1,382 research outputs found

    Precise Orbit Determination of CubeSats

    Get PDF
    CubeSats are faced with some limitations, mainly due to the limited onboard power and the quality of the onboard sensors. These limitations significantly reduce CubeSats' applicability in space missions requiring high orbital accuracy. This thesis first investigates the limitations in the precise orbit determination of CubeSats and next develops algorithms and remedies to reach high orbital and clock accuracies. The outputs would help in increasing CubeSats' applicability in future space missions

    Past, Present and Future of a Habitable Earth

    Get PDF
    This perspective of this book views Earth's various layers as a whole system, and tries to understand how to achieve harmony and sustainable development between human society and nature, with the theme of " habitability of the Earth." This book is one effort at providing an overview of some of the recent exciting advances Chinese geoscientists have made. It is the concerted team effort of a group of researchers from diverse backgrounds to generalize their vision for Earth science in the next 10 years. The book is intended for scholars, administrators of the Science and Technology policy department, and science research funding agencies. This is an open access book

    Past, Present and Future of a Habitable Earth

    Get PDF
    This perspective of this book views Earth's various layers as a whole system, and tries to understand how to achieve harmony and sustainable development between human society and nature, with the theme of " habitability of the Earth." This book is one effort at providing an overview of some of the recent exciting advances Chinese geoscientists have made. It is the concerted team effort of a group of researchers from diverse backgrounds to generalize their vision for Earth science in the next 10 years. The book is intended for scholars, administrators of the Science and Technology policy department, and science research funding agencies. This is an open access book

    Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    Get PDF
    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. [...] advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 hrs ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. [...]Comment: In press for Advances of Space Research: an international roadmap on the science of space weather, commissioned by COSPAR and ILWS (63 pages and 4 figures

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    AAS/GSFC 13th International Symposium on Space Flight Dynamics

    Get PDF
    This conference proceedings preprint includes papers and abstracts presented at the 13th International Symposium on Space Flight Dynamics. Cosponsored by American Astronautical Society and the Guidance, Navigation and Control Center of the Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude dynamics; and mission design

    New on-board multipurpose architecture integrating modern estimation techniques for generalized GNSS based autonomous orbit navigation

    Get PDF
    This dissertation investigates a novel Multipurpose Earth Orbit Navigation System (MEONS) architecture aiming at providing a generalized GNSS based spacecraft orbit estimation kernel matching the modern navigation instance of enhanced flexibility with respect to multiple Space Service Volume (SSV) applications (Precise Orbit Determination for Earth Observation satellite, Low Thrust Low to High Autonomous Orbit Rising, formation flying relative navigation, Small Satellite Autonomous Orbit Acquisition). The possibility to address theoretical and operational solutions within a unified framework is a foundamental step for the implementation of a reusable and configurable high performance navigation capability on next generation platforms

    Nonlinear Bayesian filtering based on mixture of orthogonal expansions

    Get PDF
    This dissertation addresses the problem of parameter and state estimation of nonlinear dynamical systems and its applications for satellites in Low Earth Orbits. The main focus in Bayesian filtering methods is to recursively estimate the state a posteriori probability density function conditioned on available measurements. Exact optimal solution to the nonlinear Bayesian filtering problem is intractable as it requires knowledge of infinite number of parameters. Bayes' probability distribution can be approximated by mixture of orthogonal expansion of probability density function in terms of higher order moments of the distribution. In general, better series approximations to Bayes' distribution can be achieved using higher order moment terms. However, use of such density function increases computational complexity especially for multivariate systems. Mixture of orthogonally expanded probability density functions based on lower order moment terms is suggested to approximate the Bayes' probability density function. The main novelty of this thesis is development of new Bayes' filtering algorithms based on single and mixture series using a Monte Carlo simulation approach. Furthermore, based on an earlier work by Culver [1] for an exact solution to Bayesian filtering based on Taylor series and third order orthogonal expansion of probability density function, a new filtering algorithm utilizing a mixture of orthogonal expansion for such density function is derived. In this new extension, methods to compute parameters of such finite mixture distributions are developed for optimal filtering performance. The results have shown better performances over other filtering methods such as Extended Kalman Filter and Particle Filter under sparse measurement availability. For qualitative and quantitative performance the filters have been simulated for orbit determination of a satellite through radar measurements / Global Positioning System and optical navigation for a lunar orbiter. This provides a new unified view on use of orthogonally expanded probability density functions for nonlinear Bayesian filtering based on Taylor series and Monte Carlo simulations under sparse measurements. Another new contribution of this work is analysis on impact of process noise in mathematical models of nonlinear dynamical systems. Analytical solutions for nonlinear differential equations of motion have a different level of time varying process noise. Analysis of the process noise for Low Earth Orbital models is carried out using the Gauss Legendre Differential Correction method. Furthermore, a new parameter estimation algorithm for Epicyclic orbits by Hashida and Palmer [2], based on linear least squares has been developed. The foremost contribution of this thesis is the concept of nonlinear Bayesian estimation based on mixture of orthogonal expansions to improve estimation accuracy under sparse measurements. ‱.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Stability of CubeSat Clocks and Their Impacts on GNSS Radio Occultation

