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ABSTRACT

MACHINE LEARNING MODELS FOR EFFICIENT AND
ROBUST NATURAL LANGUAGE PROCESSING

SEPTEMBER 2019

EMMA STRUBELL

B.S., UNIVERSITY OF MAINE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

Natural language processing (NLP) has come of age. For example, semantic role

labeling (SRL), which automatically annotates sentences with a labeled graph repre-

senting who did what to whom, has in the past ten years seen nearly 40% reduction in

error, bringing it to useful accuracy. As a result, a myriad of practitioners now want

to deploy NLP systems on billions of documents across many domains. However,

state-of-the-art NLP systems are typically not optimized for cross-domain robustness

nor computational efficiency. In this dissertation I develop machine learning methods

to facilitate fast and robust inference across many common NLP tasks.

First, I describe paired learning and inference algorithms for dynamic feature se-

lection which accelerate inference in linear classifiers, the heart of the fastest NLP

models, by 5–10 times. I then present iterated dilated convolutional neural networks

v



(ID-CNNs), a distinct combination of network structure, parameter sharing and train-

ing procedures that increase inference speed by 14–20 times with accuracy matching

bidirectional LSTMs, the most accurate models for NLP sequence labeling. Finally,

I describe linguistically-informed self-attention (LISA), a neural network model that

combines multi-head self-attention with multi-task learning to facilitate improved gen-

eralization to new domains. We show that incorporating linguistic structure in this

way leads to substantial improvements over the previous state-of-the-art (syntax-free)

neural network models for SRL, especially when evaluating out-of-domain. I conclude

with a brief discussion of potential future directions stemming from my thesis work.
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INTRODUCTION

Core natural language processing (NLP) tasks such as part-of-speech tagging, syn-

tactic parsing and entity recognition have come of age thanks to advances in machine

learning. For example, the task of semantic role labeling (annotating who did what to

whom) has seen nearly 40% error reduction over the past decade. NLP has reached

a level of maturity long-awaited by domain experts who wish to leverage natural

language analysis to inform better decisions and effect social change. By deploying

these systems at scale on billions of documents across many domains practitioners

can consolidate raw text into structured, actionable data. These cornerstone NLP

tasks are also crucial building blocks to higher-level natural language understanding

(NLU) that our field has yet to accomplish, such as whole-document understanding

and human-level dialog.

In order for NLP to effectively process raw text across many domains, we require

models that are both robust to different styles of text and computationally efficient.

The success described above has been achieved in those limited domains for which

we have expensive annotated data; models that obtain state-of-the-art accuracy in

these data-rich settings are typically neither trained nor evaluated for accuracy out-of-

domain. Users also have practical concerns about model responsiveness, turnaround

time in large-scale analysis, electricity costs, and consequently environmental conser-

vation, but the highest accuracy systems also have high computational demand. As

hardware advances, NLP researchers tend to increase model complexity in step.

The goal of my research is to facilitate large-scale, real-world natural language un-

derstanding by developing machine learning algorithms for natural language process-

ing. Towards this end, this dissertation presents my work advancing computational
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efficiency and robustness in NLP. To facilitate computational efficiency I describe new

training and inference algorithms cognizant of strengths in the latest tensor process-

ing hardware, and eliminate redundant computation through joint modeling across

many tasks. I also show that, with careful conditioning between tasks, modeling

many tasks in a single model can improve robustness to new domains.

In Chapter 1 I provide an overview of the cornerstone NLP tasks typically mod-

eled as sequence labeling, and the machine learning models for labeling text with

those annotations that are the basis for my work. In Chapter 2 I present dynamic

feature selection: paired learning and inference algorithms for significantly reducing

computation in the linear classifiers at the heart of the fastest NLP models. This is

accomplished by partitioning the features into a sequence of templates which are or-

dered such that high confidence can often be reached using only a small fraction of all

features. Parameter estimation is arranged to maximize accuracy and early confidence

in this sequence. On typical benchmarking datasets for part-of-speech tagging, named

entity recognition, and dependency parsing our technique preserves comparable ac-

curacy to models using all features while reducing run-time by 5-10x. In Chapter 3

I describe Iterated Dilated Convolutional Neural Networks (ID-CNNs), a faster al-

ternative to bidirectional LSTMs, the most accurate NLP sequence labeling models.

In comparison to traditional CNNs, ID-CNNs have better capacity for large context

and structured prediction. Unlike LSTMs whose sequential processing on sentences

of length N requires O(N) time even in the face of GPU parallelism, ID-CNNs permit

fixed-depth convolutions to run in parallel across entire documents. They embody a

distinct combination of network structure, parameter sharing and training procedures

that enable dramatic 14-20x test-time speedups while retaining accuracy compara-

ble to the Bi-LSTM-CRF. Chapter 4 presents Linguistically-Informed Self-Attention

(LISA), a neural network model that combines multi-head self-attention with multi-

task learning across dependency parsing, part-of-speech tagging, predicate detection
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and SRL. Unlike previous models which require significant pre-processing to prepare

syntactic features, LISA can incorporate syntax using merely raw tokens as input,

encoding the sequence only once to simultaneously perform parsing, predicate detec-

tion and role labeling for all predicates. Syntax is incorporated through the attention

mechanism, by training one of the attention heads to focus on syntactic parents for

each token. We show that incorporating linguistic structure in this way leads to

substantial improvements over the previous state-of-the-art (syntax-free) neural net-

work models for SRL, especially when evaluating out-of-domain, where LISA obtains

nearly 10% reduction in error while also providing speed advantages. In Chapter 5, I

identify some limitations of my completed work, and describe a number of promising

directions for future work inspired by the findings described herein.
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CHAPTER 1

BACKGROUND

This thesis explores machine learning methods for the many different linguistic

annotations that can be modeled as sequence labeling, assigning labels to the tokens

in a sequence, where the sequence is typically a sentence or a document. Even more

elaborate output structures such as entity spans and syntax trees can be extracted

using sequence labeling techniques. In this chapter I first describe the basis for the

sequence labeling machine learning models developed in this work (§1.1), and then I

describe how these models are typically used to perform the five typical NLP pipeline

tasks upon which I evaluate the models in this work: part-of-speech tagging, named

entity recognition, syntactic dependency parsing, predicate detection and semantic

role labeling (§1.2).

1.1 Machine learning models for sequence labeling in NLP

1.1.1 Conditional probability models for sequence labeling

Let x = [x1, . . . , xT ] be our length-T sequence of input tokens and y = [y1, . . . , yT ]

be per-token output tags. Let D be the domain size of each yi. We predict the most

likely y, given a conditional model P (y|x).

This work considers two factorizations of the conditional distribution. First, we

have:

P (y|x) =
T∏
t=1

P (yt|F (x)), (1.1)

where the tags are conditionally independent given some features for x. Given these

features, O(D) prediction is simple and parallelizable across the length of the se-

4



quence. However, feature extraction may not necessarily be parallelizable. For exam-

ple, RNN-based features require iterative passes along the length of x; see §1.1.2

We also consider a linear-chain CRF model that couples all of y together:

P (y|x) =
1

Zx

T∏
t=1

ψt(yt|F (x))ψp(yt, yt−1), (1.2)

where ψt is a local factor, ψp is a pairwise factor that scores consecutive tags, and

Zx is the partition function (Lafferty et al., 2001). Prediction in this model requires

global search using the O(D2T ) Viterbi algorithm.

CRF prediction explicitly reasons about interactions among neighboring output

tags, whereas prediction in the first model compiles this reasoning into the feature

extraction step (Liang et al., 2008). The suitability of such compilation depends on

the properties and quantity of the data. While CRF prediction requires non-trivial

search in output space, it can guarantee that certain output constraints, such as for

BIO tagging (Ramshaw and Marcus, 1999), will always be satisfied. It may also have

better sample complexity, as it imposes more prior knowledge about the structure

of the interactions among the tags (London et al., 2016). However, it has worse

computational complexity than independent prediction.

1.1.2 Token representations and feature extraction

One of the most challenging aspects of machine learning is determining the best

representation to use for the input. Typically raw inputs, such as an image or the

words in a natural language sentence, are mapped to numeric representations suit-

able as input to a machine learning model via a feature function, which we denote

F in Equations 3.1 and 3.2 above. The exact parameterization of F is the subject

of extensive research in NLP, perhaps even more so than in other areas of machine

learning research such as computer vision or speech processing. The inputs to ma-

chine learning models for vision and audio processing much more closely mirror the
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inputs to the brain, whereas in NLP we take words as input, whose biological rep-

resentations are far less understood (Embicka and Poeppel, 2015; Hubel and Wiesel,

1962; Kaas et al., 1999). As a result, while researchers in other areas can draw upon

a great deal of knowledge from neuroscience and signal processing, in developing ar-

tificial models for language understanding it is more challenging to take inspiration

from what is known about biological systems. An additional challenge in NLP is

the inherently discrete nature of text, compared to image and audio data where pro-

cessing is inherently amenable to continuous representations. Since the most efficient

optimization techniques operate in continuous space, in NLP we typically first map

discrete representations of language (words and characters) to continuous represen-

tations. Developing computationally efficient and robust parameterizations for F is

the focus of much of this dissertation. In this section I describe many of the most

typical parameterizations of F , upon which the work in this thesis builds. In the

first subsection, I describe the sparse, lexicalized feature functions that drove the

first wave of statistical models for NLP. The remaining sections explore more recent,

highly data-driven approaches which use neural networks to build up rich features

based on word similarity and context.

1.1.2.1 Sparse, lexicalized feature functions

The most straightforward representation for a token as input to a classifier is

a one-hot vector indicating the word form for that token, typically normalized by

e.g. removing casing, limiting to a fixed vocabulary, or more advanced morphological

analysis. Indeed, in the first wave of statistical machine learning models for NLP,

variants of this type of feature mapping, often referred to as lexicalized features,

make up the vast majority of feature representations. Common lexicalized features

include word form, affixes, capitalization patterns, discrete word cluster membership

(Brown et al., 1992), and annotations from other models, such as part-of-speech tags
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or word lemmas. These features are typically extracted not just for the current

word, but also for adjacent words and combined to create n-gram features. Typical

models for tagging and parsing consist of 50-100 of these different features mapping

to hundreds of thousands to millions of binary features, resulting in a large, sparse

binary representation for each token.

Once computed, these sparse feature representations are typically provided to a

linear model, the most basic classifier for sequence labeling. Given an input x ∈ X , a

set of labels Y , a feature map Φ(x, y), and a weight vector w, a linear model predicts

the highest-scoring label

y∗ = arg max
y∈Y

w · Φ(x, y). (1.3)

The parameter w is usually learned by minimizing a regularized (R) sum of loss

functions (`) over the training examples indexed by i

w∗ = arg min
w

∑
i

`(xi, yi,w) +R(w).

Sparse lexicalized features are typically partitioned into a set of feature templates,

so that the weights, feature function, and dot product factor as

w · Φ(x, y) =
∑
j

wj · Φj(x, y) (1.4)

for some set of feature templates {Φj(x, y)}. A feature template corresponds to

a set of binary lexicalized features extracted by a single rule. For example, the

feature template len3-suffix might correspond to all observed length-3 suffices in

the training data for a given corpus. For a given token, a given feature template

often maps to a one-hot vector (i.e. a given token has exactly one length-3 suffix),

but this is not always the case (e.g. templates representing a token’s membership
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in a lexicon). To avoid over-fitting, the range of templates like this is often limited

such that only features observed more than some cutoff value (typically a single digit,

depending on the size of the data) are considered.

1.1.2.2 Self-supervised pre-training and dense token embeddings

A recent and significant advance in NLP sequence labeling is self-supervised pre-

training of dense vector token representations. Self-supervised refers to the practice

of using token co-occurrences found in natural language text as a readily available

training signal for learning token representations. This approach is based on the

distributional hypothesis proposed by Harris (1951), which asserts that words with

similar meaning are used in similar contexts. There are two main machine learning

approaches to pre-training in this way: First, token representations may be context-

independent, with a single representation learned for each item in the token vocabu-

lary, shared across the entire corpus. When each token corresponds to a word these

representations are known as word embeddings, a term and approach coined by Bengio

et al. (2003), who used these representations as input to a neural network language

model. Self-supervised pre-training of these word representations for downstream su-

pervised tasks was proposed by Collobert et al. (2011) in their seminal multi-task

neural network model for NLP sequence labeling. More recent popular examples of

such pre-training of word representations include the word2vec context-bag-of-words

(CBOW) and skip-gram with negative sampling (SGNS) training objectives (Mikolov

et al., 2013), GloVe (Pennington et al., 2014), and structured word2vec (Ling et al.,

2015a). The main differences between these techniques is whether token representa-

tions are trained to be predictive of their context tokens (as in Mikolov et al. (2013)),

or of co-occurrence counts (as in Pennington et al. (2014)), and whether the order-

ing of context tokens is taken into account (Ling et al., 2015a). It has been shown

that predict-based models (the SGNS objective in particular) is essentially perform-
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ing implicit factorization of a word count co-occurrence matrix (Levy and Goldberg,

2014b). There have been many more specialized variants of embeddings trained for

better performance on specific tasks, such as word representations that take into ac-

count syntactic (Levy and Goldberg, 2014a) or semantic (Rothe and Schütze, 2015)

information.

More recently, advances in hardware and methodology have enabled improved

pre-training of context-dependent token representations, where a given token embed-

ding is a function of its exact context in a sentence or document. These models are

typically trained using a language-modeling objective similar to previous approaches,

except that token representations are not shared across each instance in the corpus,

but instead vary depending on the specific sentence or document containing a to-

ken. These models typically employ multiple neural network layers to build a token

representation that effectively incorporates multiple aspects of its context, and the

representations at each layer for a given token can be combined in different ways,

often via task-dependent parameters that are fine-tuned in a secondary training step.

The first of these models to achieve great success by demonstrating large accuracy

gains across many NLP sequence labeling tasks is the ELMo model (Peters et al.,

2018), which consists of multiple LSTM neural network layers (§1.1.2.4), where the

first layer builds token representations from character embeddings. Subsequent mod-

els include BERT (Devlin et al., 2019), which uses the Transformer neural network

architecture (§1.1.2.5) and a different language modeling training objective, GPT and

GPT-2 (Radford et al., 2019), which are also Transformer-based with different train-

ing. In contrast with the word embedding models described in the previous section

and the ELMo model which uses character embeddings, BERT and other models use

wordpiece embeddings (Schuster and Nakajima, 2012; Wu et al., 2016), which find

a middle ground between word and character embeddings, which compared to word

embeddings have been found to improve generalization (by removing out-of-domain
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words and capturing morphology), require a reduced memory footprint, but require

increased computation to obtain word embeddings and consequently result in slower

inference. A fixed vocabulary of wordpieces are obtained by computing the most

common word subsequences in a training corpus, such that the fixed set of word-

pieces can be combined to form any word, but the number of wordpieces required to

create a word on average is minimized. While this work does contain experiments

incorporating ELMo embeddings and therefore character embeddings, since the focus

of this work is the morphologically-poor English language all other experiments in

this document use pre-trained word embeddings.

1.1.2.3 Feed-forward and convolutional neural networks

The most straightforward neural network extension of the basic linear models

described in §1.1.2.1 is the feed-forward neural network. Feed-forward networks simply

add additional layers of processing to the input before classification via multiple

linear transformations, each followed by a nonlinearity,1 a non-linear function applied

output. For example, a two-layer feed-forward network applied to an input xt with

transformations W
(1)
c and W

(2)
c and nonlinearity function σ producing the output

representation ct:

ct = σ(W (2)
c σ(W (1)

c xt)), (1.5)

Common nonlinearities include tanh, sigmoid, and the rectified linear (ReLU) func-

tions. The linear transformations Wc may increase the dimensionality of the input,

or decrease it. Typically the dimension of these transformations is treated as a model

hyperparameter.

1Without the nonlinearity, multiple applications of linear layers are functionally equivalent to a
single linear layer.
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Convolutional neural networks (CNNs) in NLP are a straightforward extension of

feed-forward networks which simply apply the linear transformation to a window of

adjacent tokens, rather than a single token on the input. In NLP convolutions are

typically one-dimensional, applied to a sequence of vectors representing tokens rather

than to a two-dimensional grid of vectors representing e.g. pixels. In this setting, a

convolutional neural network layer is equivalent to applying a linear transformation

to a sliding window of width r tokens on either side of each token in the sequence.

Here, and throughout the chapter, we do not explicitly write the bias terms in linear

transformations. The sliding-window representation ct for each token xt is:

ct = Wc [xt−r; . . . ;xt−1;xt;xt+1; . . . ;xt+r] (1.6)

where [·; ·] denotes vector concatenation. Often, multiple convolutional layers are

stacked, with the output representation from one layer being provided as input to the

next layer, in order to build up richer representations incorporating information from

a wider context. As with feed-forward networks, a nonlinearity must be applied after

each convolutional layer. In a stacked CNN, the effective size of the context observed

by a token at layer k with input radius r is given by 2kr+ 1, i.e. the width grows by

2r at each layer.

In NLP CNNs are most commonly applied to (1) character-level modeling (com-

posing characters into token representations to capture morphological information and

allow for classification of unseen words) and (2) sentence-level classification, rather

than token-level classification. This is because, like linear and feed-forward models,

even when stacked as described above they are limited to a fixed-width window of con-

text. In the next sections I will describe neural network models that can incorporate

context from an entire sequence into the representation for each token. These models

are typically less computationally efficient than linear, feed-forward and convolutional

models, but obtain higher accuracy.
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1.1.2.4 Recurrent neural networks

Recurrent neural networks incorporate context from the entire sequence by pro-

cessing tokens incrementally in order, maintaining a state vector ht that incorporates

information at each timestep of the input:

ht = RNN(xt, ht−1) = Wh [xt;ht−1] (1.7)

where [·; ·] denotes again vector concatenation. For sequence labeling, it has been

shown that incorporating both right- and left-context in a bidirectional model is

beneficial (Schuster and Paliwal, 1997). Bidirectional models combine RNNs in the

forward and backward direction by concatenating their hidden representations at each

timestep:

ht = [
←−−−
RNN(xt,

←−
h t+1);

−−−→
RNN(xt,

−→
h t−1)] (1.8)

In practice, higher accuracy for challenging tasks can be obtained by stacking multiple

RNNs, where subsequent RNNs take as input at each timestep the hidden states from

the previous RNN, rather than the raw input representations xt.

Vanilla RNNs, that is RNNs that use just a single linear transformation to inte-

grate information from the current timestep with the hidden state, have been repeat-

edly shown to effectively model time-dependent data, such as natural language text.

However, as the sequence length increases, long term dependencies can be lost due

to the vanishing gradient problem (Hochreiter, 1998). The Long Short Term Mem-

ory (LSTM) variant of RNNs was designed to overcome this shortcoming (Hochreiter

and Schmidhuber, 1997). The LSTM incorporates three additional matrices inside

the recurrence which act as a gating mechanism, selectively allowing information flow

from previous timesteps as a function of the current timestep. The gates ft, it and
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ot are defined as functions of the input xt and previous hidden representation ht−1 as

follows:

ft = σg(Wfxt + Ufht−1 + bf ) (1.9)

it = σg(Wixt + Uiht−1 + bi) (1.10)

ot = σg(Woxt + Uoht−1 + bo) (1.11)

matrices W and U and bias vectors b are all model parameters learned through

supervised training. σg denotes the sigmoid activation function, which normalizes

the outputs to have values in [0, 1]. These representations are combined to produce

the hidden representation ht as follows:

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (1.12)

ht = ot ◦ σh(ct) (1.13)

where ◦ denotes element-wise vector multiplication. Activations σc and σh use the

tanh function to normalize outputs into the range [−1, 1]. The LSTM out-performs

out-perform the vanilla RNN as a token encoder for various NLP tasks, and as a

result has become the de facto token encoder in NLP.

There exist many other variants of recurrent neural network architectures with

varying internal structure for combining context state and input such as GRUs (Cho

et al., 2014), Skip RNNs (Campos et al., 2018), highway LSTMs (Zhang et al., 2015b)

or stacked LSTMs with different patterns of connectivity (Zhou and Xu, 2015a). The

work in this document implements only the most common LSTM architecture, so the

reader is referred to the original works for detailed discussion of these alternatives.
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1.1.2.5 Self-attention and Transformer networks

Self-attention is a new alternative to recurrent architectures for incorporating in-

formation from the entire sequence into each token representation. Unlike recurrent

networks, self-attention can process all tokens in a sequence at once in parallel, and

are thus very efficient on modern tensor processing hardware such as GPUs and TPUs.

This contextual information is incorporated through a neural attention mechanism,

essentially a context-dependent weighted average, where the term self-attention sim-

ply indicates that the weighted average for a given token is over the same sentence

as the token is located. In this work, experiments focus on the Transformer instanti-

ation of self-attention (Vaswani et al., 2017). Rather than incrementally building up

context from each token in order, the Transformer model uses stacked layers each con-

sisting of multiple self-attention functions to build up rich representations of tokens

in context.

More specifically, the Transformer model works as follows. Input token represen-

tations xt are each projected to a representation that is the same size as the output

of the self-attention layers. Importantly, a positional encoding vector computed as a

deterministic sinusoidal function of t is added to the input, since the self-attention has

no innate notion of token position. Alternatively, position embeddings can be used

to supply this information to the model, with the downside that position embeddings

are limited to a maximum distance determined at train time.

