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Abstract 

This dissertation addresses the problem of parameter and state estimation of nonlinear dynamical 

systems and its applications for satellites in Low Earth Orbits. The main focus in Bayesian filtering 

methods is to recursively estimate the state a posteriori probability density function conditioned on 

available measurements. Exact optimal solution to the nonlinear Bayesian filtering problem is 

intractable as it requires knowledge of infinite number of parameters. Bayes’ probability distribution 

can be approximated by mixture of orthogonal expansion of probability density function in terms of 

higher order moments of the distribution. In general, better series approximations to Bayes’ 

distribution can be achieved using higher order moment terms. However, use of such density function 

increases computational complexity especially for multivariate systems.  

Mixture of orthogonally expanded probability density functions based on lower order moment 

terms is suggested to approximate the Bayes’ probability density function. The main novelty of this 

thesis is development of new Bayes’ filtering algorithms based on single and mixture series using a 

Monte Carlo simulation approach. Furthermore, based on an earlier work by Culver [1] for an exact 

solution to Bayesian filtering based on Taylor series and third order orthogonal expansion of 

probability density function, a new filtering algorithm utilizing a mixture of orthogonal expansion for 

such density function is derived. In this new extension, methods to compute parameters of such finite 

mixture distributions are developed for optimal filtering performance. The results have shown better 

performances over other filtering methods such as Extended Kalman Filter and Particle Filter under 

sparse measurement availability. For qualitative and quantitative performance the filters have been 

simulated for orbit determination of a satellite through radar measurements / Global Positioning 

System and optical navigation for a lunar orbiter. This provides a new unified view on use of 

orthogonally expanded probability density functions for nonlinear Bayesian filtering based on Taylor 

series and Monte Carlo simulations under sparse measurements.  

Another new contribution of this work is analysis on impact of process noise in mathematical 

models of nonlinear dynamical systems. Analytical solutions for nonlinear differential equations of 

motion have a different level of time varying process noise. Analysis of the process noise for Low 

Earth Orbital models is carried out using the Gauss Legendre Differential Correction method. 

Furthermore, a new parameter estimation algorithm for Epicyclic orbits by Hashida and Palmer [2], 

based on linear least squares has been developed.  

The foremost contribution of this thesis is the concept of nonlinear Bayesian estimation based on 

mixture of orthogonal expansions to improve estimation accuracy under sparse measurements.    
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1 Introduction 

 

 

1.1 Overview 

A dynamical system is described by a mathematical model either in discrete time or continuous time. 

In discrete time the evolution is considered at fixed discrete instants usually with positive integer 

numbers, whereas, in continuous time the progression of time is smooth occurring at each real 

number. No mathematical model is perfect. There are sources of uncertainty in any mathematical 

model of a system due to approximations of physical effects. Moreover, these models do not account 

for system dynamics driven by disturbances which can neither be controlled nor modelled 

deterministically. For example, if a pilot wants to steer an aircraft at a certain angular orientation, the 

true response will be different due to wind buffeting, imprecise actuator response and inability to 

accurately generate the desired response from hands on the control stick [3]. These uncertainties can 

be approximated as noise in the system dynamics. The numerical description of current configuration 

of a dynamical system is called a state [4]. For a particular dynamical system one needs to obtain 

knowledge of the possible motion or state of the system. The state is usually observed indirectly by 

sensors which provide output data signals described as a function of state. Sensors do not provide 

perfect and complete data about the system as they introduce their own system dynamics and 

distortions [3]. Moreover, the measurements are always corrupted by noise.  

Estimation of state can be understood as the process of acquiring knowledge about possible motions 

of a particular dynamic system. It utilizes prior information for prediction of the estimated state, 

extracts noisy measurements and characterizes dynamic system uncertainties. Figure 1-1 explains 

block methodology of the estimation process. The true dynamic system and measurement devices can 

be considered as a physical (hardware) layer of the complete process. The mathematical model of the 

dynamic system and measurement model along with their noise characterization and prior state 

information is used by estimation algorithm to provide current state estimates and associated 

uncertainties. This could be understood as software layer. Bayes’ formula describes how Probability 

Density Function (PDF) or belief in predicted state of a dynamic system is modified based on 

evidence from the measurement data the likelihood function of state [5]. 

1.2 Motivation 

Most of the dynamical systems in the real world are nonlinear. This intrigues researchers and 

scientists to study more about their characteristics and behaviour. In the context of state estimation for 



19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Block description of state estimation. The current true state of a system is measured 

and provided to state estimator (hardware layer). State estimator utilizes mathematical models, prior 

state information, characterization of noise and estimation algorithm to obtain current state estimates 

and uncertainties (software layer). 

 

 

nonlinear dynamical systems, knowledge about time evolution of their PDF is very crucial. The form 

of this PDF is complicated and it is difficult to describe it with some tractable function. In general this 

density function cannot be characterized by a finite set of parameters e.g., moments unlike linear 

systems where full description up to second order statistics is sufficient [6]. Therefore, linear systems 

are sometimes referred as Gaussian based systems, owing to their complete description by first two 

moments. The orbital dynamics of a satellite are highly nonlinear functions of its state. Therefore, 

approximation of the satellite state PDF as Gaussians could be quite a suboptimal conjecture. 

Knowledge about the orbit of a satellite is critical part of a space mission and has impacts on the 

power systems, attitude control and thermal design. Orbit Determination (OD) of a satellite in Low 

Earth Orbits (LEO) (orbit whose altitude from the surface of Earth ranges from 160 to 2000 km (100-

1240 miles) [7]) is carried out using measurements from ground based sensors i.e., radars and onboard 

GPS device [8]. The measurements are also nonlinear function of the state of a satellite. In case of 

radar the measurements are only available once the satellite appears on the horizon, usually for 5-10 

min. Moreover, these measurements are sometimes restricted due to an unsuitable satellite’s 

orientation for strong return of radar energy. Contrarily, measurements from onboard Global 
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Positioning System (GPS) device are available throughout an orbit for LEO satellites. However, a 

satellite is equipped with limited power sources based on solar power and batteries [9]. Therefore, use 

of GPS device is required to be minimized in order to conserve power which directly influences space 

mission’s life span. Thus, the measurements availability for OD of LEO satellites is mostly sparse.  

In general sequential OD of a satellite for deep space endeavours such as mission to Moon also relies 

on fewer measurements. For example, consider a lunar orbiter optical navigation system. Its 

measurements could be angular quantities between stars and lunar surface landmarks. These 

measurements are nonlinear function of the state of a lunar orbiter. Moreover, their availability is only 

possible once the lunar surface landmarks and stars could be suitably viewed from the orbiter [1]. 

Therefore, full knowledge about time evolution or predictive PDF for satellite OD under sparse 

measurements becomes vital as it is used to quantify uncertainty associated with the state of a satellite 

until one receives the measurement. On receipt of measurement, the Bayes’ formula is applied to 

update the predicted PDF based on likelihood of state. In practice to develop a practically realizable 

nonlinear filter there is a requirement of some tractable mathematical form for this PDF such as 

Gaussian approximation. Due to nonlinearity of dynamic and measurement systems in satellite OD 

problem, the use of Gaussian based nonlinear filters such as Extended Kalman Filter (EKF) [10],[5] is 

suboptimal. It is the most widely used nonlinear filter for sequential Bayes’ filtering [5]. In EKF the 

system dynamics and measurement function are linearized to obtain suboptimal estimate and 

associated uncertainties. Due to linearization the region of stability could be small because 

nonlinearities in the system dynamics are not fully accounted. In plentiful measurement data 

environment, EKF could be considered sufficient for most real life requirements. However, there is a 

need for improvement in filtering techniques under sparse measurement data availability [11]. 

In addition to the state, a dynamical system may also depend upon parameters that are constant or 

perhaps known functions of time. The fundamental mathematical description of nonlinear satellite 

orbital dynamics is expressed in some Cartesian coordinate system (for details see Chapter. 3). The 

main forces affecting the orbit of a satellite are due to non-spherical Earth, atmospheric drag, 

gravitational attraction of Sun and other planets and radiation pressure [12]. In addition to the states of 

position and velocity of a satellite, the orbital motion also depends upon some parameters such as 

height of the orbit from surface of Earth and eccentricity of the orbit to name a few (for details see 

Chapter. 3). Apart from orbital parameters, the future form of an orbit in space is also characterized by 

some Initial Conditions (IC) provided to a satellite [13]. Given some suitable IC, the equations of 

motion are numerically integrated to obtain high precision satellite ephemerides. This is typically 

achieved by employing a very short time step to a numerical propagator. The calculation of the forces 

acting on a satellite at each time step slows down the computation which makes it prohibitive to use it 

on small satellites with less computational resources [14]. An alternative approach to numerical 

propagation of LEO satellites is use of analytic models [2]. Analytical orbit theories are very useful in 
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understanding and visualizing the perturbed description of an orbital motion [2],[15],[16]. For 

example recent interest in formation of spacecrafts in close proximity missions (separation distance of 

250 - 500 m) like TanDEM-X [17] for Synthetic Aperture Radar (SAR) has revived the interest in 

understanding the description of relative motion of spacecrafts with each other and their long term 

perturbed orbital behaviour using analytical description of orbital motion. The theories could also help 

design orbit controller algorithm for constellation or formation maintenance and autonomous control 

[14]. However, in order to obtain an analytic solution the satellite’s nonlinear equations of motions are 

linearized which makes the solution approximation of the true nonlinear dynamics. In general, the 

analytic solutions for an orbital motion are different from each other [2],[18],[19],[20],[15],[16]. This 

is due to dissimilar amount of approximation and linearization. Therefore, in order to use a particular 

analytical solution for actual space missions there is a requirement to analyze or investigate fidelity of 

that analytic model. Furthermore, in order to effectively utilize a particular analytic model proper 

selection of IC or parameters are crucial for their long term conformity to true nonlinear motion.    

1.3 Discussion of Problem 

The problem of Bayesian recursive filtering can be grouped into three types; (1) discrete, (2) 

continuous-discrete, and (3) continuous filtering [21]. The use of terms discrete and continuous 

denotes the way mathematical models of dynamic and measurement systems are expressed 

respectively. Filtering of a dynamical system where the system dynamics and measurement model are 

expressed in discrete time form is termed as discrete time filtering. These models are usually 

formulated as stochastic Discrete State Space Model (DSSM) owing to the way the system dynamics 

are propagated i.e., at fixed discrete instants and measurements also observed at discrete instants 

disturbed by additive white noise [5],[22]. The term stochastic appears due to uncertainties in physical 

effects and other disturbances modelled as white noise in DSSM. The evolution of time is a 

continuous process therefore dynamical systems can be more realistically represented as Stochastic 

Differential Equations (SDE) [6],[23]. In continuous-discrete filtering the term continuous represents 

progression of time continuously for system dynamics and discrete is used to represent measurements 

observed at fixed discrete instants [6]. Similarly to the DSSM, the continuous-time stochastic dynamic 

system is disturbed by an additive continuous time white noise and the measurements by a discrete-

time white noise. The advantage of the continuous-discrete filtering is that the sampling interval can 

change between the measurements unlike discrete filtering where sampling time should be constant 

[21]. In continuous filtering, the system dynamics is represented as a SDE and the measurements are 

considered as a continuous-time process. An estimation problem is termed nonlinear if at least one 

model out of system dynamics or measurements is nonlinear. This work addresses nonlinear discrete 

and continuous-discrete type of filtering.  

Probability theory provides a solution to recursive filtering problem as new observations are measured 

employing Bayes’ formula [5]. Bayes’ formula describes how PDF of the predicted state of a 
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dynamical system is changed based on the likelihood of current state of the system obtained from the 

measurement data. This is known as Bayes’ a posteriori PDF. Considering the 1
st
 order Markov 

property of the dynamical system, being addressed in this thesis disturbed by an additive white noise, 

the recursive form of Bayes’ formula would require availability of a posteriori PDF of the state at a 

previous time only [23],[6],[5]. In the discrete-time filtering case this PDF is predicted forward using 

the total probability theorem known as Chapman-Kolmogorov-Equation (CKE) to obtain the 

predictive PDF [5]. A closed form solution for the CKE is only possible for linear systems for which 

the predictive PDF would be Gaussian [22]. In the continuous-discrete methodology the predictive 

PDF is obtained using the Fokker-Planck-Kolmogorov-Equation (FPKE) [24]. It is a linear Parabolic 

type Partial Differential Equation (PDE). The analytical solutions to this PDE are in general possible 

for linear dynamic systems only. Numerical solution for PDF of nonlinear dynamic systems is 

possible for low dimensions,               due to recent increase in computational resources 

[25]. However, general use of numerical methods for solution of PDE in sequential filtering is not 

considered optimal [25] primarily due to their extensive computational aspects. The predictive PDF is 

updated using the likelihood of the current state using the Bayes’ formula. Any optimal estimate 

criterion such as the Minimum Mean Square Error (MMSE) or maximum a posteriori (MAP) for the 

current state can be obtained from the Bayes’ a posteriori PDF [22],[5]. Figure: 1-2 depict the block 

description of classic Bayesian recursive filtering methodology. Multidimensional integrals are 

employed to obtain MMSE or MAP estimates along with associated uncertainties in these estimates 

e.g., error covariance and higher order statistics from the Bayes’ a posteriori PDF.  

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1-2: Block description of Bayesian prediction and update stages. The prior or a posteriori 

PDF of state at previous time is projected forward using CK or FPKE for discrete or continuous time 

dynamical system respectively. The predictive PDF is updated using Bayes’ formula to obtain a 

posteriori PDF of state at current time. 
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In general for nonlinear dynamical systems such as satellite orbital dynamics the equations for mean 

and error covariance depends on all moments of Bayes’ a posteriori PDF. However, this PDF cannot 

be characterized by finite set of parameters i.e., moments. Numerical solution of the Bayes’ a 

posteriori PDF is in general intractable as it requires solution of CKE or FPKE which necessitates 

storage of the entire PDF. Therefore, one is forced to adopt approximations for the Bayes’ a posteriori 

PDF. One would like to parameterize this PDF through a small set of parameters. If one is able to find 

a set of such parameters, a nonlinear filter would then comprise of equations for evolution of these 

parameters and consider these as sufficient statistics of the Bayes’ a posteriori PDF. Nevertheless, it is 

practically impossible to find sufficient statistics for nonlinear problems [6].  

