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Image quality in non-contrast-enhanced (NCE) angiograms is often limited by scan time constraints. An effective
solution is to undersample angiographic acquisitions and to recover vessel imageswith penalized reconstructions. How-
ever, conventional methods leverage penalty terms with uniform spatial weighting, which typically yield insufficient
suppression of aliasing interference and suboptimal blood/background contrast. Here we propose a two-stage strategy
where a tractographic segmentation is employed to auto-extract vasculature maps from undersampled data. These
maps are then used to incur spatially adaptive sparsity penalties on vascular and background regions. In vivo steady-
state free precession angiograms were acquired in the hand, lower leg and foot. Compared with regular non-
adaptive compressed sensing (CS) reconstructions (CSlow), the proposed strategy improves blood/background contrast
by 71.3±28.9% in the hand (mean± s.d. across acceleration factors 1–8), 30.6±11.3% in the lower leg and 28.1±7.0%
in the foot (signed-rank test, P< 0.05 at each acceleration). The proposed targeted reconstruction can relax trade-offs
between image contrast, resolution and scan efficiency without compromising vessel depiction. Copyright © 2016 John
Wiley & Sons, Ltd.
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INTRODUCTION

Non-contrast-enhanced MR angiography (NCE MRA) offers great
potential in monitoring of atherosclerotic diseases, because it
prevents complications due to contrast agents leveraged in rou-
tine contrast-enhanced (CE) examinations (1). Various successful
approaches have been proposed to acquire NCE angiograms,
including time-of-flight angiography, phase-contrast angiogra-
phy, fresh-blood imaging and flow-independent angiography
(FIA) (2). While these methods offer sensitive assessments of ves-
sel morphology, image quality may be compromised due to lim-
itations on scan time.

In the case of FIA, blood is delineated based on intrinsic T1 , 2
and chemical shift differences among tissues. FIA employs
magnetization-prepared, segmented steady-state free preces-
sion (SSFP) sequences to generate blood-background contrast
(3,4). This preparation overhead reduces scan efficiency and
limits the achievable contrast and resolution (5), which is a con-
cern for many other NCE methods as well (2). Note that limited
contrast levels due to unwanted interference from background
tissues can degrade the quality of vessel depiction severely.
Therefore, acceleration strategies that improve scan efficiency
while suppressing background signals can greatly increase the
clinical potential of NCE MRA.

Due to the inherent structural sparsity of angiograms, acceler-
ation can be achieved through undersampling followed by
sparse reconstructions (6–10). To suppress aliasing artefacts
and noise, penalties are applied typically based on ℓ1-norm or
spatial finite differences of reconstructed images (6,8,11,12).
Relative weighting of penalties with respect to a data

consistency term is a critical determinant of image quality in
these reconstructions (6). Small weights can lead to insufficient
artefact suppression and elevated background signals, whereas
large weights can cause loss of relatively small or low-contrast
vessel signals (8). This results in a fundamental compromise be-
tween blood-background contrast and vessel preservation.
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Several important approaches have been proposed to en-
hance angiographic reconstructions based on prior information
(13–15). Methods that require high-quality prior acquisitions
(13,14) are not directly applicable to undersampled NCE MRA,
where data are readily corrupted by aliasing and noise interfer-
ence. Other methods exploiting temporal image correlations in
dynamic acquisitions (15) may be inadequate for the static,
high-spatial-resolution FIA targeted here.
Previous studies have also leveraged region-adaptive recon-

structions to improve quality of angiograms (16–21). A group
of studies have employed support detection for vascular
masking in CE angiograms (16,17). Vascular masking relies on
heavily-suppressed static tissue in CE MRA, whereas blood-
background contrast can be relatively impaired in NCE MRA.
An alternative method is to utilize user-specified regions of inter-
est (ROIs) for support detection (18–20). However, such manual
ROIs can be broad and poorly localized to individual vessels. A
recent study proposes in addition two-dimensional (2D) vessel
segmentations to apply a spatially varying ℓ1 penalty (21). While
this approach is promising, it does not consider the full three-
dimensional (3D) structure of vessels and finite-difference penal-
ties, which may be critical for interference suppression.
Here we propose to attain high-contrast angiograms from

undersampled data via a two-stage reconstruction. First, we gen-
erate 3D vessel maps using a tractographic segmentation on
Fourier reconstructions of undersampled NCE data (22). To
dampen background signals, we then perform targeted recon-
structions with spatially adaptive ℓ1-norm and total-variation
penalties based on these maps. As demonstrated with simula-
tions and in vivo experiments, the proposed strategy yields

higher levels of background suppression compared with regular
reconstructions, without compromising vessel depiction.

METHODS

In this work, we acquire peripheral angiograms in the extremities
using a flow-independent technique and variable-density ran-
dom sampling across k space. We first obtain Fourier reconstruc-
tions of undersampled data following zero-filling and density
compensation in k space. We then leverage a powerful segmen-
tation algorithm that jointly models tubular sections and
branching structures to extract vasculature maps from these ini-
tial reconstructions. Finally, we perform targeted reconstructions,
where these vasculature maps guide the enforcement of sparsity
and total-variation constraints. The workflow of the proposed
strategy is illustrated in Figure 1 and individual stages are de-
scribed in detail in the following sections.

Pulse sequence

FIA of the peripheral extremities was acquired with a 3D
magnetization-prepared pulse sequence (3,5). T2-prepared magne-
tization was captured with segmented, centric square-spiral phase-
encode ordering (4). Each segment started with a linearly ramped
series of RF excitations to minimize signal oscillations (23). After-
wards, fat-supressed data were acquired using an alternating repe-
tition time SSFP sequence kernel (3). A recovery period was inserted
between consecutive segments for magnetization recovery.

