167 research outputs found

    Targeted vessel reconstruction in non-contrast-enhanced steady-state free precession angiography

    Get PDF
    Image quality in non-contrast-enhanced (NCE) angiograms is often limited by scan time constraints. An effective solution is to undersample angiographic acquisitions and to recover vessel images with penalized reconstructions. However, conventional methods leverage penalty terms with uniform spatial weighting, which typically yield insufficient suppression of aliasing interference and suboptimal blood/background contrast. Here we propose a two-stage strategy where a tractographic segmentation is employed to auto-extract vasculature maps from undersampled data. These maps are then used to incur spatially adaptive sparsity penalties on vascular and background regions. In vivo steady-state free precession angiograms were acquired in the hand, lower leg and foot. Compared with regular non-adaptive compressed sensing (CS) reconstructions (CSlow), the proposed strategy improves blood/background contrast by 71.3±28.9% in the hand (mean±s.d. across acceleration factors 1-8), 30.6±11.3% in the lower leg and 28.1±7.0% in the foot (signed-rank test, P< 0.05 at each acceleration). The proposed targeted reconstruction can relax trade-offs between image contrast, resolution and scan efficiency without compromising vessel depiction. © 2016 John Wiley & Sons, Ltd

    Accelerated Quantitative Mapping and Angiography for Cerebral and Cardiovascular Magnetic Resonance Imaging

    Get PDF
    Magnetic resonance imaging (MRI) produces images with anatomical and functional information. These images can be obtained without the use of contrast agents, which generally require long scan times. This dissertation investigates existing techniques for accelerating such functional MRI methods, contributes novel fast acquisition and reconstruction techniques, and proposes new ways of analyzing real-time MRI data. First, we aim to determine an advantageous approach for accelerating high spatial resolution 3D cardiac T2 relaxometry data by comparing the performance of different data undersampling patterns and reconstruction methods over a range of acceleration rates. Quantitative results on healthy and edematous hearts reveal that the relaxometry maps are more sensitive to undersampling than anatomical images. The 3-fold variable density random undersampling with model-based or joint-sparsity sensitivity encoding (SENSE) is recommended. Second, we develop a rapid T2 mapping protocol using spiral acquisition and novel model-based approach joined with compressed sensing (CS) and model-based reconstruction. We also develop a sequence that suppresses cerebrospinal fluid (CSF). Quantitative evaluation on digital phantoms and healthy volunteers demonstrates the feasibility of T2 quantification with 3D high-resolution and whole-brain coverage in 2-3 min. Third, we propose a Golden Angle (GA) rotated Spiral Sparse Parallel imaging (GASSP) method for high spatial (0.8mm) and high temporal (<21ms) resolution for measuring coronary blood flow in a single breath-hold. We reduce k-space gaps using novel binning and triggered GA schemes. Velocity and flow metrics are validated against two existing methods and show high reproducibility. Fourth, we construct an abdominal non-contrast-enhanced magnetic resonance angiography (MRA) protocol with a large spatial coverage at 3.0T. The protocol uses advanced velocity-selective (VS) pulse trains. MRA with a large spatial coverage is slow and accelerated using CS. The VS-MRA sequences generate high-quality angiograms and arteriograms with high blood contrast. Finally, physiological changes in real-time (RT) MRI (30-100 frames/sec) are explored using Fourier transform (FT), principal component analyses (PCA), and perfusion modeling. We detect spectral patterns in pharyngeal images acquired during speaking and obtain T1-weighted, pulsation-weighted, and respiration-weighted images in healthy volunteers and heart patients with wall motion abnormalities with FT and PCA. RT perfusion maps are estimated from a proposed perfusion model in ongoing work in progress

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    From the macro- to the microvasculature : temporal and spatial visualization using arterial spin labeling