There has been a considerable interest in approximating arbitrary non-Gaussian PDF using orthogonal 

expansions in terms of higher order moments of the distribution [26],[27],[28],[29]. Better 

approximations can be obtained by using more number of high ordered terms in such series 

expansions. An earlier approach of approximation for the Bayes’ a posteriori PDF is orthogonal 

expansion of a Gaussian PDF in terms of higher order moments of the distribution and Hermite 

polynomials [1],[30]. Hermite polynomials are a set of orthogonal polynomials over the domain 

       with a Gaussian weighting function [31]. The resultant series is known as Gram Charlier 

Series (GCS) [29],[32],[28]. Previous work on use of such distributions for state estimation of 

nonlinear dynamical systems is restricted to single density expansion which has to be truncated at a 

particular low order moment term i.e., three in order to facilitate development of estimation algorithm 

[1],[33]. The use of GCS for Bayesian recursive filtering has shown improvement over EKF for 

nonlinear problems [1],[33]. However, the lower order expansions used in these references i.e., 

          are not optimal PDF approximations due to large deviation in centroid and negative 

probability regions [34]. Moreover, this type of PDF may not integrate to unity. There could be 

inference problems where single series may not be sufficient to model probability distributions 

especially multi-modalities [35]. Depending upon a particular type of PDF, higher order may be 

needed to obtain a good approximation in most of the cases. Increasing the order of series increases 

tremendous computational complexity and makes the series intractable especially for multivariate 

systems [28]. For example each increase in order adds                       moment terms 

where, o = order and d = multivariate dimension of PDF. Moreover, depending upon the type of the 

PDF to be approximated, the increase in such orders reach a certain point after which the 

approximation does not improve any further [36]. Recently, Van Hulle [34] suggested Gram Charlier 

Series Mixture Model (GCSMM) of moderate order expansion             to overcome 

difficulties associated with single series. Therefore, one may consider GCSMM of lower order GCS 

            as more optimal approximation of the Bayes’ a posteriori PDF for state estimation 

of nonlinear dynamical systems.  

Solutions of nonlinear differential equations obtained through numerical integration and their 
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analytical or linearized solutions are not exactly similar. In general this difference is time varying and 

termed as process noise [37],[38],[12],[5]. LEO satellite nonlinear models with forces due to non-

spherical Earth gravitational potential, Atmospheric drag, luni-solar (Moon and Sun) gravitational 

attraction and solar radiation pressure increase complexity of equations of motion [12]. Numerical 

integration methods such as Runge-Kutta (RK) for solution of these equations can be employed to 

obtain high precision satellite trajectories for satellite state estimators and controllers [13]. However, 

numerical integration techniques are not suitable for On Board Computers (OBC) especially in small 

satellites due to resource limitations [14]. In general process noise for a particular analytical LEO 

model is exclusive. Propagation of orbital trajectories using analytical descriptions needs proper 

choice of orbital parameters or IC. The question arises how to choose IC of analytical approximation 

appropriate to a given choice for numerically propagated orbit obtained from nonlinear equations of 

motion such that the process noise is minimized. This would entail two trajectories to be sufficiently 

close to each other. Furthermore, it provides an insight into fidelity of an analytical model and their 

long term perturbed orbital behaviour.  

1.4 Aims and Objectives 

1.4.1 Aims 

In view of the nonlinear estimation problem the aims of this research are as under: 

1. Develop sequential Bayesian filters for nonlinear dynamical systems. 

2. Analyse and compare fidelities of linearized LEO orbital models.  

3. Estimate parameters for analytic orbital model [2] around the oblate Earth.  

1.4.2 Objectives 

The above aims are translated into following objectives: 

1. Develop sequential Bayesian filters for nonlinear dynamical systems in general and satellites 

in particular using GCS and GCSMM and simulate their performance under sparse 

measurements availability. 

2. Analyse and investigate process noise of linearized LEO absolute and relative motion orbital 

models, with a view to compare their fidelities, using Gauss-Legendre-Differential-Correction 

(GLDC) method. 

3. Develop high precision Epicyclic orbit [2] parameter filter based on linear least squares [38]. 

1.5 Structure of Thesis 

The research presented in this thesis is focused on both parameter and state estimation of nonlinear 
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dynamical systems in general and LEO orbital dynamics in particular. It consists of seven chapters. 

Chapter: 2 present literature survey on parameter and state estimation of dynamical systems and LEO 

orbital mechanics. Chapter: 3 elaborates on analysis of fidelities of linearized orbital models for LEO 

using GLDC method [39][40]. Firstly, two absolute orbital motion models i.e., Epicycle Model for 

Oblate Earth [2] and Kepler’s 2 body problem [13] are analyzed. Secondly, analysis of two analytical 

models describing relative motion of spacecrafts with each other i.e., Hill-Clohessy-Wiltshire (HCW) 

equations [18],[19] and Schweighart and Sedwick (SS) J2 modified Hill’s equations [20] is carried 

out. Chapter: 4 presents the Epicycle orbit parameter filter using linear least squares [38]. Initially a 

brief description of the Epicycle model is presented which focuses on key idea used in the filtering 

algorithm. The algorithm exploits linear secular terms in Epicycle coordinates of argument of latitude 

and right ascension of the ascending node. Accurate determinations of orbital parameters enable high 

fidelity long term orbital propagations. Chapter: 5 present GCS and its Mixture Particle Filtering. 

Firstly, it investigates generic Particle Filters (PF) [41], Gaussian Particle Filters (GPF) [42]  and 

Gaussian Sum Particle Filters (GSPF) [43]. Subsequently, it develops a PF based on GCS and its 

Mixtures. The filtering algorithms are simulated on nonlinear simple pendulum model and OD of 

spacecraft in LEO orbits. Chapter: 6 present the Kalman [10],[6] and Culver Filter (CF) [1] 

frameworks for Bayesian filtering of nonlinear dynamical systems. The Kalman Filter framework 

consists of the EKF and Gaussian Sum Filter (GSF) [44]. The Culver framework constitutes of third 

order CF and its new extension called Mixture Culver Filter (MCF) [35]. Firstly, the algorithms used 

in Culver frameworks are described in detail. Subsequently, the algorithms are simulated and analyzed 

for radar and GPS based OD of a satellite in LEO orbits and optical navigation for a lunar orbiter [1]. 

Chapter: 7 present future research directions and conclusion.  

1.6 Novelty 

The contributions of this thesis are summarized below: 

 Based on MC simulation approach [41],[45],[42], new GCS / GCSMM particle filters and 

hybrids are developed for nonlinear Bayesian discrete-time state estimation. The use of 

such PDFs for nonlinear estimation under sparse measurements availability has shown 

improvement over other filtering methods such as EKF and generic Particle Filter (PF). 

 Based on Taylor series expansion of nonlinear dynamic equation and third order GCSMM 

approximation of the Bayes’ a posteriori PDF a new nonlinear filter namely MCF is 

developed. This approach is essentially an extension of an earlier work by Culver [1] (in 

this thesis it is termed as Culver Filter (CF)). MCF serves as an exact solution to 

Bayesian filtering problem. More notably it utilizes optimal FPKE error feedback to 

compute certain parameters of GCSMM associated with each of its component.  

 The application of new nonlinear Bayesian filters based on GCS and GCSMM are 
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simulated for simple pendulum, LEO satellite OD and navigation of lunar orbiter under 

sparse measurements and compared with other state of the art nonlinear filters such as 

EKF. This provides a unified investigation on use of GCS and GCSMM for nonlinear 

state estimation based on Taylor series and MC simulations.    

 A new analysis on fidelities of linearized LEO absolute and relative motion orbital 

models using GLDC scheme [46],[39],[40]. The selection of appropriate IC or parameters 

of analytic models is imperative to minimize the process noise and obtain more accurate 

orbital trajectories.  

 A new algorithm based on linear least squares for parameter estimation of Epicyclic orbit 

is developed. The estimator is termed as Epicycle Parameter Filter (EPF). The method 

exploits the linear secular increase in Epicyclic coordinates. The estimated parameters 

enable minimization of the process noise and long term high fidelity orbital trajectory 

generation at all inclinations for LEO [38]. 

1.7 Publications 

List of publications is as under: 

 “Analysis of Fidelities of Linearized Orbital Models using Least Squares” by Syed A A 

Gilani and P L Palmer presented at IEEE Aerospace Conference 2011, 5-12 Mar 2011 at 

Big Sky, Montana, USA. 

 “Epicycle Orbit Parameter Filter for Long Term Orbital Parameter Estimation” by P L 

Palmer and Syed A A Gilani presented at 25
th
 Annual AIAA/USU Conference on Small 

Satellite 8-11 Aug 2011 at Logan, Utah USA. 

 “Nonlinear Bayesian Estimation Based on Mixture of Gram Charlier Series” by S A A 

Gilani and P L Palmer, presented at IEEE Aerospace Conference 2012, Mar 2012 at Big 

Sky, Montana, USA. 

 “Sequential Monte Carlo Bayesian Estimation using Gram Charlier Series and its 

Mixture Models”, by S A A Gilani and P L Palmer, proposed for IEEE Journal of 

Aerospace (write up is in progress) 
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2 Literature Survey 

 

 

2.1 Nonlinear Bayesian Recursive Filtering 

Nonlinear filtering has been a subject of an immense interest in the statistical and other scientific 

community for more than fifty years [6],[1]. The central idea of Bayesian recursive filtering is 

availability of Bayes’ a posteriori PDF based on all available information about the dynamical and 

measurement systems and prior knowledge about the system [5],[47]. One may satisfy the optimality 

criterion of the MMSE or MAP for current state estimates and their error statistics from this PDF. In 

general, a tractable form of the Bayes’ a posteriori PDF is difficult to obtain except for a limited class 

of linear dynamical and measurement systems. In practice approximate forms of this PDF are used 

instead. These methods can be broadly grouped into: (1) Gaussian based methods, [10],[48],[42] (2) 

Gaussian Mixture Model (GMM) based methods, [44],[49] (2) Sequential Monte Carlo (SMC) 

methods, [41],[45],[50],[47] (3) Orthogonal Expansion based methods, [33][30]  (4) Numerical 

methods, [8],[51] and (5) Variational Bayesian methods [52]. In the subsequent sections a review of 

each of these approaches will be presented. 

2.1.1 Gaussian Based Methods 

In order to obtain the Bayes’ a posteriori PDF and compute MMSE or MAP estimates one would 

require moments of the a posteriori PDF. These are integrals over an infinite domain        [5],[6]. 

It is usually difficult to obtain tractable forms of the PDF required for analytical expression of 

integrals. Moreover, such solutions, if obtained through numerical integration would require storage 

of the entire PDF which is an infinite dimensional vector [5]. In linear systems the Bayes’ a posteriori 

PDF is considered to be Gaussian for which the Kalman Filter (KF) is the optimal MMSE or MAP 

solution [10]. The use of KF equations for nonlinear filtering is made possible by linearizing the 

dynamic and measurement equations to obtain an approximate filtering method, known as EKF [6]. In 

the EKF one computes only the first two moments i.e., mean and variance of Bayes’ a posteriori PDF. 

Therefore, it is commonly termed as a Gaussian method for filtering of nonlinear systems [22]. In 

such applications it could produce very erroneous estimates, for example it computes expected value 

of a function      as                 which is true only for linear functions. For example, consider 

a nonlinear function        . If one considers the mean of   to be zero, this would give the 

following EKF approximation                , whereas the true value of the variance       

could be any positive value [25]. However, an important historical significance of the EKF is its use 

for Guidance and Navigation for the Apollo mission to the Moon [53]. Recently new nonlinear 
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filtering methods based on deterministic sampling of the Bayes’ a posteriori PDF have emerged to 

improve the performance of the EKF. The first such algorithm was introduced by Julier and Uhlmann 

known as Unscented Kalman Filter (UKF) [48]. There have been many improvements of the UKF. 

The class of such filters is collectively known as Sigma Point Kalman Filters (SPKF) [22]. The SPKF 

uses a set of deterministically weighted sampling points known as “sigma points” to parameterize the 

mean and covariance of a probability distribution for a nonlinear system considered as Gaussian. The 

sigma points are propagated through nonlinear systems without any linearization unlike the EKF. 

These filters avoid the explicit computation of Jacobian and/or Hessian matrices for nonlinear 

dynamic and measurement functions. Therefore, these filters are commonly termed as derivative free 

filters. Derivative free filters have a distinct advantage through their ability to tackle discontinuous 

nonlinear dynamic and measurement functions. Two important closely related algorithms are the 

Central Difference Filter (CDF) [54] and Divided Difference Filter (DDF) [55]. These filters employ 

an alternative linearization approach for the nonlinear functions. The approach is based on the 

Stirling’s interpolation formula [56]. Similar to the UKF these algorithms are based on a deterministic 

sampling approach and replace derivatives with functional evaluations. Merwe [57] improved these 

algorithms to provide computationally more reliable square root versions known as Square-Root UKF 

(SR-UKF) and Square-Root CDF (SR-CDF) [58]. Use of SPKF for satellite orbit determination is 

considered in [59]. 

2.1.2 Gaussian Mixture Model Based Methods  

Any non-Gaussian PDF can be approximated as a linear sum of Gaussian PDFs known as GMM [60]. 

Complex PDF structures such as multiple modes and highly skewed tails can be efficiently modelled 

using a finite GMM. In the seminal work of Alspach, the GMM is used to approximate Bayes’ a 

posteriori PDF in nonlinear filtering applications [44]. This nonlinear filter is called Gaussian Sum 

Filter (GSF). It is essentially a bank of parallel running EKF to solve the Bayes’ sequential estimation 

problem. The mean and covariance of each individual Gaussian component is updated using the EKF 

methodology. Therefore, the GSF could also suffer from reduction in region of stability due to the use 

of the EKF as a basic building block. However, it has shown improvement over the EKF in nonlinear 

filtering applications [44],[61]. Furthermore, the concept of GMM for the Bayes’ a posteriori PDF has 

been used to develop the Gaussian Mixture Sigma Point Particle Filter (GMSPPF) [22] and Gaussian 

Sum Particle Filtering (GSPF) [43]. In the GMSPPF the use of an EKF has been replaced with 

sampling based filters i.e., UKF or CDKF to obtain the mean and covariance of each Gaussian 

component; whereas, in the GSPF Monte Carlo (MC) simulation [41] is used to obtain these 

parameters. A further improvement of the GSF is reported in [49] where weight updates for GMM are 

obtained using the error feedback acquired based on minimizing the Integrated Square Error (ISE) for 

the predictive filtering PDF solved by the FPKE and a filter generated GMM approximation. 