Figure 1. Proposed reconstruction strategy. Angiograms with variable-density undersampling in k space are density-compensated and transformed to
obtain Fourier reconstructions (ZF). A segmentation algorithm is then employed to trace vessel trees across the volume. In conventional CS, penalty
terms are weighted uniformly across images. Here, penalty weights are selected based on segmented vasculature maps: smaller weights at vessel lo-
cations enabling targeted reconstructions. Note that data are not density-compensated during CS, but only to obtain ZF used for segmentation.
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Sampling patterns

To accelerate acquisitions, random sampling patterns were gen-
erated with a variable sampling density across k space. Isotropic
acceleration in two phase-encode dimensions was generated
based on a polynomial density (6,8,24):

P krð Þ ¼ a1 1� krð Þd þ a2 [1]

where kr is the k-space radius and d and a1 , 2 are constants
that characterize the polynomial. Full sampling was utilized in
the central 2% of k space. For a given d, candidate sets of a1 , 2
that yield the target acceleration factor (R) were determined
using a binary search algorithm. The resulting density for each
set was used to generate 1000 random sampling patterns
through a Monte Carlo simulation (6). Only patterns with a total
number of samples within 1% of the ideal number (based on R)
were accepted. The point-spread function (PSF) of each pattern
was calculated by taking the inverse Fourier transform of the pat-
tern and thus assuming an impulse object in the image domain.
The level of aliasing energy was then taken as the magnitude-
sum of all pixels apart from the origin. The optimal sampling pat-
tern was selected to attain minimal aliasing energy (see Supple-
mentary Material: Table S1 and Fig. S1).

Vasculature mapping

Previous MRA studies have primarily employed vessel segmenta-
tions to enhance arterial–venous separation (25,26) and to

extract morphological features such as lumen size (27–29). Here
we propose to use segmented vessel maps to enhance
blood/background contrast in NCE MRA. We leverage a segmen-
tation approach that we have demonstrated thoroughly for
synthetic, coronary and cerebral angiograms (22,30,31). Our
method jointly models branching structures with tubular
sections by leveraging a fourth-order tensor model (22,31). The
tensor at each voxel in the vessel tree is constructed via non-
negative least-squares fitting performed on measurements of
image gradient at 64 different orientations. This tensor is then
decomposed into its singular vectors to identifymajor vessel tracts,
including tubular sections as well as a variety of n-furcations such
as Y-, T-, asymmetric- and crossing-junctions (22). Starting from a
few seed points, this segmentation method can extract entire
vessel trees in the extremities in less than 3minutes (see Supple-
mentary Table S2 and Fig. 2).
To extract vasculature maps, we first obtained zero-filled re-

constructions of undersampled data. Data were compensated
for variable k-space sampling density and zero-padded in three
dimensions to double the k-space extent and minimize partial
volume effects. To reduce noise levels, reconstructions were
smoothed with a Gaussian kernel of length 7 and full width at
half-maximum (FWHM) of 2.35. Afterwards, manual seed selec-
tion was performed to initiate the segmentation procedure.
The seed points were selected on tubular sections of major ves-
sels to avoid vessel junctions. The seeds were placed in vessels of
high signal intensity located in superior or inferior cross-sections.
The number of seeds prescribed for each anatomy depended on
the number of disconnected vessel trees needing to be traced:

Figure 2. Vasculature maps segmented from undersampled angiograms at acceleration factors R = 1–6. Vessel volumes for (a) hand angiograms and
(b) lower leg angiograms are visualized with maximum-intensity projections (MIPs). Segmentation results at R = 1 (fully sampled), 2 and 4 are visually
similar to each other. For higher R, losses in vessel volume are apparent for particularly small vessels. The percentage volume loss in each map is listed
with respect to the ideal map at R = 1.
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seven seeds for hand, five seeds for lower leg and foot angio-
grams were selected inside major vessel branches. The seed
points were identical across R. To demonstrate robustness
against seed selection, segmentation was repeated five times
with non-overlapping seeds (see Supplementary Fig. S2). Mis-
match between the segmented vessel trees was less than 1.5%
of the total vessel volume.

Targeted compressed-sensing reconstructions

Compressed sensing (CS) can estimate missing samples in MRI
acquisitions when data have a compressible representation in a
linear transform domain and sampling patterns yield incoherent
aliasing in this domain (6). Nonlinear algorithms are then used
during CS reconstructions to enforce compressibility and consis-
tency with the acquired data. MRA datasets contain bright blood
vessels surrounded by low-contrast background tissues. There-
fore, CS is highly adept at reconstructing heavily undersampled
angiograms (7–12).

Optimization framework

Here angiographic reconstructions are obtained via the follow-
ing optimization (6,8,24):

min
m

Fum� Yk k22 þ λ1○mk k1 þ λ2○Δmk k1 [2]

where m is the reconstructed image and the first term en-
forces consistency by minimizing the ℓ2-norm difference be-
tween the Fourier transform of the reconstruction (Fum) and
the acquired data (Y). Remaining are the penalty terms,

λ1○mk k1 ¼
X

i; j

λ1 i; jð Þ m i; jð Þj j [3]

λ2○Δmk k1 ¼
X

i;j

λ2 i; jð Þ m i þ 1; jð Þ �m i; jð Þj jf

þ m i; j þ 1ð Þ �m i; jð Þj jg

[4]

where ○ is the Schur product, Δ is the summation of finite-
difference transforms across cardinal dimensions and i , j are
the row and column indices of the image matrix. The ℓ1-norm
penalty enforces sparse reconstructions in the image domain.
The finite differences penalty, TV(m) (i.e. total variation), enforces
block-wise image homogeneity for denoising.
The problem in Equation [2] was solved using a nonlinear

conjugate-gradient algorithm, implemented in MATLAB
(Mathworks, Inc.). To compute the conjugate gradient of the
ℓ1-norm, a fixed smoothing parameter of 10–15 was added dur-
ing the absolute value calculation in all iterations. The stopping
criterion was an improvement in the objective below a 0.1%
threshold, which was observed to yield high-quality recon-
structions in previous studies (6,8,24). Reconstruction times
are listed in Supplementary Table S2.

