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Abstract

Statistical shift-reduce parsing involves the interplay of representation learning, struc-
tured learning, and inexact search. This dissertation considers approaches that tightly
integrate these three elements and explores three novel models for shift-reduce CCG
parsing. First, I develop a dependency model, in which the selection of shift-reduce
action sequences producing a dependency structure is treated as a hidden variable;
the key components of the model are a dependency oracle and a learning algorithm
that integrates the dependency oracle, the structured perceptron, and beam search.
Second, I present expected F-measure training and show how to derive a globally
normalized RNN model, in which beam search is naturally incorporated and used
in conjunction with the objective to learn shift-reduce action sequences optimized
for the final evaluation metric. Finally, I describe an LSTM model that is able
to construct parser state representations incrementally by following the shift-reduce
syntactic derivation process; I show expected F-measure training, which is agnostic
to the underlying neural network, can be applied in this setting to obtain globally
normalized greedy and beam-search LSTM shift-reduce parsers.
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Chapter 1

Introduction

1.1 Overview

Structured prediction is characterized by involving an exponentially-sized output

space that renders exhaustive search prohibitive. To address this, dynamic program-

ming algorithms are often invoked to construct polynomially-sized representations

of the search space. A representative example of this approach is the CKY (Cocke-

Kasami-Younger) algorithm applied for syntactic parsing with a variety of formalisms,

where the derivation space for a given input is compactly packed into a parse for-

est, over which parameter estimation and inference can be conducted in polynomial

time (Eisner, 1996b; Collins, 1999; Hockenmaier, 2003). For some tasks, dynamic

programming also makes exact search tractable, and in such situations, dynamic pro-

gramming coupled with structured learning models that assume exact search has been

proven to be an effective combination, repeatedly demonstrating impressive empiri-

cal utility (McCallum et al., 2000; Johnson, 2001; Lafferty et al., 2001; Geman and

Johnson, 2002; Miyao and Tsujii, 2002; Taskar et al., 2003; Clark and Curran, 2004b;

Taskar et al., 2004; Tsochantaridis et al., 2005; Carreras et al., 2008).

Unfortunately, making a structured prediction problem amenable to dynamic pro-

gramming often leads to one notable issue: model expressiveness in terms of feature

scope is often sacrificed, because features are strictly required to factor locally into

substructures of a dynamic program. As a result, methods for incorporating fea-
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tures with arbitrary scope while preserving or abandoning dynamic programming

have received much attention, and their benefits are clearly evident (Briscoe and

Carroll, 1993; Henderson, 2003; Yamada and Matsumoto, 2003; Nivre and Scholz,

2004; Charniak and Johnson, 2005; Nivre et al., 2006; Carreras, 2007; Huang, 2008;

Zhang and Clark, 2011a; Zhang and McDonald, 2012; Socher et al., 2013; Zhu et al.,

2013; Chen and Manning, 2014; Sutskever et al., 2014; Durrett and Klein, 2015). Not

surprisingly, such methods almost always seek a compromise between exact search

and feature scope, as expanding the latter tends to make the former computationally

inefficient or even intractable.

Broadly speaking, recent work in parsing that has considered such approaches fall

into a few threads. In early attempts, efforts mainly focused on discriminative k-best

reranking (Collins, 2000; Charniak and Johnson, 2005), in which the key motivation

is to sidestep feature locality restrictions enforced by dynamic programming using a

reranker that can incorporate arbitrary features. The main drawback of this approach

is that both the size and the diversity of the k-best lists are usually limited, which

directly dictate obtainable improvements (Huang, 2008).

More recently, a line of research has investigated incorporating non-local features

into parsing models while striving to maintain exact search (McDonald and Pereira,

2006; Riedel and Clarke, 2006; Carreras, 2007; Martins et al., 2009; Koo and Collins,

2010; Martins et al., 2010). Typically, such solutions use specialized algorithms that

decompose non-local features into elementary structures compatible with the model

formulations. In doing so, the model inevitably becomes tied to specific feature sets,

which often decreases the freedom in feature definitions while increasing computa-

tional overhead.

Embracing inexact search, another strand of research chooses to strike a different

balance between exactness of search and rich non-local features. One prominent in-

stance of such approaches is forest reranking (Huang, 2008), which scales reranking

from finite k-best lists to packed parse forests encoding exponentially many alter-

natives. More specifically, it employs the structured perceptron (Collins, 2002) and

approximate chart-based inference to free feature definitions from the underlying dy-
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namic program, allowing arbitrary non-local features to be incorporated, and to be

scored incrementally in an efficient bottom-up fashion. Forest reranking primarily

stems from cube pruning (Chiang, 2007), which is a generic heuristic search pro-

cedure that enables on-demand exploration of the search space, and in conjunction

with a backbone inference algorithm (usually based on dynamic programming), it

alleviates the potential combinatorial explosion resulting from adding non-local fea-

tures. The idea of cube pruning originated from constituency parsing (Huang and

Chiang, 2005) and has been applied to syntax-based translation with chart-based

inference (Chiang, 2007; Huang and Chiang, 2007), to phrase-based translation with

beam search (Huang and Chiang, 2007), and to graph-based dependency parsing with

higher-order dependency features (Zhang and McDonald, 2012; Zhang et al., 2013;

Zhang and McDonald, 2014). In the translation cases, cube pruning greatly improves

decoding efficiency when language models are integrated, and it has produced transla-

tion systems as accurate as those based on exact decoding (Chang and Collins, 2011)

(when using BLEU as the accuracy metric). In the dependency parsing case, it has

been shown that the resulting parsers outperform those that allow for exact inference

using optimization techniques such as integer linear programming (Riedel and Clarke,

2006; Martins et al., 2009) or dual decomposition (Koo et al., 2010; Martins et al.,

2011). In essence, it can be argued that the cube-pruned models all use a hybrid of

dynamic programming and more principled inexact search.

At another extreme, exemplified by deterministic shift-reduce parsers without any

reliance on search for both parameter estimation and inference (Yamada and Mat-

sumoto, 2003; Nivre and Scholz, 2004), dynamic programming and exact search are

completely abandoned. In comparison with chart parsers, the primary advantage of

such parsers is their speed, as the number of shift-reduce actions needed is linear in the

sentence length. In terms of accuracy, perhaps surprisingly, deterministic shift-reduce

models have even matched the overall performance of some global, exhaustive, chart-

based models (McDonald and Nivre, 2007; Nivre and McDonald, 2008). However,

not only are they more prone to search errors, they also make strong independence

assumptions, ignoring sequence-level structural relationships of shift-reduce actions.

3



Consequently, a natural question that arises is: Can we further improve upon deter-

ministic models while maintaining their speed advantage?

A central issue surrounding this question resolves around improving shift-reduce

parser state representations, which are crucial for making accurate shift-reduce pars-

ing decisions. Fortunately, unlike chart parsers that rely on dynamic programming or

exact search, incorporating arbitrary features into shift-reduce parsers is trivial, and

carefully crafted feature sets often lead to direct parsing accuracy improvements (Cer

et al., 2010; Zhang and Nivre, 2011), with only minor penalties on the runtime,

even with beam search (Zhang and Clark, 2008; Goldberg et al., 2013). As a more

recent development, neural network models have been used to learn such representa-

tions, and they are able to dispense with feature engineering either partially through

learning distributed representations for higher-order feature conjunctions (Chen and

Manning, 2014), or completely through learning parser state representations exhibit-

ing “global” sensitivity to the complete parsing history (Dyer et al., 2015; Watanabe

and Sumita, 2015). This accumulated empirical evidence suggests better parser state

representations can, to some extent, counter the ill effects of inexact search.

But even with improved representations, search errors inherent with inexact search

can still exert a negative impact on learning, especially when inexact search is coupled

with a structured learning algorithm that assumes exact search (Collins, 2002; Huang

et al., 2012). For the structured perceptron, the early update technique (Collins

and Roark, 2004) is widely adopted for this reason. In particular, it replaces the

standard perceptron update rule and clearly shows the benefits of accounting for

search errors during parameter estimation. Zhang and Clark (2008) adapted this

technique for dependency parsing, and Huang et al. (2012) formalized it into the

violation-fixing perceptron, providing theoretical justification for early update and

formal guarantees for its convergence. Since then, the violation-fixing framework has

been further generalized and applied to models utilizing the structured perceptron in a

range of tasks including chart-based and shift-reduce parsing (Zhang and McDonald,

2012; Zhang et al., 2013; Xu et al., 2014; Zhang and McDonald, 2014). For neural

network models, although the effects of inexact search and search errors have not

4



been formalized, recent work has shown the importance of incorporating structured

learning into models that abandon it completely in favour of the representational

power provided by neural networks. By either bringing to bear techniques developed

for the structured perceptron (Weiss et al., 2015; Watanabe and Sumita, 2015; Lee

et al., 2016), or by formulating sequence-level training (Andor et al., 2016; Ranzato

et al., 2016; Wiseman and Rush, 2016; Xu et al., 2016; Xu, 2016), such models show

the orthogonality of learning richer representations and learning better structured

prediction models that take into account the structural properties of the output under

inexact search, and they indicate improving both components results in additive gains.

In this thesis, I study shift-reduce CCG parsing, with the unifying theme of

structured learning with inexact search. I advocate inexact search, in particular the

kind that is free from dynamic programming (Huang and Sagae, 2010; Kuhlmann et

al., 2011), which allows complete freedom in feature representations. I show shift-

reduce is a competitive paradigm for CCG parsing and demonstrate its simplicity,

accuracy, and speed.

1.2 Three Advances for Shift-Reduce CCG Parsing

Combinatory Categorial Grammar (CCG; Steedman, 2000) parsing is challenging

due to so-called “spurious” ambiguity that permits a large number of non-standard

derivations (Vijay-Shanker and Weir, 1993; Kuhlmann and Satta, 2014). To address

this, the de facto models resort to chart-based CKY (Hockenmaier, 2003; Clark

and Curran, 2007), despite CCG being naturally compatible with shift-reduce pars-

ing (Ades and Steedman, 1982). More recently, Zhang and Clark (2011a) introduced

the first shift-reduce model for CCG, which also showed substantial improvements

over the long-established state of the art (Clark and Curran, 2007).

The success of the shift-reduce model (Zhang and Clark, 2011a) can be tied to two

main contributing factors. First, without any feature locality restrictions, it is able

to use a much richer feature set; while intensive feature engineering is inevitable, it

has nevertheless delivered an effective and conceptually simpler alternative for both

parameter estimation and inference. Second, it couples beam search with global

5



structured learning (Collins, 2002; Collins and Roark, 2004; Zhang and Clark, 2008;

Huang et al., 2012), which enables it to model shift-reduce action sequences while

making it less prone to search errors than deterministic models. In this thesis, I

capitalize on the strengths of the Zhang and Clark (2011a) model and introduce

three novel shift-reduce CCG parsing models.

I begin by filling a gap in the literature and developing the first dependency

model for shift-reduce CCG parsing (§3). In order to do this, I first introduce a

dependency oracle, in which all derivations are hidden. A challenge arises from the

potentially exponential number of derivations leading to a gold standard dependency

structure, which the oracle needs to keep track of during the shift-reduce process. The

solution I propose is an integration of a packed parse forest, which efficiently stores

all the derivations, with the beam-search decoder at training time. The derivations

are not explicitly part of the data, since the forest is built from the gold standard

dependencies. By adapting the violation-fixing perceptron (Huang et al., 2012), I also

show how the dependency oracle can be integrated with the structured perceptron

and beam search, which is essential for learning a global structured model.

Departing from the linear perceptron model, next I shift the focus onto shift-

reduce parsing with Elman recurrent neural networks (RNNs; Elman, 1990). Recent

work has shown that by combining distributed representations and neural network

models (Chen and Manning, 2014), accurate and efficient shift-reduce parsing models

can be obtained with little feature engineering, largely alleviating the feature sparsity

problem of linear models. In practice, the most common objective for optimizing

neural network shift-reduce parsing models is maximum likelihood. In the greedy

search setting, the log-likelihood of each target action is maximized during train-

ing, and the most likely action is committed to at each step of the parsing process

during inference (Chen and Manning, 2014; Dyer et al., 2015). In the beam-search

setting, Zhou et al. (2015) and Andor et al. (2016) show that sequence-level likelihood

and a conditional random field (Lafferty et al., 2001) objective can be used to derive

globally normalized models which incorporate beam search at both training and in-

ference time (Zhang and Clark, 2008), giving significant accuracy gains over locally
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normalized models. However, despite the efficacy of optimizing likelihood, it is often

desirable to directly optimize for task-specific metrics, which often leads to higher ac-

curacies for a variety of models and applications (Goodman, 1996; Och, 2003; Smith

and Eisner, 2006; Rosti et al., 2010; Auli and Lopez, 2011b; He and Deng, 2012; Auli

et al., 2014; Auli and Gao, 2014; Gao et al., 2014).

Here, I present the first neural network parsing model optimized for a task-specific

loss based on expected F-measure (§4). The model is globally normalized, and natu-

rally incorporates beam search during training to learn shift-reduce action sequences

that lead to parses with high expected F-scores. In contrast to Auli and Lopez

(2011b), who optimize a log-linear parser for F-measure via softmax-margin (Gimpel

and Smith, 2010), I directly optimize an expected F-measure objective, derivable from

only a set of shift-reduce action sequences and sentence-level F-scores. More gener-

ally, the method can be seen as an approach for training a neural beam-search parsing

model (Watanabe and Sumita, 2015; Weiss et al., 2015; Zhou et al., 2015; Andor et

al., 2016), combining the benefits of a global model and task-specific optimization.

Finally, I describe a neural architecture for learning parser state representations

for shift-reduce CCG parsing based on long short-term memories (LSTMs; Hochreiter

and Schmidhuber, 1997) (§5). The model is inspired by Dyer et al. (2015), in which

I explicitly linearize the complete history of parser states in an incremental fashion

by requiring no feature engineering (Zhang and Clark, 2011a; Xu et al., 2014), and

no atomic feature sets (Chen and Manning, 2014). However, a key difference is that

this linearization is achieved without relying on any additional control operations or

compositional tree structures (Socher et al., 2010; Socher et al., 2011; Socher et al.,

2013), both of which are vital in the architecture of Dyer et al. (2015). Crucially,

unlike the sequence-to-sequence transduction model of Vinyals et al. (2015), which

drops the parser completely, I construct parser state representations, which are also

sensitive to all aspects of the parsing history and the complete input, by following the

shift-reduce syntactic derivation process. To do structured learning, I show expected

F-measure training, which is agnostic to the underlying neural network, can be applied

in this setting to obtain globally normalized greedy and beam-search LSTM parsers,
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which give state-of-the-art results for shift-reduce CCG parsing (§5.4.2).

In all the shift-reduce models I introduce, structured learning and inexact search

are integrated such that inexact search, specifically, beam search, is used to define the

criteria that dictate parameter updates, in addition to being used for approximate

inference. In the dependency model, beam search locates model violations for online

structured perceptron learning, and updates are performed along the corresponding

shift-reduce action prefixes contained in the beam. In the neural network models,

beam search provides a set of shift-reduce action sequences from which the learning

objective and gradients are derived. In both cases, learning is guided by search and

search is informed by learning.

For CCG, the first competitive dependency model was developed by Clark and

Curran (2007), in which chart-based exact search together with a log-linear frame-

work are used to calculate feature expectations over a parked forest of all derivations,

including those “correct” derivations leading to a given CCG dependency struc-

ture. Once such derivations are identified, model estimation techniques used for

the derivation-only normal-form model are applied with minimal modifications, and

there is no need to reconcile learning with search (§3.2.1). In contrast, this recon-

ciliation problem cannot be avoided when developing the shift-reduce dependency

model, since latent “correct” derivations need to be dealt with without potentially

violating the convergence properties of the structured perceptron with beam-search

inference (Collins and Roark, 2004; Huang et al., 2012). Fortunately, the development

of the violation-fixing perceptron with convergence guarantees (Huang et al., 2012)

provides an almost tailor-made technique that can be adapted, and it is precisely

the dependency oracle, the violation-fixing perceptron, and their seamless integration

with beam search that yield the dependency model.

In many recent neural network-based models, the use of inexact search is evidently

typical, and a standard framework adopted is based on locally normalized maximum

likelihood estimation and greedy or beam-search inference (Chen and Manning, 2014;

Vinyals et al., 2015; Dyer et al., 2015; Lewis and Steedman, 2014b; Xu et al., 2015;

Lewis et al., 2016). In such models, search does not interact with or influence parame-
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ter estimation, and it is only introduced during inference to maintain tractability. As

such, they are susceptible to the label bias problem (Bottou, 1991; Lafferty et al., 2001;

Andor et al., 2016), as well as to exposure bias, loss-evaluation mismatch (Ranzato

et al., 2016), and search errors inherent with inexact search. To tackle this, a number

of works (Ranzato et al., 2016; Watanabe and Sumita, 2015; Weiss et al., 2015; Zhou

et al., 2015; Andor et al., 2016), including the global RNN and LSTM shift-reduce

models in this thesis, have emerged, and they all represent a move towards utilizing

neural network representations without sacrificing the proven strengths of structured

learning. In addition to improving accuracy, such models also largely retain the ef-

ficiency of inexact search. A prime example of this kind is the expected F-measure

trained greedy LSTM shift-reduce parser (§5.4.2), which displays the accuracy of the

global model while maintaining fully greedy inference.

1.3 Contributions

The primary contributions of this thesis are the three shift-reduce parsing models

described above, in summary:

• I develop a dependency oracle for shift-reduce CCG parsing.

• I develop a learning algorithm that integrates the dependency oracle with the

structured perceptron and beam search by generalizing early update under the

violation-fixing perceptron framework.

• I develop expected F-measure training for shift-reduce CCG parsing.

• I develop a shift-reduce CCG parsing model based on Elman RNNs.

• I develop a shift-reduce CCG parsing model based on LSTMs.

• I apply the expected F-measure training framework to both the RNN- and

LSTM-based parsing models.

As the secondary contribution, I introduce three recurrent neural network models

for CCG supertagging, which form an integral part of and are indispensable for the
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respective parsing models. Recent work on supertagging using a feed-forward neural

network achieved significant improvements for CCG supertagging and parsing (Lewis

and Steedman, 2014b); however, their architecture is limited to considering local

contexts and does not naturally model sequences of arbitrary length. I show how

directly capturing sequence information using RNNs (§4.2 and §4.5) and LSTMs

(§5.3) leads to further accuracy improvements for both supertagging and parsing. I

also show the improvements in supertagging accuracy translates into state-of-the-art

parsing accuracies for the c&c parsing models on three different domains (§4.6).

Last, but not least, the implementation of all the parsers presents some consider-

able challenges given the various CCG- and parsing model-related elements involved.

To enable reproducibility, I describe the models in detail and release the code. In tan-

dem with the experimental findings, this thesis serves as a reference and benchmark

for future work on shift-reduce CCG parsing.
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Chapter 2

Background

2.1 Combinatory Categorial Grammar

A lexicon, together with a set of CCG combinatory rules, formally constitute a CCG.

The former defines a mapping from words to sets of lexical categories representing

syntactic types, and the latter gives schemata which dictate whether two categories

can be combined. Given the lexicon and the rules, the syntactic types of complete

constituents can be obtained by recursive combination of categories using the rules.

More generally, both lexical and non-lexical CCG categories can be either atomic

or complex : atomic categories are categories without any slashes (e.g., NP and PP),

and complex categories are constructed recursively from atomic ones using forward

(/) and backward slashes (\) as two binary operators (e.g., (S\NP)/NP). As such, all

categories can be represented as follows (Vijay-Shanker and Weir, 1993; Kuhlmann

and Satta, 2014):

X := α|1Z1|2Z2 . . . |mZm, (2.1)

where m ≥ 0 is referred to as the arity, α is an atomic category, |i ∈ {\, /}, and Zi

are metavariables for categories.

CCG rules are either binary or unary. Binary rules have the following two

schematic forms, where each is a generalized version of functional composition (Vijay-
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the flying ginger cat

NP/N N /N N /N N
>B

N /N
>

N
>

NP

Figure 2-1: Example CCG derivation. By convention, CCG derivations are drawn
upside down.

Shanker and Weir, 1993; Kuhlmann and Satta, 2014):

X/Y Y |1Z1 . . . |dZd ⇒ X|1Z1 . . . |dZd,

Y |1Z1 . . . |dZd X\Y ⇒ X|1Z1 . . . |dZd. (2.2)

The first schematic form above instantiates into a forward application (>) rule for

d = 0 and forward composition rule (> B) for d > 0. Similarly, the second schematic

form, which is symmetric to the first, instantiates into backward application (<) and

composition (< B) rules. In both schemata, d is referred to as the rule degree; the

left category X /Y in the forward case is the called the primary category, while the

one on the right is secondary; and the primary category in the backward case is the

category X \Y on the right.

Fig.2-1 shows an example CCG derivation. All the rule instances in this deriva-

tion are instantiated from forward rules, which in turn take the schematic form of

generalized forward composition; for example, N /N N → N is an instance of for-

ward application (with d = 0), and N /N N /N → N /N is an instance of forward

composition (with d = 1).

Unary rules are referred to as type-raising rules, and they have the following two

schemata (Steedman, 2000):

X ⇒T T/(T\X ) (> T),

X ⇒T T\(T/X ) (< T).
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He proved Fermat’s theorem

NP (S\NP)/NP NP/N N
>

NP
>

S\NP
<

S

He proved Fermat’s theorem

NP (S\NP)/NP NP/N N
>T >

S/(S\NP) NP
>B

S/NP
>

S

He proved Fermat’s theorem

NP (S\NP)/NP NP/N N
>T >B

S/(S\NP) (S\NP)/N
>B

S/N
>

S

He proved Fermat’s theorem

NP (S\NP)/NP NP/N N
>B

(S\NP)/N
>

S\NP
<

S

Figure 2-2: A normal-form derivation, with three possible spurious alternatives.

Two examples of forward type-raising (> T) are shown in Fig.2-2.

2.1.1 Normal-Form CCG Derivations

CCG exhibits so-called “spurious” ambiguity, which mainly arises from composition

and type-raising. To alleviate this, the Eisner constraint (Eisner, 1996a) can be

applied to obtain normal-form CCG derivations.

Informally, this constraint ensures that composition and type-raising are not used

unless necessary. This is achieved by preventing the result of a forward composition

from serving as the primary (left) category in another forward application or com-

position; similarly, any constituent which is the result of a backward composition is

kept from serving as the primary (right) category in another backward application

or composition. As an example, Fig.2-2 shows a normal-form derivation, along with

three possible spurious alternatives.1

In practice, when type-raising is available in a CCG grammar (which is almost

always the case for modern data-driven CCG parsing), Eisner’s constraint is not

guaranteed to produce normal-form derivations (not complete); moreover, when the

degree (Eq.2.2) of composition is bounded, it may not preserve all interpretations

1In this example, composition and type-raising are not present in the normal-form derivation;
however, this is not the general situation, because composition and type-raising are often necessary
to analyze a sentence, and Eisner’s constraint is designed to not completely eliminate such analyses.
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(not safe) (Hockenmaier and Bisk, 2010). Nevertheless, CCG parsers often imple-

ment it, because efficiency improvement is usually considerable even when spurious

ambiguity is partially alleviated. This is the choice in the first wide-coverage CCG

parser by Hockenmaier (2003), and it was later also implemented in the normal-

form and hybrid dependency models of Clark and Curran (2007), as part of the c&c

toolkit (Curran et al., 2007).

2.1.2 CCG Recognition Complexity

CCG is binary-branching and directly compatible with the CKY algorithm. How-

ever, a naive application of CKY results in worst case exponential runtime and space

with respect to the input length. To see this, recall that standard CKY for an unlexi-

calized binarized grammar has a worst case runtime of O(|G|n3) (often abbreviated as

O(n3), because |G| is the grammar size usually independent of n). In CCG, however,

no restrictions are enforced on the arity of its categories (Eq. 2.1), and the availability

of generalized composition allows the arity of primary categories (Eq. 2.2) to grow

linearly in n, resulting in an exponentially-sized grammar with an exponential num-

ber of categories in the worst case. This exponential growth is also what gives CCG

its mild context-sensitivity (Vijay-Shanker and Weir, 1993; Kuhlmann et al., 2010),

which contrasts with the context-free Categorial Grammar (Bar-Hillel, 1953).

To alleviate this, Vijay-Shanker and Weir (1993) proposed a polynomial-time

recognition algorithm for CCG, which runs in O(n6) time disregarding the gram-

mar constant. To date, however, this algorithm has been proven difficult to under-

stand and implement, hindering its adoption in practical parsers. As an alterna-

tive, Kuhlmann and Satta (2014) introduced an algorithm that is in principle more

accessible and much easier to implement. But like the Vijay-Shanker and Weir (1993)

algorithm, the new algorithm only deals with a specific variant of CCG, and is in-

compatible with some CCG rules (most notably type-raising) implemented in current

CCG parsers, which are necessary for wide-coverage parsing.

More recently, as a somewhat surprising result, it has been proved that any

recognition algorithm for CCG in the formalism of Vijay-Shanker and Weir (1994)
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would indeed have an exponential complexity if the grammar size is taken into ac-

count (Kuhlmann et al., 2017). Although the ramifications of this result on modern

CCGBank parsing is still unknown, it is likely, however, that the pursuit of more

complex recognition algorithms would be impeded, at least to some extent.