Nonlinear filters based on GMM are computationally more expensive. Keeping the number of GMM 



29 

 

components fixed in nonlinear filters could be a suboptimal representation for a continuously evolving 

Bayes’ a posteriori PDF. To overcome this problem an adaptive GMM has been suggested in 

references [62],[63].         

2.1.3 Sequential Monte Carlo Methods 

Another recent approach to find solutions to the Bayesian inference problem is through MC 

simulations [47]. A recursive form of the MC simulation based on a Bayesian filtering scheme is 

known as Sequential Monte Carlo (SMC) method. In SMC method restrictive assumption of linear 

DSSM and Gaussian Bayes’ a posteriori PDF is relaxed. A set of discrete weighted samples or 

particles are employed as point mass approximations of this PDF [41],[22],[64]. The point masses are 

recursively updated using a procedure known as Sequential Importance Sampling and Resampling 

(SIS-R) [41]. The SIS-R is a process in which particles are sequentially drawn from a known easy to 

sample proposed PDF considered as approximation to the true Bayes’ a posteriori PDF. The point 

mass approximation of PDF in this filter leads a summation form of Bayesian integrals. Therefore, 

MMSE or MAP state estimates and associated uncertainties are conveniently obtained. Due to their 

ease of implementation and ability to tackle nonlinear DSSM, its use is found in various diverse 

applications [59],[65]. This nonlinear Bayesian filter is termed as Bootstrap or Particle Filter [41].  

The generic Particle Filter (SIS-R) has undergone a number of improvements since its development. A 

serious shortfall affecting particle filters is their lack of diversity or degeneration of particles. This is 

because the proposed PDF does not effectively represent the true Bayes’ a posteriori PDF. Therefore, 

one may consider an EKF or a SPKF to generate a better approximation of the Bayes’ a posteriori 

PDF which can be used for the proposal PDF [22],[50],[45]. Generic particle filters do not assume any 

functional form for the predictive or Bayes’ a posteriori PDF. However, a consideration could be 

Gaussian or GMM forms for these PDFs [42],[43]. Accordingly, sampling of particles is carried out 

using the assumed PDF. In this thesis an extension to these methods are developed employing GCS 

and its mixture models. Sequentially sampling and resampling from a discrete proposed PDF in SIS-R 

produces sample degeneration and impoverishment. In order to overcome this problem a continuous 

time representation of the Bayes’ a posteriori PDF is introduced in the particle filter known as 

Regularized Particle Filter (RPF) [66]. Kernel PDF estimation methods [67] are employed to obtain a 

continuous time representation of Bayes’ a posteriori PDF. Typically, Epanechnikov or Gaussian 

Kernels are employed for such estimation methods [68]. Resampling from approximate Bayes’ a 

posteriori PDF is carried out using the continuous time representation. A closely related filter named 

as the Quasi-Monte Carlo method implements Bayes rule exactly using smooth densities from 

exponential family [69].  

In multivariate nonlinear filtering, estimation problems can occur in which one may partition the state 

vector to be estimated, depending upon a particular DSSM. The partitioning is based on components 
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of the state space which can be estimated using analytical filtering solutions such as Kalman Filter 

[10] and the components which require nonlinear filtering methods such as SIS-R [70],[71]. The 

fundamental idea is to develop recursive relations for a filter by decomposing Bayes’ a posteriori PDF 

into one generated by a Kalman Filter and the other formed by a SIS-R particle filter. This hybrid 

filtering method is known as Rao-Blackwell Particle Filter (RBPF). The RBPF for higher dimensional 

state vectors with fewer particles is expected to give better results compared with high number of 

particles for a SIS-R [8].  

In general high fidelity measurement systems have low noise levels compared with the dynamic 

system noise. Therefore, Bayes’ a posteriori PDF is likely to resemble more with the likelihood 

compared with the proposed PDF used in SIS-R. Particle filtering of such systems can be improved by 

considering the likelihood function as the proposed PDF [68]. Pitt and Shephard introduced a variant 

of a SIS-R particle filter by introducing an auxiliary variable defining some characteristic of the 

proposed PDF e.g., the mean [72]. This filter is known as Auxiliary sampling importance resampling 

particle filter. The difference between a generic SIS-R and this filter is at the measurement update 

stage where the weights of each particle would be evaluated in the latter using parametric 

conditioning of the likelihood [68].      

2.1.4 Orthogonal Expansion Based Methods 

There has been a considerable interest over a long period of time in the use of orthogonal expansions 

of the PDF for analysis and modelling of non-Gaussian distributions, among statistics community 

[32],[29],[73],[74]. Use of Hermite polynomials for expansion of Gaussian PDFs in terms of higher 

order moments of a particular distribution is well known as GCS or Edgeworth Series [28],[29]. 

Hermite polynomials are a set of orthogonal polynomials over the domain        with Gaussian 

weighting function (      ) [27],[31]. The ability of GCS to model non-Gaussian distributions has led 

researchers in nonlinear estimation and Bayesian statistics to develop nonlinear filtering algorithms 

based on GCS approximation of Bayes’ a posteriori PDF [1],[75],[33],[76],[30]. In 1969 Culver 

developed closed form analytical solutions for the nonlinear Bayesian inference problem using third 

order GCS to approximate predictive and Bayes’ a posteriori PDF for a continuous-discrete nonlinear 

filtering scheme [1]. In this nonlinear filter, instead of using FPKE to obtain predictive PDF, higher 

order moments of the distribution are used to formulate its GCS approximation. However, the 

linearization of dynamic and measurement models is carried out to facilitate the filter development. In 

this thesis this filter will be named as Culver Filter (CF). Apart from the analytical solution of 

integrals involving exponential series, the use of GCS is convenient for numerical integration 

technique such as Gauss Hermite Quadrature (GHQ) [77]. In GHQ the numerical computation of such 

integrals is considerably reduced as evaluation of integrands is only done at deterministically chosen 

weighted points. These points are roots of the Hermite polynomials used in GCS. In nonlinear 
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filtering, the GHQ method for solution of Bayesian inferences has also been extensively employed 

[33],[30],[76]. Challa [33] developed a variant of CF using a higher order moment expansion of the 

predictive PDF, very similar to the one developed by Culver. However, in that filter the Bayes’ 

formula was solved numerically using GHQ with weighted points obtained from an EKF (or Iterated 

EKF [5]). In general, GHQ can also be used for computing coefficients of the GCS also known as 

Quasi-Moments [1] and develop approximation for Bayes’ a posteriori PDF [30],[76]. Horwood 

developed an Edgeworth filter for space surveillance and tracking using a GHQ based numerical 

solution of Bayesian integrals [62]. In this thesis a GCS based nonlinear filters have been developed 

using SMC scheme [47]. Moreover, extensions based on GCSMM are developed for nonlinear 

discrete time and continuous-discrete filtering. 

2.1.5    Numerical Based Methods 

The Nonlinear filtering methods discussed so far in this chapter approximate Bayes’ a posteriori PDF 

with Gaussian, GCS or point mass PDF approximations. However, numerical methods for the solution 

of differential and integral equations can be used to obtain close to exact Bayes’ a posteriori PDF and 

associated inferences [5]. Conceptually, in nonlinear filtering one has to solve the FPKE or CK 

(discrete filtering case) to obtain the predictive PDF. The Use of numerical methods for solution of 

FPKE especially for the multi-dimensional case is prohibitive due to excessive computations. The 

solution of such a PDE is described on a fixed grid in a d-dimensional space (where, d = number of 

dimensions). The computational complexity increases as N
d
 (where, N = number of grid points in each 

dimension) [25]. Kastella and Lee developed nonlinear filters based on Finite Difference (FD) method 

[78] for numerical solutions of 4-dimensional FPKE [8],[51]. A closely related method exists for 

discrete time filtering known as Grid Based Filters (GBF) [68]. The GBF approximates Bayesian 

integrals with large finite sums over a uniform d-dimensional grid that encompasses the complete 

state space of a nonlinear dynamic system. Another relatively new concept of approximating the PDE 

is a mesh free method which utilizes an adaptive grid instead of a fixed grid [79]. Mesh-free methods 

are considered as better solutions for the FPKE equation compared with the SIS-R particle filter 

generated point mass PDF approximation. It is due to the inherent smoothness of PDE solutions [25]. 

An integrated nonlinear filter based on offline numerical solution of FPKE and Kalman filter has been 

developed by Daum [80]. The filter could also handle diffusions belonging to the exponential family 

like the Maxwell-Boltzmann distribution contrary to usual Gaussian type diffusions [6].    

2.1.6 Variational Bayesian Methods 

Variational Bayesian (VB) methods are commonly known as “ensemble learning”. These comprise a 

family of new methods to approximate intractable Bayesian integrals thereby serving as an alternative 

to other approaches discussed above. In these methods the true Bayes’ a posteriori PDF is 

approximated by a tractable form, establishing a lower or upper bound. The integration then forms 
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into a simpler problem of bound optimisation making the bound as tight as close to the true value 

[52]. A lower bound of the likelihood of a posteriori PDF is maximized with respect to parameters of 

the tractable form using Jenson’s inequality and variational calculus. 

2.2 Parameter Estimation 

In addition to the state, a dynamical system may also depend upon parameters that are constant or 

perhaps known functions of time, for example the mass of bodies in a mechanical model or the birth 

rate and carrying capacity in a population model. In addition to the state of angular position and 

velocity of a simple pendulum the model also depends upon two parameters, the pendulum's length 

and the strength of gravity. The parameter is typically a time-invariant vector or a scalar quantity of a 

particular dynamical system. A parameter could govern a qualitative behaviour of the system, such as 

a loss of stability of its solution or a new solution with different properties. One may also consider it 

to be slightly time varying but its time variation is slow compared with the state estimation discussed 

earlier in this chapter.  Parameter estimation could be performed with two main approaches, Bayesian 

or Non-Bayesian [5].  

In Bayesian approach, one seeks Bayes’ a posteriori PDF of parameters using Bayes’ formula. The 

MMSE estimates are obtained as mean, and MAP as mode, of Bayes’ a posteriori PDF. In the non-

Bayesian approach no prior assumption on the type of probability distribution of the parameters is 

made. However, one may utilize a likelihood function which is the probability distribution of the 

measurements conditioned on the parameter of interest. The estimate obtained by maximizing the 

likelihood function with respect to the parameter of interest is the Maximum Likelihood Estimate 

(MLE) [5].  

In least squares method sum of the squares of the errors between the measurement obtained from 

measurement system and the modelled dynamics are minimized with respect to the parameter of 

interest [5],[81]. There is no assumption on probability distribution of these errors. Recursive and 

non-recursive least squares (without process noise) were both invented by Gauss. Due to the 

nonlinearity of celestial mechanics laws, he used linear approximation for the dynamics just like in 

the EKF [25]. If the measurement errors are assumed independent and identically distributed (i.i.d) 

with the same marginal PDF, zero-mean Gaussian distributed, then the method coincides with the 

MLE. There is a large literature devoted to these methods in almost all fields of physical sciences and 

engineering including astrodynamics [81],[12] tracking and navigation [5]. In this thesis nonlinear 

least squares commonly known as GLDC [12],[82] is considered for the analysis of fidelities of 

linearized LEO orbital models [37].       

2.3 Satellite Orbital Dynamics 

The orbital motion of a satellite around the Earth is described in its simplest form found out 

empirically by Kepler about 400 years ago [83],[84] . The acceleration of the satellite in a 
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gravitational field is given by the Newton’s law of gravity [13]. The problem of satellite motion under 

the influence of spherically symmetric Gravitational potential is known as the 2 body problem [14]. It 

has been shown that the satellites orbit in conic sections depends upon the total energy of the satellite 

[12],[14]. Such an orbit has an angular momentum and orbital energy both conserved and is called a 

Keplerian orbit [85]. The satellite remains in a fixed plane around the Earth, called the orbital plane. 

An orbital plane is defined by the position and velocity vectors of a satellite. In reality forces due to 

the Earth’s non-spherical shape, atmospheric drag (especially for LEO), Gravitational attraction of 

Sun and Moon, and solar radiation pressure significantly influence the orbit of a satellite. The effect of 

the non-spherical Earth on the orbits of a satellite has been studied extensively for about 50 years. The 

trajectories of satellite orbits are expressed in terms of instantaneous Keplerian orbital elements or 

osculating elements. Gauss’s planetary equations of motion describe the evolution of these orbital 

elements under perturbing forces [12]. Kozai [15] and Brower [16] found analytic solutions to 

perturbed orbital elements of a satellite. Hashida and Palmer [2] developed a simplified and accurate 

analytical description of the satellite orbital motion around an oblate planet [2]. The model has a 

simple analytic form and is capable of describing all the gravitational perturbative effects. The 

formulation of the orbit is based on the Epicyclic motion of a satellite [14]. In order to find out an 

analytical solution for equations of motion of satellite dynamics with additional forces, one needs to 

linearize about some reference satellite trajectory usually a circular or low eccentricity orbit. The 

analytic propagation of orbits is not very accurate for long duration of time when compared with the 

true satellite trajectories or even from the numerical integration of the complete equations of motion 

[15],[16],[14].   