Conventional weight selection

In conventional CS, λ1 , 2 are uniform scalars across the entire
image. Reconstructions were performed across a broad range of
penalty weights, similar to previously considered ranges (24,32).
λ1 was varied in the range [0 0.800] with a step size of 0.0005 in
[0 0.040] and 0.020 in the remaining range. Meanwhile, λ2 was

varied with a step size of 0.0005 in the range [0 0.040]. λ2 values
greater than 0.040 caused undesirably high levels of block arte-
facts. The smallest pair of weights yielding sufficient
artefact/noise suppression, without causing distortions or vessel
loss, was determined by visual inspection and denoted as
λ1 , 2 = λ1o , 2o (see Table 1).

Targeted weight selection

In angiograms, vessels appear as bright, small ellipsoidal struc-
tures in axial cross-sections, whereas background tissues appear
as dark, broad regions (24). Larger λ1 values promoting back-
ground sparsity will cause inadvertent loss of vessel signals. In
addition, large λ2 values promoting effective background
denoising can yield suboptimal depiction of small vessels with
limited contrast.

Here we propose to utilize spatially adaptive ℓ1-norm and TV
penalties based on a spatial weight map derived from vessel seg-
mentations. The binary segmentations indicate the location of
vessels across the imaging volume. To improve robustness
against segmentation errors and partial volume effects near
the vessel boundaries, segmentations were dilated by one pixel
in all dimensions and linearly ramped down from 1 to 0 across
the dilated region. The maps were subtracted from 1 and nor-
malized to calculate W(i, j), which decreased from r (r ≥ 1) to 1.
This spatial map was then used to modify the penalty weights
as follows:

λ1 i; jð Þ→ λ1W i; jð Þ [5]

λ2 i; jð Þ→ λ2W i; jð Þ=r [6]

To improve background suppression, the ℓ1-norm penalty
weights were scaled from rλ1 in background regions to λ1 in ves-
sels. To minimize vessel loss, the TV penalty weights were scaled
from λ2 in background regions to λ2/r in vessels. The value of r
was selected to maximize image contrast without introducing
significant image distortions.

Phantom and in vivo reconstructions

For each dataset, separate Fourier (ZF), conventional CS and
targeted compressed sensing (TCS) reconstructions were com-
puted using parameters listed in Table 1. For ZF, data were

Table 1. Reconstruction parameters for phantom and in vivo
data at various acceleration factors (R). λ1 = 10λ1o for CShigh,
λ1 = λ1o , cont for CScont and λ1 = λ1o for all remaining recon-
structions. λ2 = λ2o for all reconstructions. With this selection,
TCS reconstructions scaled the ℓ1-norm penalty from 10λ10
in the background to λ1o in vessels and the TV penalty from
λ2o in the background to λ2o/10 in vessels.

Phantom In vivo

R λ1o λ2o λ1o , cont λ1o λ2o

1 0.032 0.032 0.520 0.014 0.014
2 0.024 0.024 0.400 0.010 0.010
4 0.016 0.016 0.340 0.006 0.006
6 0.008 0.008 0.240 0.001 0.002
8 0.004 0.004 0.120 0.0005 0.001
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compensated for k-space sampling density and inverse Fourier-
transformed. For CS, an identical λ2 = λ2o was prescribed but
several different λ1 values were used. The first conservative CS
was performed using λ1 = λ1o (CSlow). A second heavier penaliza-
tion was performed using λ1 = 10λ1o (CShigh). For phantom
datasets, a separate CS was calculated with an even larger
λ1 = λ1o , cont (CScont), where λcont was selected to attain identical
blood/background contrast to TCS. Because CScont caused severe
image artefacts, it was omitted in subsequent analyses.

TCS was performed using λ1 , 2 = λ1o , 2o and r ∈ [1 20]. For
comparison, four other spatially adaptive CS methods were
employed with the same parameters. First an intensity-weighted
reconstruction was performed using weight maps derived from
the intensity of ZF (CSint). ZF reconstructions were normalized
to a maximum amplitude of unity and then inverted to calculate
W(i, j) similar to TCS. Secondly, iteratively reweighted CS (CSIR)
was performed (33). Weight maps for CSIR were updated at each
iteration based on the reconstruction at the previous iteration.
Unlike TCS or CSint, CSIR maps did not reflect the region of signal
support but rather the intensity of reconstructed images (33). Fi-
nally, two separate variants of the TCS method were imple-
mented to assess the relative importance of using spatially
adaptive weights on TV versus ℓ1 penalties. The first variant
TCSnTV employed a spatially weighted ℓ1 and a fixed TV penalty,
whereas the second variant TCSnℓ1 employed a spatially
weighted TV and a fixed ℓ1 penalty.

Simulations

To evaluate TCS independently from segmentation, we created
two numerical phantoms that contained vessels immersed in a
block of muscle tissue (Fig. 3a and c).

Both tissues were modeled with circular cross-sections. The
first phantom contained 25 vessels of diameters ranging from
0.33mm (1 pixel) to 2mm (6 pixels). The vessels were arranged
on a 5×5 rectilinear grid within a muscle block of diameter
100mm (300 pixels). The second phantom contained 13 vessels
of diameters between 1.25 and 3.75mm, arranged randomly
within the muscle block. Blood and muscle signals were simu-
lated with the following parameters: α = 60○, TRl , s = 3.45/
1.15ms, TE = 1.725ms, T1/T2 = 1200/200ms for blood (34) and
870/50ms for muscle (35). The phantom images were sampled
with a 384× 384 grid over a 128 × 128�mm2 field of view. Circu-
lar cross-sections were created with a Fermi window using 1
pixel transition width. Finally, white Gaussian noise was added
to yield a blood signal-to-noise ratio (SNR) of 20.