In practice, the pragmatic solution widely adopted to manage the exponential

factor in CCG parsers is to use a hard arity restriction tuned on the parser’s training

data (Curran et al., 2007); although crude, this method has been empirically shown

to be quite effective with minimal impact on parsing accuracy and coverage.2

As a less desirable solution, which I discuss below, a context-free cover grammar

derived from the parser’s training data can be used to avoid this exponential growth.

2.1.3 CCGBank

CCGBank (Hockenmaier, 2003; Hockenmaier and Steedman, 2007) is a treebank of

normal-form CCG derivations, created from the Penn Treebank (Marcus et al., 1993)

with a semi-automatic conversion process, incorporating CCG specific analyses that

are not originally present in the Penn Treebank derivations. Given CCGBank, there

are two approaches to extract a grammar for data-driven parsing. The first is to

extract all binary and unary CCG rule instances from CCGBank derivations (Fowler

and Penn, 2010; Zhang and Clark, 2011a). The main drawback of this approach

is that it results in a strictly context-free cover grammar, which only allows rule

instances seen in the treebank to be applied and can potentially compromise the

coverage by suppressing many derivations. On the other hand, a convenient, but

rather inelegant way of using this grammar is to apply Penn Treebank constituency

parsing models directly to CCG (Fowler and Penn, 2010). However, this deviates

away from CCG’s original design, in which a key element is a small set of language-

independent, universal combinatory rules (Steedman, 2000).

Adhering to this design, Hockenmaier (2003) and Clark and Curran (2007) extract

only the lexicon from CCGBank and define CCG rules without explicitly enumerating

any rule instances (Hockenmaier, 2003). Here I follow this approach by using exactly

2For example in the c&c parser, the maximum arity is set to 9.
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the same CCG rules as in Clark and Curran (2007, Appendix A), including all the

non-standard rules that are necessary for handling CCGBank derivations.

The Sentence Category. Another noteworthy property of CCGBank relevant to

the current work is that sentence categories S in derivations are furnished with fea-

tures designating sentence types. For example, S [dcl ] is for declarative, S [q ] for yes-no

questions, and S [inv ] for elliptical inversion. In particular, sentence categories in verb

phrases may also carry features; for example, S [b] is for bare infinitives, subjunctives

and imperatives, as in S [b]\NP , and S [to] is for to-infinitive, as in S [to]\NP . Hock-

enmaier (2003, §3.4) contains a complete list for both sentential and verb phrase

features for the sentence category.

The Standard Splits. For all experiments in this thesis, the standard splits of

CCGBank are used: Sections 2-21 for training (39,604 sentences), Section 00 for

development (1,913 sentences), and Section 23 (2,407 sentences) for testing.

2.1.4 CCG Dependency Structures

CCG has a completely transparent interface between surface syntax and seman-

tics (Steedman, 2000), and each syntactic constituent in a CCG derivation can be

associated with a semantically interpretable expression. Specifically, the slash oper-

ators / and \ in complex CCG categories which dictate how categories combine can

be interpreted as λ operators in lambda calculus. For example, join as a transitive

verb has a syntactic category (S [dcl ]\NP)/NP , and can be paired with a semantic

interpretation based on the lambda expression λxλy.join(y, x). More importantly,

the semantic arguments in the lambda expression of a category are consumed in the

same order as the syntactic arguments of the same category. That is, there is a one-

to-one correspondence between the slash and λ operators. For example, Fig.2-3 shows

how the semantic interpretation joined(he, NASA) is built “incrementally” (Ambati

et al., 2015) from the lambda expressions associated with the individual words in the

sentence He joined NASA, as the derivation is built.

In the theory of CCG, this close coupling of syntactic and semantic interpretations

is primarily linked to its Principle of Combinatory Type Transparency (Steedman,
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He joined NASA

NP : he (S [dcl ]\NP)/NP : λxλy.joined(y, x) NP : NASA
>

(S [dcl ]\NP) : λy.joined(y,NASA)
<

S [dcl ] : joined(he,NASA)

Figure 2-3: Example semantic representations expressed in lambda expressions built
as part of a syntactic derivation.

2000, p. 37), which states that:

All syntactic combinatory rules are type-transparent versions of one of a small

number of simple semantic operations over functions.

As a result, the semantic interpretation (as represented by a lambda expression)

associated with the category resulting from a combinatory rule is uniquely deter-

mined by the slashes of the primary and secondary categories (Eq. 2.2). Steedman

(1996) further argues that this principle is the most important single property of

CCG combinatory rules. Indeed, it is also closely related to how CCG predicate-

argument dependencies—which loosely represent the semantic interpretations—are

obtained during the syntactic derivation process (Hockenmaier, 2003).

I define CCG dependencies following Clark and Curran (2007), where each com-

plex category in the lexicon defines one or more predicate-argument relations. For

example, the transitive verb category (S [dcl ]\NP1 )/NP2 defines two relations: one

for the subject NP1 and one for the object NP2 . During a derivation, the predicate-

argument relations are realized as predicate-argument dependencies as categories com-

bine, and all the dependencies resulting from a derivation form a set, which is referred

to as a CCG dependency structure.

The goal of parsing with a CCG is to recover the dependency structures, and any

parsing model for CCG is evaluated on their dependency recovery accuracy.

Definition 1. A CCG predicate-argument dependency is a 4-tuple: 〈hf , f, s, ha〉

where hf is the lexical item of the lexical category expressing the dependency, f is

the lexical category, s is the argument slot, and ha is the head word of the argument.

Definition 2. A CCG dependency structure is a set of CCG predicate-argument
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Mr. President visited Paris

N /N N (S [dcl ]\NP)/NP NP
> >

N S [dcl ]\NP
>TC

NP
<

S [dcl ]

(a)

Mr. President visited Paris

N /N N (S [dcl ]\NP)/NP NP
>

N
>TC

NP
>T

S [dcl ]/(S [dcl ]\NP)
>B

S [dcl ]/NP
>

S [dcl ]

(b)

〈Mr.,N /N1 , 1,President〉
〈visited, (S [dcl ]\NP1 )/NP2 , 2,Paris〉
〈visited, (S [dcl ]\NP1 )/NP2 , 1,President〉

Figure 2-4: Two derivations leading to the same dependency structure. TC denotes
type-changing (which is only defined in CCGBank but not in the original formalism).

dependencies, in which all the lexical items are indexed by sentence position.

Fig. 2-4 shows an example demonstrating a CCG dependency structure in rela-

tion to spurious ambiguity. In both derivations, the first two lexical categories are

combined using forward application (>) and the dependency

〈Mr.,N /N1 , 1,President〉

is realized, with the category expressing the dependency being N /N1 , which has one

argument slot. The head word of the argument is President, which becomes the head

of the resulting category N .3

In Fig. 2-4a, a normal-form derivation is shown. In this example, the dependency

〈visited, (S [dcl ]\NP1 )/NP2 , 2,Paris〉 is realized by combining the transitive verb cate-

gory with the object NP using forward application, which fills the object NP2 slot

in the transtive verb category. The NP1 slot is then filled when the dependency

〈visited, (S [dcl ]\NP1 )/NP2 , 1,President〉 is realized at the root node S [dcl ] through

backward application (<).

Fig. 2-4b shows a non-normal-form derivation, which uses type-raising (T) and

3Head identification which uses additional category annotations is discussed in detail in Hock-
enmaier (2003) and Clark and Curran (2007).
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composition (B) (that are not required to derive the correct dependency structure).

In this alternative derivation, the dependency 〈visited, (S [dcl ]\NP1 )/NP2 , 1,President〉

is realized using forward composition (> B), and 〈visited, (S [dcl ]\NP1 )/NP2 , 2,Paris〉

is realized when the S [dcl ] root is produced.

As can be seen in both examples above, all the dependencies realized are local,

that is, they conjoin only two neighbouring words. In addition, using a unification

mechanism (Hockenmaier, 2003; Clark and Curran, 2007), CCG is also able to handle

long-range dependencies naturally; I show an example in Fig. 2-5.

In the bottom left column, the rules applied to obtain each constituent are de-

picted. In the right column, I depict the set of categories that are expressing de-

pendencies, their filled (shaded) and unfilled argument slots, and each superscripted

index indicates the corresponding dependency that is realized. Categories with un-

filled argument slots are also passed over during the whole derivation process.

The first dependency 〈the, NP/N1 , 1, books, 〉 is realized through the rule appli-

cation on the first row; it is a local dependency which fills the only argument slot

in NP/N1 . Similarly, the second dependency 〈likes, (S\NP1 )/NP2 , 1, John〉 is also

local, and it is realized when the last two words are combined; however, this leaves

the second argument slot in the category for likes unfilled, which is passed over. On

the third row, the first non-local dependency 〈which, (NP/NP1 )/(S/NP)2 , 2, likes〉

is realized. Eventually at the root, the second argument slot in the category of likes

is filled, realizing the non-local dependency 〈likes, (S\NP1 )/NP2 , 2, books〉. Also at

the root, the first argument slot in the category of which is filled, realizing the local

dependency 〈which, (NP/NP1 )/(S/NP)2 , 1, books〉.

2.1.5 Comparison with Dependency Grammars

In a dependency grammar, such as the one defined in McDonald (2006), a set of

constraints are imposed such that the resulting dependency graph forms a valid tree.

In CCG, no external constraints are placed on the well-formedness of the dependency

graphs, and this gives great flexibility in how CCG dependencies are realized, which is

only dictated by the predicate-argument relations defined by the complex categories.
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the books which John likes

NP/N N (NP\NP)/(S/NP) NP (S\NP)/NP
> >T

NP S/(S\NP)
>B

S/NP
>

NP\NP
<

NP

〈the, NP/N1 , 1, books〉 1

〈likes, (S\NP1 )/NP2 , 1, John〉 2

〈which, (NP/NP1 )/(S/NP)2 , 2, likes〉 3

〈likes, (S\NP1 )/NP2 , 2, books〉 4

〈which, (NP/NP1 )/(S/NP)2 , 1, books〉 5

NP/N1 N → NP 1 NP/ N 1
the

S/(S\NP) (S\NP1 )/NP2 → S/NP 2 (S\ NP1 )/NP2
likes

(NP\NP1 )/(S/NP)2 S/NP → NP\NP (S\ NP1 )/NP2
likes

3 (NP\NP1 )/ (S/NP)2

which

NP NP\NP → NP 4 (S\ NP1 )/ NP2
likes

5 (NP\ NP1 )/ (S/NP)2

which

Figure 2-5: Long-range dependency realization example. Top is the derivation; middle
is the dependency structure; bottom is unification in action. The right column at the
bottom shows filled (shaded) and unfilled dependencies in the lexical categories, where
categories with unfilled dependencies are passed over through the derivation as part
of the unification process.

For instance, in McDonald (2006), it is strictly required that “Each word has exactly

one incoming edge in the graph (except the root, which has no incoming edge).” and

“If there are n words in the sentence (including root), then the graph has exactly

n− 1 edges.” In a CCG dependency structure, both of these two constraints can be

violated.

For example, in the CCG dependency tree shown in Fig. 2-6, there are multiple

words with more than one incoming edges, and the total number of dependencies
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He learned some French and German

NP (S [dcl ]\NP)/NP NP [nb]/N N CONJ N
<Φ>

N
>

NP [nb]
>B

S [dcl ]\NP
<

S [dcl ]

He learned some French and German

〈and, CONJ1 , 1, german〉
〈and, CONJ1 , 1, french〉
〈some, (NP [nb])/N1 , 1, german〉
〈some, (NP [nb])/N1 , 1, french〉
〈learned, (S [dcl ]\NP1 )/NP2 , 2, german〉
〈learned, (S [dcl ]\NP1 )/NP2 , 2, french〉
〈learned, (S [dcl ]\NP1 )/NP2 , 1, he〉

He learned some French and German

〈learned, he〉
〈learned, french〉
〈french, some〉
〈french, and〉
〈french, german〉

Figure 2-6: Comparison of a CCG and a projective dependency tree.

is greater than the number of words in the sentence.4 Additionally, there is a non-

projective edge from French to learned, which would be disallowed in a projective

dependency tree, as in Fig. 2-6.5,6

In comparison with typical constituency and dependency grammars, the flexibility

in dependency realizations and the ability to recover many types of linguistically

sophisticated dependencies are two distinguishing features of CCG (Rimell et al.,

2009; Nivre et al., 2010).

4In CCG, there is no convention for drawing the dependency arcs, here the arcs always leave
from the arguments.

5The CCG dependencies are produced with the locally normalized LSTM parser described in
§5. The projective dependency tree is obtained with the Stanford dependency parser demo: http:

//nlp.stanford.edu:8080/parser/index.jsp, and Google Cloud API Demo: https://cloud.

google.com/natural-language.
6NP [nb] is treated to be equal to NP in this derivation by the parser. The handling of this is

implementation specific.
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2.2 CCG Supertagging

CCG is strongly lexicalized by definition. A CCG grammar extracted from CCG-

Bank contains over 1,000 lexical types (Clark and Curran, 2007), compared to about

50 POS tags for typical cfg parsers. This makes accurate disambiguation of lexical

types much more challenging. However, the assignment of lexical categories can still

be solved reasonably well by treating it as a sequence tagging problem, often referred

to as supertagging (Bangalore and Joshi, 1999). Clark and Curran (2004a) show that

high tagging accuracy can be achieved by leaving some ambiguity to the parser to

resolve, but with enough of a reduction in the number of tags assigned to each word

so that parsing efficiency is greatly increased.

In addition to improving parsing efficiency, supertagging also has a large impact

on parsing accuracy (Curran et al., 2006; Kummerfeld et al., 2010), since the deriva-

tion space of the parser is determined by the supertagger, at both training and test

time. Clark and Curran (2007) enhanced supertagging using a so-called adaptive

strategy, such that additional categories are supplied to the parser only if a spanning

analysis cannot be found. This strategy is used in the de facto c&c parser (Curran

et al., 2007), and the two-stage CCG parsing pipeline (supertagging and parsing)

continues to be the choice for most recent CCG parsers (Zhang and Clark, 2011a;

Auli and Lopez, 2011a), including all the CCG parsing models in this thesis.

Supertagger Pruning. For all current CCG parsers, including both chart and

shift-reduce parsers, the supertagger front end uses a probability cutoff parameter

β to determine the average number of supertags assigned to each word (ambiguity),

pruning categories whose probabilities are not within β times the probability of the

1-best category.

For all shift-reduce parsers in this thesis, the multi-tagging output obtained with

a fixed β is used for training and testing, and adpative supertagging is not applied.

In general, smaller β values can be used by a shift-reduce parser than by a dynamic

programming-based chart parser, since β values which are too small may explode

the dynamic program of the latter, while search can still remain tractable with shift-
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reduce parsing and inexact search.

2.3 Shift-Reduce CCG Parsing

Not only is supertagging challenging for CCG, the lexicalized nature of CCG and the

number of possible lexical categories makes lexical disambiguation more challenging

for the parser. This lexical disambiguation problem remains even when a context-free

cover grammar extracted from CCGBank is used. Moreover, there are more than

1,500 non-terminals in a standard CCG grammar (Hockenmaier, 2003; Clark and

Curran, 2007), which is an order of magnitude more than those of a typical cfg

parser. Indeed, as noted by by Auli and Lopez (2011a), the search problem for CCG

parsing is equivalent to finding an optimal derivation in the weighted intersection

of a regular language (generated by the supertagger) and a mildly context-sensitive

language (generated by the parser), which can quickly become expensive.

The shift-reduce algorithm (Aho and Ullman, 1972; Yamada and Matsumoto,

2003; Nivre, 2004; Nivre and Scholz, 2004) applied to CCG presents a more elegant

solution to this lexical disambiguation problem by allowing the parser to conduct

lexical assignment “incrementally” (Ambati et al., 2015) as a complete parse is being

built by the decoder (Zhang and Clark, 2011a). This is not possible with a chart

parser based on dynamic programming, in which complete derivations must be built

first. Therefore, a shift-reduce parser is able to consider a larger set of categories per

word for a given input, achieving higher lexical assignment accuracy than the c&c

parser (Clark and Curran, 2007), even with the same supertagging model (Zhang and

Clark, 2011a; Xu et al., 2014).

In all the shift-reduce CCG parsers below, I follow this strategy and adopt

the Zhang and Clark (2011a) style shift-reduce transition system, which assumes a

set of lexical categories has been assigned to each word using a supertagger. Parsing

then proceeds by applying a sequence of actions to transform the input maintained

on a queue, into partially constructed derivations, kept on a stack, until the queue

and available actions on the stack are both exhausted.

Figure 2-7 shows a shift-reduce parsing example for the sentence Mr. President
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step stack (δn, ..., δ1, δ0) queue (β0, β1, ..., βm) action

0 Mr. President visited Paris

1 N /N President visited Paris shift

2 N /N N visited Paris shift

3 N visited Paris reduce

4 NP visited Paris unary

5 NP (S [dcl ]\NP)/NP Paris shift

6 NP (S [dcl ]\NP)/NP N shift

7 NP (S [dcl ]\NP)/NP NP unary

8 NP S [dcl ]\NP reduce

9 S [dcl ] reduce

Figure 2-7: Deterministic example of shift-reduce CCG parsing. β is a queue of
remaining input, consisting of words and the gold standard lexical category for each
word (with β0 being the front word), and δ is the stack that holds subtrees (with δ0

at the top); lexical categories omitted on queue.

Dexter likes experiments

NP (S [dcl ]\NP)/NP NP
>T

S [dcl ]/(S [dcl ]\NP)
>B

S [dcl ]/NP
>

S [dcl ]

Figure 2-8: A CCG derivation, in which each point corresponds to the result of a
shift-reduce action. In this example, composition (B) and application (>) are reduce
actions, and type-raising (T) is a unary action.

visited Paris, giving a single, deterministic sequence of shift-reduce actions which

produces a correct derivation (i.e., one producing the correct set of dependencies).

Starting with the initial parser state (row 0), which has an empty stack and a full

queue, a total of nine actions are applied to produce the complete derivation. Another

deterministic example is shown in Fig. 2-8, where the sequence of shift-reduce actions

that builds the derivation is: shift⇒ NP , unary⇒ S [dcl ]/(S [dcl ]\NP), shift⇒

(S [dcl ]\NP)/NP , reduce⇒ S [dcl ]/NP , shift⇒ NP and reduce⇒ S [dcl ], where

⇒ is used to indicate the CCG category produced by an action.
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input : w0 . . . wn−1

axiom : 0 : (0, ε, β, φ)

goal : 2n− 1 + µ : (n, δ, ε,∆)

ω : (j, δ, xwj |β,∆)

ω + 1 : (j + 1, δ|xwj , β,∆)
(shift; 0 ≤ j < n)

ω : (j, δ|s1|s0, β,∆)

ω + 1 : (j, δ|x, β,∆ ∪ 〈x〉))
(reduce; s1s0 → x)

ω : (j, δ|s0, β,∆)

ω + 1 : (j, δ|x, β,∆)
(unary; s0 → x)

Figure 2-9: The shift-reduce deduction system.

2.3.1 The Transition and Deduction Systems

More formally, I denote parser states as (j, δ, β,∆), where δ is the stack (with top

element δ|s0), β is the queue (with top element xwj |β), j is the positional index of the

word at the front of the queue, and ∆ is the set of CCG dependencies realized for

the input consumed so far.7 I also assume a set of lexical categories has been assigned

to each word using a supertagger. The transition system is then specified using three

action types:

• shift removes one of the lexical categories xwj of the front word wj in the

queue, pushes it onto the stack, and removes wj from the queue.

• reduce combines the top two subtrees s0 and s1 on the stack using a CCG

rule (s1s0 → x) and replaces them with a subtree rooted in x. It also appends

the set of newly realized dependencies on x, denoted as 〈x〉, to ∆.

• unary applies either a type-raising or type-changing rule (s0 → x) to the

stack-top element and replaces it with a unary subtree rooted in x.

7Standard notations from dependency parsing (Nivre, 2008) are partly adopted.
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The deduction system (Fig. 2-9) follows from the transition system.8 Each parser

state is associated with a step indicator ω, which denotes the number of actions used

to build it. Given a sentence of length n, a full derivation requires 2n − 1 + µ steps

to terminate, where µ is the total number of unary actions applied. In Zhang and

Clark (2011a), a finish action is used to indicate termination, which is not used here—

a state is finished when no further action can be taken. Another difference between

the transition systems is that Zhang and Clark (2011a) omit the ∆ field in each

state, due to their use of a context-free, phrase-structure cover, and dependencies are

recovered at a post-processing step; in my parsers, dependencies are built on-the-fly.

2.3.2 Statistical Shift-Reduce Parsing

From here on, I assume a statistical shift-reduce parser is made up of three compo-

nents, namely a deduction system (which subsumes the transition system), a model

and a search strategy. As can be seen above, the deduction system defines the sym-

bolic rules of a parser, and given an input sentence x, it can be used to find the set of

all possible valid shift-reduce action sequences. The goal of a statistical parser is to

produce the most likely sequence y∗ from this set, with a model and a search strategy.

More formally, the inference problem can be written as

y∗ = arg max
y∈Y

∑
1≤t≤|y|

γ
(
yt, 〈α, β〉t−1

y ; θ
)
,

where Y is the set of all possible shift-reduce action sequences given x, with each y

having length |y|; yt is the tth action in y and 〈α, β〉t−1
y is the (t−1)th parser state in

y; γ is a scoring function obtained under the supervision of an oracle, with a learning

algorithm that is associated with the model parametrized by θ.

Because Y is exponentially-sized with respect to the length of a given x in general,

solving this inference problem exactly is often intractable. Instead, greedy search or

beam search is often used to approximately find y∗. For all the shift-reduce models

that I consider later, both of these two strategies can be used.

8Notation is slightly abused for the shift deduction, where xwj
|β is used to denote the lexical

category xwj available for the front word on the queue.
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Under greedy search, a locally optimal action yt
∗ is chosen at each step t until the

goal is reached, and the inference rule can be summarized as

yt
∗ = arg max

yt∈T (〈α,β〉t−1
y )

γ
(
yt, 〈α, β〉t−1

y ; θ
)
,

where T
(
〈α, β〉t−1

y

)
is the set of all feasible actions for the parser state 〈α, β〉t−1

y .

With beam search, a beam is used to store the top-k highest-scoring items at each

step resulting from expanding all items in the previous beam, and the parser keeps

track of the highest scored candidate output which is returned as the final output.

Compared with greedy search, the use of beam search allows the parser to explore

a larger search space. More importantly, beam search can be naturally integrated

with the learning algorithms to derive global shift-reduce parsing models (Zhang and

Clark, 2008; Zhang and Clark, 2011a; Xu et al., 2014; Xu et al., 2016; Xu, 2016), as

in the following chapters.
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Chapter 3

Shift-Reduce CCG Parsing with a

Dependency Model

Typed dependency structures recovered by CCG (Hockenmaier, 2003; Clark and

Curran, 2007) (§2.1.4) provide a useful approximation to the underlying predicate-

argument relations of “who did what to whom”. To date, CCG remains the most

competitive formalism for recovering “deep” dependencies arising from many linguis-

tic phenomena such as raising, control, extraction and coordination (Rimell et al.,

2009; Nivre et al., 2010).

To achieve its expressiveness, CCG exhibits so-called “spurious” ambiguity, per-

mitting many non-standard surface derivations which ease the recovery of certain

dependencies, especially those arising from type-raising and composition (§2.1.1).

But this raises the question of what is the most suitable model for CCG: Should

we model the derivations, the dependencies, or both? The choice for some existing

parsers (Hockenmaier, 2003; Clark and Curran, 2007) is to model derivations directly,

restricting the gold standard to be the normal-form derivations (Eisner, 1996a) from

CCGBank (Hockenmaier, 2003; Hockenmaier and Steedman, 2007).

Modelling dependencies, as a proxy for the semantic interpretation, fits well with

the theory of CCG, in which Steedman (2000) argues that the derivation is merely

a “trace” of the underlying syntactic process, and that the structure which is built,

and predicated over when applying constraints on grammaticality, is the semantic
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interpretation. The early dependency model of Clark et al. (2002), in which model

features were defined over only dependency structures, was partly motivated by these

theoretical observations.

More generally, dependency models are desirable for a number of reasons. First,

modelling dependencies provides an elegant solution to the spurious ambiguity prob-

lem (Clark and Curran, 2007). Second, obtaining training data for dependencies

is likely to be easier than for syntactic derivations, especially for incomplete data

(Schneider et al., 2013). Clark and Curran (2006) show how the dependency model

from Clark and Curran (2007) extends naturally to the partial-training case, and also

how to obtain dependency data cheaply from gold standard lexical category sequences

alone. And third, it has been argued that dependencies are an ideal representation

for parser evaluation, especially for CCG (Briscoe and Carroll, 2006; Clark and

Hockenmaier, 2002), and so optimizing for dependency recovery makes sense from an

evaluation perspective.

