependency Hashing for ccg

Algorithm 5.19 hash-get-candidatesn

Require: An equivalence class e
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: A candidate list cand for e

1 cand← heap
2 for all categories r in e do
3 ac ← the n-best list from r’s left child
4 bc ← the n-best list from r’s right child
5 score← score(r, a1, b1)
6 hash← hash-rule (r, a1, b1)
7 if no other candidate in cand shares an identical hash then
8 add (r, a1, b1, score, hash) to cand

9 return cand

Algorithm 5.20 lazy-best-equivn

Require: An equivalence class e
Require: A limit l
Ensure: An n-best list ec for e

1 ec ← array
2 if e.cand does not exist then
3 e.cand← get-candidatesn(e)

4 while ec does not contain l items do
5 if ec contains at least one item then
6 last← last n-best item added to ec

7 lazy-nextn (e.cand, last)

8 if e.cand contains at least one item then
9 (r, ax, by, score, hash)← the first item in e.cand

10 if no other candidate in e.cand shares an identical hash then
11 add (r, ax, by, score, hash) to ec

12 remove the first item from e.cand
13 else
14 break
15 return ec

and n = 50 using a 64 bit hash, and exhaustively checked the dependencies of colliding

states. We found that less than 1% of comparisons resulted in collisions in both 10-best

and 50-best mode.

5.5. Dependency Hashing 161

Algorithm 5.21 lazy-nextn

Require: An n-best item ex = (r, ax, by, score) for an equivalence class e
Require: A candidate list cand for e
Require: A scoring function score(r, ax, by) taking ax, by, and result r
Ensure: The candidate list cand is updated

1 lazy-best-equivn (ax, x + 1)
2 hash← hash-rule (r, ax+1, by)
3 item← (r, ax+1, by, score(r, ax+1, by), hash)
4 if item is not in cand and no candidate in cand shares an identical hash then
5 add item to cand
6 lazy-best-equivn (by, y + 1)
7 hash← hash-rule (r, ax, by+1)
8 item← (r, ax, by+1, score(r, ax, by+1), hash)
9 if item is not in cand and no candidate in cand shares an identical hash then

10 add item to cand

Collisions Comparisons %

10-best 300 54861 0.55
50-best 2109 225970 0.93

Table 5.6: Dependency hash collisions and comparisons over ccgbank section 00.

We reran the diversity experiments, with the results summarised in Tables 5.7

and 5.8. Adding dependency hashing sees all sentences in ccgbank section 00 receive

entirely unique n-best parse lists for both 10-best and 50-best settings with respect to

ccg dependencies. 10-best unique parses per sentence nearly doubles from 5.1 to 9.0,

and 50-best unique parses per sentence increase from 16.0 to 37.9. Overall, the total

number of parses per sentence drops slightly, from 9.8 to 9.0 parses per sentence in

10-best mode and 47.6 to 37.9 for 50-best. This suggests that the hashing procedure is

pruning out redundant parses, which were artificially inflating this value.

Similar results are recorded for the gr diversity (see Table 5.8), though not every

set of grs is unique due to the many-to-many mapping from ccg dependencies.

Additionally, the total parse numbers for grs are slightly different to those recorded for

ccg dependencies; this is due to some slight differences in the dependency generation

162 Chapter 5. Dependency Hashing for ccg

Avg. Parsers/sent Distinct Parses/sent Distinct %

10-best 9.8 5.1 52
50-best 47.6 16.0 34

10-best# 9.0 9.0 100
50-best# 37.9 37.9 100

Table 5.7: Average and distinct parses per sentence over ccgbank section 00 with respect to

ccg dependencies. # indicates the inclusion of dependency hashing.

Avg. Parsers/sent Distinct Parses/sent Distinct %

10-best 9.8 4.4 45
50-best 47.6 13.0 27

10-best# 8.9 8.1 91
50-best# 37.1 31.5 85

Table 5.8: Average and distinct parses per sentence over ccgbank section 00 with respect to

grs. # indicates the inclusion of dependency hashing.

process triggered by the use of grs. These results show that hashing prunes away

equivalent parses, creating more diversity in the n-best list.

We also evaluate the oracle F-score using dependency hashing. Our results in

Table 5.9 include a 1.1% increase in 10-best mode and 0.72% in 50-best mode using

the new constraints, showing how the diversified parse list contains better candidates

for reranking. This demonstrates how dependency hashing addresses the deficiencies

of n-best ccg parsing, and improves the quality of the resulting n-best parses. Our

highest oracle F-score was 93.32% in 50-best mode.

5.5.3 Speed

Table 5.10 compares the performance of dependency hashing, dependency hashing

with fallback to exhaustive checking on collisions, and exhaustive checking only across

5.5. Dependency Hashing 163

Configuration lp lr lf af

Baseline 87.27 86.41 86.84 84.91

Oracle 10-best 91.50 90.49 90.99 89.01
Oracle 50-best 93.17 92.04 92.60 90.68

Oracle 10-best# 92.67 91.51 92.09 90.15
Oracle 50-best# 94.00 92.66 93.32 91.47

Table 5.9: Oracle precision, recall, and F-score on gold and automatic pos tags for the C&C

n-best parser. # denotes the inclusion of dependency hashing.

Oracle Alg 1 Alg 2 Alg 3

Configuration F-score sents/sec sents/sec sents/sec

baseline 86.84 44.1 44.1 44.1

10-best
hashing only 92.09 35.7 40.9 40.9
hashing with fallback 92.09 31.3 37.5 41.6
full comparison 92.09 2.3 15.3 40.9

50-best
hashing only 93.32 17.8 30.7 34.5
hashing with fallback 93.33 14.1 21.9 33.9
full comparison 93.33 0.1 1.0 25.6

Table 5.10: Oracle F-score and parsing speed in sentences per second over ccgbank 00 for

Huang andChiang (2005) Algorithms 1, 2, and 3 using dependency hashing, fallback on hashing

collisions, and exhaustive dependency comparison.

three of Huang and Chiang (2005)’s n-best parsing algorithms on ccgbank section 00.

We can see that hashing generates an identical oracle F-score on 10-best parsing, and

near-identical on 50-best parsing, illustrating the correctness of the procedure, and that

collisions are an infrequent issue. On the least efficient n-best algorithm, dependency

hashing parses at 35.7 sentences per second for 10-best, and 17.8 sentences per second

164 Chapter 5. Dependency Hashing for ccg

for 50-best, dramatically faster than a full exhaustive dependency comparison at 2.3 and

0.1 sentences per second respectively. 10-best parsing on Algorithm 3, which requires

the smallest number of dependency uniqueness checks, reveals a negligible speed

difference between the hashing configurations. However, when moving to 50-best

mode, dependency hashing is 33% faster than exhaustive comparison.

5.5.4 ccg reranking performance

One of the issues we found in prior work on ccg reranking was the lack of diversity

in the ccg n-best parser. To address this, we ran the parser with a larger n value,

and filtered out parses with identical dependencies as a post-processing step (Ng,

2010). This is clearly a poor solution, as the duplicate parses will have taken up n-best

candidate slots in the parser, and potentially eliminated other analyses from being

produced.

The ccg reranker is trained on data produced using a cross-fold method on

ccgbank sections 02-21. Two sections are repeatedly held out, and the baseline parser

is trained on the remainder of the data. Then, the parser is run in n-best mode over the

held out sections, producing n-best training data. This process is repeated ten times

to cover the entirety of sections 02-21, and the resulting parses are used to train the

discriminative reranker. At test time, the n-best parser is first run over the test data,

and then the reranker is run, reordering the parses to produce a new 1-best output.

N-best parses are required at two steps in this process: to produce the training

data, and to produce the test data. To evaluate the impact of our dependency hashing

algorithm in an extrinsic task, we train the Ng (2010) reranker in four configurations:

with and without dependency hashing for training data and test data.

Table 5.11 shows that labeled F-score improves substantially when dependency

hashing is used to create reranker training data. There is a 0.4% improvement using

no hashing at test, and a 0.8% improvement using hashing at test, showing that more

diverse training data creates a better reranker. The results of 87.21% without hashing at

5.6. Summary 165

Test data

Training data no hashing hashing

no hashing 86.83 86.35
hashing 87.21 87.15

Table 5.11: Reranked parser accuracy; labeled F-score using gold pos tags, with and without

dependency hashing.

test and 87.15% using hashing at test are statistically indistinguishable from one other;

though we would expect the latter to perform better.

Our results also show that the reranker performs extremely poorly using diversified

test parses and undiversified training parses. There is a 0.5% performance loss in this

configuration, from 86.83% to 86.35% F-score. This may be caused by the reranker

becoming attuned to selecting between semantically indistinguishable derivations,

which are pruned away in the diversified test set.

5.6 Summary

We have described how a mismatch between the way ccg parses are modeled and

evaluated caused equivalent parses to be produced in n-best parsing. We eliminate

duplicates by hashing dependencies, significantly improving the oracle F-score of ccg
n-best parsing by 0.7% to 93.32%, and improving the performance of ccg reranking

by up to 0.4%. Hashing is also much more efficient than exhaustive dependency

comparison, while producing practically identical F-scores.

Our hashing implementation is strongly influenced by the nature of cky-based
ccg parsing: a derivation is built bottom-up, with category combination generating

dependencies. Unlike the dependency parsers in Chapters 3 and 4, which build trees

as sets of dependencies, working with dependencies in ccg is complicated by the

fact that equivalent derivations can yield the same dependencies in different locations.

166 Chapter 5. Dependency Hashing for ccg

Even determining the final set of dependencies in a ccg analysis cannot be done until

the chart is decoded, rather than while the possible derivations are being built.

In the next chapter, we implement a constraint-based evaluation for the C&C parser,

based on the procedure developed in Chapter 3. A theme of this chapter has been that

ccg parsing is complex, and algorithms which apply naturally to other formalisms

require extra care forccg. In particular, enforcing properties of the sets of dependencies

generated by the parse is a nontrivial task. We shall see this theme continue in our

constraint evaluation implementation for C&C.

6 Dependency Constraints for ccg

In this chapter, we return to the notion of dependencies as constraints from Chapter 3,

and implement a constraint-based evaluation procedure for the C&C ccg parser. We

use the formalism-independent grammatical relations output of the parser to develop

a group of error classes over ccg dependencies, similar to the classes used for our

dependency parsing experiments. Using the dependencies in each error class, we force

the C&C parser to produce derivations containing the constrained dependencies, and

analyse the implications of applying constraints throughout the remainder of the parse.

The ccg parsing process is complex. Unlike dependency parsers, which assign a

single head to each word in a sentence, and thus can directly model and construct head-

argument pairs, ccg dependencies are a representation of the logical form generated

by a derivation. They are built during parsing as the product of a unification-based

process, driven by co-indexation and slot annotations on ccg categories. The previous

chapter described the challenges in applying properties over the set of dependencies

generated by a parse, and in this chapter we describe the intricacies of enforcing

dependency existence. We provide the parsing and decoding algorithms necessary for

robustly applying these existence constraints.

This chapter is arranged as follows. First, we examine the complexities of enforc-

ing dependency constraints in ccg. We extend the cky ccg parsing algorithm of

Steedman (2000) and the normal-form C&C decoding algorithm of Clark and Curran

(2007b) to implement constraint application. Finally, we discuss how to group ccg
dependencies into error classes, and note the intricacies of extracting coordination and

167

168 Chapter 6. Dependency Constraints for ccg

root constraints from ccg derivations. The next chapter uses the constraints from this

chapter for evaluating and exploring the C&C ccg implementation.

6.1 ccg Constraints

In the ccg dependency recovery metric, all components of a dependency must match

the gold standard for it to be scored as correct, including the category assigned to

the head word, and the slot which the argument word fills. This makes the metric

much stricter than parseval. In Parse 6.1, the pp across the river has been interpreted

as an adjunct, rather than an argument as in Parse 6.2. Both parses would score

identically under parseval as their bracketing is unchanged. However, the adjunct

to argument change results in different categories for swims and across , as the verb

category (S\NP)/PP now subcategorises for the required pp. Whilst every other

category in the sentence has remained the same, nearly every dependency in the

sentence is headed by swims or across , and thus each dependency changes as a result.

An incorrect argument/adjunct distinction in this sentence produces an F-score of only

25% even though there are only two categories different between the options.

In Parse 6.1, there is a ccg dependency headed by across and filled by swims , rep-

resenting the modifier application. Parse 6.2 reverses the direction of the dependency,

as swims subcategorises for the pp. Intuitively, enforcing the correct category, slot,

and direction for this dependency would correct the errors resulting from an incorrect

argument-adjunct distinction.

Unlike the dependency parsers examined inChapters 3 and 4,ccg has no restriction

on the number of heads that a particular word may have. Chapter 5 described how

derivations can yield the same sets of dependencies, despite being structurally different,

and how the final set of dependencies in a ccg analysis is not finalised until the chart is

decoded. Thus, enforcing the appearance of certain dependencies in the finalccg parse

is substantially more complex than in dependency parsers. Subtrees cannot simply be

6.1. ccg Constraints 169

Jack swims across the river

NP S\NP ((S\NP)\(S\NP))/NP NP/N N
>

NP
>

(S\NP)\(S\NP)
<

S\NP
<

S

Parse 6.1: A ccg derivation with a pp adjunct, adapted from Villavicencio (2002).

Jack swims across the river

NP (S\NP)/PP PP/NP NP/N N
>

NP
>

PP
>

S\NP
<

S

Parse 6.2: A ccg derivation with a pp argument (note the categories of swims and across).

The bracketing is identical to Parse 6.1, but nearly all dependencies have changed.

ruled out because a word has been assigned a different head to the one expected in a

constraint. There is no restriction onwhere in accg derivation a particular dependency

will form, unlike in dependency parsers where an attachment between a head and its

argument must occur when the arc between them is being considered by the parser.

ccg dependencies are formed as categories are combined together and their vari-

ables are unified. In the C&C parser, active variables carry the words of the sentence

which are available for dependencies to accept as heads or fillers. Thus, given a con-

straint specifying a desired ccg dependency, we can identify two situations when the

dependency is impossible to create, namely observing that:

1) the head word of the dependency does not bear the required category;

170 Chapter 6. Dependency Constraints for ccg

2) the filler word of the dependency becomes inactive before the dependency has

been created.

A ccg dependency may be created at any point in the subtree which contains the

head word (with the correct category) and the filler word as leaf nodes. However,

in this subtree, the filler word must be passed upwards as an active variable until it

can combine with the complex category to create the dependency. If at any point the

filler word becomes an inactive variable (e.g. it is absorbed by another category which

does not allow it to be further used, or it has the wrong category itself to allow the

variable to be unified correctly), then the dependency cannot possibly be created. This

observation forms the basis of our technique to enforce dependency-level constraints

in ccg parsing.

Given a list of constraints, we store each constraint on the expected head category

in the bottom row of the chart, and mark any non-satisfying categories. Then, as we

are decoding the packed chart, we propagate constraints and the satisfying status of

categories upwards. At each combination, the result category is immediately marked

as non-satisfying if either one of its children are non-satisfying. Otherwise, we inspect

the newly created dependencies on the result category to see if any constraints on

its children have been satisfied. We also verify that no required variable has become

inactive when two categories have been combined; if this has occurred, we mark the

result category as not satisfying. Finally, any unsatisfied constraints are then stored on

the result category.

Once we have decoded the chart and propagated the constraints and satisfying

properties through all spanning analyses, we return the root node of the tree with the

highest score under the parser model that satisfies all of the applied constraints. It

is worth noting that unlike earlier experiments on dependency constraints, the C&C

parser is still building all alternative parses, and we eliminate those which do not

satisfy the constraints in decoding.

6.2. Implementation 171

Algorithm 6.1 load-constraints
Require: A chart chart for a sentence, with span 1 cells populated
Require: A list of consistent constraints (head_index, cat, filler_index, slot)
Ensure: The constraints are loaded onto the appropriate categories

1 for all cells cell in chart with span 1 do
2 pos← position of the cell
3 for all categories c in cell do
4 required← all constraints cons where cons.head_index == pos
5 correct_cat← the head category from any cons in required
6 if c == correct_cat then
7 add required to the list of constraints on c
8 mark c as satisfied
9 else

10 mark c as unsatisfied

Unlike Djordjevic (2006), who also experiment with adding constraints to the C&C

parser, our constraints operate directly overccg dependencies, rather than constituents

in the ccg derivation. The spurious and attachment ambiguity inherent in ccg means

that several constituent structures may yield the same set of dependencies, so our

dependency constraints abstract over many equivalent derivations. This aligns our

procedure more closely with the underlying logical form produced by the formalism.