This token representation is provided as input to a series of J residual multi-head

self-attention layers with feed-forward connections. Denoting the jth self-attention

layer as T (j)(·), the output of that layer s
(j)
t , and LN(·) layer normalization (Ba et al.,

2016), the following recurrence applied to initial input c
(p)
t :

s
(j)
t = LN(s

(j−1)
t + T (j)(s

(j−1)
t )) (1.14)
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gives final token representations s
(j)
t . Each T (j)(·) consists of: (a) multi-head self-

attention and (b) a feed-forward projection.

The multi-head self attention consists of H attention heads, each of which learns

a distinct attention function to attend to all of the tokens in the sequence. This

self-attention is performed for each token for each head, and the results of the H self-

attentions are concatenated to form the final self-attended representation for each

token.

Specifically, consider the matrix S(j−1) of T token representations at layer j −

1. For each attention head h, we project this matrix into distinct key, value and

query representations K
(j)
h , V

(j)
h and Q

(j)
h of dimensions T × dk, T × dq, and T × dv,

respectively. We can then multiply Q
(j)
h by K

(j)
h to obtain a T ×T matrix of attention

weights A
(j)
h between each pair of tokens in the sentence. Following Vaswani et al.

(2017) we perform scaled dot-product attention: We scale the weights by the inverse

square root of their embedding dimension and normalize with the softmax function

to produce a distinct distribution for each token over all the tokens in the sentence:

A
(j)
h = softmax(d−0.5k Q

(j)
h K

(j)
h

T
) (1.15)

These attention weights are then multiplied by V
(j)
h for each token to obtain the

self-attended token representations M
(j)
h :

M
(j)
h = A

(j)
h V

(j)
h (1.16)

Row t of M
(j)
h , the self-attended representation for token t at layer j, is thus the

weighted sum with respect to t (with weights given by A
(j)
h ) over the token represen-

tations in V
(j)
h .

The outputs of all attention heads for each token are concatenated, and this repre-

sentation is passed to the feed-forward layer, which consists of two linear projections
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each followed by leaky ReLU activations (Maas et al., 2013). We add the output of

the feed-forward to the initial representation and apply layer normalization to give

the final output of self-attention layer j, as in Eqn. 1.14.

1.2 Sequence labeling tasks in NLP

The previous section described many of the most common machine learning ap-

proaches to sequence labeling in NLP. In this section, I give an overview of many of

the most common token-level sequence labeling tasks in NLP: part-of-speech tagging,

named entity recognition, syntactic dependency parsing, semantic role labeling and

predicate detection. These are all the tasks upon which the models described in this

work are evaluated. Although this is far from an exhaustive list of all the annotations

studied in NLP and desired by practitioners, these make up a representative suite

of the most common tasks included in a typical NLP pipeline alongside (typically

deterministic) tokenization and sentence segmentation. The majority of other de-

sired token annotations can be obtained using similar techniques, simply applied to

different label sets.

1.2.1 Part-of-speech tagging

Part-of-speech tagging is the task of annotating tokens with their part-of-speech

tags, such as noun, verb, adjective, et cetera. There exist distinct sets of tags for

many different languages, as well as a set of universal part-of-speech tags which can

be used for multilingual modeling (Petrov et al., 2012). Since this work is focused

on English NLP, we focus experiments on the annotations in the Wall Street Journal

portion of the Penn TreeBank corpus (Marcus et al., 1993b), a collection of 2,499

news articles (about 1 million tokens) from the 1989 Wall Street Journal newspaper

annotated with Treebank II style syntax trees (Bies et al., 1995).
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This corpus defines 49 part-of-speech tags for English, differentiating between verb

tenses, singular and plural nouns, and some types of punctuation.2 The dataset is

divided into 24 sections. In the typical evaluation setup for part-of-speech tagging,

sections 0–18 are used for training, sections 19–21 for development, and sections

22–24 as test data. Each token is annotated with exactly one part-of-speech tag,

and models are typically evaluated in terms of per-token and sometimes per-sentence

accuracy. Modern models typically achieve accuracy between 97–98%, approximately

the limit of human annotators for this task (Manning, 2011). Automatic part-of-

speech annotations can be obtained as part of syntactic constituency parsing, or

labels can be assigned to tokens by simple multi-class classification for each token,

which is the approach we take in this work. Typically part-of-speech tagging is the

first step after tokenization and sentence segmentation in an English NLP pipeline.

The earliest machine learning models for part-of-speech tagging which can ob-

tain accuracy close to today’s state-of-the-art are generative hidden Markov models

(HMMs) (Charniak et al., 1993; Church, 1989). More recently part-of-speech tagging

models have trended towards discriminative logisic regression (log-linear) models, also

known as maximum entropy or MaxEnt models (Ratnaparkhi, 1996; Toutanova et al.,

2003). These are still among the most common part-of-speech tagging models found

in off-the-shelf NLP tools. More recently, feed-forward (Collobert et al., 2011) and

recurrent neural networks have been shown to obtain state-of-the-art performance for

part-of-speech tagging (Ling et al., 2015b), though for English the accuracy obtained

by these more complex models over simpler linear models is often negligible.

2See the annotation guidelines for more details: https://catalog.ldc.upenn.edu/docs/

LDC99T42/tagguid1.pdf
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1.2.2 Syntactic dependency parsing

The next step in typical NLP pipelines following part-of-speech tagging is syntactic

parsing, which induces a tree structure over the tokens indicating syntactic relations

in the sentence. In this work we focus on syntactic dependency parsing, where this

tree is made up of edges assigned between tokens in the sentence; no additional

(internal) nodes e.g. representing phrases are added to the representation. Each

token is assigned one parent, which is another token in the sentence, and one token

is designated as the root of the sentence, which is to assigned itself as a parent,

or a dummy “root” token. Dependency parsing has been increasingly adopted over

constituency parsing due to its more favorable run-time efficiency — For a sentence of

length N tokens, expected O(N) parsing time for greedy, transition-based projective

parsing and O(N2) for non-projective parsing (Nivre, 2003, 2009), versus O(N3) for

CKY — and simply implemented models, though information is lost when converting

from constituency to more simple dependency parse structure. Currently, the most

accurate machine learning model for dependency parsing is a constituency parser

whose outputs are converted to dependency trees post-hoc (Dyer et al., 2016).

The benchmark dataset for English syntactic parsing is also the Wall Street Jour-

nal portion of the Penn TreeBank (see §1.2.1). For dependency parsing the con-

stituency trees are converted to dependencies with a deterministic set of head rules,

which can be used to identify the head of a phrase, and an associated mapping to

labels on the induced dependency edges. The sets of head rules most commonly used

in NLP are the Collins or Yamada and Matsumoto head rules (Collins, 1999; Yamada

and Matsumoto, 2003), and the head rules for the Stanford Dependencies framework

(de Marneffe and Manning, 2008). Currently, Stanford Dependencies v3.3 is the de-

pendency framework of choice for syntactic parsing. The split of the Penn TreeBank

used for dependency parsing differs from that used for part-of-speech tagging: sec-

tions 2–21 are used for training, section 23 is used for evaluation, and sections 22 and,
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more recently in response to highly data driven models, 24 are used for development

(Weiss et al., 2015). A model for dependency parsing may or may not include labels

on the edges, though recently it is typical for dependency models to perform labeled

parsing. Dependency parsing is typically evaluated using labeled attachment score

(LAS), unlabeled attachment score (UAS), and sometimes label score (LS). Each of

these are measures of per-token accuracy. Labeled attachment score counts a token as

correct only if its head and label are assigned correctly. Unlabeled attachment score

considers only whether a token’s head was assigned correctly, and label score consid-

ers only whether the label on the edge is correct. In English, punctuation tokens3 are

typically excluded from evaluation due to inconsistencies in the Penn TreeBank data

on where punctuation tokens should attach.

There are two main algorithms for obtaining dependency parses of sentences:

graph-based dependency parsing and transition-based dependency parsing. We de-

scribe these two techniques below. Both are used in different models described in this

work.

1.2.2.1 Graph-based dependency parsing

Graph-based approaches to dependency parsing directly predict edges between

tokens in the syntactic dependency tree. The most common approach to graph-based

dependency parsing with neural networks is the first-order edge-factored model, which

produces representations for the potential edge between each pair of tokens in the

sentence, then uses those representations to predict exactly one edge going into each

token (i.e., each token has exactly one head). Higher-order models have been shown

to increase graph-based parsing accuracy over these simpler models (Bohnet, 2010;

Carreras, 2007; Koo and Collins, 2010), but since the rise of neural network models it

3Typically defined as having gold part-of-speech tags from the following set: “, ”, ., :, ,
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is yet to be shown that explicitly modeling higher-order dependency graph structure

improves accuracy in relatively data-rich settings such as English news text.

Since greedy one-best prediction does not guarantee that the predictions form a

well-structured tree4, typically a post-processing step is performed to induce a tree

from the model predictions, such as computing the maximum spanning tree given

edge scores output by the model (McDonald et al., 2005). Alternatively, the model

can be trained with a structured objective that produces a tree during inference,

such as the matrix-tree or Chu-Liu-Edmonds algorithm (Koo et al., 2007) which runs

in O(T 2) time for a length T sentence. These approaches produce non-projective

dependency trees, or trees that may have necessarily crossing dependencies when

drawn on a plane. For highly projective languages such as English or Chinese, it

may be desirable to constrain the inference algorithm to predict only projective trees;

adding such a structural inductive bias can be particularly helpful in low-data settings.

Eisner (1996) proposed dynamic programming algorithms which guarantee projective

outputs, at the cost of slower O(T 3) runtime efficiency.

1.2.2.2 Transition-based dependency parsing

As opposed to graph-based parsing where dependencies are predicted directly that

form a tree, transition-based parsers instead predict a series of transitions, or shift-

reduce operations, which incrementally build up a tree by adding edges between tokens

and pushing and popping from a stack. This type of parsing is also known as shift-

reduce or incremental parsing. Some of the first neural network-based dependency

parsers were transition-based parsers (Andor et al., 2016; Chen and Manning, 2014;

Weiss et al., 2015), which used feed-forward networks. More recently, these transition-

based approaches, which run very fast on CPU hardware, have been eschewed in favor

of more accurate graph-based neural network approaches (Clark et al., 2018; Dozat

4The output structure could: (1) contain loops or (2) have more or less than exactly one root.

20



and Manning, 2017; Kiperwasser and Goldberg, 2016), which can be performed more

efficiently on GPU hardware.

More specifically, transition-based parsing algorithms typically use a stack and a

buffer of tokens, combined with a specific set of transitions. The buffer is initialized

to contain the tokens in the sentence, and the stack is initialized to be empty. At a

given step during prediction, given (features of) the state of the stack and the buffer,

a model predicts the next transition, which is performed, and this is repeated until

the stack and buffer are empty. For a given transition system, the gold-standard

series of transitions can be deterministically generated from the gold-standard parse

tree.

Different transition systems are used for projective and non-projective parsing.

The most basic transition system for projective parsing is called the arc-standard

transition system (Nivre, 2003). This system defines three transitions: left-arcl,

right-arcl and shift. shift pushes the first token on the buffer to the stack. left-

arcl adds a dependency arc (with label l) from the token at the top of the buffer to

the top of the stack, and pops the stack. right-arcl adds a labeled dependency arc

from the token at the top of the stack to that at the top of the buffer, pops the stack,

and replaces the top of the buffer with the token that was at the top of the stack.

Another popular transition system for projective parsing is the arc-eager transi-

tion system, which is designed to produce more plausible incremental (partial) trees

by adding both left and right edges as soon as the head and dependent tokens are avail-

able, as opposed to in the arc-standard system, where either left- or right-dependents

(typically right) are not attached to heads until each token has found all of its de-

pendents (Nivre, 2004). In other words, the arc-standard system performs purely

bottom-up parsing, while the arc-eager system combines bottom-up and top-down

parsing. The arc-eager transition system adds a reduce transition, which simply

pops the stack, and uses a modified right-arc transition, which makes the top of
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the stack the head of the token at the top of the buffer, then pushes the token at the

top of the buffer to the stack.

This description focuses on projective transition systems since the focus of this

work is English, in which the vast majority of sentences are projective.5 There also

exist a number of transition systems for producing non-projective parses, most notably

Nivre’s list-based (Nivre, 2008), and swap-based approaches (Nivre, 2009).

1.2.3 Named entity recognition

Named entity recognition is the task of identifying typed spans of tokens corre-

sponding to named entities, such as Washington and United States of America. The

two most commonly used benchmark datasets for English named entity recognition

are the CoNLL 2003 shared task (Sang and Meulder, 2003) and the CoNLL 2012

(Pradhan et al., 2012) subset6 of the OntoNotes corpus v5.0 (Hovy et al., 2006; Prad-

han et al., 2006). Entities in the CoNLL 2003 corpus are labeled with one of four types:

per, org, loc or misc, with a fairly even distribution over the four entity types.

OntoNotes contains a larger and more diverse set of 19 different entity types, adding:

ordinal, product, norp, work of art, language, money, percent, car-

dinal, gpe, time, date, facility, law, event and quantity. The OntoNotes

corpus also covers a wider range of text genres, including telephone conversations,

web text, broadcast news and translated documents, whereas the CoNLL-2003 text

covers only newswire. The sizes of the two corpora in terms of documents, sentences,

tokens and entities are given in Table 1.1.

Named entity recognition is often modeled similarly to part-of-speech tagging,

where each token is assigned a label, with non-entity tokens receiving the O label.

5Chen and Manning (2014) report that 99.9% of syntax trees converted to Stanford dependencies
in the Penn TreeBank training data are projective.

6The CoNLL 2012 split includes pivot text, which is typically excluded from the data for training
and evaluating named entity recognition models.
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Dataset Train Dev Test

CoNLL-2003

Tokens 204,567 51,578 46,666
Sentences 14,041 3,250 3,453
Documents 945 215 230
Entities 23,499 5,942 5,648

OntoNotes 5.0

Tokens 1,088,503 147,724 152,728
Sentences 59,924 8,528 8,262
Documents 2,483 319 322
Entities 81,828 11,066 11,257

Table 1.1: Statistics of NER datasets

Typically a boundary encoding is used to assist in classification, i.e. the label of the

first token in an entity span is pre-pended with B- and remaining labels in that span

pre-pended with I; this is known as BIO or IOB encoding (Ramshaw and Marcus,

1999). Ratinov and Roth (2009) report that, for non-structured models, a slightly

more elaborate BILOU (also known as IOBES) encoding, which additionally distin-

guishes between the final token (L) in a span, and single-token spans (U) out-performs

the more basic BIO encoding scheme.

Named entity recognition is typically evaluated using F1 score, which is the har-

monic mean of precision and recall. Precision measures, of the spans that were pre-

dicted, how many were correct, and is calculated as the number of true positives

divided by the total number of predicted spans. Recall measures how many of the

correct spans were predicted, and is computed as the number of true positives di-

vided by the total number of spans in the gold standard data. Precision and recall

are computed at the segment level, rather than at the token level, so all the tokens in

a span need to be identified correctly in order for that span to be considered correct

(a true positive).

LSTMs (Hochreiter and Schmidhuber, 1997) were used for NER as early as the

CoNLL shared task in 2003 (Hammerton, 2003), but due to lack of hardware, like

many other neural network approaches at the time the model was out-performed
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by approaches using graphical models with lexicalized features based on word type,

affixes and capitalization, and generous use of lexicons (Luo et al., 2015; McCallum

and Li, 2003; Passos et al., 2014). (Durrett and Klein, 2014) leverages the parallel

co-reference annotation available in the OntoNotes corpus to predict named entities

jointly with entity linking and co-reference.

More recently, a wide variety of neural network architectures for NER have been

proposed. Collobert et al. (2011) employ a one-layer CNN with pre-trained word

embeddings, capitalization and lexicon features, and CRF-based prediction. Huang

et al. (2015) achieved state-of-the-art accuracy on part-of-speech, chunking and NER

using a Bi-LSTM-CRF. Lample et al. (2016) proposed two models which incorporated

Bi-LSTM-composed character embeddings alongside words: a Bi-LSTM-CRF, and a

greedy stack LSTM which uses a simple shift-reduce grammar to compose words into

labeled entities. Their Bi-LSTM-CRF obtained the state-of-the-art on four languages

without word shape or lexicon features. Ma and Hovy (2016) use CNNs rather than

LSTMs to compose characters in a Bi-LSTM-CRF, achieving state-of-the-art per-

formance on part-of-speech tagging and CoNLL NER without lexicons. Chiu and

Nichols (2016) evaluate a similar network but propose a novel method for encod-

ing lexicon matches, presenting results on CoNLL and OntoNotes NER. Yang et al.

(2016) use GRU-CRFs with GRU-composed character embeddings of words to train

a single network on many tasks and languages.

There have been some approaches showing that incorporating document-level con-

text can help named entity recognition. Ratinov and Roth (2009) incorporate doc-

ument context in their greedy model by adding features based on tagged entities

within a large, fixed window of tokens. Bunescu and Mooney (2004) pose an undi-

rected graphical model over all entities in a document, Sutton and McCallum (2004)

employ a skip-chain CRF to model factors between entities while supporting efficient
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inference, and Finkel et al. (2005) enforce non-local constraints during inference in a

CRF.

1.2.4 Semantic role labeling

Semantic role labeling (SRL) is often described as identifying who did what to

whom. More precisely, given the (most often verbal) predicates in a sentence, semantic

role labeling is the task of, for each predicate, identifying the typed spans of text

corresponding to the arguments participating in that predicate’s semantic frame.

The CoNLL-2005 shared task (Carreras and Màrquez, 2005) spearheaded machine

learning approaches to SRL by providing a version of the Wall Street Journal portion

of the Penn TreeBank corpus annotated with predicate-argument structure in the style

of PropBank (Palmer et al., 2005). PropBank labels arguments with six predicate-

specific labels arg0–arg5, known as core arguments as well as 18 types of modifiers,

e.g. argm-mnr, argm-neg. More details can be found in the PropBank annotation

guidelines (Bonial et al., 2010). This dataset is one of the main benchmark datasets

for SRL, alongside the CoNLL 2009 shared task data (Hajič et al., 2009), which

also uses PropBank predicate-argument structure, but annotates only the syntactic

heads of phrases, rather than entire spans of text, and the CoNLL 2012 shared task,

which includes the annotations from CoNLL 2005 but adds a number of documents

from different domains in the OntoNotes corpus, such as broadcast news, telephone

conversations and discussion forums.

Since far more annotations are available using PropBank frames, the majority of

NLP research has focused on that formalism. Other popular and practical formalisms

include VerbNet (Kipper-Schuler, 2005), which annotates arguments with descriptive

labels that are shared across all predicates, such as theme, agent and instrument.

FrameNet (Baker et al., 1998) similarly annotates arguments with labels that are

shared across predicates, but FrameNet labels are far more fine-grained than VerbNet
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(e.g. mover, vehicle), making it challenging to train a machine learning model for

tagging. All of these frameworks extend the verb classes defined by Levin (1993).

There are two main approaches to semantic role labeling: Most recent models

identify argument spans for a predicate using token-level tagging with BIO-encoded

labels, similar to named entity recognition (He et al., 2017; Marcheggiani et al., 2017;

Tan et al., 2018; Zhou and Xu, 2015b). Tags can be predicted independently, or more

often decoding can be performed using the Viterbi algorithm. Rather than tagging

tokens, another approach is to perform span-level tagging, by considering all possible

spans within a sentence up to a maximum length, building feature representations

for each span, then assigning labels directly to spans (He et al., 2018; Ouchi et al.,

2018). In both cases, SRL is typically evaluated using span-level F1, like named entity

recognition.

In NLP pipelines, SRL typically comes after syntactic parsing, following biologically-

inspired intuitions that syntactic processing occurs before semantics. Early machine

learning approaches to SRL (Johansson and Nugues, 2008; Pradhan et al., 2005; Sur-

deanu et al., 2007; Toutanova et al., 2008) focused on developing rich sets of linguistic

features as input to a linear model, often combined with complex constrained infer-

ence e.g. with an ILP (Punyakanok et al., 2008). Täckström et al. (2015) showed

that constraints could be enforced more efficiently using a clever dynamic program

for exact inference. While most of these techniques require a predicted parse as input,

Sutton and McCallum (2005) modeled syntactic parsing and SRL jointly, and Lewis

et al. (2015) jointly modeled SRL and CCG parsing.

Collobert et al. (2011) were among the first to use a neural network model for SRL,

a CNN over word embeddings combined with globally-normalized inference. However,

their model failed to out-perform non-neural models, both with and without multi-

task learning with other NLP tagging tasks. FitzGerald et al. (2015) successfully
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employed neural networks by embedding lexicalized features and providing them as

factors in the model of Täckström et al. (2015).

Recently there has been a move away from SRL models which explicitly incor-

porate syntactic knowledge through features and structured inference. Zhou and Xu

(2015b), Marcheggiani et al. (2017) and He et al. (2017) all use variants of deep

LSTMs with constrained decoding, while Tan et al. (2018) apply self-attention to

obtain state-of-the-art SRL with gold predicates. Unlike most previous work on SRL

which unrealistically takes gold predicates as input, He et al. (2017) present end-to-

end predicate detection and SRL experiments, predicting predicates using an LSTM,

and He et al. (2018) jointly predict SRL spans and predicates in a model based on

that of Lee et al. (2017), obtaining state-of-the-art predicted predicate SRL.