2.4 Satellite Relative Motion 

Satellite formations have received extensive attention for global observation [17], communication 

[86] and stellar interferometry [87], due to advantages of flexibility and low cost. The description of 

motion of a satellite flying in a formation is determined from the relative motion of two satellites. In 

this scenario, one of the satellites known as the deputy satellite is considered in a relative coordinate 

system fixed to another satellite known as the chief satellite [88]. The deputy satellite’s relative 

motion can be conveniently described by subtracting the absolute motion of two satellites (chief and 

deputy) around the planet. HCW equations provide the simplest model describing satellite relative 

motion [18],[19]. These are second order linearized differential equations describing relative motion 

of a satellite in a near circular orbit around a spherical Earth. Extensive work on improvement of 

HCW equations to include the effects of oblate Earth, eccentric orbit and nonlinear differential gravity 

acceleration has been carried out. The linearized differential equations describing the relative motion 

in unperturbed elliptical chief orbit were presented by Lawden [89] and Tshauner-Hempel [90]. In 

reality, due to non-spherical geopotential an orbit of chief satellite would experience secular and 

periodic changes in its orbital elements over time. Secular variations in a particular element change 
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linearly over time and cause unbounded error growth. Periodic changes are of two types: (1) short 

periodic, and (2) long periodic, depending upon the amount of time required for the effect to repeat. 

Short periodic effects repeat on the order of satellite orbital period or even less. Long periodic effects 

have cycles significantly larger than one orbital period which are usually one or two times longer than 

short periodic [12],[2]. Therefore, satellite relative motion models based on spherically symmetric 

geopotential for chief orbit such as HCW equations are not good approximations over the whole 

period of time. Schweighart and Sedwick (SS) [20] derived equations for the relative motion between 

satellites in a formation, incorporating the effects of Geo-potential zonal harmonic J2. The relative 

motion of satellites based on Epicyclic model was presented by Halsall and Palmer [91]. Due to 

approximations of chief satellite motion, all of the analytical or approximate models described above 

have varying levels of process noise. Therefore, there is a need to compare the validity and usefulness 

of these models over time. This requires some methodology to find the most suitable approximate 

orbit to use in this comparison.    

2.5 Summary 

This chapter presents a brief literature review on the main approaches for parameter and state 

estimation of dynamical systems. LEO absolute and relative orbital mechanics have also been briefly 

discussed with a view to develop understanding of the major difference between true dynamical 

model and analytical model. In particular, the estimators have different performance for different 

dynamical systems. The accuracy and strength of the simplifying assumptions in different algorithms 

strongly depends upon the inference problem at hand which makes a particular approximate solution 

better than others. In nonlinear filtering applications where less measurements are available, such as 

radar based orbit determination of a space object, would necessitate good prediction accuracies. In 

this application radar measurements of a space object are available for a very short span of time i.e., 

during the time satellite is visible on the horizon, typically 5-10 min for a LEO satellite. It requires 

better understanding of the nonlinear dynamical system and an approximation for its time varying 

probability distribution i.e., non-Gaussian. Therefore, Gaussian based assumptions for state predictive 

and Bayes’ a posteriori PDF for nonlinear dynamical systems like satellite orbital dynamics would be 

suboptimal. Thus, GCS and GCSMM are employed in this thesis for state predictive and Bayes’ a 

posteriori PDF for filtering of nonlinear dynamical systems under less measurements accessibility. 
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3 Analysis of Fidelities of Linearized Orbital 

Models 

 

 

3.1 Introduction 

The dynamics of a satellite orbiting the Earth is described by second order nonlinear differential 

equations. These nonlinear equations do not have an analytical solution except for the 2 body problem 

of a satellite around a spherically symmetric gravitational potential [13]. However, a satellite around 

our Earth is subjected to additional forces due to non-spherical Earth, atmospheric drag, gravitational 

attraction of other heavenly bodies like the Moon and Sun (Luni-Solar) and solar radiation pressure 

[14]. These forces are termed as perturbations to a Keplerian orbit as they are all much smaller than 

the acceleration due to spherical Earth [83],[84],[14]. Table: 3-1 lists important sources of 

perturbations, and their effects in terms of accelerations acting on satellite as a function of its orbit 

height above Earth [14]. The perturbation due to geopotential second zonal harmonic term known as 

J2 (explained later in this chapter) is the most dominant perturbative effect on a satellite, which is due 

to oblateness of Earth [12].  

 

Source                                         *
 

Spherical Gravity                     

Earth Oblateness J2                                  

Atmospheric Drag             - - 

Luni-Solar Attraction                        

Solar  

Radiation Pressure 

                    

h = height of orbit above Earth 

*Satellite at this height is called geosynchronous because its orbital period around the Earth matches 

the rotation rate of Earth around its polar axis which is 23 hours 56 min and 4 sec [92].  

 

Table 3-1: Disturbing Forces on Satellites in m/s
2
 

 

Extensive analysis has been carried out since the dawn of satellite age to study the motion of a 

satellite under a non-spherical gravitational potential [2]. These equations of motion are highly 

nonlinear and analytic solutions are only available for linearized forms. Such solutions are 
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advantageous in visualizing the long term perturbed orbital behaviour. They provide useful insight 

into the physics of the orbital motion. However, due to linearization of equations of motion these 

solutions are considered as approximations of the full nonlinear dynamical model. The difference 

between the nonlinear equations of motion and their approximation is termed as process noise. In 

general, the process noise in an analytically derived model is a time varying quantity. It depends 

directly upon the approximations and assumptions applied on the nonlinear dynamic model. This 

varies the fidelities of analytical models and impacts upon their use for modelling actual space 

missions. It is usually very difficult to model process noise with some fixed parameters. For example 

in nonlinear filtering such as EKF if one uses a particular analytical orbital model [2],[15],[16],[93], 

the un-modelled accelerations and effects due to linearization are modelled as white noise [5]. In 

practice, the parameters of such a noise are approximated as moments (up to second order) of a 

Gaussian PDF [5]. These parameters would require adjustments for optimum performance of filters. 

In general, an analytical model with superior fidelity would yield better results with such adjustments. 

Moreover, in satellite orbit control applications the use of analytical models can assist the 

establishment of orbit controller algorithms [94],[95],[96],[97],[98]. Therefore there is a need to carry 

out qualitative and quantitative analysis of linearized orbital models and their process noise. 

Linearized solutions are characterized by a set of IC which determines the orbital evolution. If their IC 

is not properly chosen, the evolution would sooner or later diverge as shown in Figure: 3-1. This 

results in their validity for a very short period of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: The concept of divergence. Numerical integration of nonlinear equations of motion is 

termed as “Numerical trajectory” and the linearized solution as “Analytical trajectory”. This picture 

shows limited time validity of the analytical solutions when compared with a numerically obtained 

trajectory due to the process noise. The choice of IC is very critical as it determines the form of the 

motion at later times. 

Analytical trajectory  

Numerical trajectory  

IC  
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The question arises on how to choose the IC of the analytical approximation appropriate by a given 

choice of IC for the numerically integrated nonlinear equations of motion such that the process noise 

is minimized. As process noise is a peculiar quantity for a particular analytical model. Therefore, the 

amount of its minimization is also unique. In general, the minimization of the process noise enables us 

to obtain the approximate trajectory close to the numerical nonlinear trajectory and provides useful 

insight into fidelity of an analytical model and assists in comparing validity and usefulness of these 

models over time. 

Keeping in view the discussion so far, analyzing fidelities of analytical models and minimizing their 

process noise is certainly an interesting and valuable research. In this chapter the GLDC scheme 

[46],[12] is adapted as a solution methodology for this analysis. Firstly, the solution methodology for 

our analysis is developed followed by a brief description on fundamentals of orbital mechanics. 

Secondly, the analysis of LEO satellite absolute and relative orbital models will be presented. 

3.2 Methodology for Fitting Approximate Models to Nonlinear Data   

The GLDC is a useful statistical method for satellite orbit determination which dates back to Gauss 

(1801) [39],[46]. The quantities of interest in satellite orbit determination could be the orbital 

parameters or position and velocity of a satellite in some Earth based coordinate system. These 

quantities are usually measured indirectly using sensors. In a GPS based orbit determination, the 

position and velocity of a satellite are measured in a co-rotating coordinate system fixed to the Earth, 

using an onboard GPS sensor; whereas, in radar based orbit determination the measured quantities 

are: (1) radar site to satellite position vector (ρ), angular quantities of  (2) azimuth (Az), and (3) 

elevation (El) of radar antenna in a radar site based coordinate system (details in Chapter 5) [8]. Both 

types of measurements are nonlinear functions of the position and velocity of a satellite in a 

coordinate system fixed to some reference direction in space [12]. Unlike the orbit determination 

problem, consider that position and velocity of a satellite are directly available by numerically 

integrating nonlinear equations of motion, using some numerical method such as Runge-Kutta (RK-4) 

[78], without using sensors. This means that the satellite orbital trajectory in a particular coordinate 

system is fully known without any measurement noise. Let each of this position and velocity vector in 

a three dimensional coordinate system of Earth are accessible for a specific period of time are 

expressed as: 

 

 
                                             

 

 

 

 

 

 

 

(3.1) 

 

 

 

where,                is the vector of initial conditions for                  and                   

coordinates and k  = time subscript of the numerically computed position and velocity vectors of a 

satellite with three components each. This forms as a large vector of nonlinear data of 6k components 

for the differential correction scheme. The term “reference or numerical trajectory” will be used for 
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the nonlinear data. The position and velocity vectors of a satellite approximate analytic model for each 

of the corresponding time instant as in Equation: 3.1 can be obtained by providing the IC to the 

analytic model and expressed as: 

  

 
                        

 
     

 
       

 
     

 
  

 
 

 

 

 

 

 

 

 

(3.2) 

 

 

 

where, p is the superscript denoting the position and velocity vectors of an approximate analytic 

model. The term “analytical trajectory” will be used for the approximate analytic model data. Note the 

IC    provided to approximate analytic model is the same as in case of full nonlinear equations of 

motion. However, the trajectory at later time would be different or diverged due to the process noise.  

Consider that the nonlinear equations of motion have been accurately modelled by the analytical 

approximation less process noise errors     . Therefore, one may write: 

 

 

                     
 

 

 

 (3.3) 

  

 

where,       is assumed to be as independent distributed Gaussian random variable with mean      

and variance σ
2
. Therefore, the expression for the variance may be written as: 

 

            
 
  

 

 

(3.4) 

 
 

where,      is the expectation operator [99]. Using Equation: 3.3, the variance can be rewritten as: 

 

    
 

  
            

 

 

(3.5) 

 

 

where,           and          . In order to minimize the difference between the orbit         

and        , we consider the variance    as a cost function to be minimized. The procedure is to 

differentiate the cost function with respect to    and set it equal to zero: 

 

 
   

   
  

  

   
 

 

        

 

 

 

(3.6) 

 

 
 

where, following vector derivative relation is used in deriving Equation: 3.6 [13]: 
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(3.7) 

 

 
where,     and   are vectors. Based on the assumption of differentiability of equations of motion the 

analytic trajectory         can be expanded around      in Taylor series as: 

 

                  
  

   

 

  
           

   

    

 

  
          

 

 

 

(3.8) 

 

 

where,          is the neighbouring trajectory to         and        . Neglecting all terms except 

for the first correction term in Equation: 3.8 for now, one may write: 

 

                               

 

 

 

(3.9) 

 

 where, 

     

   
 
       

 

Substituting Equation: 3.9 in Equation: 3.6 one may write: 

 

 

                      

                      

          
  

              

(3.10) 

 

where,            . The value of      is still not the solution which minimizes the difference 

between the two trajectories   and   due to the neglect and removed terms of higher order Taylor 

series expansion in Equation: 3.8. However, one may formulate an iterative scheme by repeatedly 

updating the value of     in   using newly computed      from Equation: 3.10. The iterative scheme 

can be formulated as:  

 

    
   

    
 
        

  
           

 
     

 

 

(3.11) 

 

where, 
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The value of   
   

 in Equation 3.11 will be repeated until the difference    
   

   
   

   
 
 is less 

than some selected tolerance or the variance    asymptotically reaches minimum. At this time     has 

converged to define the optimum trajectory. The fundamental concept of this analysis methodology is 

shown in Figure: 3-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Concept of methodology for linearized orbital analysis. The numerical trajectory is 

obtained by numerical integration of equations of motion. Analytical trajectory is obtained from 

approximate analytic equations of motion using IC estimates    . The estimated IC     minimizes the 

variance between Numerical trajectory and analytical trajectory.    

 

 

3.3 Two Body Equation Review 

The Newton’s second law and his universal law of gravitation is essentially a starting point for any 

study of orbital motion, especially when combined with Kepler’s law [83],[84]. Employing these laws 

the 2 body equation of motion can be derived as [12]: 
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(3.12) 

 

where, r


is the position vector of a satellite in Earth Central Inertial (ECI) coordinates expressed as 

           ,             . The value of the gravitational parameter    in Equation: 3.12 is 

   

    Analytical trajectory          

Numerical trajectory         
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computed as:  

23 sec/4418.398600 kmGMEE   

2320 sec//10673.6 kgkmG  , Earth Gravitational constant 

 kgM E

2410973.5  , Mass of Earth 

The ECI coordinate frame is defined such that X axis points to the vernal point in the equatorial plane 

of the Earth, the Z axis is the axis of rotation of the Earth in positive direction, and Y is defined by the 

right-hand rule (see Figure: 3-3). 

 

 

 

 

 

 

 

 

Figure 3-3: Earth Central Inertial (ECI) Coordinates frame. X-axis points towards Vernal point in 

equatorial plane of Earth (Equinox ϒ), Z-axis points towards North pole and Y-axis completes the 

right hand triad. Angular quantities of orbital elements, i = inclination, Ω = right ascension of the 

ascending node, ω = argument of perigee and ν = true anomaly are also illustrated.  

 

Alternatively, the acceleration for a 2 body problem in a spherical symmetric gravitational potential 

function can be expressed as gradient of the potential function expressed as: 

 

 

       

 

  
  

 
 

(3.13) 

 

(3.14) 

 

  

where,    is the gravitational potential function.  
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Six quantities define the state of a satellite in space. These quantities can be expressed in many 

equivalent forms. Whatever the form is, the collection of these quantities is called either a state vector 

                    usually associated with position and velocity vectors, or an element set, normally 

used with scalar magnitudes and angular representations of the orbit called orbital elements. The six 

classical orbital elements are; a is the semi major axis, e is the eccentricity, i is the inclination, Ω is 

the Right Ascension of the Ascending Node (RAAN), ω is the argument of perigee and ν is the true 

anomaly. Figure: 3-3 depicts angular quantities of classical orbital elements [12]. The definition of the 

semi major axis and eccentricity are [12]: 

 

 

   
  

  
 

   
    

  
 

               

  
 

  
  

 
 

  

 
 

(3.15) 

 

(3.16) 

 

(3.17) 

 

where,     is the velocity vector in ECI coordinates expressed as                ,        ,   = orbital 

energy, and    = eccentricity vector          pointing towards the perigee (see Figure: 3-3). Under an 

axially symmetric gravitational potential the orbital energy     remains constant [2]. A solution for 

Equation: 3.12 can be obtained using numerical integration techniques such as Runge-Kutta method 

i.e., RK-4 [13] by providing an initial state vector                 to the numerical algorithm.  