6.2 Implementation

Constraints are represented as 4-tuples 〈h, c, s, f 〉, similar to ccg dependencies (see

Section 2.3.3). h and f are the head and filler of the dependency, c is the category

assigned to the head word, and s is the slot filled by f .

Our dependency-level constraint implementation in the C&C parser has two main

phases. Firstly, as the categories from the supertagger are loaded into the chart, we

iterate through all cells with span 1, adding the constraints to the appropriate category

in the appropriate cell. In each cell, we also mark any non-conforming categories as

being non-satisfying. This procedure is described in Algorithm 6.1.

172 Chapter 6. Dependency Constraints for ccg

Algorithm 6.2 decode-constrainednf
Require: A packed chart chart with constraints loaded
Ensure: Returns the best scoring tree root satisfying the constraints

1 max_e← ∅
2 max_s← −∞
3 max_sat← 0
4 for all categories c in the cell of chart spanning the whole sentence do
5 equiv, score, nsatisfied← best-equiv-constrained (c)
6 if equiv is marked as satisfying then
7 if max_sat < nsatisfied or (max_sat == nsatisfied and max_s < score) then
8 max_e← equiv
9 max_s← score

10 max_sat← nsatisfied

11 return max_equiv

The primary component of our procedure occurs during decoding, when the chart

has been completely built and the best scoring spanning analysis of the sentence is

found. As decoding proceeds, we propagate constraints upwards from the bottomof the

chart, checking them off as they are satisfied, and marking categories as non-satisfying

if they violate any constraints or contain a non-satisfying child. Algorithms 6.2 to 6.6

describe constraint-based decoding, adapting the procedure described in Section 5.2.3.

6.2. Implementation 173

Algorithm 6.3 best-equiv-constrained
Require: an equivalence class e
Ensure: the category in e with maximal score and number of satisfied constraints

1 if e.max_equiv exists then
2 return e.max_equiv, e.max_score, e.max_nsatisfied

3 max_e← ∅
4 max_s← −∞
5 max_sat← 0
6 for all categories c in e do
7 score, nsatisfied← best-score-constrained (c)
8 if c is marked as satisfying then
9 if max_sat < nsatisfied or (max_sat == nsatisfied and max_s < score) then

10 max_e← c
11 max_s← score
12 max_sat← nsatisfied

13 e.max_equiv← max_e
14 e.max_score← max_s
15 e.max_nsatisfied← max_sat
16 return max_e, max_s, max_sat

174 Chapter 6. Dependency Constraints for ccg

Algorithm 6.4 best-score-constrained
Require: a category c in the chart
Ensure: the best score for the subtree rooted at c
Ensure: the number of constraints satisfied in the best subtree rooted at c
Ensure: all unsatisfied constraints in c’s children are propagated to c
Ensure: c is marked as not satisfying all constraints if a violation occurs

1 score← score(c)
2 nsatisfied← 0
3 mark c as satisfying
4 if c has a left backpointer c.left then
5 max_left, s, left_satisfied← best-equiv-constrained (c.left)
6 score← score + s
7 nsatisfied← nsatisfied + left_satisfied
8 if max_left is not marked as satisfying then
9 mark c as not satisfying

10 if c has a right backpointer c.right then
11 max_right, s, right_satisfied← best-equiv-constrained (c.right)
12 score← score + s
13 nsatisfied← nsatisfied + right_satisfied
14 if max_right is not marked as satisfying then
15 mark c as not satisfying

16 if c is marked as satisfying then
17 nsatisfied← nsatisfied + check-satisfaction (c, max_left)
18 nsatisfied← nsatisfied + check-satisfaction (c, max_right)
19 copy unsatisfied constraints from max_left and max_right to c
20 if violates-variables (c, max_left) or violates-variables (c, max_right) then
21 mark c as not satisfying

22 return score, nsatisfied

6.2. Implementation 175

Algorithm 6.5 check-satisfaction
Require: a category c
Require: a category p that is a child of c
Ensure: the number of constraints from p that are satisfied in r

1 nsatisfied← 0
2 for all constraints cons in p do
3 for all filled dependencies f in c do
4 if f matches cons then
5 nsatisfied← nsatisfied + 1
6 mark cons as satisfied
7 return nsatisfied

Algorithm 6.6 violates-variables
Require: a category c
Require: a category p that is a child of c
Ensure: true if any constraint on c requires a variable that was active in p and no longer

active in c; false otherwise
1 for all constraints cons in c do
2 if the filler word of cons fills any active variable v in p then
3 if the filler word of cons is no longer an active variable in c then
4 return true
5 return false

176 Chapter 6. Dependency Constraints for ccg

The constraint checking procedure requires several indicator flags and counters to

be cached on categories in the chart. It may, and often does, reject spanning analyses for

not satisfying or violating the supplied constraints. This has the side effect of breaking

the assumption underpinning the chart repair procedure described in Section 5.2.5,

where cached data from aparse attempt remains valid for any subsequent reattempts. In

turn, on subsequent parse attempts, the parser reuses previously computed constraint

and satisfaction values, and does not recompute them based on a new category available

in the same equivalence class. We counteract this by resetting the indicator flags and

constraint counters if the parser cannot find a spanning analysis, and reattempts with

additional categories. Importantly, this does not change the chart repair process, and

preserves the parser’s original behaviour.

6.3 Creating Constraints

Similar to our investigation for dependency parsers in Chapter 3, we define several

error classes based on common kinds of difficult constructions for parsers. In this

section, we describe how those classes are defined.

6.3.1 Error Classes

We use the ccg dependency to gr mapping developed by Clark and Curran (2007a)

to perform a formalism-independent evaluation of the C&C parser. The mapping trans-

forms ccg categories into grs, abstracting ccg categories and slots into meaningful

labels such as subject and object. The abstraction reduces the number of head-argument

relationships that we have to consider from thousands to just under twenty. It also

makes the task similar to the mapping procedure described in Section 3.5.2.

Rimell and Clark (2008) and Rimell et al. (2009) describe the development of a

ccg dependency to Stanford dependency mapping, implemented using the same

techniques as the gr mapping. However, Stanford dependencies differ even more from

6.3. Creating Constraints 177

ccg than do grs, and the conversion process requires substantial post-processing to

align the dependencies from the parser more closely to Stanford dependencies. We did

not make use of this mapping due to these issues.

We define error classes for ccg based on the gr label descriptions from the rasp
Parser Technical Report (Briscoe, 2006). There are fewer labels in the gr hierarchy

compared to the Stanford dependency scheme, making it more difficult to differentiate

between certain error classes. In particular, there are fewer distinctions between dif-

ferent nominal behaviours, such as appositions, modifiers and possessives. There are

also fewer distinctions between phrasal types; the ncmod relationship encompasses the

vast majority of pre- and post-modifiers, including adjectival, adverbial, nominal, and

prepositional. This means that additional heuristics based on the filler word’s pos tag

must be used to partition the dependencies into error classes.

Our error classes are constructed tomatch those in Section 3.5.2 as closely as possible,

allowing for a broader comparison of the ccg parser with the dependency parsers.

The classes are defined as follows:

pp attachment: any label attaching a prepositional phrase. Includes pmod, iobj, and

pcomp. Also includes ncmod, ncsubj, and iobj if the pos tag of the filler is TO or IN;

np internal: any label marking nominal structure (not including adjectival modifiers).

Includes det. Also includes ncmod if the gr attributes include poss, part, or num, or

if the pos tag of both head and filler word is one of NN, NNS, NNP, NNPS, PRP,

PRP$, DT, $, CD, or #;

np attachment: any label specifically attaching an np. Includes ncsubj, dobj, obj, and

obj2;

Clause attachment: any label attaching a clause. Includes cmod, xsubj, csubj, xcomp,

and ccomp;

Modifier attachment: any label attaching an adverbial or adjectival modifier. Includes

xmod. Also includes ncmod if it does not satisfy the requirements of np attachment;

Other attachment: all other cases, specifically aux, ta, arg, and arg_mod.

178 Chapter 6. Dependency Constraints for ccg

Unlike dependency grammars which specify that every word must have a head,

C&C does not include dependencies for punctuation attachment. Instead, punctuation

is commonly absorbed into larger constituents without any impact on the logical form

or on the category of the absorbing constituent (see Section 2.3.4 for more details).

Punctuation absorption primarily impacts the parser’s speed and coverage; as punc-

tuation may be absorbed in many locations, it contributes to the chart size growing

to its predefined limit. Djordjevic (2006) found that basic span-level constraints forc-

ing sentence-final punctuation to attach at the root of the derivation, and semicolon

constraints splitting the sentence into smaller chunks were advantageous for parsing

speed and coverage for this reason.

6.3.2 Constraints from ccgbank

We use the gold-standard ccgbank dependencies as the source of constraints. For

each dependency, we map it to its equivalent gr, and then place the dependency in

the error class defined above based on its gr.
When evaluating the parser using a certain error class, the dependencies which

have been placed in that class are activated and enforced for each sentence in ccgbank
section 00. Notably, we do not have conj or root types listed in the error classes above.

This is due to the special way in which these dependencies are handled in ccg. We

describe below how we use the ccgbank derivations, rather than the gold-standard

dependencies, to extract constraints for these error classes.

Coordination Constraints

ccgbank does not include conj dependencies, and the conj output produced by the

parser is ignored during the standard evaluation. However, the normal-form deriva-

tions provided by the corpus do include conj nodes. Each conj node in the derivation

generates two dependencies: one with the head of the left input category to the conj,

and one with the head of the right input category. In ccgbank, which binarises the

6.3. Creating Constraints 179

S[dcl]

S[dcl]\NP

VP\(VP/NP)

VP\VP[conj]

VP\(VP/NP)

VP\VP

abroad

VP\(VP/NP)

NP

N

2,000

conj

and

VP\(VP/NP)

VP\VP

NP

N

Spain

(VP\VP)/NP

in

VP\(VP/NP)

NP

N

N

people

N/N

8,000

VP/NP

employs

NP

N

bank

NP[nb]/N

The

Parse 6.3: A ccgbank tree containing coordination; where the conj and two filler words are

boxed. The transitive verb category S[dcl]\NP is shortened to VP.

ternary coordination rule, the left input category corresponds to the head of the left

child of the grandparent of the conj node; the right input category is the head of the

right child of the parent of the conj node. Parse 6.3 depicts the relationship in the tree

between the nodes in question, and Algorithm 6.7 gives the extraction process.

Care must be taken in list sentences, where multiple items are coordinated together.

In this case, each conj node coordinates all heads of its two input categories, where

each conjunction creates a category with two heads.

Once we have extracted the additional conj dependencies from ccgbank section 00,

we add them to the gold standard for each sentence. They are applied as constraints

using the same algorithm as described in Section 6.2, as the C&C parser does generate

these dependencies.

180 Chapter 6. Dependency Constraints for ccg

Algorithm 6.7 extract-conj-deps
Require: a ccgbank derivation T
Ensure: constraints specifying all conj dependencies in the derivation if they exist

1 constraints← empty list
2 for all leaf nodes node in T do
3 if node has a parent and that parent has category matching ∗[conj] then
4 left_heads← the set of heads of the left child of node’s grandparent
5 right_heads← the set of heads of the right child of node’s parent
6 for all head in left_heads, right_heads do
7 add a conj constraint between node and head to constraints

8 return constraints

(<T S[dcl] 0 2>
(<T S[dcl] 1 2>

(<T NP 1 2>
(<L NP[nb]/N DT The>)
(<L N NN bank>))

(<T S[dcl]\NP 0 2>
(<L (S[dcl]\NP)/NP VBZ employs>)
(<T NP 0 1>
(<T N 1 2>
(<L N/N CD 8,000>)
(<L N NNS people>)))))

(<L>))

Figure 6.1: An ccgbank tree with the path to the root word following the head annotations

on each node bolded.

Root Constraints

ccg has no concept of an external explicit root node, like many dependency schemes.

This precludes an explicit root dependency. However, the headedness information in

ccgbank derivations identifies one leaf node which heads the entire tree based on

the head-finding heuristics employed by Hockenmaier (2003a). Figure 6.1 gives an

example tree from ccgbank, highlighting the nodes on the path to the root leaf node

indicated by the headedness annotations. Algorithm 6.8 describes how we extract root

constraints from these trees.

6.3. Creating Constraints 181

Algorithm 6.8 extract-root-deps
Require: a ccgbank derivation T
Ensure: a constraint specifying the root of the derivation

1 node← the root of T
2 while node is not a leaf do
3 if node is headed by its left child then
4 node← node.left
5 else
6 node← node.right

7 return the index position of node in the sentence

Algorithm 6.9 apply-root-constraints
Require: a filled chart C
Require: the index position of the root in the sentence r
Require: the category of the root in the sentence R
Ensure: roots of the chart without the required root word active are marked as not

satisfying constraints
1 for all equivalence classes e in the root cell of C do
2 for all categories c in e do
3 if r is the active variable X in c and c == R then
4 mark c as satisfying
5 else
6 mark c as not satisfying

The headword for a sentence from ccgbank corresponds to the active variable X on

the root categories of the chart in the C&C parser. Extracting the head of each sentence

in ccgbank section 00 gives an approximation of a root constraint, but we cannot

enforce it in the same way as our other constraints since the root will not necessarily

correspond to a single dependency. The root word of a sentence may have multiple

modifiers, and itself head several other dependencies. Instead, root constraints are

enforced by inspecting the active variables in the root cells of the chart, and only

allowing those where the desired word is in the active X variable. Additionally, any

trees where the category of the root word is incorrect are rejected. Algorithm 6.9

describes this procedure, which is appended to the end of Algorithm 6.2.

182 Chapter 6. Dependency Constraints for ccg

6.3.3 Constraint Statistics

The ccg to gr mapping is only defined over the 425 lexical categories used by the

C&C parser (Clark and Curran, 2007a). Additionally, the parser generates some de-

pendencies which do not have an equivalent gr. This is particularly prevalent in ccg
subject dependencies. For example, the S[adj]\NP category, used to represent adjectival

phrases, is a synthetic category. The argument NP is necessary to allow adjectives to

pick up their subject nps in copula constructions, but this dependency does not have

an equivalent gr. These extraneous dependencies are ignored by the mapping, and

so using grs to define our error classes is deficient. Table 6.1 gives the number of

dependency constraints placed into each error class by our procedure over ccgbank
section 00, as well as those which do not have an equivalent gr, or are ignored in the

mapping. It also gives the distribution over the Stanford dependency error classes used

in Chapter 3.

There are 46,099 total dependency instances in ccgbank section 00, including

the root and conj constraints extracted directly from the derivations. 159 instances

do not have an entry in the mapping, while 2,427 are ignored. All of the remaining

dependencies are mapped into a gr and thus into an error classes.

While the constraints are extracted over different sections of newswire, there is

a very similar proportion of root attachments across ccgbank and Stanford depen-

dencies, indicating that sentence lengths are broadly similar. np-related attachments

are most frequent across both sets, though ccgbank has substantially more of both

np attachment and np internal. Meanwhile, there is a large discrepancy in the Other

attachment set. For ccgbank, this class is composed almost entirely of aux relations

between auxiliaries and verbs in sentences. This is in contrast to Stanford; as every

word requires a head and label, there are many more labels which would not receive

an equivalent gr relation, and thus placed in the Other class.

6.4. Summary 183

Constraint Type Freq. % Stanford %

np attachment 13768 29.9 21.2
np internal 10070 21.8 20.8
Modifier attachment 5339 11.6 13.3
pp attachment 4732 10.3 9.3
Clause attachment 3650 7.9 4.2
Other attachment 259 0.6 10.4

Coordination attachment 3782 8.2 5.1
Root attachment 1913 4.1 4.2
Not mapped 159 0.3 -
Ignored 2427 5.3 -

Total 46099 100.0 100.0

Table 6.1: The number of constraints in each error class over ccgbank section 00, compared

to the distribution of constraints per Stanford error class over OntoNotes wsj section 22 in

Section 3.5.2.