Some work has incorporated syntax into neural models for SRL. Roth and Lapata

(2016) incorporate syntax by embedding dependency paths, and similarly Marcheg-

giani and Titov (2017) encode syntax using a graph CNN over a predicted syntax

tree, out-performing models without syntax on CoNLL 2009. These works are lim-

ited to incorporating partial dependency paths between tokens, and Marcheggiani

and Titov (2017) report that their model does not out-perform syntax-free models on

out-of-domain data.

1.2.4.1 Predicate detection

A prerequisite for semantic role labeling is predicate detection, identifying the

predicates in a sentence. Sometimes this also includes predicate sense disambigua-

tion, since different senses of the same predicate lemma often correspond to different

semantic frames. Most annotated data for semantic role labeling focuses on verbal

predicates (CoNLL 2005, 2009), though CoNLL 2012 also includes annotations of

nominal predicates. In much work on semantic role labeling, gold-standard predi-

cates are provided as input to the system, though recent work is moving away from
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this less realistic setting and instead evaluating end-to-end predicate detection and

semantic role labeling performance. This is similar to how English syntactic depen-

dency parsing is more typically evaluated using automatic, rather than gold-standard,

part-of-speech tags as input.

Predicate detection models are typically trained as taggers similar to named en-

tity recognition using BIO-encoded labels; a small number of predicates (e.g. particle

verbs such as throw out) are made up of multiple tokens. Like SRL, predicate detec-

tion is typically evaluated using the F1 metric.
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CHAPTER 2

LEARNING DYNAMIC FEATURE SELECTION FOR
FAST SEQUENTIAL PREDICTION

In this chapter I present paired learning and inference algorithms for significantly

reducing computation and increasing speed of the vector dot products in the classifiers

that are at the heart of many NLP components. This is accomplished by partitioning

the features into a sequence of templates which are ordered such that high confidence

can often be reached using only a small fraction of all features. Parameter estimation

is arranged to maximize accuracy and early confidence in this sequence. Our approach

is simpler and better suited to NLP than other related cascade methods. We present

experiments in left-to-right part-of-speech tagging, named entity recognition, and

transition-based dependency parsing. On the typical benchmarking datasets we can

preserve POS tagging accuracy above 97% and parsing LAS above 88.5% both with

over a five-fold reduction in run-time, and NER F1 above 88 with more than 2x

increase in speed.

2.1 Introduction

This chapter describes a paired learning and inference approach for significantly

reducing computation and increasing speed while preserving accuracy in the linear

classifiers typically used in many NLP tasks. The heart of the prediction computation

in these models is a dot-product between a dense parameter vector and a sparse

feature vector. The bottleneck in these models is then often a combination of feature

extraction and numerical operations, each of which scale linearly in the size of the
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feature vector. Feature extraction can be even more expensive than the dot products,

involving, for example, walking sub-graphs, lexicon lookup, string concatenation and

string hashing. We note, however, that in many cases not all of these features

are necessary for accurate prediction. For example, in part-of-speech tagging if we

see the word “the,” there is no need to perform a large dot product or many string

operations; we can accurately label the word a Determiner using the word identity

feature alone. In other cases two features are sufficient: when we see the word “hits”

preceded by a Cardinal (e.g. “two hits”) we can be confident that it is a Noun.

We present a simple yet novel approach to improve processing speed by dynam-

ically determining on a per-instance basis how many features are necessary for a

high-confidence prediction. Our features are divided into a set of feature templates,

such as current-token or previous-tag in the case of POS tagging. At training time, we

determine an ordering on the templates such that we can approximate model scores

at test time by incrementally calculating the dot product in template ordering. We

then use a running confidence estimate for the label prediction to determine how

many terms of the sum to compute for a given instance, and predict once confidence

reaches a certain threshold.

In similar work, cascades of increasingly complex and high-recall models have

been used for both structured and unstructured prediction. Viola and Jones (2001)

use a cascade of boosted models to perform face detection. Weiss and Taskar (2010)

add increasingly higher-order dependencies to a graphical model while filtering the

output domain to maintain tractable inference. While most traditional cascades pass

instances down to layers with increasingly higher recall, we use a single model and

accumulate the scores from each additional template until a label is predicted with suf-

ficient confidence, in a stagewise approximation of the full model score. Our technique

applies to any linear classifier-based model over feature templates without changing

the model structure or decreasing prediction speed.
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Most similarly to our work, Weiss and Taskar (2013) improve performance for

several structured vision tasks by dynamically selecting features at runtime. However,

they use a reinforcement learning approach whose computational tradeoffs are better

suited to vision problems with expensive features. Obtaining a speedup on tasks

with comparatively cheap features, such as part-of-speech tagging or transition-based

parsing, requires an approach with less overhead. In fact, the most attractive aspect

of our approach is that it speeds up methods that are already among the fastest in

NLP.

We apply our method to left-to-right part-of-speech tagging in which we achieve

accuracy above 97% on the Penn Treebank WSJ corpus while running more than

five times faster than our 97.2% baseline. We also achieve a five-fold increase in

transition-based dependency parsing on the WSJ corpus while achieving an LAS just

1.5% lower than our 90.3% baseline. Named entity recognition also shows significant

speed increases. We further demonstrate that our method can be tuned for 2.5−3.5x

multiplicative speedups with nearly no loss in accuracy.

2.2 Classification and Structured Prediction

Our algorithm speeds up prediction for multiclass classification problems where

the label set can be tractably enumerated and scored, and the per-class scores of input

features decompose as a sum over multiple feature templates. Frequently, classifica-

tion problems in NLP are solved through the use of linear classifiers, which compute

scores for input-label pairs using a dot product. These meet our additive scoring

criteria, and our acceleration methods are directly applicable.

However, in this work we are interested in speeding up structured prediction prob-

lems, specifically part-of-speech (POS) tagging and dependency parsing. We apply

our classification algorithms to these problems by reducing them to sequential pre-

diction (Daumé III et al., 2009). For POS tagging, we describe a sentence’s part
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of speech annotation by the left-to-right sequence of tagging decisions for individual

tokens (Giménez and Màrquez, 2004). Similarly, we implement our parser with a

classifier that generates a sequence of shift-reduce parsing transitions (Nivre, 2009).

The use of sequential prediction to solve these problems and others has a long

history in practice as well as theory. Searn (Daumé III et al., 2009) and DAgger

(Ross et al., 2011a) are two popular principled frameworks for reducing sequential

prediction to classification by learning a classifier on additional synthetic training

data. However, as we do in our experiments, practitioners often see good results by

training on the gold standard labels with an off-the-shelf classification algorithm, as

though classifying IID data (Bengtson and Roth, 2008; Choi and Palmer, 2012).

Classifier-based approaches to structured prediction are faster than dynamic pro-

gramming since they consider only a subset of candidate output structures in a greedy

manner. For example, the Stanford CoreNLP classifier-based part-of-speech tagger

provides a 6.5x speed advantage over their dynamic programming-based model, with

little reduction in accuracy. Because our methods are designed for the greedy sequen-

tial prediction regime, we can provide further speed increases to the fastest inference

methods in NLP.

2.3 Linear models

Our base classifier for sequential prediction tasks will be a linear model. Given an

input x ∈ X , a set of labels Y , a feature map Φ(x, y), and a weight vector w, a linear

model predicts the highest-scoring label

y∗ = arg max
y∈Y

w · Φ(x, y). (2.1)

The parameter w is usually learned by minimizing a regularized (R) sum of loss

functions (`) over the training examples indexed by i
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w∗ = arg min
w

∑
i

`(xi, yi,w) +R(w).

In this work, we partition the features into a set of feature templates, so that the

weights, feature function, and dot product factor as

w · Φ(x, y) =
∑
j

wj · Φj(x, y) (2.2)

for some set of feature templates {Φj(x, y)}.

Our goal is to approximate the dot products in 2.1 sufficiently for purposes of

prediction, while using as few terms of the sum in 2.2 as possible.

2.4 Method

We accomplish this goal by developing paired learning and inference procedures

for feature-templated classifiers that optimize both accuracy and inference speed,

using a process of dynamic feature selection. Since many decisions are easy to make

in the presence of strongly predictive features, we would like our model to use fewer

templates when it is more confident. For a fixed, learned ordering of feature templates,

we build up a vector of class scores incrementally over each prefix of the sequence

of templates, which we call the prefix scores. Once we reach a stopping criterion

based on class confidence (margin), we stop computing prefix scores, and predict the

current highest scoring class. Our aim is to train each prefix to be as good a classifier

as possible without the following templates, minimizing the number of templates

needed for accurate predictions.

Given this method for performing fast inference on an ordered set of feature tem-

plates, it remains to choose the ordering. In §2.4.5, we develop several methods for

picking template orderings, based on ideas from group sparsity (Swirszcz et al., 2009;

Yuan and Lin, 2006), and other techniques for feature subset-selection (Kohavi and

John, 1997).
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2.4.1 Definitions

Given a model that computes scores additively over template-specific scoring func-

tions as in (2.2), parameters w, and an observation x ∈ X, we can define the i’th

prefix score for label y ∈ Y as:

Pi,y(x,w) =
i∑

j=1

wj · Φj(x, y), (2.3)

or Pi,y when the choice of observations and weights is clear from context. Abusing

notation we also refer to the vector containing all i’th prefix scores for observation x

associated to each label in Y as Pi(x,w), or Pi when this is unambiguous.

Given a parameter m > 0, called the margin, we define a function h on prefix

scores:

h(Pi, y) = max{0,max
y′ 6=y

Pi,y′ − Pi,y +m} (2.4)

This is the familiar structured hinge loss function as in structured support vector

machines (Tsochantaridis et al., 2004), which has a minimum at 0 if and only if class

y is ranked ahead of all other classes by at least m.

Using this notation, the condition that some label y be ranked first by a margin

can be written as h(Pi, y) = 0, and the condition that any class be ranked first by a

margin can be written as maxy′ h(Pi, y
′) = 0.

2.4.2 Inference

As described in Algorithm 1, at test time we compute prefixes until some label is

ranked ahead of all other labels with a margin m, then predict with that label. At

train time, we predict until the correct label is ranked ahead with margin m, and

return the whole set of prefixes for use by the learning algorithm. If no prefix scores

have a margin, then we predict with the final prefix score involving all the feature

templates.
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Algorithm 1 Inference

Input: template parameters {wi}ki=1, margin m
and optional (for train time) true label y
Initialize: i = 1
while l > 0 ∧ i ≤ k do
l = maxy′ h(Pi, y

′) (test) or h(Pi, y) (train)
i← i+ 1

end while
return {Pj}ij=1 (train) or maxy′ Pi,y′ (test)

Algorithm 2 Parameter Learning

Input: examples {(xi, yi)}Ni , margin m
Initialize: parameters w0 = 0, i = 1
while i ≤ N do

prefixes ← Infer(xi, yi,wi,m)
gi ← ComputeGradient(prefixes)
wi+1 ← UpdateParameters(wi, gi)
i← i+ 1

end while
return wN

2.4.3 Learning

We split learning into two subproblems: first, given an ordered sequence of feature

templates and our inference procedure, we wish to learn parameters that optimize

accuracy while using as few of those templates as possible. Second, given a method

for training feature templated classifiers, we want to learn an ordering of templates

that optimizes accuracy.

We wish to optimize several different objectives during learning: template pa-

rameters should have strong predictive power on their own, but also work well when

combined with the scores from later templates. Additionally, we want to encour-

age well-calibrated confidence scores that allow us to stop prediction early without

significant reduction in generalization ability.
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2.4.4 Learning the parameters

To learn parameters that encourage the use of few feature templates, we look at

the model as outputting not a single prediction but a sequence of prefix predictions

{Pi}. For each training example, each feature template receives a number of hinge-

loss gradients equal to its distance from the index where the margin requirement is

finally reached. This is equivalent to treating each prefix as its own model for which

we have a hinge loss function, and learning all models simultaneously. Our high-level

approach is described in Algorithm 2.

Concretely, for k feature templates we optimize the following structured max-

margin objective (with the dependence of P ’s on w written explicitly where helpful):

w∗ = arg min
w

∑
(x,y)

`(x, y,w) (2.5)

`(x, y,w) =

i∗y∑
i=1

h(Pi(x,w), y) (2.6)

i∗y = min
i∈{1..k}

i s.t. h(Pi, y) = 0 (2.7)

The per-example gradient of this objective for weights wj corresponding to feature

template Φj then corresponds to

∂`

∂wj

=

i∗y∑
i=j

Φj(x, yloss(Pi, y))− Φj(x, y). (2.8)

where we define

yloss(Pi, y) = arg max
y′

Pi,y′ −m · I(y′ = y), (2.9)

where I is an indicator function of the label y, used to define loss-augmented inference.

We add an `2 regularization term to the objective, and tune the margin m and the

regularization strength to tradeoff between speed and accuracy. In our experiments,
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we used a development set to choose a regularizer and margin that reduced test-time

speed as much as possible without decreasing accuracy. We then varied the margin

for that same model at test time to achieve larger speed gains at the cost of accuracy.

In all experiments, the margin with which the model was trained corresponds to the

largest margin reported, i.e. that with the highest accuracy.

2.4.5 Learning the template ordering

We examine three approaches to learning the template ordering.

2.4.5.1 Group Lasso and Group Orthogonal Matching Pursuit

The Group Lasso regularizer (Yuan and Lin, 2006) penalizes the sum of `2-norms

of weights of feature templates (different from what is commonly called “`2” regu-

larization, penalizing squared `2 norms),
∑

i ci‖wi‖2, where ci is a weight for each

template. This regularizer encourages entire groups of weights to be set to 0, whose

templates can then be discarded from the model. By varying the strength of the

regularizer, we can learn an ordering of the importance of each template for a given

model. The included groups for a given regularization strength are nearly always

subsets of one another (technical conditions for this to be true are given in Hastie

et al. (2007)). The sequence of solutions for varied regularization strength is called

the regularization path, and by slight abuse of terminology we use this to refer to the

induced template ordering.

An alternative and related approach to learning template orderings is based on

the Group Orthogonal Matching Pursuit (GOMP) algorithm for generalized linear

models (Lozano et al., 2011; Swirszcz et al., 2009), with a few modifications for

the setting of high-dimensional, sparse NLP data (described in §2.4.5.2). Orthogonal

matching pursuit algorithms are a set of stagewise feature selection techniques similar

to forward stagewise regression (Hastie et al., 2007) and LARS (Efron et al., 2004). At

each stage, GOMP effectively uses each feature template to perform a linear regression

37



to fit the gradient of the loss function. This attempts to find the correlation of each

feature subset with the residual of the model. It then adds the feature template that

best fits this gradient, and retrains the model. The main weakness of this method is

that it fits the gradient of the training error which can rapidly overfit for sparse, high-

dimensional data. Ultimately, we would prefer to use a development set for feature

selection.

2.4.5.2 Sparse Regularized Group Orthogonal Matching Pursuit

Group Orthogonal Matching Pursuit (GOMP) picks a stagewise ordering of fea-

ture templates to add to a generalized linear model. At each stage, GOMP effectively

uses each feature template to perform a linear regression to fit the gradient of the loss

function. This attempts to find the correlation of each feature subset with the resid-

ual of the model. It then adds the feature template that best fits this gradient, and

retrains the model. We adapt this algorithm to the setting of high-dimensional NLP

problems by efficiently inverting the covariance matrices of the feature templates, and

regularizing the computation of the residual correlation. This results in a scalable

feature selection technique for our problem setting, detailed below.

For purposes of exposition, we will break from the notation of §2.3 that combines

features of x and y since the algorithm is designed from a linear-algebraic, regression

standpoint that considers the design matrix X and the label matrix Y as separate

entities. We will call each group of features Gi, its associated design matrix Xi (the

feature matrix for that template).

At each step k, we use our selected set of feature templates/groups and compute

the gradient of our loss function on the training data set, call it r(k), and then we

select a new feature template Gi with corresponding design matrix Xi to add to our

selected groups, by finding the index that maximizes:
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arg max
i

tr
(
(r(k))>Xi(X

>
i Xi)

−1X>i r
(k)
)

(2.10)

After adding this template, we retrain the model on the selected set of templates and

repeat. Note that this appears to be a difficult optimization problem to solve: some of

our templates have hundreds of thousands or even millions of features and computing

the inverse (X>i Xi)
−1 could be expensive – however, due to the special structure

of our NLP problems, where each feature template contains one-hot features, this

covariance matrix is diagonal and hence trivially invertible.

However, we find in practice that due to the large number of features and rela-

tively small number of examples in our NLP models, this picks very-high cardinality

feature templates early on that generalize poorly. The reason becomes apparent when

we notice that the correlation-finding subroutine, Equation (2.10), is essentially an

un-regularized least squares problem, attempting to regress the loss function gradient

onto the data matrices for each template. This suggests we should try a form of regu-

larization, by using some template-dependent constant αi to regularize the inversion

of the covariance matrix:

arg max
i

tr
(
(r(k))>Xi(X

>
i Xi + λiI)−1X>i r

(k)
)

(2.11)

Heuristically, we pick this regularization parameter to be a low fractional power of

the dimension size for each feature template λi = col(Xi)
αi , where αi is picked to be

in the regime of [0.25, 0.5].

2.4.5.3 Wrapper Method

The wrapper method (Kohavi and John, 1997) is a meta-algorithm for feature

selection, usually based on a validation set. We employ it in a stagewise approach to

learning a sequence of templates. Given an ordering of the initial sub-sequence and

a learning procedure, we add each remaining template to our ordering and estimate
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parameters, selecting as the next template the one that gives the highest increase in

development set performance. We begin the procedure with no templates, and repeat

the procedure until we have a total ordering over the set of feature templates. When

learning the ordering we use the same hyperparameters as will be used during final

training.

While simpler than the Lasso and Matching Pursuit approaches, we empirically

found this approach to outperform the others, due to the necessity of using a devel-

opment set to select features for our high-dimensional application areas.

2.5 Related Work

Our work is primarily inspired by previous research on cascades of classifiers;

however, it differs significantly by approximating the score of a single linear model—

scoring as few of its features as possible to obtain sufficient confidence.

We pose and address the question of whether a single, interacting set of parameters

can be learned such that they efficiently both (1) provide high accuracy and (2) good

confidence estimates throughout their use in the lengthening prefixes of the feature

template sequence. (These two requirements are both incorporated into our novel

parameter estimation algorithm.) In contrast, other work (He et al., 2013; Weiss and

Taskar, 2013) learns a separate classifier to determine when to add features. Such

heavier-weight approaches are unsuitable for our setting, where the core classifier’s

features and scoring are already so cheap that adding complex decision-making would

cause too much computational overhead.

Other previous work on cascades uses a series of increasingly complex models, such

as the Viola-Jones face detection cascade of classifiers (Viola and Jones, 2001), which

applies boosted trees trained on subsets of features in increasing order of complexity as

needed, aiming to reject many sub-image windows early in processing. We allow scores
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from each layer to directly affect the final prediction, avoiding duplicate incorporation

of evidence.

Our work is also related to the field of learning and inference under test-time

budget constraints (Grubb and Bagnell, 2012; Trapeznikov and Saligrama, 2013).

However, common approaches to this problem also employ auxiliary models to rank

which feature to add next, and are generally suited for problems where features are

expensive to compute (e.g vision) and the extra computation of an auxiliary pruning-

decision model is offset by substantial reduction in feature computations (Weiss and

Taskar, 2013). Our method uses confidence scores directly from the model, and so

requires no additional computation, making it suitable for speeding up classifier-based

NLP methods that are already very fast and have relatively cheap features.

Some cascaded approaches strive at each stage to prune the number of possible

output structures under consideration, whereas in our case we focus on pruning the

input features. For example, Xu et al. (2013) learn a tree of classifiers that sub-divides

the set of classes to minimize average test-time cost. Chen et al. (2012) similarly use

a linear cascade instead of a tree. Weiss and Taskar (2010) prune output labels in the

context of structured prediction through a cascade of increasingly complex models,

and Rush and Petrov (2012) successfully apply these structured prediction cascades

to the task of graph-based dependency parsing.

In the context of NLP, He et al. (2013) describe a method for dynamic feature

template selection at test time in graph-based dependency parsing. Their technique

is particular to the parsing task—making a binary decision about whether to lock in

edges in the dependency graph at each stage, and enforcing parsing-specific, hard-

coded constraints on valid subsequent edges. Furthermore, as described above, they

employ an auxiliary model to select features.

41



He and Eisner (2012) share our goal to speed test time prediction by dynamically

selecting features, but they also learn an additional model on top of a fixed base

model, rather than using the training objective of the model itself.

While our comparisons above focus on other methods of dynamic feature selection,

there also exists related work in the field of general (static) feature selection. The

most relevant results come from the applications of group sparsity, such as the work of

Martins et al. (2011) in Group Lasso for NLP problems. The Group Lasso regularizer

(Yuan and Lin, 2006) sparsifies groups of feature weights (e.g. feature templates),

and has been used to speed up test-time prediction by removing entire templates

from the model. The key difference between this work and ours is that we select our

templates based on the test-time difficulty of the inference problem, while the Group

Lasso must do so at train time. In §2.6.4, we compare against Group Lasso and show

improvements in accuracy and speed.