3.3.1 Kepler’s Equation 

A solution of 2 body equation can be also be obtained analytically by solving the Kepler’s equation 

[13]. The Kepler’s equation allows to determine the relation of time and angular displacement of a 

satellite within an orbit. The Kepler’s equation is mathematically expressed as: 

 

 

                      

         
 

 

 

(3.18) 

(3.19) 

 
 

where, M is the mean anomaly, E(t) is the eccentric anomaly, e is the eccentricity,          (mean 

motion) and    is the time of perigee passage. The Kepler’s equation relates the time t to the 

coordinates    and    in the orbital plane of a satellite via the eccentric anomaly. A geometrical 

description of these quantities is described in Figure: 3-4.  
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Figure 3-4: Orbital geometry for Kepler’s equation defining the eccentric anomaly (E), true 

anomaly (ν) and coordinates in orbital ellipse (plane)        
 

. In the orbital plane, perigee is the point 

nearest to the centre of gravitational attraction and apogee is the point farthest.   

 

 

The orbital coordinates in terms of Eccentric anomaly are expressed as: 

 

 

                    

                    
 

 

 

(3.20) 

(3.21) 

 
 

where,               

 

One must know the time of perigee passage and the semi major axis in order to calculate the mean 

anomaly. Then one may find values of E that satisfy Equation: 3.18 and finally obtain    and    in the 

orbital plane of satellite trajectory described by Equation: 3.20-3.21. The Kepler’s equation is usually 

solved using iterative methods like Newton-Raphson [100]. The solution of Kepler’s equation is 

found out in a perifocal coordinate system (described in next section). A more useful representation of 

an orbit for our analysis is in ECI coordinate system, as the equations of motion (Equation: 3.12) are 

expressed in that coordinate system. 

3.3.2 Conversion from Perifocal to ECI Coordinates 

In order to represent the position and velocity of a satellite in ECI coordinates, first the satellite’s three 

dimensional position and velocity are expressed in perifocal coordinate system. A perifocal coordinate 
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system is described as [14]: 

 

   
  

   
               

      

        
 

 

 

 

(3.22) 

 

  

Using perifocal coordinates one may express the three dimensional position by [13]: 

 

 
                    

                        

 

 

 

(3.23) 

(3.24) 

 
 

and the velocity by 

 

                       

 
     

 
                      

 

 

 

(3.25) 

 

(3.26) 

 
 

The classical orbital angular elements of (i , Ω, ω) are employed in rotation transformation to convert 

perifocal coordinate system into ECI. The rotation matrix is given as: 

 

 

                            

 

 

 

 

(3.27) 

 

 

 

 

where,       and       are rotation matrices for rotation about “z” and “x” axes respectively. For 

example for   being the rotation angle the individual rotation matrices can be computed as: 

 

        
   
            
            

            
             
             

   
  

 

 

 

(3.28) 

 

 

 
 

Finally, the three dimensional ECI position and velocity are obtained respectively as [13]: 

 

 

                    

                      

 

 

 

 

(3.29) 
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The above (Equation 3.29) provides an analytic solution to the unperturbed 2 body equation. 

However, it requires a solution of the Kepler’s equation at each time step using iterative methods 

which may develop some convergence problems [13].  

3.4 Perturbation Due to Oblate Earth – J2 

The gradient of the gravitational potential function for a spherical Earth model will yield acceleration 

as expressed in Equation: 3.12. In reality the Earth is closer to an oblate spheroid therefore one may 

now consider perturbing forces due to non-spherical gravitational potential function. A non-spherical 

potential function which is symmetric about Earth polar axis could be expressed as [12]: 

 

    
  

 
       

  

 
 

 

        

 

 

  

 

 

 

 

 

(3.30) 

 

 

 
 

where,    is the coefficients of zonal spherical harmonic representing the shape of Earth,       is the 

Legendre polynomials of degree l,   is the geocentric latitude of satellite (see Figure: 3-5) and    is 

the Equatorial radius of Earth (   = 6378.137 km). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: Geometrical description of geocentric latitude     and longitude     of satellite in 

coordinate system fixed to Earth known as Earth Centred Earth Fixed (ECEF). Note oblate shape 

around Earth Equator (shown green) which is responsible for J2 perturbation.  

 

 

The expansion of Equation: 3.30 in terms of Legendre polynomials           for order up to l = 4 is 

expressed as [8]: 
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(3.31) 

 

 

 

 

Similarly to Equation: 3.13 the acceleration due to gravity can be derived by taking the gradient of 

this potential function (Equation: 3.31). The acceleration for terms up to l = 2 can be expressed as 

[13],[12],[8]: 
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(3.32) 

 

 

 

 

where, the vector                  contains the components of acceleration in ECI coordinates due to 

the second spherical harmonic,                      . Numerical integration techniques such 

as RK-4 algorithm may be utilized to obtain a solution for Equations: 3.32. In general, and analytic 

solution for non-spherical Earth 2 body equation of motion is obtained by linearization and 

approximation on acceleration terms briefly shown in Table: 3-1 [2],[15],[16],[93]. Therefore, the two 

orbital descriptions (numerical and analytical) are not exactly identical. The second zonal harmonic 

term J2 has small perturbative acceleration compared to main spherical gravity (see Table: 3-1) on 

satellite orbits. However, these orbits are characterized by secular and periodic changes in their orbital 

elements. Secular variations in a particular element change linearly over time and cause unbounded 

error growth. Periodic changes are of two types: (1) short periodic, and (2) long periodic, depending 

upon the amount of time required for the effect to repeat. Short periodic effects repeat on the order of 

the satellite period or even can be less frequent. Long periodic effects have cycles significantly larger 

than one orbital period, usually one or two times longer than short periodic [12],[2]. The argument of 

perigee, right ascension of the ascending node and true anomaly have secular variations which grow 

over time (see Figure: 3-11). These elements and other remaining elements i.e.,          have both 

short periodic and long periodic variations [15],[16] (see Figure: 3-9). There are no long periodic 

variations in the orbit due to J2 perturbation [2]. Contrary to J2 perturbed orbits, the orbital elements 
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for a 2 body equation without J2, as expressed in Equation: 3.12 would remain constant except for the 

true anomaly which continuously changes (see Figure: 3-8 and 3-10). One may visually inspect the 

effect of secular and periodic variations in the J2 perturbed orbits compared without these effects as 

shown in Figure: 3-6 and 3-7 in ECI coordinates. Figures: 3-6 to 3-11 are simulated for a typical LEO 

satellite with a = 7000 km, e = 0.0001, i = 98 deg, Ω = 10 deg, ω = 10 deg, and ν = 20 deg. 

 

 

Figure 3-6: Time history of a satellite orbit in ECI coordinates obtained from numerical 

integration of equations of motion (Equation: 3.12) for one day. Notice a near circular motion without 

any periodic or secular changes in the orbit. 

 

 

Figure 3-7: Time history of a satellite orbit in ECI coordinates obtained from numerical 

integration of equations of motion (Equation: 3.32) for one day. Notice variations in the orbit due to 

periodic and secular (drift) effects of J2 perturbation. 
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Figure 3-8: Time history of variations (   in orbital elements of a (top), e (middle), and i 

(bottom) for a 2 body equation (Equation: 3.12) for 7 orbital periods (approximately half a day) for 

LEO satellite. Notice these elements remain almost constant under a spherically symmetric 

geopotential. 

 

Figure 3-9: Time history of variations (   in orbital elements of a (top), e (middle), and i 

(bottom) for J2 perturbed 2 body equation (Equation: 3.32). Notice periodic variations in the orbit 

under non-spherical geopotential. However, these elements do not have secular (drift) effects. 
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Figure 3-10: Time history of variations (   in angular quantities of orbital elements Ω (top) and ω 

(middle) for a 2 body equation under a spherically symmetric geopotential (Equation: 3.12). These 

elements remain almost constant except for ν (bottom) which changes by 360 degrees over one orbital 

period. 

 

Figure 3-11: Time history of variations (   in angular quantities of orbital elements Ω (top), ω 

(middle) for a J2 perturbed 2 body equation (Equation: 3.32). The ν (bottom) varies between 0 to 360 

deg over an orbital period. Notice the small periodic oscillation and significant linear secular / drift 

variations in these elements under a non-spherical geopotential. 



50 

 

3.5 Analysis of Absolute Satellite Orbital Dynamics 

Satellite absolute dynamics are referred here as orbital motion around a central gravitational field such 

as the Earth. Consider the unperturbed 2 body equation of motion (Equation: 3.12) and dynamic 

model due to non-spherical Earth gravitational potential with J2 perturbation (Equation: 3.32) as the 

full nonlinear orbital models for the analysis. Therefore, in this section the following two analytic 

models will be considered for comparison with these nonlinear orbital models: 

 A solution of Kepler’s equation for unperturbed orbit (Section: 3.3.1 and 3.3.2) [13]. 

 The Epicyclic model for oblate Earth by Hashida and Palmer (explained later in the chapter) 

[2]. 

The equations of motion used in this analysis are expressed in ECI coordinate system. Therefore, 

errors between the numerical and analytical trajectory in these coordinates would be required for the 

evaluation. However, more useful comparison of errors from the point of view of visualization can be 

done, by transforming errors from ECI coordinates into a Local Vertical Local Horizontal (LVLH) 

coordinate system. The LVLH coordinate system is also known as satellite coordinate system. The 

system moves with the satellite and its origin is the centre of gravity of the satellite (see Figure: 3-12). 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3-12: Illustration of the Local Vertical Local Horizontal (LVLH) system centred at satellite 

centre of gravity.     axis points from the Earth’s centre along the radius vector towards the satellite 

as it moves along the orbit.     axis points in the direction of velocity vector (not necessarily parallel) 

and is perpendicular to radius vector. The     axis is normal to the orbital plane. 
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The reference plane is the orbital plane of the satellite, and the principle direction is the radius vector 

from the centre of the Earth to the satellite. The x-axis points from the centre of the Earth along the 

radius vector towards the satellite, as it moves through the orbit. This motion is referred as radial 

direction. The z-axis is fixed along the direction normal to the orbital plane and is termed as cross-

track direction. The y-axis is perpendicular to the radius vector and is not aligned with the velocity 

vector except for Keplerian orbits and elliptical orbits at perigee and apogee (see Figure: 3-4 and 3-12 

for illustration) [14]. It is referred as in-track direction.  

In the following analysis the term reference orbit will be used for numerically obtained trajectory and 

analytical trajectory for a trajectory obtained from an analytic model. The IC at epoch time (t0) in 

terms of classical orbital elements       selected for the reference LEO orbit are: 

 

        a = 6863.100 km 

e = 0.0001 

I = 98 deg 

Ω = 0 deg 

ω = 0 deg 

ν = 0 deg 

M0 = 0 deg 

 

 

 

 

(3.33) 

 

 

 where, M0 is the mean anomaly at epoch. 

3.5.1 Analysis of Kepler’s Equation 

The Kepler’s equation provides an analytical solution for an unperturbed orbit under a spherically 

symmetric geopotential. It is expected that trajectories determined numerically and analytically for 

this problem would be sufficiently close to each. Moreover, as seen in Section: 3.4, the acceleration 

due to J2 produces significant variations in the orbit in terms of secular and periodic effects. 

Therefore, one would like to evaluate the analytic solution of the Kepler’s equation with J2 perturbed 

nonlinear equations of motion as well. Thus in this section an analysis would be carried out on 

following: 

 Analytic and numerical solutions of unperturbed 2 body equation. 

 Analytic solution of the Kepler’s equation compared with J2 perturbed 2 body equation.   

3.5.1.1 Unperturbed Two Body Equation and Analytic Solution of Kepler’s Equation 

In this section the analytic solution of the Kepler’s equation given in Equation: 3.29 and numerical 

solution of 2 body equation (Equation: 3.12) are being compared. The initial classical orbital elements 

given in Equation: 3.33 are firstly converted into ECI position and velocity vector using 

transformation routines provided in Appendix-A [12]. Given IC              
  in terms of ECI 

coordinates, numerical integration of Equation: 3.12 is computed using RK-4 with a step size 
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           for a time of 10 orbital periods (3/4 of a day for LEO satellites). This would form a large 

column vector         of      components. The analytical propagation of orbit trajectory in ECI 

coordinates is obtained by solving the Kepler’s Equation: 3.18 from initial orbital elements (Equation: 

3.33). This would form a column vector         of      components. In order to utilize the 

estimation algorithm (Equation: 3.11) an analytic expression for matrix (   is needed which could be 

expressed as [13]: 

 

 
        

   
 

        

     
 
     

      
  

   

      
 

  

 

 

 

(3.34) 

 

 

where,                        ,    is the epoch time,    is the IC in ECI coordinates, 

 
        

     
 is the partial derivative of satellite trajectory with respect to orbital elements at        

 
     

      
 is the partial derivative of orbital elements with respect to orbital elements at epoch       

 
   

      
 

  
 is the inverse of partial derivative of epoch state vector    with respect to orbital 

elements at epoch      . The partial derivatives expressed in Equation: 3.34 are obtained from Ref. 

[13] (see Appendix-B). The comparison with a reference trajectory is expressed as relative position 

and velocity deviations in LVLH coordinate frame of reference satellite. As shown in Figures: 3-13 

and 3-14 the positional errors are in order of 10
-4 

m and velocity errors in order 10
-8

 m/s. This shows 

that reference nonlinear model and analytical solution are in close conformity to each other. The 

comparison of estimated IC for the analytical trajectory and the chosen IC (Equation: 3.33) for 

nonlinear trajectory is given in Table: 3-2. 