The first shift-reduce model for CCG is due to Zhang and Clark (2011a), and it is

a normal-form model, where the oracle for each sentence specifies a unique sequence

of gold standard actions that produces the corresponding normal-form derivation

(§2.3); no dependency structures are involved at training and test time, except for

evaluation. Here I fill a gap in the literature by developing the first dependency model

for a shift-reduce CCG parser, which considers all sequences of actions producing a

gold standard dependency structure to be correct. Each training instance in this

model is an input sentence paired with its CCG dependency structure (§2.1.4), and

the selection of shift-reduce action sequences producing the dependency structure is

treated as a hidden variable during training.

The same as the normal-form model, the dependency model preserves the left-

to-right, incremental nature of shift-reduce parsing, which fits with CCG’s cognitive

claims (Ambati et al., 2015). In particular, it has the same transition and deduction

systems as the normal-form model (Zhang and Clark, 2011a); it is also discriminative

and global (Zhang and Clark, 2008) and uses beam search (Collins and Roark, 2004)

with the advantage of linear-time inference (Goldberg et al., 2013).
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SR ∆ Df ∆f

Clark et al. (2002) 7 3 7 3

Clark and Curran (2007) 7 3 3 3

Zhang and Clark (2011a) 3 7 3 7

present work 3 3 3 3

Table 3.1: Comparison of the dependency model in this chapter with the chart-based
dependency models in Clark et al. (2002) and Clark and Curran (2007). Zhang and
Clark (2011a) is a shift-reduce normal-form model. SR (Shift-Reduce); ∆ (Depen-
dency model); Df (Derivation features); ∆f (Dependency features).

As the first contribution of this chapter, I develop a dependency oracle (§3.1). I

then show how it can be integrated with online structured perceptron learning and

beam search (Collins and Roark, 2004) by generalizing early update (Collins and

Roark, 2004) under the violation-fixing perceptron framework (Huang et al., 2012)

(§3.2). By also taking advantage of a rich feature set incorporating both features from

the normal-form shift-reduce model (Zhang and Clark, 2011a) and the chart-based

dependency model (Clark and Curran, 2007) (see Table 3.1), the final shift-reduce

parser outperforms the chart-based dependency models of Clark and Curran (2007)

as well as the shift-reduce normal-form model of Zhang and Clark (2011a), showing

up to 1.84 labeled F1 improvements.

One possible way to view the present dependency model is through the lens of a

dynamic oracle (Goldberg and Nivre, 2012), but it is worth pointing out that this

view should only be restricted to the high-level definition of the dependency oracle

function (Eq. 5, §3.1.2). Other than this, the dependency model has different moti-

vations from Goldberg and Nivre (2012), and it has been formulated independently.

In particular, the dynamic oracle of Goldberg and Nivre (2012) is tailored for the

specific class of dependency grammar they consider, whereas the CCG parser I con-

sider allows great flexibility in dependency realization with a unification mechanism

(§2.1.4). This flexibility also calls for a novel oracle and training method to handle the

resulting algorithmic and structured learning challenges, which are addressed below.
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3.1 The Dependency Oracle

The chart-based dependency model of Clark and Curran (2007) treats all derivations

as hidden, and defines a probabilistic model for a dependency structure by summing

probabilities of all derivations leading to a particular structure. Features are defined

over both derivations and CCG predicate-argument dependencies. I follow a similar

approach, but rather than define a probabilistic model (which requires summing), I

define a linear model over sequences of shift-reduce actions, as for the normal-form

shift-reduce model. However, the difference compared to the normal-form model is

that I do not assume a single gold standard sequence of actions for each input.

More specifically, I define an oracle which determines, for a gold standard de-

pendency structure, G, what the valid transition sequences are (i.e., those sequences

producing derivations leading to G). As such, given G and a parser state 〈δ, β〉, the

oracle can determine what the valid actions are for that state (i.e., what actions can

potentially lead to G, starting with 〈δ, β〉 and the dependencies already built on δ).

Because there can be exponentially many valid action sequences for G, I opt to rep-

resent them using a packed parse forest, and show how the forest can be used, during

beam search at training time, to determine the set of valid actions for a given state.

3.1.1 The Oracle Forest

A CCG parse forest efficiently represents an exponential number of derivations. Fol-

lowing Clark and Curran (2007) (which builds on Miyao and Tsujii (2002)), and using

the same notation, I define a CCG parse forest Φ as a tuple 〈C,D,R, γ, δ〉, where

C is a set of conjunctive nodes and D is a set of disjunctive nodes.1 More specifi-

cally, conjunctive nodes are individual CCG categories in Φ, and are either obtained

from the lexicon, or by combining two disjunctive nodes using a CCG rule, or by

applying a unary rule to a disjunctive node. Disjunctive nodes are equivalence classes

of conjunctive nodes. Two conjunctive nodes are equivalent iff they have the same

category, head and unfilled dependencies (i.e., they will lead to the same derivation,

1Under the hypergraph framework (Gallo et al., 1993; Huang and Chiang, 2005), a conjunctive
node corresponds to a hyperedge and a disjunctive node corresponds to the head of a hyperedge or
hyperedge bundle.

32



and produce the same dependencies, in any future parsing). Moreover, let R ⊆ D be

the set of root disjunctive nodes; let γ : D → 2C be the conjunctive child function,

which returns the set of all conjunctive child nodes of a disjunctive node; and let

δ : C → 2D be the disjunctive child function, which returns the disjunctive child

nodes of a conjunctive node.

The dependency model requires all the conjunctive and disjunctive nodes of Φ

that are part of the derivations leading to a gold standard dependency structure G.

I refer to such derivations as correct derivations and the packed forest containing all

these derivations as the oracle forest, denoted as ΦG, which is a subset of Φ. It is

prohibitive to enumerate all correct derivations, but it is possible to identify, from

Φ, all the conjunctive and disjunctive nodes that are part of ΦG. Clark and Curran

(2007) give an algorithm for doing so, which I use here. The main intuition behind the

algorithm is that a gold standard dependency structure decomposes over derivations,

thus gold standard dependencies realized at conjunctive nodes can be counted when Φ

is built, and all nodes that are part of ΦG can then be marked out of Φ by traversing

it top-down. A key idea in understanding the algorithm is that dependencies are

created when disjunctive nodes are combined, and hence are associated with, or “live

on”, conjunctive nodes in the forest.

Following Clark and Curran (2007), I also define the following three values, where

the first decomposes only over local rule productions, while the other two decompose

over derivations:

cdeps(c) =

∗ if ∃ τ ∈ deps(c), τ /∈ G

|deps(c)| otherwise;

dmax(c) =


∗ if cdeps(c) == ∗

∗ if dmax(d) == ∗ for some d ∈ δ(c)∑
d∈δ(c) dmax(d) + cdeps(c) otherwise;

dmax(d) = max{dmax(c) | c ∈ γ(d)},
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1: function Mark-Oracle(〈C,D,R, γ, δ〉)
2: for each dr ∈ R s.t. dmax(dr) = |G| do . each root disjunctive node dr
3: Mark(dr)

4: procedure Mark(d)
5: mark d as a correct node
6: for each c ∈ γ(d) do . each child conjunctive node of d
7: if dmax(c) == dmax(d) then
8: mark c as a correct node
9: for each d′ ∈ δ(c) do . each child disjunctive node of c

10: if d′ has not been visited then
11: Mark(d′)

Figure 3-1: The forest marking algorithm of Clark and Curran (2007); the input is a
parse forest 〈C,D,R, γ, δ〉 with dmax(c) and dmax(d) already computed.

where deps(c) is the set of all dependencies on conjunctive node c, and cdeps(c)

counts the number of correct dependencies on c; dmax(c) is the maximum number of

correct dependencies over any sub-derivation headed by c and is calculated recursively;

dmax(d) returns the same value for a disjunctive node. In all cases, a special value

∗ indicates the presence of incorrect dependencies. To obtain the oracle forest, I

first precompute dmax(c) and dmax(d) for all d and c in Φ when Φ is built using

CKY, then I use the algorithm given in Fig. 3-1 to identify all the conjunctive and

disjunctive nodes in ΦG.

3.1.2 The Dependency Oracle Algorithm

Observe that the canonical shift-reduce algorithm applied to a single parse tree exactly

resembles bottom-up post-order traversal of that tree. As an example, consider the

derivation in Fig. 3-2a, where the corresponding sequence of actions is: shift ⇒

N /N , shift ⇒ N , reduce ⇒ N , unary ⇒ NP , shift ⇒ (S [dcl ]\NP)/NP ,

shift⇒ NP , reduce⇒ S [dcl ]\NP , reduce⇒ S [dcl ].

The order of traversal is left-child, right-child and parent. For a single parse, the

corresponding shift-reduce action sequence is unique, and for a given parser state this

canonical order restricts the possible derivations that can be formed using further

actions. I now extend this observation to the more general case of an oracle forest,
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Mr. President visited Paris

N /N N (S [dcl ]\NP)/NP NP
> >

N S [dcl ]\NP
>TC

NP
<

S [dcl ]

(a)

Mr. President visited Paris

N /N N (S [dcl ]\NP)/NP NP
> >

N S [dcl ]\NP
>TC

NP

(b)

Mr. President visited Paris

N/N N (S [dcl ]\NP)/NP NP
>

S [dcl ]\NP

(c)

Figure 3-2: Example subtrees on two stacks assuming ΦG contains only the derivation
in (a); two subtrees in (b) and three in (c), and roots of subtrees are in bold.

where there may be more than one valid action available for a given state.

Definition 3. Given a gold standard dependency structure G, an oracle forest ΦG,

and a parser state 〈δ, β〉, δ is a said to be a realization of G, denoted δ ' G, if

|δ| = 1, β is empty, and the single derivation on δ is correct. If |δ| > 0 and the

subtrees on δ can lead to a correct derivation in ΦG using further actions, δ is said to

be a partial-realization of G, denoted as δ ∼ G. If |δ| = 0, δ ∼ G.

As an example, assume that ΦG contains only the derivation in Fig. 3-2a, then a

stack containing the two subtrees in Fig. 3-2b is a partial-realization, while a stack

containing the three subtrees in Fig. 3-2c is not. Note that each of the three subtrees

in Fig. 3-2c is present in ΦG (Fig. 3-2a); however, these subtrees cannot be combined

into the correct derivation, since the correct action sequence must first combine the

lexical categories for Mr. and President before shifting the lexical category for visited.

Let (x, c) denote an action pair, where x ∈ {shift,reduce,unary} and c is

the root of the subtree resulting from that action, which corresponds to a unique

conjunctive node in the complete forest Φ. Let csi denote the conjunctive node in Φ

corresponding to subtree si on a stack; let 〈δ′, β′〉 = 〈δ, β〉 ◦ (x, c) be the resulting

parser state from applying the action (x, c) to 〈δ, β〉; let the set of all possible actions

for 〈δ, β〉 be T (〈δ, β〉) = {(x, c) | (x, c) is applicable to 〈δ, β〉}.
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Definition 4. Given ΦG and a parser state 〈δ, β〉 s.t. δ ∼ G, an applicable action

(x, c) for the state is said to be valid iff δ′ ∼ G or δ′ ' G, where 〈δ′, β′〉 = 〈δ, β〉◦(x, c).

Definition 5. Given ΦG, the dependency oracle function fd is defined as:

fd(〈δ, β〉, (x, c),ΦG) =

true if δ′ ∼ G or δ′ ' G

false otherwise,

where (x, c) ∈ T (〈δ, β〉) and 〈δ′, β′〉 = 〈δ, β〉 ◦ (x, c).

The pseudocode in Fig. 3-3 implements fd. It determines, for a given parser state,

whether an applicable action is valid in ΦG.

It is trivial to determine the validity of a shift action for the initial state, 〈δ, β〉0,

since the shift action is valid iff its category matches the gold standard lexical

category of the first word in the sentence. For any subsequent shift action (shift, c)

to be valid, the necessary condition is c ≡ clex0 , where clex0 denotes the gold standard

lexical category of the front word in the queue, δ0 (line 3). However, this condition is

not sufficient; a counterexample is where all the gold standard lexical categories for

the sentence in Fig. 3-2a are shifted in succession. Hence, in general, the conditions

under which an action is valid are more complex than the trivial case above.

First, for ease of exposition, suppose again that there is only one correct derivation

in ΦG. A shift action (shift, clex0) is valid whenever cδ0 (the conjunctive node in

ΦG corresponding to the subtree δ0 on the stack) and clex0 (the conjunctive node

in ΦG corresponding to the next gold standard lexical category from the queue) are

both dominated by the conjunctive node parent p of cδ0 in ΦG.2 A reduce action

(reduce, c) is valid if c matches the category of the conjunctive node parent of cδ0

and cδ1 is in ΦG. A unary action (unary, c) is valid if c matches the conjunctive

node parent of cδ0 in ΦG. I now generalize the case where ΦG contains a single correct

derivation to the case of an oracle forest, where each parent p is replaced by a set of

conjunctive nodes in ΦG.

2Strictly speaking, the conjunctive node parent is a parent of the disjunctive node containing
the conjunctive node cδ0 , but I will continue to use this shorthand for parents of conjunctive nodes
throughout this chapter.
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Definition 6. The left parent set PL(c) of a conjunctive node c ∈ ΦG is the set of

all parent conjunctive nodes of c in ΦG, which have the disjunctive node d containing

c (i.e., c ∈ γ(d)) as a left child.

Definition 7. The ancestor set A(c) of conjunctive node c ∈ ΦG is the set of all

reachable ancestor conjunctive nodes of c in ΦG.

Definition 8. Given a parser state 〈δ, β〉, δ is said to be a frontier stack if |δ| = 1.

A key to defining the dependency oracle function is the notion of a shared an-

cestor set. Intuitively, shared ancestor sets are built up through shift actions, and

they contain sets of nodes which can potentially become the results of reduce or

unary actions. A further intuition is that shared ancestor sets define the space of

possible correct derivations, and nodes in these sets are “ticked off” when reduce

and unary actions are applied, as a single correct derivation is built through the shift-

reduce process (corresponding to a bottom-up post-order traversal of the derivation).

The following definition shows how the dependency oracle function builds shared

ancestor sets for each action type.

Definition 9. Let 〈δ, β〉 be a parser state and let 〈δ′, β′〉 = 〈δ, β〉◦(x, c). The shared

ancestor set R(cδ′1 , cδ′0) of cδ′0 , obtained after applying action (x, c), is defined as:

• {c′ | c′ ∈ PL(cδ0) ∩ A(c)}, if δ is frontier and x = shift;

• {c′ | c′ ∈ PL(cδ0) ∩ A(c) and R(cδ1 , cδ0) ∩ A(c′) 6= ∅}, if δ is non-frontier and x =

shift;

• {c′ | c′ ∈ R(cδ2 , cδ1) ∩ A(c)}, if x = reduce;

• {c′ | c′ ∈ R(cδ1 , cδ0) ∩ A(c)}, if δ is non-frontier and x = unary;

• R(ε, c0
δ0

) = ∅, where c0
δ0

is the conjunctive node corresponding to the gold standard

lexical category of the first word in the sentence.3

3With a slight abuse of notation, I use ε to indicate the bottom of stack.
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1: function Dep-Oracle(〈δ, β〉, (x, c), ΦG)
2: if x is shift then
3: if c 6≡ clex0 then . c not gold lexical category
4: return false
5: else if c ≡ clex0 and |δ| = 0 then . the initial state
6: return true
7: else if c ≡ clex0 and |δ| 6= 0 then
8: compute R(cδ′1 , cδ′0)
9: return R(cδ′1 , cδ′0) 6= ∅

10: if x is reduce then . δ is non-frontier
11: if c ∈ R(cδ1 , cδ0) then
12: compute R(cδ′1 , cδ′0)
13: return true
14: else return false

15: if x is unary then
16: if |δ| = 1 then . δ is frontier
17: return c ∈ ΦG

18: if |δ| 6= 1 and c ∈ ΦG then . δ is non-frontier
19: compute R(cδ′1 , cδ′0)
20: return R(cδ′1 , cδ′0) 6= ∅

Figure 3-3: The dependency oracle algorithm that implements fd (Definition 5). The
input consists of an oracle parse forest ΦG, a parser state 〈δ, β〉 s.t. δ ∼ G, and an
applicable action (x, c) ∈ T (〈δ, β〉).

The base case for Definition 9 is when the gold standard lexical category of the

first word in the sentence has been shifted, which creates an empty shared ancestor

set. Furthermore, the shared ancestor set is always empty for frontier stacks.

The dependency oracle algorithm checks the validity of applicable actions (Fig. 3-

3). A shift action is valid if R(cδ′1 , cδ′0) 6= ∅ for the resulting stack δ′. A valid

reduce action consumes δ1 and δ0. For the newly produced node, its shared ancestor

set is the subset of the conjunctive nodes in R(cδ2 , cδ1) which dominate the resulting

conjunctive node of a valid reduce action. The unary case for a frontier stack is

trivial: an unary action is valid if it is in ΦG. For a non-frontier stack, the unary

case is similar to reduce, except the resulting shared ancestor set is a subset of

R(cδ1 , cδ0).
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N

S\NP

(S\NP)/N NP

S\NP

S S

NP (S\NP)/NP NP/N

Mary some booksbought

stack (sn, ..., s1, s0) R(cδ′1 , cδ′0) computation

shift NP ()

shift NP (S\NP)/NP (S ,S) PL(NP) ∩ A((S\NP)/NP)

shift NP (S\NP)/NP NP/N (S\NP , (S\NP)/N ) PL((S\NP)/NP) ∩ A(NP/N )

shift NP (S\NP)/NP NP/N N (NP) PL(NP/N ) ∩ A(N )

reduce NP (S\NP)/NP NP (S\NP) R((S\NP)/NP ,NP/N ) ∩ A(NP)

reduce NP S\NP (S ) R(NP , (S\NP)/NP) ∩ A(S\NP)

reduce S ()

Figure 3-4: Example of the dependency oracle algorithm in action.

Fig. 3-4 shows an example in action. The parse forest is shown above the table,

where both derivations are correct. From left to right, the table shows the trace of

the action sequence producing the dashed correct tree, the trace of the stack, and the

shared ancestor sets along with the computations invoked to obtain them. For the first

shift, lines 5− 6 of Fig. 3-3 are executed, and the base case in Definition 9 applies,

where R(NP , (S\NP)/NP) is empty. For the second shift, lines 7− 9 are executed,

and the frontier shift case in Definition 9 applies. The third shift is a non-frontier

shift case, and according to Definition 9, the extra checks needed (which are omitted

in Fig. 3-4) are R(NP , (S\NP)/NP) ∩ A(S\NP) 6= ∅ and R(NP , (S\NP)/NP) ∩

A((S\NP)/N ) 6= ∅; the fourth shift is similar to the third. The first reduce

produces NP , and is valid because NP ∈ R(NP/N ,N ) (line 11 in Fig. 3-3), and the

resulting shared ancestor set is R((S\NP)/NP ,NP). The remaining reduce cases

are treated similarly.

I now turn to the problem of finding the shared ancestor sets. In practice, I do

not traverse ΦG top-down from the conjunctive nodes in PL(cδ0) on-the-fly to find
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each member of R. Instead, when ΦG is built (using CKY), I precompute reachable

disjunctive nodes of each conjunctive node c in ΦG as

D(c) = δ(c) ∪ (∪c′∈γ(d),d∈δ(c)(D(c′))),

where each such D is implemented as a hash map to allow the membership of one

potential conjunctive node to be tested in O(1) time: a conjunctive node c ∈ PL(cδ0)

is reachable from clex0 if there is a disjunctive node d ∈ D(c) s.t. clex0 ∈ γ(d). With

this implementation, the complexity of checking each shift action is O(|PL(cδ0)|).

3.2 Training

Clark and Curran (2007) introduced three probabilistic log-linear CCG parsing mod-

els, including a normal-form model, a dependency model and a hybrid dependency

model (which is the same as the dependency model except in addition it uses the

Eisner constraint), and all three models are based on exact search using CKY. For

each model, training involves constructing complete parse forests for the input sen-

tences, and estimating the parameters over them—there is no interaction between

learning and search, and no pruning of the search space.4 More specifically, the same

as shift-reduce parsing, in the normal-form model, only one gold standard derivation

appears in a parse forest; in the dependency models, all derivations consistent with a

dependency structure are considered to be correct. In both cases, parameters are esti-

mated in an identical manner (modulo minor modifications of the objective function).

In this section, I first review parameter estimation of the chart-based models (which

draws heavily on Miyao and Tsujii (2002)) to motivate the problem of reconciling

learning and search in the shift-reduce dependency model.

3.2.1 Training Chart-Based Models

In all three chart-based models, the probability of a parse is defined in the same

parametric form; the distinction lies in how an actual parse is instantiated.

4There is pruning at the supertagging stage, but no pruning whatsoever at the parsing
stage (Clark and Curran, 2007).
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Definition 10. A parse y in the normal-form model is a head-lexicalized CCG deriva-

tion d.

Definition 11. A parse y in the dependency model is a CCG derivation d coupled

with its dependency structure ∆d, denoted as 〈d,∆d〉.

Definition 12. The conditional probability of a parse y given a sentence x is defined

as

p(y|x) =
1

Zx
exp {w · φ(x, y)} ,

where Zx =
∑

y′ exp {w · φ(x, y′)} is a global normalization term over the set of all

possible parses for x; w is the parameter vector of the model; and φ is a function that

returns the feature frequency vector.

Note that in the normal-form model, the packed chart for each input almost

always contains non-normal-form derivations, because it is not possible to completely

eliminate all non-normal-form derivations even with the Eisner constraint (§2.1.1),

but the gold standard derivations are normal-form CCGBank derivations.

Chart-based Normal-Form Model. This is the chart-based counterpart of the

shift-reduce normal-form model (Zhang and Clark, 2011a), and the training data

consists of sentence and normal-form derivation pairs, denoted as {(xi, di)}ni=1. The

conditional log-likelihood objective function is defined as

J ′(w) = J(w)−G(w)

= log
n∏
i=1

pw(di|xi)−
∑
wj∈w

w2
j

2σ2
,

where wj is the jth component of w; G(w) is a Gaussian prior for smoothing that is

parametrized by σ for all values of j.

The gradients of the objective are obtained as

∂J ′(w)

∂wj
=

n∑
i=1

φj(xi, di)−
n∑
i=1

∑
d∈Dxi

exp{w · φ(xi, d)}φj (xi, d)∑
d′∈Dxi

exp{w · φ(xi, d′)}
− wj

σ2
,
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where Dxi is the set of all possible parses (i.e., normal-form derivations) for xi and

φj is the jth component of φ.

The first term in the gradient computation takes into account only the gold stan-

dard derivation (the empirical expectations), while the second term deals with the

expectations over all derivations contained in the chart (the model expectations).

Chart-based Dependency Model. The same as the shift-reduce dependency

model, the training data for this model consists of sentence and dependency structure

pairs, denoted as {(xi,∆xi)}ni=1 and the objective function is

J ′(w) = J(w)−G(w)

= log
n∏
i=1

pw(∆xi |xi) −
∑
wj∈w

w2
j

2σ2

=
n∑
i=1

log

∑
d∈Φ(∆xi )

exp {w · φ(xi, 〈d,∆xi〉)}∑
〈d′,∆d′ 〉∈Λ(xi)

exp {w · φ(xi, 〈d′,∆d′〉)}
−
∑
wj∈w

w2
j

2σ2

=
n∑
i=1

log
∑

d∈Φ(∆xi )

exp {w · φ(xi, 〈d,∆xi〉)}

−
n∑
i=1

log
∑

〈d′,∆d′ 〉∈Λ(xi)

exp {w · φ(xi, 〈d′,∆d′〉)} −
∑
wj∈w

w2
j

2σ2
,

where Φ(∆xi) is the oracle forest for the dependency structure ∆xi , and Λ(xi) is the

set of all possible parses (i.e., derivation and dependency structure pairs).

The gradients are obtained as

∂J ′(w)

∂wj
=

n∑
i=1

∑
d∈Φ(∆xi )

exp {w · φ(xi, 〈d,∆xi〉)}φj(xi, 〈d,∆xi〉)∑
d∈Φ(∆xi )

exp {w · φ(xi, 〈d,∆xi〉)}

−
n∑
i=1

∑
〈d′,∆d′ 〉∈Λ(xi)

exp {w · φ(xi, 〈d′,∆d′〉)}φj(xi, 〈d′,∆d′〉)∑
〈d′,∆d′ 〉∈Λ(xi)

exp {w · φ(xi, 〈d′,∆d′〉)}
− wj
σ2

For both the normal-form and dependency models, obtaining feature expectations

requires summing over all possible derivations for an input, and this is made possible

by CKY, in combination with the supertagger so that packed charts can be built with

reasonable amount of space. The calculations are identical in both cases (modulo the
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definition of a parse y), in which the feature expectation of the jth feature is

E(φj) =
n∑
i=1

1

Zxi

∑
y

exp {w · φ(xi, y)}φj(xi, y).

To do this efficiently, the inside (α) and outside (β) scores of the conjunctive nodes

in the parse forest for xi, denoted as C(xi), can be used, where

E(φj) =
n∑
i=1

1

Zxi

∑
c∈C(xi)

φj(xi, c)αcβc.