    Get PDF
    For many cerebrovascular diseases, visualization of blood flow through the large vasculature, as well as quantitative information on tissue perfusion, is very important. Arterial Spin labelling (ASL) magnetic resonance (MR) imaging enables the visualization of arterial flow by labelling the magnetization of arterial blood using radiofrequency pulses. The labelled arterial blood acts as an endogenous tracer and allows, which can avoid the reliance on the use of contrast agents. In this doctoral thesis, several new techniques for dynamic MR angiography and perfusion imaging were developed based on ASL techniques, which include pulsed ASL, pseudo-continuous ASL (pCASL), vessel-encoded pCASL, time-encoded pCASL as well as simultaneous multi-slice pCASL. The underlying motivation of these development is to reduce the burden on patients by employing non-invasive ASL techniques as potential alternatives to X-ray digital subtraction angiography, contrast-enhanced MR angiography and perfusion imaging. In each study, the optimum ASL techniques was carefully chosen by considering the pros and cons of the technique to achieve better clinical usability, while improving robustness against potential artifacts.LUMC / Geneeskund

    NONINVASIVE IMAGING OF BRAIN VASCULATURE WITH HIGH RESOLUTION BLOOD OXYGENATION LEVEL-DEPENDENT VENOGRAPHY IN MAGNETIC RESONANCE IMAGING: APPLICATIONS TO FUNCTIONAL AND CLINICAL STUDIES

    Get PDF
    BOLD techniques have been used in a vast range of applications including functional MRI (fMRI) and clinical MR venography of brain vasculature. Despite the immense success of BOLD fMRI applications, our understanding of complex neuronal and hemodynamic processes associated with BOLD techniques is limited. An experimental investigation with BOLD MR venography may allow us to expand our knowledge in hemodynamic process involved in BOLD fMRI. BOLD techniques are also clinically useful. In clinical brain imaging studies, imaging both time-of-flight (TOF) MR angiogram (MRA) and BOLD MR venogram (MRV) is often desirable, because they complement the depiction of vascular pathologies. Nevertheless, MRV is usually not acquired to minimize the image acquisition time. It will be highly beneficial if we can acquire MRV while imaging MRA without increasing scan time. Thus, the objective of our study was to develop and assess BOLD MRV techniques for both functional and clinical applications. For the experimental evaluation of BOLD MRV, we used a rat brain model at 9.4T. The scan condition for BOLD MRV was optimized and the venous origin of hypointense vasculature was investigated with modulation of oxygenation. Detailed venules of ˜16-30ÎŒm diameter were detected in the resulting in vivo images with 78ÎŒm isotropic scan resolution, verified with in vivo two-photon microscopy and computer simulation data. Activation foci of high-resolution BOLD fMRI maps were correlated with relatively large intracortical veins detected with high-resolution BOLD MRV, indicating that detectability of conventional BOLD fMRI is limited by density of these intracortical veins (˜1.5 vessels/mmÂČ). For the clinical application of BOLD MRV, we developed and tested a compatible dual-echo arteriovenography (CODEA) technique for simultaneous acquisition of TOF MRA and BOLD MRV at a 3T human system. Image quality of the CODEA technique acquired in a single session was comparable to conventional TOF MRA and BOLD MRV separately acquired in two sessions. The CODEA technique was applied to chronic stroke studies. Detailed vascular structures including arterial occlusions and venous abnormalities were depicted. The CODEA technique appears valuable to other clinical applications, particularly for those requiring efficient MRA/MRV imaging with limited scan time such as acute stroke studies

    Steady-state anatomical and quantitative magnetic resonance imaging of the heart using RF-frequencymodulated techniques