 

Orbital Elements IC of Numerical Trajectory 

   

IC of Analytical Trajectory 

(Output of estimator -    )  

a 6863.100 km 6863.099 km 

e 0.0001             

i 98 deg ~ 98 deg 

Ω 0 deg 0 deg 

ω 0 deg 0 deg 

M0 0 deg             

 

Table 3-2: Comparison of IC for Numerical and Analytical trajectories for unperturbed Kepler’s 

Equation. The difference in IC for (i) is of the order of (      .   
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Figure 3-13: Time history of position errors for analytic solution of Kepler’s equation compared 

with numerical trajectory of unperturbed 2 body equation. 

 

 

 

Figure 3-14: Time history of velocity errors for analytic solution of Kepler’s equation compared 

with numerical trajectory of unperturbed 2 body equation. 
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3.5.1.2 J2 Perturbed Two Body Equation and Analytic Solution of Kepler’s Equation 

The comparison of the analytic solution of the Kepler’s equation with J2 perturbed 2 body equation is 

carried out in this section. Similarly the previous analysis for acceleration under spherically 

symmetric geopotential, now J2 perturbed 2 body Equation: 3.32 would be integrated numerically 

using RK-4. The orbital elements given in Equation: 3.33 are being used as IC for numerical 

integration in this analysis as well. The methodology for estimating IC for analytical solution remains 

the same as done in Section: 3.5.1.1. The comparison of estimated IC for the analytical trajectory is 

presented in Table: 3-3.  

 

Orbital Elements IC of Numerical Trajectory 

   

IC of Analytical Trajectory 

(Output of estimator -    )  

a 6863.100 km 6859.714 km 

e 0.0001           

i 98 deg 98.016 deg 

Ω 0 deg 0.353 deg 

ω 0 deg 178.85 deg 

M0 0 deg             

 

Table 3-3: Comparison of IC for numerical and analytical trajectory for J2 perturbed 2 body 

equation once compared with analytic solution of Kepler’s equation. 

 

 

The time history of the position and velocity in LVLH coordinate frame of the reference satellite are 

shown in Figures: 3-15 and 3-16. The maximum positional and velocity errors are summarized in 

Table: 3-4. As anticipated, there are significant errors in all three directions due to neglecting of J2 

acceleration in the Kepler’s Equation. The main cause of errors stems from secular variations in a J2 

perturbed orbit. As shown in Figure: 3.15 and 3.16, the worst case error is observed in cross-track 

direction. The cross track motion is primarily due to a difference in inclination and RAAN. Therefore, 

the secular growth in RAAN and periodic variation in the inclination (see Figure: 3-9 and 3-11) are 

responsible for these errors. Radial errors have significant deviations due to periodic terms in the 

semi-major axis and eccentricity (see Figure: 3-9), whereas, in-track errors are due to secular drift in 

argument of perigee and mean anomaly (see Figure: 3-11).  

However, all these errors are considerably less if compared with orbits once the IC are not estimated. 

This means that the IC (given in Equation: 3.33) is used to generate both analytical and numerical 

trajectories. The plots of positional and velocity errors without estimated IC are shown in Figure: 3-17 

and 3-18. A significant drift term in in-track motion is due to unbounded error growth in the secular 
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term in argument of perigee and mean anomaly. The effect is more pronounced due to a difference in 

the mean motion of the satellite caused by variation of the semi-major axis. The radial errors are more 

or less periodic in nature, with a constant offset term which is due to the offset term and short periodic 

variations in osculating semi-major axis and eccentricity (see Figure: 3-9). 

 

 

Figure 3-15: Time history of position errors for analytic solution of the equation of Kepler 

compared with numerical trajectory of J2 perturbed 2 body equation. 

 

 

Figure 3-16: Time history of velocity errors for analytic solution of Kepler’s equation compared 

with numerical trajectory of J2 perturbed 2 body equation. 
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Figure 3-17: Time history of position errors for analytic solution of Kepler’s equation compared 

with numerical trajectory of J2 perturbed 2 body equation without estimating IC. 

 

 

Figure 3-18: Time history of velocity errors for analytic solution of Kepler’s equation compared 

with numerical trajectory of J2 perturbed 2 body equation without estimating IC. 



57 

 

 

IC used for propagation  

of Kepler’s Equation 

Position Errors 

(m) 

Velocity Errors  

(m/s) 

R I C R I C 

   7906 318834 83668 6.82 14.78 90.88 

    3136 852 41904 3.65 1.77 44.38 

R – Radial, I – In-track, C – Cross-track 

    – Output of the estimator 

   – IC of Numerical trajectory  

 

 

 

Table 3-4: Summary of the Maximum Absolute Position and Velocity Errors in LVLH 

Coordinates over 10 Orbital Periods for analytic solution of Kepler’s Equation compared with the 

numerical solution of J2 perturbed 2 body Equation: 3.32. 

 

 

3.5.2 Epicyclic Motion of Satellite about an Oblate Planet 

An analytic formulation for a near circular epicyclic orbit of a satellite around an oblate Earth by 

Hashida and Palmer [2] is now being considered for analysis. The model has a simple analytic form, 

describing all the geopotential terms arising from the Earth zonal harmonics. In this analysis terms up 

to J2 are utilized. The state of a satellite in an epicyclic orbit is defined by a set of six osculating 

(instantaneous) spherical coordinates expressed in ECI (Equation: 3.35). The position of the satellite 

is described by a redundant set of four coordinates           and velocity by        . The pictorial 

representation of these coordinates is shown in Figure: 3-19. Inclination     and right ascension of the 

ascending node     defines the orbital plane of a satellite (the plane containing the position and 

velocity vectors), and radial coordinate     and argument of latitude     locate the position of the 

satellite on that plane. The argument of latitude     is analogous to sum of argument of perigee     

and true anomaly     for circular orbits (see Figure: 3.3). However, it is measured from the time when 

the satellite crosses the initial ascending node while travelling from the southern hemisphere to the 

northern hemisphere. The components of velocity are radial velocity      and azimuthal velocity 

    . The geometrical shape of an epicyclic orbit is described by six constant parameters; semi-major 

axis (a), inclination (I0), right ascension of ascending node (Ω0), non singular parameters for 

undefined epicycle phase at perigee passage (needed for equatorial orbits) (ξP, ηP) and equator crossing 

time (tE). 
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Figure 3-19: Geometrical representation of Epicycle coordinates of                 in ECI 

coordinate frame. Inclination     and right ascension of the ascending node     defines the orbital 

plane of a satellite and radial coordinate     and argument of latitude     locate the position of the 

satellite on that plane. Radial velocity      and azimuthal velocity      are also shown. 

 

 

The mathematical expressions for the quantities are expressed in [2],[14]: 
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(3.35) 

 

 

where, r is the radius, I is the inclination, Ω represents the right ascension of the ascending node, λ is 

the argument of latitude, vr is the radial velocity, vθ is the azimuthal velocity,         , α = n(t - 

tE), where tE is the Equator passage time,     is the short periodic coefficient due to J2,    is the short 

periodic coefficients due to higher zonal harmonic terms, long periodic variations in the orbit are 

described by χ. Other constants include, semi-major axis (a), inclination (I0), right ascension of 

ascending node (Ω0), (ξP, ηP) are the non singular parameters for the undefined epicycle phase at 

perigee passage where,    
 

 
         

 

 
      , αP = n(tP - tE), tP is the perigee passage time, A 

is the Epicycle amplitude and n denotes the mean motion.  , are secular variations in the orbit. The 
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quantities       for J2 are given by [2]: 

 

 

   
 

 
   

  

 
 

 

              

    
 

 
   

  

 
 

 

      

    
 

 
   

  

 
 

 

              

 

 

 

(3.36) 

 

 

The short periodic coefficients for J2 are provided in Appendix-C. In this analysis higher order zonal 

harmonic coefficients are not considered for secular and periodic variations in the orbit other than J2. 

Moreover, there are no long periodic effects in the orbit due to J2. Therefore one would neglect the   

term in Equation: 3.35. Thus, the differentials of epicycle coordinates           from Equation: 3.35 

after neglecting higher order zonal and   terms are [14]: 
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By using epicyclic orbital coordinates of (r, I, Ω, λ), the ECI position coordinates could be expressed 

as [14]: 
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(3.38) 

 

Using Equation: 3.35 and differentials of Equation: 3.37, the ECI velocity coordinates are [14]: 
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where, “c” and “s” stands for sine and cosine functions. In this model the full orbital evolution 

equations (Equation: 3.35) determine the motion once we know the six epicycle parameters. 
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Therefore, one would consider epicycle orbital parameters    to be estimated, expressed as: 
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(3.40) 

 
   

where,    is the initial epicycle phase which is analogous to M0 is the mean anomaly at epoch in 

classical orbital elements. The time history of ECI position and velocity for numerical trajectory are 

obtained by integrating equations of motion (Equation: 3.32) as previously done for analysis of 

Kepler’s equation. The partial derivative matrix for this estimation problem (see Appendix-D for 

components) is expressed as [14]: 

 
  

        

   
 

  

     

     

   
 

 

 

 

(3.41) 

 

where, 
        

     
 is the partial derivative matrix of epicycle trajectory (in ECI coordinates) with 

respect to epicycle coordinates     , 
     

   
 is the State Transition Matrix (STM) / partial derivative 

matrix of epicycle coordinates with respect to epicycle parameters and vector “y(t)” for the problem, 

consisting of epicycle coordinates is expressed as: 
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(3.42) 

 
 

The initial conditions of the reference orbit are same as expressed in Equation: 3.33. Epicycle orbital 

parameters (Equation: 3.40) were found out by using the estimator for orbital data generated over time 

span of 10 orbital periods. The optimal choice of these parameters is shown in Table: 3-5. 

 

Orbital Elements IC of Numerical Trajectory 

   

IC of Analytical Trajectory 

(Output of estimator -    )  

a 6863.100 km               

   0.0001             

   0              

   98 deg             

   0 deg               

   0 deg                

 

Table 3-5: Comparison of IC for numerical and analytical trajectory for J2 perturbed 2 body 

equation once compared with analytical epicycle orbit.   
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With IC estimates     presented in Table: 3-5 the epicycle orbit of a satellite is propagated forward 

using Equations: 3.38 and 3.39 and then converted into LVLH frame of satellite propagated through 

numerical integration of Equation: 3.32 using RK-4. The results are presented in Figure: 3-20 and 3-

21. 

 

 

 

 

 

Figure 3-20: Time history of position errors for epicycle orbit compared with numerical trajectory 

of J2 perturbed 2 body equation. 

 

 

The errors in both positions and velocity are considerably small and show no divergence over time. 

Table: 3-6 summarizes the maximum errors for position and velocity the LVLH coordinate frame. The 

maximum in-track and radial positional errors are about 0.034 m and 0.19 m respectively over 10 

orbital periods which is a significant improvement over the solution of Kepler’s Equation (see Table: 

3-4). However, the maximum cross track error is about 1.19 meters which is due to the difference in 

periodic variations of RAAN and the inclination. The error in velocity plots is also low on the order of 

0.0001-0.0043 m/s. The epicycle propagation Equations: 3.35 and 3.37 also take into account the 

second order epicycle coefficients for J2 i.e., J2
2 

[2] (see Appendix-C for details). Thus, the Epicycle 
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model is quite accurate and shows improvement in fidelity with a proper choice of initial conditions. 

 

Figure 3-21: Time history of velocity errors for epicycle orbit compared with numerical trajectory 

of J2 perturbed 2 body equation. 

 

 

The position and velocity errors for the Epicycle model without modifying the parameters are now 

calculated to compare the effectiveness of choosing appropriate parameters for orbital propagations. 

The results are shown in Figures: 3-22 and 3-23. The positional errors for in-track direction show a 

secular drift and an increased growth of periodic errors in cross track directions. The in-track errors 

are due to inappropriate choice of the semi-major axis “a” and “α0” and cross track errors due to 

different I and Ω. Therefore the appropriate choice of parameters is crucial. 

 

EP used for propagation of 

epicycle orbit 

Position (m) Velocity (m/s) 

R I C R I C 

   2 47.86 2.14 0.0023 .0042 0.0037 

    0.19 0.034 1.19 0.0005 .0001 0.0043 

EP – Epicycle Parameters 

R – Radial, I – In-track, C – Cross-track 

   – EP for Numerical trajectory 

    – Estimated EP for Analytic trajectory  

 

Table 3-6: Summary of the Maximum Absolute Position and Velocity Errors in LVLH 

Coordinates over 10 Orbital Periods for the Epicycle Model. 
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Figure 3-22: Time history of position errors for epicycle orbit compared with numerical trajectory 

of J2 perturbed 2 body equation without estimating IC. 

 

 

Figure 3-23: Time history of velocity errors for epicycle orbit compared with numerical trajectory 

of J2 perturbed 2 body equation without estimating IC. 
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3.5.3 Conclusion 

In this section the analytical solution for 2 body equations of motion due to spherical and non-

spherical geopotential has been examined. Solutions of the equation of Kepler provide the 

fundamental concept of orbital motion. The solution is almost exact for equations of motion without 

perturbations due to non-spherical Earth. However, for non-spherical Earth, the solution of Kepler’s 

equation is insufficient to capture the true orbital dynamics characterized by secular and periodic 

variations which is the main source of its process noise. The analytic solution expressed as epicyclic 

motion of a satellite around an oblate Earth by Hashida and Palmer captures the secular and periodic 

variations in the orbit of satellite sufficiently well. Improvement in efficiency due to correct choice of 

parameters     for this orbit has also been demonstrated. By using appropriate IC one is able to reduce 

positional errors considerably in all the three directions. For Kepler’s equation the error is reduced by 

60% in radial, 99.7% in in-track, 49.9% in cross track respectively. For Epicycle model it is reduced 

by 90.5% in radial, 99.92% in in-track, and 44.39% in cross track respectively. 