Viterbi and Minimal-Risk Inference. It is straightforward to use the Viterbi

algorithm to return the 1-best derivation for the normal-form model. However, for the

dependency model, it seeks to return the highest-scoring dependency structure. Clark

and Curran (2007) achieve this by adapting the labeled recall algorithm of Goodman

(1996), which is a form of minimal-risk inference that goes through all dependency

structures and returns the one that maximizes the expected recall rate (or equivalently

unnormalized expected recall):

∆∗ = arg max
∆

∑
∆′

p(∆′|xi)|∆′ ∩∆|,

which can be written more explicitly as

∆∗ = arg max
∆

∑
∆′

p(∆′|xi)
∑
τ∈∆

1τ∈∆′

= arg max
∆

∑
τ∈∆

∑
∆′|τ∈∆′

p(∆′|xi)

= arg max
∆

∑
τ∈∆

∑
d∈Φ(∆′)|τ∈∆′

p(d|xi),

where ∆′ ranges over all possible dependency structures for xi; τ is an individual

dependency in a dependency structure; 1 is an indicator function with the condition

τ ∈ ∆′; and Φ(∆′) is the parse forest corresponding to the dependency structure ∆′.

Through the above derivation, each dependency structure ∆ is decomposed into
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individual dependencies, and the expected recall score for each ∆ is obtained as the

sum of the scores of individual dependencies τ ∈ ∆. In turn, the score for each

dependency τ can be calculated by summing all the derivations containing it, as

represented by the inner sum. Again, an efficient implementation is possible with

the inside and outside scores of conjunctives nodes in a parse forest, where the final

expression becomes:

∆∗ = arg max
∆

∑
τ∈∆

1

Zxi

∑
c∈C(xi)

αcβc if τ ∈ deps(c),

which can also be obtained with the Viterbi algorithm.

As seen above, both the chart-based normal-form and the dependency models

model derivations. But the dependency model is more flexible in allowing all deriva-

tions consistent with a dependency structure to be considered correct. This is the

same in the shift-reduce dependency model, with the difference being the shift-reduce

model has to do so with inexact search. At inference time, however, the shift-reduce

dependency model stays identical with the shift-reduce normal-form model, with some

potential overhead in feature computations, because additional dependency features

not found in the normal-form model are incorporated (§3.3.1).

3.2.2 The Structured Perceptron with Inexact Search

The learning algorithm I use for the shift-reduce dependency model is based on the

structured perceptron (Collins, 2002), which is a weighted linear model that extends

the classic perceptron (Rosenblatt, 1958) and its voted/averaged versions (Freund and

Schapire, 1999) to structured learning. In this section, I briefly review this model,

and discuss the incremental variant of the standard structured perceptron (Collins

and Roark, 2004), the associated early update mechanism (Collins and Roark, 2004),

and how they are extended into the violation-fixing perceptron framework (Huang et

al., 2012), which accommodates the inexactness of beam-search inference with formal

guarantees for convergence. In the next section, the violation-fixing perceptron is

seamlessly fused with the dependency oracle and beam search to learn the shift-reduce
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dependency model.

Given a set X representing the set of all possible inputs and a set Y of all possible

outputs, the structured perceptron consists of the following four components (Collins,

2002):

• A training set {(xi, yi)}ni=1, where xi ∈ X and yi ∈ Y .

• A generation function GEN(x) that enumerates the set of all possible outputs

for the input x.

• A feature frequency extractor function φ that defines a mapping from X × Y

to Rd, s.t. φ(x, y) ∈ Rd, where d can either be preset or learned in an online

fashion.

• A parameter vector w ∈ Rd that the model is trying to estimate.

For each training instance (xi, yi), the model assumes an exact solution can be found

for the inference problem:

y∗ ← arg max
y∈GEN(xi)

w · φ(xi, y), (3.1)

where the dot product w ·φ(xi, y) scores the output y with the current weight vector.

To estimate w, the algorithm first initializes w to either 0 or random values, then

it starts iterating the training set in multiple epochs. When a new training instance

(xi, yi) is encountered during an epoch, the above inference problem is solved, and the

result y∗ is compared with yi. If y∗ is correct, the model moves onto the next training

instance; otherwise, a weight update occurs by adding φ(xi, yi) to and subtracting

φ(xi, y
∗) from w. This iteration process is continued for a preset number of epochs or

until the model has reached convergence. The pseudocode for this process is shown

in Fig. 3-5.

Incremental Perceptron and Early Update. The convergence of the standard

perceptron is dependent on obtaining an exact solution for Eq. 3.1. In other words,

it assumes exact search. For shift-reduce parsing, this is intractable, as invoking
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1: w← 0 . the input is the training set {(xi, yi)}ni=1

2: while not converged do
3: for i← 1, . . . , n do
4: y∗ ← arg max

y∈GEN(xi)

w · φ(xi, y) . obtain model prediction

5: if y∗ 6= yi then . y∗ not correct
6: w← w + φ(xi, yi)− φ(xi, y

∗) . online update

Figure 3-5: The structured perceptron (Collins, 2002).

GEN(xi) is prohibitive. However, Collins and Roark (2004) showed that the struc-

tured perceptron algorithm can be adapted to an incremental parser with beam search

despite the violation of the search exactness assumption. In this incremental setting,

the algorithm remains unchanged except beam search is used to replace GEN(xi) and

to approximately find y∗ in Eq. 3.1.

Collins and Roark (2004) have also found that by stopping inference and updating

the weights as soon as a search error has occurred increased both the accuracy of the

resulting model and training efficiency. This strategy is referred to as early update,

which locates a search error at one particular step of beam search. This is possible

because the jth beam (for j ≥ 0; j = 0 indicates the first beam containing only the

initial parser state) contains only shift-reduce action sequences with length j. If the

jth gold standard action has fallen outside of the jth beam, it can be guaranteed a

search error has occurred.

The Violation-Fixing Perceptron. Early update first arose as an empirical tech-

nique to make weight updates less noisy (Collins, 2002). Huang et al. (2012) formal-

ized it by observing the connection between convergence of the structured perceptron

and violations of the model. Under exact search, if y∗ 6= yi, then it is true that

w · φ(xi, y
∗) > w · φ(xi, yi), that is, the 1-best output scores higher than the correct

output. This condition is referred to as a violation, and it has been shown that if it

holds for any yi, the convergence of the structured perceptron is guaranteed (Huang

et al., 2012). In other words, it can be said that exact search ensures global violations.

Under inexact search, Huang et al. (2012) link search errors and local violations and

show that as long as a violation is guaranteed at the site of search error for each
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1: w← 0; B0 ← ∅; j ← 0 . the input is (xi, yi)
2: B0.push(〈δ, β〉0) . the initial state
3: cand← ∅ . candidate output priority queue
4: while Bj 6= ∅ do
5: for each 〈δ, β〉 ∈ Bj do
6: if |β| = 0 then . candidate output
7: cand.push(〈δ, β〉)
8: expand 〈δ, β〉 into Bj+1

9: Bj+1 ← Bj+1[1 : k] . apply beam of size k
10: if yij+1 /∈ Bj+1 and cand[0] 6= yi then
11: w← w + φ(xi, yij+1)− φ(xi,Bj+1[0]) . early update
12: return
13: j ← j + 1 . continue to next step

14: if cand[0] 6= yi then . final update
15: w← w + φ(xi, yi)− φ(xi, cand[0])

Figure 3-6: Normal-Form Model Training. The input (xi, yi) consists of the sentence
xi and the gold standard shift-reduce action sequence yi; yij+1 denotes the (j + 1)th
action in yi (notation is abused on line 11, where yij+1 denotes the shift-reduce action
sequence up to and including the (j + 1)th action).

update, convergence of the model will not be invalidated.

As a result of this observation, multiple update strategies become valid for inexact

search, including early update, which is subsumed in the violation-fixing framework.

Alternatively, a max-violation update can be made to correct the worst search er-

ror (Huang et al., 2012; Watanabe and Sumita, 2015). Most recently, Lee et al. (2016)

generalized max-violation to all-violation which corrects all search errors found for

one input in aggregation using a single update, and they showed the efficacy of the

new method in a neural chart-based CCG parser.

3.2.3 Training the Shift-Reduce Dependency Model

The normal-form shift-reduce model (Zhang and Clark, 2011a) uses early update

(line 10, Fig. 3-6). For the dependency model, there can be multiple correct states

(states resulting from valid actions) in the beam at each step. One option would be

to apply early update whenever at least one of these states falls outside the beam.

However, this may not be a true violation of the model. Thus, I use a relaxed version

of early update, in which all correct states must fall outside the beam before an
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1: w← 0; B0 ← ∅; j ← 0 . input is (xi,∆xi)
2: B0.push(〈δ, β〉0) . the initial state
3: cand← ∅ . candidate output priority queue
4: gold← ∅ . gold output priority queue
5: while Bj 6= ∅ do
6: for each 〈δ, β〉 ∈ Bj do
7: if |β| = 0 then . candidate output
8: cand.push(〈δ, β〉)
9: if 〈δ, β〉 ' ∆xi then . a correct state

10: gold.push(〈δ, β〉)
11: expand 〈δ, β〉 into Bj+1

12: Bj+1 ← Bj+1[1 : k] . apply beam of size k
13: if ΠG 6= ∅, ΠG ∩ Bj+1 = ∅ and cand[0] 6' ∆xi then
14: w← w + φ(xi,ΠG[0])− φ(xi,Bj+1[0]) . early update
15: return
16: j ← j + 1 . continue to next step

17: if cand[0] 6' ∆xi then . final update
18: w← w + φ(xi, gold[0])− φ(xi, cand[0])

Figure 3-7: Dependency Model Training.

update is performed. This update mechanism generalizes early update, guarantees a

local violation of the model (at the beam where search error has occurred), and is

consistent with the violation-fixing framework (Huang et al., 2012).

Let (xi,∆xi) be a training sentence paired with its gold standard dependency

structure; let 〈δ, β〉 be a parser state in the jth beam (j ≥ 0) s.t. 〈δ, β〉 ∼ ∆xi , and

let Π〈δ,β〉 be the set

{
〈δ, β〉 ◦ (x, c) | fd(〈δ, β〉, (x, c),Φ∆xi

) = true
}
,

which contains all correct states at the (j + 1)th beam obtained by expanding 〈δ, β〉.

Further, let the set of all correct states at the (j + 1)th beam be:5

ΠG =
⋃

〈δ,β〉∈Bj

Π〈δ,β〉.

Fig. 3-7 shows the pseudocode for training the dependency model with early

5In Fig. 3-7, I use ΠG[0] to denote the highest scoring correct state in the set.
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update for one input (xi,∆xi). The score of a parser state 〈δ, β〉 is calculated as

w ·φ(〈δ, β〉) with respect to the current model w, where φ(〈δ, β〉) is the feature vector

for the state. At the jth beam, all states are expanded and added on to the next

beam Bj+1, and the top-k retained. Early update is applied when all correct states

first fall outside the beam, and any candidate output is incorrect (line 13). Since

there are potentially many correct states, and only one is required for the perceptron

update, a decision needs to be made regarding which state to update against. Here,

I choose to reward the highest scoring correct state, and penalize the highest scoring

incorrect state. Finally, when no more expansions are possible but the final output

is incorrect, an additional update is performed using the highest scoring correct and

incorrect outputs (line 18).

3.3 Experiments

Baselines and Setup. Baselines are the normal-form shift-reduce model (Zhang

and Clark, 2011a), the c&c normal-form and hybrid models (retrained using the SVN

version of the toolkit), and a faithful reimplementation of the normal-form model used

as an additional reference.

I used 10-fold jackknifing for POS tagging and supertagging the training data,

and automatically assigned POS tags for all experiments. A probability cut-off value

of 0.01 × 10−2 for the β parameter in the supertagger is used for both training and

testing, which is a relatively small value that allows a large number of categories,

compared to the default values used in Clark and Curran (2007). For training only, if

the gold standard lexical category is not supplied by the supertagger for a particular

word, it is added to the list of categories.

3.3.1 Features

The feature templates include all the derivation-based templates in Zhang and Clark

(2011a) (reproduced in Table 3.2), and also all the CCG predicate-argument depen-

dency templates from Clark and Curran (2007) (reproduced in Table 3.3). However,

unlike Zhang and Clark (2011a), which uses cfg-like rule-based head selection, I use
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s0.wp s1.wp s2.pc s3.pc

s0.wc s1.wc s2.wc s3.wc

s0.cs0.pc s1.cs1.pc

q0.wp q1.wp q2.wp q3.wp

s0.l.pc s0.r.wc s1.l.pc s1.r.wc

s0.l.wc s0.u.pc s1.l.wc s1.u.pc

s0.r.pc s0.u.wc s1.r.pc s1.u.wc

s0.wc ◦ s1.wc s0.c ◦ s1.w s1.wc ◦ q0.wp

s0.wc ◦ q0.wp s0.c ◦ s1.c s1.wc ◦ q0.p

s0.wc ◦ q0.p s0.c ◦ q0.wp s1.c ◦ q0.wp

s0.w ◦ s1.c s0.c ◦ q0.p s1.c ◦ q0.p

s0.wc ◦ s1.c ◦ q0.p s0.c ◦ q0.wp ◦ q1.p s0.c ◦ s1.c ◦ s2.wc

s0.wc ◦ s1.c ◦ s2.c s0.c ◦ q0.p ◦ q1.wp s0.c ◦ s1.c ◦ s2.c

s0.wc ◦ q0.p ◦ q1.p s0.c ◦ q0.p ◦ q1.p s0.p ◦ s1.p ◦ s2.p

s0.c ◦ s1.wc ◦ q0.p s0.c ◦ s1.c ◦ q0.wp s0.p ◦ s1.p ◦ q0.p

s0.c ◦ s1.wc ◦ s2.c s0.c ◦ s1.c ◦ q0.p s0.p ◦ q0.p ◦ q1.p

s0.w ◦ s1.c ◦ s1.r.c s0.c ◦ s0.r.c ◦ q0.w s0.c ◦ s0.h.c ◦ s0.l.c

s0.c ◦ s0.l.c ◦ s1.w s0.c ◦ s0.r.c ◦ q0.p s0.c ◦ s1.c ◦ s1.r.c

s0.c ◦ s0.l.c ◦ s1.c s0.c ◦ s0.h.c ◦ s0.r.c s1.c ◦ s1.h.c ◦ s1.r.c

Table 3.2: Feature templates of the normal-form shift-reduce model reproduced
from Zhang and Clark (2011a). ◦ denotes feature conjunction.

a CCG-style head passing mechanism (Clark and Curran, 2007). Concretely, each

template captures various aspects of the stack and queue context, and is defined as

a pair (f〈δ, β〉, action), consisting of a template f , to be instantiated from a parser

state 〈δ, β〉 and a shift-reduce action. Applying the definitions from Zhang and Clark

(2011a) to Table 3.2, l points to the left child of a binary node s (i.e., a node with

two children), if the head is from the right node, and symmetrically for r; u points to

the left child of a unary node s (i.e., a node with a single child); and h points to the

child node of a binary node that has the head. It is also always the case that the head

selection rules used by Zhang and Clark (2011a) will return a single head from either

the left or the right child of a binary node s, and no two symmetric templates will

activate together for the same s. In my model, this is not the case; for example, when

a node contains more than one head (e.g., through coordination rules), each of these

heads (from either the left or the right child node) is instantiated as a feature. In any
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Feature type Example

Word–Word 〈bought, (S\NP1 )/NP2 , 2, company, (NP\NP)/(S [dcl ]/NP)〉
Word–POS 〈bought, (S\NP1 )/NP2 , 2, NN, (NP\NP)/(S [dcl ]/NP)〉
POS–Word 〈VBD, (S\NP1 )/NP2 , 2, company, (NP\NP)/(S [dcl ]/NP)〉
POS–POS 〈VBD, (S\NP1 )/NP2 , 2, NN, (NP\NP)/(S [dcl ]/NP)〉
Word + Dist. (words) 〈bought, (S\NP1 )/NP2 , 2, (NP\NP)/(S [dcl ]/NP)〉 + 2

Word + Dist. (punct) 〈bought, (S\NP1 )/NP2 , 2, (NP\NP)/(S [dcl ]/NP)〉 + 0

Word + Dist. (verbs) 〈bought, (S\NP1 )/NP2 , 2, (NP\NP)/(S [dcl ]/NP)〉 + 0

POS + Dist. (words) 〈VBD, (S\NP1 )/NP2 , 2, (NP\NP)/(S [dcl ]/NP)〉 + 2

POS + Dist. (punct) 〈VBD, (S\NP1 )/NP2 , 2, (NP\NP)/(S [dcl ]/NP)〉 + 0

POS + Dist. (verbs) 〈VBD, (S\NP1 )/NP2 , 2, (NP\NP)/(S [dcl ]/NP)〉 + 0

Table 3.3: Feature templates of the chart-based dependency model reproduced
from Clark and Curran (2007). The last field in each dependency 5-tuple indicates
the category that mediates a long-range dependency (Clark and Curran, 2007, p.
507), which is omitted in the definition in §2.1.4.

case, w, c and p represent the head word, CCG category and POS tag, respectively.

In addition, the CCG dependency features contribute to the score of a reduce

action if one or more dependencies are realized by that action. As shown in Table 3.3,

the dependency features are defined over CCG predicate-argument dependencies and

represent a system of back-off features from words to POS tags. All these features

are also conjoined with three types of distance measure which count the number of

intervening words, the number of intervening punctuation marks, and the number

of intervening verbs (as determined by POS tags). The first two types of distance

measure have four possible values 0, 1, 2, or more and the third one has three possible

values 0, 1, or more.

3.3.2 Results

To estimate the parameters of the model, I tuned on the dev set, and found the

accuracy converged after the 25th epoch, with the resulting model containing 16.50M

features with a non-zero weight. For training, a beam size of 16 was used; for all

other experiments, a beam size of 128, determined on the dev set, was used.

Table 3.4 shows dev set results. Compared with c&c, the dependency model

(Shift-Reduce-Dep) shows significant gains across all metrics, improving F1 over

the normal-form and hybrid models by 1.35% and 0.79%, and it also achieves a more
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Figure 3-8: Labeled precision and recall relative to dependency length on the dev set.

beam LP LR LF SENT CAT

c&c (normal) - 85.18 82.53 83.83 31.42 92.39

c&c (hybrid) - 86.07 82.77 84.39 32.62 92.57

Zhang and Clark (2011a) 16 87.15 82.95 85.00 33.82 92.77

Zhang and Clark (2011a)* 16 86.76 83.15 84.92 33.72 92.64

Shift-Reduce-Dep 128 86.29 84.09 85.18 34.40 92.75

Shift-Reduce-Dep−∆f 128 85.67 83.36 84.50 33.30 92.40

Table 3.4: Parsing results on Section 00 (100% coverage and auto POS).−∆f (without
dependency-based features); ∗ = reimplementation.

balanced precision and recall over the normal-form shift-reduce model.

Table 3.4 also shows that the dependency model improved recall over the normal-

form shift-reduce model at some expense of precision. To probe this further, I eval-

uated the models over labeled precision and recall relative to different dependency

lengths, as measured by the distance between the two words in a dependency, grouped

into bins of 5 values (Fig. 3-8). The results show that the normal-form model favors

precision over recall, giving higher precision scores for almost all dependency lengths.

In terms of recall, the dependency model outperforms the normal-form model over

all dependency lengths, especially for longer dependencies (x ≥ 20).

As an ablation experiment, I experimented with ablating the dependency features,

and found they contributed +0.68 F1 to the final model (Shift-Reduce-Dep−∆f ,

Table 3.4). One motivation behind the dependency features is that all shift-reduce

action sequences producing the same CCG dependencies would produce the same set
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beam LP LR LF SENT CAT Speed

c&c (normal) - 85.58 82.85 84.20 32.90 92.84 97.90

c&c (hybrid) - 86.24 84.17 85.19 33.24 93.00 95.25

Zhang and Clark (2011a) 16 87.43 83.61 85.48 35.19 93.12 -

Zhang and Clark (2011a)* 16 87.04 84.14 85.56 34.98 92.95 49.54

Shift-Reduce-Dep 128 87.03 85.08 86.04 35.69 93.10 12.85

Table 3.5: Parsing results on Section 23 (100% coverage and auto POS). ∗ = reim-
plementation.

of dependency features. Thus, such features are in a sense more applicable to spurious

derivations, in comparison with the derivation-based ones. As also shown in Clark

and Curran (2007), this result demonstrates that the combination of derivation and

dependency features are essential for the dependency model.

As the final development experiment, dependency recovery accuracy for the most

frequent dependency relations were evaluated. As shown in Table 3.6, the dependency

model gives higher recall for all but one of the relations, and higher F1 for over half

of them, showing that it is more balanced.

Table 3.5 presents the final results on Section 23. Again, the dependency model

achieves the highest scores across all metrics, except for precision and lexical category

assignment accuracy.

Finally, in terms of speed, the dependency model underperforms the normal-form

model.6 However, a further optimized implementation, especially in regards to fea-

ture look-up (Bohnet, 2010), should provide additional speed improvements, due to

the rich feature set used. Nevertheless, experiments suggest that parsing efficiency

is mainly related to the beam size that scales the runtime by a constant factor.

Therefore, incorporating further optimizations (Goldberg et al., 2013), in addition to

adopting Tree Structure Stack (§4.3.5), is likely to provide some additional benefits.

3.4 Summary

The first shift-reduce dependency model is presented for CCG, motivated by the

advantages in modelling dependencies for it. One key strength of the model, over the

6Speed measured with an Intel i7-4790K CPU.
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dependency model of Clark and Curran (2007), is it fully aligns with the left-to-right,

incremental nature of shift-reduce parsing.

In a broader context, a closely related work is Yu et al. (2013), which adapted the

violation-fixing perceptron to deal with latent derivations in an MT model. Like the

present work, they also show that more principled integration of structured learning

and inexact search is a simple and powerful mechanism for structured prediction with

the structured perceptron.
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Chapter 4

Expected F-measure Training for

Shift-Reduce Parsing with

Recurrent Neural Networks

In this chapter, I first take a detour from shift-reduce parsing and introduce a su-

pertagging model based on a simple Elman recurrent neural network (RNN; Elman,

1990). This is the first neural network model in this thesis, which also serves as

the basis for all supertagging models introduced later. As a proof-of-concept use of

this model, I show it leads to direct parsing accuracy gains for all the CCG parsing

models of Clark and Curran (2007).

Supertagging was first introduced for CCG by Clark (2002) and the model in Clark

and Curran (2007) became the most widely adopted, along with the c&c parser (Cur-

ran et al., 2007). However, despite its proven efficacy, the MaxEnt supertagging model

of Clark and Curran (2007) has a number of drawbacks. First, it relies too heavily on

POS tags, which leads to lower accuracy on out-of-domain data (Rimell and Clark,

2008). Second, due to the sparse, indicator feature sets mainly based on raw words

and POS tags, it shows pronounced performance degradation in the presence of rare

and unseen words (Rimell and Clark, 2008; Lewis and Steedman, 2014b). And third,

in order to reduce computational requirements and feature sparsity, each tagging

decision is made without considering any potentially useful contextual information
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beyond a local context window.

Lewis and Steedman (2014b) introduced a feed-forward neural network to su-

pertagging, and addressed the first two problems mentioned above. However, their

attempt to tackle the third problem by pairing a conditional random field (CRF; Laf-

ferty et al., 2001) with their feed-forward tagger provided little accuracy improvement

and vastly increased computational complexity, incurring a large efficiency penalty.

Here I present an RNN model for supertagging to tackle all the above problems,

with an emphasis on the third one. RNNs are powerful models for sequential data,

which can potentially capture long-term dependencies, based on an unbounded history

of previous words (§4.1.1). I show that as a standalone model, the RNN supertagger

outperforms the feed-forward setup, and by integrating it with the c&c parser as

its adaptive supertagger, at both training and inference time, I obtain substantial

accuracy improvements on both supertagging and parsing.

Next, as the main contribution of this chapter, I present expected F-measure

training for shift-reduce parsing with RNNs. Specifically, I show how to derive a

globally normalized model optimized for the final evaluation metric, in which beam

search is naturally incorporated during training and used in conjunction with the

objective to learn shift-reduce action sequences that lead to parses with high expected

F-scores. Recently, RNNs have been used to learn explicit representations for parser

states as well as actions performed on the stack and queue in shift-reduce parsers (Dyer

et al., 2015; Watanabe and Sumita, 2015). In comparison, both my locally normalized

baseline and the global model are based on a natural extension of the Chen and

Manning (2014) feed-forward model.

I apply the models to CCG, and by combining the global RNN parsing model with

a bidirectional RNN CCG supertagger (§4.5) extending the basic RNN supertagging

model, the final parser achieves accuracies higher than both the normal-form (Zhang

and Clark, 2011a) and the dependency (§3) shift-reduce models.