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death in the United States and Europe and generates healthcare costs of hundreds of billions of dollars annually. Conventional methods of diagnosing CVD are often invasive and carry risks for the patient. For example, the gold standard for diagnosing coronary artery disease, a major class of CVD, is x-ray coronary angiography, which has the disadvantages of being invasive, being expensive, using ionizing radiation, and having a ris k of complications. Conversely, coronary MR angiography (MRA) does not use ionizing radiation, can effectively visualize tissues without the need for exogenous contrast agents, and benefits from an adaptable temporal resolution. However, the acquisition time of cardiac MRI is far longer than the temporal scales of cardiac and respiratory motion, necessitating some method of compensating for this motion. The free-running framework is a novel development in our lab, benefitting from advances over the past three decades, that attempts to address disadvantages of previous cardiac MRI approaches: it provides fully self-gated 5D cardiac MRI with a simplified workflow, improved ease-of-use, reduced operator dependence, and automatic patient-specific motion detection. Free-running imaging increases the amount of information available to the clinician and is flexible enough to be translated to different app lications within cardiac MRI. Moreover, the self-gating of the free-running framework decoupled the acquisition from the motion compensation and thereby opened up cardiac MRI to the wider class of steady-state-based techniques utilizing balanced steady-state free precession (bSSFP) sequences, which have the benefits of practical simplicity and high signal-to-noise ratio. The focus of this thesis was therefore on the application of steady- state techniques to cardiac MRI. The first part addressed the long acquisition time of the current free-running framework and focused on anatomical coronary imaging. The published protocol of the free- running framework used an interrupted bSSFP acquisition where CHESS fat saturation modules were inserted to provide blood-fat contrast, as they suppress the signal of fat tissue surrounding the coronary arteries, and were followed by ramp-up pulses to reduce artefacts arising from the return to steady-state. This interrupted acquisition, however, suffered from an interrupted steady-state, reduced time efficiency, and higher specific absorption rate (SAR). Using novel lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses developed in our lab, the first project showed that LIBRE pulses incorporated into an uninterrupted free-running bSSFP sequence could be successfully used for 5D cardiac MRI at 1.5T. The free-running LIBRE approach reduced the acquisition time and SAR relative to the previous interrupted approach while maintaining image quality and vessel conspicuity. Furthermore, this had been the first successful use of a fat-suppressing RF excitation pulse in an uninterrupted bSSFP sequence for cardiac imaging, demonstrating that uninterrupted bSSFP can be used for cardiac MRI and addressing the problem of clinical sequence availability. Inspired by the feasibility of uninterrupted bSSFP for cardiac MRI, the second part investigated the potential of PLANET, a novel 3D multiparametric mapping technique, for free-running 5D myocardial mapping. PLANET utilizes a phase-cycled bSSFP acquisition and a direct ellipse-fitting algorithm to calculate T1 and T2 relaxation times, which suggested that it could be readily integrated into the free-running framework without interrupting the steady-state. After initially calibrating the acquisition, the possibility of accelerating the static PLANET acquisition was explored prior to applying it to the moving heart. It was shown that PLANET accuracy and precision could be maintained with two-fold acceleration with a 3D Cartesian spiral