To examine penalty parameters used in TCS, we undersampled
images of the first phantom with acceleration factors R=1, 2, 4, 6
and 8. For each R, λ1 , 2 values were ranged between 0 and twice
the λ1o , 2o values listed in Table 1. Meanwhile, the ratio (r) was var-
ied in the range [1 20]. Larger TCS penalty weights yield improved
background suppression (i.e. blood/muscle contrast), but cause
distorted reconstructions of background signals. To assess recon-
struction quality, a performance metric was calculated as the pro-
portion of relative contrast difference to relative distortion level.
Contrast improvement for each vessel was taken as

% difference ¼ ContTCS � ContZF
1
2 ContTCS þ ContZFð Þ�100 [7]

Distortion level was taken as the normalized dispersion index
of background tissue,

ΔD ¼ DITCS
DIZF

[8]

where DI = σ2/μ and μ , σ denote the mean and standard devi-
ation of the muscle signal, respectively.
TCS performance was assessed as a function of r (Fig. 3b)

when λ1 , 2 = λ1o , 2o. Performance increases rapidly as r is initially
raised above 1 and saturates for relatively large r. Note that
higher r enhances blood/background contrast at the expense
of increased image distortions. Thus, for all R, r= 10 was selected,
which maintains more than 80% of the optimal performance. We
then inspected the performance for r= 10, λ1 = nλ1o and
λ2 = nλ2o, with n varying in the range [0 2]. Near-optimal perfor-
mance is attained for λ1 , 2 = λ1o , 2o. Independent optimizations of
penalty weights indicate that λ1 , 2 = λ1o , 2o and r= 10 yield close
to optimal performance for CSint,IR as well. Therefore, they were
prescribed for all reconstructions hereafter. To examine the ef-
fects of vessel size, TCS was calculated for 20 independent in-
stances of additive noise. As expected, smaller vessels – more
susceptible to signal loss – exhibit greater contrast improvement
with TCS.
Next, we assessed the benefits of TCS on the second phantom,

closely mimicking vessel sizes in the extremities (36).
Blood/muscle contrast and spatial resolution were compared
across CS and TCS (Fig. 3c). Spatial resolution was taken as the
FWHM sizes of individual blood vessels normalized by the pre-
scribed sizes in the numerical phantom. Statistical differences
were assessed with Wilcoxon signed-rank tests.
To investigate robustness against segmentation errors, separate

TCS reconstructions were performed by simulating losses in seg-
mented vessel maps (Fig. 3d). The ideal vessel masks were eroded
to yield a volumetric loss varying between 0 and 30% of the total
vessel volume. The erosion process used a random voxel selection
that maintained spatial contiguity for each vessel. TCS was calcu-
lated for 20 distinct instances of vessel erosion and additive noise.
Blood/muscle contrast and normalized vessel sizes were measured
for each vessel individually and then averaged across 13 vessels.

Experiments

To demonstrate TCS, we first acquired in vivo hand and lower-leg
angiograms on a 1.5 T GE Signa EX scanner with CV/i gradients
(maximum strength of 40 mT/m and slew rate of 150 T/m/s).
Angiographic acquisitions were performed using a 3D magnetiza-
tion-prepared SSFP pulse sequence (3,5). High-resolution hand angio-
grams were collected in a healthy subject (male, age 27) using an
eight-channel receive-only knee array with the following parameters:
0.5×0.5×0.5mm3 spatial resolution, 320×240×120 encoding
matrix, α=60○, TRl , s = 3.6/1.2ms, TE=1.8ms, 125kHz readout
bandwidth, 80ms T2 preparation, 10-tip linear ramp catalyzation,
10 k-space segments, 4-s intersegment recovery time and a total scan
time of 3min 40 s. Data from individual coils were sum-of-squares
combined (37). Hand angiogramswere retrospectively undersampled
by acceleration factors of R=1 (fully sampled), 2, 4, 6 and 8. Mean-
while, prospectively undersampled lower-leg angiograms were col-
lected in a healthy subject (female, age 28) using a transmit–receive
quadrature extremity coil andwith identical parameters to the hand
protocol except for 1×1×1mm3 spatial resolution, 192×128×128
encoding matrix, TRl , s=3.45/1.15ms, TE=1.725ms. Separate
acquisitions were performed at R= (1,2,4,6,8) with number of
magnetization preparations N= (4,16,22,24,26) respectively; scan
time for each acquisition was 1min 30 sec. Vasculature maps were
extracted from ZF reconstructions of undersampled data.
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To validate TCS results in a broader population, we next col-
lected lower-leg angiograms from four healthy subjects (one fe-
male, three males; ages 27–32) and foot angiograms from four
healthy subjects (one female, three males; ages 27–32). Data

were acquired on a 1.5 T GE Signa EX scanner using a quadrature
extremity coil, with identical parameters to the lower-leg proto-
col listed above. The only exception was a fixed number of mag-
netization preparations N= 4 for all accelerations. Vessel maps

Figure 3. (a) A phantom with 25 blood vessels of sizes 0.33–2mm enclosed by muscle. Targeted CS (TCS) reconstructions were calculated using
r ∈ [1 20], λ1 , 2 = λ1o , 2o and R = 1–8. Results are shown for R = 1. Overlaid boxes show the magnified lower-right portions of phantom images. Higher
r values enhance blood/muscle contrast, but image distortions become prominent for r ≥ 15. (b) TCS performance, taken as the ratio of contrast
improvement to dispersion level (mean ± sem -standard error- across vessels). For all R, r = 10 and λ1 , 2 = λ1o , 2o yields close to optimal reconstruction
performance (left and middle panels). TCS using λ1 , 2 = λ1o , 2o and r = 10 was repeated for 20 random instances of additive image noise. Contrast im-
provement is plotted for each vessel diameter (right panel; mean ± sem across 20 images). The improvement in contrast is greater for smaller vessels.
(c) A separate phantom with 13 blood vessels of sizes 1.25–3.75mm. Fourier reconstructions (ZF), conventional CS (CSlow, CShigh, CScont) and TCS were
calculated for R = 4. The panel below each image shows a sample line profile (across the red line). TCS improves blood/muscle contrast compared with
CSlow,high, meanwhile CScont causes significant image distortions. (d) TCS reconstructions were obtained, while losses in segmented vessel maps were
simulated by random erosions of the ideal map. Contrast and vessel sizes were measured relative to a TCS reconstruction based on the ideal map
(mean ± sem across 20 instances of erosion).
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from fully-sampled data were used to demonstrate effects of
spatially-adaptive penalization.