As stated in §2.3.2, it is convenient to assume a shift-reduce parser is made up

of three interrelated components, namely, a deduction system, a model and a search

strategy. In a neural network-based shift-reduce parser, the model component is
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typically factored as one or more neural networks, which are often used to learn rep-

resentations for various aspects of parser states. In Chen and Manning (2014), who

demonstrate the first successful application of neural networks to transition-based

dependency parsing, they target learning representations for higher-order features

using a small set of dense atomic feature templates and a feed-forward neural net-

work. They show the resulting model lends itself well to alleviating the drawbacks

of one-hot indicator features, which are sparsity, incompleteness and expensive fea-

ture computation (Chen and Manning, 2014, §2). However, despite achieving then

state-of-the-art greedy dependency parsing results, the Chen and Manning (2014)

model only models isolated shift-reduce actions and is susceptible of the label bias

problem (Bottou, 1991; Lafferty et al., 2001; Andor et al., 2016). In contrast, my

global RNN model is not only able to take advantage of the RNN by relying on it for

the automatic discovery of higher-order features, it also models shift-reduce actions

as structured sequences rather than in isolation, overcoming the label bias problem.

Although the experiments below are focused on CCG, it is worth noting that the

expected F-measure training framework proposed is general enough to be adapted to

other tasks, in particular, to parsing with formalisms other than CCG. Moreover,

because the framework is agnostic of the underlying neural network, as demonstrated

in the next chapter, other kinds of neural networks with varying architectural config-

urations can be used.

4.1 Background

4.1.1 The Elman Recurrent Neural Network

An Elman RNN consists of an input layer xt, a hidden state (layer) ht with a re-

current connection to the previous hidden state ht−1 and an output layer yt. In the

supertagging models, the input layer is a vector representing the surrounding con-

text of the current word at position t, whose supertag is being predicted (§4.2); in the

parsing models, the input is a concatenation of atomic feature embeddings (Chen and
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Manning, 2014) (§4.3).1 The hidden state ht−1 keeps a representation of all context

history, and the current hidden state ht is computed using the current input xt and

ht−1. The output layer represents probability scores of all possible supertags (§4.2)

or shift-reduce actions (§4.3).

The parameterization of the network consists of three matrices which are learned

during supervised training. Matrix U contains weights between the input and hidden

layers, V contains weights between the hidden and output layers, and W contains

weights between the previous hidden state and the current hidden state. To compute

the hidden state activations at time step t, the following recurrence is used:2

ht = f(Uxt + Wht−1),

where f is the sigmoid function f(hi) = 1
1+e−hi

.3 To calculate the output activations

yt, ht is linearly transformed using V, and finally the softmax activation function

g(yi) = eyi∑
j e
yj is applied s.t.

zt = g(yt).

4.1.2 Backpropagation

All the RNN supertagging models and the baseline RNN shift-reduce parsing model

are trained using the cross-entropy loss defined, at each time step, as

J(θ) = −
C∑
i

ti log zi,

where C is the total number of classes; 1 ≤ i ≤ C; ti are the gold standard class

probabilities, and zi are the softmax activations. Given this loss, the derivative of

the loss w.r.t. an output yi can be derived analytically without assuming a specific

1This is different from some RNN models (e.g., Mikolov et al. (2010)) where the input is a
one-hot vector.

2All vectors are assumed to be column vectors unless otherwise stated.
3Other non-linear functions such as tanh can be used instead, but negligible improvements were

observed in my experiments.
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neural network architecture.

First, I compute
∂J(θ)

∂zi
= − ti

zi
, (4.1)

which is the derivative of the loss w.r.t to the ith output of the softmax layer. Next,

I derive ∂zk
∂yi

, which is the derivative of the kth softmax output (1 ≤ k ≤ C) w.r.t. the

ith output yi, computed as


∂zk
∂yi

=
∂ eyk∑C

j=1
e
yj

∂yi
=

eyk
∑C
j=1 e

yj−eykeyi
(
∑C
j=1 e

yj )2
= zk − zkzi = zk(1− zi) if i = k

∂zk
∂yi

=
∂ eyk∑C

j=1
e
yj

∂yi
= 0−eykeyi

(
∑C
j=1 e

yj )2
= − eyk∑C

j=1 e
yj

eyi∑C
j=1 e

yj
= −zkzi if i 6= k.

(4.2)

The required derivative is then:

∂J(θ)

∂yi
= −

C∑
k=1

∂tk log zk
∂yi

= −
C∑
k=1

tk∂log zk
∂yi

= −
C∑
k=1

tk
1

zk

∂zk
∂yi

=
−ti
zi

zi(1− zi)︸ ︷︷ ︸
Eq. 4.2

−
C∑
k 6=i

tk
1

zk
(−zizk)︸ ︷︷ ︸

Eq. 4.2

= zi(
C∑
k 6=i

tk + ti)− ti

= zi − ti.

Following through, if a specific neural network was given, I could continue to derive all

other derivatives analytically down to the hidden and input layers, and this process is

referred to as backpropagation (Werbos, 1974; Rumelhart et al., 1988). However, it is

more illuminating to see backpropagation (BP) in a vectorized form using only a series

of matrix multiplications. It can be shown this form of BP gives identical gradients

to those derived analytically. Below, I first present vectorized BP as a mechanical
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(a) (b)

Figure 4-1: A three-layered feed-forward network (a), extended with a softmax layer
and a cross-entropy loss layer with unity weight connections (b).

procedure using a simple three-layered feed-forward network, then I discuss back-

propagation through structure (BPTS; Goller and Kuchler, 1996), which generalizes

BP from fixed network topologies to arbitrary directed acyclic graphs (DAGs); BP

applied to feed-forward, recursive, and recurrent networks are all specific instances of

BPTS. BPTS can also be realized in a vectorized fashion, as shown in §4.1.4, §4.3.6,

and again in §5.1.2.

Assuming a three-layered feed-forward network, with an input layer size m, and

hidden and output layer size n (e.g., in Fig. 4-1a, m = 4 and n = 3). For ease of

exposition, I first assume that the derivatives w.r.t. the loss at the output layer,

denoted as δy, are given, s.t.

δy =



z1 − t1

z2 − t2
...

zn − tn


;

I also assume that sigmoid activation functions are used at the hidden layer, and let

h be the vector of activations and h′ be its derivative, denoted as

h′ =



h1(1− h1)

h2(1− h2)

...

hn(1− hn)


.

In addition, notate the weight matrix between the input layer and the hidden layers
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as M1 and the weight matrix between the hidden and output layers as M2. As the

first step, vectorized BP entails computing the errors backpropagated to the hidden

layer:

δh = h′ ◦ (M2δy),

where ◦ denotes element-wise product. Then, the gradients of M2 can be obtained

as

∇M2 = hδ>y ;

similarly, the gradients of M1 can be obtained as

∇M1 = xδ>h ,

where x is the input vector. Finally, gradient descent steps can then be taken as

−γ∇M1 and −γ∇M2 , where γ is the learning rate.

In general, this procedure can be used for a feed-forward network with an arbitrary

number of layers. As above, the first step involves the recursive computation:

δl = d′l ◦ (Mlδl+1), for l = 1 . . . L− 1, (4.3)

where d′l is the activation derivative vector at the lth layer; Ml is the weight matrix

between the lth and (l + 1)th layer; δl+1 is the error vector at the (l + 1)th layer;

and L is the total number of network layers up to and including the output layer

(L = 3 in Fig. 4-1a). Next, once all the error vectors are obtained, the gradients can

be computed as

∇Ml
= alδ

>
l+1,

where al is the input or activation vector at the lth layer.

4.1.3 Backpropagation Through Structure

In actuality, the above vectorized form of BP is BPTS applied to a feed-forward

network. The key insight is that the input πi to a given weight mij within a weight

matrix M is constant in one feed-forward pass, and therefore the derivative of this
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weight w.r.t. the loss J is
∂J

∂mij

= πi
∂J

∂πimij

.

By using the chain rule, it can be shown that ∂J
∂πimij

is the cumulative backpropagated

error up to the node to the right of weight mij. Denote this cumulative error as δj,

the derivative can then be expressed as

∂J

∂mij

= πiδj.

In essence, BP and BPTS are procedures for computing cumulative backpropagated

errors, such as δj, for all the nodes in a network. Equivalently, BP entails running a

network backwards with the errors obtained from the feed-forward step as input.

In fact, BPTS can also be used to compute the derivatives w.r.t. the loss at

the output layer, whereas in the above these derivatives are assumed to be given.

To do this, a network can be extended with a softmax layer that is connected to a

cross-entropy loss layer, and BPTS can be applied to compute the derivatives using

Eq. 4.1 and Eq. 4.2, by assuming all the weights between the output, softmax, and

the cross-entropy layers are constant and unity. The extended network for Fig. 4-1a

is shown in Fig. 4-1b.

4.1.4 Backpropagation Through Time

The most common BP algorithm used to train an RNN is backpropagation through

time (BPTT; Werbos, 1990), which is BPTS applied to an unrolled RNN, and it is

used for training all models using the cross-entropy loss in this chapter.

Assuming that the derivatives at the output layers were given and the RNN is

unrolled for three time steps (Fig. 4-2). First, I compute the errors at the hidden

state ht as (by Eq. 4.3):

δht = h′t ◦ (Vδyt),

where δyt is the error vector at the output layer of step t and h′t is the vector of hidden
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(a) (b) (c)

Figure 4-2: RNN BPTT. Errors flow back to ht (a), ht−1 (b), and ht−2 (c).

state activation derivatives. I then compute the errors at hidden state ht−1:

δht−1 = h′t−1 ◦ (Wδht + Vδyt−1);

similarly, the errors at hidden state ht−2 can be computed as

δht−2 = h′t−2 ◦ (Wδht−1 + Vδyt−2).

After all the errors at the hidden states are found, the errors at the input layers can

be computed in any order.

Because manual implementation of backpropagation is prone to error, even in the

vectorized form. It is common practice to numerically verify the correctness of an

implementation using two-sided approximations of the gradients. This verification

is implemented in all models of this chapter implemented in plain C++ using the

Armadillo matrix library (Sanderson, 2010).

4.2 RNN Supertagging

The RNN supertagger only uses continuous vector representations for features and

each feature type has an associated look-up table, which maps a feature to its dis-

tributed representation. In total, three feature types are used. The first type is word

embeddings: given a sentence of N words, w1, w2, . . . , wN , the embedding feature of

wt (for 1 ≤ t ≤ N) is obtained by projecting it onto a n-dimensional vector space

through the look-up table Lw ∈ Rn×|w|, where |w| is vocabulary size. Algebraically,

the projection operation is a simple matrix-vector product where a one-hot vector
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bj ∈ R|w|×1 is multiplied with Lw s.t.

ewt = Lwbj ∈ R1×n,

where j is the look-up index for wt.

In addition, as in Lewis and Steedman (2014b), for every word I also include its

2-character suffix and capitalization as features. Two more look-up tables are used

for these features. Ls ∈ Rm×|s| is the look-up table for suffix embeddings, where |s|

is the suffix vocabulary size; Lc ∈ Rm×2 is the look-up table for the capitalization

embeddings; and Lc contains only two embeddings, representing whether or not a

given word is capitalized.

I extract features from a context window surrounding the target word to make

a tagging decision. Concretely, with a context window of size k, bk/2c words either

side of the target word are included, giving a continuous feature representation

fwt = [ewt ; swt ; cwt ],

where ewt , swt and cwt are the output vectors from the three different look-up tables,

and “; ” denotes vertical concatenation s.t. fwt ∈ R(n+2m)×1. At word position t, the

input layer of the network xt is

xt = [fwt−bk/2c ; . . . fwt ; . . . ; fwt+bk/2c ],

where xt ∈ Rk(n+2m)×1 and the right-hand side is the concatenation of all feature

representations in a size k context window.

4.3 RNN Shift-Reduce Parsing

In this section, I start by describing the baseline model, which is also taken as the

pretrained model to train the global model (§4.3.3). I abstract away from the details

of CCG and present the models in a canonical shift-reduce framework (Aho and

Ullman, 1972), which is henceforth assumed: partially constructed derivations are
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maintained on a stack, and a queue stores remaining words from the input string;

the initial parser state has an empty stack and no input has been consumed on the

queue. Parsing proceeds by applying a sequence of shift-reduce actions to transform

the input until the queue has been exhausted and no more actions can be applied.

4.3.1 Model and Feature Embeddings

Similar to Chen and Manning (2014), the input layer xt encodes stack and queue

contexts of a parser state through concatenation of feature embeddings. The output

layer yt represents a probability distribution over the feasible shift-reduce actions for

the current state.

Given a parser state, I first extract atomic features using a set of predefined

feature templates (Table 4.1, §4.4). The features are atomic in the sense that they

are a set of first-order features from which all higher-order features are automatically

induced. The simplicity of these atomic features reduces feature engineering efforts

in comparison with the structured perceptron model (Table 3.2, §3), and it is one of

the main motivations of the Chen and Manning (2014) model.

Similar to the RNN supertagging model, each feature template in the parsing

model belongs to a feature type f (such as word or POS tag), which has an associated

look-up table, denoted as Lf , to project a feature to its distributed representation.

The embedding for a concrete feature is obtained by retrieving the corresponding

column from Lf . At time step t, the input layer xt is:

xt = [ef1,1 ; . . . ; ef1,|f1| ; . . . ; efk,1 ; . . . ; efk,|fk| ],

where “; ” denotes vertical concatenation, f1,i denotes the ith template of the kth

feature type, and |fk| is the total number of feature templates for the kth feature

type s.t. 1 ≤ i ≤ |fk|. In addition, for each feature type, a special embedding is used

for unknown features.
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4.3.2 The Label Bias Problem: Local vs. Global Normalization

The baseline parser in this chapter is a locally-normalized RNN model. That is,

softmax normalization is computed locally at each step and the log-likelihood of the

gold standard shift-reduce action is maximized with a cross-entropy loss.

Specifically, let y be a shift-reduce action sequence, and yt be the tth action in

y, for 1 ≤ t ≤ |y|. The probability of yt conditioned on the parser state 〈α, β〉t−1
y is

computed as

p(yt|〈α, β〉t−1
y ; θ) =

exp{γ(yt, 〈α, β〉t−1
y ; θ)}

Zθ
(
〈α, β〉t−1

y

) ,

where γ is a scoring function that computes the score of an action, conditioned on

the parser state 〈α, β〉t−1
y given the model parameters θ, and

Zθ(〈α, β〉t−1
y ) =

∑
yt′∈T (〈α,β〉t−1

y )

exp{γ(yt
′, 〈α, β〉t−1

y ; θ)}

is a local normalization term for the parser state 〈α, β〉t−1
y over the set of feasible

actions T
(
〈α, β〉t−1

y

)
, at step t. During inference, the probability of a sequence of

actions can be obtained as

p(y|θ) =

|y|∏
t=1

p(yt|(〈α, β〉t−1
y ); θ)

=
exp{

∑|y|
t=1 γ(yt, 〈α, β〉t−1

y ; θ)}∏|y|
t=1 Zθ(〈α, β〉t−1

y )
,

and either greedy or beam search can be used.

The critical drawback of locally normalized models is that they are susceptible of

the label bias problem (Bottou, 1991; Lafferty et al., 2001), which is a well-understood

phenomenon of local normalization in the context of maximum-entropy Markov mod-

els (MEMMs; McCallum et al., 2000). MEMMs model conditional probabilities of

next states given the current state using local normalization, which results in biases

being given to states with fewer outgoing states. CRFs (Lafferty et al., 2001) are

designed to tackle this, in which the per-state local normalization is replaced with
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global normalization of the joint probability of label sequences.

The label bias problem in the context of neural networks for transition-based mod-

elling, including shift-reduce parsing, is further elaborated by Andor et al. (2016),

who showed that a locally normalized model is strictly less expressive than its global

counterpart with a CRF loss by extending the proof in Smith and Johnson (2007). In

particular, they proved that for models defining conditional distributions of output

decision sequences given input observation sequences, the set of all possible distribu-

tions PL in a local model is a strict subset of the set of all possible distributions PG
in a global model.4

For shift-reduce parsing, a CRF loss defines the probability of a sequence of shift-

reduce actions as

p̂(y|θ) =
exp{

∑|y|
t=1 γ(yt, 〈α, β〉t−1

y ; θ)}
Ẑθ

,

where

Ẑθ =
∑
y′∈S|y|

exp

|y|∑
t=1

γ(y′t, 〈α, β〉
t−1
y′ ; θ)

is a global normalization term over all action possible action sequences S of length

|y|. Under this model, the inference problem is

y∗ = arg max
y′∈S|y|

|y|∑
t=1

γ(y′t, 〈α, β〉t−1
y′ ; θ).

Again, either greedy or beam search can be used to find an inexact solution.

Unfortunately, although I use an RNN, which keeps a representation of previous

parser states in its hidden state and has the potential to capture long-term depen-

dencies, the locally normalized model still suffers from the label bias problem. This

is also clear from the proof in Andor et al. (2016) which holds irrespective of the

scoring function used to obtain the raw scores before local normalization is applied.4

This indicates the importance of global normalization in addition to improving the

4In the proof, a tagging problem is considered with the restriction that at each time step t, the
prediction depends only on the first t input symbols; hence the model does not have access to any
future contexts. Although it is argued any amount of future contexts still makes a locally normalized
model less expressive than its global counterpart.
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representation learning component.

For both locally and globally normalized neural shift-reduce parsing models, in-

exact search also introduces search errors, as it does for both local and global struc-

tured perceptron-based shift-reduce parsing models (Huang et al., 2012). In locally

normalized models, such errors may potentially be further exacerbated by the label

bias problem, which hinders the model’s ability to reward or penalize earlier decisions

based on future evidence (Andor et al., 2016).

To enlarge the search space, beam search is often the preferred first solution.

By allowing the highest scored action sequence to be taken as the output, it also

provides a weak solution to the label bias problem for a locally normalized model,

leading to some accuracy improvements (Table 4.10). However, as expected, such

improvements diminish quickly after a certain beam size due to the underlying local

normalization. Instead, I show that by using the weights of a locally normalized

model as the starting point, a globally normalized model optimized for the evaluation

metric can be obtained, which gives further significant accuracy improvements (§4.7).

Finally, note that as pointed out by Ranzato et al. (2016), locally normalized

neural network models—such as the baseline RNN shift-reduce model above—can

exhibit two other problems in addition to label bias. First, because the model is

only exposed to the gold standard at training time, it can suffer from exposure bias

whereby at test time only the model predictions are available. Second, there exists a

loss-evaluation mismatch, where the loss function does not directly optimize towards

the final evaluation metric.

As an added benefit, the global model address loss-evaluation mismatch using

an expected F1 objective, it is also exposed to non-gold standard parser states and

shift-reduce action sequences during training, thus mitigating exposure bias to some

degree, without being explicitly designed to do so.

4.3.3 Expected F1 Training

The RNN used to train the global model has the same Elman architecture as the

cross-entropy model. Given the cross-entropy model, its weights can be summarized
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as θ = {U,V,W}, which is used initialize the weights of the global model, and

training proceeds as follows:

1. Parse a sentence xn in the training data using a beam-search decoder, and

generate a k -best list of output parses using the current θ, denoted as Λxn .5

Similar to other structured training approaches that use beam search (Zhang

and Clark, 2008; Weiss et al., 2015; Watanabe and Sumita, 2015; Zhou et al.,

2015), Λxn is as an approximation to the set of all possible parses of an input.

2. Let yi be the shift-reduce action sequence of a parse in the k -best list Λxn ,

and let |yi| be its total number of actions and yij be the jth action in yi, for

1 ≤ j ≤ |yi|. Compute the log-linear action sequence score of yi, ρ(yi), as

a sum of individual action scores in that sequence: ρ(yi) =
∑|yi|

j=1 log sθ(yij),

where sθ(yij) is the softmax action score of yij given by the RNN model. For

each yi, also compute its sentence-level F1 using the set of labeled, directed

dependencies, denoted as ∆, associated with its parser state. (F1 over labeled,

directed dependencies is also the parser evaluation metric.)

3. Compute the negative expected F1 objective (-XF1, defined below) for xn using

the scores obtained in the above step and minimize this objective using stochas-

tic gradient descent (SGD) (maximizing the expected F1 for xn). Repeat these

three steps for other sentences in the training data, updating θ after processing

each sentence, and iterate training in epochs until convergence.

Note that the above process is different from parse reranking (Collins, 2000; Char-

niak and Johnson, 2005), in which Λxn would stay the same for each xn in the training

data across all epochs, and a reranker is trained on all fixed Λxn ; whereas the XF1

training procedure is on-line learning with parameters updated after processing each

sentence and each Λxn is generated with a new θ.

More formally, I define the loss J(θ), which incorporates all action scores in each

5No limit was put on k, and whenever a finished parser state was generated, it was appended to
the k -best list. The k -best lists were found to be twice the size of a given beam size on average.
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action sequence, and all action sequences in Λxn , for each xn as

J(θ) = −XF1(θ)

= −
∑

yi∈Λxn

p(yi|θ)F1(∆yi ,∆xn), (4.4)

where F1(∆yi ,∆xn) is the sentence level F1 of the parse derived by yi, with respect

to the gold standard dependency structure ∆xn of xn; p(yi|θ) is the normalized prob-

ability score of the action sequence yi, computed as

p(yi|θ) =
exp{γρ(yi)}∑

y∈Λxn
exp{γρ(y)}

, (4.5)

where γ sharpens or flattens the distribution (Tromble et al., 2008).6

4.3.4 BPTS Derivatives for Training the XF1 Model

I now find the derivatives of the XF1 objective. Practically, they are used in Eq. 4.8

(§4.3.6) for training the model, but more importantly, they convey the intuitive in-

sights of how each local softmax normalization contributes to the globally normalized

objective.

First, by applying the chain rule to J(θ), I obtain

∂J(θ)

∂θ
= −

∑
yi∈Λ(xn)

∑
yij∈yi

∂J(θ)

∂sθ(yij)

∂sθ(yij)

∂θ

= −
∑

yi∈Λ(xn)

∑
yij∈yi

δyij
∂sθ(yij)

∂θ
,

where
∂sθ(yij)

∂θ
is the standard softmax derivatives. Next, to compute δyij , which is the

derivative of the loss at the softmax layer, rewrite the loss in (4.4) as

J(θ) = −XF1 = −G(θ)

Z(θ)
(4.6)

= −
∑

yi∈Λxn
exp{ρ(yi)}F1(∆yi ,∆xn)∑
yi∈Λxn

exp{ρ(yi)}
,

6γ = 1 is used in all experiments.
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and by simplifying:

∂G(θ)

∂sθ(yij)
=

1

sθ(yij)
exp{ρ(yi)}F1(∆yi ,∆xn),

∂Z(θ)

∂sθ(yij)
=

1

sθ(yij)
exp{ρ(yi)},

since
∂ρ(yi)

∂sθ(yij)
=

1

sθ(yij)
.

Finally, using Eq. 4.5 and Eq. 4.6 plus the above simplifications, the error term δyij

can be derived using the quotient rule:

δyij = −∂XF1(θ)

∂sθ(yij)

=
G(θ)Z ′(θ)−G′(θ)Z(θ)

Z2(θ)

=
exp{ρ(yi)}
Z(θ)

(XF1(θ)− F1(∆yi ,∆xn))
1

sθ(yij)

= p(yi|θ)(XF1(θ)− F1(∆yi ,∆xn))
1

sθ(yij)
, (4.7)

which has a simple closed form. It is also illuminating to see that the product con-

sisting of the first two terms in Eq. 4.7 stays the same for all yij in a yi, which is

exploited later in the implementation (§4.3.6).

A naive implementation of the XF1 training procedure would backpropagate the

error gradients individually for each yi in Λxn . To improve efficiency, observe that

the unfolded network in the beam containing all yi becomes a DAG (with one hidden

state leading to one or more resulting hidden states) and BPTS (§4.1.3) can be used

to obtain all the backpropagated errors required for SGD. This optimization along

with an efficient beam search implementation is used to achieve faster training.

4.3.5 More Efficient Beam Search with a Tree-Structured Stack

In theory, shift-reduce parsers have a runtime O(n) linear in the input length n. With

beam search, as the number of parser actions, parser states and basic operations such
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as feature extractions become proportional to the size of the beam k, the linear

runtime is often more accurately expressed as O(kn). In practice, however, unlike

greedy shift-reduce parsers (Yamada and Matsumoto, 2003; Nivre and Scholz, 2004),

which maintain only a single stack and queue for each input, beam search entails

state-copying operations to duplicate the contents of the current beam into the next

before modifying the copied parser states. As the size of the stack can also grow

linearly in n, a beam search implementation that follows this idiom will instead have

a runtime O(kn2) quadratic in the sentence length. Zpar first implemented a few

optimizations to remedy this issue (Zhang and Clark, 2011b), and similar to Goldberg

et al. (2013), the main ingredient is a data structure called tree-structured stack (TSS)

building upon the graph-structured stack (Tomita, 1985). This optimization is also

implemented in all models in this thesis.

The key idea of TSS is state sharing akin to a lattice structure, which gives a

distributed representation of parser states. TSS can be conveniently implemented as

an array, where each cell of the array contains a single incomplete parser state except

the first cell that contains the complete initial state. Each state other than the first

is incomplete in the sense that only a single shift-reduce action and the relevant

subtree headed by it are captured, and a complete state is distributed across multiple

incomplete states in the array.