Note that non-grouped approaches to selecting sparse feature subsets, such as

boosting and `1 regularization, do not achieve our goal of fast test-time prediction

in NLP models, as they would not zero-out entire templates, and still require the

computation of a feature for every template for every test instance.

2.6 Experimental Results

We present experiments on three NLP tasks for which greedy sequence labeling

has been a successful solution: part-of-speech tagging, transition-based dependency

parsing and named entity recognition. In all cases our method achieves multiplicative

speedups at test time with little loss in accuracy.

2.6.1 Part-of-speech tagging

We conduct our experiments on classifier-based greedy part-of-speech tagging.

Our baseline tagger uses the same features described in Choi and Palmer (2012).
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Model/m Tok. Unk. Feat. Speed

Baseline 97.22 88.63 46 1x
Stagewise 96.54 83.63 9.50 2.74
Fixed 89.88 56.25 1 16.16x
Fixed 94.66 60.59 3 9.54x
Fixed 96.16 87.09 5 7.02x
Fixed 96.88 88.81 10 3.82x
Dynamic/15 96.09 83.12 1.92 10.36x
Dynamic/35 97.02 88.26 4.33 5.22x
Dynamic/45 97.16 88.84 5.87 3.97x
Dynamic/50 97.21 88.95 6.89 3.41x

Table 2.1: Comparison of our models using different margins m, with speeds measured
relative to the baseline. We train a model as accurate as the baseline while tagging
3.4x tokens/sec, and in another model maintain > 97% accuracy while tagging 5.2x,
and > 96% accuracy with a speedup of 10.3x.

We evaluate our models on the Penn Treebank WSJ corpus (Marcus et al., 1993b),

employing the typical split of sections used for part-of-speech tagging: 0-18 train, 19-

21 development, 22-24 test. The parameters of our models are learned using AdaGrad

(Duchi et al., 2011) with `2 regularization via regularized dual averaging (Xiao, 2009),

and we used random search on the development set to select hyperparameters.

This baseline model (baseline) tags at a rate of approximately 23,000 tokens per

second on a 2010 2.1GHz AMD Opteron machine with accuracy comparable to similar

taggers (Choi and Palmer, 2012; Giménez and Màrquez, 2004; Toutanova et al., 2003).

On the same machine the greedy Stanford CoreNLP left3words part-of-speech tagger

also tags at approximately 23,000 tokens per second. Significantly higher absolute

speeds for all methods can be attained on more modern machines.

We include additional baselines that divide the features into templates, but train

the templates’ parameters more simply than our algorithm. The stagewise baseline

learns the model parameters for each of the templates in order, starting with only one

template—once each template has been trained for a fixed number of iterations, that

template’s parameters are fixed and we add the next one. We also create a separately-
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Figure 2.1: Left-hand plot depicts test accuracy as a function of the average number of
templates used to predict. Right-hand plot shows speedup as a function of accuracy.
Our model consistently achieves higher accuracy while using fewer templates resulting
in the best ratio of speed to accuracy.

trained baseline model for each fixed prefix of the feature templates (fixed). This

shows that our speedups are not simply due to superfluous features in the later

templates.

Our main results are shown in Table 2.1. We increase the speed of our baseline

POS tagger by a factor of 5.2x without falling below 97% test accuracy. By tuning

our training method to more aggressively prune templates, we achieve speed-ups of

over 10x while providing accuracy higher than 96%. It is worth noting that the

results for our method (dynamic) are all obtained from a single trained model (with

hyperparameters optimized for m = 50, which we observed gave a good speedup with

nearly no lossin accuracy on the development set), the only difference being that we

varied the margin at test time. Superior results for m 6= 50 could likely be obtained

by optimizing hyperparameters for the desired margin.

Results show our method (dynamic) learns to dynamically select the number of

templates, often using only a small fraction. The majority of test tokens can be tagged

using only the first few templates: just over 40% use one template, and 75% require

at most four templates, while maintaining 97.17% accuracy. On average 6.71 out of
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46 templates are used, though a small set of complicated instances never surpass the

margin and use all 46 templates. The right hand plot of Figure 2.1 shows speedup

vs. accuracy for various settings of the confidence margin m.

The left plot in Figure 2.1 depicts accuracy as a function of the number of tem-

plates used at test time. We present results for both varying the number of templates

directly (dashed) and margin (solid). The baseline model trained on all templates

performs very poorly when using margin-based inference, since its training objective

does not learn to predict with only prefixes. When predicting using a fixed subset

of templates, we use a different baseline model for each one of the 46 total template

prefixes, learned with only those features; we then compare the test accuracy of our

dynamic model using template prefix i to the baseline model trained on the fixed

prefix i. Our model performs just as well as these separately trained models, demon-

strating that our objective learns weights that allow each prefix to act as its own

high-quality classifier.

2.6.1.1 Learning the template ordering

As described in §2.4.5, we experimented on part-of-speech tagging with three dif-

ferent algorithms for learning an ordering of feature templates: Group Lasso, Group

Orthogonal Matching Pursuit (GOMP), and the wrapper method. For the case of

Group Lasso, this corresponds to the experimental setup used when evaluating Group

Lasso for NLP in Martins et al. (2011). As detailed in the part-of-speech tagging ex-

periments of Appendix 2.6.4, we found the wrapper method to work best in our

dynamic prediction setting. Therefore, we use it in our remaining experiments in

parsing and named entity recognition. Essentially, the Group Lasso picks small tem-

plates too early in the ordering by penalizing template norms, and GOMP picks large

templates too early by overfitting the train error.
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2.6.2 Transition-based dependency parsing

We base our parsing experiments on the greedy, non-projective transition-based

dependency parser described in Choi and Palmer (2011a). Our model uses a total of

60 feature templates based mainly on the word form, POS tag, lemma and assigned

head label of current and previous input and stack tokens, and parses about 300

sentences/second on a modest 2.1GHz AMD Opteron machine.

We train our parser on the English Penn TreeBank, learning the parameters using

AdaGrad and the parsing split, training on sections 2–21, testing on section 23 and us-

ing section 22 for development and the Stanford dependency framework (de Marneffe

and Manning, 2008). POS tags were automatically generated via 10-way jackknif-

ing using the baseline POS model described in the previous section, trained with

AdaGrad using `2 regularization, with parameters tuned on the development set to

achieve 97.22 accuracy on WSJ sections 22-24. Lemmas were automatically generated

using the ClearNLP morphological analyzer. We measure accuracy using labeled and

unlabeled attachment scores excluding punctuation, achieving a labeled score of 90.31

and unlabeled score of 91.83, which are comparable to similar greedy parsers (Choi

and Palmer, 2011a; Honnibal and Goldberg, 2013).

Our experimental setup is the same as for part-of-speech tagging. We compare

our model (dynamic) to both a single baseline model trained on all features, and a

set of 60 models each trained on a prefix of feature templates. Our experiments vary

the margin used during prediction (solid) as well as the number of templates used

(dashed).

As in part-of-speech tagging, we observe significant test-time speedups when ap-

plying our method of dynamic feature selection to dependency parsing. With a loss

of only 0.04 labeled attachment score (LAS), our model produces parses 2.7 times

faster than the baseline. As listed in Table 2.2, with a more aggressive margin our
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Figure 2.2: Parsing speedup as a function of accuracy. Our model achieves the highest
accuracy while using the fewest feature templates.

Model/m LAS UAS Feat. Speed

Baseline 90.31 91.83 60 1x
Fixed 65.99 70.78 1 27.5x
Fixed 86.87 88.81 10 5.51x
Fixed 88.76 90.51 20 2.83x
Fixed 89.04 90.71 30 1.87x
Dynamic/6.5 88.63 90.36 7.81 5.16x
Dynamic/7.1 89.07 90.73 8.57 4.66x
Dynamic/10 90.16 91.70 13.27 3.17x
Dynamic/11 90.27 91.80 15.83 2.71x

Table 2.2: Comparison of our baseline and templated models using varying margins
m and numbers of templates.

model can parse more than 3 times faster while remaining above 90% LAS, and more

than 5 times faster while maintaining accuracy above 88.5%.

In Figure 2.2 we see not only that our dynamic model consistently achieves higher

accuracy while using fewer templates, but also that our model (dynamic, dashed)

performs exactly as well as separate models trained on each prefix of templates (base-

line, dashed), demonstrating again that our training objective is successful in learning

a single model that can predict as well as possible using any prefix of feature templates

while successfully selecting which of these prefixes to use on a per-example basis.
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Model/m Test F1 Feat. Speed

Baseline 88.35 46 1x
Fixed 65.05 1 19.08x
Fixed 85.00 10 2.14x
Fixed 85.81 13 1.87x
Dynamic/3.0 87.62 7.23 2.59x
Dynamic/4.0 88.20 9.45 2.32x
Dynamic/5.0 88.23 12.96 1.96x

Table 2.3: Comparison of our baseline and templated NER models using varying
margin m and number of templates.

2.6.3 Named entity recognition

We implement a greedy left-to-right named entity recognizer based on Ratinov

and Roth (2009) using a total of 46 feature templates, including surface features such

as lemma and capitalization, gazetteer look-ups, and each token’s extended prediction

history, as described in (Ratinov and Roth, 2009). Training, tuning, and evaluation

are performed on the CoNLL 2003 English data set with the BILOU encoding to

denote label spans.

Our baseline model achieves F1 scores of 88.35 and 93.37 on the test and develop-

ment sets, respectively, and tags at a rate of approximately 5300 tokens per second on

the hardware described in the experiments above. We achieve a 2.3x speedup while

maintaining F1 score above 88 on the test set.

2.6.4 Experiments: Learning Template Ordering

As described in §2.4.5, we experimented with 3 different algorithms for learn-

ing an ordering of feature templates: Group lasso (Lasso), which prunes feature

templates based on their norm after `1 regularization; Group orthogonal matching

pursuit (GOMP), which selects features by iteratively training a model using the

existing features then adds the template that maximizes Eqn. 2.11; and the wrapper

method (wrapper). We use the methods of setting regularization parameters for
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Model Templates Accuracy Speed

Baseline 46 97.22 1x
Lasso 6 90.53 10.97x
Lasso 10 94.33 7.67x
Lasso 15 94.84 5.23x
Lasso 23 96.19 3.31x
GOMP 6 92.18 6.83x
GOMP 10 94.15 4.29x
GOMP 15 96.46 2.83x
GOMP 23 96.81 1.96x
Wrapper 6 96.45 6.13x
Wrapper 10 96.88 3.82x
Wrapper 15 97.01 2.62x
Wrapper 23 97.15 1.70x

Table 2.4: Comparison of the wrapper method for learning template orderings with
group lasso and group orthogonal matching pursuit. Speeds are measured relative
to the baseline, which is about 23,000 tokens/second on a 2.1GHz AMD Opteron
machine.

Lasso and GOMP discussed in §2.4.5. Note that for the case of Group Lasso, this

corresponds to the experimental setup used when evaluating Group Lasso for NLP in

Martins et al. (2011).

We compare the different methods for picking template orderings in Table 2.4,

training and testing models for WSJ POS tagging. To keep concerns separate, we use

standard sequential prediction using all templates rather than our dynamic prediction

method. We found the wrapper method to be the most successful towards our goal of

achieving high accuracy while using as few templates as possible, which is important

when using dynamic prediction. While the wrapper method comes within 0.15% of

state-of-the-art accuracy using the first 23 out of 46 total templates, neither GOMP

nor Lasso are able to exceed 97% accuracy with so few templates.

In terms of speed, Lasso outperforms both GOMP and the wrapper method,

predicting 3 times as fast with 23 templates as the baseline, whereas GOMP predicts

twice as fast, and the wrapper method 1.7 times baseline speed. It is initially puzzling
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that for a given number of templates, each model does not achieve the same speed

increase. Since each template has only a single active feature for a given test instance,

we are computing the same number of multiplications and additions for each model.

However, the different models are selecting very different feature templates, whose

features can take a widely different amount of time to compute. For example, creating

and hashing the string representing a trigram conjunction into a sparse vector takes

much longer than creating a feature whose template has only two possible values,

true and false.

This behavior is a reflection of some interesting properties of the template selection

methods, which help to explain the superior performance of the wrapper method.

Since the Group Lasso penalizes the norms of the templates as a surrogate for

the sparsity (a 0-1 loss), it is naturally biased against large templates and will always

include very small templates – the early stages of the regularization path will contain

these small templates whose features can be quickly computed. Another likely source

of speedup arises from the impact on cache locality of using much smaller cardinality

weight vectors. This also explains the poor performance of the induced template

ordering. Including small templates early on runs at cross-purposes to our goal of

placing highly predictive templates up front for our dynamic prediction algorithm.

In contrast, the wrapper method and GOMP both pick larger, more predictive

templates early on since they attempt to minimize loss functions that are unrelated

to template size. While GOMP produces better orderings than lasso, in this case the

wrapper method works better because the template ordering produced by GOMP is

unable to incorporate signal from a validation set and over-fits the training set.

We find that the wrapper method works well with our dynamic training objective,

which benefits from predictive, though expensive, features early on in the ordering.

When using dynamic prediction, the speed per template used is offset by using sig-

nificantly fewer templates on examples that are easier to classify.
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CHAPTER 3

FAST AND ACCURATE ENTITY RECOGNITION WITH
ITERATED DILATED CONVOLUTIONS

Recent advances in GPU hardware have led to the emergence of bi-directional

LSTMs as a standard method for obtaining per-token vector representations serving

as input to labeling tasks such as NER (often followed by prediction in a linear-

chain CRF). Though expressive and accurate, these models fail to fully exploit GPU

parallelism, limiting their computational efficiency. This chapter proposes a faster

alternative to Bi-LSTMs for NER: Iterated Dilated Convolutional Neural Networks

(ID-CNNs), which have better capacity than traditional CNNs for large context and

structured prediction. Unlike LSTMs whose sequential processing on sentences of

length N requires O(N) time even in the face of parallelism, ID-CNNs permit fixed-

depth convolutions to run in parallel across entire documents. We describe a distinct

combination of network structure, parameter sharing and training procedures that

enable dramatic 14-20x test-time speedups while retaining accuracy comparable to

the Bi-LSTM-CRF. Moreover, ID-CNNs trained to aggregate context from the entire

document are more accurate than Bi-LSTM-CRFs while attaining 8x faster test time

speeds.

3.1 Introduction

The massively parallel computation facilitated by GPU hardware has led to a surge

of successful neural network architectures for sequence labeling (Chiu and Nichols,

2016; Lample et al., 2016; Ling et al., 2015c; Ma and Hovy, 2016). While these models
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are expressive and accurate, they fail to fully exploit the parallelism opportunities of

a GPU, and thus their speed is limited. Specifically, they employ either recurrent

neural networks (RNNs) for feature extraction, or Viterbi inference in a structured

output model, both of which require sequential computation across the length of the

input.

Instead, parallelized runtime independent of the length of the sequence saves time

and energy costs, maximizing GPU resource usage and minimizing the amount of

time it takes to train and evaluate models. Convolutional neural networks (CNNs)

provide exactly this property (Kalchbrenner et al., 2014; Kim, 2014). Rather than

composing representations incrementally over each token in a sequence, they apply

filters in parallel across the entire sequence at once. Their computational cost grows

with the number of layers, but not the input size, up to the memory and threading

limitations of the hardware. This provides, for example, audio generation models

that can be trained in parallel (van den Oord et al., 2016).

Despite the clear computational advantages of CNNs, RNNs have become the

standard method for composing deep representations of text. This is because a to-

ken encoded by a bidirectional RNN will incorporate evidence from the entire input

sequence, but the CNN’s representation is limited by the receptive field of the archi-

tecture. Specifically, in a network composed of a series of stacked convolutional layers

of convolution width w, the number r of context tokens incorporated into a token’s

representation at a given layer l, is given by r = l(w − 1) + 1. The number of layers

required to incorporate the entire input context grows linearly with the length of the

sequence. To avoid this scaling, one could pool representations across the sequence,

but this is not appropriate for sequence labeling, since it reduces the output resolution

of the representation.

In response, this chapter presents an application of dilated convolutions (Yu and

Koltun, 2016) for sequence labeling (Figure 3.1). For dilated convolutions, the recep-
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Figure 3.1: A dilated CNN block with maximum dilation width 4 and filter width
3. Neurons contributing to a single highlighted neuron in the last layer are also
highlighted.

tive field can grow exponentially with the depth, with no loss in resolution at each

layer and with a modest number of parameters to estimate. Like typical CNN layers,

dilated convolutions operate on a sliding window of context over the sequence, but

unlike conventional convolutions, the context need not be consecutive; the dilated

window skips over every dilation width d inputs. By stacking layers of dilated con-

volutions of exponentially increasing dilation width, we can expand the size of the

receptive field to cover the entire length of most sequences using only a few layers:

The size of the receptive field for a token at layer l is now given by 2l+1 − 1. More

concretely, just four stacked dilated convolutions of width 3 produces token represen-

tations with a receptive field of 31 tokens – longer than the average sentence length

(23) in the Penn TreeBank.

Our overall iterated dilated CNN architecture (ID-CNN) repeatedly applies the

same block of dilated convolutions to token-wise representations. This parameter

sharing prevents overfitting and also provides opportunities to inject supervision on

intermediate activations of the network. Similar to models that use RNN features,

the ID-CNN provides two methods for performing prediction: we can predict each

token’s label independently, or by running Viterbi inference in a chain structured

graphical model.

In experiments on CoNLL 2003 and OntoNotes 5.0 English NER, we demonstrate

significant speed gains of our ID-CNNs over various recurrent models, while main-
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taining similar F1 performance. When performing prediction using independent clas-

sification, the ID-CNN consistently outperforms a bidirectional LSTM (Bi-LSTM),

and performs on par with inference in a CRF with features extracted by a Bi-LSTM

(Bi-LSTM-CRF). As a feature extractor for a CRF, our model out-performs the

Bi-LSTM-CRF. We also apply ID-CNNs to entire documents, where independent to-

ken classification is more accurate than the Bi-LSTM-CRF while decoding almost

8× faster. The clear accuracy gains resulting from incorporating broader context

suggest that these models could similarly benefit many other context-sensitive NLP

tasks which have until now been limited by the computational complexity of existing

context-rich models.

3.2 Background

3.2.1 Conditional Probability Models for Tagging

In this chapter we consider the two factorizations of the conditional distribution

described in §1.1.1 of Chapter 1.

Let x = [x1, . . . , xT ] be our input text and y = [y1, . . . , yT ] be per-token output

tags. Let D be the domain size of each yi. We predict the most likely y, given a

conditional model P (y|x).

First, we have:

P (y|x) =
T∏
t=1

P (yt|F (x)), (3.1)

where the tags are conditionally independent given some features for x.

We also consider a linear-chain CRF model that couples all of y together:

P (y|x) =
1

Zx

T∏
t=1

ψt(yt|F (x))ψp(yt, yt−1), (3.2)
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where ψt is a local factor, ψp is a pairwise factor that scores consecutive tags, and

Zx is the partition function (Lafferty et al., 2001). To avoid overfitting, ψp does not

depend on the timestep t or the input x in our experiments.

In Equation 3.1, O(D) prediction is trivially parallelizable across the length of

the sequence. However, feature extraction may not necessarily be parallelizable. For

example, RNN-based features require iterative passes along the length of x. Prediction

using Equation 3.2 requires global search using the O(D2T ) Viterbi algorithm. While

the factorization in Equation 3.2 can guarantee that certain output constraints will

always be satisfied and may also have better sample complexity than Equation 3.1,

it has much worse computational complexity and parallelizability than independent

prediction.

In this chapter we explore parameterizations of the feature function F which

allow for more complex reasoning about interactions among neighboring output tags,

without requiring the expensive inference of Equation 3.2. We describe these models

in more detail below.

3.3 Dilated Convolutions

Recall convolutional neural networks (CNNs) for NLP, as described in §1.1.2.3 in

Chapter 1. A one-dimensional CNN layer is equivalent to applying an affine trans-

formation, Wc to a sliding window of width r tokens on either side of each token in

the sequence. Here, and throughout the chapter, we do not explicitly write the bias

terms in affine transformations. The sliding-window representation ct for each token

xt is:

ct = Wc

r⊕
k=0

xt±k, (3.3)

where ⊕ is vector concatenation.
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Dilated convolutions perform the same operation, except rather than transforming

adjacent inputs, the convolution is defined over a wider receptive field by skipping over

δ inputs at a time, where δ is the dilation width. We define the dilated convolution

operator:

ct = Wc

r⊕
k=0

xt±kδ. (3.4)

A dilated convolution of width 1 is equivalent to a simple convolution. Using the

same number of parameters as a simple convolution with the same radius, the δ > 1

dilated convolution incorporates broader context into the representation of a token

than a simple convolution.

However, it is clear that simply applying a dilated convolution to the input in

order to predict the output would likely miss important evidence for labeling a token.

For example, a dilated convolution of width 2 would skip over the direct neighbors of

a token, which often provide important context for that token’s part-of-speech tag or

entity membership.