Stanford also has slightly more modifiers, and fewer clauses and coordination than

ccgbank. Each instance of coordination in ccgbank yields two dependencies, and

coordinated lists add a compounding number of dependencies of this class. In Stanford,

additional coordinated items add only two additional constraints, explaining some of

the difference in relative size.

6.4 Summary

In this chapter, we have taken our constraint-based evaluation procedure for depen-

dency parsers and described how to implement it for the C&C ccg parser.

Unlike the relatively simple implementation for dependency parsers, enforcing

constraints in C&C is challenging. As we found in the previous chapter, working with

ccg dependencies during parsing is difficult, as they are a by-product of category

combination in a derivation. In dependency parsers, we could simply prevent undesired

184 Chapter 6. Dependency Constraints for ccg

dependencies from being formed as the tree is constructed. However, in ccg we

cannot know the dependencies present in the final analysis until decoding, meaning

that applying constraints must be deferred until after the chart is constructed. Our

implementation propagates constraints bottom-up through the chart during decoding,

checking for violations at each combination, and summing the total number of satisfied

constraints.

We used the formalism-independent gr output of the C&C parser to map ccg
dependencies to error classes mimicking those in Chapter 3. We also describe how to

extract coordination and root relations directly from ccgbank derivations, as they are

not included with the dependencies in the corpus. The deficiency of the ccg to gr
mapping is challenging for producing error classes: grs are less specific than the Stan-

ford labels used for our dependency parser evaluation, and not all ccg dependencies

map to gr labels. Nonetheless, we were able to map over 94% of the dependencies in

ccgbank section 00 to an error class, with the overall distribution being broadly similar

to Stanford. ccg has substantially more np attachments, clauses, and coordination,

but fewer modifiers and pps, traits explained by the particulars of how ccg treats these

constructions.

In the next chapter, we will use the constraint implementation and error classes to

perform an in-depth exploration of the C&C parser’s performance, comparing it to the

dependency parsers in Chapter 3.

7 Evaluating with ccg Constraints

In this chapter, we apply the constraint-based ccg evaluation procedure defined in the

previous chapter, and perform an in-depth investigation of the C&C parser’s accuracy

across different error classes, comparing it with the dependency parsers in Chapter 3.

We find that many of the substantial error classes for dependency parsers are also

challenging for ccg, including np and pp attachments, and clauses. However, the

impact of each error class is different between the formalisms. Particularly notable

is the reversal of error distribution for np and pp attachments. The former causes

similar amounts of constrained and cascading impact in dependency parsers, but

proportionally less cascading impact for ccg. pps exhibit the opposite behaviour: less
cascading impact in dependency parsers, but more in ccg. Coordination can also

cause negative cascading impact in ccg, while it has a strictly positive overall effect

for dependency parsers. These differences are due to the way each formalism handles

these constructions; the head category sometimes changes for misattached pps, as
well as the lack of enforcement for correct structure in the arguments of coordination

explain the behaviour of these error classes in ccg.

Our constraint-based procedure can also be used to evaluate a ccg parser and its

implementation in detail, highlighting inconsistencies in the co-indexation annotations

and grammar implementation. Applying constraints can have unexpected side-effects

in ccg due to the interaction between the subcategorisation encoded in ccg categories,

and the application of ccg unary rules and combinators. We present several examples

185

186 Chapter 7. Evaluating with ccg Constraints

where the C&C parser’s response to constraints is unusual, demonstrating the use of

our procedure in parser debugging.

This chapter is arranged as follows. We detail an evaluation procedure which

partitions constrained parses into dependencies which have been directly and indirectly

affected by the constraints. Finally, we run our evaluation procedure over the error

classes, and discuss the results and implications for ccg parsing.

7.1 Evaluation Procedure

Unlike our constraint evaluation procedure for dependency grammars in Chapter 3,

evaluating the effectiveness of ccg constraints is a nontrivial task. The key issue is that

applying a constraint in a ccg parse may achieve any, several, or all of the following:

• change a single incorrect dependency to a correct dependency;

• add a dependency where none existed before;

• remove an existing dependency.

Constraints may, and often do, create a parse with a different number of dependencies

than the baseline. This precludes the simple partitioning of each parse into constrained

and cascaded dependency sets, as is possible for our dependency parser experiments

in Chapter 3. Additionally, calculating the ccg F-score metric requires the full set

of dependencies for a sentence, as it relies not only on the total number of correct

dependencies recovered by the parser, but also the number of incorrect and missing

dependencies according to the gold standard. In contrast, the accuracy metric used

for dependency grammars with a single head per word may easily decomposed into

constrained and cascaded components as it is a simple ratio.

In this section, we describe a procedure to construct constrained and cascaded

dependency sets that are evaluable against the gold standard, given the baseline C&C

parser output, and the parser output with constraints applied.

7.1. Evaluation Procedure 187

Jack swims across the river

NP (S\NP)/PP PP/NP NP/N N
>

NP
>

PP
>

S\NP
<

S

Parse 7.1: A baseline ccg derivation with

a pp argument.

Jack swims across the river

NP S\NP ((S\NP)\(S\NP))/NP NP/N N
>

NP
>

(S\NP)\(S\NP)
<

S\NP
<

S

Parse 7.2: A constrained ccg derivation with

a pp adjunct.

Trivially, both constrained and cascaded dependency sets must contain all depen-

dencies in common between the baseline and constrained parses. Thesemust be already

correct in the baseline, or left unchanged by applying constraints. Of the remaining

dependencies in the constrained parse, those which directly correspond to a constraint

must belong to the constrained set, while those that do not go in the cascaded set.

The key challenge is identify where the changed dependencies from the baseline

parse should be placed. Clearly, incompatible dependencies should be placed in dif-

ferent sets to allow a complete evaluation to take place. Consider an example where

Parse 7.1 is a baseline parse of the sentence, and Parse 7.2 is the result of applying a

constraint enforcing the dependency between across and swims . Figure 7.1 lists the

dependencies generated by each derivation. We can immediately identify a correspon-

dence between the dependencies on each line. On the first line, the only difference

in the dependencies is a change of head category. The third line has dependencies

with a different head category and slot, but the same head and filler. The second line

has dependencies where the direction is reversed. The fourth line has two identical

dependencies.

This notion of correspondence allows us to heuristically match pairs of changed

dependencies. When the dependency on one side is placed in the cascaded set, the

corresponding dependency must be placed in the constrained set, and vice-versa. The

partitioning procedure proceeds as thus:

188 Chapter 7. Evaluating with ccg Constraints

〈swims , (S[dcl]\NP1)/PP2, 1, Jack , −〉

〈swims , (S[dcl]\NP1)/PP2, 2, across , −〉

〈across , PP/NP1, 1, river , −〉

〈the, NP[nb]/N1, 1, river , −〉

(a) Baseline parser dependencies.

〈swims , S[dcl]\NP1, 1, Jack , −〉

〈across , (S\NP)1\(S\NP)/NP2, 1, swims , −〉

〈across , (S\NP)1\(S\NP)/NP2, 2, river , −〉

〈the, NP[nb]/N1, 1, river , −〉

(b) Constrained parser dependencies.

Figure 7.1: Dependencies yielded by the baseline parse of Parse 7.1 and constrained parse of

Parse 7.2.

• all dependencies in the constrained parse matching an applied constraints are

added to the constrained set. Any corresponding dependencies in the baseline

parse are added to the cascaded set;

• all dependencies in the constrained parse which do not match a constraint are

added to the cascaded set. Any corresponding dependencies in the baseline parse

are added to the cascaded set;

• any remaining dependencies in the baseline parse are added to the cascaded set.

Comparing the F-score of these dependency sets against the baseline gives us a close

approximation of the F-score improvement that is directly due to the constraints and

indirectly due to the constraints.

There are several levels of strictness in dependency correspondence, due to the

number of ways that applying constraints can change the parser output. These include:

1) a head category change;

2) a reversal of the head and filler;

3) a head category and slot change;

7.1. Evaluation Procedure 189

4) a head category and filler change;

5) a head category, slot, and filler change.

When determining dependency correspondence, we iteratively check all remaining

changed dependencies at each level, reducing the strictness required each time. This

means that as many correspondences are determinedwith the highest level of strictness,

whilst allowing fallback to more lenient heuristics. Algorithm 7.1 describes the full

partitioning procedure.

Figure 7.2 lists the partitioned constrained and cascaded dependency sets created

using our procedure from Figure 7.1, with corresponding dependencies depicted next

to one another. The constrained and cascaded output are not internally consistent;

across and swims head dependencies with different categories on the constrained

and cascaded side respectively. However, the intention of the partitioning is not to

create real parser output; we merely wish to divide the changes produced by applying

constraints into two representative sets of cascading and constrained dependencies

which can be evaluated using the usual ccg dependency recovery metric.

The total difference in F-score between the baseline and constrained parsers is

denoted as ∆lf. Using the partitioning output, we define ∆c, the difference between

the baseline parse and the constrained dependency set, and ∆u, the difference between

the baseline parser and the cascaded dependency set. Ideally:

∆lf = ∆c+ ∆u (7.1)

Despite the partitioning not being perfect, and the intricacies of calculating an F-score

precluding this simple process from properly mimicking the precision of using accura-

cies in Chapter 3, empirical testing and the results presented in this chapter show that

partitioning is more than adequate for our evaluation. Equation 7.1 is satisfied within

a margin of error of a few hundredths of a percent for all of our experiments.

190 Chapter 7. Evaluating with ccg Constraints

Algorithm 7.1 make-dep-sets
Require: the dependencies produced by the baseline unconstrained parser B
Require: the dependencies produced by the constrained parser T
Require: the list of constraints l applied to the constrained parser
Ensure: a constrained and cascaded set of dependencies for evaluation

1 relax← 0
2 constrained← empty set
3 cascaded← empty set
4 common← B∩ T
5 base_remaining← B \ common
6 test_remaining← T \ common
7 while there are dependencies in test_remaining do
8 for all dependencies d in test_remaining do
9 corresponding← find-corresponding(base_remaining, d, relax)

10 if d matches a constraint in l then
11 add d to constrained
12 if corresponding is not null then
13 add corresponding to cascaded
14 remove d from test_remaining
15 remove corresponding from base_remaining

16 else
17 add d to cascaded
18 if corresponding is not null then
19 add corresponding to constrained
20 remove d from test_remaining
21 remove corresponding from base_remaining

22 relax← relax + 1
23 cascaded← cascaded∪ base_remaining
24 return constrained, cascaded

7.1. Evaluation Procedure 191

〈swims , (S[dcl]\NP1)/PP2, 1, Jack , −〉

〈across , (S\NP)1\(S\NP)/NP2, 1, swims , −〉

〈across , PP/NP1, 1, river , −〉

〈the, NP[nb]/N1, 1, river , −〉

(a) Constrained dependency set.

〈swims , S[dcl]\NP1, 1, Jack , −〉

〈swims , (S[dcl]\NP1)/PP2, 2, across , −〉

〈across , (S\NP)1\(S\NP)/NP2, 2, river , −〉

〈the, NP[nb]/N1, 1, river , −〉

(b) Cascaded dependency set.

Figure 7.2: The partitioned constrained and cascaded dependency sets generated by Algo-

rithm 7.1 from Figure 7.1. Corresponding dependencies are next to each other. Each set is not

internally consistent (e.g. the second and third constrained dependencies), but this is not a goal

of partitioning.

192 Chapter 7. Evaluating with ccg Constraints

7.2 Experimental Setup

We use the same settings, model, and data for the C&C pos tagger, supertagger, and

parser as described in Section 5.3.

The additional complexity of the ccg parsing process and the nature of ccg
dependencies as constraints means that there are several scenarios where the parser

may be unable to satisfy the constraints and produce a parse. Some of these situations

are due to the design of the C&C parser, while others are due to the way in which ccg
rules are implemented in ccgbank. We experiment with a number of relaxations to

the constraints to investigate their impact on the parser’s coverage and accuracy:

Strict enforcement: all constraints for each sentence must be fully satisfied. A sen-

tence without a spanning analysis satisfying all provided constraints is rejected as

unparseable. This is the strictest configuration.

Add missing: some constraints are unsatisfiable because the supertagger does not

provide the required head categories. In this configuration, missing head categories

are added to the C&C chart before parsing begins. This alters the parser’s behaviour,

but isolates errors made by the supertagger from inadequacies of the grammar

implementation in the parser.

Any category or slot: relax constraint enforcement to be word-word only, and ignore

the category and slot requirements. This configuration simply requires that any ccg
dependency exist between the head and filler provided in a constraints, rather than

enforcing a full category and slot match. This configuration relies on the supertagger

providing the necessary correct categories, and the parser being able to select them

as the best option. However, any dependency between the head and filler word is

permitted, introducing the potential for errors.

Constraints at root: permit sentences which only receive a spanning analysis that

does not satisfy all the required constraints. This addresses cases where the parser

constructs the desired derivation, but particulars of the grammar implementation

7.2. Experimental Setup 193

prevent a constraint dependency from being correctly formed. However, analyses

which violate a constraint are still rejected.

We address sentences which do not receive an analysis under these four configura-

tions in two different ways:

Reject on failure: discard sentences which do not receive an analysis under constraints

as unparseable.

Reparse on failure: fall back to the baseline parser if a sentence does not receive an

analysis under constraints.

7.2.1 Configuration Examples

Parse 7.3 gives the C&C analysis and gold standard parse of a ccgbank section 00

sentence. The parser has chosen an incorrect category for school , assigning it the modi-

fier N/N rather than the noun N, even though both are provided by the supertagger.

This has caused a number of incorrect rule choices in order to combine the categories

together, though the remainder of the sentence is identical between the baseline and

gold standard.

Intuition suggests that forcing the parser to construct the desired coordination

between school and things would repair the sentence and produce the correct depen-

dencies. The constraints required for this are:

〈and , conj, 1, school〉

〈and , conj, 1, thing〉

Strict enforcement of this correct coordination allows the parser to perfectly reproduce

the gold standard. Applying these constraints also produces the correct parse under

the remaining three constraint configurations:

Add missing: the supertagger has provided all necessary categories, so this performs

identically to strict enforcement.

194 Chapter 7. Evaluating with ccg Constraints

S[dcl]
<

S[dcl]\NP
>

S[dcl]\NP
>

PP
>

NP
<

N ⇒ NP
>

N
>

N
>

NP (S\NP)/(S\NP) (S[dcl]\NP)/PP PP/NP N/N conj N/N N NP\NP

to do with my
I even dreamt about school and new things students

NP (S\NP)/(S\NP) (S[dcl]\NP)/PP PP/NP N conj N/N N NP\NP
>

NP N ⇒ NP
<

NP
<Φ>

NP
>

PP
>

S[dcl]\NP
>

S[dcl]\NP
<

S[dcl]

Parse 7.3: The C&C analysis (top) and gold derivation (bottom) of ccgbank section 00 sentence.

The parser has chosen an incorrect category for school , and chosen to apply the conj absorption

rule rather than use the coordination combinator. Otherwise, the parses are identical.

Any category or slot: the only way for the parser to satisfy both head-filler constraints

is to use the coordination rule and produce the conj dependencies. There is no

other rule which would allow a dependency 〈and , school〉 simultaneously with 〈and ,

things〉 given the categories provided by the supertagger.

Constraints at root: there is already a parse which satisfies all constraints, so this

performs identically to strict enforcement.

7.2. Experimental Setup 195

S[dcl]
<

NP[nb] S[dcl]\NP
> >

N S[b]\NP
> >

N NP
>

NP[nb]/N N/N N/N N (S[dcl]\NP)/(S[b]\NP) (S[b]\NP)/NP N

The Japanese industrial companies should know better

NP[nb]/N N/N N/N N (S[dcl]\NP)/(S[b]\NP) (S[b]\NP)/(S[adj]\NP) S[adj]\NP
> >

N S[b]\NP
> >

N S[dcl]\NP
>

NP[nb]
<

S[dcl]

Parse 7.4: The C&C analysis (top) and gold derivation (bottom) of ccgbank section 00 sentence.

The parser has chosen incorrect categories for know and better due to the supertagger not

providing the desired category for the former. Otherwise, the parses are identical.