Implementing TSS boils down to maintaining two pointers on each incomplete

parser state. The first pointer is named previous state, which as the name sug-

gests, always points to the (incomplete) state from which the current state is directly

derived. For example, as depicted in Fig. 4-3a, the initial state · (in the TSS array

cell 0) is the previous state of the second state, which is the previous state

of the third state, and similarly for the remaining states. Therefore, from any state

other than the initial state, by following the previous state pointers, the trace of

the shift-reduce action sequence can be obtained. In Fig. 4-3a, this trace is shift

(sh), shift (sh), reduce (re), unary (un).

For shift-reduce parsing, it is also common that an output stack contains more than

one subtree. In this case, the root of each subtree can be more readily reached through
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· sh1 sh2 re3 un4

(a)

· sh1 sh2 re3 un4

(b)

Figure 4-3: A TSS array with previous state (a) and previous stack (b) point-
ers. Subscripts indicate array cell indexes. Index for the initial state · is omitted.

the second pointer previous stack maintained on each incomplete state, and this

pointer is updated according to the action type applied to a state. For a shift action,

because no existing subtrees would be consumed, previous stack always points to

the same state as previous state. For a reduce action, because two subtrees

are consumed (the one from the current state and the other from previous state),

previous stack of the newly created state points to the previous stack of the

previous stack of the current state. A unary action can be taken as consuming

the top and the only subtree from the current state, hence the previous stack

pointer for the state resulting from a unary action points to the state given by the

previous stack of the current item. With the same example as in Fig. 4-3a, the

previous stack pointers are illustrated in Fig. 4-3b.

I show in the experimental section (§4.7) that beam search implemented using

TSS can be very efficient, even for RNN parsing models.

4.3.6 More Efficient Training for Dynamically Shaped RNNs

Beam search implemented as a TSS can be exploited for a more efficient implemen-

tation of XF1 training. The key observation is that an unrolled RNN, as generated

by beam search, can be represented with a TSS array by coupling its hidden states

with the incomplete parser states. As parsing proceeds, beam search then generates

both the TSS array and a dynamically shaped RNN for each training instance.

The first step for BPTS over the RNN contained in a TSS array is to mark out

the hidden states. This can be achieved by marking out the (incomplete) states for

each parse (or equivalently, each shift-reduce action sequence) in Λxn by following

their previous state pointers in the TSS array. The pseudocode for doing this is
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· sh1 sh2 sh3 sh4 sh5 sh6 re7 re8

(a)

· sh1 sh2 sh3 sh4 sh5 sh6 re7 re8

(b)

Figure 4-4: Example unrolled RNN in a TSS array (a), and the associated parser
states with previous state pointers (b), with inverted arc directions; subscripts
indicate array cell indexes. The dark (sh3 sh6 re8) and dashed (sh2 sh5 re7) arcs in (b)
denote two shift-reduce action sequences. Another possible but not explicitly marked
sequence is sh2 sh4.

shown in Fig. 4-5. An example unrolled RNN in a TSS is also shown in Fig. 4-4a,

along with the previous state pointers (Fig. 4-4b).

For each parse in Λxn , Mark-State in Fig. 4-5 does the actual marking (line 4).

First, State is called to obtain the last parser state of a parse yi, denoted as s|yi| (line

5) which is marked (line 8) and acts as the handle for tracing back the TSS array,

denoted as Lxn . Whenever a previous state sprev is encountered, it is also marked

(line 10). On each marked state, a hashmap A is maintained, in which the key is

a shift-reduce action index to a node in the output layer of the RNN stored during

parsing at scurr as scurr.act, which denotes the index of the action that generated scurr

(line 11), and the value is a list of k -best parse indexes. During the marking process,

this hashmap keeps track of all the shift-reduce actions outgoing from the hidden

state of sprev, which also survived beam search and ended up being part of a parse

in Λxn . For example, in Fig. 4-4b, both sh4 and sh5 are outgoing actions from their

sprev, sh2. Assuming sh4 is in parse ŷ1 and sh5 is in parse ŷ2, where both ŷ1 and ŷ2 are
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1: function Mark(Λxn , Lxn) . input: k-best list Λxn and TSS array Lxn
2: for each ŷi ∈ Λxn do
3: Mark-State(ŷi)

4: procedure Mark-State(yi) . the ith parse in Λxn

5: s|yi| ← Lxn .State(yi) . the last state of parse yi in the TSS array Lxn
6: scurr ← s|yi|
7: sprev ← s|yi|.previous state

8: scurr.mark← true
9: while true do

10: sprev.mark← true
11: sprev.A[scurr.act].Insert(i) . A is a hashmap, the key is an action index
12: if sprev == s0 then . s0 is the initial state
13: break
14: scurr ← sprev

15: sprev ← sprev.previous state

Figure 4-5: Pseudocode for marking all parser states in a TSS array Lxn associated
with all the parses in a k-best list Λxn .

1: function L-Bpts(Lxn) . input is the TSS array Lxn
2: for r in Lxn .last . . . 0 do . from the last index in Lxn
3: sr ← Lxn [r]
4: if sr.mark and |sr.succ| > 0 then
5: δusr =

∑
s′∈sr.succ s

′.δhs′ . aggregate errors from child states
6: δasr = Bpts(sr.A) . aggregate errors from outgoing actions
7: δhsr = dhsr ◦ (Wδusr + Vδasr) . aggregate all errors at sr

Figure 4-6: Pseudocode for BPTS over a TSS array Lxn . dhsr is the activation deriva-
tive vector for the hidden state of sr; ◦ is element-wise product.

in Λxn , then the hashmap sh2.A will contain at least two entries, namely (sh4.act, 1)

and (sh5.act, 2).

Note that a single hidden state in an unrolled RNN contained in the beam can

contribute to multiple parses in Λxn . That is, a single hidden state may potentially

be marked out more than once. This is indeed necessary for BPTS that needs to

aggregate backpropagated errors from all actions “leaving” a hidden state that ended

up in one of the action sequences of the parses in Λxn . The aforementioned sh2 is

such an example, which will be marked from both sh4 and re7.

Once Λxn is marked, I traverse Lxn backwards from the last cell of the TSS array

to do the actual BPTS computations. This traversal visits each cell of TSS only once,
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such that the previous state DAG (e.g., the one in Fig. 4-4b) is visited in a reverse

topological order, and all BPTS is done in one single traversal of Λxn . I show the

pseudocode for doing this in Fig. 4-6. On line 3, the parser state sr at position r in

Lxn is obtained. If sr has been marked by Mark(Λxn, Lxn), and it leads to at least

one child state in the unrolled RNN (|sr.succ| > 0 on line 4, in which succ denotes

the set of child states), the cumulative backpropagated error δhsr at the hidden state

of sr is computed (line 7). This involves aggregating errors from all the child states

u contained in sr.succ (line 5) and all the action indexes (or keys) in sr.A, where for

each index, errors are aggregated from all k-best parses it is part of, s.t. (on line 6):

δasr = BPTS(sr.A)

=
∑

m∈sr.A.keys

∑
i∈sr.A[m]

δmδim

=
∑

m∈sr.A.keys

∑
i∈sr.A[m]

δm p(yi|θ)(XF1(θ)− F1(∆yi ,∆xn))
1

zm︸ ︷︷ ︸
XF1 gradient per action, Eq. 4.7

, (4.8)

where according to Eq. 4.2:

δm =



z1(α1m − zm)β1

z2(α2m − zm)β2

...

zl(αlm − zm)βl
...

zC(αCm − zm)βC


,

αlm = 1 if l == m

αlm = 0 otherwise,

and

βl = 1 if l ∈ T (sr)

βl = 0 otherwise,

where C is the total number of possible actions in the model (§4.4), 1 ≤ m ≤ C,

1 ≤ l ≤ C, and T (sr) is the set of feasible shift-reduce actions at state sr. Note that

by definition, ∀m s.t. m ∈ sr.A.keys, m ∈ T (sr).
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s0.w s1.w s2.w s3.w

s.w0 s.w1 s.w2 s.w3

s0.l.w s1.l.w s0.r.w s1.r.w

q0.w q1.w q2.w q3.w

s0.c s0.l.c s0.r.c

s1.c s1.l.c s1.r.c

s2.c s3.c

Table 4.1: Atomic feature templates.

4.4 CCG and the RNN Shift-Reduce Parsing Model

The total number of output units in the RNN is equal to the number of lexical

categories (i.e., all possible shift actions), plus 10 units for reduce and 18 units for

unary actions, corresponding to the CCG rules in Clark and Curran (2007).7

The same as the structured perceptron normal-form model (Zhang and Clark,

2011a), all features in the RNN model fall into three types: word, POS and CCG

category. Table 4.1 shows the atomic feature templates, where |fw| = 16, |fp| = 16

and |fc| = 8 (with all word-based features generalized to POS features). Similarly,

each template has two parts: the first part denotes parser state context and the

second part denotes the feature type. Recall also that s denotes stack contexts and

q denotes queue contexts. For example, s0 is the top subtree on the stack, with s0.l

being its left child and s0.r being its right child.

As an extra addition, the RNN models define a feature type denoted as wn (0 ≤

n ≤ 3), which represents the nth word of the input string that has been shifted onto

the stack. But disregarding this addition, the set of atomic feature templates is chosen

such that each higher-order feature template of the normal-form model (Table 3.2,

§3.3) can be obtained as the conjunction of some atomic feature templates.

Note, however, unlike the structured perceptron models, including both the normal-

form and dependency models, features in the RNN models are not conjoined with

action types.

7In principle, only 1 re unit is needed, but 9 additional units are used to handle non-standard
CCG rules in the treebank.
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4.5 Bidirectional RNN Supertagging

I extend the RNN supertagging model in the previous chapter by using a bidirectional

RNN (BRNN). The BRNN processes an input in both directions with two separate

hidden layers, which are then fed to one output layer to make predictions. At each

time step t, I compute the forward hidden state ht for t = (0, 1, . . . , n − 1); the

backward hidden state ĥt is computed similarly but from the reverse direction for

t = (n− 1, n− 2, . . . , 0) as

ĥt = f(Ûxt + Ŵht+1),

and the output layer, for t = (0, 1, . . . , n− 1), is computed as

yt = f(V̂[ht; ĥt]).

The BRNN introduces two new parameter matrices Û and Ŵ and replaces the old

hidden-to-output matrix V with V̂ to take two hidden layers as input. I use the same

three feature embedding types as the unidirectional model (§4.2), and all features are

extracted from a context window surrounding and including the current word.

4.6 Experiments: Chart Parsing

Datasets and Baseline. In addition to CCGBank (Hockenmaier and Steedman,

2007), the Wikipedia dataset of Honnibal et al. (2009) and the BioInfer dataset

of Pyysalo et al. (2007) are used as two out-of-domain test sets. I compared su-

pertagging accuracy with the MaxEnt c&c supertagger and the neural network tag-

ger of Lewis and Steedman (2014b) (henceforth NN), and I also evaluated parsing

accuracy using these three supertaggers as a front-end to the c&c parser. The same

425 supertag set used in the c&c parser and NN are used in all models. The MaxEnt

c&c supertagger uses POS tag features and a tag dictionary, neither of which are

used by other supertaggers.

80



Embedding Preprocessing. Pre-trained word embeddings from Turian et al. (2010)

were used to initialize look-up table Lw, and a set of word pre-processing techniques

was applied at both training and test time. All words are first lower-cased, and all

numbers are collapsed into a single digit ‘0’. If a lower-cased hyphenated word does

not have an entry in the pre-trained word embeddings, pre-processing is backed off

to the substring after the last hyphen. For compound words and numbers delim-

ited by “\/”, pre-processing is backed off to the substring after the delimiter. After

pre-processing, the Turian embeddings have a coverage of 94.25% on the training

data; for out-of-vocabulary words, three separate randomly initialized embeddings

are used for lower-case alphanumeric words, upper-case alphanumeric words, and

non-alphanumeric symbols. For padding at the start and end of a sentence, the “un-

known” entry from the pre-trained embeddings is used. Look-up tables Ls and Lc
were also randomly initialized, and all look-up tables were modified during training.

Hyperparameters and Training. For Lw, I used the scaled 50-dimensional Turian

embeddings (n = 50 for Lw) as initialization. I experimented during development with

using 100-dimensional embeddings and found no improvements in the resulting model.

Out-of-vocabulary embedding values in Lw and all embedding values in Ls and Lc
were initialized with a uniform distribution in the interval [−2.00, 2.00]. The embed-

ding dimension size m of Ls and Lc was set to 5. Other parameters of the network

{U,V,W} were also initialized a uniform distribution in the interval [−2.00, 2.00],

and were then scaled by their corresponding input vector size. I experimented with

context window sizes of 3, 5, 7, 9 and 11 during development and found a window

size of 7 gave the best performing model on the dev set. I used a fixed learning rate

of 0.25× 10−2 and a hidden state size of 200.

To train the model, I optimized cross-entropy loss with SGD using mini-batched

BPTT, where the mini-batch size was set to 9, by tuning on the dev set.

Embedding Dropout Regularization. Without any regularization, I found cross-

entropy error on the dev set started to increase while the error on the training set

was continuously driven to a very small value (Fig. 4-7a). With the suspicion of
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Figure 4-7: Learning curve (a) and 1-best tagging accuracy (b) of the RNN model
on CCGBank Section 00. Plot (c) shows ambiguity vs. multi-tagging accuracy for all
supertaggers (auto POS).

Model Accuracy Time

c&c (gold POS) 92.60 -

c&c (auto POS) 91.50 0.57

NN 91.10 21.00

Rnn 92.63 -

Rnn+dropout 93.07 2.02

Table 4.2: 1-best tagging accuracy and speed comparison on CCGBank Section 00
with a single CPU core (1,913 sentences), tagging time in secs.

overfitting, I experimented with `1 and `2 regularization and learning rate decay but

none of these techniques gave any noticeable improvements for the model. Follow-

ing Legrand and Collobert (2015), I instead implemented word embedding dropout

as a regularization for all the look-up tables. As a result, I observed more stable

learning and better generalization. Similar to other forms of droput (Srivastava et

al., 2014), I randomly dropped units and their connections to other units at training

time. Concretely, I applied a binary dropout mask to xt, with a dropout rate of 0.25,

and at test time no mask is applied, but the input to the network, xt, at each word

position is scaled by 0.75.

4.6.1 Supertagging Results

The best non-regularized model was obtained after the 20th epoch, and it took 35

epochs for the dropout model to peak (Fig. 4-7b). I report results obtained with the

dropout model for all experiments.

Table 4.2 shows 1-best supertagging accuracies on the dev set. The accuracy
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Model Section 23 Wiki Bio

c&c (gold POS) 93.32 88.80 91.85

c&c (auto POS) 92.02 88.80 89.08

NN 91.57 89.00 88.16

Rnn 93.00 90.00 88.27

Table 4.3: 1-best tagging accuracy comparison on CCGBank Section 23 (2,407 sen-
tences), Wikipedia (200 sentences) and Bio-GENIA (1,000 sentences).

of the c&c supertagger drops about 1.00% with automatically assigned POS tags,

while the Rnn model gives higher accuracy (+0.47%) than the c&c supertagger with

gold POS tags. All timing values were obtained on an Intel i7-4790K CPU, and all

implementations are in C++ except NN which is implemented in Torch and Java.

Table 4.4 compares different supertagging models for multi-tagging accuracy at

the default β levels used by the c&c parser on the dev set. At the first β level

(0.75×10−1), the three supertagging models give very close ambiguity levels, but the

Rnn model clearly outperforms NN and c&c (auto POS) in both word (WORD)

and sentence (SENT) level accuracies, giving similar word-level accuracy as c&c (gold

POS). For other β levels (except β = 0.01×10−1), the RNN model gives comparable

ambiguity levels to the c&c model which uses a tagdict, while being much more

accurate than both the other two models.

Fig. 4-7c compares multi-tagging accuracies of all the models on the dev set. For

all models, the same β levels were used (ranging from 0.75 × 10−1 to 10−4, and all

c&c default values were included). The RNN model consistently outperforms other

models across different ambiguity levels.

Table 4.3 shows 1-best accuracies of all models on the test data sets (follow-

ing Lewis and Steedman (2014b), results for Bio were obtained with Bio-GENIA

gold standard CCG lexical category data from Rimell and Clark (2008)). With gold

standard POS tags, the c&c model outperforms both the NN and RNN models on

CCGBank and Bio-GENIA; while with auto POS, the accuracy of the c&c model

drops significantly.

Fig. 4-8 shows multi-tagging accuracies on all test data (using β levels ranging
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Figure 4-8: Multi-tagging accuracy for all supertagging models on CCGBank Section
23 (a), Wikipedia (b) and Bio-GENIA (c) (auto POS).

LP LR LF SENT CAT cov.

c&c (normal) 85.18 82.53 83.83 31.42 92.39 100

c&c (hybrid) 86.07 82.77 84.39 32.62 92.57 100

c&c (normal + Rnn) 86.74 84.58 85.65 34.13 93.60 100

c&c (hybrid + Rnn) 87.73 84.83 86.25 34.97 93.84 100

c&c (normal) 85.18 84.32 84.75 31.73 92.83 99.01 (c&c cov.)

c&c (hybrid) 86.07 84.49 85.28 32.93 93.02 99.06 (c&c cov.)

c&c (normal + Rnn) 86.81 86.01 86.41 34.37 93.80 99.01 (c&c cov.)

c&c (hybrid + Rnn) 87.77 86.25 87.00 35.20 94.04 99.06 (c&c cov.)

c&c (normal + Rnn) 86.74 86.15 86.45 34.33 93.81 99.42

c&c (hybrid + Rnn) 87.73 86.41 87.06 35.17 94.05 99.42

Table 4.5: Parsing development results on CCGBank Section 00 (auto POS). No
separate development experiments for the Wikipedia and BioInfer data sets.

from 0.75 × 10−1 to 10−6, and all c&c default values are included). On CCGBank,

the RNN model has a clear accuracy advantage, while on the other two data sets, the

accuracies given by the NN model are closer to the RNN model at some ambiguity

levels. However, both the NN and RNN models are more robust than the c&c model

on the two out-of-domain data sets.

4.6.2 Parsing Results

I integrated the supertagging model into the c&c parser, at both training and test

time, using all default settings; c&c hybrid model was used for CCGBank and

Wikipedia; the normal-form model was used for the BioInfer data, following Lewis

and Steedman (2014b) and Rimell and Clark (2008). Parsing development results

are shown in Table 4.5; for out-of-domain data sets, no separate development ex-
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LP LR LF SENT CAT cov.

c&c (hybrid) 86.24 84.17 85.19 33.24 93.00 100

c&c (hybrid + NN) 86.71 85.40 86.05 33.32 93.31 100

c&c (hybrid + Rnn) 87.68 86.41 87.04 35.02 93.87 100

c&c (hybrid) 86.24 84.85 85.54 33.43 93.03 99.42 (c&c cov.)

c&c (hybrid + NN) 86.71 85.56 86.13 33.35 93.32 99.92

c&c (hybrid + Rnn) 87.68 86.47 87.07 35.04 93.87 99.96

Table 4.6: Parsing results on CCGBank Section 23 (auto POS).

LP LR LF SENT CAT cov.

c&c (hybrid) 81.58 79.48 80.52 25.50 89.83 100

c&c (hybrid + NN) 82.65 81.36 82.00 29.50 90.41 100

c&c (hybrid + Rnn) 83.22 81.78 82.49 29.00 90.73 100

c&c (hybrid) 81.58 80.08 80.83 25.63 89.87 99.50 (c&c cov.)

c&c (hybrid + NN) 82.55 81.24 81.89 29.65 90.38 99.50 (c&c cov.)

c&c (hybrid + Rnn) 83.18 81.72 82.45 33.67 90.69 99.50 (c&c cov.)

Table 4.7: Parsing results on Wikipedia-200 (auto POS; both NN and Rnn have
100% coverage with - -force-words option of c&c set to false).

LP LR LF cov.

c&c (normal) 77.78 76.07 76.91 95.40

c&c (normal + NN) 79.77 78.62 79.19 97.40

c&c (normal + Rnn) 80.10 78.21 79.14 97.80

c&c (normal) 77.78 71.44 74.47 100

c&c (normal + NN) 79.77 75.35 77.50 100

c&c (normal + Rnn) 80.10 75.52 77.74 100

Table 4.8: Parsing results on BioInfer (auto POS).

periments were done. Final results are shown in Table 4.6 (CCGBank Section 23),

Table 4.7 (Wikipedia) and Table 4.8 (BioInfer). As can be seen, parsing accuracies on

CCGBank and Wikipedia are substantially improved, and the accuracy on CCGBank

represents an F1 improvement of 1.53%/1.85%, which are state-of-art parsing results

for the c&c models.
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4.7 Experiments: Shift-Reduce Parsing

Baselines. The baselines are the same as in the previous chapter including the

normal-form shift-reduce model (Zhang and Clark, 2011a), along with a reimplemen-

tation of it for additional reference, and the c&c normal-form and hybrid-models. I

also include the feed-forward shift-reduce CCG parser of Ambati et al. (2016), which

is a beam-search shift-reduce parser based on Chen and Manning (2014) and Weiss

et al. (2015).

Hyperparameters. For the BRNN supertagging model, I used identical hyperpa-

rameter settings as the RNN supertagging model (§4.6). For all RNN parsing models,

the weights were initialized using a uniform distribution in the interval [−2.00, 2.00],

and scaled by their fan-in (Bengio, 2012); the hidden layer size was 220, and 50-

dimensional embeddings were used for all feature types and scaled Turian embeddings

were used (Turian et al., 2010) for word embeddings. The same word embedding pro-

cessing applied for the RNN supertagging model was used (§4.6). I also pretrained

CCG lexcial category and POS embeddings by using the gensim word2vec imple-

mentation.8 The data used for this was obtained by parsing a Wikipedia dump using

the c&c parser and concatenating the output with CCGBank Sections 02-21. Em-

beddings for unknown words and CCG categories outside of the lexical category set

were also uniformly initialized ([−2.00, 2.00]) without scaling.

To train all the models, I used a fixed learning rate of 0.25 × 10−2 and did not

truncate the gradients for BPTT, except for training the baseline cross-entropy RNN

parsing model where a BPTT step size of 9 was used. Embedding dropout was also

applied (§4.6), with a dropout rate of 0.25 for the supertagger and 0.30 for the parser.

10-fold jackknifing was used for both POS tagging and supertagging. For both

development and test experiments, automatically assigned POS tags given by the

c&c POS tagger were used. The BRNN supertagging model was used by all RNN

parsing models for both training and testing. For training only, if the gold standard

lexical category is not available for a word, it is added to the list of categories.

8https://radimrehurek.com/gensim/
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Figure 4-9: Experiment results on the dev set. Multi-tagging accuracy (a). F1 vs.
epoch for the Rnn-Xent models with beam size b ∈ {1, 6} (b). F1 vs. epoch for the
Rnn-XF1 models with b = 8 (c).

Supertagger Dev Test

c&c (gold POS) 92.60 93.32

c&c (auto POS) 91.50 92.02

Rnn 93.07 93.00

Brnn 93.49 93.52

Table 4.9: 1-best supertagging accuracy comparison.

4.7.1 Supertagging Results

Table 4.9 shows 1-best supertagging results. On the test set, the Brnn supertagger

achieves a 1-best accuracy of 93.52%, an absolute improvement of 0.52% over the

RNN model.

Fig. 4-9a shows multi-tagging accuracy comparison for the three supertaggers

by varying the variable-width beam probability cut-off value β for each supertagger

(§2.2). For this experiment β values ranging from 0.09 to 2 × 10−4 were used and

it can be seen that the Brnn supertagger consistently achieves better accuracies at

similar ambiguity levels.

4.7.2 Parsing Results

To train the cross-entropy locally normalized model (Rnn-Xent), the Brnn su-

pertagger was used with a supertagger β value of 0.25× 10−3 (with an average ambi-

guity of 5.02). SGD training was ran until no accuracy gains were observed, and the

best Rnn-Xent model was obtained after the 52nd epoch (Fig. 4-9b).

It was also found that using a relatively smaller supertagger β value (higher am-
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0.09 0.08 0.07 0.06

b = 1 84.61 84.58 84.55 84.50

b = 2 84.94 84.86 84.86 84.81

b = 4 85.01 84.95 84.92 84.92

b = 6 85.02 84.96 84.94 84.93

b = 8 85.02 84.99 84.96 84.95

b = 16 85.01 84.95 84.97 84.98

Table 4.10: The effect on dev F1 by varying the beam size (b) and supertagger β
value for the Rnn-Xent model.

biguity) for training, and a larger β value (lower ambiguity) for testing, resulted in

more accurate models, and the final β value was chosen to be 0.09 using development

tuning (Table 4.10). This observation was different from the normal-form shift-reduce

model (Zhang and Clark, 2011a) and the dependency model (§3), which used the same

β values for training and testing.

I also experimented with using different beam sizes at test time for the Rnn-Xent

model (Table 4.10): with b = 6, I obtained an accuracy of 85.02%, an improvement

of 0.41% over b = 1 (with a β value of 0.09). Accuracy gains were seen up to b = 8

(with very minimal gains with b = 16 for β values 0.06 and 0.07), after which the

accuracy started to drop. F1 on dev with b = 6 across all training epochs are also

shown in Fig. 4-9b, and the best model was obtained after the 43rd epoch.