3.3.1 Multi-Scale Context Aggregation

We can leverage the ability of dilated convolutions to incorporate global context

without losing important local information by stacking dilated convolutions of in-

creasing width. First described for pixel classification in computer vision, Yu and

Koltun (2016) achieve state-of-the-art results on image segmentation benchmarks by

stacking dilated convolutions with exponentially increasing rates of dilation, a tech-

nique they refer to as multi-scale context aggregation. By feeding the outputs of each

dilated convolution as the input to the next, increasingly non-local information is

incorporated into each pixel’s representation. Performing a dilation-1 convolution in

the first layer ensures that no pixels within the receptive field of any pixel are ex-

cluded. By doubling the dilation width at each layer, the size of the receptive field
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grows exponentially while the number of parameters grows only linearly with the

number of layers, so a pixel representation quickly incorporates rich global evidence

from the entire image.

3.4 Iterated Dilated CNNs

Stacked dilated CNNs can easily incorporate global information from a whole

sentence or document. For example, with a radius of 1 and 4 layers of dilated con-

volutions, the receptive field of each token is width 31, which exceeds the average

sentence length (23) in the Penn TreeBank corpus. With a radius of size 2 and 8

layers of dilated convolutions, the receptive field exceeds 1,000 tokens, long enough

to encode a full newswire document.

Unfortunately, simply increasing the depth of stacked dilated CNNs causes con-

siderable over-fitting in our experiments. In response, we present Iterated Dilated

CNNs (ID-CNNs), which instead apply the same small stack of dilated convolutions

multiple times, each iterate taking as input the result of the last application. Re-

peatedly employing the same parameters in a recurrent fashion provides both broad

receptive fields and desirable generalization capabilities. We also obtain significant

accuracy gains with a training objective that strives for accurate labeling after each

iterate, allowing follow-on iterates to observe and resolve dependency violations.

3.4.1 Model Architecture

The network takes as input a sequence of T vectors xt, and outputs a sequence

of per-class scores ht, which serve either as the local conditional distributions of

Eqn. (3.1) or the local factors ψt of Eqn. (3.2).

We denote the jth dilated convolutional layer of dilation width δ as D
(j)
δ . The

first layer in the network is a dilation-1 convolution D
(0)
1 that transforms the input

to a representation it:
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it = D
(0)
1 xt (3.5)

Next, Lc layers of dilated convolutions of exponentially increasing dilation width are

applied to it, folding in increasingly broader context into the embedded representation

of xt at each layer. Let r() denote the ReLU activation function (Glorot et al., 2011).

Beginning with ct
(0) = it we define the stack of layers with the following recurrence:

ct
(j) = r

(
D

(j−1)
2Lc−1ct

(j−1)
)

(3.6)

and add a final dilation-1 layer to the stack:

ct
(Lc+1) = r

(
D

(Lc)
1 ct

(Lc)
)

(3.7)

We refer to this stack of dilated convolutions as a block B(·), which has output

resolution equal to its input resolution. To incorporate even broader context without

over-fitting, we avoid making B deeper, and instead iteratively apply B Lb times,

introducing no extra parameters. Starting with bt
(1) = B (it):

bt
(k) = B

(
bt

(k−1)
)

(3.8)

We apply a simple affine transformation Wo to this final representation to obtain

per-class scores for each token xt:

ht
(Lb) = Wobt

(Lb) (3.9)

3.4.2 Training

Our main focus is to apply the ID-CNN as feature extraction for the first condi-

tional model described in Sec. 3.2.1, where tags are conditionally independent given
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deep features, since this will enable prediction that is parallelizable across the length

of the input sequence. Here, maximum likelihood training is straightforward because

the likelihood decouples into the sum of the likelihoods of independent logistic regres-

sion problems for every tag, with natural parameters given by Eqn. (3.9):

1

T

T∑
t=1

logP (yt | ht
(Lb)) (3.10)

We can also use the ID-CNN as input features for the CRF model (Eqn. (3.2)),

where the partition function and its gradient are computed using the forward-backward

algorithm.

We next present an alternative training method that helps bridge the gap be-

tween these two techniques. Sec. 3.2.1 identifies that the CRF has preferable sample

complexity and accuracy since prediction directly reasons in the space of structured

outputs. In response, we compile some of this reasoning in output space into ID-CNN

feature extraction. Instead of explicit reasoning over output labels during inference,

we train the network such that each block is predictive of output labels. Subsequent

blocks learn to correct dependency violations of their predecessors, refining the final

sequence prediction.

To do so, we first define predictions of the model after each of the Lb applications

of the block. Let ht
(k) be the result of applying the matrix Wo from (3.9) to bt

(k),

the output of block k. We minimize the average of the losses for each application of

the block:

1

Lb

Lb∑
k=1

1

T

T∑
t=1

logP (yt | ht
(k)). (3.11)

By rewarding accurate predictions after each application of the block, we learn

a model where later blocks are used to refine initial predictions. The loss also helps

reduce the vanishing gradient problem (Hochreiter, 1998) for deep architectures. Such
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an approach has been applied in a variety of contexts for training very deep networks

in computer vision (Gülçehre and Bengio, 2016; Lee et al., 2015; Romero et al., 2014;

Szegedy et al., 2015), but not to our knowledge in NLP.

We apply dropout (Srivastava et al., 2014) to the raw inputs xt and to each

block’s output bt
(b) to help prevent overfitting. The version of dropout typically used

in practice has the undesirable property that the randomized predictor used at train

time differs from the fixed one used at test time. Ma et al. (2017) present dropout with

expectation-linear regularization, which explicitly regularizes these two predictors to

behave similarly. All of our best reported results include such regularization. This is

the first investigation of the technique’s effectiveness for NLP, including for RNNs.

We encourage its further application.

3.5 Related work

The state-of-the art models for sequence labeling include an inference step that

searches the space of possible output sequences of a chain-structured graphical model,

or approximates this search with a beam (Chiu and Nichols, 2016; Collobert et al.,

2011; Lample et al., 2016; Ma and Hovy, 2016; Weiss et al., 2015). These outperform

similar systems that use the same features, but independent local predictions. On

the other hand, the greedy sequential prediction (Daumé III et al., 2009) approach

of Ratinov and Roth (2009), which employs lexicalized features, gazetteers, and word

clusters, outperforms CRFs with similar features.

LSTMs (Hochreiter and Schmidhuber, 1997) were used for NER as early as the

CoNLL shared task in 2003 (Hammerton, 2003; Sang and Meulder, 2003). More

recently, a wide variety of neural network architectures for NER have been proposed.

Collobert et al. (2011) employ a one-layer CNN with pre-trained word embeddings,

capitalization and lexicon features, and CRF-based prediction. Huang et al. (2015)

achieved state-of-the-art accuracy on part-of-speech, chunking and NER using a Bi-
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LSTM-CRF. Lample et al. (2016) proposed two models which incorporated Bi-LSTM-

composed character embeddings alongside words: a Bi-LSTM-CRF, and a greedy

stack LSTM which uses a simple shift-reduce grammar to compose words into labeled

entities. Their Bi-LSTM-CRF obtained the state-of-the-art on four languages without

word shape or lexicon features. Ma and Hovy (2016) use CNNs rather than LSTMs

to compose characters in a Bi-LSTM-CRF, achieving state-of-the-art performance on

part-of-speech tagging and CoNLL NER without lexicons. Chiu and Nichols (2016)

evaluate a similar network but propose a novel method for encoding lexicon matches,

presenting results on CoNLL and OntoNotes NER. Yang et al. (2016) use GRU-

CRFs with GRU-composed character embeddings of words to train a single network

on many tasks and languages.

In general, distributed representations for text can provide useful generalization

capabilities for NER systems, since they can leverage unsupervised pre-training of

distributed word representations (Collobert et al., 2011; Passos et al., 2014; Turian

et al., 2010). Though our models would also likely benefit from additional features

such as character representations and and lexicons, we focus on simpler models which

use word-embeddings alone, leaving more elaborate input representations to future

work.

In these NER approaches, CNNs were used for low-level mapping feature extrac-

tion that feeds into alternative architectures. Overall, end-to-end CNNs have mainly

been used in NLP for sentence classification, where the output representation is lower

resolution is lower than that of the input Kalchbrenner et al. (2014); Kim (2014);

Toutanova et al. (2015); Zhang et al. (2015a). Lei et al. (2015) present a CNN vari-

ant where convolutions adaptively skip neighboring words. While the flexibility of

this model is powerful, its adaptive behavior is not well-suited to GPU acceleration.

Our work draws on the use of dilated convolutions for image segmentation in the

computer vision community (Chen et al., 2015; Yu and Koltun, 2016). Similar to our
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block, Yu and Koltun (2016) employ a context-module of stacked dilated convolutions

of exponentially increasing dilation width. Dilated convolutions were recently applied

to the task of speech generation (van den Oord et al., 2016), and concurrent with this

work, Kalchbrenner et al. (2016) posted a pre-print describing a network for machine

translation that uses dilated convolutions in the encoder and decoder components.

We are the first to use dilated convolutions for sequence labeling.

The broad receptive field of the ID-CNN helps aggregate document-level context.

Ratinov and Roth (2009) incorporate document context in their greedy model by

adding features based on tagged entities within a large, fixed window of tokens. Prior

work has also posed a structured model that couples predictions across the whole

document (Bunescu and Mooney, 2004; Finkel et al., 2005; Sutton and McCallum,

2004).

3.6 Experimental Results

We describe experiments on two benchmark English named entity recognition

datasets. On CoNLL-2003 English NER, our ID-CNN out-performs a Bi-LSTM as

a feature extractor for a CRF, and with greedy decoding performs on-par with the

Bi-LSTM-CRF while running at more than 14 times the speed. We also observe a

performance boost in almost all models when broadening the context to incorporate

entire documents, achieving an average F1 of 90.65 on CoNLL-2003, out-performing

the Bi-LSTM-CRF while decoding at nearly 8 times the speed.

3.6.1 Data and Evaluation

We evaluate using labeled data from the CoNLL-2003 shared task (Sang and

Meulder, 2003) and OntoNotes 5.0 (Hovy et al., 2006; Pradhan et al., 2006). Following

previous work, we use the same OntoNotes data split used for co-reference resolution

in the CoNLL-2012 shared task (Pradhan et al., 2012). For both datasets, we convert
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the IOB boundary encoding to BILOU as previous work found this encoding to result

in improved performance (Ratinov and Roth, 2009). The combined entity types and

boundary encodings result in 17 possible output labels in the CoNLL-2003 corpus and

74 labels in the OntoNotes corpus. As in previous work we evaluate the performance

of our models using segment-level micro-averaged F1 score. Hyperparameters that

resulted in the best performance on the validation set were selected via grid search.

3.6.1.1 Optimization and data pre-processing

Our models are trained end-to-end using backpropagation and mini-batched Adam

(Kingma and Ba, 2015) SGD. We use dropout regularization (Srivastava et al., 2014)

on the input embeddings and final dilation layer of each block, along with the dropout

regularizer described in Ma et al. (2017) using a single Monte Carlo sample for each

training example. We also found word dropout (Dai and Le, 2015; Lample et al.,

2016) crucial for learning a high-quality representation for out-of-vocabulary words.

We used the modified version of identity initialization (Le et al., 2015) reported by Yu

and Koltun (2016) to initialize our dilated layers, which we found to perform the best

in initial experiments compared to orthogonal and Xavier initialization (Glorot and

Bengio, 2010). Since our models use the same number of filters in each dilated layer,

this initialization simplifies to setting the parameters corresponding to the central

token to the identity matrix, and all other parameters (corresponding to left and

right context) to zero. All other layers (embeddings, projections) were initialized

using normally distributed Xavier initialization.

As in previous work, we found that initializing the word embedding lookup table

with pre-trained embeddings was vital to achieve good performance. In initial exper-

iments, we found the 100-dimensional skip-n-gram (Ling et al., 2013) embeddings of

Lample et al. (2016) to outperform the 50-dimensional word embeddings of Collobert

et al. (2011), and so we use these 100-dimensional embeddings in all experiments. We
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concatenate a 5-dimensional word shape vector based on whether the token was all

capitalized, not capitalized, first-letter capitalized or contained a capital letter. We

preprocessed the data by replacing all digits with 0, but did not lowercase thus our

embeddings are case-sensitive.

We use the parameters of the trained sentence models to initialize the parameters

of the document models in order to significantly speed up the rate of convergence of

the document models.

3.6.1.2 Evaluation

To select hyperparameters, we iteratively perform grid search over increasingly

fine-grained settings of dropout, learning rate, Adam β2 and ε parameters, gradient

clipping threshold, number of dilated layers, number of repeated blocks, regularizer

penalty and batch size. Since we found the variance in score between runs to vary

significantly, in the last iteration of grid search, we ran each setting of parameters

three times and averaged their scores on the validation set. Of these, we ran the top

ten settings ten times, and took the parameters which averaged the highest F1 on the

development set, and report scores on the test set using these parameters. Note that

we do not in the final stage include the development set as training data as has been

done in some previous work, and so do not directly compare to results from other

works which do so.

We evaluate test-time speed using our top-performing trained models. All timing

experiments were run on a nVidia Titan X GPU with a 2.4GHz Intel Xeon CPU. We

do not include data loading, preprocessing or feature hashing in our timing since this

is exactly the same across all models. Reported is the time it takes for each model to

produce a sequence of labels given a sequence of integers representing the words and

their capitalization. After a burn-in run to account for caching and GPU data I/O,
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we run each model 20 times over the development set and average these times. We

do this for batch sizes ranging from 1 to 10,000.

3.6.2 Baselines

We compare our ID-CNN against strong LSTM and CNN baselines: a Bi-LSTM

with local decoding, and one with CRF decoding (Bi-LSTM-CRF). We also com-

pare against a non-dilated CNN architecture with the same number of convolutional

layers as our dilated network (4-layer CNN) and one with enough layers to incorpo-

rate a receptive field of the same size as that of the dilated network (5-layer CNN)

to demonstrate that the dilated convolutions more effectively aggregate contextual

information than simple convolutions (i.e. using fewer parameters). We also compare

our document-level ID-CNNs to a baseline which does not share parameters between

blocks (noshare) and one that computes loss only at the last block, rather than after

every iterated block of dilated convolutions (1-loss).

We do not compare with deeper or more elaborate CNN architectures for a number

of reasons: 1) Fast train and test performance are highly desirable for NLP practition-

ers, and deeper models require more computation time 2) more complicated models

tend to over-fit on this relatively small dataset and 3) most accurate deep CNN ar-

chitectures repeatedly up-sample and down-sample the inputs. We do not compare

to stacked LSTMs for similar reasons — a single LSTM is already slower than a 4-

layer CNN. Since our task is sequence labeling, we desire a model that maintains the

token-level resolution of the input, making dilated convolutions an elegant solution.

3.6.3 CoNLL-2003 English NER

3.6.3.1 Sentence-level prediction

Table 3.1 lists F1 scores of models predicting with sentence-level context on

CoNLL-2003. The Viterbi-decoding Bi-LSTM-CRF and ID-CNN-CRF obtain the

highest average scores, with the ID-CNN-CRF outperforming the Bi-LSTM-CRF by
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Model F1

Ratinov and Roth (2009) 86.82
Collobert et al. (2011) 86.96
Lample et al. (2016) 90.33
Bi-LSTM 89.34 ± 0.28
4-layer CNN 89.97 ± 0.20
5-layer CNN 90.23 ± 0.16
ID-CNN 90.32 ± 0.26

Collobert et al. (2011) 88.67
Passos et al. (2014) 90.05
Lample et al. (2016) 90.20
Bi-LSTM-CRF (re-impl) 90.43 ± 0.12
ID-CNN-CRF 90.54 ± 0.18

Table 3.1: F1 score of models observing sentence-level context. No models use char-
acter embeddings or lexicons. Top models are greedy, bottom models use Viterbi
inference

0.11 points of F1 on average, and the Bi-LSTM-CRF out-performing the greedy ID-

CNN by 0.11 as well. Our greedy ID-CNN outperforms all other greedy models,

including the 4-layer CNN which uses the same number of parameters as the ID-

CNN, and the 5-layer CNN which uses more parameters but covers the same size

receptive field. All CNN models out-perform the Bi-LSTM when paired with greedy

decoding, suggesting that CNNs are better feature extractors than Bi-LSTMs for

independent logistic regression. When paired with Viterbi decoding, our ID-CNN

out-performs the Bi-LSTM as a feature extractor, showing that the ID-CNN is also

a better feature extractor for Viterbi inference.

Our ID-CNN is not only a better feature extractor than the Bi-LSTM but it

is also faster. Table 3.2 lists relative decoding times on the CoNLL development

set, compared to the Bi-LSTM-CRF. We report decoding times for batch size 1,

giving Viterbi-decoding algorithms the advantage since much of their computational
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Model Speed

Bi-LSTM-CRF 1×
Bi-LSTM 9.92×
ID-CNN-CRF 1.28×
5-layer CNN 12.38×
ID-CNN 14.10×

Table 3.2: Relative test-time speed of sentence models, using the fastest batch size
for each model.2

overhead comes from single-thread decoding on the CPU, and with the fastest batch

size for each model.1

The ID-CNN model is about 6 times faster than the Bi-LSTM when decoding one

sentence at a time, and with larger batch sizes is nearly 50% faster. With Viterbi

decoding, the gap closes somewhat but the ID-CNN-CRF still comes out ahead, about

30% faster than the Bi-LSTM-CRF. The most vast speed improvements come when

comparing the greedy ID-CNN to the Bi-LSTM-CRF – our ID-CNN is more than

14 times faster than the Bi-LSTM-CRF at test time, but only 0.11 F1 points less

accurate. The 5-layer CNN, which observes the same size receptive field as the ID-

CNN but with more parameters, performs at about the same speed as the ID-CNN

while making less accurate predictions. With a better implementation of dilated

convolutions than currently included in TensorFlow, we would expect the ID-CNN to

be notably faster than the 5-layer CNN.

We emphasize the importance of the dropout regularizer of Ma et al. (2017) in Ta-

ble 3.3, where we observe increased F1 for every model trained with expectation-linear

dropout regularization. Dropout is important for training neural network models that

1At scale, speed should increase with batch size, as we could compose each batch of as many
sentences of the same length as would fit in GPU memory, requiring no padding and giving CNNs
and ID-CNNs even more of a speed advantage.

2Our ID-CNN could see up to 18× speed-up with a less naive implementation than is included
in TensorFlow as of this writing.
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Model w/o DR w/ DR

Bi-LSTM 88.89 ± 0.30 89.34 ± 0.28
4-layer CNN 89.74 ± 0.23 89.97 ± 0.20
5-layer CNN 89.93 ± 0.32 90.23 ± 0.16
Bi-LSTM-CRF 90.01 ± 0.23 90.43 ± 0.12
4-layer ID-CNN 89.65 ± 0.30 90.32 ± 0.26

Table 3.3: Comparison of models trained with and without expectation-linear dropout
regularization (DR). DR improves all models.

Model F1

4-layer ID-CNN (sent) 90.32 ± 0.26
Bi-LSTM-CRF (sent) 90.43 ± 0.12
4-layer CNN × 3 90.32 ± 0.32
5-layer CNN × 3 90.45 ± 0.21
Bi-LSTM 89.09 ± 0.19
Bi-LSTM-CRF 90.60 ± 0.19
ID-CNN 90.65 ± 0.15

Table 3.4: F1 score of models trained to predict document-at-a-time. Our greedy
ID-CNN model performs as well as the Bi-LSTM-CRF.

generalize well, especially on relatively small NLP datasets such as CoNLL-2003. We

recommend this regularizer as a simple and helpful tool for practitioners training

neural networks for NLP.

3.6.3.2 Document-level prediction

In Table 3.4 we show that adding document-level context improves every model

on CoNLL-2003. When incorporating document-level context, our greedy ID-CNN

model out-performs the Bi-LSTM-CRF, attaining 90.65 average F1. We believe this

model out-performs the Bi-LSTM-CRF due to the ID-CNN learning a feature function

better suited for representing broad context, in contrast with the Bi-LSTM which,

though better than a simple RNN at encoding long memories of sequences, may reach

its limit when provided with sequences more than 1,000 tokens long such as entire

documents.
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Model F1

ID-CNN noshare 89.81 ± 0.19
ID-CNN 1-loss 90.06 ± 0.19
ID-CNN 90.65 ± 0.15

Table 3.5: Comparing ID-CNNs with 1) back-propagating loss only from the final
layer (1-loss) and 2) untied parameters across blocks (noshare)

Model Speed

Bi-LSTM-CRF 1×
Bi-LSTM 4.60×
ID-CNN 7.96×

Table 3.6: Relative test-time speed of document models (fastest batch size for each
model).

We also note that our combination of training objective (Eqn. 3.11) and tied

parameters (Eqn. 3.8) more effectively learns to aggregate this broad context than a

vanilla cross-entropy loss or deep CNN back-propagated from the final neural network

layer. Table 3.5 compares models trained to incorporate entire document context

using the document baselines described in Section 3.6.2.