Parse 7.4 gives the C&C analysis and gold standard parse of another ccgbank
section 00 sentence. Once again, the parser has chosen incorrect categories, with

both know and better being incorrect. Intuitively, enforcing the following correct

dependency between these words should allow the parser to match the gold standard:

〈know , (S[b]\NP)/(S[adj]\NP), 2, better , −〉

Unfortunately, while the supertagger provided the S[adj]\NP for better , it has not

provided the (S[b]\NP)/(S[adj]\NP) category for know . The supertagger does actually

not produce this category with any β value used by the parser, and requires even more

permissive settings to return it. It is impossible for the parser to satisfy the constraint

given the missing category, so under strict enforcement without fallback, the sentence

is discarded as unparseable. When using fallback, the baseline analysis is returned

with the erroneous categories and dependency. The other configurations react as thus:

196 Chapter 7. Evaluating with ccg Constraints

Add missing: the required category is added to the chart, and the parser successfully

satisfies the constraint and returns the desired parse.

Any category or slot: the baseline parse fulfills the requirement of a dependency

between know and better , and so the parser returns it.

Constraints at root: all parses in the chart violate the provided constraint; given the

categories provided by the supertagger, the variable co-indexed with better becomes

inactive as soon as it forms any dependency. This is the trigger condition for detecting

a violated constraint (see Section 6.2), so the sentence is rejected as unparseable

without fallback, and the baseline parse is returned when using fallback.

7.3 Results

In this section, we describe the results of applying the constraints of each error class to

the C&C parser under various constraint configurations.

7.3.1 Applying all constraints

Table 7.1 lists the results of applying all of our constraints to the C&C parser on

automatic pos tags. Each table gives the coverage over section 00, the total number

of effective constraints which were not present in the baseline, but are present in the

constrained parse, and the percentage of effective constraints as a proportion of the total

number applied. As with dependency parsers, the effective percentage can be viewed

as the class error rate. Missing constraints are not present when the constrained parse is

evaluated. They occur for three reasons:

• the parser has produced the required dependency, but has assigned it a flag

indicating that it should be ignored during evaluation for compatibility with

ccgbank;

• the parser is unable to find a parse which strictly satisfies the constraints, but

a relaxation allows the best non-satisfying parse to be produced instead. This

7.3. Results 197

All attachments cover eff miss eff % lf ∆lf
Baseline 99.06 - - - 84.91 -

Reject on failure
Strict enforcement 63.36 2459 11 5.41 99.76 10.49
Add missing 74.54 3623 16 7.97 99.70 12.52
Any category or slot 68.69 2490 503 5.48 97.72 9.33
Constraints at root 74.44 2947 436 6.48 98.74 9.80

Reparse on failure
Strict enforcement 99.06 2459 3699 5.41 90.94 6.03
Add missing 99.22 3623 2579 7.97 93.64 8.73
Any category or slot 99.06 2490 3730 5.48 90.82 5.91
Constraints at root 99.06 2947 3409 6.48 91.85 6.94

Table 7.1: Coverage, number of constraints which corrected an error or were missing in the

parser output, correction percentage, overall labeled F-score, and F-score improvement over

the baseline for all constraints to the C&C parser on automatic pos tags over ccgbank 00. ∆lf
is calculated over the constrained coverage.

occurs when any category or slot is permitted when satisfying constraints, or

when unsatisfied constraints are permitted;

• the parser is running in the fallback configuration, and has reverted to the baseline

parse. The missing constraints are those which are incorrect in the baseline.

Finally, the labeled F-score and F-score ∆s to the baseline parser over the sentences

covered by both the constrained and baseline systems are listed.

Our results are divided into two main groups, depending on whether the parser

rejects sentences for which it cannot satisfy the provided constraints, or whether it

falls back to the baseline parser without constraints. The former gives a true repre-

sentation of the impact of constraints on coverage, while the latter gives a comparable

F-score to the baseline. Within these groups, we examine the impact of enforcing con-

straints, adding any missing categories required for constraints to the chart, relaxing

the strictness of constraint satisfaction, and allowing the parser to produce a parse with

unsatisfied (but not violated) constraints.

198 Chapter 7. Evaluating with ccg Constraints

7.3.1.1 Reject on failure

Strict Enforcement

Applying all constraints without a fallback mechanism has a severe impact on the

parser’s coverage. The achieved coverage is under 64%, comparing unfavourably

against the dependency parsers in Chapter 3, where the lowest recorded coverage

was over 93% on newswire. F-score under strict enforcement is 99.76%, highlighting

the impact of the compromises made by Clark and Curran (2007b) in the C&C parser

design. The limited category set used by the supertagger and parser, inconsistencies in

dependency annotation from ccgbank, and the omission of rare rules all contribute

to the reduced coverage and inability to score 100%, underscoring the challenge of

efficiently parsing ccg without artificial restrictions.

The missing 11 constraints under strict enforcement occur when the parser has

correctly produced the required dependency, but has assigned it a flag indicating that

it should be ignored during evaluation for compatibility with ccgbank.

Add missing

Adding the missing categories required by constraints improves coverage to 74.54%,

whilst maintaining an F-score of 99.70%. Over 11% of the uncovered sentences under

strict enforcement are due to supertagger errors.

The parser cannot achieve 100% coverage even when adding missing categories

to the chart for several reasons. There are parses which require a category or rule

not implemented by the parser, as well as inconsistencies in ccgbank which will

be discussed in Section 7.4. Additionally, the supertagger assigns some incorrect

categories to words which do not head any constraints, but are merely consumed by

other categories as fillers. As these words do not head any constraints, they will not

have their correct category added in our procedure.

7.3. Results 199

Any category or slot

Relaxing the category and slot requirement results in 68.69% coverage and an F-score

of 97.67%. As expected, there are substantially more missing constraints under this

configuration. Interestingly, effective constraint percentages remain at roughly the

same levels as strict enforcement. The relatively small drop in F-score and similar

constraint effectiveness, despite the large reduction in specificity, are optimistic results,

similar to the relatively small coverage drop for ZPar in Section 3.8.1. The presence of

so many constraints helps to reduce the possible options for the parser, even though it

is only being guided by word-word constraints. What remains to be seen is how well

the parser will perform with smaller numbers of word-word constraints.

Constraints at root

Allowing parses to be accepted if they have unsatisfied constraints has the best coverage

of the four configurations, at 74.44%. Effective constraint percentage and F-score sit

roughly between that of strict enforcement and addmissing, at 6.48% and 91.85% respec-

tively. As our implementation will prefer parses with more satisfied constraints, the

coverage improvement represents sentences where there is a dependency in ccgbank
which the parser is unable to create due to the limitations of the grammar implementa-

tion or supertagger errors. Detailed examples are discussed in Section 7.4.

When not enforcing categories and slots, the missing constraints must all map to

some head-filler combination in the constraints for a sentence, even if the category and

slot do not match. Here, the missing constraints are constraints which are completely

unsatisfiable, but not violated by variable checking in the sentence.

7.3.1.2 Reparse on failure

Falling back to the baseline parser when constraints cannot be satisfied avoids the

large coverage reduction of the previous setup. At the same time, it allows the parser

to use the constraints only when it can, at the cost of reducing the overall F-score

200 Chapter 7. Evaluating with ccg Constraints

improvement. Under this scenario, the missing constraints statistic includes situations

when the constrained parser is unable to form an analysis, and falls back to the baseline.

Strict enforcement

Using fallback restores coverage under all configurations to match the baseline, though

there are some instances where constraints allow the parser to analyse sentences which

the baseline previously could not, leading to slightly increased coverage. Strictly

enforcing constraints with fallback results in an F-score of 90.94%, which is only 0.5%

less than the 50-best oracle score with dependency hashing in Table 5.9. The difference

between the two is due to situations where applying constraints fails, and the baseline

parse is returned. The n-best parser can still return an analysis which is slightly more

accurate, even though a perfect parse is not possible. There is no change in the effective

constraint percentage in these experiments, as the only difference is that previously

uncovered sentences are reparsed without constraints.

Add missing categories

Adding missing categories lifts coverage higher than the baseline parser, reaching

99.22% with an F-score of 93.64%. The combination of the constraints and the missing

categories has allowed the parser to analyse sentences which the baseline configuration

could not. Adding the missing categories also improves F-score beyond the oracle

score of 50-best parsing, as the latter is restricted by supertagging accuracy.

Any category or slot

The 90.82 F-score under this configurations is practically indistinguishable from strict

enforcement, with identical coverage. Given the parser implementation, knowing the

full set of head-filler word-word pairs for a sentence is as beneficial as knowing the

required slot and categories for those pairs. This demonstrates how restricted the

7.3. Results 201

np attachment cover eff miss eff % lf ∆lf ∆c ∆u

Baseline 99.06 - - - 84.91 - - -

Strict enforcement 99.06 1686 1206 12.25 91.36 6.45 4.30 2.17
Add missing 99.32 2174 760 15.79 93.32 8.41 5.40 2.93
Any category or slot 99.06 662 2372 4.81 86.51 1.60 1.45 .15
Constraints at root 99.06 1755 1187 12.75 91.36 6.45 4.48 1.98

Table 7.2: Coverage, number of constraints which corrected an error or were missing in the

parser output, correction percentage, overall labeled F-score, and F-score improvement over the

baseline for np attachment constraints to the C&C parser on automatic pos tags over ccgbank
00. ∆s are calculated over the constrained coverage.

parser is when applying so many constraints: despite the additional leeway in slot and

category, it is very difficult to not assign the desired parse.

Whilst our results with fallback are substantially below the near-perfect F-scores

achieved without fallback, they are much more easily comparable to the baseline parser

and each other. The remainder of this section will compare the performance solely

using the fallback scheme. We will also use the partitioning procedure described in

Section 7.1 to determine the constrained and cascaded dependency impact.

7.3.2 np attachment constraints

np attachment constraints are the largest error class, and they repair the most parser

errors. This is consistent with the results for dependency parsers in Section 3.8.1.

Applying np attachment constraints improves F-score by 6.45% over the baseline;

missing categories contribute to nearly 2% additional F-score on top of this. The

effective constraint percentage is double the overall percentage, at 12.25% under strict

enforcement and 15.79% when adding missing categories. The C&C parser makes

substantial np errors.

The 6.45% ∆lf is divided into 4.30% ∆c and 2.17% ∆u, and this trend carries

over each configuration. This is not unexpected in ccg; the assumed right-branching

202 Chapter 7. Evaluating with ccg Constraints

np internal cover eff miss eff % lf ∆lf ∆c ∆u

Baseline 99.06 - - - 84.91 - - -

Strict enforcement 99.06 340 156 3.38 86.19 1.28 .88 .40
Add missing 99.06 413 83 4.10 86.43 1.52 1.08 .44
Any category or slot 99.06 273 228 2.71 85.80 .89 .68 .21
Constraints at root 99.06 316 180 3.14 86.08 1.17 .80 .36

Table 7.3: Coverage, number of constraints which corrected an error or were missing in the

parser output, correction percentage, overall labeled F-score, and F-score improvement over the

baseline for np internal constraints to the C&C parser on automatic pos tags over ccgbank 00.

∆s are calculated over the constrained coverage.

structure of nps makes identifying noun heads relatively simple, and nps themselves

are rarely the heads of non-np dependencies, restricting the cascading impact. This is

in contrast to dependency parsing, where incorrect np attachments were responsible

for near equal numbers of other errors. While nps are a large source of error for both

types of parsers, they cause more constrained impact for C&C, and more cascaded

impact for dependency parsers.

Reducing the number of applied constraints also severely reduces the effectiveness

of not enforcing categories and slots. ∆lf is just 1.60%, effective percentage drops

substantially to 4.81%, and ∆u is negligible at 0.15%. This illustrates how optimistic

the results in this configuration were when applying all constraints, and this drop in

comparative performance is consistent over all of our error classes.

7.3.3 np internal constraints

np internal constraints are the second most frequent error class. However, all nps
in ccgbank are assumed to be right-branching (Hockenmaier and Steedman, 2007),

making this error class relatively easy to parse. The effective constraint percentage is

below 4.5% across all configurations, while no configuration achieves more than 1.52

∆lf. This is consistent with the dependency parsing results in Section 3.8.1, where

7.3. Results 203

Modifier attachment cover eff miss eff % lf ∆lf ∆c ∆u

Baseline 99.06 - - - 84.91 - - -

Strict enforcement 99.06 466 243 8.73 86.86 1.95 1.19 .76
Add missing 99.06 579 130 10.84 87.42 2.51 1.49 1.02
Any category or slot 99.06 351 365 6.57 86.15 1.24 .89 .35
Constraints at root 99.06 453 259 8.48 86.73 1.82 1.14 .68

Table 7.4: Coverage, number of constraints which corrected an error or were missing in the

parser output, correction percentage, overall labeled F-score, and F-score improvement over

the baseline for Modifier attachment constraints to the C&C parser on automatic pos tags over

ccgbank 00. ∆s are calculated over the constrained coverage.

np internal constraints produced one of the smallest overall accuracy improvements.

While ccg nps are much easier to parse than the Stanford nps, disambiguating np
internal structure remains a strength across both.

Allowing constraints at the root no longer outperforms strict enforcement as it has

in the larger error classes. With fewer constraints, there are fewer parses rejected by

the stricter configurations, reducing the coverage advantage of allowing constraints at

root and negating the resulting F-score advantage. This observation holds for all of the

remaining error classes.

As with np attachment constraints, the F-score improvement is skewed towards

∆c, though some of the cascaded impact deltas are almost inconsequential.

7.3.4 Modifier attachment constraints

Modifier attachment errors occurmuchmore frequently thannp internal errors, despite

being amuch smaller class. The contribution of constrained and cascaded dependencies

for these constraints is less skewed than np constraints across all configurations. For

example, the 1.95% ∆lf under strict enforcement is split into 1.19% ∆c and 0.76% ∆u.

In ccg, distinguishing modifiers from arguments, which are subcategorised for, can

have substantial cascading impacts (as illustrated in Section 6.1).

204 Chapter 7. Evaluating with ccg Constraints

Clause attachment cover eff miss eff % lf ∆lf ∆c ∆u

Baseline 99.06 - - - 84.91 - - -

Strict enforcement 99.06 324 242 8.88 86.56 1.65 .77 .87
Add missing 99.06 437 129 11.97 87.31 2.40 1.06 1.34
Any category or slot 99.06 243 331 6.66 85.93 1.02 .60 .41
Constraints at root 99.06 318 254 8.71 86.52 1.61 .76 .85

Table 7.5: Coverage, number of constraints which corrected an error or were missing in the

parser output, correction percentage, overall labeled F-score, and F-score improvement over

the baseline for Clause attachment constraints to the C&C parser on automatic pos tags over

ccgbank 00. ∆s are calculated over the constrained coverage.

However, knowing the endpoints and directionality of the expected dependency is

often enough to disambiguate modifier attachments, as shown by the 1.24% ∆lf when

allowing any category or slot. This is substantially higher than np internal attachments

and much closer to the strict enforcement improvement, suggesting that modifiers

typically have only one category compatible with each attachment point.

7.3.5 Clause attachment constraints

Enforcing Clause attachment constraints shows a higher error rate than modifiers, but

leads to smaller ∆lf improvements as it is a smaller error class. The improvements

are skewed towards cascaded impact for the stricter configurations, implying that the

clause errors made by C&C have a more substantial impact on the remainder of the

sentence than the magnitude of the errors themselves. However, when allowing any

categories or slots, the cascaded improvement is dramatically reduced relative to the

constrained improvement. The effective constraint percentage in this configuration is

6.66% — only 2.22% less than strict enforcement — but the F-score improvement over

cascaded dependencies has halved; 0.41% compared to 0.87%. This could be because in

ccg, clause attachments typically involve two complex categories. Choosing the wrong

7.3. Results 205

pp attachment cover eff miss eff % lf ∆lf ∆c ∆u

Baseline 99.06 - - - 84.91 - - -

Strict enforcement 99.06 881 271 18.62 90.03 5.12 2.01 3.11
Add missing 99.06 1018 134 21.51 91.07 6.16 2.34 3.82
Any category or slot 99.06 787 375 16.63 89.05 4.14 1.71 2.43
Constraints at root 99.06 869 289 18.36 89.89 4.98 1.96 3.03

Table 7.6: Coverage, number of constraints which corrected an error or were missing in the

parser output, correction percentage, overall labeled F-score, and F-score improvement over the

baseline for pp attachment constraints to the C&C parser on automatic pos tags over ccgbank
00. ∆s are calculated over the constrained coverage.

category for either side of a head-filler constraint prevents other correct dependencies

from being formed.