For the XF1 model (Rnn-XF1), I used b = 8 and a supertagger β value of 0.09

for both training and testing. Fig.4-9c shows dev F1 versus the number of training

epochs. The best dev F1 was obtained after the 54th epoch with an accuracy of

85.73%, 1.12% higher than that of the Rnn-Xent model with b = 1 and 0.71%

higher than the Rnn-Xent model with b ∈ {6, 8}. This result improves over the

normal-form (Zhang and Clark, 2011a) and the dependency model (§3) by 0.73% and

0.55%, respectively (Table 4.11).

On the test set (Table 4.12), the beam-search Rnn-XF1 model achieves a final

F1 of 86.42%, improving over the Rnn-Xent baseline by 1.47%.

Finally, to speed up the RNN models, I implemented precomputation (Devlin et

al., 2014) to cache the top 20K word embeddings and all POS embeddings. This
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Model beam LP LR LF SENT CAT

c&c (normal) - 85.18 82.53 83.83 31.42 92.39

c&c (hybrid) - 86.07 82.77 84.39 32.62 92.57

Zhang and Clark (2011a) 16 87.15 82.95 85.00 33.82 92.77

Zhang and Clark (2011a)* 16 86.76 83.15 84.92 33.72 92.64

Shift-Reduce-Dep 128 86.29 84.09 85.18 34.40 92.75

Ambati et al. (2016)† 1 - - 82.65 - 91.72

Ambati et al. (2016)‡ 16 - - 85.69 - 93.02

Rnn-Xent 1 88.12 81.38 84.61 33.82 93.42

Rnn-Xent 6 87.96 82.27 85.02 34.29 93.47

Rnn-XF1 8 88.20 83.40 85.73 34.97 93.56

Table 4.11: Parsing results on Section 00 (100% coverage and auto POS). ∗ = reim-
plementation; † = cross-entropy; ‡ = cross-entropy + structured perceptron.

Model beam LP LR LF SENT CAT Speed

c&c (normal) - 85.45 83.97 84.70 32.82 92.83 97.90

c&c (hybrid) - 86.24 84.17 85.19 33.24 93.00 95.25

Zhang and Clark (2011a) 16 87.43 83.61 85.48 35.19 93.12 -

Zhang and Clark (2011a)* 16 87.04 84.14 85.56 34.98 92.95 49.54

Shift-Reduce-Dep 128 87.03 85.08 86.04 35.69 93.10 12.85

Ambati et al. (2016)† 1 - - 83.27 - 91.89 350.00

Ambati et al. (2016)‡ 16 - - 85.57 - 92.86 -

Rnn-Xent 1 88.53 81.65 84.95 32.99 93.57 337.45

Rnn-Xent 6 88.54 82.77 85.56 34.19 93.68 96.04

Rnn-XF1 8 88.74 84.22 86.42 34.73 93.87 67.65

Table 4.12: Parsing results on Section 23 (100% coverage and auto POS). ∗ = reim-
plementation; † = cross-entropy; ‡ = cross-entropy + structured perceptron. Speed
(sents/sec; result for Ambati et al. (2016) is taken from the paper).

made the Rnn-Xent parser more than three times faster than the c&c parser.9

4.8 Related Work

Sequence Labelling with Neural Networks. A myriad of neural network mod-

els have been proposed for sequence labeling tasks such as chunking, POS tagging

and NER (Collobert et al., 2011; Lewis and Steedman, 2014b; Chiu and Nichols,

2015; Huang et al., 2015; Labeau et al., 2015; Ma and Hovy, 2016; Lample et al.,

9Speed measured with an Intel i7-4790K CPU.
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2016; Lewis et al., 2016; Yang et al., 2016). A crucial aspect of all these models, as

with most current neural network models for language processing, is the utilization of

token-level (word or character) embeddings to mitigate the feature sparsity problem

of more traditional one-hot indicator feature representations. In addition, the com-

bination of embeddings and various neural network architectures results in models

that have demonstrated high efficacy for sequence labelling. Primarily, such models

have the advantage of being able to naturally capture long-range label dependencies—

either through the use of recurrent neural networks alone (Huang et al., 2015; Labeau

et al., 2015), or through a combination of neural networks and additional enhance-

ments such as CRFs (Collobert et al., 2011; Huang et al., 2015; Lample et al., 2016;

Ma and Hovy, 2016). In addition, they allow for end-to-end task-independent mod-

els that are entirely free of task-specific feature engineering (Collobert et al., 2011;

Huang et al., 2015) as well as unified language-independent models that can generalize

across languages by learning morphological and orthographic distributed representa-

tions (Lample et al., 2016; Yang et al., 2016).

The RNN model I have explored in this chapter is attractively simple and the

foremost goal here is to test its viability in capturing sequence-level long-term de-

pendencies for supertagging; more importantly, I have shown such a model has a

positive impact on parsing accuracy. Recent work has also shown that neural net-

work supertaggers can be used in an A* supertag-factored framework, in which CCG

derivations are scored solely based on inside and outside probabilities obtained from

CCG lexical category sequences (Lewis and Steedman, 2014a; Lewis et al., 2016).

In such models, there is no explicit statistical model of the derivation or dependen-

cies, and parsing accuracy is almost exclusively determined by supertagging accuracy.

By contrast, I have found in my experiments that integrating the RNN supertagger

with the parsing models at both training and inference time further improves pars-

ing accuracy. I owe this to the fact that the supertagger determines the derivation

space of the c&c parser, and hence affects parsing model estimation. This is further

demonstrated by Vaswani et al. (2016), who obtain significant parsing accuracy im-

provements for the Java version of the c&c parser (Clark et al., 2015) by using an
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LSTM supertagger in a similar way.

On the other hand, with only existing supertagging and parsing models, Auli and

Lopez (2011a) showed that a tighter integration of these two components leads to

a more accurate parser. In particular, they integrated the c&c two-stage pipeline

more closely using belief propagation and dual decomposition at inference time to

outperform the baseline. While this suggests the potential for further improvements

by integrating a more accurate supertagging model into their parser, it still leaves the

problem of fully integrated supertagging and parsing wide open, which should be a

fruitful avenue for future work.

Another strand of work that ties to the current work is on improving supervised

parsing models with additional labeled or unlabeled data. For instance, by using

self-training (Honnibal et al., 2009; Kuhlmann et al., 2010); by doing extra annota-

tions (Rimell and Clark, 2008); or by augmenting the model with unsupervised word

cluster or word embedding features (Koo et al., 2008; Andreas and Klein, 2014). Be-

ing orthogonal to such methods, I have shown supertagging accuracy is still a major

bottleneck for the c&c parser, and attacking this bottleneck further is a more direct

and highly effective approach, on both in- and out-of-domain data sets, largely out-

performing competitive techniques (Rimell and Clark, 2008; Honnibal et al., 2009;

Kuhlmann et al., 2010).

Optimizing for Task-specific Metrics. The XF1 training objective is largely

inspired by task-specific optimization for parsing and MT. Goodman (1996) proposed

algorithms for optimizing a parser for various constituent matching criteria, and it was

one of the earliest works which optimizes a parser for evaluation metrics. Smith and

Eisner (2006) proposed a framework for minimizing expected loss for log-linear models

and applied it to dependency parsing by optimizing for labeled attachment scores. Auli

and Lopez (2011b) optimized the c&c parser for F-measure. However, they used the

softmax-margin (Gimpel and Smith, 2010) objective, which required decomposing

precision and recall statistics over parse forests. Instead, I directly optimize for an

F-measure loss. In MT, task-specific optimization has also received much attention

(e.g., see Och (2003)). Closely related to my work, Gao and He (2013) proposed
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training a Markov random field translation model as an additional component in a

log-linear phrase-based translation system using a k-best list-based expected BLEU

objective; using the same objective, Auli et al. (2014) and Auli and Gao (2014) trained

a large scale phrase-based reordering model and a RNN language model respectively,

all as additional components within a log-linear translation model. In contrast, my

RNN parsing model is trained in an end-to-end fashion with an expected F-measure

loss and all parameters of the model are optimized using backpropagation and SGD.

Parsing with RNNs. A line of work is devoted to parsing with RNN models, in-

cluding using RNNs (Miikkulainen, 1996; Mayberry and Miikkulainen, 1999; Legrand

and Collobert, 2015; Watanabe and Sumita, 2015) and LSTMs (Vinyals et al., 2015;

Ballesteros et al., 2015; Dyer et al., 2015; Kiperwasser and Goldberg, 2016). Legrand

and Collobert (2015) used RNNs to learn joint tagging and parsing models; Vinyals

et al. (2015) explored sequence-to-sequence learning (Sutskever et al., 2014) for pars-

ing; Ballesteros et al. (2015) utilized character-level representations and Kiperwasser

and Goldberg (2016) built an easy-first dependency parser using tree-structured com-

positional LSTMs. However, all these parsers use greedy search and are trained using

the maximum likelihood criterion (except Kiperwasser and Goldberg (2016), who

used a margin-based objective). For learning global models, Watanabe and Sumita

(2015) used a margin-based objective, which was not optimized for the evaluation

metric; although not using RNNs, Weiss et al. (2015) proposed a method based on

the structured perceptron (Collins, 2002; Collins and Roark, 2004; Zhang and Clark,

2008), which required fixing the neural network representations, and thus their model

parameters were not learned using end-to-end backpropagation. Different from all

aforementioned works which all consider discriminative modelling, Dyer et al. (2016)

recently proposed a generative LSTM parser for constituency parsing, which showed

state-of-the-art results.

Finally, in line with the present work, a number of recent works have also in-

dependently explored training neural network models for parsing and other tasks to

tackle label bias (Ranzato et al., 2016; Wiseman and Rush, 2016), loss-evaluation mis-

match (Ranzato et al., 2016; Wiseman and Rush, 2016), and additionally exposure
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bias (Bengio et al., 2015; Vaswani and Sagae, 2016; Ballesteros et al., 2016); the ben-

efits of moving beyond fully locally normalized models have already been repeatedly

demonstrated.

4.9 Summary

Neural network shift-reduce parsers are often trained by maximizing the log-likelihood

of isolated shift-reduce actions, which is susceptible to the label bias problem and does

not optimize towards the final evaluation metric. As the main contribution of this

chapter, I addressed this by proposing expected F-measure training for shift-reduce

parsing with RNNs. I have demonstrated the efficacy of the method on shift-reduce

parsing for CCG, achieving higher accuracies than all previous shift-reduce CCG

parsers and the c&c parser.10 In the next chapter, I show how this training framework

is applied to a different neural network architecture.

10Auli and Lopez (2011b) present higher accuracies but on a different coverage to enable a com-
parison to Fowler and Penn (2010). Their results are thus not directly comparable.
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Chapter 5

LSTM Shift-Reduce CCG Parsing

Recent work on using recurrent neural networks for shift-reduce parsing has utilized

both Elman RNNs and LSTMs to derive explicit representations for shift-reduce ac-

tions and parser states, and it has been shown that recursive tree-structured networks

are well-suited to model the incremental process that derives syntactic structures in

a shift-reduce parser (Dyer et al., 2015; Watanabe and Sumita, 2015). One of the

main assumptions underlying these systems is that representations learned by tree-

structured networks better mirror the hierarchical nature of syntax (Chomsky, 1957)

and the linguistic principle of compositionality (Frege, 1892).

In keeping with such motivations, I define a model to learn representations for

the complete derivation process. However, departing from tree-structured networks,

I encode tree structures implicitly with multiple sequential LSTMs, which allow the

incremental linearization of the complete derivation history, with no feature engineer-

ing (Zhang and Clark, 2011a; Xu et al., 2014), no atomic feature sets (Chen and

Manning, 2014), and without relying on any additional control operations (Dyer et

al., 2015) or explicit recursive structures (Goller and Kuchler, 1996; Socher et al.,

2010; Socher et al., 2011; Socher et al., 2013).

In conjunction with two different training objectives, I obtain state-of-the-art

results by combining the model with an attention-based supertagger in i) a locally

normalized greedy parser; ii) a globally normalized beam-search parser; and iii) a

globally normalized greedy parser. In each case, the resulting parser is sensitive to
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all aspects of the parsing history, including arbitrary positions in the input (encoded

by a bidirectional LSTM), at any step during the parsing process.

5.1 Background

5.1.1 LSTM

Simple RNNs suffer from the vanishing gradient problem (Bengio et al., 1994; Hochre-

iter, 1998). Informally this means that BPTT (§4.1.4) could make the gradients

negligibly small, diminishing the effects of backpropagated errors on temporal events

further apart and making modelling long-range dependencies more difficult. For the

Elman RNN (Elman, 1990), the source of this problem is the scaling effect of the

hidden state activation derivatives as the backpropagated errors pass through the

unrolled network. Because if the derivatives are sufficiently small, such as in the case

of sigmoid activation function σ with 0 < σ′ ≤ 0.25, the gradients could decrease

exponentially in the number of time steps. One of the main motivations of LSTMs

is to mitigate this, thereby increasing sensitivity over longer time delays and allow-

ing dependencies among temporal events that are arbitrarily far in a sequence to be

captured.

Recall that an Elman RNN is factored into an input layer xt and a hidden state

(layer) ht with recurrent connections, and it can be represented by the recurrence:

ht = Φ(xt,ht−1),

where xt is the current input, ht−1 is the previous hidden state and Φ is a set of

affine transformations coupled with nonlinear activations. In LSTMs, the recurrence

becomes

ht, ct = Φ(xt,ht−1, ct−1), (5.1)

where ct is the cell state. Intuitively, the cell state functions as an explicit memory,

and the parameters controlling how and when information is “written to” or “read

from” it are learned during training. Specifically, these parameters are modelled as

gates to regulate information flow and enable controlled “reading” and “writing”.
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This is different from Elman RNNs, which use the complete hidden state from the

previous step (“reading”) and the complete input from the current step (“writing”)

to fully determine the hidden state at the current step. In other words, “reading” and

“writing” are uncontrolled in an Elman RNN but controlled and adaptive in LSTMs.

A typical LSTM contains three gates, namely the forget (ft), input (it) and output

(ot) gates. Each gate is modelled as a single-layer feed-forward network. Concretely,

the forget gate acts as a reset switch, determining how much information is “erased”

from the previous cell state; the input gate determines how much information from

the current input is used to update the cell state ct; and the output gate “filters” the

cell state for the next time step. All three gates learn to condition on the current

input xt and the previous hidden state ht−1, and together with the cell state, a typical

LSTM can be formulated as (Hochreiter and Schmidhuber, 1997):

it = σ(Wixxt + Wihht−1 + bi)

ft = σ(Wfxxt + Wfhht−1 + bf )

ĉt = tanh(Wcxxt + Wchht−1 + bc)

ot = σ(Woxxt + Wohht−1 + bo)

ct = ft ◦ ct−1 + it ◦ ĉt

ht = ot ◦ tanh(ct),

where σ is the sigmoid activation, and ◦ is the element-wise product.

In addition to the gates, the identity activation function of the cell state is also

highly relevant in tackling vanishing gradients, as any error passing through is pre-

served due to its unity derivative. It has also been shown empirically that the forget

gate plays a significant role in an LSTM for a number of tasks except language mod-

elling; while the output gate is the least important, and can even be removed with

little impact on the performance of an LSTM (Greff et al., 2016).
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5.1.2 LSTM Backpropagation

For completeness, I derive the gradients for LSTM backpropagation. First, I rewrite

the above LSTM formulation by arranging the first four equations into a matrix form

(omitting the bias terms and keeping the last two equations unchanged):



it

ft

ĉt

ot


=



σ

σ

tanh

σ





wixwih

wfxwfh

wcxwch

woxwoh


 xt

ht−1



ct = ft ◦ ct−1 + it ◦ ĉt

ht = ot ◦ tanh (ct).

Further, let the activations vector be a, where the activation functions are applied

element-wise,1 and split the block matrix of weights into a left block Ux (associated

with xt) and a right block Uh (associated with ht−1), I rewrite the above as

gt = a (Ubt)

= a (Uxxt + Uhht−1) .

Let δht be the error vector at ht, by applying BPTS (§4.1.3) and observing ◦ is

commutative, the following error vectors can be derived:

δot = tanh (ct) ◦ δht ,

δct = tanh′ (ct) ◦ ot ◦ δht + δct+1 ,

δit = ĉt ◦ δct ,

δft = ct−1 ◦ δct ,

δĉt = it ◦ δct ,

δct−1 = ft ◦ δct .
1This is a notation abuse.
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Let

δgt =



δit

δft

δĉt

δot


,

and δzt = a′ (Ubt) ◦ δgt ; the following error vectors can be derived:

δxt = U>x δzt ,

δht−1 = U>h δzt .

Finally, the gradients for Ux and Uh are

∇Ux = δztx
>
t ,

∇Uh
= δzth

>
t−1.

5.2 LSTM Shift-Reduce Parsing

Several extensions to the vanilla LSTM have been proposed over time, each with a

modified instantiation of Φθ that exerts refined control over various elements in an

LSTM (Gers et al., 2000; Gers and Schmidhuber, 2000). The instantiation for all

LSTMs throughout this chapter is as follows:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)

ft = σ(Wfxxt + Wfhht−1 + Wfcct−1 + bf )

ct = ft ◦ ct−1 + it ◦ tanh(Wcxxt + Wchht−1 + bc)

ot = σ(Woxxt + Wohht−1 + Wocct + bo)

ht = ot ◦ tanh(ct), (5.2)

which adopts the so-called “peephole connections” to allow the gates to look at the

cell state, with the motivation of learning more precise timings of events (Gers and
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Schmidhuber, 2000).

In addition to unidirectional LSTMs that model an input sequence x0,x1, . . . ,xn−1

in a strict left-to-right order, I also use bidirectional LSTMs (BLSTMs; Graves and

Schmidhuber, 2005), which read the input from both directions with two independent

LSTMs. This is the same bidirectional architecture as in §4.5, with RNNs replaced

with LSTMs. At each step, the forward hidden state ht is computed using Eq. 5.1

for t = (0, 1, . . . , n− 1); the backward hidden state ĥt is computed similarly but from

the reverse direction for t = (n− 1, n− 2, . . . , 0). Together, the two hidden states at

each step t capture both past and future contexts, and the representation for each xt

is obtained as the concatenation [ht; ĥt].

5.2.1 Embeddings

The neural network model employed by Chen and Manning (2014), and followed by

a number of other parsers (Weiss et al., 2015; Zhou et al., 2015; Ambati et al., 2016;

Andor et al., 2016; Xu et al., 2016) allows higher-order feature conjunctions to be

automatically discovered from a set of dense feature embeddings. However, as we

have seen in the previous chapter, a set of atomic feature templates (Table 4.1, §4.4),

which are only sensitive to contexts from the top few elements on the stack and queue

are still needed to dictate the choice of these embeddings. Here I dispense with such

templates and seek to design a model that is sensitive to both local and non-local

contexts, on both the stack and queue.

Consequently, embeddings represent atomic input units that are added to the

parser and are preserved throughout parsing. In total four types of embeddings are

used, namely, word, CCG category, POS and action, where each has an associated

look-up table. The look-up table for word embeddings is Lw ∈ Rk×|w|, where k is the

embedding dimension and |w| is the vocabulary size. Similarly, additional look-up

tables are maintained for CCG categories, Lc ∈ Rl×|c|, for the three types of actions,

La ∈ Rm×3, and for POS tags, Lp ∈ Rn×|p|.
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input : w0 . . . wn−1

axiom : 0 : (0, ε, β, φ)

goal : 2n− 1 + µ : (n, δ, ε,∆)

ω : (j, δ, xwj |β,∆)

ω + 1 : (j + 1, δ|xwj , β,∆)
(shift; 0 ≤ j < n)

ω : (j, δ|s1|s0, β,∆)

ω + 1 : (j, δ|x, β,∆ ∪ 〈x〉))
(reduce; s1s0 → x)

ω : (j, δ|s0, β,∆)

ω + 1 : (j, δ|x, β,∆)
(unary; s0 → x)

Figure 5-1: The shift-reduce deduction system.

5.2.2 Model

Parser. Fig. 5-1 reproduces the deduction system of shift-reduce CCG parsing

(§2.3.1). Recall that each parser state is denoted as (j, δ, β,∆), where j is the posi-

tional index of the word at the front of the queue, δ is the stack (with its top element

s0 to the right), and β is the queue (with its top element wj to the left) and ∆ is the

set of CCG dependencies realized for the input consumed so far. Each state is also

associated with a step indicator t, signifying the number of actions applied to it and

the goal is reached in 2n−1+µ steps, where µ is the total number of unary actions.

In the LSTM parser, I define each action as a 4-tuple (τt, ct, wct , pwct ), where

τt ∈ {shift,reduce,unary} for t ≥ 1, ct is the resulting category of τt, and wct is

the head word attached to ct with pwct being its POS tag.2

LSTM model. LSTMs are designed to handle time-series data, in a purely se-

quential fashion, and I try to exploit this by completely linearizing all aspects of the

parsing history. Concretely, I factor the model as five LSTMs, comprising four unidi-

rectional ones, denoted as U, V, X and Y, and an additional BLSTM, denoted as W

(Fig. 5-2). Before parsing each sentence, W is fed with the complete input (padded

2In case of multiple heads, I always choose the first one in the order they are created.
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Figure 5-2: Example representation for a parser state at time step t, with the four
unidirectional LSTMs (left) and the bidirectional LSTM (right). The shaded cells on
the left represent δt = [hU

t ; hV
t ; hX

t ; hY
t ] (Eq. 5.3), and the shaded cells on the right

represent wj = [hW
j ; ĥW

j ].

with a special embedding ⊥ as the end of sentence token), and in subsequent steps,

wj = [hW
j ; ĥW

j ] is used to represent wj.
3 At initialization, a ⊥ symbol is also added

to the other four unidirectional LSTMs.

Given this 5-LSTM factorization, the stack representation for a parser state at

step t, for t ≥ 1, is obtained as

δt = [hU
t ; hV

t ; hX
t ; hY

t ], (5.3)

and together with wj, [δt; wj] gives a representation for the complete parser state.

For the initial state, it is represented as [δ0; w0], where δ0 = [hU
⊥; hV

⊥; hX
⊥; hY

⊥].

During parsing, whenever the parser applies an action (τt, ct, wct , pwct ), the model

is updated by adding the embedding of τt, denoted as La(τt), onto U, and also by

adding the other three embeddings of the action 4-tuple, that is, Lc(ct), Lw(wct) and

Lp(pwct ), onto V, X and Y respectively.

To predict the next action, an action hidden layer bt is first derived, by pass-

ing the parser state representation [δt−1; wj] through an affine transformation and a

nonlinearity, s.t.

bt = f(B[δt−1; wj] + r), (5.4)

where B is a parameter matrix of the model, r is a bias vector and f is a ReLU

3Word and POS embeddings are concatenated at each input position j, for 0 ≤ j < n; wn =
[hW
⊥ ; ĥW

⊥ ].
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nonlinearity (Nair and Hinton, 2010). Finally, another affine transformation (with A

as the weights and s as the bias) and a nonlinearity is applied to bt:

at = f(Abt + s),

before the probability of the ith action in at is obtained as

p(τ it |bt) =
exp{ait}∑

τkt ∈T (〈δ,β〉t−1) exp{akt }
,

where T (〈δ, β〉t−1) is the set of feasible actions for 〈δ, β〉t−1, and τ it ∈ T (〈δ, β〉t−1).

5.2.3 Stack-LSTM, Derivations and Dependency Structures

My LSTM parser architecture is inspired by the stack-LSTM (Dyer et al., 2015), which

is an extension of sequential LSTMs to allow the modelling of structures beyond a

strict left-to-right order. The stack-LSTM has been used in the dependency parser

of Dyer et al. (2015), for which it was crucial in allowing representations for the entire

parsing history to be constructed in an incremental fashion.

In essence, a stack-LSTM has the same recurrence as its sequential counterpart

(Eq. 5.1), but two additional control operations are provided to make it more flexible.

The first of these two operations is push, which operates in a similar fashion as in a

sequential LSTM: a new LSTM cell is added by extending a “previous” LSTM cell.

However, unlike in a sequential LSTM, this “previous” cell is not necessarily the right-

most, but can be any cell in the stack-LSTM. The second operation is pop, which

allows “rewinding” and hence the selection of the “previous” LSTM cell that provides

ct−1 and ht−1 when deriving Eq. 5.1. pop is a simple non-destructive operation, and

it can also be understood as updating the stack-top pointer, maintained in a stack-

LSTM, to indicate the position of the “previous” cell. Each pop rewinds the stack-top

pointer back for one step, and like push, multiple pop can be applied in succession.

A few examples of these two operations are shown in Fig. 5-3.

To apply the stack-LSTM to arc-standard dependency parsing, Dyer et al. (2015)

combine it with recursive neural representations of dependency trees. In doing so,
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(a) Two push. (b) One pop. (c) Two push.