CS and TCS reconstructions were then calculated on 2D cross-
sections. Reconstruction parameters were selected by examining
TCS performance as a function of r and λ1 , 2. It was observed that
near-optimal performance is obtained for r= 10 and λ1 , 2 = λ1o , 2o.
To minimize partial volume effects in maximum-intensity projec-
tion (MIP) views, all reconstructed datasets were upsampled by a
factor of two in all dimensions by zero-padding in k space.

To assess image contrast, average blood and muscle sig-
nals were measured in 13 coronal cross-sections spanning
across the entire volume. Within a single section, two sepa-
rate regions of interest (ROIs) with homogeneous blood
and muscle signal were selected. Signals were averaged

within these ROIs and the ratio of blood to muscle signal
was taken as the contrast for each cross-section. ROIs were
identical across reconstructions of the same anatomy. In
hand angiograms, blood signal was measured on superficial
to deep segments of digital radial and ulnar arteries (569
± 142 voxels, mean ± s.d. across 13 cross-sections), while
muscle signal was measured in the palmar region (473 ± 68
voxels). In lower-leg angiograms, blood signal was measured
on proximal to distal segments of the tibial and peroneal ar-
teries (73 ± 20 voxels), while muscle signal was measured
across neighboring tissue (101 ± 20). In foot angiograms,
blood signal was measured on dorsal metatarsal and plantar
arteries (52 ± 34 voxels) and muscle signal was measured
across neighboring tissue (80 ± 29).

Table 2. Contrast and resolution in simulated data. Contrast: average blood/muscle contrast on phantom data at various R. Raw
contrast values are listed, together with the percentage difference in contrast between each method and ZF. Resolution: relative
radius of blood vessels in phantom images (mean±s.d. across 13 vessels) compared with the actual vessel sizes

Contrast

R=1 R= 2 R= 4 R= 6 R=8

ZF Cont. 1.89 1.88 1.86 1.87 1.87
% diff. – – – – –

CSlow Cont. 1.91 1.89 1.88 1.88 1.88
% diff. 0.9% 0.9% 1.1% 0.9 0.5%

CShigh Cont. 2.27 2.11 2.02 1.95 1.91
% diff. 18.2% 11.6% 8.1% 4.3% 2.4%

CSint Cont. 2.18 2.04 2.00 1.94 1.90
% diff. 14.2% 8.5% 6.9% 3.7% 1.9%

CSIR Cont. 2.36 2.25 2.06 1.94 1.90
% diff. 22.3% 18.1% 9.9% 3.7% 1.7%

TCSnTV Cont. 2.67 2.40 2.30 2.18 2.08
% diff. 34.2% 24.2% 21.2% 15.4% 10.9%

TCSnℓ1 Cont. 2.29 2.13 2.04 1.97 1.93
% diff. 19.2% 12.4% 9.0% 5.3% 3.3%

TCS Cont. 2.69 2.41 2.33 2.21 2.11
% diff. 35.0% 25.0% 22.5% 16.7% 12.4%

Resolution
ZF 1.09 ± 0.05 1.12 ± 0.06 1.27 ± 0.14 1.36 ± 0.21 1.42 ± 0.29
CSlow 1.05 ± 0.04 1.08 ± 0.05 1.09 ± 0.06 1.08 ± 0.06 1.17 ± 0.09
CShigh 1.06 ± 0.05 1.09 ± 0.06 1.10 ± 0.07 1.09 ± 0.06 1.15 ± 0.10
CSint 1.07 ± 0.04 1.11 ± 0.06 1.17 ± 0.09 1.16 ± 0.08 1.18 ± 0.12
CSIR 1.07 ± 0.04 1.06 ± 0.05 1.16 ± 0.08 1.18 ± 0.08 1.20 ± 0.12
TCSnTV 1.00 ± 0.01 1.01 ± 0.02 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.02
TCSnℓ1 1.05 ± 0.04 1.08 ± 0.05 1.09 ± 0.05 1.06 ± 0.05 1.12 ± 0.08
TCS 1.00 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 0.98 ± 0.02 0.98 ± 0.02

Figure 4. Lower-leg angiograms reconstructed using conventional CS with uniformly weighted penalty terms (CSlow, CShigh), CS with spatially
weighted penalty terms based on intensity of ZF reconstructions (CSint), iteratively reweighted CS (CSIR) and TCS. Representative axial sections are
shown for R = 4. CShigh, CSint and CSIR suffer from signal losses, particularly in relatively small or low-intensity vessels. In contrast, TCS improves back-
ground suppression while preserving detailed depiction of vasculature (marked with ellipses and arrows).
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To examine potential vessel-thickening artefacts that may be
introduced during segmentation and reconstruction steps, two
control analyses were performed in hand and lower-leg
datasets. First, the set of non-overlapping voxels in segmented
maps was examined across R. At each R, the number of addi-
tional voxels beyond those included in R = 1 was counted. A
percentage-increase metric was taken as the ratio of this num-
ber to the total number of voxels at R = 1 and it was used to
quantify thickening in vessel maps. Secondly, vessel thickness
was measured on reconstructed angiograms. For this analysis,
vessels of various sizes were selected across 10 different axial
cross-sections. The thickness of each vessel was taken as the di-
ameter of the FWHM region, which ranged from 1 to 4mm. The
level of blurring in each reconstruction method was calculated
as the relative vessel diameter compared with a ZF reconstruc-
tion of fully sampled data (R = 1).
Two expert radiologists evaluated the diagnostic quality of recon-

structed images by consensus. At each R, MIP views were used to
compare images from different reconstruction methods (without
method identifiers). Image contrast, vessel demarcation and distal-
branch visualization in each image were rated separately using a
five-point scale (5 excellent, 4 good, 3 moderate, 2 limited, 1 poor).

Statistical differences in all quantitative results were assessed with
Wilcoxon signed-rank tests.