7.3.6 pp attachment constraints

pp attachment was challenging for the dependency parsers, and they remain so for

C&C. These constraints have the highest effective percentages of all error classes, and

their F-score improvement over the baseline is second only to np attachment, which

has three times the number of constraints. However, for C&C, pps have a far greater
cascading impact than they did for dependency parsers in Section 3.8.1. They are the

only error class for ccg where ∆u exceeds ∆c, and this illustrates how the presence of

head categories in ccg dependencies dramatically affects the evaluation, Prepositions

almost always head dependencies (usually np complements), so when an incorrect

attachment point changes the category on the preposition, the complement dependency

must also be corrected.

7.3.7 Coordination attachment constraints

Coordination dependencies are usually ignored during ccg English parsing evalua-

tion as ccgbank does not include conj dependencies. To evaluate our Coordination

206 Chapter 7. Evaluating with ccg Constraints

Coordination attachment cover eff miss eff % lf ∆lf ∆c ∆u

Baseline 99.06 - - - 83.80 - - -

Reparse on failure
Strict enforcement 99.06 336 593 8.88 84.76 .96 .81 .15
Add missing 99.06 444 485 11.74 84.80 1.00 1.02 -.02
Any category or slot 99.06 348 581 9.20 84.78 .98 .85 .13
Constraints at root 99.06 284 649 7.51 84.44 .64 .73 -.08

Table 7.7: Coverage, number of constraints which corrected an error or were missing in the

parser output, correction percentage, overall labeled F-score, and F-score improvement over the

baseline for Coordination attachment constraints to the C&C parser on automatic pos tags over

ccgbank 00. Evaluation includes conj dependencies. ∆s are calculated over the constrained

coverage.

attachment constraints, we add the extracted conj dependencies from Section 6.3.2 to

ccgbank, and prevent them from being ignored in the evaluation script. These results

are not directly comparable with the standard section 00 evaluation elsewhere in this

chapter, but they allow us to accurately quantify the effect of the constraints.

Coordination is frequently incorrect in the parser, with a higher effective percent-

age than np internal, Modifier attachment, or Clause attachment. However, it has a

smaller ∆lf than all of those error classes, even though the parser is starting from a

lower baseline. The bulk of ∆lf comes from the constrained impact; enforcing correct

coordination provides almost no cascaded improvement under any configuration. This

suggests that the constraints introduce as many errors as they repair in the parser.

Coordination attachment is the only error class to exhibit this behaviour, and it is

explained by the nature of coordination in ccg. Every time a coordination occurs, it

duplicates every dependency that the coordinated items appear in, and forces those

items to share the same category. However, unlike the other error classes, the constraints

do nothing to ensure that the coordinated items have the correct category— theymerely

ensure that the conj and its filler words are correct. The parser is free to choose any

categories provided by the supertagger which are compatible with the coordination

7.3. Results 207

Root attachment cover lf ∆lf
Baseline 99.06 84.91 -

Strict enforcement 99.06 85.96 1.05
Add missing 99.11 86.31 1.40
Any category or slot 99.06 85.08 .17

Table 7.8: Coverage, overall labeled F-score, and F-score improvement over the baseline for

Root attachment constraints to the C&C parser on automatic pos tags over ccgbank 00. ∆s

are calculated over the constrained coverage.

— whether these are correct for the rest of the parse or not. This is in contrast to

dependency parsers, where coordination constraints never result in a negative cascaded

impact. We will illustrate this further in Section 7.4.

7.3.8 Root attachment constraints

Applying Root attachment constraints requires a different procedure to all other error

classes, so it is not possible to calculate an effective percentage or partition the resulting

dependencies. It is also not meaningful to allow constraints at the root of the tree

because only one constraint is being applied, and it should be on the root.

Strictly enforcing the category and position of the root word improves F-score by

1.05% over the baseline to 85.96%. Adding the category for the root word if it is missing

from the chart increases these to 1.40% and 86.31% respectively. These results are larger

F-score improvements than applying np internal constraints, even though the latter

class is much larger.

Allowing the root to have any category dramatically reduces the F-score improve-

ment to just 0.17% over the baseline. In this configuration, the parser is allowed to

choose the highest scoring category at the top of the tree as long as the desired root

word is the active X variable on that category. When the parser does choose an erro-

neous root, it is very often carrying an incorrect category, which has cascading effects

on the overall F-score.

208 Chapter 7. Evaluating with ccg Constraints

7.4 Constraints for Parser Debugging

Developing a ccg parser is a complex task, particularly due to the non-standard rules

introduced in ccgbank to handle the inconsistencies and under-specifications inherent

in the Penn Treebank annotation. We have shown how our ccg constraint procedure

can serve as an evaluation tool for the parser, illustrating performance and cascading

impact across meaningful error classes. However, our procedure can also serve as

a robust method for uncovering deficiencies in the parser which prevent C&C from

constructing certain expected dependencies.

In this section, we present a number of sentences from ccgbank section 00 which

failed to be parsed when strictly enforcing constraints. Each parse fails for a different

reason, highlighting different problems.

7.4.1 Supertagger Errors

If the supertagger does not assign the correct category to a word, it is impossible to

satisfy any constraints headed by that word. When this happens, the parser will fail to

find an analysis for the sentence. The difference in coverage between strict enforcement

and adding missing categories illustrates how often this occurs.

The supertagger uses pos tags as core features, and its accuracy varies from 97.34%

to 99.17% on gold pos tags using the default β levels in the C&Cparser, while automatic

pos tags reduce this range to 96.34% to 98.66% (Clark and Curran, 2007b).

Parse 7.5 depicts a ccgbank section 00 sentence, and the analysis returned by

the baseline C&C parser. The parser has made one category error on 1990 , but the

remaining categories are correct. The labelled F-score of this sentence is 86.3%, as there

are four correct, one missing, and one incorrect dependencies.1

Parse 7.6 depicts the parser output when we enforce the correct coordination of

Nov. and 1990 using conj constraints. Unfortunately, the supertagger does not provide

1conj dependencies are ignored in the standard evaluation.

7.4. Constraints for Parser Debugging 209

S[dcl]
<

S[dcl]\NP
<

(S\NP)\(S\NP)
<

NP[nb] (S\NP)\(S\NP)
> >

NP[nb]/N N S[dcl]\NP ((S\NP)\(S\NP))/N[num] N[num] , ((S\NP)\(S\NP))\((S\NP)\(S\NP))

The warrants expire Nov. 30 , 1990

NP[nb]/N N S[dcl]\NP ((S\NP)\(S\NP))/N[num] N[num] , (S\NP)\(S\NP)
> >

NP[nb] (S\NP)\(S\NP)
<Φ>

(S\NP)\(S\NP)
<

S[dcl]\NP
<

S[dcl]

Parse 7.5: The C&C analysis (top) and gold parse of a ccgbank section 00 sentence. The parser

has chosen an incorrect category for 1990 , which should be coordinated with Nov.

The warrants expire Nov. 30 , 1990

NP[nb]/N N (S[dcl]\NP)/NP N/N[num] N[num] , N
> >

NP[nb] N NP

NP
<Φ>

NP
>

S[dcl]\NP
<

S[dcl]

Parse 7.6: The C&C analysis when enforcing the coordination of Nov. and 1990 . The su-

pertagger does not return the necessary (S\NP)\(S\NP) category for 1990 , but the parser has

managed to use the categories provided to satisfy the coordination constraints. Unfortunately,

the F-score is reduced due to the changes in category for expire and Nov.

the parser with the correct category for 1990 , so it cannot construct the gold parse.

However, the parser has still managed to satisfy the constraints, but at the cost of

reducing F-score to just 10%, as there is now only one correct evaluated dependency

210 Chapter 7. Evaluating with ccg Constraints

assume reinvestment of dividends and that the current yield continues

(S[dcl]\NP)/NP N (NP\NP)/NP N conj S[em]/S[dcl] NP[nb]/N N/N N S[dcl]\NP
>

NP NP N
> >

NP\NP NP
< <

NP S[dcl]
>

S[em]

<Φ>
NP

>
S[dcl]\NP

Parse 7.7: Non-equivalent coordination in ccgbank. The categories NP and S[em] are coordi-

nated to form an NP; this is impossible with any standard ccg rule.

(between The and warrants), four incorrect, and four missing dependencies. This

example highlights the counter-intuitive impact of applying constraints to ccg, and
how constraints can actually reduce F-score dramatically depending on the actual

source of error in a parse. It also illustrates why Coordination attachment constraints

have such poor cascading F-score: by only specifying the coordination, and not the

structure of the coordinated elements, the parser often makes errors elsewhere in the

parse.

7.4.2 Non-standard ccg Rules in ccgbank

There are a number of non-standard rules implemented in the ccgbank corpus to

handle difficult or inconsistently annotated constructions in the Penn Treebank. Only

a subset of these rules are implemented in the C&C parser as they can introduce

inconsistencies or large inefficiencies. One example is unlike coordination, where two

unlike constituents are coordinated together. While ccg elegantly handles regular

coordination, it has no mechanism for coordinating two constituents with different

categories. Parse 7.7 shows an example of how ccgbank handles coordinating an NP

and S[em] together to form the subject for a verb.

7.4. Constraints for Parser Debugging 211

This type of coordination is rare, so this rule is not implemented in the C&C parser

to prevent overgeneration. As a result, the parser cannot find the desired analysis even

when the supertagger provides the correct categories. Dependencies mediated across

this coordination cannot be enforced with constraints.

7.4.3 Inconsistencies between dependencies and the derivation

There are further cases where the ccg dependencies specified by ccgbank are incon-

sistent with the provided derivation. In Parse 7.8, the object of sell is products , so a

long-range dependency is expected between the two. The fully annotated category of

sell is (S[b]\NP1
Y/NP2

Z), so the object products maps to the Z variable in slot 2.

The crucial category is the bolded S[adj]\NP. This is used to analyse attributive

adjectival phrases in copula constructions (Hockenmaier and Steedman, 2005). In the

sentence The computers were crude, the copula were separates the subject comput-

ers from its adjective crude. The adjective requires a complex category with a \NP

argument to carry a variable that will eventually unify with the subject to form a de-

pendency. The S[adj] result is a synthetic atomic category which is never created; it is

merely present to complete the complex category required to carry the variable and

unfilled dependency across the copula to the subject. The copula drives the interaction,

consuming and removing the S[adj] from crude before consuming computers and filling

the dependency.

Once the gold-standard derivation in Parse 7.8 reaches the bolded S[adj]\NP, its

fully annotated category (S[adj]\NP1
Y) no longer has a Z variable, so the required

dependency between sell and products can no longer be created. The adjectival phrase

category can only carry a subject dependency, so the required object dependency for

sells is impossible to satisfy.

212 Chapter 7. Evaluating with ccg Constraints

N
P

<
N

P
<

N
P\N

P
>

S
[dcl]/N

P
N

P\N
P

>
B

N
P

S/
(S\N

P
)

S
[adj]\N

P
>

T
>

N
N

P
(S
[to]\N

P
)/N

P
>

>
B

N
/N

N
(N

P\N
P
)/

(S
[dcl]/N

P
)

N
(S
[dcl]\N

P
)/N

P
(S
[adj]\N

P
)/

((S
[to]\N

P
)/N

P
)
(S
[to]\N

P
)/

(S
[b]\N

P
)
(S
[b]\N

P
)/N

P

new
products

that
brokers

find
easy

to
sell

N
/N

N
(N

P\N
P
)/

(S
[dcl]/N

P
)

N
((S

[dcl]\N
P
)/

(S
[adj]\N

P
))/N

P
(S
[adj]\N

P
)/

((S
[to]\N

P
)/N

P
)
(S
[to]\N

P
)/

(S
[b]\N

P
)
(S
[b]\N

P
)/N

P
>

>
B

N
N

P
(S
[to]\N

P
)/N

P
>

T
>

N
P

S/
(S\N

P
)

S
[adj]\

N
P

<
T

(S\N
P
)\
((S\N

P
)/

(S
[adj]\N

P
))

<
B
×

(S
[dcl]\N

P
)/N

P
>

B
S
[dcl]/N

P
>

N
P\N

P
<

N
P

Parse
7.8:

The
C
&
C
baseline

(top)and
gold

parse
(bottom

)ofaccg
bank

section
00

sentence.A
dependency

isexpected
betw

een
selland

products,

using
variable

Z
and

slot2.H
ow

ever,atthe
bolded

S
[adj]\

N
P
,there

isno
Z
variable

rem
aining,so

the
dependency

cannotbe
form

ed.

7.4. Constraints for Parser Debugging 213

new products that brokers find easy to sell

NY/NY Nproducts (NPY\NPY)/(S[dcl]/NPY) Nbrokers ((S[dcl]\NP)/(S[adj]\NPW))/NPW S[adj]\NPY
> <T

Nproducts NPbrokers (S\NPY)\((S\NPY)/(S[adj]\NPY))

>T <B×
NPproducts S/(S\NPbrokers) (S[dcl]\NPY)/NPY

>B
S[dcl]/NPbrokers

>
NPbrokers\NPbrokers

<
NPproducts 6= brokers

Parse 7.9: The final backwards application is blocked, as the X variable cannot be unified. On

the left, the NP is headed by products , but on the right, NP\NP expects an argument headed

by brokers . This is ultimately due to the co-indexation for object control, rather than subject

control on the category for find .

7.4.4 Co-indexation Inconsistencies in Categories

Setting aside the missing dependency, the supertagger provides the necessary cate-

gories to allow the parser match the gold standard, but no combination of constraints

can induce the parser to create the gold parse in Parse 7.8. Hockenmaier and Steedman

(2007) notes that the co-indexation in ccgbank is based on the assumption that words

bearing the same ccg category always produce the same dependencies. This is insuffi-

cient for control verbs, which are divided into subject control verbs, and object control

verbs. ccgbank co-indexes categories for object control only, but the gold-standard

derivation requires subject control driven by find . The annotation on the gold-standard

category is ((S[dcl]\NP)/(S[adj]\NPW))/NPW, co-indexing the outermost np argu-

ment with the vp object np brokers . This ultimately blocks the desired gold-standard

derivation from being constructed, as it requires the outermost np argument to be

co-indexed with the vp subject np, products . Adjusting the co-indexation on find

allows the gold-standard derivation to be formed, avoiding the rejected unification

(though the dependency that is missing from the previous section remains missing).

Parse 7.9 illustrates the values of each co-indexed variable in the derivation using the

incorrect annotation, demonstrating how conflicting np heads are ultimately set.

214 Chapter 7. Evaluating with ccg Constraints

S[dcl]
<

S[dcl]
<

S[dcl]\NP S[dcl]\S[dcl]
> <

(S[dcl]\NP)/(S[to]\NP) S[to]\NP S[dcl]\S[dcl]
<B× > <

NP (S[dcl]\NP)/(S[to]\NP) (S\NP)\(S\NP) (S[to]\NP)/(S[b]\NP) S[b]\NP , NP (S[dcl]\S[dcl])\NP

That got hard to take , he added

NP (S[dcl]\NP)/(S[adj]\NP) (S[adj]\NP)/((S[to]\NP)/NP) (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP , NP (S[dcl]\S[dcl])\NP
>B <

(S[to]\NP)/NP S[dcl]\S[dcl]
> <

S[adj]\NP S[dcl]\S[dcl]
>

S[dcl]\NP
<

S[dcl]
<

S[dcl]

That got hard to take , he added

NP (S[dcl]\NP)/(S[adj]\NP) S[adj]\NP (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP , NP (S[dcl]\S[dcl])\NP
> >B

S[dcl]\NP (S[to]\NP)/NP

NP\NP NP\NP
<

NP
<

NP
<Φ>

NP
<

S[dcl]\S[dcl]

Parse 7.10: The C&C analysis (top), gold derivation (middle), and derivation with np attach-

ment constraints (bottom) of ccgbank section 00 sentence. The baseline parser cannot create

the desired parse due to the co-indexation on (S[dcl]\NP)/(S[adj]\NP). The parser mangles

the parse in order to satisfy the constraints.