In Table 3.6 we show that, in addition to being more accurate, our ID-CNN model

is also much faster than the Bi-LSTM-CRF when incorporating context from entire

documents, decoding at almost 8 times the speed. On these long sequences, it also

tags at more than 4.5 times the speed of the greedy Bi-LSTM, demonstrative of the

benefit of our ID-CNNs context-aggregating computation that does not depend on

the length of the sequence.

3.6.4 OntoNotes 5.0 English NER

We observe similar patterns on OntoNotes as we do on CoNLL. Table 3.7 lists

overall F1 scores of our models compared to those in the existing literature. The

greedy Bi-LSTM out-performs the lexicalized greedy model of Ratinov and Roth
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Model F1 Speed

Ratinov and Roth (2009)3 83.45
Durrett and Klein (2014) 84.04
Chiu and Nichols (2016) 86.19 ± 0.25
Bi-LSTM-CRF 86.99 ± 0.22 1×
Bi-LSTM-CRF-Doc 86.81 ± 0.18 1.32×
Bi-LSTM 83.76 ± 0.10 24.44×
ID-CNN-CRF (1 block) 86.84 ± 0.19 1.83×
ID-CNN-Doc (3 blocks) 85.76 ± 0.13 21.19×
ID-CNN (3 blocks) 85.27 ± 0.24 13.21×
ID-CNN (1 block) 84.28 ± 0.10 26.01×

Table 3.7: F1 score of sentence and document models on OntoNotes.

(2009), and our ID-CNN out-performs the Bi-LSTM as well as the more complex

model of Durrett and Klein (2014) which leverages the parallel co-reference annotation

available in the OntoNotes corpus to predict named entities jointly with entity linking

and co-reference. Our greedy model is out-performed by the Bi-LSTM-CRF reported

in Chiu and Nichols (2016) as well as our own re-implementation, which appears to

be the new state-of-the-art on this dataset.

The gap between our greedy model and those using Viterbi decoding is wider than

on CoNLL. We believe this is due to the more diverse set of entities in OntoNotes,

which also tend to be much longer – the average length of a multi-token named entity

segment in CoNLL is about one token shorter than in OntoNotes. These long entities

benefit more from explicit structured constraints enforced in Viterbi decoding. Still,

our ID-CNN outperforms all other greedy methods, achieving our goal of learning a

better feature extractor for structured prediction.

Incorporating greater context significantly boosts the score of our greedy model

on OntoNotes, whereas the Bi-LSTM-CRF performs more poorly. In Table 3.7, we

also list the F1 of our ID-CNN model and the Bi-LSTM-CRF model trained on entire

3Results as reported in Durrett and Klein (2014) as this data split did not exist at the time of
publication.
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document context. For the first time, we see the score decrease when more context

is added to the Bi-LSTM-CRF model, though the ID-CNN, whose sentence model a

lower score than that of the Bi-LSTM-CRF, sees an increase. We believe the decrease

in the Bi-LSTM-CRF model occurs because of the nature of the OntoNotes dataset

compared to CoNLL-2003: CoNLL-2003 contains a particularly high proportion of

ambiguous entities,4 perhaps leading to more benefit from document context that

helps with disambiguation. In this scenario, adding the wider context may just add

noise to the high-scoring Bi-LSTM-CRF model, whereas the less accurate dilated

model can still benefit from the refined predictions of the iterated dilated convolutions.

4According to the ACL Wiki page on CoNLL-2003: “The corpus contains a very high ratio of
metonymic references (city names standing for sport teams)”
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CHAPTER 4

LINGUISTICALLY-INFORMED SELF-ATTENTION FOR
SEMANTIC ROLE LABELING

Current state-of-the-art semantic role labeling (SRL) uses a deep neural network

with no explicit linguistic features. However, prior work has shown that gold syntax

trees can dramatically improve SRL decoding, suggesting the possibility of increased

accuracy from explicit modeling of syntax. In this work, we present linguistically-

informed self-attention (LISA): a neural network model that combines multi-head self-

attention with multi-task learning across dependency parsing, part-of-speech tagging,

predicate detection and SRL. Unlike previous models which require significant pre-

processing to prepare linguistic features, LISA can incorporate syntax using merely

raw tokens as input, encoding the sequence only once to simultaneously perform pars-

ing, predicate detection and role labeling for all predicates. Syntax is incorporated by

training one attention head to attend to syntactic parents for each token. Moreover,

if a high-quality syntactic parse is already available, it can be beneficially injected

at test time without re-training our SRL model. In experiments on CoNLL-2005

SRL, LISA achieves new state-of-the-art performance for a model using predicted

predicates and standard word embeddings, attaining 2.5 F1 absolute higher than the

previous state-of-the-art on newswire and more than 3.5 F1 on out-of-domain data,

nearly 10% reduction in error. On ConLL-2012 English SRL we also show an im-

provement of more than 2.5 F1. LISA also out-performs the state-of-the-art with

contextually-encoded (ELMo) word representations, by nearly 1.0 F1 on news and

more than 2.0 F1 on out-of-domain text.
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4.1 Introduction

Semantic role labeling (SRL) extracts a high-level representation of meaning from

a sentence, labeling e.g. who did what to whom. Explicit representations of such

semantic information have been shown to improve results in challenging downstream

tasks such as dialog systems (Chen et al., 2013; Tur et al., 2005), machine reading

(Berant et al., 2014; Wang et al., 2015) and translation (Bazrafshan and Gildea, 2013;

Liu and Gildea, 2010).

Though syntax was long considered an obvious prerequisite for SRL systems

(Levin, 1993; Punyakanok et al., 2008), recently deep neural network architectures

have surpassed syntactically-informed models (He et al., 2018, 2017; Marcheggiani

et al., 2017; Tan et al., 2018; Zhou and Xu, 2015b), achieving state-of-the art SRL

performance with no explicit modeling of syntax. An additional benefit of these end-

to-end models is that they require just raw tokens and (usually) detected predicates

as input, whereas richer linguistic features typically require extraction by an auxiliary

pipeline of models.

Still, recent work (He et al., 2017; Marcheggiani and Titov, 2017; Roth and Lapata,

2016) indicates that neural network models could see even higher accuracy gains by

leveraging syntactic information rather than ignoring it. He et al. (2017) indicate that

many of the errors made by a syntax-free neural network on SRL are tied to certain

syntactic confusions such as prepositional phrase attachment, and show that while

constrained inference using a relatively low-accuracy predicted parse can provide small

improvements in SRL accuracy, providing a gold-quality parse leads to substantial

gains. Marcheggiani and Titov (2017) incorporate syntax from a high-quality parser

(Kiperwasser and Goldberg, 2016) using graph convolutional neural networks (Kipf

and Welling, 2017), but like He et al. (2017) they attain only small increases over

a model with no syntactic parse, and even perform worse than a syntax-free model

on out-of-domain data. These works suggest that though syntax has the potential to
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improve neural network SRL models, we have not yet designed an architecture which

maximizes the benefits of auxiliary syntactic information.

In response, we propose linguistically-informed self-attention (LISA): a model that

combines multi-task learning (Caruana, 1993) with stacked layers of multi-head self-

attention (Vaswani et al., 2017); the model is trained to: (1) jointly predict parts of

speech and predicates; (2) perform parsing; and (3) attend to syntactic parse parents,

while (4) assigning semantic role labels. Whereas prior work typically requires sepa-

rate models to provide linguistic analysis, including most syntax-free neural models

which still rely on external predicate detection, our model is truly end-to-end: earlier

layers are trained to predict prerequisite parts-of-speech and predicates, the latter of

which are supplied to later layers for scoring. Though prior work re-encodes each

sentence to predict each desired task and again with respect to each predicate to per-

form SRL, we more efficiently encode each sentence only once, predict its predicates,

part-of-speech tags and labeled syntactic parse, then predict the semantic roles for

all predicates in the sentence in parallel. The model is trained such that, as syntactic

parsing models improve, providing high-quality parses at test time will improve its

performance, allowing the model to leverage updated parsing models without requir-

ing re-training.

In experiments on the CoNLL-2005 and CoNLL-2012 datasets we show that

our linguistically-informed models out-perform the syntax-free state-of-the-art. On

CoNLL-2005 with predicted predicates and standard word embeddings, our single

model out-performs the previous state-of-the-art model on the WSJ test set by 2.5

F1 points absolute. On the challenging out-of-domain Brown test set, our model im-

proves substantially over the previous state-of-the-art by more than 3.5 F1, a nearly

10% reduction in error. On CoNLL-2012, our model gains more than 2.5 F1 absolute

over the previous state-of-the-art. Our models also show improvements when us-

ing contextually-encoded word representations (Peters et al., 2018), obtaining nearly
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Figure 4.1: Word embeddings are input to J layers of multi-head self-attention. In
layer p one attention head is trained to attend to parse parents (Figure 4.2). Layer r is
input for a joint predicate/POS classifier. Representations from layer r corresponding
to predicted predicates are passed to a bilinear operation scoring distinct predicate
and role representations to produce per-token SRL predictions with respect to each
predicted predicate.

1.0 F1 higher than the state-of-the-art on CoNLL-2005 news and more than 2.0 F1

improvement on out-of-domain text.1

4.2 Model

Our goal is to design an efficient neural network model which makes use of linguis-

tic information as effectively as possible in order to perform end-to-end SRL. LISA

achieves this by combining: (1) A new technique of supervising neural attention to

predict syntactic dependencies with (2) multi-task learning across four related tasks.

Figure 4.1 depicts the overall architecture of our model. The basis for our model

is the Transformer encoder introduced by Vaswani et al. (2017): we transform word

1Our implementation in TensorFlow (Abadi et al., 2015) is available at : http://github.com/

strubell/LISA
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Figure 4.2: Syntactically-informed self-attention for the query word sloth. Attention
weights Aparse heavily weight the token’s syntactic governor, saw, in a weighted av-
erage over the token values Vparse. The other attention heads act as usual, and the
attended representations from all heads are concatenated and projected through a
feed-forward layer to produce the syntactically-informed representation for sloth.

embeddings into contextually-encoded token representations using stacked multi-head

self-attention and feed-forward layers (§4.2.1).

To incorporate syntax, one self-attention head is trained to attend to each token’s

syntactic parent, allowing the model to use this attention head as an oracle for syn-

tactic dependencies. We introduce this syntactically-informed self-attention (Figure

4.2) in more detail in §4.2.2.

Our model is designed for the more realistic setting in which gold predicates are

not provided at test-time. Our model predicts predicates and integrates part-of-

speech (POS) information into earlier layers by re-purposing representations closer to

the input to predict predicate and POS tags using hard parameter sharing (§4.2.3).

We simplify optimization and benefit from shared statistical strength derived from

highly correlated POS and predicates by treating tagging and predicate detection as
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a single task, performing multi-class classification into the joint Cartesian product

space of POS and predicate labels.

Though typical models, which re-encode the sentence for each predicate, can sim-

plify SRL to token-wise tagging, our joint model requires a different approach to

classify roles with respect to each predicate. Contextually encoded tokens are pro-

jected to distinct predicate and role embeddings (§4.2.4), and each predicted predicate

is scored with the sequence’s role representations using a bilinear model (Eqn. 4.3),

producing per-label scores for BIO-encoded semantic role labels for each token and

each semantic frame.

The model is trained end-to-end by maximum likelihood using stochastic gradient

descent (§4.2.5).

4.2.1 Self-attention token encoder

The basis for our model is a multi-head self-attention token encoder, recently

shown to achieve state-of-the-art performance on SRL (Tan et al., 2018), and which

provides a natural mechanism for incorporating syntax, as described in §4.2.2. Our

implementation replicates Vaswani et al. (2017), which is described in more detail in

Chapter 1 §1.1.2.5.

The input to the network is a sequence X of T token representations xt. In the

standard setting these token representations are initialized to pre-trained word em-

beddings, but we also experiment with supplying pre-trained ELMo representations

combined with task-specific learned parameters, which have been shown to substan-

tially improve performance of other SRL models (Peters et al., 2018). For experiments

with gold predicates, we concatenate a predicate indicator embedding pt following

previous work (He et al., 2017).
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4.2.2 Syntactically-informed self-attention

Typically, neural attention mechanisms are left on their own to learn to attend to

relevant inputs. Instead, we propose training the self-attention to attend to specific

tokens corresponding to the syntactic structure of the sentence as a mechanism for

passing linguistic knowledge to later layers.

Specifically, we replace one attention head with the deep bi-affine model of Dozat

and Manning (2017), trained to predict syntactic dependencies. Let Aparse be the

parse attention weights, at layer i. Its input is the matrix of token representations

S(i−1). As with the other attention heads, we project S(i−1) into key, value and query

representations, denoted Kparse, Qparse, Vparse. Here the key and query projections

correspond to parent and dependent representations of the tokens, and we allow their

dimensions to differ from the rest of the attention heads to more closely follow the

implementation of Dozat and Manning (2017). Unlike the other attention heads which

use a dot product to score key-query pairs, we score the compatibility between Kparse

and Qparse using a bi-affine operator Uheads to obtain attention weights:

Aparse = softmax(QparseUheadsK
T
parse) (4.1)

These attention weights are used to compose a weighted average of the value repre-

sentations Vparse as in the other attention heads.

We apply auxiliary supervision at this attention head to encourage it to attend

to each token’s parent in a syntactic dependency tree, and to encode information

about the token’s dependency label. Denoting the attention weight from token t to a

candidate head q as Aparse[t, q], we model the probability of token t having parent q

as:

P (q = head(t) | X ) = Aparse[t, q] (4.2)
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using the attention weights Aparse[t] as the distribution over possible heads for token

t. We define the root token as having a self-loop. This attention head thus emits a

directed graph2 where each token’s parent is the token to which the attention Aparse

assigns the highest weight.

We also predict dependency labels using per-class bi-affine operations between

parent and dependent representations Qparse and Kparse to produce per-label scores,

with locally normalized probabilities over dependency labels ydept given by the softmax

function. We refer the reader to Dozat and Manning (2017) for more details.

This attention head now becomes an oracle for syntax, denoted P , providing

a dependency parse to downstream layers. This model not only predicts its own

dependency arcs, but allows for the injection of auxiliary parse information at test

time by simply setting Aparse to the parse parents produced by e.g. a state-of-the-art

parser. In this way, our model can benefit from improved, external parsing models

without re-training. Unlike typical multi-task models, ours maintains the ability to

leverage external syntactic information.

4.2.3 Multi-task learning

We also share the parameters of lower layers in our model to predict POS tags

and predicates. Following He et al. (2017), we focus on the end-to-end setting, where

predicates must be predicted on-the-fly. Since we also train our model to predict syn-

tactic dependencies, it is beneficial to give the model knowledge of POS information.

While much previous work employs a pipelined approach to both POS tagging for

dependency parsing and predicate detection for SRL, we take a multi-task learning

(MTL) approach (Caruana, 1993), sharing the parameters of earlier layers in our SRL

model with a joint POS and predicate detection objective. Since POS is a strong pre-

2Usually the head emits a tree, but we do not enforce it here.
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dictor of predicates3 and the complexity of training a multi-task model increases with

the number of tasks, we combine POS tagging and predicate detection into a joint

label space: For each POS tag tag which is observed co-occurring with a predicate,

we add a label of the form tag:predicate.

Specifically, we feed the representation s
(r)
t from a layer r preceding the syntactically-

informed layer p to a linear classifier to produce per-class scores rt for token t. We

compute locally-normalized probabilities using the softmax function: P (yprpt | X ) ∝

exp(rt), where yprpt is a label in the joint space.

4.2.4 Predicting semantic roles

Our final goal is to predict semantic roles for each predicate in the sequence. We

score each predicate against each token in the sequence using a bilinear operation,

producing per-label scores for each token for each predicate, with predicates and

syntax determined by oracles V and P .

First, we project each token representation s
(J)
t to a predicate-specific representa-

tion spredt and a role-specific representation srolet . We then provide these representa-

tions to a bilinear transformation U for scoring. So, the role label scores sft for the

token at index t with respect to the predicate at index f (i.e. token t and frame f)

are given by:

sft = (spredf )TUsrolet (4.3)

which can be computed in parallel across all semantic frames in an entire minibatch.

We calculate a locally normalized distribution over role labels for token t in frame f

using the softmax function: P (yroleft | P ,V ,X ) ∝ exp(sft).

3All predicates in CoNLL-2005 are verbs; CoNLL-2012 includes some nominal predicates.
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At test time, we perform constrained decoding using the Viterbi algorithm to emit

valid sequences of BIO tags, using unary scores sft and the transition probabilities

given by the training data.

4.2.5 Training

We maximize the sum of the likelihoods of the individual tasks. In order to max-

imize our model’s ability to leverage syntax, during training we clamp P to the gold

parse (PG) and V to gold predicates VG when passing parse and predicate represen-

tations to later layers, whereas syntactic head prediction and joint predicate/POS

prediction are conditioned only on the input sequence X . The overall objective is

thus:

1

T

T∑
t=1

[ F∑
f=1

logP (yroleft | PG,VG,X )

+ logP (yprpt | X )

+ λ1 logP (head(t) | X )

+ λ2 logP (ydept | PG,X )
]

(4.4)

where λ1 and λ2 are penalties on the syntactic attention loss.

We train the model using Nadam (Dozat, 2016) SGD combined with the learning

rate schedule in Vaswani et al. (2017). In addition to MTL, we regularize our model

using dropout (Srivastava et al., 2014). We use gradient clipping to avoid exploding

gradients (Bengio et al., 1994; Pascanu et al., 2013). Details on optimization and

hyperparameters are included in §4.4.2.

4.3 Related work

Early approaches to SRL (Johansson and Nugues, 2008; Pradhan et al., 2005;

Surdeanu et al., 2007; Toutanova et al., 2008) focused on developing rich sets of lin-
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guistic features as input to a linear model, often combined with complex constrained

inference e.g. with an ILP (Punyakanok et al., 2008). Täckström et al. (2015) showed

that constraints could be enforced more efficiently using a clever dynamic program

for exact inference. Sutton and McCallum (2005) modeled syntactic parsing and SRL

jointly, and Lewis et al. (2015) jointly modeled SRL and CCG parsing.

Collobert et al. (2011) were among the first to use a neural network model for

SRL, a CNN over word embeddings which failed to out-perform non-neural mod-

els. FitzGerald et al. (2015) successfully employed neural networks by embedding

lexicalized features and providing them as factors in the model of Täckström et al.

(2015).

More recent neural models are syntax-free. Zhou and Xu (2015b), Marcheggiani

et al. (2017) and He et al. (2017) all use variants of deep LSTMs with constrained

decoding, while Tan et al. (2018) apply self-attention to obtain state-of-the-art SRL

with gold predicates. Like this work, He et al. (2017) present end-to-end experiments,

predicting predicates using an LSTM, and He et al. (2018) jointly predict SRL spans

and predicates in a model based on that of Lee et al. (2017), obtaining state-of-the-art

predicted predicate SRL. Concurrent to this work, Peters et al. (2018) and He et al.

(2018) report significant gains on PropBank SRL by training a wide LSTM language

model and using a task-specific transformation of its hidden representations (ELMo)

as a deep, and computationally expensive, alternative to typical word embeddings.

We find that LISA obtains further accuracy increases when provided with ELMo word

representations, especially on out-of-domain data.

Some work has incorporated syntax into neural models for SRL. Roth and Lapata

(2016) incorporate syntax by embedding dependency paths, and similarly Marcheg-

giani and Titov (2017) encode syntax using a graph CNN over a predicted syntax tree,

out-performing models without syntax on CoNLL-2009. These works are limited to

incorporating partial dependency paths between tokens whereas our technique in-
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corporates the entire parse. Additionally, Marcheggiani and Titov (2017) report that

their model does not out-perform syntax-free models on out-of-domain data, a setting

in which our technique excels.

MTL (Caruana, 1993) is popular in NLP, and others have proposed MTL models

which incorporate subsets of the tasks we do (Collobert et al., 2011; Hashimoto et al.,

2017; Peng et al., 2017; Swayamdipta et al., 2017; Zhang and Weiss, 2016), and we

build off work that investigates where and when to combine different tasks to achieve

the best results (Alonso and Plank, 2017; Bingel and Søgaard, 2017; Søgaard and

Goldberg, 2016). Our specific method of incorporating supervision into self-attention

is most similar to the concurrent work of Liu and Lapata (2018), who use edge

marginals produced by the matrix-tree algorithm as attention weights for document

classification and natural language inference.

The question of training on gold versus predicted labels is closely related to learn-

ing to search (Chang et al., 2015; Daumé III et al., 2009; Ross et al., 2011b) and

scheduled sampling (Bengio et al., 2015), with applications in NLP to sequence label-

ing and transition-based parsing (Ballesteros et al., 2016; Choi and Palmer, 2011b;

Goldberg and Nivre, 2012). Our approach may be interpreted as an extension of

teacher forcing (Williams and Zipser, 1989) to MTL. We leave exploration of more

advanced scheduled sampling techniques to future work.

4.4 Experimental results

We present results on the CoNLL-2005 shared task (Carreras and Màrquez, 2005)

and the CoNLL-2012 English subset of OntoNotes 5.0 (Pradhan et al., 2006), achiev-

ing state-of-the-art results for a single model with predicted predicates on both cor-

pora. We experiment with both standard pre-trained GloVe word embeddings (Pen-

nington et al., 2014) and pre-trained ELMo representations with fine-tuned task-

specific parameters (Peters et al., 2018) in order to best compare to prior work.
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Hyperparameters that resulted in the best performance on the validation set were

selected via a small grid search, and models were trained for a maximum of 4 days on

one TitanX GPU using early stopping on the validation set. We convert constituen-

cies to dependencies using the Stanford head rules v3.5 (de Marneffe and Manning,

2008).