3.6 Relative Motion between Satellites 

Recent interest in formation of satellites, in wide range of space missions [17],[86] has revived the 

interest in development and use of relative motion models [18],[19]. In this section a relative motion 

model of two satellites will be described. Briefly, described in Section: 2.4, the basic relative orbital 

motion is defined for a formation of two satellites where the motion of one of the satellite known as 

deputy is considered with respect to another known as chief satellite [88]. There are different choices 

of relative motion coordinate systems and reference frames for this description.  A geocentric ECI and 

the chief centred Local LVLH coordinate system are two choices shown in Figure: 3-24. The LVLH 

coordinate system is fixed to the chief satellite and the relative motion of a deputy satellite is 

described in three directions i.e., the motion along x, y, and z is referred as radial, In-track and cross-

track motion, respectively. LVLH coordinate system is a good choice for visualizing the relative 

orbits. In ECI coordinate system the relative motion can be obtained by integrating the two sets of 

Equation: 3.32, one for chief and one for deputy. The inertial relative displacement and velocity 

vectors are expressed as [88]: 

 
            

               

 

 

 

 

 

 

(3.43) 

 

 

 

 

where, the subscript “c” and “d” denote chief and deputy satellite respectively.  

 

The relative motion between the two satellites can be transformed into LVLH from ECI coordinates 

using a transformation matrix       defined as follows [12]: 
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(3.44) 

 

 

  

where, R stands for radial , I denotes in-track, C is the cross-track,       is the transformation matrix 

which transforms ECI (E) coordinates into LVLH (L) coordinates and the unit vectors       are defined 

as: 

 

 

    
   
  

 

            

    
        
          

 

 

 

 

 

 

 

(3.45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-24: Illustration of the satellite relative motion coordinate system, Local Vertical Local 

Horizontal (LVLH) with reference to Chief (C) satellite.     axis points from the Earth’s centre along 

the radius vector towards the satellite as it moves along the orbit.     axis points in the direction of 

velocity vector (not necessarily parallel) and is perpendicular to radius vector. The     axis is normal 

to the orbital plane. Relative motion of Deputy (D) satellite can be expressed in Chief (C) satellite 

centred LVLH reference frame.        
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By using Equation: 3.43-44, the relative position in LVLH coordinates is obtained as: 

 

                

 

 

 

 

 

 

 

(3.46) 

 

 

 

 

The relative velocity in LVLH coordinates is expressed using the principal of kinematics and 

Equation: 3.43 and 3.46 as: 

 

 

                           

 

 

 

 

 

 

 

(3.47) 

 

 

 

 

where, 

       
        

  
  

 

 

 

 

 

 

 

(3.48) 

 

 

 

 

 

 

3.7 Analysis of Relative Motion 

In this section analysis of two linearized satellite relative motion models will be carried out. Firstly, a 

relative motion model described for chief and deputy satellite orbits with assumptions of spherically 

symmetric geopotential, circular orbit of chief satellite and linearized differential gravity acceleration 

will be analyzed. The model is termed as HCW Equations [18],[19]. Secondly, analysis of a relative 

motion model for satellites under non-spherical geopotential for zonal harmonic terms up to J2 will be 

undertaken. This model is termed as J2 modified HCW by Shweighart and Sedwick (SS) [20]. The 

nonlinear satellite relative motion model developed in Equations: 3.46 and 3.47 is being considered as 

reference (true) relative motion. The orbit of chief satellite is chosen as Synthetic Aperture RADAR 

(SAR) Lupe-1 sun-synchronous orbit. The initial conditions for this satellite are obtained from the 

North American Air Defence Command (NORAD) Two Line Element (TLE) set expressed as; a = 

6863.100 km, e = 0.0015961, I = 98.1794 deg, Ω = 84.4914 deg, ω = 2.2798 deg, M0 = 133.5407 deg 

[101]. NORAD maintains the TLE set for each operational satellite and for the large non-operational 

satellite / debris orbiting Earth (for details see Ref. [101]). The deputy Satellite is selected to be in free 

orbit ellipse relative orbit (natural closed orbital path of satellite in a formation) with relative orbit 

amplitude A = 50 m [20] as shown in Figure: 3-25. 

The fundamental idea in this analysis is the optimal selection of IC for relative orbit described by 

linearized equations of motion. These IC would minimize the difference between the reference (true) 

and linearized relative motion. The selection of IC using GLDC scheme provides an optimal choice 

for such condition. However, the relative orbital models due to difference in assumptions on true 



67 

 

nonlinear dynamics of chief satellite would present a varying fidelity when compared with truth orbit. 

3.7.1 Hill Clohessy Wiltshire Model 

The HCW model for satellite relative motion are set of three second order linear differential equations 

expressed as [19],[18],[12]: 
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(3.49) 

 

 

where, x, y and z are relative motion coordinates in LVLH frame of reference, centred on chief 

satellite.  

 

 

 

 

 

 

 

Figure 3-25: Geometry of the free orbit ellipse for relative motion of chief and deputy satellites 

(drawn in blue colour). The projection of the deputy satellite orbit (drawn in blue colour) on y-z plane 

forms a circle (drawn in red colour), projection on x-y plane forms       ellipse (drawn in black 

colour) and projection on x-z plane forms a line (drawn in green colour). 
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The analytical solutions to HCW equations admit bounded periodic orbits (subject to suitable initial 

conditions) and are given as [12]: 
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(3.50) 

 

 

where,                          
   is the IC for the HCW relative orbit. Given any IC the relative 

motion coordinates of a deputy satellite can be obtained at any time “t”: 

 

 
      

                       

       
 

                         

(3.51) 

 

where, superscript “p” in Equation: 3.51 denotes the analytical solution for the relative motion of a 

satellite. One may notice the secular drift term in the expression for in-track (y) solution in Equation: 

3.50. In order to obtain the zero secular drift term, the initial condition for     would be obtained as: 

 

 

          

 

(3.52) 

Since this analysis is based on equations of motion given in ECI coordinate frame therefore; the 

relative motion of a satellite (given in Equation 3.50) is converted into ECI coordinates. Essentially, a 

reverse procedure from Equation: 3.46-3.47 is adopted to acquire these coordinates: 

 

 
   

 
        

  
      

 
     

    
 

        
 

             
 

      

 

 

 

(3.53) 

 

 

 

The components    
 

             for ECI position coordinates can be expressed as: 
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(3.54) 

 

 

where, the unit vectors    ,     and     are obtained from Equation: 3.45 and           
  are ECI 

position coordinates of chief. The ECI velocity coordinates     
 

    
        

  
 

 are expressed as: 
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(3.55) 

 

where,    ,   , and    are components of the angular velocity vector of the chief satellite       is 

expressed in Equation: 3.48 and    
        

  
  are ECI velocity coordinates of chief satellite. Equations: 

3.54-3.55 would be considered as an analytical description of the deputy satellite. The partial 

derivative matrix F for the estimation of IC for a deputy satellite is obtained as: 

 

   
        

   
 

 

 

 

(3.56) 

 

 

The partials for ECI position coordinates are expressed as: 
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The partials for ECI velocity coordinates are expressed as: 
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where,    is the state vector to be estimated and is given as                           
 . Similarly the  

analysis for absolute satellite orbital dynamics, one would now compare the HCW relative orbital 

model with the reference nonlinear relative motion developed in Equation: 3.46-3.47. In view of the 

estimation scheme developed in Section: 3.2, one would require orbital data for reference and 
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analytical trajectory of a deputy satellite. The data of the reference deputy satellite for 10 orbital 

periods was generated by numerically integrating Equation: 3.32 using RK-4 with a step size of 5 sec. 

The orbital data for analytical trajectory of the same deputy satellite was obtained using analytic 

solutions (Equation: 3.54-3.55). The initial conditions of a free orbit ellipse periodic orbit as shown in 

Figure: 3-25 were selected for the deputy satellite with initial relative orbit amplitude A = 50 m and 

initial phase ( ) = 56 deg (in this section reuse of     for initial phase instead of geocentric latitude is 

done) as shown in Figure: 3-26.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-26: Illustration of “free orbit ellipse” relative orbit in x-y plane forming       ellipse 

with amplitude A = 50 m and initial phase          (drawn not to scale).  

 

The LVLH coordinates of the deputy satellite are converted into ECI Position and Velocity using 

Equation 3.53. This would be used as initial conditions for generating numerical trajectory of the 

deputy satellite. Using the estimation algorithm the optimal IC     for orbit of deputy is found out (see 

Table: 3-7). 

IC in LVLH  

Coordinates frame 

IC of Numerical Trajectory 

   

IC of Analytical Trajectory 

(Output of estimator -    )  

                         

                           

                          

                       

                             

                       

 

Table 3-7: Comparison of IC for numerical and analytical trajectory for HCW equations 

compared with J2 perturbed full nonlinear relative motion equations. 

y

  

Relative orbit 
A 

  

x 

Satellite 

Chief 

Deputy 

2A 
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The estimated IC expressed in Table: 3-7 are then used for propagation of the orbit of the deputy 

satellite using Equation: 3.50. The reference relative motion of the deputy satellite obtained from 

Equation: 3.46-3.47 is considered for comparison. In other words, the errors in ECI coordinates 

between the two orbital descriptions (analytical and numerical) for a deputy satellite are converted 

into LVLH frame of deputy satellite whose orbital data is obtained from numerical integration of 

equations of motion which could now be considered as chief satellite. These results are shown in 

Figure: 3-27 and 3-28. 

 

 

 

Figure 3-27: Time history of position errors for HCW equations using optimal initial conditions     

in LVLH coordinate frame. 

 

 

The error plots (Figure: 3-27 and 3-28) indicate growth of errors in all three directions. Table: 3-8 

summarizes errors in position and velocity coordinates. The worst case error is observed in in-track 

direction. The error is periodically increasing with a secular drift. The error has gone up to 40 m in 10 

orbital periods, owing to inability of HCW equations to capture the difference in the orbital energies 

of satellite experiencing J2 which is due to the difference in the semi-major axis “a”. Bearing in mind 

the precession of the orbit of satellite experiencing J2 around the North Pole of Earth and a continuous 

nodal drift, cross track motion is visualized. As stated earlier that the cross track motion is solely 

dependent on the difference in the inclination and nodal separation of the two orbital planes which 

does not remain constant under the influence of J2. Thus there is an increase in the error in the cross-
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track amplitude of maximum of 8 m in 10 orbital periods and continuous drift as viewed in the 

simulation results. The radial direction errors are also periodically increasing as the instantaneous 

semi-major axis of the perturbed orbit is also varying which is not captured by HCW equations. -

However, the errors are about maximum of 19 m in 10 orbital periods. The velocity plots indicate rise 

in error periodically over the experimental time span. This indicates the HCW equations are not a true 

representative of nonlinear relative velocities especially with J2. The maximum error of 0.06 m/sec is 

observed in in-track direction. The velocity errors of radial and cross track are periodically increasing 

with maximum absolute error of 0.02 m/sec. 

 

 

Figure 3-28: Time history of velocity errors HCW equations using optimal initial conditions     in 

LVLH coordinate frame. 

 

 

The errors in the analytic and true relative motion without using estimated initial conditions are shown 

in Figure: 3-29 and 3-30. The position errors clearly indicate breakdown of HCW solutions when 

compared with the true nonlinear relative motion. Moreover, the sensitivity of these solutions to IC is 

now clearly obvious. Errors in km are observed in in-track direction owing to differences in orbital 

energies of satellites perturbed by J2. The simplicity of HCW equations makes it the most favourable 

choice for the relative motion analysis. The analysis under different choices of the chief orbit is now 

being looked into. The most important orbital parameters are semi-major axis “a”, inclination “I0” 

and eccentricity “e”. 
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IC used for propagation of  

HCW Equations 

Position (m) Velocity (m/s) 

R I C R I C 

   406 12663 14 0.32 0.82 .01 

    19 40 8 0.02 0.06 0.01 

R – Radial, I – In-track, C – Cross-track 

   – IC for Numerical Trajectory 

     – Estimated IC (Output of Estimator)  

 

 

Table 3-8: Summary of Maximum Absolute Position and Velocity Errors in LVLH Coordinates 

over 10 Orbital Periods for HCW Model 

 

 

 

 

Figure 3-29: Time history of position errors HCW equations without using estimated initial 

conditions. 
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Figure 3-30: Time history of velocity errors for HCW equations without using estimated initial 

conditions. 

3.7.2 Orbit Eccentricity 

HCW equations are derived for circular orbit of chief with e = 0. Therefore, its solutions are not valid 

for moderate or highly eccentric orbits. Figures: 3-31 and 3-32 shows how different eccentricities of 

chief orbit effect errors in LVLH frame between reference and HCW modelled relative motion. The 

chief satellite is still with same initial conditions as for SAR-Lupe 1. However, one now varies the 

range of eccentricities for this satellite and estimate the orbit of deputy satellite for one orbital period 

to find out the growth of errors over time. A criterion for maximum errors of 5% between the true 

relative and linearized (HCW) relative motion in LVLH coordinates of free ellipse orbital size is set. 

The idea is to observe different eccentricities of chief orbit for this measure to hold good. The range 

of eccentricities comes out to be               . Therefore, the choice of “e” can be made 

depending on the maximum allowable error.  

3.7.3 Semi Major Axis and Inclination 

The orbit semi major axis and inclination are two parameters which appear in the expressions 

(Equation: 3.36) for secular and periodic terms in J2 perturbed orbits. Since, HCW equations assume 

spherically symmetric geopotential for absolute motion of chief satellite therefore; changing these 

parameters will impact differences in true and linearized (HCW) relative motion. Similarly to the 

analysis in Section: 3.7.2, one again sets the criterion for maximum errors between the true relative 

and linearized (HCW) relative motion as 5% in LVLH coordinates of free ellipse orbital size. The 
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errors are observed to be less than 5% of free ellipse orbital size in all the three directions over one 

orbital period (shown in Figures: 3.33 to 3.35). 

 

 

 

Figure 3-31: Maximum position errors for HCW equations with optimal initial conditions     over 

1 orbital period. 

 

 

 

Figure 3-32: Maximum velocity errors for HCW equations with optimal initial conditions     over 

1 orbital period. 
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However, there is an increased positional error at lower inclination and lower orbital semi major axis 

due to a more pronounced effect of oblateness of Earth near equatorial inclinations and reduced 

distance from the main gravitational force i.e., Earth, respectively. As IC are chosen by minimizing 

the variance, therefore the error growth is significantly less compared to error statistics provided in 

Table: 3-8 for initial conditions selected without estimation. 

 

 

Figure 3-33: Maximum position errors (radial direction) for HCW model over one orbital period 

using optimal IC. 