Co-indexation inconsistencies do not just prevent the parser from being able to

find an analysis of a sentence. In some cases, partial constraints can force the parser to

construct a worse derivation than the baseline, even though the constraints are satisfied.

Parse 7.10 depicts a short sentence from ccgbank section 00, where the baseline parse

has three incorrect categories, but still manages to construct a parse which is reasonably

7.5. Summary 215

similar to the gold standard. The incorrect categories have resulted in only one missing

np attachment from take to its object That ; all other dependencies are correct.

When we enforce the correct np attachment, the parser only chooses one incorrect

category for the word hard . However, the wrong category is chosen because the co-

indexation on the desired category does not allow the dependency between That and

take to be formed. Instead, the parser manages to find a way to create the desired

dependency using unary rules, producing a final parse with the sentential modifier

S[dcl]\S[dcl] at the top rather than the expected S[dcl]. The constrained derivation has

introduced one incorrect and four missing dependencies compared to the baseline,

even though we have successfully retrieved the single missing dependency.

7.4.5 Categories Not Implemented in the Parser

While ccgbank contains over a thousand different lexical categories, the C&C supertag-

ger and parser use a limited subset of 425 for efficiency. If a constraint specifies a head

category that is not used in the parser, then the constraint is impossible to satisfy, and

the parser will fail to find a spanning analysis for the sentence. This issue prevents the

parser from achieving 100% F-score even using perfect categories, and is referred to

as grammar error. Unfortunately, there is no way to address this problem aside from

including the additional categories to the parser, potentially reducing its efficiency and

affecting overall accuracy in the process.

7.5 Summary

In this chapter, we have described how to perform a constraint-based evaluation of the

C&C parser.

We defined a procedure to partition the dependencies from a baseline and con-

strained ccg parse, producing constrained and cascaded dependency sets for evalua-

tion. This allows us to determine the associated impacts on F-score, analogous to ∆c

216 Chapter 7. Evaluating with ccg Constraints

and ∆u for dependency parsers in Chapter 3. Heuristically identifying corresponding

dependencies which have changed between the baseline and constrained parse is an

important part of this process.

The relative contribution of each error class is similar between C&C and the de-

pendency parsers in Chapter 3. However, there are substantial differences in how the

errors are distributed between the different parsers. Repairing np and pp attachments

gives rise to large increases in parser accuracy. However, np constraints cause much

more cascading impact in dependency parsers than C&C, while the reverse is true

for pp constraints. This is largely a function of the strict ccg evaluation procedure.

Coordination constraints have negligible or even negative cascaded impact for ccg,
while this is not the case for dependency parsers.

Punctuation is another point of difference between the formalisms. In ccg, punc-
tuation is typically absorbed without affecting the logical form of a sentence, while

in dependency schemes punctuation is often attached to sentence roots and phrasal

boundaries, affecting the projectivity applied over the sentence. Repairing erroneous

punctuation creates substantial cascading impact in dependency parsers, illustrating

how it serves as a marker for further errors. Correctly attaching punctuation clearly

helps the parsers return the correct analysis. In ccg, punctuation cannot have the

same effect.

Applying constraints has a severe impact on the coverage of C&C. Less than 65%

of ccgbank section 00 is covered when strictly enforcing all constraints. 11% more

sentences are covered by eliminating supertagger error. There are a number of reasons

for the remaining coverage deficit. C&C only implements a subset of the rules and

categories in ccgbank, meaning that some constraints cannot possibly be satisfied.

Additionally, there are inconsistencies in derivations and category annotations from

ccgbank which prevent the parser from successfully building some desired analyses.

Constraints have allowed us to quantify the impact of the supertagger on parsing

7.5. Summary 217

accuracy, and examine the how the compromises made by Clark and Curran (2007b)

prevent the parser from achieving perfect accuracy.

We have demonstrated the intricacies of applying our constraint-based evaluation

procedure in ccg, and how it is useful for investigating parser performance and

implementation. We have contrasted our findings with our work in Chapter 3 on

dependency parsers. In the next chapter, we will summarise our main findings, reflect

on the issues that we have raised, and discuss future work.

8 Conclusion

Identifying and addressing the remaining errors in parsing is important for improving

downstream applications in natural language processing. The core contribution of

this thesis is a constraint-based procedure to quantify the errors made by parsers, and

identify potential causes and consequences of errors. A strength of our approach is

the ability to separate the direct constrained impact of corrections from constraints

from the indirect cascading impact of the parser changing its analysis in response to

constraints. This avoids assumptions regarding the at times unpredictable behaviour

of parsers, while quantitatively illustrating the effects of parser errors.

In Chapter 3, we implemented constraint-based evaluation for the graph-based

MSTParser and transition-based ZPar dependency parsers, comparing their perfor-

mance on newswire and web text. Chapters 6 and 7 described the constraint evaluation

implementation for the C&C Combinatory Categorial Grammar parser. ZPar was more

accurate thanMSTParser overall, but also exhibitedmore cascading improvement when

constraints were applied, despite requiring fewer corrections. The transition-based

model was better able to translate enforced arcs into wider improvements, despite, or

perhaps due to, pruning a large proportion of its search space through beam search.

We found that np and pp attachments are particular challenges across all parsers,

but affect parsing accuracy in different ways. pps are localised errors for dependency

parsers, exerting limited influence when wrongly attached. However, they cause sub-

stantial cascading impact for ccg due to the change in head category that often comes

with a change in attachment, and the harsh evaluation metric for ccg parsers. The

219

220 Chapter 8. Conclusion

converse is true for np attachments, where cascading impact is as substantial as con-

strained impact for dependency parsers, but less so for ccg. For dependency parsers,

punctuation errors are also a large source of cascading errors; incorrect punctuation

is a strong indicator of an erroneous parse, despite being typically ignored in evalu-

ation and inconsistently treated in treebanks. Most of our other error classes behave

consistently across the formalisms, parsers, and domains.

Features derived from n-gram frequency counts in unannotated corpora have been

shown to assist with np and pp attachments, and we experiment with surface and

syntactic n-gram features for MSTParser in Chapter 4, building on the work of Bansal

and Klein (2011). Both surface and syntactic n-gram features perform similarly in

isolation across dependency schemes and domains, though syntactic n-grams work

best out-of-domain. The feature types are also complementary, with a combined

system of surface and syntactic n-gram features outperforming all other feature types,

achieving up to 1.3% uas improvements in-domain and 1.6% out-of-domain. We

find that, while these features are successful in addressing errors such as np and pp
attachments, they do not fundamentally change the overall error distribution, and

primarily serve to correct constrained errors rather than reduce cascaded impact.

ccg parsing is complex, as different derivations can generate identical dependen-

cies. Algorithms which are straightforward for constituency and dependency parsers

are not necessarily easy to implement for ccg. We show the intricacies of our constraint

evaluation procedure for ccg, and describe how applying constraints also provides an

evaluation of the implementation of the parser itself. Our experiments with n-best ccg
parsing in Chapter 5 demonstrate another task where complications arise from deriva-

tions being semantically identical. We find that n-best parsing algorithms designed

without ccg’s dependency formulation in mind produce redundant n-best parses. We

design dependency hashing as an efficient solution to this issue, and demonstrate how

it improves the performance of a ccg reranker.

8.1. Future Work 221

8.1 Future Work

Our constraint-based evaluation procedure allows dependency parsers to be compared

across high-level error classes, illustrating how the cascading impact of constraints can

be quite different for each system. Applying this work to other popular dependency

parsers is an obvious extension; it will be interesting to see if other dependency parsing

formulations present a different distribution of constrained and cascading errors across

our classes. Defining new error classes across different dependency schemes will allow

our procedure to be applied to a diverse range of corpora, parsers, and languages.

Another direction is to apply our constraint-based technique to constituency parsers.

Rather than using dependencies, span-level constraints could be enforced whilst other-

wise allowing the parser to choose the remainder of the analysis. This would provide

a direct comparison against the work of Kummerfeld et al. (2012), and highlight the

differences between our procedure and theirs.

There are few ccg parsers which directly generate ccg dependencies like C&C.

Most recent work has produced parsers which create derivations using shift-reduce

(Zhang and Clark, 2011a; Xu et al., 2014), sequence tagging (Lewis and Steedman,

2014b), or constituency-based techniques (Fowler and Penn, 2010), and then employ

C&C’s generate tool to convert the derivations to dependencies. This makes broadly

applying our constraint-based ccg evaluating difficult. However, some recent work

is based directly on C&C, e.g. Auli and Lopez (2011a,c), and it would be instructive

to apply our constraint procedure to these systems to examine the effect of different

parsing algorithms and optimisation procedures on error classes in ccg.

The complementary nature of surface and syntactic n-gram features extracted from

web-scale corpora suggest that further individual gains may be possible with features

of this design. Testing these features on other dependency parsers, and continuing our

postponed investigation of these features for ZPar, will show whether they are effective

across higher quality parsers, or if they are particularly effective for parsers compatible

222 Chapter 8. Conclusion

with MSTParser. Further experiments with relative counts in place of absolute counts

may also be useful, as Chen et al. (2013) found that relative counts performed better in

their meta-features parser.

Hashing over ccg dependencies completely solved the issue of redundant ccg
parses. However, ccg dependencies are a fine-grained logical form representation,

and certain relationships, such as the subjects of intransitive, transitive, and ditransitive

verbs, are all represented by different ccg dependencies despite exhibiting similar

behaviour. Implementing hashing over the formalism-independent grammatical rela-

tions in the parser would allow these similarities to be captured whilst still promoting

diversity in n-best parses.

Our experiments evaluating dependency parsers on web text did not include any

specific features tailored to each domain. Addressing the quality of pos tagging, and

incorporating some element of the Web Treebank or other in-domain text as training

data would improve the baseline out-of-domain performance, and allow us to quantify

the impact across error classes of improving the inputs to the parser.

8.2 Summary

This thesis describes a technique for evaluating parsers based on applying dependencies

as constraints, without assumptions on parser behaviour. It also proposes dependency

hashing for ccg, a robust technique for efficiently summarising the logical form in

ccg derivations. We have comprehensively demonstrated the effectiveness of our

evaluation procedure across different parsers, formalisms, and domains, and identified

how different error classes behave differently in parsers. Some errors cause much more

cascading impact than others, suggesting that they should be prioritised in further

efforts to address parser performance.

We hope this work will provide insights into parser performance, and lead to better

syntactic analysis for downstream applications in natural language processing.

Bibliography

Kazimierz Adjukiewicz. 1935. Die syntaktische Konnexität. Studia Philosophica, pages

1–27.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014. Learning Compact Lexicons for CCG

Semantic Parsing. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP-14), pages 1273–1283.

Abhishek Arun and Frank Keller. 2005. Lexicalization in Crosslinguistic Probabilistic

Parsing: TheCase of French. InProceedings of the 43rdAnnualMeeting of the Association

for Computational Linguistics (ACL-05), pages 306–313.

Michael Auli and Adam Lopez. 2011a. A Comparison of Loopy Belief Propagation and

Dual Decomposition for Integrated CCG Supertagging and Parsing. In Proceedings of

the 49th AnnualMeeting of the Association for Computational Linguistics (ACL-11), pages

470–480.

Michael Auli and Adam Lopez. 2011b. Efficient CCG Parsing: A* versus Adaptive

Supertagging. In Proceedings of the 49th Annual Meeting of the Association for Compu-

tational Linguistics (ACL-11), pages 1577–1585.

Michael Auli andAdamLopez. 2011c. Training a Log-Linear Parser with Loss Functions

via Softmax-Margin. In Proceedings of the 2011 Conference on Empirical Methods in

Natural Language Processing (EMNLP-11), pages 333–343.

223

224 Bibliography

Srinivas Bangalore and Aravind K. Joshi. 1999. Supertagging: An Approach to Almost

Parsing. Computational Linguistics, 25(2):237–265.

Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014. Tailoring continuous word

representations for dependency parsing. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (ACL-14), pages 809–815.

Mohit Bansal and Dan Klein. 2011. Web-Scale Features for Full-Scale Parsing. In

Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics

(ACL-11), pages 693–702.

Yehoshua Bar-Hillel. 1953. A Quasi-Arithmetical Notation for Syntactic Description.

Language, 29(1):47–58.

Yehoshua Bar-Hillel, Chaim Gaifman, and Eliyahu Shamir. 1960. On Categorial and

Phrase-structure Grammars. In The Bulletin of the Research Council of Israel, pages

1–16.

Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlína Jínová, Václava Kettnerová, Veronika

Kolářová, Marie Mikulová, Jiří Mírovský, Anna Nedoluzhko, Jarmila Panevová,

Lucie Poláková, Magda Ševčíková, Jan Štěpánek, and Šárka Zikánová. 2013. Prague

Dependency Treebank 3.0.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick. 2012. English Web Treebank.

LDC Catalog LDC2012T13.

Daniel Bikel. 2002. Design of a Multi-lingual, Parallel-processing Statistical Parsing

Engine. In Proceedings of the Second International Conference on Human Language Tech-

nology Research, pages 178–182.

Ezra W. Black, Steven P. Abney, Daniel P. Flickenger, Claudia Gdaniec, Ralph Grishman,

Philip Harrison, Donald Hindle, Robert J. P. Ingria, Frederick Jelinek, Judith L.

Klavans, Mark Y. Liberman, Mitchell P. Marcus, Salim Roukos, Beatrice Santorini,

Bibliography 225

and Tomek Strzalkowski. 1991. A Procedure for Quantitatively Comparing the

Syntactic Coverage of English Grammars. In Proceedings of the 4th DARPA Speech and

Natural Language Workshop, pages 306–311.

Ezra W. Black, Roger Garside, and Geoffrey N. Leech, editors. 1993. Statistically-driven

computer grammars of English: The IBM/Lancaster approach. Number 8 in Language

and Computers. Rodopi, Amsterdam.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-gram version 1. LDC Catalog

LDC2006T13.

Forrest Brennan. 2008. k-best Parsing Algorithms for a Natural Language Parser. Master’s

thesis, University of Oxford, Oxford, United Kingdom.

Ted Briscoe. 2006. An Introduction to Tag Sequence Grammars and the RASP System

Parser. Technical Report 662, University of Cambridge, Cambridge, United Kingdom.

Ted Briscoe and John Carroll. 2006. Evaluating the Accuracy of an Unlexicalized

Statistical Parser on the PARC DepBank. In Proceedings of the COLING/ACL 2006

Main Conference Poster Sessions, pages 41–48.

Ted Briscoe, John Carroll, Jonathan Graham, and Ann Copestake. 2002. Relational

Evaluation Schemes. In Proceedings of the Beyond PARSEVAL Workshop at the 3rd

International Conference on Language Resources and Evaluation (LREC-02), pages 4–8.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006. The Second Release of the RASP

System. In Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pages

77–80.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X Shared Task on Multilingual

Dependency Parsing. In Proceedings of the Tenth Conference on Computational Natural

Language Learning (CoNLL-06), pages 149–164.

226 Bibliography

Xavier Carreras. 2007. Experiments with a Higher-Order Projective Dependency Parser.

In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 957–961.

John Carroll, Ted Briscoe, and Antonio Sanfilippo. 1998. Parser Evaluation: A Survey

and A New Proposal. In Proceedings of the 1st International Conference on Language

Resources and Evaluation (LREC-98), pages 447–454.

Daniel Cer, Marie-Catherine de Marneffe, Dan Jurafsky, and Chris Manning. 2010.

Parsing to Stanford Dependencies: Trade-offs between Speed and Accuracy. In

Proceedings of the Seventh International Conference on Language Resources and Evaluation

(LREC-10), pages 1628–1632.

Eugene Charniak. 1997. Statistical Parsing with a Context-free Grammar and Word

Statistics. In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-

97), pages 598–603.

Eugene Charniak. 2000. A Maximum-Entropy-Inspired Parser. In Proceedings of the 1st

Conference of the North American Chapter of the Association for Computational Linguistics

(NAACL-00), pages 132–139.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-Fine n-Best Parsing and MaxEnt

Discriminative Reranking. In Proceedings of the 43rd Annual Meeting of the Association

for Computational Linguistics (ACL-05), pages 173–180.

Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. 2009.

Improving Dependency Parsingwith Subtrees fromAuto-Parsed Data. In Proceedings

of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP-

09), pages 570–579.