We compare our LISA models to four strong baselines: For experiments using

predicted predicates, we compare to He et al. (2018) and the ensemble model (PoE)

from He et al. (2017), as well as a version of our own self-attention model which

does not incorporate syntactic information (SA). To compare to more prior work,

we present additional results on CoNLL-2005 with models given gold predicates at

test time. In these experiments we also compare to Tan et al. (2018), the previous

state-of-the art SRL model using gold predicates and standard embeddings.

We demonstrate that our models benefit from injecting state-of-the-art predicted

parses at test time (+D&M) by fixing the attention to parses predicted by Dozat

and Manning (2017), the winner of the 2017 CoNLL shared task (Zeman et al., 2017)

which we re-train using ELMo embeddings. In all cases, using these parses at test

time improves performance.

We also evaluate our model using the gold syntactic parse at test time (+Gold),

to provide an upper bound for the benefit that syntax could have for SRL using

LISA. These experiments show that despite LISA’s strong performance, there remains

substantial room for improvement. In §4.4.5 we perform further analysis comparing

SRL models using gold and predicted parses.

4.4.1 Data and pre-processing details

We initialize word embeddings with 100d pre-trained GloVe embeddings trained

on 6 billion tokens of Wikipedia and Gigaword (Pennington et al., 2014). We evaluate

the SRL performance of our models using the srl-eval.pl script provided by the
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CoNLL-2005 shared task,4 which computes segment-level precision, recall and F1

score. We also report the predicate detection scores output by this script. We evaluate

parsing using the eval.pl CoNLL script, which excludes punctuation.

We train distinct D&M parsers for CoNLL-2005 and CoNLL-2012. Our D&M

parsers are trained and validated using the same SRL data splits, except that for

CoNLL-2005 section 22 is used for development (rather than 24), as this section

is typically used for validation in PTB parsing. We use Stanford dependencies

v3.5 (de Marneffe and Manning, 2008) and POS tags from the Stanford CoreNLP

left3words model (Toutanova et al., 2003). We use the pre-trained ELMo models5

and learn task-specific combinations of the ELMo representations which are provided

as input instead of GloVe embeddings to the D&M parser with otherwise default

settings.

4.4.1.1 CoNLL-2012

We follow the CoNLL-2012 split used by He et al. (2018) to evaluate our models,

which uses the annotations from here6 but the subset of those documents from the

CoNLL-2012 co-reference split described here7 (Pradhan et al., 2006). This dataset is

drawn from seven domains: newswire, web, broadcast news and conversation, maga-

zines, telephone conversations, and text from the bible. The text is annotated with

gold part-of-speech, syntactic constituencies, named entities, word sense, speaker, co-

reference and semantic role labels based on the PropBank guidelines (Palmer et al.,

2005). Propositions may be verbal or nominal, and there are 41 distinct semantic role

labels, excluding continuation roles and including the predicate. We convert the se-

4http://www.lsi.upc.es/~srlconll/srl-eval.pl

5https://github.com/allenai/bilm-tf

6http://cemantix.org/data/ontonotes.html

7http://conll.cemantix.org/2012/data.html
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mantic proposition and role segmentations to BIO boundary-encoded tags, resulting

in 129 distinct BIO-encoded tags (including continuation roles).

4.4.1.2 CoNLL-2005

The CoNLL-2005 data (Carreras and Màrquez, 2005) is based on the original

PropBank corpus (Palmer et al., 2005), which labels the Wall Street Journal portion

of the Penn TreeBank corpus (PTB) (Marcus et al., 1993a) with predicate-argument

structures, plus a challenging out-of-domain test set derived from the Brown corpus

(Francis and Kučera, 1964). This dataset contains only verbal predicates, though

some are multi-word verbs, and 28 distinct role label types. We obtain 105 SRL

labels including continuations after encoding predicate argument segment boundaries

with BIO tags.

4.4.2 Optimization and hyperparameters

We train the model using the Nadam (Dozat, 2016) algorithm for adaptive stochas-

tic gradient descent (SGD), which combines Adam (Kingma and Ba, 2015) SGD with

Nesterov momentum (Nesterov, 1983). We additionally vary the learning rate lr as a

function of an initial learning rate lr0 and the current training step step as described

in Vaswani et al. (2017) using the following function:

lr = lr0 ·min(step−0.5, step · warm−1.5) (4.5)

which increases the learning rate linearly for the first warm training steps, then de-

cays it proportionally to the inverse square root of the step number. We found this

learning rate schedule essential for training the self-attention model. We only update

optimization moving-average accumulators for parameters which receive gradient up-

dates at a given step.8

8Also known as lazy or sparse optimizer updates.
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WSJ Test Brown Test
GloVe P R F1 P R F1

He et al. (2017) PoE 82.0 83.4 82.7 69.7 70.5 70.1
He et al. (2018) 81.2 83.9 82.5 69.7 71.9 70.8
SA 84.17 83.28 83.72 72.98 70.1 71.51
LISA 84.07 83.16 83.61 73.32 70.56 71.91

+D&M 85.53 84.45 84.99 75.8 73.54 74.66

ELMo

He et al. (2018) 84.8 87.2 86.0 73.9 78.4 76.1
SA 86.21 85.98 86.09 77.1 75.61 76.35
LISA 86.69 86.42 86.55 78.95 77.17 78.05

+D&M 87.13 86.67 86.90 79.02 77.49 78.25

Table 4.1: Precision, recall and F1 on the CoNLL-2005 test sets.

In all of our experiments we used initial learning rate 0.04, β1 = 0.9, β2 = 0.98,

ε = 1 × 10−12 and dropout rates of 0.1 everywhere. We use 10 or 12 self-attention

layers made up of 8 attention heads each with embedding dimension 25, with 800d

feed-forward projections. In the syntactically-informed attention head, Qparse has

dimension 500 and Kparse has dimension 100. The size of predicate and role repre-

sentations and the representation used for joint part-of-speech/predicate classification

is 200. We train with warm = 8000 warmup steps and clip gradient norms to 1. We

use batches of approximately 5000 tokens.

4.4.3 Semantic role labeling

Tables 4.2 and 4.1 list precision, recall and F1 on the CoNLL-2005 development

and test sets using predicted predicates. For models using GloVe embeddings, our

syntax-free SA model already achieves a new state-of-the-art by jointly predicting

predicates, POS and SRL. LISA with its own parses performs comparably to SA,

but when supplied with D&M parses LISA out-performs the previous state-of-the-

art by 2.5 F1 points. On the out-of-domain Brown test set, LISA also performs
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Predicted predicates Gold predicates
GloVe P R F1 P R F1

He et al. (2017) PoE 81.8 81.2 81.5 81.8 81.2 81.5
He et al. (2018) 81.3 81.9 81.6 — — —
Tan et al. (2018) — — — 81.3 81.9 81.6
SA 83.52 81.28 82.39 83.12 82.81 82.97
LISA 83.1 81.39 82.24 83.6 83.74 83.67

+D&M 84.59 82.59 83.58 85.04 85.51 85.27
+Gold 87.91 85.73 86.81 89.11 89.38 89.25

ELMo

He et al. (2018) 84.9 85.7 85.3
SA 85.78 84.74 85.26
LISA 86.07 84.64 85.35

+D&M 85.83 84.51 85.17
+Gold 88.51 86.77 87.63

Table 4.2: Precision, recall and F1 on the CoNLL-2005 development set with predicted
and gold predicates.

comparably to its syntax-free counterpart with its own parses, but with D&M parses

LISA performs exceptionally well, more than 3.5 F1 points higher than He et al.

(2018). Incorporating ELMo embeddings improves all scores. The gap in SRL F1

between models using LISA and D&M parses is smaller due to LISA’s improved

parsing accuracy (see §4.4.4), but LISA with D&M parses still achieves the highest

F1: nearly 1.0 absolute F1 higher than the previous state-of-the art on WSJ, and

more than 2.0 F1 higher on Brown. In both settings LISA leverages domain-agnostic

syntactic information rather than over-fitting to the newswire training data which

leads to high performance even on out-of-domain text.

To compare to more prior work we also evaluate our models in the artificial setting

where gold predicates are provided at test time. For fair comparison we use GloVe

embeddings, provide predicate indicator embeddings on the input and re-encode the

sequence relative to each gold predicate. Here LISA still excels: with D&M parses,
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WSJ Test Brown Test
GloVe P R F1 P R F1

He et al. (2018) 84.2 83.7 83.9 74.2 73.1 73.7
Tan et al. (2018) 84.5 85.2 84.8 73.5 74.6 74.1
SA 84.7 84.24 84.47 73.89 72.39 73.13
LISA 84.72 84.57 84.64 74.77 74.32 74.55

+D&M 86.02 86.05 86.04 76.65 76.44 76.54

Table 4.3: Precision, recall and F1 on the CoNLL-2005 test set with gold predicates.

LISA out-performs the previous state-of-the-art by more than 2 F1 on both WSJ and

Brown.

Table 4.4 reports precision, recall and F1 on the CoNLL-2012 test set. We ob-

serve performance similar to that observed on ConLL-2005: Using GloVe embeddings

our SA baseline already out-performs He et al. (2018) by nearly 1.5 F1. With its

own parses, LISA slightly under-performs our syntax-free model, but when provided

with stronger D&M parses LISA out-performs the state-of-the-art by more than 2.5

F1. Like CoNLL-2005, ELMo representations improve all models and close the F1

gap between models supplied with LISA and D&M parses. On this dataset ELMo

also substantially narrows the difference between models with- and without syntactic

information. This suggests that for this challenging dataset, ELMo already encodes

much of the information available in the D&M parses. Yet, higher accuracy parses

could still yield improvements since providing gold parses increases F1 by 4 points

even with ELMo embeddings.

We further analyze the performance of our models on the CoNLL-2012 dataset

divided by domain9 Table 4.5 lists F1 scores on the development and test sets for

each domain as well as overall, for models trained only on the newswire portion of

9What we refer to as domains are referred to as genres in the OntoNotes/CoNLL-2012 corpus.
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Dev Test
GloVe P R F1 P R F1

He et al. (2018) 79.2 79.7 79.4 79.4 80.1 79.8
SA 82.32 79.76 81.02 82.55 80.02 81.26
LISA 81.77 79.65 80.70 81.86 79.56 80.70

+D&M 82.97 81.14 82.05 83.3 81.38 82.33
+Gold 87.57 85.32 86.43 — — —

ELMo P R F1 P R F1

He et al. (2018) 82.1 84.0 83.0 81.9 84.0 82.9
SA 84.35 82.14 83.23 84.39 82.21 83.28
LISA 84.19 82.56 83.37 83.97 82.29 83.12

+D&M 84.09 82.65 83.36 84.14 82.64 83.38
+Gold 88.22 86.53 87.36 — — —

Table 4.4: Precision, recall and F1 on the CoNLL-2012 development and test sets.
Italics indicate a synthetic upper bound obtained by providing a gold parse at test
time.

the corpus (nw; upper portion of tables), and those trained on all domains, all using

GloVe embeddings. We also experiment with adding external parses from the D&M

parser trained on the full data (D&Mall), as well as one trained only on the newswire

portion of the dataset (D&Mnw), with UAS also reported for all domains and models.

As expected we find that performance degrades substantially (about 10 F1 absolute

overall) across all models when limiting training to just newswire text. F1 scores of

all models trained on newswire only across all domains are depicted in a bar chart

in Figure 4.3. We observe the same trend as we observed overall, where adding

D&M parses improves SRL F1. Adding a D&M parser trained on all domains further

improves SRL F1 over the D&M parser trained on only news (except for within the

news domain), and adding gold parses further improves over that. Across domains,

most see similar improvement of more than 2 F1 absolute (up to 2.4) by adding D&M

parses, with the exception of telephone conversations data (tc), which improves by just

under 1 F1, and biblical text (pt), which improves by 1.7. We hypothesize that the

telephone conversations data, transcriptions of highly informal spoken conversations,
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Dev F1
GloVe bc bn mz nw pt tc wb Overall

Support 9770 7184 4567 15,078 6775 4845 5687 53,906

UAS
LISA 86.49 90.24 90.93 92.15 94.01 82.91 88.54 89.91
D&Mnw 90.84 93.83 94.92 95.22 96.92 85.74 93.22 93.50
D&Mall 94.04 95.45 95.57 95.71 98.33 92.78 94.65 95.29

nw
SA 66.80 70.98 66.03 75.45 79.47 70.21 67.82 71.74
LISA 66.59 71.03 65.71 75.37 79.46 69.93 67.25 71.57

+D&Mnw 69.11 73.38 68.22 77.65 81.14 71.13 70.19 73.81
+D&Mall 69.86 74.22 69.18 77.65 81.97 71.50 71.15 74.38
+Gold 71.22 76.17 70.74 80.12 82.72 72.38 73.68 76.15

UAS LISA 91.86 93.57 93.85 93.37 97.94 90.62 91.81 93.23

all
SA 80.21 80.51 77.46 77.96 93.09 82.99 77.67 81.02
LISA 79.63 79.65 77.08 77.82 92.92 83.22 77.65 80.72

+D&Mall 80.25 81.15 79.25 80.02 93.20 84.49 79.80 82.05
+Gold 85.78 85.78 82.78 84.18 94.95 88.79 85.64 86.51

Test F1
bc bn mz nw pt tc wb Overall

Support 11,875 7520 5672 13,524 7220 4097 5633 55,541

UAS
LISA 88.02 89.89 90.43 92.07 94.26 83.99 88.69 90.13
D&Mnw 92.24 93.47 94.76 94.95 97.01 87.40 92.69 93.67
D&Mall 94.80 95.38 95.89 95.07 98.23 93.62 94.45 95.30

nw
SA 68.55 71.36 66.27 74.97 80.05 67.64 67.94 71.65
LISA 68.77 70.77 67.38 74.97 80.34 67.59 68.11 71.77

+D&Mnw 70.79 73.36 69.70 77.50 82.12 69.41 70.63 74.03
+D&Mall 71.39 74.17 70.64 77.45 82.62 70.67 71.53 74.60

UAS LISA 92.63 93.53 93.56 93.20 97.65 92.14 91.76 93.38

all
SA 81.59 79.21 78.11 78.24 92.38 82.81 78.14 81.26
LISA 80.91 78.81 77.19 77.27 92.24 81.92 77.71 80.60

+D&Mall 81.78 80.88 79.98 79.58 92.90 83.89 80.36 82.33

Table 4.5: F1 of GloVe models trained on only the news portion (nw) or all domains,
tested on all domains in the CoNLL-2012 development and test data. Italics indicate
a synthetic upper bound obtained by providing a gold parse at test time.
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Dev F1
ELMo bc bn mz nw pt tc wb Overall

Support 9770 7184 4567 15,078 6775 4845 5687 53,906

UAS
LISA 90.22 93.54 94.23 94.71 96.27 85.05 92.43 92.93
D&Mnw 90.84 93.83 94.92 95.22 96.92 85.74 93.22 93.50
D&Mall 94.04 95.45 95.57 95.71 98.33 92.78 94.65 95.29

nw
SA 72.02 76.43 71.76 80.01 84.08 72.01 73.69 76.52
LISA 72.20 76.27 72.79 80.44 83.36 72.81 74.07 76.75

+D&Mnw 72.66 76.72 72.90 80.87 83.73 72.63 74.81 77.13
+D&Mall 73.32 77.73 73.78 80.94 84.39 73.59 75.57 77.73
+Gold 74.58 79.60 75.48 83.47 85.21 74.49 78.23 79.52

UAS LISA 93.29 95.47 95.54 95.15 98.35 92.25 94.12 94.89

all
SA 80.26 82.93 81.57 81.26 93.50 85.06 81.36 83.24
LISA 80.93 83.39 81.23 81.39 93.30 85.49 82.21 83.53

+D&Mall 82.20 83.00 81.27 81.32 93.39 85.72 82.19 83.30
+Gold 84.93 86.30 84.08 84.71 94.96 88.80 86.55 87.36

Test F1
bc bn mz nw pt tc wb Overall

Support 11,875 7520 5672 13,524 7220 4097 5633 55,541

UAS
LISA 91.30 93.12 93.67 94.32 96.27 86.36 92.05 92.93
D&Mnw 92.24 93.47 94.76 94.95 97.01 87.40 92.69 93.67
D&Mall 94.80 95.38 95.89 95.07 98.23 93.62 94.45 95.30

nw
SA 73.97 76.14 73.07 79.68 84.66 72.03 73.35 76.76
LISA 74.82 76.21 72.85 80.08 83.74 71.85 73.84 76.93

+D&Mnw 75.23 76.83 73.32 80.28 84.08 72.44 74.48 77.36
+D&Mall 75.98 77.57 73.91 80.19 84.76 73.36 75.15 77.88

UAS LISA 94.00 95.78 95.38 94.61 98.04 93.08 94.21 94.82

all
SA 81.73 82.62 81.02 80.88 92.70 84.79 81.66 83.23
LISA 82.24 82.28 81.05 81.31 92.75 84.38 81.50 83.36

+D&Mall 83.61 82.46 81.42 81.31 92.85 84.97 82.52 83.43

Table 4.6: F1 of ELMo models trained on only the news portion (nw) or all domains,
tested on all domains in the CoNLL-2012 development and test data. Italics indicate
a synthetic upper bound obtained by providing a gold parse at test time.
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Figure 4.3: Bar chart depicting F1 scores on different CoNLL-2012 genres for a model
trained only on the newswire (nw) portion of the data, with GloVe embeddings.

sees the least improvement because it is the least syntactically similar to the news

data the models were trained on. The biblical text, on the other hand, boasts the

highest overall scores, and we hypothesize that it sees already-high scores and reduced

improvement resulting from syntax due to its relatively simple syntactic structure.

SRL F1 after adding gold parse information is still well below SRL F1 for models

which observed SRL and syntax training data across all domains, suggesting that

though incorporating parse information does help over a model without, even with

oracle syntax this model’s SRL performance is still substantially limited (about 8 F1

difference) by observing only news domain training data.
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Data Model POS UAS LAS

WSJ
LISA +GloVe 96.92 94.92 91.87
LISA +ELMo 97.80 96.28 93.65
D&M +ELMo — 96.48 94.40

Brown
LISA +GloVe 94.26 90.31 85.82
LISA +ELMo 95.77 93.36 88.75
D&M +ELMo — 92.56 88.52

CoNLL-12
LISA +GloVe 96.81 93.35 90.42
LISA +ELMo 98.11 94.84 92.23
D&M +ELMo — 94.99 92.59

Table 4.7: Parsing (labeled and unlabeled attachment) and part-of-speech accuracies
attained by the models used in SRL experiments on test datasets.

We also report the same suite of scores for models trained with ELMo embeddings

in Table 4.6 and Figure 4.4. Here we also see a large difference (about 6-7 F1) in F1

between models trained on only news versus those trained on all domains, though it is

smaller than in the GloVe models. As with the overall results, increases from adding

syntax are far less dramatic in this setting. Adding syntax from a parser trained

on all domains always helps, but SRL F1 improvements from a D&M parser trained

on only news data are less consistent, and smaller than in the model trained with

GloVe embeddings. Here, improvements hover around 0.6–1.0 F1, with the exception

of the biblical text, where adding syntax trained on news actually hurts SRL F1 by

0.35 F1 absolute. This could suggest that the ELMo model already captures the

relatively simple syntax of the bible better than a supervised model trained on news.

That ELMo so substantially closes the gap between models with and without syntax

is evidence that such large pre-trained models provide a promising framework for

improving NLP performance on domains without supervised data. But, the fact that

incorporating explicit syntax still helps in many cases suggests that these models may

be improved by better modeling of linguistic structure.
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Figure 4.4: Bar chart depicting F1 scores on different CoNLL-2012 genres for a model
trained only on the newswire (nw) portion of the data, with ELMo embeddings.
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Model P R F1

WSJ
He et al. (2017) 94.5 98.5 96.4
LISA 98.9 97.9 98.4

Brown
He et al. (2017) 89.3 95.7 92.4
LISA 95.5 91.9 93.7

CoNLL-12 LISA 99.8 94.7 97.2

Table 4.8: Predicate detection precision, recall and F1 on CoNLL-2005 and CoNLL-
2012 test sets.

4.4.4 Parsing, part-of-speech and predicate detection

We first report the labeled and unlabeled attachment scores (LAS, UAS) of

our parsing models on the CoNLL-2005 and 2012 test sets (Table 4.7) with GloVe

(+GloVe) and ELMo (+ELMo) embeddings. D&M achieves the best scores. Still,

LISA’s GloVe UAS is comparable to popular off-the-shelf dependency parsers such

as spaCy,10 and with ELMo embeddings comparable to the standalone D&M parser.

The difference in parse accuracy between LISA+GloVe and D&M likely explains the

large increase in SRL performance we see from decoding with D&M parses in that

setting.