trajectory, suggesting that PLANET for myocardial mapping with the free-running 5D radial acquisition is feasible. Further work should investigate optimizing the reconstruction scheme, improving the coil sensitivity estimate, and examining the use of the radial trajectory with a view to implementing free-running 5D myocardial T1 and T2 mapping. This thesis presents two approaches utilizing RF-frequency-modulated steady-state techniques for cardiac MRI. The first approach involved the novel application of an uninterrupted bSSFP acquisition with off-resonant RF excitation for anatomical coronary imaging. The second approach investigated the use of phase-cycled bSSFP for free-running 5D myocardial T1 and T2 mapping. Both methods addressed the challenge of clinical availability of sequences in cardiac MRI, by showing that a common and simple sequence like bSSFP can be used for acquisition while the steps of motion compensation and reconstruction can be handled offline, and thus have the potential to improve adoption of cardiac MRI. -- Les maladies cardiovasculaires (MCV) reprĂ©sentent la principale cause de dĂ©cĂšs aux États-Unis et en Europe et gĂ©nĂšrent des coĂ»ts de santĂ© de plusieurs centaines de milliards de dollars par an. Les mĂ©thodes conventionnelles de diagnostic des MCV sont souvent invasives et comportent des risques pour le patient. Par exemple, la mĂ©thode de rĂ©fĂ©rence pour le diagnostic de la maladie coronarienne, une catĂ©gorie majeure de MCV, est la coronarographie par rayons X qui a comme inconvĂ©nients son caractĂšre invasif, son coĂ»t, l’utilisation de rayonnements ionisants et le risque de complications. A l’inverse, l'angiographie coronarienne par rĂ©sonance magnĂ©tique (ARM) n'utilise pas de rayonnements ionisants, permet de visualiser efficacement les tissus sans avoir recours Ă  des agents de contraste exogĂšnes et bĂ©nĂ©ficie d'une rĂ©solution temporelle ajustable. Cependant, le temps d'acquisition en IRM cardiaque est bien plus long que les Ă©chelles temporelles des mouvements cardiaques et respiratoires en jeu, ce qui rend la compensation de ces mouvements indispensable. Le cadre dit de « free -running » est un nouveau dĂ©veloppement de notre laboratoire qui bĂ©nĂ©ficie des progrĂšs rĂ©alisĂ©s au cours des trois derniĂšres dĂ©cennies et tente de remĂ©dier aux inconvĂ©nients des approches prĂ©cĂ©dentes pour l'IRM cardiaque : il fournit une IRM cardiaque en cinq dimensions (5D) complĂštement « self-gated » , c’est-Ă -dire capable de dĂ©tecter les mouvements cardiaques et respiratoires, forte d’une implĂ©mentation simplifiĂ©e, d’une plus grande facilitĂ© d'utilisation, d’une dĂ©pendance rĂ©duite vis-Ă -vis de l'opĂ©rateur et d’une dĂ©tection automatique des mouvements spĂ©cifiques du patient. L'imagerie « free- running » augmente la quantitĂ© d'informations Ă  disposition du clinicien et est suffisamment flexible pour ĂȘtre appliquĂ©e Ă  diffĂ©rents domaines de l'IRM cardiaque. De plus, le « self-gating » du cadre « free-running » a dĂ©couplĂ© l'acquisition de la compensation de mouvement et a ainsi ouvert l'IRM cardiaque Ă  la classe plus large des techniques basĂ©es sur l'Ă©tat stationnaire utilisant des sĂ©quences de prĂ©cession libre Ă©quilibrĂ©e en Ă©tat stationnaire (bSSFP), qui se distinguent par leur simplicitĂ© d’utilisation et leur rapport signal sur bruit Ă©levĂ©. Le thĂšme de cette thĂšse est donc l'application des techniques basĂ©es sur l'Ă©tat stationnaire Ă  l'IRM cardiaque. La premiĂšre partie porte sur le long temps d'acquisition de l'actuel cadre « free-running» et se concentre sur l'imagerie anatomique coronaire. Le protocole publiĂ© utilise une acquisition bSSFP interrompue oĂč des modules de saturation de graisse (CHESS) sont insĂ©rĂ©s de façon Ă  fournir un contraste sang-graisse puisqu’ils suppriment le signal du tissu graisseux entourant les artĂšres coronaires, et sont suivis par des impulsions en rampe pour rĂ©duire les artefacts rĂ©sultant du