Figure 5-3: Example stack-LSTM operations. Five operations are applied consecu-
tively; stack top is shaded.

they obtain parser state representations consisting of the complete summary of the

contents on the parser stack, including (partial or complete) dependency trees. That

is, the model exhibits “global” sensitivity to the parser state history at any given

step in the parsing process (a property also found in the LSTM parser of this chap-

ter). The key observation that allows them to achieve this is that transitions of the

chosen arc-standard dependency parser (Nivre, 2004) can be mapped to isomorphic

operations in a stack-LSTM. This mapping is straightforward for Shift transitions,

and slightly more involved for Left-Arc and Right-Arc. In the former case, one

push operation is sufficient, where the first word from the queue is appended to the

stack-LSTM, extending it one step to the right. In the latter case, three stack-LSTM

operations applied in succession are needed. This is because a word is first removed

from the stack whenever a Left-Arc or Right-Arc is applied in the parser; in

the stack-LSTM, this corresponds to “removing” the top-two words by rewinding it

two steps back (two pop), and pushing the result of composing the “removed” words

back to the stack-LSTM (one push). This three-operation process, in combination

with projective arc-standard parsing, ensures that the representations for dependency

trees can always be constructed in a recursive bottom-up fashion, as an integral part

of a stack-LSTM that also learns representations for all other aspects of the parsing

process. This ability to learn both non-recursive and recursive representations jointly

is a notable feature of the stack-LSTM parser.

In contrast, the present LSTM parser uses a simpler architecture that is free from

explicit recursive representations, and it naturally linearizes CCG derivations “in-

crementally” (Ambati et al., 2015) following their post-order traversals using four

unidirectional LSTMs whose hidden state concatenation at each step represents an
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action 4-tuple (Eq. 5.3) in a CCG derivation. In line with most existing CCG parsing

models, including dependency models, I have also chosen to model CCG derivations,

rather than dependency structures.4 This allows me to sidestep the issues that would

arise from deriving explicit representations for CCG dependencies, due to the large

amount of flexibility in how dependencies are realized in CCG (§2.1.4). The main

motivation of this design is related to the parser deduction system, which explic-

itly regulates parser actions and implicitly defines an ordering for all the linearized

elements on the four unidirectional LSTMs. Because of this, it is an open empiri-

cal question whether explicit tree-structured representations can further improve the

model. As preliminary pieces of evidence showing the efficacy of the chosen design,

the experiments below show that the presence of action embeddings helps the model

very little, while the category embeddings, which linearize the derivations, have a

significant impact on the performance of the parser (§5.4.2).

5.2.4 Training

As a baseline, I first train a locally normalized model, in which the log-likelihood

of each target action in the training data is maximized as in the local RNN model

(§4.3.2). More specifically, let (τ g1 , . . . , τ
g
Tn

) be the gold standard action sequence for

a training sentence n, a cross-entropy criterion is used to obtain the error gradients,

and for each sentence, training involves minimizing

L(θ) = − log
Tn∏
t=1

p(τ gt |bt) = −
Tn∑
t=1

log p(τ gt |bt),

where θ is the set of all parameters in the model.

As discussed in §4.3.2, locally normalized models suffer from the label bias prob-

lem, even with LSTMs.5 Here, I extend the local LSTM model into a global one by

adapting the expected F-measure training previously introduced for the RNN model

(§4.3.3), which is briefly recapped below. To the best of my knowledge, this is the

4Most CCG dependency models (e.g., see Clark and Curran (2007) and Xu et al. (2014)) model
CCG derivations with dependency features.

5The proof in Andor et al. (2016) does not directly apply to BLSTMs (see footnote 4 in §4.3.2).
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first approach to train a global LSTM shift-reduce parser.

Let θ = {U,V,X,Y,W,B,A} be the weights of the baseline greedy model,6 the

weights of the global model, which has the same architecture as the baseline, are

initialized to θ, and reoptimized in multiple training epochs as follows:

1. Pick a sentence xn from the training set, decode it with beam search, and

generate a k -best list of output parses with the current θ, denoted as Λxn .7

2. For each parse yi in Λxn), compute its sentence-level F1 using the set of de-

pendencies in the ∆ field of its parser state. In addition, let |yi| be the total

number of actions that derived yi and sθ(yij) be the softmax action score of

the jth action, given by the LSTM model. Compute the log-linear score of its

action sequence as ρ(yi) =
∑|yi|

j=1 log sθ(yij).

3. Compute the negative expected F1 objective (defined below) for xn and mini-

mize it using SGD (maximizing expected F1). Repeat these three steps for the

remaining sentences.

More formally, the loss J(θ), is defined as

J(θ) = −XF1(θ)

= −
∑

yi∈Λxn

p(yi|θ)F1(∆yi ,∆
G
xn),

where F1(∆yi ,∆
G
xn) is the sentence level F1 of the parse derived by yi, with respect

to the gold standard dependency structure ∆G
xn of xn; p(yi|θ) is the normalized prob-

ability score of the action sequence yi, computed as

p(yi|θ) =
exp{γρ(yi)}∑

y∈Λxn
exp{γρ(y)}

,

where γ is a parameter that sharpens or flattens the distribution (Tromble et al.,

2008).8 Different from the maximum-likelihood objective, XF1 optimizes the model

6Boldface letters are used to designate LSTM weights, and bias terms are omitted for brevity.
7k was not preset like in §4.3.3, and k = 11.06 on average with a beam size of 8.
8γ = 1 for all experiments.
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on a sequence level and towards the final evaluation metric, by taking into account

all action sequences in Λxn .

5.3 Attention-Based LSTM Supertagging

In addition to the size of the label space, supertagging is difficult because CCG cat-

egories can encode long-range dependencies and tagging decisions frequently depend

on non-local contexts. For example, in He went to the zoo with a cat, a possible

category for with, (S\NP)\(S\NP)/NP , depends on the word went further back in

the sentence.

Recently a number of RNN models have been proposed for CCG supertagging (Xu

et al., 2015; Lewis et al., 2016; Vaswani et al., 2016; Xu et al., 2016), and such

models show dramatic improvements over non-recurrent models (Lewis and Steedman,

2014b). Although the underlying models differ in their exact architectures, all of them

make each tagging decision using only the hidden states at the current input position,

and this imposes a potential bottleneck in the model. To mitigate this, I generalize

the attention mechanisms of Bahdanau et al. (2015) and Luong et al. (2015), and

adapt them to supertagging, by allowing the model to explicitly use hidden states

from more than one input positions for tagging each word. Similar to Bahdanau et

al. (2015) and Luong et al. (2015), a key feature in the model is a soft alignment

vector that weights the relative importance of the considered hidden states.

For an input sentence w0, w1, . . . , wn−1, wt = [ht; ĥt] (Eq. 5.2) is used as the

representation for the tth word (0 ≤ t < n, wt ∈ R2d×1), given by a BLSTM with

a hidden state size d for both its forward and backward layers.9 Let k be a context

window size hyperparameter, define Ht ∈ R2d×(k−1) as

Ht = [wt−bk/2c, . . . ,wt−1,wt+1, . . . ,wt+bk/2c],

which contains representations for all words in the size k window except wt. At each

position t, the attention model derives a context vector ct ∈ R2d×1 (defined below)

9Unlike in the parsing model, POS tags are excluded.

107



from Ht, which is used in conjunction with wt to produce an attentional hidden layer:

xt = f(M[ct; wt] + m), (5.5)

where f is a ReLU nonlinearity, M ∈ Rg×4d is a learned weight matrix, m is a bias

term, and g is the size of xt. Then xt is used to produce another hidden layer (with

N as the weights and n as the bias):

zt = Nxt + n,

and the predictive distribution over categories is obtained by feeding zt through a

softmax activation.

In order to derive the context vector ct, I first compute bt ∈ R(k−1)×1 from Ht

and wt using α ∈ R1×4d, s.t. the ith entry in bt is

bit = α[wT [i]; wt],

for i ∈ [0, k− 1), T = [t− bk/2c, . . . , t− 1, t+ 1, . . . , t+ bk/2c]; then ct is derived as:

at = softmax(bt),

ct = Htat,

where at is the alignment vector. I also experiment with two types of attention

reminiscent of the global and local models in Luong et al. (2015), where the first

attends over all input words (k = n) and the second over a local window.

It is worth noting that two other works have concurrently tackled supertagging

with BLSTM models. In Vaswani et al. (2016), a language model layer is added

on top of a BLSTM, which allows embeddings of previously predicted tags to prop-

agate through and influence the pending tagging decision. However, the language

model layer is only effective when both scheduled sampling for training (Bengio et

al., 2015) and beam search for inference are used. I show my attention-based models
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can match their performance, with only standard training and greedy decoding. Ad-

ditionally, Lewis et al. (2016) presented a BLSTM model with two layers of stacking

in each direction; as an internal baseline, I show a non-stacking BLSTM without

attention can achieve the same accuracy.

5.4 Experiments

Baselines. For supertagging, the baselines are the RNN and BRNN models from

the previous chapter, and the BLSTM models in Vaswani et al. (2016) and Lewis

et al. (2016). For parsing, the same baselines from the previous two chapters are

included. Additionally, I compared with the RNN shift-reduce models (§4).

Model and training parameters.10 All LSTM models are non-stacking with a

single layer.11 For the supertagging models, the LSTM hidden state size is 256, and

the size of the attentional hidden layer is 200 (xt, Eq. 5.5). All parsing model LSTMs

have a hidden state size of 128, and action hidden layer size is 80 (bt, Eq. 5.4).

Pretrained word embeddings for all models are 100-dimensional (Turian et al.,

2010), and all other embeddings are 50-dimensional. Like for the RNN models, I also

pretrained CCG lexical category and POS embeddings on the concatenation of the

training data and a Wikipedia dump parsed with c&c (§4.7). All other parameters

were uniformly initialized in ±
√

6/(r + c), where r and c are the number of rows and

columns of a matrix (Glorot and Bengio, 2010).

For training, I used plain non-minibatched SGD with an initial learning rate η0 =

0.1 and training was stopped when accuracy no longer increases on the dev set. For

all models, a learning rate schedule ηe = η0/(1 + λe) with λ = 0.08 was used for

e ≥ 11. Gradients were clipped whenever their norm exceeds 5. Dropout training as

suggested by Zaremba et al. (2014), with a dropout rate of 0.3, and an `2 penalty of

1.00× 10−5, were applied to all models.

Like in the previous two chapters, for training the parsing models, 10-fold jack-

10All models in this chapter are implemented with the CNN toolkit: https://github.com/clab/
cnn.

11The BLSTMs have a single layer in each direction. I experimented with 2 layers in all models
during development and found negligible improvements.
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Model Dev Test

c&c 91.50 92.02

Rnn 93.07 93.00

BRnn 93.49 93.52

Lewis et al. (2016) 94.1 94.3

Vaswani et al. (2016) 94.08 -

Vaswani et al. (2016) +LM +beam 94.24 94.50

BLstm 94.11 94.29

BLstm-local 94.31 94.46

BLstm-global 94.22 94.42

Table 5.1: 1-best supertagging results on both the dev and test sets. BLstm is the
baseline model without attention; BLstm-local and -global are the two attention-
based models.

knifing was used for both POS tagging and supertagging. For training only, if the

gold standard lexical category is not supplied by the supertagger for a word, it is

added to its list of categories.

5.4.1 Supertagging Results

Table 5.1 summarizes 1-best supertagging results. The baseline BLstm model with-

out attention achieves the same level of accuracy as Lewis et al. (2016) and the

baseline BLSTM model of Vaswani et al. (2016), with a hidden state 50% smaller

than the latter (256 vs. 512).

For training and testing the local attention model (BLstm-local), an attention

window size of 5 was used (tuned on the dev set), and it gives an improvement

of 0.94% over the BRNN supertagger (§4.5), achieving an accuracy on par with the

beam-search (size 12) model of Vaswani et al. (2016) that is enhanced with a language

model. Despite being able to consider wider contexts than the local model, the global

attention model (BLstm-global) did not show further gains, hence BLstm-local

was used for all parsing experiments below.

5.4.2 Parsing Results

The XENT model. For the locally normalized cross-entropy model, the same as

the Rnn-Xent model (§4.7.2) I found using a small β value (bigger ambiguity) for
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0.09 0.07 0.06 0.01 0.001

b = 1 86.49 86.52 86.56 86.26 85.80

b = 2 86.55 86.58 86.63 86.39 86.01

b = 8 86.61 86.64 86.67 86.40 86.07

Table 5.2: The effect on dev F1 by varying the beam size (b) and supertagger β value
for the Lstm-Xent model.

Model Beam LP LR LF SENT CAT

c&c (normal) - 85.18 82.53 83.83 31.42 92.39

c&c (hybrid) - 86.07 82.77 84.39 32.62 92.57

Zhang and Clark (2011a) 16 87.15 82.95 85.00 33.82 92.77

Zhang and Clark (2011a)* 16 86.76 83.15 84.92 33.72 92.64

Shift-Reduce-Dep 128 86.29 84.09 85.18 34.40 92.75

Ambati et al. (2016)† 1 - - 82.65 - 91.72

Ambati et al. (2016)‡ 16 - - 85.69 - 93.02

Rnn-Xent 1 88.12 81.38 84.61 33.82 93.42

Rnn-XF1 8 88.20 83.40 85.73 34.97 93.56

Lstm-Xent 1 89.43 83.86 86.56 48.98 94.47

Lstm-XF1 1 89.68 85.29 87.43 48.09 94.41

Lstm-XF1 8 89.54 85.46 87.45 47.99 94.39

Table 5.3: Parsing results on Section 00 (100% coverage and auto POS), with all
LSTM models using the BLstm-local supertagging model. All LSTM parsers are
the full model with all four types of embeddings. ∗ = reimplementation. † = cross-
entropy; ‡ = cross-entropy + structured perceptron.

training significantly improved accuracy, and β = 1.00 × 10−5 for training (with an

ambiguity of 5.22 after jackknifing) and β = 0.06 (with an ambiguity of 1.09) for

testing were chosen via development experiments (Table 5.2). Achieving an F1 of

86.56% on the dev set, this model surpasses all previous shift-reduce models (Lstm-

Xent, Table 5.3).

Table 5.4 shows elaborated dev set results for the same model, where the four

types of embeddings, that is, word (w), CCG category (c), action (a) and POS (p),

were gradually introduced to study their individual contribution. As can be seen, cat-

egory embeddings (Lstm-w+c) yielded a large gain over using word embeddings alone

(Lstm-w), and action embeddings (Lstm-w+c+a) provided little improvement, but

further adding POS embeddings (Lstm-w+c+a+p) gave noticeable recall (+0.61%)
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Figure 5-4: Learning curves for the cross-entropy models (a) and the XF1 model,
with a beam size of 8 (b).

Model LP LR LF CAT

Lstm-w 90.13 76.99 83.05 94.24

Lstm-w+c 89.37 83.25 86.20 94.34

Lstm-w+c+a 89.31 83.39 86.25 94.38

Lstm-w+c+a+p 89.43 83.86 86.56 94.47

Table 5.4: F1 on dev for all the cross-entropy models.

and F1 improvements (+0.36%) over Lstm-w+c.

Fig. 5-4a shows the learning curves for all cross-entropy models, where all of them

converged in under 30 epochs.

The XF1 model. With a beam size of 8, training took 12 epochs to converge

(Fig. 5-4b), and an F1 of 87.45% on the dev set was obtained (Table 5.3). On the

test set, the final F1 is 87.76%, which improves over the beam-search Rnn-XF1

model by 1.34% (Table 5.5).

Notably, decoding the XF1 model with greedy inference only slightly decreased

recall and F1, and this resulted in a highly accurate greedy parser (Lstm-XF1,

beam = 1, Table 5.5), outperforming the Rnn-Xent model (§4.7.2) by 2.67% F1.

Effect of the supertagger. To isolate the parsing model from the supertagging

model, I first experimented with the BRNN supertagging model (§4.5) for both train-

ing and testing the Lstm-Xent parser with greedy inference (Table 5.6). Using

this supertagger, the highest F1 (85.86%) was still achieved on the dev set (Lstm-
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Model Beam LP LR LF SENT CAT Speed

c&c (normal) - 85.45 83.97 84.70 32.82 92.83 97.90

c&c (hybrid) - 86.24 84.17 85.19 33.24 93.00 95.25

Zhang and Clark (2011a) 16 87.43 83.61 85.48 35.19 93.12 -

Zhang and Clark (2011a)* 16 87.04 84.14 85.56 34.98 92.95 49.54

Shift-Reduce-Dep 128 87.03 85.08 86.04 35.69 93.10 12.85

Ambati et al. (2016)† 1 - - 83.27 - 91.89 350.00

Ambati et al. (2016)‡ 16 - - 85.57 - 92.86 -

Rnn-Xent 1 88.53 81.65 84.95 32.99 93.57 337.45

Rnn-XF1 8 88.74 84.22 86.42 34.73 93.87 67.65

Lstm-Xent 1 89.75 84.10 86.83 49.94 94.63 40.76

Lstm-XF1 1 89.85 85.51 87.62 48.94 94.53 38.60

Lstm-XF1 8 89.81 85.81 87.76 49.07 94.57 10.40

Table 5.5: Parsing results on Section 23 (100% coverage and auto POS), with all
LSTM models using the BLstm-local supertagging model. All LSTM parsers are
the full model with all four types of embeddings. ∗ = reimplementation. † = cross-
entropy; ‡ = cross-entropy + structured perceptron. Speed measured on an Intel
i7-4790K CPU (sents/sec; result for Ambati et al. (2016) is taken from the paper).

Model Dev Test

Lstm-BRnn 85.86 86.37

Lstm-BLstm 86.26 86.64

Lstm-Xent 86.56 86.83

Table 5.6: The effect of different supertaggers on the full greedy parser. LSTM-Xent
is the same parser as in Table 5.3 and 5.5, which uses the BLstm-local supertagger.

BRnn) in comparison with all previous shift-reduce models; moreover, an improve-

ment of 1.42% F1 over the Rnn-Xent model (§4.7.2) was obtained on the test set

(Table 5.5). I then experimented with using the baseline BLSTM supertagging model

for parsing (LSTM-BLstm), and observed the attention-based setup (Lstm-Xent)

outperformed it, despite the attention-based supertagger BLstm-local not giving

better overall multi-tagging accuracy. I owe this to the fact that larger β cutoff

values—resulting in almost deterministic supertagging decisions on average—were

more beneficial for greedy inference.12

12All β cutoffs were tuned on the dev set; for Brnn, the same β settings as in §4.5 were found
to be optimal; for BLSTM, β = 4× 10−5 for training (with an ambiguity of 5.27) and β = 0.02 for
testing (with an ambiguity of 1.17).
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Model LP LR LF

c&c+Rnn 87.68 86.41 87.04

Lewis et al. (2016) 87.7 86.7 87.2

Lewis et al. (2016)? 88.6 87.5 88.1

Vaswani et al. (2016)∗ - - 88.32

Lee et al. (2016) - - 88.7

Lstm-XF1 (beam = 1) 89.85 85.51 87.62

Lstm-XF1 (beam = 8) 89.81 85.81 87.76

Table 5.7: Comparison of the XF1 models with chart-based parsers on the test set.
? = tri-training using external data; ∗ = a different POS tagger.

Comparison with chart-based models. For completeness and to put the results

in perspective, I compared the XF1 models with other CCG parsers in the literature

(Table 5.7): c&c+Rnn is the log-linear c&c dependency hybrid model with an RNN

supertagger front-end (§4.6.2); Lewis et al. (2016) is an LSTM supertagger-factored

parser using the A∗ CCG parsing algorithm of Lewis and Steedman (2014a); Vaswani

et al. (2016) combine a BLSTM supertagger with the recently developed Java version

of the c&c parser (Clark et al., 2015) that uses a max-violation structured percep-

tron, which significantly improves over the original c&c models; and finally, a global

recursive neural network model with A∗ decoding (Lee et al., 2016). Note that all

these alternative models—with the exception of c&c+Rnn and Lewis et al. (2016)—

use structured learning that accounts for violations of the gold standard, which could

potentially provide further improvements for the LSTM shift-reduce models.13

5.5 Summary

The XF1 training framework developed in the previous chapter was applied to an

LSTM architecture with a factorization allowing the incremental linearization of the

complete parsing history. It has also been demonstrated that global normalization

benefits an LSTM shift-reduce model, and contrary to the structured perceptron

global shift-reduce CCG models (Zhang and Clark, 2011a; Xu et al., 2014), beam-

13XF1 training considers shift-reduce action sequences, but not violations of the gold standard
(e.g., see Huang et al. (2012), Watanabe and Sumita (2015), Zhou et al. (2015) and Andor et al.
(2016)).
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search inference was shown to be unnecessary, which can be partly attributed to the

relatively high 1-best accuracy of the LSTM supertagger. For future work, a natural

direction is to explore integrated supertagging and parsing in a single neural model.
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Chapter 6

Conclusion

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart
you are. If it disagrees with experiment, it’s wrong.”

—Richard P. Feynman

“If your intuitions are good, you should follow them and you’ll eventually be
successful. If your intuitions are not good, it doesn’t matter what you do.”

—Geoffrey E. Hinton

Statistical shift-reduce parsing poses a number of challenges. It is a representation

learning challenge, usually boiled down to learning richer representations for various

aspects of parser states. It is a structured learning challenge, demanding models to

take into account the structural properties of the output. These two interrelated and

orthogonal challenges are further compounded by inexact search, and together they

constitute three essential elements in any shift-reduce model. While improving each

element independently has shed light on their individual significance, approaches that

treat them holistically have shown their merits.

The holistic approach is the one that has been considered in this study, which be-

gan with the question: Should we model the derivations, the dependencies, or both,

for shift-reduce CCG parsing? The resulting algorithmic and structured learning

issues that arose in the context of the linear structured perceptron dependency model
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were addressed by a novel dependency oracle and by extending and generalizing prov-

ably correct theories marrying the structured perceptron and inexact search (Huang

et al., 2012), while at the same time preserving and capitalizing on, rather than inter-

fering with, the strengths of the normal-form shift-reduce CCG model (Zhang and

Clark, 2011a), such as global structured learning and its rich feature sets (§3).

Drawing on recent work on using feed-forward neural networks for learning fea-

ture representations for parser states (Chen and Manning, 2014), I then described a

framework for training RNN shift-reduce parsing models optimized for a task-specific

loss based on expected F-measure (§4). Being agnostic to the underlying neural net-

work architecture, this framework was also applied to an LSTM parser inspired by the

stack-LSTM of Dyer et al. (2015) (§5). In both cases, the models were also globally

normalized and the three aforementioned essential elements were tightly integrated.

Empirically, extensive experiments were performed throughout, and results were

state-of-the-art. Clearly, however, the present study is far from complete.

First, all shift-reduce parsing models introduced still required a separate supertag-

ging model, which has a large impact on the final parsing accuracy. Further conjoined

with the POS tagging model, this pipelined approach has been dominating in CCG

parsing for over a decade. But with the flexibility provided by neural networks, and

as suggested by some recent works (Zhang and Weiss, 2016; Søgaard and Goldberg,

2016), it is reasonable to expect that an end-to-end neural model for CCG parsing

can be derived, ideally even without being confined to a specific parsing paradigm,

either chart-based or shift-reduce.

Second, I have just barely scratched the surface of investigating structured learning

for neural shift-reduce models. Combining structured learning with deep learning is

an emerging theme, and the same intuition applies to the models presented above,

especially in devising both empirical and formal methods that faithfully take into

account the respective neural models, instead of relying upon techniques originally

developed for other models (Watanabe and Sumita, 2015; Weiss et al., 2015; Andor et

al., 2016). Moreover, how to integrate such methods with a framework like expected

F-measure training is of particular interest.
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Aside from possible extensions, however, it is debatable under what guiding prin-

ciples should the present study be further extended.

Statistical parsing is a well-defined research area that has attracted a lot of at-

tention in computational linguistics, and it has generated a set of techniques many of

which have been used for or adapted to other tasks (Wu, 1997; Chelba and Jelinek,

1998; Goodman, 1999; Ramshaw et al., 2001; Collins and Roark, 2004; Huang and

Chiang, 2005; Zettlemoyer and Collins, 2005; Chiang, 2007; Dyer, 2010). Statistical

parsers (Collins, 1997; Klein and Manning, 2003; Briscoe et al., 2006; McDonald,

2006; Nivre et al., 2006; Curran et al., 2007), on the other hand, have mainly played

the role of feature generators, producing annotations shown to be useful in various

settings (Yamada and Knight, 2001; Chiang et al., 2008; Marton and Resnik, 2008;

Mi et al., 2008; Chiang et al., 2009; Dyer and Resnik, 2010). In addition to being used

in such capacities, however, it is apparent that their future role is likely to be limited

in end-to-end language processing approaches, and in the endeavour to achieve au-

tomated human-level language understanding—beyond formalism-dependent parsing

and natural language text processing—which remains elusive with currently available

language technologies.

As a related issue, the practical implications for formalisms like CCG also calls

for revisiting, with one notable reason being that alternatives such as dependency

grammars have usually demonstrated their superior simplicity and cross-lingual scal-

ability that are preferred in production systems (McDonald et al., 2013; Andor et

al., 2016), which put more emphasis on empirical results rather than the linguistic

properties of a grammar.

But more importantly on a higher level, it might be illuminating to ask: How

useful is syntax for language understanding, is it relevant at all?

Overall, this thesis does not intend to serve as a proponent for parsing nor

CCG. Instead, it purposes itself as an exploration of structured learning with in-

exact search—in the context of shift-reduce CCG parsing. It is hoped that future

work will continue in this spirit.
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