In Table 4.8 we present predicate detection precision, recall and F1 on the CoNLL-

2005 and 2012 test sets. SA and LISA with and without ELMo attain comparable

scores so we report only LISA+GloVe. We compare to He et al. (2017) on CoNLL-

2005, the only cited work reporting comparable predicate detection F1. LISA attains

high predicate detection scores, above 97 F1, on both in-domain datasets, and out-

performs He et al. (2017) by 1.5-2 F1 points even on the out-of-domain Brown test

set, suggesting that multi-task learning works well for SRL predicate detection.

10At the time of writing, spaCy reports 94.48 UAS on WSJ using Stanford dependencies v3.3:
https://spacy.io/usage/facts-figures
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CoNLL-2005 L+/D+ L–/D+ L+/D– L–/D–

Proportion 26% 12% 4% 56%
SA 79.29 75.14 75.97 75.08
LISA 79.51 74.33 79.69 75.00

+D&M 79.03 76.96 77.73 76.52
+Gold 79.61 78.38 81.41 80.47

CoNLL-2012 L+/D+ L-/D+ L+/D- L-/D-

Proportion 37% 10% 4% 49%
SA 76.12 75.97 82.25 65.78
LISA 76.37 72.38 85.50 65.10

+D&M 76.33 79.65 75.62 66.55
+Gold 76.71 80.67 86.03 72.22

Table 4.9: Average SRL F1 on CoNLL-2005 and CoNLL-2012 for sentences where
LISA (L) and D&M (D) parses were correct (+) or incorrect (–).

4.4.5 Analysis

First we assess SRL F1 on sentences divided by parse accuracy. Table 4.9 lists

average SRL F1 (across sentences) for the four conditions of LISA and D&M parses

being correct or not (L±, D±). Both parsers are correct on 26% of sentences. Here

there is little difference between any of the models, with LISA models tending to

perform slightly better than SA. Both parsers make mistakes on the majority of

sentences (57%), difficult sentences where SA also performs the worst. These examples

are likely where gold and D&M parses improve the most over other models in overall

F1: Though both parsers fail to correctly parse the entire sentence, the D&M parser

is less wrong (87.5 vs. 85.7 average LAS), leading to higher SRL F1 by about 1.5

average F1.

We also compare the impact of Viterbi decoding with LISA, D&M, and gold

syntax trees (Table 4.10), finding the same trends across both datasets. We find that

Viterbi has nearly the same impact for LISA, D&M and gold parses: Gold parses

provide little improvement over predicted parses in terms of BIO label consistency.
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CoNLL-2005 Greedy F1 Viterbi F1 ∆ F1

LISA 81.99 82.24 +0.25
+D&M 83.37 83.58 +0.21
+Gold 86.57 86.81 +0.24

CoNLL-2012 Greedy F1 Viterbi F1 ∆ F1

LISA 80.11 80.70 +0.59
+D&M 81.55 82.05 +0.50
+Gold 85.94 86.43 +0.49

Table 4.10: Comparison of development F1 scores with and without Viterbi decoding
at test time.

0-10 11-20 21-30 31-40 41-300
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Figure 4.5: F1 score as a function of sentence length.

We also assess SRL F1 as a function of sentence length and distance from span to

predicate. In Figure 4.5 we see that providing LISA with gold parses is particularly

helpful for sentences longer than 10 tokens. This likely directly follows from the

tendency of syntactic parsers to perform worse on longer sentences. With respect

to distance between arguments and predicates, (Figure 4.6), we do not observe this

same trend, with all distances performing better with better parses, especially gold.

Following He et al. (2017), we next apply a series of corrections to model predic-

tions in order to understand which error types the gold parse resolves: e.g. Fix Labels
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Figure 4.6: CoNLL-2005 F1 score as a function of the distance of the predicate from
the argument span.

fixes labels on spans matching gold boundaries, and Merge Spans merges adjacent

predicted spans into a gold span.11

In Figure 4.7 we see that much of the performance gap between the gold and

predicted parses is due to span boundary errors (Merge Spans, Split Spans and Fix

Span Boundary), which supports the hypothesis proposed by He et al. (2017) that

incorporating syntax could be particularly helpful for resolving these errors. He et al.

(2017) also point out that these errors are due mainly to prepositional phrase (PP)

attachment mistakes. We also find this to be the case: Figure 4.8 shows a breakdown

of split/merge corrections by phrase type. Though the number of corrections decreases

substantially across phrase types, the proportion of corrections attributed to PPs

remains the same (approx. 50%) even after providing the correct PP attachment to

the model, indicating that PP span boundary mistakes are a fundamental difficulty

for SRL.

11Refer to He et al. (2017) for a detailed explanation of the different error types.
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Figure 4.7: Performance of CoNLL-2005 models after performing corrections from He
et al. (2017).
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Figure 4.8: Percent and count of split/merge corrections performed in Figure 4.7, by
phrase type.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The over-arching motivation for the work in this thesis is to provide a fast NLP

pipeline with robust performance across data domains. This has indeed been achieved

for an English NLP pipeline consisting of part-of-speech tagging, predicate detection,

named entity recognition, syntactic parsing and semantic role labeling. Though the

work in this thesis covers a range of common NLP annotations, of course practitioners

desire even more analysis of increasing complexity and requiring increasingly larger

amounts of context, e.g. coreference resolution, machine translation, and reading

comprehension. They also desire more drastic generalization, to very disparate do-

mains and even new languages. And of course, as in the past, further increasing the

efficiency of training and inference in NLP models is going to require an ongoing effort

to adapt models in response to continuing improvements, and resulting architectural

limitations, in specialized computer hardware for machine learning. In the follow-

ing sections, I propose some promising and important directions for future research

stemming from the body of work described in this thesis.

5.1 Energy efficient NLP

A cornerstone of scaling NLP, and this thesis, is building models that can be

tractably run on very large corpora, and there is plenty of room for continued innova-

tion in this direction. There has recently been great success across many NLP tasks by

pre-training word representations using a deep neural network trained with a language

modeling objective on vast amounts of unlabeled text, such as ELMo (Peters et al.,

101



2018) and BERT (Devlin et al., 2019). These models are likely to become a basic

building block for all future high-accuracy NLP models due to their ability to sub-

stantially increase accuracy regardless of the end task, without requiring additional

annotation. But pre-training these models requires immense time and equipment

resources, e.g. weeks on arrays of specialized hardware. Incorporating these models

into existing systems also substantially slows training since it still requires encoding

tokens in these deep models, in addition to the task-specific modeling that is already

being performed. The required resources are feasible for large tech companies but

less so to researchers or smaller groups wishing to analyze text. In order to make the

future of state-of-the-art NLP accessible to all, we will need to develop techniques for

speeding up training and inference using these models based on intuitions similar to

those that described in Chapter 2: It’s simply not necessary to do the same amount

of computation for every single token. Recent work has already shown that these

models can be pruned to help test-time speed (Liu et al., 2018), but training time is

also important — one of the appealing qualities of these models is that they can be

trained on unlabeled data from any domain in order to improve text representations

in that domain, and thus improve the generalization of NLP models. I’m confident

we can develop methods to make these models more computationally feasible during

training and decoding.

Doing so will require methodological advances in architecture and learning algo-

rithms that are cognizant of the strengths and limitations of new tensor processing

hardware. An example of this is the work described in Chapter 3, which is efficient

on GPUs in particular, and the self-attention architecture that LISA (Chapter 4) is

based on is designed to be particularly fast on Google’s TPUs (Jouppi et al., 2017;

Vaswani et al., 2017), and is enjoying great success thanks to this. Moving forward,

we can expect to see an explosion of new hardware with the potential to further ac-

celerate deep learning, bring it to smaller and cheaper devices, and vastly improve
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its high carbon footprint. But, simply executing the same models on new hardware

is not going to achieve that potential. Having more efficient machine learning is go-

ing to require fundamental research to develop models and training techniques that

are designed with the underlying hardware architecture in mind. I believe the NLP

community should make a concerted effort to increase collaborations with colleagues

working on systems and hardware to push this research forward.

My work so far on efficient NLP has focused on tasks which are already among the

fastest in NLP, such as tagging and parsing, but going forward I believe many of the

same concepts can be adapted to more complicated tasks typically requiring larger,

slower models such as machine translation, and there is even more potential to increase

efficiency in these models. One promising direction is developing better techniques

for non-autoregressive machine translation (Gu et al., 2018; Libovický and Helcl,

2018). State-of-the-art machine translation systems perform autoregressive prediction

of the target sequence, predicting each output token one-at-a-time, conditioned on

the previous prediction. This is the most substantial speed bottleneck in machine

translation. Autoregressive prediction encourages local coherence of the output, but

as we’ve shown in previous work (Strubell et al., 2017), today’s powerful deep neural

networks are capable of encoding beliefs about adjacent token labels and enforcing

constraints between them. I believe that with better modeling we should be able

to perform much faster machine translation by reasoning over and predicting the

whole output sequence in parallel. The main hurdle to this exact problem is learning

to predict the length of the target sentence given the source. Once the model has

built a per-token representation for the target sentence, it can reason over those

representations just as it would the source. Current models predict length either

via an external, non-differentiable model (Gu et al., 2018), or are left to learn these

mappings on their own but relying on expensive inference techniques (Lee et al., 2018;

Libovický and Helcl, 2018). Incorporating syntax has already been shown to help
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autoregressive neural MT systems by improving source-target alignment (Aharoni and

Goldberg, 2017; Eriguchi et al., 2017). I believe that clever modeling of more explicit

structure between the input and target sequence, perhaps informed by syntax, could

help non-autoregressive models in particular to better learn this mapping, facilitating

state-of-the-art MT accuracy with multiplicative speed-ups.

5.2 Optimization for extreme generalization

One of the biggest challenges limiting the ability of NLP tools to effectively ex-

tract actionable representations from diverse texts is limited generalization to new

text domains and languages. Most NLP evaluation is limited to English-language

mainstream news or Wikipedia articles, and the neural network models typically

achieving state-of-the-art accuracy in NLP today have millions or billions of parame-

ters, and are therefore data-hungry and especially prone to the over-fitting that causes

lack of generalization.

Chapter 4 documented promising generalization stemming simply from providing

later layers in LISA with syntactic parse information. In those experimental results,

the out-of-domain evaluation comes from a subsection of the Brown corpus (Fran-

cis, 1965) consisting of text from English novels, and the non-newswire portions of

the OntoNotes corpus (Pradhan et al., 2006), which include broadcast conversations,

telephone calls, biblical text, and discussion forums. While this text does differ stylis-

tically and topically from the training text, articles from the Wall Street Journal from

the year 1989, most of it does not differ as drastically as e.g. very informal text, social

media text, or text in another language. I hypothesize that this simpler technique

that worked well for more similar domains will not work as well for these more drasti-

cally differing domains,1 and that to achieve more drastic generalization will require

1Indeed, results in Chapter 4 suggest that the most distant domain from news, transcribed
telephone conversations, receives the worst SRL accuracy from a model trained on news.
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a training objective that explicitly rewards better generalization. One promising ap-

proach is to better adapt the idea of domain adversarial training of neural networks

(Ganin et al., 2016) to problems in language. The general intuition behind domain

adversarial methods is that if you can learn a mapping of inputs from distinct domains

to a domain-agnostic representation, labeled data from only one of the domains is

required to train a classifier which takes the domain-agnostic representation as input.

More specifically, domain-adversarial training works by adding a discriminator, a

classifier that takes as input the representation that we wish to be domain- or, in our

case, language-agnostic, and attempts to discriminate between the source language,

in our case English, and the target, in our case any of the four other languages. Since

we desire that representations for which this classifier performs poorly, we maximize

its loss rather than minimizing, which can be achieved through a gradient reversal

layer : In the forward pass, this layer is an identity function; in the backward pass,

this layer reverses the gradients and multiplies by a penalty, to control the contribu-

tion of the discriminator to the overall loss. Such a layer Dλ(·), defined formally as

follows:

Dλ(xt) = xt;
dDλ

dx
= −λI (5.1)

This formulation allows us to minimize the global loss as usual, and has been found

to work well in practice (Ganin et al., 2016).

Domain adversarial training has been successfully applied to text classification

tasks such as sentiment analysis, where the mapping typically boils down to learning

that different domains have different sets of words which correspond to positive or neg-

ative sentiment. Previous work has found success in adversarial training to transfer

English annotation to Arabic for question similarity re-ranking in community ques-

tion answering (Joty et al., 2017), and for transferring part-of-speech tagging from

newswire to informal social media text (Gui et al., 2017), more positive evidence
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for the success of this proposed work. I believe we can develop similar techniques

to better syntactically or semantically parse e.g. biomedical research article text by

transferring annotations from data-rich domains such as news, or from languages such

as English to the more data-scarce languages spoken by most of the world. To do so,

we will have to develop a technique for learning domain-agnostic representations of

tokens and phrases in context. Approaches could incorporate linguistic theory into

adversarial modeling, or align corpus-level co-occurrence patterns between symbols

in different languages or domains.

5.3 Optimization and inference for multi-task learning

As discussed in §5.5 I believe that building joint NLP models that consider many

tasks at once is a promising way of building models that provide a fast, accurate

and robust NLP pipeline. As we showed with LISA in Chapter 4, modeling related

tasks together in the right way leads to improved accuracy and generalization over

single-task models. Additionally, by eliminating redundant computation across tasks,

joint models are also faster than their single-model counterparts when multiple task

outputs are desired. One challenge to training multi-task models is how to best trade

off the many training objectives, without doing expensive structured inference: the

LISA model is tuned to maximize SRL performance on a held-out set, and as a result

obtained state-of-the-art SRL performance, but its accuracy for syntactic parsing is

not state-of-the-art. I hypothesize that this is the result of poor optimization in the

face of many competing objectives. Current multi-task learning approaches either (1)

sum the losses with a fixed penalty on each, tuned as a hyperparameter, or (2) trade

off updates for different tasks according to a schedule, possibly requiring warm-start

pre-training of some task (Zhang and Weiss, 2016). Even with these techniques, model

parameters that perform best for one task are seldom the same as those that result in

the best performance for other tasks. I believe we could improve upon these heuristics
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with a task-aware optimizer that adapts per-task learning rates and momentum as

a function of the gradients, following the success of adaptive methods such as Adam

(Kingma and Ba, 2015) for stochastic gradient descent.

To date my work on joint modeling has focused on how to learn functions that

incorporate rich context across multiple tasks over model inputs, pushing as much

information as possible regarding co-occurrence statistics between labels into e.g.

contextualized token representations. Joint graphical models perform reasoning not

in the space of features, but instead in the joint space of class labels. But exact

inference in this large space is slow, and can require more training data to capture

the complex co-occurrence statistics that make this modeling beneficial over single-

task modeling. In response an interesting future direction is exploring techniques

for approximate joint inference which perform this reasoning by embedding class

labels from disparate tasks into a shared space. Such lower-dimensional approaches

could result in richer models that are more accurate than those that reason over only

representations of the input, while running much faster on modern hardware than

traditional joint models that explicitly reason over the full joint space.

5.4 Beyond English NLP

Another generalization problem is that most NLP research published in main-

stream venues is on English text, where the majority of annotation efforts have been

focused. Indeed, this thesis focused on building a fast and robust NLP pipeline for

English only. But this excludes most of the globe: English has only the third most

native speakers in the world after Mandarin Chinese and Spanish, and considering

non-native speakers, still covers only about a sixth of the world population, and par-

ticularly excludes non-native speakers of lower socioeconomic status, who are less

likely to access to high-quality English language instruction. So we want techniques

107



that generalize not only across text domains within the same language, but also across

languages.

Ideally, as with modeling across tasks, we will achieve this by modeling as many

different languages together in a single model, leveraging shared structure across dif-

ferent languages as much as possible. Indeed, there already exists a single multilingual

BERT model trained on over 100 languages, as well as polyglot models for parsing

(Ammar et al., 2016), SRL (Akbik and Li, 2016; Mulcaire et al., 2018) and others. At

the same time, languages differ widely in their structure, at the sub-word, sentence,

and even document level, and capturing these structures in a way that shares infor-

mation without erasing it when needed will be an important aspect of multilingual

modeling, and in particular of modeling linguistic structure alongside data-driven

machine learning models such as neural networks. Since this thesis focuses only on

the morphologically-poor English language, an important area for future work which

applies to a more diverse group of languages will be incorporating effective sub-word

representations for better e.g. morphological analysis, and exploring the extent to

which explicit representations of such structures are useful or necessary for down-

stream tasks in light of extensive self-supervised pre-training, just as we explored the

relationship between syntax and SRL in this work.

5.5 Multi-task modeling for more robust document- and corpus-

level reasoning

Over-fitting in NLP models is an even bigger problem for tasks that require higher-

level reasoning over larger contexts, and correspondingly larger models that require

even more data, such as coreference resolution, reading comprehension and question

answering. A recent analysis of a wide array of coreference systems (Moosavi and

Strube, 2017), including both classic statistical NLP models as well as more recent

neural network models, found that accuracy in these models degrades substantially
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when they are evaluated on data whose distribution differs from that on which they

were trained (specifically, going from CoNLL-2012, drawn from seven domains includ-

ing written and broadcast news and telephone conversations, to WikiCoref, drawn

from the text of Wikipedia articles). The authors found that a substantial portion

of the entities in the CoNLL-2012 test data also occur in the training data, allow-

ing the models to perform well by over-fitting to this relatively small set of entities.

Similarly, end-to-end neural network models for question answering that were sup-

posedly surpassing human-level performance were found to be over-fitting structural

regularities in the data, and could be made to fail drastically by simply modifying

one sentence in the text (Jia and Liang, 2017), and models trained on the popu-

lar Stanford Natural Language Inference dataset (Bowman et al., 2015) were found

to have overfit to annotation artifacts inthe data unrelated to the task of natural

language inference (Gururangan et al., 2018; Poliak et al., 2018). The datasets in

question have since been updated to discourage the models from learning those spe-

cific pathological behaviors (Rajpurkar et al., 2018; Williams et al., 2018), but will

not necessarily stop the model from over-fitting to different, less obvious aspects of

the training data. The work in Chapter 4 showed that combining a deep neural net-

work architecture with explicit linguistic structure led to much better generalization

for SRL, and a potential area for future research is to develop new techniques that

will push this research forward to more complex tasks that require reasoning across

entire documents, such as mention finding and coreference resolution, and ultimately

across multiple documents, at the corpus level, such as reading comprehension and

question answering.

As I have shown for syntactic parsing and SRL, I believe that training a single

model aware of as many related NLP tasks as possible is a promising approach on this

front. For example, consider the case of mention finding and coreference resolution.

I hypothesize that modeling mention-finding and coreference in a single model with
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dependency parsing and semantic role labeling will result in more robust coreference

resolution, measured by better performance out-of-domain. Providing these models

with more generic syntactic and semantic information, instead of relying wholly on

the word surface forms as input, could allow the model to leverage this informa-

tion to better predict mentions and coreference between them when provided with

unseen entities. I also hypothesize that SRL information may help with ambiguous

pronominal coreference. My reasoning is based on the idea that a pronominal mention

participating in a certain semantic frame may be more likely to be coreferent with

certain mentions than others, and providing the model with explicit training data to

this effect will help the model learn these interactions. Indeed, previous work found

that adding SRL features to a coreference model improved coreference performance

(Ponzetto and Strube, 2006).

Expanding multi-task models to more tasks which require incorporating informa-

tion from increasingly wide context is going to require clever hierarchical modeling in

order to selectively discard information that is no longer useful or relevant at certain

levels. For example, it is likely not necessary to maintain a representation of the entire

syntax tree for every sentence in every document in order to perform question answer-

ing, however, there is likely still information from the syntactic parse that could help

with the end task. So we want a model that incorporates this information at some

level and selectively allows that information to flow to higher levels as needed; hierar-

chical multi-task modeling allowing for adaptive amounts of information granularity

at different levels, depending on how challenging the example.

Many of the most challenging ambiguities in text processing come from a lack

of commonsense knowledge in our models. Commonsense knowledge can be thought

of as the widest possible amount of context – that which extends beyond what is

written in the text of the corpus. Developing effective techniques for extracting and

incorporating this information into models for text understanding, likely via multi-
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model machine learning with images, audio, and even embodiment, will be paramount

to building the high-quality NLP models we ultimately desire.
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Héctor Mart́ınez Alonso and Barbara Plank. 2017. When is multitask learning effec-
tive? semantic sequence prediction under varying data conditions. In EACL.

Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A.
Smith. 2016. Many languages, one parser. Transactions of the Association for
Computational Linguistics, 4:431–444.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,
Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized
transition-based neural networks. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics.

Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. CoRR,
abs/1607.06450.

Collin F Baker, Charles J Fillmore, and John B Lowe. 1998. The Berkeley FrameNet
project. In Proceedings of the 17th International Conference on Computational
Linguistics (COLING) – Volume 1, pages 86–90. Association for Computational
Linguistics.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and Noah A. Smith. 2016. Training
with exploration improves a greedy stack lstm parser. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 2005–
2010.

Marzieh Bazrafshan and Daniel Gildea. 2013. Semantic roles for string to tree machine
translation. In ACL.

112

https://doi.org/10.18653/v1/P16-4001
https://doi.org/10.18653/v1/P16-4001
https://doi.org/10.1162/tacl_a_00109


Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
sampling for sequence prediction with recurrent neural networks. In NIPS.
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