retour Ă  l'Ă©tat stable. Cette acquisition interrompue souffre cependant d'un Ă©tat d'Ă©quilibre interrompu, d'une efficacitĂ© temporelle rĂ©duite et d'un dĂ©bit d'absorption spĂ©cifique (DAS) plus Ă©levĂ©. En utilisant les nouvelles impulsions d'excitation radiofrĂ©quence (RF) binomiales hors -rĂ©sonance insensibles aux lipides (LIBRE) dĂ©veloppĂ©es dans notre laboratoi re, ce premier projet montre que les impulsions LIBRE incorporĂ©es dans une sĂ©quence bSSFP ininterrompue et « free-running » peuvent ĂȘtre utilisĂ©es avec succĂšs pour l'IRM cardiaque 5D Ă  1,5 T. L'approche « free-running LIBRE » permet de rĂ©duire le temps d'acquisition et le DAS par rapport Ă  l'approche interrompue prĂ©cĂ©dente, tout en maintenant la perceptibilitĂ© des artĂšres coronariennes. En outre, il s'agit de la premiĂšre utilisation rĂ©ussie d'une impulsion d'excitation RF supprimant la graisse dans une sĂ©quence bSSFP ininterrompue pour l'imagerie cardiaque, ce qui dĂ©montre le potentiel d’utilisation de la sĂ©quence bSSFP ininterrompue pour l'IRM cardiaque et rĂ©sout le problĂšme de la disponibilitĂ© de la sĂ©quence en clinique. InspirĂ©e par la faisabilitĂ© d’utilisation de la sĂ©quence bSSFP ininterrompue pour l'IRM cardiaque, la deuxiĂšme partie Ă©tudie le potentiel de PLANET, une nouvelle technique de cartographie 3D multiparamĂ©trique, pour la cartographie 5D du myocarde via l’imagerie « free-running ». PLANET utilise une acquisition bSSFP Ă  cycle de phase et un algorithme d'ajustement d'ellipse direct pour calculer les temps de relaxation T1 et T2, ce qui suggĂšre que cette mĂ©thode pourrait ĂȘtre facilement intĂ©grĂ©e au cadre « free - running » sans interruption de l’état d'Ă©quilibre. AprĂšs calibration de l'acquisition, nous explorons la possibilitĂ© d'accĂ©lĂ©rer l'acquisition statique de PLANET pour l'appliquer au cƓur. Nous dĂ©montrons que l'exactitude et la prĂ©cision de PLANET peuvent ĂȘtre maintenues pour une accĂ©lĂ©ration double avec une trajectoire 3D cartĂ©sienne en spirale, ce qui suggĂšre que PLANET est rĂ©alisable pour la cartographie du myocarde avec une acquisition radiale 5D « free-running ». D'autres travaux devraient porter sur l'optimisation du schĂ©ma de reconstruction, l'amĂ©lioration de l'estimation de la sensibilitĂ© de l’antenne et l'examen de l'utilisation de la trajectoire radiale en vue de la mise en Ɠuvre de la cartographie 5D « free-running » T1 et T2 du myocarde. Cette thĂšse prĂ©sente deux approches utilisant des techniques de modulation de frĂ©quence radio en Ă©tat stationnaire pour l'IRM cardiaque. La premiĂšre approche implique l'application nouvelle d'une acquisition bSSFP ininterrompue avec une excitation RF hors rĂ©sonance pour l'imagerie anatomique coronaire. La seconde approche porte sur l'utilisation d’une sĂ©quence bSSFP Ă  cycle de phase pour la cartographie 5D T1 et T2 du myocarde. Ces deux mĂ©thodes permettent de rĂ©pondre au dĂ©fi posĂ© par la disponibilitĂ© des sĂ©quences en IRM cardiaque en montrant qu'une sĂ©quence commune et simple comme la bSSFP peut ĂȘtre utilisĂ©e pour l'acquisition, tandis que les Ă©tapes de compensation du mouvement et de reconstruction peuvent ĂȘtre traitĂ©es hors ligne. Ainsi, ces mĂ©thodes ont le potentiel de favoriser l'adoption de l'IRM cardiaque

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Respiratory Motion Compensation in Coronary Magnetic Resonance Angiography: Analysis and Optimization of Self-Navigation

    Get PDF
    Coronary Magnetic Resonance Imaging requires prolonged acquisition times; for this reason, respiratory movements of the heart have a great impact on the final image quality. The aim of this thesis was to provide possible optimization of the "self-navigation" approach to compensate this type of motion. Two developed methods were tested in 11 volunteer, thus providing statistically significant results. The purposed solutions provided optimal image quality in individal cases
    • 

    corecore