RESULTS

Blood/muscle contrast and resolution on simulated phantom im-
ages are listed in Table 2. At each R, TCS improves contrast signif-
icantly compared with all other methods including TCSnTV and
TCSnℓ1 (P< 0.05). We find an improvement of 21.5 ± 8.7% over
CSlow (mean± s.d. across R) and 11.3 ± 2.8% over CSIR, the closest
CS competitor to TCS. The contrast improvement is greater for
lower R values, where heavier sparsity penalties can be enforced
due to increased acquisition SNR. Furthermore, TCS maintains
improved spatial resolution compared with other CS methods
and TCSnℓ1 at each R (P< 0.05). This improvement in resolution
is more prominent in higher R datasets, which are more suscep-
tible to resolution loss.

To assess the reliability of TCS against segmentation errors,
phantom images were reconstructed for varying volumetric
losses in vessel maps. TCS using randomly eroded versions of
the ideal vessel map was compared with TCS using the ideal

Figure 5. MIPs of hand angiograms reconstructed with ZF, CS and TCS, for R = 1–6. CSIR suffers increasingly from loss of small vessels for higher R.
Furthermore, bright synovial fluid causes suboptimal vessel contrast in ZF and CSIR. In contrast, TCS alleviates vessel loss while improving suppression
of background signals (marked with arrows).
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map (Fig. 3d). At all R values, contrast remains within 8% and ves-
sel size remains within 12% of the ideal values for up to 30% seg-
mentation loss. These results indicate that TCS shows
considerable performance in the presence of moderate segmen-
tation errors.

Representative reconstructions of in vivo hand and lower-leg
angiograms are shown in Figures 4–6. TCS visibly improves
blood/background contrast and enhances vessel depiction via
tailored penalty weights. Our control analyses indicate that the
segmented vessel maps at high R values (shown in Fig. 2) do
not exhibit any thickening compared with the ideal maps at
R= 1. Furthermore, we find no significant differences in vessel
thickness across reconstruction methods and across R
(P> 0.125; see Supplementary Table S3). Thus the prominent
appearance of vessel trees in TCS reconstructions is due to
improved angiographic contrast. While some small vessels are
less effectively visualized at R ≥ 6, due to reduction of segmented
volumes (Fig. 2), TCS depicts major vessels reliably, including the
digital-radial/ulnar arteries in the hand and popliteal/peroneal
arteries in the lower leg. Blood/background contrast
measurements in representative hand and lower-leg angiograms

are listed in Table 3. At each R, TCS yields significantly higher
contrast than all other methods including TCSnTV and TCSnℓ1
(P < 0.05). In the hand, the improvement is 71.3 ± 28.9% over
CSlow and 33.0 ± 6.6% over CSIR. In the lower leg, the improve-
ment is 38.5 ± 8.5% over CSlow and 22.1 ± 6.6% over CSIR.
The contrast measurements in lower-leg and foot angiograms

collected in a broader population of subjects are listed in Table 4.
Across subjects, TCS achieves higher contrast than all other
reconstructions at each R (P< 0.05). In the lower leg, the
improvement is 30.6 ± 11.3% over CSlow, 14.9 ± 1.8% over CSIR,
3.0 ± 1.4% over TCSnTV and 13.8 ± 2.7% over TCSnℓ1 . In the foot,
the improvement is 28.1 ± 7.0% over CSlow, 10.4 ± 4.8% over CSIR,
3.0 ± 1.5% over TCSnTV and 11.4 ± 2.6% over TCSnℓ1 . Consistent
with simulation results, contrast improvement for in vivo data is
greater for lower R.
Radiological assessments of image contrast, vessel demarca-

tion and distal-branch visualization concur that the proposed
method enhances image quality (see Supplementary Table S4).
Across all subjects, TCS achieves higher image contrast and ves-
sel demarcation scores than all other CS reconstructions at each
R (P< 0.05), except for R= 1, where we find no significant

Figure 6. MIPs of lower leg angiograms reconstructed with ZF, CS and TCS, for R = 1–6. There is visible loss of low-intensity and small vessels in CSIR.
TCS achieves improved blood/muscle contrast with no visible vessel loss up to R = 4 (marked with ellipses). Due to reduction of segmented volumes for
R = 6 (Fig. 2), some small vessels are depicted suboptimally.
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difference. While comparisons are less uniform for distal-branch
visualization, the average visualization score across R is higher
for TCS compared with all other reconstructions (P< 0.05).

DISCUSSION

Here we propose a reconstruction strategy (TCS) for NCE angio-
grams that leverages vasculature maps extracted from
undersampled data, without relying on prior information. The
morphological information in these maps is used to apply
order-of-magnitude heavier sparsity and TV penalties across
background tissues compared with vessels. As such, TCS en-
hances blood/background contrast compared with conventional
CS without degrading vessel depiction.
A recent study has used 2D segmentations to apply a spatially

varying ℓ1 penalty (21). While this previous approach has similar
motivations to TCS, our study differs in several important as-
pects. Firstly, we use a tractographic segmentation to exploit
3D structure and leverage vessel contiguity in the superior–

inferior direction. Secondly, we utilize concurrent spatial
weighting on both ℓ1-norm and TV penalties to minimize vessel
signal loss. Our results show that concurrent weighting in TCS
enhances image quality over weighting either term alone. Lastly,
apart from noise/aliasing reduction aimed previously, here we
demonstrate contrast enhancement that improves vessel depic-
tion in contrast-limited NCE MRA significantly.