Wenliang Chen, Min Zhang, and Yue Zhang. 2013. Semi-Supervised Feature Trans-

formation for Dependency Parsing. In Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing (EMNLP-13), pages 1303–1313.

Bibliography 227

Yuchang Cheng, Masayuki Asahara, and Yuji Matsumoto. 2005. Chinese deterministic

dependency analyzer: Examining effects of global features and root node finder. In

In Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing, pages

17–24.

Stephen Clark and James R. Curran. 2003. Log-Linear Models for Wide-Coverage CCG

Parsing. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language

Processing (EMNLP-03), pages 97–104.

Stephen Clark and James R. Curran. 2004a. Parsing theWSJ Using CCG and Log-Linear

Models. In Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL-04), pages 103–110.

Stephen Clark and James R. Curran. 2004b. The Importance of Supertagging for

Wide-Coverage CCG Parsing. In Proceedings of the 20th International Conference on

Computational Linguistics (COLING-04), pages 282–288.

Stephen Clark and James R. Curran. 2007a. Formalism-Independent Parser Evaluation

with CCG and DepBank. In Proceedings of the 45th Annual Meeting of the Association

for Computational Linguistics (ACL-07), pages 248–255.

Stephen Clark and James R. Curran. 2007b. Wide-Coverage Efficient Statistical Parsing

with CCG and Log-Linear Models. Computational Linguistics, 33(4):493–552.

Stephen Clark, Julia Hockenmaier, and Mark Steedman. 2002. Building Deep Depen-

dency Structures using aWide-CoverageCCGParser. InProceedings of the 40th Annual

Meeting of the Association for Computational Linguistics (ACL-02), pages 327–334.

John Cocke and Jacob T. Schwartz. 1970. Programming languages and their compilers:

preliminary notes. New York University, New York City, New York, USA.

228 Bibliography

Michael Collins. 1996. A New Statistical Parser Based on Bigram Lexical Dependencies.

In Proceedings of the 34th AnnualMeeting of the Association for Computational Linguistics

(ACL-96), pages 184–191.

Michael Collins. 1997. Three Generative, Lexicalised Models for Statistical Parsing. In

Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics

(ACL-97), pages 16–23.

Michael Collins. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D.

thesis, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Michael Collins. 2000. Discriminative Reranking for Natural Language Parsing. In

Proceedings of the 17th International Conference on Machine Learning (ICML-00), pages

175–182.

Michael Collins. 2002. Discriminative Training Methods for Hidden Markov Models:

Theory and Experiments with Perceptron Algorithms. In Proceedings of the 2002

Conference on Empirical Methods in Natural Language Processing (EMNLP-02), pages

1–8.

Michael Collins, Jan Hajic, Lance Ramshaw, and Christoph Tillmann. 1999. A Statis-

tical Parser for Czech. In Proceedings of the 37th Annual Meeting of the Association for

Computational Linguistics (ACL-99), pages 505–512.

Brooke Cowan andMichael Collins. 2005. Morphology and Reranking for the Statistical

Parsing of Spanish. In Proceedings of the 2005 Human Language Technology Conference

and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP-05),

pages 795–802.

James R. Curran, Stephen Clark, and David Vadas. 2006. Multi-Tagging for Lexicalized-

Grammar Parsing. In Proceedings of the 21st International Conference on Computational

Linguistics and 44th Annual Meeting of the Association for Computational Linguistics

(COLING/ACL-06), pages 697–704.

Bibliography 229

Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan Roth. 2009. Recognizing textual

entailment: Rational, evaluation and approaches. Natural Language Engineering,

15(4):i–xvii.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. 2006.

Generating Typed Dependency Parses from Phrase Structure Parses. In Proceedings

of the Fifth International Conference on Language Resources and Evaluation (LREC-06).

Marie-Catherine de Marneffe and Christopher D. Manning. 2008a. Stanford Dependen-

cies manual. Technical report, Stanford University, Stanford, California, USA.

Marie-Catherine de Marneffe and Christopher D. Manning. 2008b. The Stanford

typed dependencies representation. In COLING 2008 Workshop on Cross-framework

and Cross-domain Parser Evaluation, pages 1–8.

Bojan Djordjevic. 2006. Efficient Combinatory Categorial Grammar Parsing. In Proceed-

ings of the 2006 Australasian Language Technology Workshop (ALTW-06), pages 3–10.

Amit Dubey and Frank Keller. 2003. Probabilistic Parsing for German Using Sister-

Head Dependencies. In Proceedings of the 41st Annual Meeting of the Association for

Computational Linguistics (ACL-03), pages 96–103.

Jason Eisner. 1996a. An Empirical Comparison of Probability Models for Dependency

Grammar. Technical report, University of Pennsylvania.

Jason Eisner. 1996b. Efficient Normal-Form Parsing for Combinatory Categorial Gram-

mar. In Proceedings of the 34th Annual Meeting of the Association for Computational

Linguistics (ACL-96), pages 79–86.

Jason Eisner. 1996c. Three New ProbabilisticModels for Dependency Parsing: An Explo-

ration. In Proceedings of the 16th International Conference on Computational Linguistics

(COLING-96), pages 340–345.

230 Bibliography

Jason Eisner. 2000. Bilexical grammars and their cubic-time parsing algorithms. In

Harry Bunt and Anton Nijholt, editors, Advances in Probabilistic and Other Parsing

Technologies, pages 29–62. Kluwer Academic Publishers.

Jason Eisner and Noah Smith. 2005. Parsing with Soft and Hard Constraints on Depen-

dency Length. In Proceedings of the Ninth International Workshop on Parsing Technology

(IWPT-05), pages 30–41.

Jakob Elming, Anders Johannsen, Sigrid Klerke, Emanuele Lapponi, Hector Mar-

tinez Alonso, and Anders Søgaard. 2013. Down-stream effects of tree-to-dependency

conversions. In Proceedings of the 2013 Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics (HLT/NAACL-

13), pages 617–626.

Timothy A. D. Fowler and Gerald Penn. 2010. Accurate Context-Free Parsing with

Combinatory Categorial Grammar. In Proceedings of the 48th Annual Meeting of the

Association for Computational Linguistics (ACL-10), pages 335–344.

Daniel Gildea. 2001. Corpus Variation and Parser Performance. In Proceedings of

the 2001 Conference on Empirical Methods in Natural Language Processing (EMNLP-01),

pages 167–202.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic Oracle for Arc-Eager Dependency

Parsing. In Proceedings of the 24th International Conference on Computational Linguistics

(COLING-12), pages 959–976.

Yoav Goldberg and Jon Orwant. 2013. A Dataset of Syntactic-Ngrams over Time from

a Very Large Corpus of English Books. In Proceedings of the 2nd Joint Conference on

Lexical and Computational Semantics (*SEM-13), pages 241–247.

Jan Hajič. 1998. Building a Syntactically Annotated Corpus: The Prague Dependency

Treebank. In Eva Hajičová, editor, Issues of Valency and Meaning. Studies in Honor of

Jarmila Panevová, pages 12–19. Prague Karolinum, Charles University Press.

Bibliography 231

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria Antò-

nia Martí, Lluís Màrquez, AdamMeyers, JoakimNivre, Sebastian Padó, Jan Štěpánek,

Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. 2009. The CoNLL-2009

Shared Task: Syntactic and Semantic Dependencies in Multiple Languages. In Pro-

ceedings of the 13th Conference on Computational Natural Language Learning (CoNLL-09),

pages 1–18.

Donald Hindle. 1983. User manual for Fidditch. Technical report, Naval Research

Laboratory.

Julia Hockenmaier. 2003a. Data and Models for Statistical Parsing with Combinatory Cate-

gorial Grammar. Ph.D. thesis, School of Informatics, University of Edinburgh, Edin-

burgh, United Kingdom.

Julia Hockenmaier. 2003b. Parsing with Generative Models of Predicate-Argument

Structure. In Proceedings of the 41st Annual Meeting of the Association for Computational

Linguistics (ACL-03), pages 359–366.

Julia Hockenmaier. 2006. Creating a CCGbank and a Wide-Coverage CCG Lexicon for

German. In Proceedings of the 21st International Conference on Computational Linguistics

and 44thAnnualMeeting of the Association for Computational Linguistics (COLING/ACL-

06), pages 505–512.

Julia Hockenmaier and Yonatan Bisk. 2010. Normal-form parsing for Combinatory

Categorial Grammars with generalized composition and type-raising. In Proceedings

of the 23rd International Conference on Computational Linguistics (COLING-10), pages

465–473.

Julia Hockenmaier and Mark Steedman. 2002. Generative Models for Statistical Parsing

with Combinatory Categorial Grammar. In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics (ACL-02), pages 335–342.

232 Bibliography

Julia Hockenmaier and Mark Steedman. 2005. CCGbank: Users’ Manual. Technical

Report MS-CIS-05-09, University of Pennsylvania Department of Computer and

Information Science, Philadelphia, Pennsylvania, USA.

Julia Hockenmaier and Mark Steedman. 2007. CCGbank: A Corpus of CCG Deriva-

tions and Dependency Structures Extracted from the Penn Treebank. Computational

Linguistics, 33(3):355–396.

MatthewHonnibal. 2010. Hat Categories: Representing Form and Function Simultaneously

in Combinatory Categorial Grammar. Ph.D. thesis, University of Sydney.

EduardHovy,MitchellMarcus, Martha Palmer, Lance Ramshaw, and RalphWeischedel.

2006. OntoNotes: The 90% Solution. In Proceedings of the 2006 Human Language

Technology Conference of the North American Chapter of the Association for Computational

Linguistics (HLT/NAACL-06), pages 57–60.

Liang Huang and David Chiang. 2005. Better k-best Parsing. In Proceedings of the 9th

International Workshop on Parsing Technology (IWPT-05), pages 53–64.

Liang Huang, Kevin Knight, and Aravind K. Joshi. 2006. Statistical Syntax-Directed

Translation with Extended Domain of Locality. In Proceedings of the 7th Biennial

Conference of the Association for Machine Translation in the Americas (AMTA-06), pages

66–73.

Richard Johansson and Pierre Nugues. 2007. Extended Constituent-to-dependency

Conversion for English. In Proceedings of the 16th Nordic Conference of Computational

Linguistics (NODALIDA-07), pages 105–112.

Mark Johnson and Ahmet Engin Ural. 2010. Reranking the Berkeley and Brown Parsers.

In Proceedings of the 2010 Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics (HLT/NAACL-10), pages 665–

668.

Bibliography 233

John Judge, Aoife Cahill, and Josef van Genabith. 2006. Questionbank: Creating a cor-

pus of parse-annotated questions. In Proceedings of the 21st International Conference on

Computational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics (COLING/ACL-06), pages 497–504.

Tadao Kasami. 1965. An efficient recognition and syntax analysis algorithm for context-

free languages. Technical Report AFCRL-65-758, Air Force Cambridge Research

Laboratory, Bedford, Massachusetts, USA.

Sunghwan Mac Kim, Dominick Ng, Mark Johnson, and James R. Curran. 2012. Improv-

ing Combinatory Categorial Grammar Parse Reranking with Dependency Grammar

Features. InProceedings of the 24th International Conference on Computational Linguistics

(COLING-12), pages 1441–1458.

Tracy Holloway King, Richard Crouch, Stefan Riezler, Mary Dalrymple, and Ronald M.

Kaplan. 2003. The PARC 700 Dependency Bank. In Proceedings of the 4th International

Workshop on Linguistically Interpreted Corpora (LINC-03), pages 1–8.

Dan Klein and Christopher D. Manning. 2003a. A* Parsing: Fast Exact Viterbi Parse

Selection. In Proceedings of the 2003 Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics (HLT/NAACL-

03), pages 40–47.

Dan Klein and Christopher D. Manning. 2003b. Accurate unlexicalized parsing. In

Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics

(ACL-03), pages 423–430.

Dan Klein and Christopher D. Manning. 2003c. Fast Exact Inference with a Factored

Model for Natural Language Parsing. In Proceedings of the 17th Annual Conference on

Neural Information Processing Systems (NIPS-03), pages 3–10.

234 Bibliography

Terry Koo, Xavier Carreras, and Michael Collins. 2008. Simple Semi-supervised De-

pendency Parsing. In Proceedings of the 46th Annual Meeting of the Association for

Computational Linguistics (ACL-08), pages 595–603.

Terry Koo and Michael Collins. 2010. Efficient Third-Order Dependency Parsers. In

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

(ACL-10), pages 1–11.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing. Morgan

and Claypool.

H. Kucera andW.N. Francis. 1967. Computational analysis of present-dayAmerican English.

Brown University Press.

Taku Kudo and Yuji Matsumoto. 2000. Japanese Dependency Structure Analysis Based

on Support VectorMachines. InProceedings of the 2000 Conference on EmpiricalMethods

in Natural Language Processing (EMNLP-00), pages 18–25.

Jonathan K. Kummerfeld, David Hall, James R. Curran, and Dan Klein. 2012. Parser

Showdown at the Wall Street Corral: An Empirical Investigation of Error Types

in Parser Output. In Proceedings of the 2012 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning (EMNLP-

CoNLL-12), pages 1048–1059.

Jonathan K. Kummerfeld, Jessika Roesner, Tim Dawborn, James Haggerty, James R.

Curran, and Stephen Clark. 2010. Faster Parsing by Supertagger Adaptation. In

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics

(ACL-10), pages 345–355.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. 2013. Scaling

Semantic Parsers with On-the-Fly Ontology Matching. In Proceedings of the 2013

Conference on Empirical Methods in Natural Language Processing (EMNLP-13), pages

1545–1556.

Bibliography 235

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. 2011.

Lexical Generalization in CCG Grammar Induction for Semantic Parsing. In Pro-

ceedings of the 2011 Conference on Empirical Methods in Natural Language Processing

(EMNLP-11), pages 1512–1523.

Mirella Lapata and Frank Keller. 2004. The Web as a Baseline: Evaluating the Perfor-

mance of Unsupervised Web-based Models for a Range of NLP Tasks. In Proceedings

of the 2004 Human Language Technology Conference of the North American Chapter of the

Association for Computational Linguistics (HLT/NAACL-04), pages 121–128.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. 2014. Low-Rank

Tensors for Scoring Dependency Structures. In Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguistics (ACL-14), pages 1381–1391.

Mike Lewis andMark Steedman. 2013. CombinedDistributional and Logical Semantics.

Transactions of the Association for Computational Linguistics, 1(2):179–192.

Mike Lewis and Mark Steedman. 2014a. A* CCG Parsing with a Supertag-factored

Model. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP-14), pages 990–1000.

Mike Lewis and Mark Steedman. 2014b. Improved CCG Parsing with Semi-supervised

Supertagging. Transactions of the Association for Computational Linguistics, 2(1):327–

338.

Dekang Lin. 1995. A Dependency-based Method for Evaluating Broad-Coverage

Parsers. In Proceedings of the 14th International Joint Conference on AI (IJCAI-95), pages

1420–1425.

Dekang Lin, Kenneth Church, Heng Ji, Satoshi Sekine, David Yarowsky, Shane Bergsma,

Kailash Patil, Emily Pitler, Rachel Lathbury, Vikram Rao, Kapil Dalwani, and Sushant

Narsale. 2010. New Tools for Web-Scale N-grams. In Proceedings of the Seventh

International Conference on Language Resources and Evaluation (LREC-10).

236 Bibliography

Yuri Lin, Jean-Baptiste Michel, Erez Aiden Lieberman, Jon Orwant, Will Brockman,

and Slav Petrov. 2012. Syntactic Annotations for the Google Books NGram Corpus.

In Proceedings of the ACL 2012 System Demonstrations, pages 169–174.

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Punctuation Processing for Projective De-

pendency Parsing. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (ACL-14), pages 791–796.

DavidMagerman. 1994.Natural Language Parsing As Statistical Pattern Recognition. Ph.D.

thesis, Stanford University, Stanford, CA, USA.

David Magerman. 1995. Statistical Decision Tree Models for Parsing. In Proceedings of

the 33rd AnnualMeeting of the Association for Computational Linguistics (ACL-95), pages

276–283.

Christopher D. Manning and Bob Carpenter. 2000. Probabilistic Parsing Using Left

Corner Language Models. In Harry Bunt and Anton Nijholt, editors, Advances in

Probabilistic and Other Parsing Technologies, volume 16, pages 105–124. Kluwer Aca-

demic Publishers.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a

Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics,

19(2):313–330.