    Get PDF
    Global Navigation Satellite Systems’ radio occultation (GNSS-RO) provides the upper troposphere-lower stratosphere (UTLS) vertical atmospheric profiles that are complementing radiosonde and reanalysis data. Such data are employed in the numerical weather prediction (NWP) models used to forecast global weather as well as in climate change studies. Typically, GNSS-RO operates by remotely sensing the bending angles of an occulting GNSS signal measured by larger low Earth orbit (LEO) satellites. However, these satellites are faced with complexities in their design and costs. CubeSats, on the other hand, are emerging small and cheap satellites; the low prices of building them and the advancements in their components make them favorable for the GNSS-RO. In order to be compatible with GNSS-RO requirements, the clocks of the onboard receivers that are estimated through the precise orbit determination (POD) should have short-term stabilities. This is essential to correctly time tag the excess phase observations used in the derivation of the GNSS-RO UTLS atmospheric profiles. In this study, the stabilities of estimated clocks of a set of CubeSats launched for GNSS-RO in the Spire Global constellation are rigorously analysed and evaluated in comparison to the ultra-stable oscillators (USOs) onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) satellites. Methods for improving their clock stabilities are proposed and tested. The results (i) show improvement of the estimated clocks at the level of several microseconds, which increases their short-term stabilities, (ii) indicate that the quality of the frequency oscillator plays a dominant role in CubeSats’ clock instabilities, and (iii) show that CubeSats’ derived UTLS (i.e., tropopause) atmospheric profiles are comparable to those of COSMIC-2 products and in situ radiosonde observations, which provided external validation products. Different comparisons confirm that CubeSats, even those with unstable onboard clocks, provide high-quality RO profiles, comparable to those of COSMIC-2. The proposed remedies in POD and the advancements of the COTS components, such as chip-scale atomic clocks and better onboard processing units, also present a brighter future for real-time applications that require precise orbits and stable clocks

    GENESIS: Co-location of Geodetic Techniques in Space

    Get PDF
    Improving and homogenizing time and space reference systems on Earth and, more directly, realizing the Terrestrial Reference Frame (TRF) with an accuracy of 1mm and a long-term stability of 0.1mm/year are relevant for many scientific and societal endeavors. The knowledge of the TRF is fundamental for Earth and navigation sciences. For instance, quantifying sea level change strongly depends on an accurate determination of the geocenter motion but also of the positions of continental and island reference stations, as well as the ground stations of tracking networks. Also, numerous applications in geophysics require absolute millimeter precision from the reference frame, as for example monitoring tectonic motion or crustal deformation for predicting natural hazards. The TRF accuracy to be achieved represents the consensus of various authorities which has enunciated geodesy requirements for Earth sciences. Today we are still far from these ambitious accuracy and stability goals for the realization of the TRF. However, a combination and co-location of all four space geodetic techniques on one satellite platform can significantly contribute to achieving these goals. This is the purpose of the GENESIS mission, proposed as a component of the FutureNAV program of the European Space Agency. The GENESIS platform will be a dynamic space geodetic observatory carrying all the geodetic instruments referenced to one another through carefully calibrated space ties. The co-location of the techniques in space will solve the inconsistencies and biases between the different geodetic techniques in order to reach the TRF accuracy and stability goals endorsed by the various international authorities and the scientific community. The purpose of this white paper is to review the state-of-the-art and explain the benefits of the GENESIS mission in Earth sciences, navigation sciences and metrology.Comment: 31 pages, 9 figures, submitted to Earth, Planets and Space (EPS
    • 

    corecore