The practical benefits of TCS depend on the coverage of the
segmented vasculature maps. Our simulations suggest that
TCS maintains considerable performance with up to 30%
volume loss in segmented maps. However, with increased
aliasing at high R, small vessels with low contrast may be missed
and thereby incur heavy penalties during TCS. Here, some small,
low-contrast branches were not segmented at R= 6 and 8; loss
of high-spatial-frequency information in TCS became prominent
at R= 8 (not shown). Such losses may mimic stenoses in minor
vessel branches. To minimize misassessment, segmented maps
can be dilated more broadly and reconstruction penalties may
be limited at higher R. Alternatively, segmentation and recon-
struction stages can be cast as a joint optimization problem (38),

Table 3. Contrast: representative single-subject data. Blood/muscle contrast (mean±s.d. across 13 sections) in hand and lower leg
angiograms at various R. Raw contrast values are listed, together with the percentage difference in contrast between each method
and ZF

Hand Data

R= 1 R= 2 R= 4 R= 6 R= 8

ZF Cont. 2.32 ± 0.10 2.25 ± 0.10 2.06 ± 0.12 2.02 ± 0.13 2.01 ± 0.12
% diff. – – – – –

CSlow Cont. 2.35 ± 0.11 2.23 ± 0.11 2.04 ± 0.09 1.97 ± 0.10 2.00 ± 0.08
% diff. 1.35% �1.14% �0.82% �2.86% �0.11%

CShigh Cont. 6.92 ± 0.87 3.55 ± 0.29 2.62 ± 0.14 2.08 ± 0.12 2.11 ± 0.09
% diff. 99.63% 44.83% 23.79% 2.96% 5.06%

CSint Cont. 5.50 ± 0.5 3.45 ± 0.27 2.70 ± 0.14 2.17 ± 0.12 2.18 ± 0.09
% diff. 81.51% 42.12% 26.97% 6.83% 8.58%

CSIR Cont. 5.63 ± 0.65 3.71 ± 0.31 3.03 ± 0.16 2.38 ± 0.15 2.41 ± 0.11
% diff. 83.38% 49.08% 38.00% 16.12% 18.28%

TCSnTV Cont. 8.56 ± 1.03 4.80 ± 0.37 4.03 ± 0.21 2.86 ± 0.18 2.91 ± 0.13
% diff. 114.79% 72.30% 64.72% 34.34% 36.69%

TCSnℓ1 Cont. 7.19 ± 0.87 3.73 ± 0.31 2.87 ± 0.15 2.36 ± 0.13 2.40 ± 0.10
% diff. 102.56% 49.55% 32.73% 15.22% 17.92%

TCS Cont. 8.70 ± 1.04 4.99 ± 0.38 4.30 ± 0.22 3.16 ± 0.21 3.22 ± 0.15
% diff. 115.89% 75.64% 70.51% 44.05% 46.50%

Lower Leg Data
ZF Cont. 1.82 ± 0.24 2.11 ± 0.27 2.24 ± 0.14 2.61 ± 0.18 2.74 ± 0.20

% diff. – – – – –
CSlow Cont. 1.84 ± 0.27 2.13 ± 0.32 2.31 ± 0.20 2.66 ± 0.20 2.72 ± 0.32

% diff. 1.06% 1.08% 2.95% 2.06% �0.49%
CShigh Cont. 2.52 ± 0.59 2.68 ± 0.57 2.71 ± 0.31 2.79 ± 0.24 2.81 ± 0.41

% diff. 31.90% 23.83% 19.18% 6.67% 2.79%
CSint Cont. 2.46 ± 0.48 2.69 ± 0.55 2.79 ± 0.30 2.85 ± 0.20 2.85 ± 0.28

% diff. 29.66% 24.36% 22.05% 8.91% 4.19%
CSIR Cont. 2.50 ± 0.58 2.74 ± 0.59 2.77 ± 0.36 2.87 ± 0.28 2.79 ± 0.45

% diff. 31.24% 26.22% 21.29% 9.47% 1.80%
TCSnTV Cont. 3.04 ± 0.69 3.11 ± 0.65 3.28 ± 0.39 3.30 ± 0.31 3.57 ± 0.50

% diff. 50.03% 38.46% 37.84% 23.37% 26.51%
TCSnℓ1 Cont. 2.57 ± 0.60 2.76 ± 0.58 2.84 ± 0.32 2.99 ± 0.27 3.10 ± 0.45

% diff. 34.11% 26.72% 23.70% 13.65% 12.58%
TCS Cont. 3.11 ± 0.70 3.17 ± 0.65 3.42 ± 0.40 3.52 ± 0.34 3.88 ± 0.54

% diff. 52.08% 40.28% 41.62% 29.76% 34.63%
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with iterative refinement across both stages. These demanding
optimizations can be completed in practical run times using
graphical processing units (39,40).

With heavier undersampling, it will become challenging to dis-
tinguish vessel signals from aliasing/noise interference. Higher R
can be attained for TCS by improving SNR, blood/background
contrast and spatial resolution of angiographic acquisitions.
These improvements will boost both segmentation and recon-
struction performance. Furthermore, increased spatial resolution
can also enhance the delineation of vessel boundaries during
segmentation. Here we prescribed relatively high spatial resolu-
tion (e.g. 0.5mm for hand) and used a segmentation that can de-
tect a minimum lumen size equal to this resolution. However,
delineation of small, distal vessels might be impaired at more
limited spatial resolutions. In such cases, parallel imaging and
CS techniques can be combined to alleviate resolution limita-
tions (41,42).

TCS applies first-order finite-difference operators to incur a TV
penalty. Penalty weights were kept low here to minimize block
artefacts and no significant distortions were observed around

vessels. However, higher-order TV terms may enable better
denoising in piece-wise smooth regions, while preserving edge
information near vessel boundaries (43). Another improvement
for TCS concerns the sparsity penalties applied in the image do-
main. While angiographic images are natively sparse, spatially
weighted penalties in relevant sparsifying transform domains
(e.g. wavelet domain) might be needed for other applications.
Adaptive wavelet-domain penalties have been designed previ-
ously based on manual ROI specifications (18) or dependences
between wavelet coefficients (44). Similarly, TCS with spatially
weighted wavelet penalties may be useful in applications such
as coronary imaging.
Residual signals from several background tissues are evident

in FIA datasets. First, although synovial fluid in the joints is cor-
rectly segmented as part of the background, due to its relatively
high T2/T1 ratio it yields comparable SSFP signal to vessels. In
turn, excessive reconstruction penalties that may introduce sig-
nificant image artefacts would be required to dampen these
bright signals fully. Alternatively, a synovial-fluid map might be
generated via a separate segmentation and higher penalty

Table 4. Contrast: population data. Blood/muscle contrast (mean±s.d. across 4 subjects) in lower-leg and foot angiograms at var-
ious R. Raw contrast values are listed, together with the percentage difference in contrast between each method and ZF