Svetoslav Marinov and Joakim Nivre. 2005. A Data-Driven Parser for Bulgarian. In

Proceedings of the Fourth Workshop on Treebanks and Linguistic Theories, pages 89–100.

André Martins, Noah Smith, Eric Xing, Pedro Aguiar, and Mário Figueiredo. 2010.

Turbo Parsers: Dependency Parsing by Approximate Variational Inference. In Pro-

ceedings of the 2010 Conference on Empirical Methods in Natural Language Processing

(EMNLP-10), pages 34–44.

Bibliography 237

David McClosky, Eugene Charniak, and Mark Johnson. 2006. Effective Self-Training

for Parsing. In Proceedings of the 2006 Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics (HLT/NAACL-

06), pages 152–159.

David McClosky, Wanxiang Che, Marta Recasens, Mengqiu Wang, Richard Socher, and

Christopher D. Manning. 2012. Stanford’s System for Parsing the English Web. In

Notes of the FirstWorkshop on the Syntactic Analysis of Non-Canonical Language (SANCL-

12).

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005a. Online Large-Margin

Training of Dependency Parsers. In Proceedings of the 43rd Annual Meeting of the

Association for Computational Linguistics (ACL-05), pages 91–98.

Ryan McDonald and Joakim Nivre. 2011. Analyzing and Integrating Dependency

Parsers. Computational Linguistics, 37(1):197–230.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipan-

jan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström,

Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee. 2013. Universal Depen-

dency Annotation for Multilingual Parsing. In Proceedings of the 51st Annual Meeting

of the Association for Computational Linguistics (ACL-13), pages 92–97.

Ryan McDonald and Fernando Pereira. 2006. Online Learning of Approximate De-

pendency Parsing Algorithms. In Proceedings of the 11th Conference of the European

Chapter of the Association for Computational Linguistics (EACL-06), pages 81–88.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005b. Non-Projective

Dependency Parsing using Spanning Tree Algorithms. In Proceedings of the 2005

Human Language Technology Conference and Conference on Empirical Methods in Natural

Language Processing (HLT/EMNLP-05), pages 523–530.

238 Bibliography

Stephen Merity and James R. Curran. 2011. Frontier Pruning for Shift-Reduce CCG

Parsing. In Proceedings of the Australasian Language Technology Association Workshop

2011 (ALTW-11), pages 66–75.

AdamMeyers, Ruth Reeves, Catherine Macleod, Rachel Szekely, Veronika Zielinska,

Brian Young, and Ralph Grishman. 2004. The NomBank Project: An Interim Report.

In Proceedings of the NAACL/HLT Workshop on Frontiers in Corpus Annotation, pages

24–31.

Jean-Baptiste Michel, Yuan K. Shen, Aviva P. Aiden, Adrian Veres, Matthew K. Gray,

The Google Books Team, Joseph P. Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig,

Jon Orwant, Steven Pinker, Martin A. Nowak, and Erez L. Aiden. 2011. Quantitative

Analysis of Culture Using Millions of Digitized Books. Science, 331(6014):176–182.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii. 2004. Corpus-oriented Grammar

Development for Acquiring a Head-driven Phrase Structure Grammar from the Penn

Treebank. In Proceedings of the 1st International Joint Conference on Natural Language

Processing (IJCNLP-04), pages 684–693.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum Entropy Estimation for Feature

Forests. In Proceedings of the Second International Conference on Human Language Tech-

nology Research (HLT-02), pages 292–297.

Preslav Nakov and Marti Hearst. 2005a. Search Engine Statistics Beyond the n-Gram:

Application to Noun Compound Bracketing. In Proceedings of the Ninth Conference

on Computational Natural Language Learning (CoNLL-05), pages 17–24.

Preslav Nakov and Marti Hearst. 2005b. Using the Web as an Implicit Training Set:

Application to Structural Ambiguity Resolution. In Proceedings of the 2005 Human

Language Technology Conference and Conference on Empirical Methods in Natural Lan-

guage Processing (HLT/EMNLP-05), pages 835–842.

Bibliography 239

Dominick Ng. 2010. Improved Evaluation and Parse Reranking for Combinatory

Categorial Grammar. Honours thesis, University of Sydney, Sydney, Australia.

Dominick Ng, Mohit Bansal, and James R. Curran. 2015. Web-scale Surface and Syntac-

tic n-gram Features for Dependency Parsing. arXiv:1502.07038.

Dominick Ng and James R. Curran. 2012. Dependency Hashing for n-best CCG Parsing.

In Proceedings of the 50th AnnualMeeting of the Association for Computational Linguistics

(ACL-12), pages 497–505.

Dominick Ng and James R. Curran. 2015. Identifying Cascading Errors using Con-

straints in Dependency Parsing. In Proceedings of the 53rd Annual Meeting of the Asso-

ciation for Computational Linguistics (ACL-15), pages 1148–1158.

Dominick Ng, Matthew Honnibal, and James R. Curran. 2010. Reranking a wide-

coverage CCG parser. In Proceedings of the Australasian Language Technology Associa-

tion Workshop 2010 (ALTW-10), pages 90–98.

Jens Nilsson. 2009. Transformation and Combination in Data-Driven Dependency Parsing.

Ph.D. thesis, Växjö University.

Joakim Nivre. 2006. Inductive Dependency Parsing. Springer.

Joakim Nivre. 2009. Non-Projective Dependency Parsing in Expected Linear Time.

In Proceedings of the Joint Conference of the 47th Annual Meeting of the Association for

Computational Linguistics and the 4th International Joint Conference on Natural Language

Processing of the AFNLP (ACL/IJCNLP-09), pages 351–359.

Joakim Nivre, Yoav Goldberg, and Ryan McDonald. 2014. Constrained arc-eager

dependency parsing. Computational Linguistics, 40(2):249–257.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian

Riedel, and Deniz Yuret. 2007. The CoNLL 2007 Shared Task on Dependency Parsing.

In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 915–932.

240 Bibliography

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004. Memory-Based Dependency Pars-

ing. In Proceedings of the Eighth Conference on Computational Natural Language Learning

(CoNLL-04), pages 49–56.

Joakim Nivre, Laura Rimell, Ryan McDonald, and Carlos Gómez Rodríguez. 2010.

Evaluation of Dependency Parsers on Unbounded Dependencies. In Proceedings

of the 23rd International Conference on Computational Linguistics (COLING-10), pages

833–841.

Joakim Nivre and Mario Scholz. 2004. Deterministic Dependency Parsing of English

Text. In Proceedings of the 20th International Conference on Computational Linguistics

(COLING-04), pages 64–70.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An

Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–105.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning Accurate,

Compact, and Interpretable Tree Annotation. In Proceedings of the 21st International

Conference on Computational Linguistics and 44th Annual Meeting of the Association for

Computational Linguistics (COLING/ACL-06), pages 433–440.

Slav Petrov and Dan Klein. 2007. Improved Inference for Unlexicalized Parsing. In

Proceedings of the 2007 Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics (HLT/NAACL-07), pages 404–

411.

Slav Petrov and RyanMcDonald. 2012. Overview of the 2012 Shared Task on Parsing the

Web. InNotes of the First Workshop on the Syntactic Analysis of Non-Canonical Language

(SANCL-12).

Emily Pitler. 2012a. Attacking Parsing Bottlenecks with Unlabeled Data and Rele-

vant Factorizations. In Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics (ACL-12), pages 768–776.

Bibliography 241

Emily Pitler. 2012b. Conjunction Representation and Ease of Domain Adaptation. In

Notes of the FirstWorkshop on the Syntactic Analysis of Non-Canonical Language (SANCL-

12).

Emily Pitler, Shane Bergsma, Dekang Lin, and Kenneth Church. 2010. Using Web-

scale N-grams to Improve Base NP Parsing Performance. In Proceedings of the 23rd

International Conference on Computational Linguistics (COLING-10), pages 886–894.

Sampo Pyysalo, Filip Ginter, Veronika Laippala, Katri Haverinen, Juho Heimonen,

and Tapio Salakoski. 2007. On the unification of syntactic annotations under the

Stanford dependency scheme: A case study on BioInfer and GENIA. In Proceedings

of the Biological, Translational, and Clinical Language Processing Workshop, pages 25–32.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Model for Part-of-Speech Tagging. In

Proceedings of the 1996 Conference on Empirical Methods in Natural Language Processing

(EMNLP-96), pages 133–142.

Adwait Ratnaparkhi. 1997. A Linear Observed Time Statistical Parser Based on Maxi-

mum Entropy Models. In Proceedings of the 1997 Conference on Empirical Methods in

Natural Language Processing (EMNLP-97), pages 1–10.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014. Large-scale Semantic Pars-

ing without Question-Answer Pairs. Transactions of the Association for Computational

Linguistics, 2(1):377–392.

Laura Rimell and Stephen Clark. 2008. Adapting a Lexicalized-Grammar Parser to

Contrasting Domains. In Proceedings of the 2008 Conference on Empirical Methods in

Natural Language Processing (EMNLP-08), pages 475–484.

Laura Rimell, Stephen Clark, and Mark Steedman. 2009. Unbounded Dependency

Recovery for Parser Evaluation. In Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing (EMNLP-09), pages 813–821.

242 Bibliography

Brian Roark and Kristy Hollingshead. 2008. Classifying Chart Cells for Quadratic

Complexity Context-Free Inference. In Proceedings of the 22nd International Conference

on Computational Linguistics (COLING-08), pages 745–752.

Brian Roark and Kristy Hollingshead. 2009. Linear Complexity Context-Free Parsing

Pipelines via Chart Constraints. In Proceedings of the 2009 Human Language Technology

Conference of the North American Chapter of the Association for Computational Linguistics

(HLT/NAACL-09), pages 647–655.

Alexander Rush and Slav Petrov. 2012. Vine Pruning for Efficient Multi-Pass Depen-

dency Parsing. In Proceedings of the 2012 Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics (HLT/NAACL-

12), pages 498–507.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency Parsing andDomainAdaptationwith

LR Models and Parser Ensembles. In Proceedings of the CoNLL Shared Task Session of

EMNLP-CoNLL 2007, pages 1044–1050.

Anoop Sarkar. 2001. Applying Co-TrainingMethods to Statistical Parsing. In Proceedings

of the 2nd Meeting of the North American Chapter of the Association for Computational

Linguistics, pages 95–102.

Satoshi Sekine. 1997. The Domain Dependence of Parsing. In Proceedings of the 5th

Conference on Applied Natural Language Processing (ANLP-97), pages 96–102.

Libin Shen, Lucas Champollion, and Aravind K. Joshi. 2008. LTAG-spinal and the

Treebank. Language Resources and Evaluation, 42(1):1–19.

Daniel D. Sleator and Davy Temperley. 1991. Parsing English with a Link Grammar.

Technical Report CMU-CS-91-196, Carnegie Mellon University.

Bibliography 243

Anders Søgaard. 2013. An Empirical Study of Differences between Conversion Schemes

and Annotation Guidelines. In Proceedings of the 2nd International Conference on De-

pendency Linguistics (DEPLING-13), pages 298–307.

Mark Steedman. 2000. The Syntactic Process. MIT Press, Cambridge, Massachusetts,

USA.

Mark Steedman, Anoop Sarkar, Miles Osborne, Rebecca Hwa, Stephen Clark, Julia

Hockenmaier, Paul Ruhlen, Steven Baker, and Jeremiah Crim. 2003. Bootstrapping

Statistical Parsers from Small Datasets. In Proceedings of the 10th Conference of the

European Chapter of the Association for Computational Linguistics (EACL-03), pages 331–

338.

Will Styler. 2011. The EnronSent Corpus. Technical Report 01-2011, University of

Colorado at Boulder, Boulder, Colorado.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluís Màrquez, and Joakim Nivre.

2008. The CoNLL 2008 Shared Task on Joint Parsing of Syntactic and Semantic

Dependencies. In Proceedings of the 12th Conference on Computational Natural Language

Learning (CoNLL-08), pages 159–177.

Daniel Tse and James R. Curran. 2010. Chinese CCGbank: extracting CCG derivations

from the Penn Chinese Treebank. In Proceedings of the 23rd International Conference

on Computational Linguistics (COLING-10), pages 1083–1091.

David Vadas and James R. Curran. 2007. Adding Noun Phrase Structure to the Penn

Treebank. In Proceedings of the 45th Annual Meeting of the Association for Computational

Linguistics (ACL-07), pages 240–247.

David Vadas and James R. Curran. 2008. Parsing Noun Phrase Structure with CCG. In

Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics

(ACL-08), pages 335–343.

244 Bibliography

K. Vijay-Shanker and David J. Weir. 1994. The Equivalence of Four Extensions of

Context-Free Grammars. Mathematical Systems Theory, 27(6):511–546.

Aline Villavicencio. 2002. Learning to Distinguish PP Arguments from Adjuncts. In

Proceedings of the 6th Conference on Natural Language Learning (CoNLL-02), pages 84–

90.

Martin Volk. 2001. Exploiting the WWW as a corpus to resolve PP attachment ambigui-

ties. In Proceedings of the Corpus Linguistics 2001 Conference (CL-01), pages 601–606.

Colin Warner, Ann Bies, Christine Brisson, and Justin Mott. 2004. Addendum to the

Penn Treebank II Style Bracketing Guidelines: BioMedical Treebank Annotation.

Technical report, University of Pennsylvania.

Ralph Weischedel, Eduard Hovy, Mitchell Marcus, Martha Palmer, Robert Belvin,

Sameer Pradhan, Lance Ramshaw, and Nianwen Xue. 2011. OntoNotes: A Large

Training Corpus for Enhanced Processing. In Joseph Olive, Caitlin Christianson, and

John McCary, editors, Handbook of Natural Language Processing and Machine Transla-

tion: DARPA Global Autonomous Language Exploitation, pages 54–63. Springer.

Michael White and Rajakrishnan Rajkumar. 2008. A More Precise Analysis of Punctua-

tion for Broad-Coverage Surface Realization with CCG. In Proceedings of the COLING

2008 Workshop on Grammar Engineering Across Frameworks, pages 17–24.

Kent Wittenburg. 1986. Natural Language Parsing with Combinatory Categorial Grammars

in a Graph-Unification-Based Formalism. Ph.D. thesis, University of Texas at Austin.

Kent Wittenburg. 1987. Predictive Combinators: A Method for Efficient Processing of

Combinatory Categorial Grammars. In Proceedings of the 25th Annual Meeting of the

Association for Computational Linguistics (ACL-87), pages 73–80.

Bibliography 245

Wenduan Xu, Stephen Clark, and Yue Zhang. 2014. Shift-Reduce CCG Parsing with

a Dependency Model. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (ACL-14), pages 218–227.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical Dependency Analysis with

Support Vector Machines. In Proceedings of the 8th International Workshop of Parsing

Technologies (IWPT-03), pages 196–206.

Daniel H. Younger. 1967. Recognition and Parsing of Context-Free Languages in Time

n3. Information and Control, 10(2):189–208.

Hao Zhang and Ryan McDonald. 2014. Enforcing Structural Diversity in Cube-pruned

Dependency Parsing. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (ACL-14), pages 656–661.

Meishan Zhang, Wanxiang Che, Yijia Liu, Zhenghua Li, , and Ting Liu. 2012. HIT

Dependency Parsing: Bootstrap Aggregating Heterogeneous Parsers. In Notes of the

First Workshop on the Syntactic Analysis of Non-Canonical Language (SANCL-12).

Yue Zhang, Byung-GyuAhn, Stephen Clark, Curt VanWyk, James R. Curran, and Laura

Rimell. 2010. Chart Pruning for Fast Lexicalised-Grammar Parsing. In Proceedings

of the 23rd International Conference on Computational Linguistics (COLING-10), pages

1471–1479.

Yue Zhang and Stephen Clark. 2011a. Shift-Reduce CCG Parsing. In Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics (ACL-11), pages

683–692.

Yue Zhang and Stephen Clark. 2011b. Syntactic Processing Using the Generalized

Perceptron and Beam Search. Computational Linguistics, 37(1):105–151.

246 Bibliography

Yue Zhang and Joakim Nivre. 2011. Transition-based Dependency Parsing with Rich

Non-local Features. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics (ACL-11), pages 188–193.

	Copyright_label