Lower Leg Data

R= 1 R= 2 R= 4 R= 6 R= 8

ZF Cont. 2.19 ± 0.28 2.17 ± 0.28 2.12 ± 0.27 2.08 ± 0.25 2.04 ± 0.25
% diff. – – – – –

CSlow Cont. 2.21 ± 0.29 2.17 ± 0.30 2.10 ± 0.30 2.05 ± 0.29 2.02 ± 0.31
% diff. 1.2 ± 0.8% �0.1 ± 1.3% �1.1 ± 2.0% �1.9 ± 2.9% �1.4 ± 4.1%

CShigh Cont. 2.99 ± 0.43 2.68 ± 0.38 2.39 ± 0.37 2.12 ± 0.31 2.07 ± 0.31
% diff. 30.8 ± 6.2% 20.7 ± 3.5% 11.6 ± 3.2% 1.7 ± 3.4% 1.3 ± 3.9%

CSin Cont. 3.00 ± 0.58 2.71 ± 0.44 2.41 ± 0.41 2.13 ± 0.32 2.08 ± 0.32
% diff. 30.6 ± 8.7% 21.5 ± 4.5% 12.4 ± 4.5% 2.0 ± 3.6% 1.5 ± 4.0%

CSIR Cont. 3.02 ± 0.48 2.76 ± 0.42 2.50 ± 0.43 2.14 ± 0.32 2.08 ± 0.32
% diff. 31.7 ± 7.3% 23.6 ± 5.3% 15.8 ± 4.7% 2.7 ± 3.9% 1.9 ± 4.1%

TCSnTV Cont. 3.41 ± 0.45 3.10 ± 0.38 2.87 ± 0.36 2.37 ± 0.30 2.34 ± 0.29
% diff. 43.6 ± 8.8% 35.2 ± 5.9% 30.0 ± 3.8% 12.9 ± 3.4% 13.8 ± 3.7%

TCSnℓ1 Cont. 3.03 ± 0.44 2.73 ± 0.37 2.48 ± 0.37 2.21 ± 0.30 2.17 ± 0.30
% diff. 32.4 ± 6.6% 22.8 ± 4.3% 15.2 ± 2.9% 6.0 ± 3.0% 6.1 ± 3.3%

TCS Cont. 3.46 ± 0.45 3.15 ± 0.36 2.97 ± 0.35 2.47 ± 0.29 2.45 ± 0.28
% diff. 45.0 ± 8.1% 36.9 ± 6.6% 33.4 ± 4.6% 17.0 ± 3.9% 18.5 ± 4.2%

Foot Data
ZF Cont. 2.45 ± 0.23 2.41 ± 0.20 2.31 ± 0.19 2.21 ± 0.16 2.08 ± 0.15

% diff. – – – – –
CSlow Cont. 2.49 ± 0.23 2.44 ± 0.24 2.35 ± 0.26 2.27 ± 0.26 2.18 ± 0.27

% diff. 1.7 ± 0.2% 1.1 ± 1.5% 1.6 ± 4.3% 2.2 ± 5.1% 4.7 ± 6.8%
CShigh Cont. 3.21 ± 0.28 2.98 ± 0.21 2.71 ± 0.27 2.39 ± 0.27 2.29 ± 0.29

% diff. 27.2 ± 3.3% 21.0 ± 3.7% 15.9 ± 5.4% 7.2 ± 5.6% 9.3 ± 7.2%
CSint Cont. 3.25 ± 0.22 3.06 ± 0.17 2.79 ± 0.17 2.44 ± 0.21 2.34 ± 0.22

% diff. 28.4 ± 4.6% 23.8 ± 5.2% 19.1 ± 5.1% 9.7 ± 4.8% 12.0 ± 5.2%
CSIR Cont. 3.41 ± 0.19 3.14 ± 0.17 2.83 ± 0.18 2.45 ± 0.21 2.34 ± 0.25

% diff. 33.1 ± 5.0% 26.3 ± 6.7% 20.6 ± 5.8% 10.1 ± 5.0% 11.6 ± 6.3%
TCSnTV Cont. 3.49 ± 0.29 3.30 ± 0.18 3.18 ± 0.17 2.65 ± 0.23 2.58 ± 0.27

% diff. 35.2 ± 4.6% 31.1 ± 6.7% 31.9 ± 6.5% 17.9 ± 6.4% 21.3 ± 7.3%
TCSnℓ1 Cont. 3.25 ± 0.28 3.03 ± 0.20 2.79 ± 0.25 2.49 ± 0.25 2.40 ± 0.27

% diff. 28.1 ± 3.9% 22.8 ± 4.2% 18.9 ± 5.5% 11.6 ± 5.7% 14.4 ± 6.8%
TCS Cont. 3.54 ± 0.30 3.37 ± 0.17 3.26 ± 0.16 2.76 ± 0.23 2.71 ± 0.26

% diff. 36.6 ± 5.1% 33.1 ± 6.6% 34.4 ± 7.4% 22.0 ± 7.4% 26.3 ± 8.0%

E. ILICAK ET AL.

wileyonlinelibrary.com/journal/nbm Copyright © 2016 John Wiley & Sons, Ltd. NMR Biomed. 2016; 29: 532–544

542



weights can then be applied within this map compared with
other background tissues. Secondly, the vessel maps presented
here contain both arterial and venous streams in the peripheral
extremities. Because the two streams may be located closely,
segmentation algorithms can assign venous voxels on to arterial
vessels (45). For improved separation, segmentation maps can
be altered manually to exclude residual venous tissue. Alterna-
tively, the segmentation method can be modified to leverage
smoothness of surface curvature and fuzzy connectedness to de-
lineate arterial and venous trees (26,45,46).
In conclusion, the two-step TCS method outperforms regular

CS methods in angiographic reconstructions consistently across
subjects. While the proposed method was demonstrated suc-
cessfully for peripheral FIA, it can easily be extended to other an-
giographic acquisitions. These promising results warrant future
studies on a clinical population to examine pathological cases,
including abrupt occlusions and small stenotic vessels.
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