 

 

Figure 3-34: Maximum position errors (in-track direction) for HCW model over one orbital period 

using optimal IC. 
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Figure 3-35: Maximum position errors (cross-track direction) for HCW model over orbital period 

using optimal IC. 

 

3.7.4 J2 Modified HCW Equations by Schweighart and Sedwick 

Analysis of HCW equations in Sections: 3.7.1 to 3.7.3 reveals that its solution would break down if 

the assumptions of circular chief orbit, spherically symmetric geopotential and linearized differential 

gravity accelerations are violated (see Figure: 3-29 and 3-30). Therefore, a need was felt to derive 

equations that describe the relative motion of satellites under the influence of eccentric chief orbit, 

non linear differential gravity and oblate Earth. The zonal spherical harmonic J2, due to oblate Earth, 

being the most significant perturbation will be considered here for analysis of the relative motion of 

satellites. In this section a modification of the HCW equations for J2 perturbed relative motion of 

satellites given by SS [20] will be analyzed. The procedure for analysis of HCW equations will now 

be repeated for SS model. The J2 modified HCW equations for relative motion between two satellites 

under the effect of J2 is given by three second order linear differential equations expressed as under 

[20]: 
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where, 
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In this model the angular velocity vector         of rotating frame is slightly modified. The value of 

mean motion “n” (         ) is slightly varied by a factor “c” for in-plane (x-y) motion. Equations are 

still coupled in in-plane, and decoupled in out-of-plane directions. Moreover, angular frequency of 

cross track motion is changed to “q”. The analytic solutions to modified HCW equations (Equation: 

3.59) as found out by SS are presented in Appendix-E [20].The analytical solutions of SS relative 

motion model are firstly transformed form LVLH into ECI coordinate frame, following the 

methodology of Equations: 3.54-3.55 and will not be repeated here for the sake of clarity. However, 

the partial differential matrix for SS model in the estimation problem is presented in Appendix-F. On 

similar lines to HCW equations, orbital data for the reference deputy satellite is obtained by numerical 

integration of the nonlinear equation of motion (Equation: 3.32). The orbital data for linear 

approximation of the deputy satellite is obtained using the transformed SS model (transformed from 

LVLH to ECI). The estimation process for J2 Modified HCW Equations is now carried out. The initial 

conditions provided to the deputy satellite in LVLH coordinate frame obtained from the SS model 

with A = 50 m and          [20] and estimated IC are given in Table: 3-9. 

 

IC in LVLH  

Coordinates frame 

IC of Numerical Trajectory 

   

IC of Analytical Trajectory 

(Output of estimator -    )  

                         

                           

                          

                          

                            

                          

 

Table 3-9: Comparison of IC for numerical and analytical trajectory for HCW equations 

compared with J2 perturbed full nonlinear relative motion equations. 
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Non-zero velocity terms for (x) and (y) (see Table: 3-9) for the numerical trajectory are used to 

remove the drift and offset terms of the SS solution (see Appendix-E for details). Errors in the relative 

orbit of the deputy satellite propagated by numerical integration of equations of motion and analytical 

SS model with the newly estimated state for 10 orbital periods is shown in Figures: 3-36 and 3-37. 

Table: 3-10 summarizes the position and velocity error statistics. A considerable improvement is 

observed in all the three LVLH coordinates. Although, in-track errors are comparatively larger than 

others, however, they provide useful insight into the dynamics and their growth is smaller when 

compared with the HCW model (Figure: 3.27). Firstly because of the modification carried out in the 

mean motion of the chief satellite by a factor “c” in in-plane (x-y plane). Secondly, the drift rate has 

also been reduced due to correct initial conditions applied for elimination of the secular growth in in-

track motion (given in Appendix-E). Moreover, the in-plane growths are periodic in nature. In radial 

direction the error is about max 10 m. In cross-track the error is max 5 m. For comparison purposes 

the initial conditions    (Table: 3-9) are now used to observe the deputy satellite without estimation. 

The error plots for position and velocity are shown in Figures: 3-38 and 3-39. As expected, the errors 

are substantial, especially in in-track direction where it grows up to 2.744 km in 10 orbital periods; 

whereas, the cross track error and radial errors are 260 m and 7.4 m, respectively. 

 

 

Figure 3-36: Time history of position errors for SS model after using optimal initial conditions. 
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Figure 3-37: Time history of velocity errors for SS model after using optimal initial conditions. 

 

 

 

 

Figure 3-38: Time history of position errors for SS model without modifying initial conditions. 
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Figure 3-39: Time history of velocity errors for SS model without modifying initial conditions. 

 

IC used for propagation of  

SS equations 

Position (m) Velocity (m/s) 

R   I C R I C 

   260 2744 7.4 0.26 0.56 0.007 

    10 16 5 0.010 0.020 0.005 

R – Radial, I – In-track, C – Cross-track 

   – IC of numerical trajectory 

     – Estimated IC (output of estimator)  

 

Table 3-10: Summary of Maximum Absolute Position and Velocity Errors in LVLH Coordinates 

over 10 Orbital Periods for SS Model 

3.7.5 Conclusion 

In this section a comparison of two relative motion models for satellite flight formations was carried 

out. Firstly, the HCW model has been investigated with a view to analyze its process noise and 

assessment of its fidelity compared with the reference nonlinear relative motion model. The choice of 

initial condition is very critical to minimize effects of un-modelled accelerations and nonlinearity of 

true equations of motion. Using appropriate IC, the errors in the HCW model are reduced to 95.3% in 
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radial, 99.68% in in-track and 42% in cross track directions, respectively. The analysis on different 

choices of the semi-major axis, inclination and eccentricity of chief orbit has also been undertaken. 

The choice of appropriate IC is essential to reduce the unbounded error growth for all such choices. 

Secondly, the SS relative motion model is analyzed for its process noise and evaluation of fidelity. SS 

model provides improvement of HCW equations for J2 perturbed relative motion. However, due to 

averaging of second zonal harmonic J2 over entire orbital period [20], could not truly capture the true 

secular and periodic variations in the orbit. Nevertheless, by using appropriate IC the reduction in 

LVLH errors amounts to 96% in radial, 99.4% in in-track and 32.4% in cross track. 

3.8 Free Propagation Error Growth 

The orbital models discussed in this analysis will now be assessed for growth of error in LVLH 

position coordinates when propagated forward in time after being initialized with optimal initial 

conditions. The choice of such of initial conditions is based on estimation for only one orbital period. 

The error of 10 m in any direction i.e., radial, in-track and cross-track is selected as maximum 

allowable during the forward propagation. Essentially one would observe the time for which the errors 

for particular orbital model remain bounded inside a cube with 10 m on each side. Table: 3-11 provide 

the error statistics for positions. The plot for HCW, SS and Epicycle model are shown in Figures: 3-40 

to 3-42. 

 

 

 

Figure 3-40: Time history of growth of position errors for HCW model using optimal initial 

conditions (based on estimation for one orbital period). 
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Figure 3-41: Time history of growth of position errors for SS model using optimal initial 

conditions (based on estimation for one orbital period). 

 

Figure 3-42: Time history of growth of position errors for Epicycle model using optimal initial 

conditions (based on estimation for one orbital period). 

 

 

The error for HCW and SS model reaches 10 m, well before one day for a deputy satellite selected in 
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this example with chief orbit as of SAR Lupe-1. However, for epicycle model the errors remain 

bounded for 50.3 days (766 orbital periods) in radial, 29.07 days (442 orbital periods) in in-track, and 

62.96 (957 orbital periods) days in cross-track directions, respectively. 

 

Model for 

analytical trajectory 

 

Time (Orbital Periods) when error exceeds 10 m  

(in any direction) in LVLH coordinates frame 

R I C 

HCW 4.10 1.24 10.69 

SS 6 3.72 15 

Epicycle 766 442 957 

R – Radial, I – In-track, C – Cross-track 

 

Table 3-11: Summary of absolute position errors limit criteria of 10 m in any three directions of 

LVLH coordinates frame. 

 

3.9 Summary 

In this chapter an analysis of fidelities of different orbital models has been carried out. The error 

statistics are tabulated to assess their long term growth. The analytical models greatly enhance 

understanding of complex orbital motion. However, due to simplifications and neglecting the actual 

dynamics may lead to considerable errors especially for formation flying missions. The initial 

conditions found out through estimation do not produce the desired absolute or relative motion. They 

are meant to generate analytical model satellite trajectories which are very close to the reference 

nonlinear trajectory produced by numerical integration. By using adapted GLDC estimator 

formulations, considerable reduction in positional errors could be achieved in all the three directions. 

Furthermore, by using estimated IC one is able to compare the validity and usefulness of analytical 

models over a period of time (see Table: 3-11). This has implications on use of a particular analytic 

model for close orbiting satellites. For example, consider a satellite formation with inter satellite 

distance of < 50 m. In this scenario new estimate of IC would be required more frequently (less than a 

day) for HCW or SS models compared to epicycle model which provides months of accuracy without 

updating orbital parameters. These formulations can be also used to generate forward propagation for 

evolution of orbits in sequential state estimators and orbit controls. In orbit control scenario one may 

modify the initial conditions to generate an orbit which is very close to perturbed orbit and then apply 

control corrections to achieve the desired trajectory.        
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4 Epicycle Orbit Parameter Filter 

 

 

4.1 Introduction 

In Section: 3.4 orbital dynamics of a satellite around a non-spherical geopotential were described. 

When the perturbing forces are conservative, as with the gravitational perturbation due to non-

spherical nature of our planet, then the accelerations (Equation: 3.32) are expressed as gradients of the 

disturbing function (Equation: 3.30). Axisymmetric geopotential i.e., symmetric about the North Pole 

of the Earth will be considered here. In general, numerical integration of equations of motion of a 

satellite in a non-spherical gravitational field would yield its high precision ephemerides. Preceding 

analysis of Chapter: 3, focused on mathematical models for LEO satellites influenced by accelerations 

due to spherical gravitational potential and perturbations due to J2. There a methodology of fitting an 

approximate model to nonlinear data by adapting GLDC scheme (Section: 3.2) was discussed. The 

high fidelity nature of analytic epicycle model [2] was clearly evident especially due to the lower 

error growth i.e., few meters over long durations (see Table: 3-11) compared to other analytical 

models like Kepler’s equation [13] (see Table: 3-4), HCW [18],[19] and SS model [20] (see Table: 3-

10). The epicycle model is capable of describing all the gravitational perturbative effects arising due 

to the oblate shape of the Earth. The higher order zonal effects can be incorporated in terms of 

coefficients for secular, long and short periodic variations in the orbit (see Equation: 3.35). These 

higher order zonal effects can be further expressed in terms of even and odd harmonic for variations 

in the orbit. There are no long periodic and secular variations in the orbit due to even and odd zonal 

harmonics, respectively [2]. Therefore, we denote the higher even harmonics with subscript 2m, and 

the terms due to odd harmonics with subscript 2m+1. The coefficient for radial offset    , coefficient 

for secular variation in RAAN    , and coefficient for secular variation in argument of latitude     in 

Equation: 3.35 can be extended as: 

 

 

 
      

 

   

             

 

   

             

 

   

       

 

 

 

(4.1) 

 

 

The coefficient inside summation are calculated as [2],[14]: 
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(4.3) 

 

 

Note that the order    . However for practical reasons, yet sufficiently accurate requirements the 

series can be truncated up to a certain order for example M = 20 for       WGS-84 model [12] and 

Legendre function   
     is defined as: 

 

   
              

  

   
      

 

 

(4.4) 

 

 

As there are no secular variations in the orbit due to odd zonal harmonics therefore [2]: 

 

 
                    

 

 

(4.5) 

 

 

 

For short periodic coefficients    (see Equation: 3.35) one has the expression 
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The even short periodic perturbations inside summation of Equation: 4.6 can be expressed as: 

 

 

    
      

       

 

   

     
     

           

 

   

 

    
      

       

 

   

     
      

       

 

   

 

 

(4.7) 

 

where, 

 

    
            

     

       
   
  

 

   
                    

  
 

    
            

     
     

   
  

 

    
       

           

     

  
   

       

       
    

  
 

   
      

     
  

  

 

     

   
  

 

(4.8) 

 

 

Finally the short periodic variations due to odd zonal harmonics are [14]:  
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where, 
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(4.10) 

 

 

Now the long periodic variations in radial coordinates (first of Equation: 3.35) is expressed as [2]: 

  

            

 

   

 

 

          
     

  
      

 
 

(4.11) 

 

 

Since there are no long periodic variations in the orbit due to even zonal harmonics therefore: 

 
      

 

 

(4.12) 

 

All the perturbative effects due to zonal harmonics (Equation: 4.1 to 4.12) can be conveniently 

incorporated into the epicycle evolution equation (Equation: 3.35) to obtain a high precision analytical 

trajectory. However, being an analytical orbital description its long term propagation needs a proper 

choice of the orbital parameters.  

In the preceding analysis (Chapter: 3), it was observed that by carefully choosing the orbital 

parameters for an analytical approximation appropriate to a given choice of parameters for the 

numerically propagated orbit obtained from nonlinear equations of motion would keep the two 

trajectories sufficiently close to each other for long times and can minimize error growths (see Figure: 

3-2). However, one of the main difficulties / complexities associated with methodology of Section: 3.2 

is the calculation of the partial derivative matrix   (see Equation: 3.9 and Appendix-D) for use in 

estimation of these parameters. The complexity would further enhance if one extends the perturbative 

terms to higher order i.e., greater than two. Therefore, in order to generate a higher order analytical 

trajectory an alternate methodology is adopted for estimation of epicycle orbital parameters. The 

method exploits the linear secular nature of epicycle coordinates of argument of latitude “λ” and right 

ascension of the ascending node “Ω” (RAAN) (see Equation 3.35 and Figure: 3-19). The new 
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parameter estimation technique is developed using the linear least squares method [39],[46] and is 

called Epicycle Parameter Filter (EPF). The fundamental idea is minimization of the process noise in 

the epicycle model in order to enhance its validity over long periods of time when compared with full 

nonlinear equations of motion. Here, few definitions for an epicyclic orbit would be recalled. The 

position of a satellite in an epicyclic orbit is defined by six osculating coordinates (Equation: 3.35). 

The geometrical shape of an epicyclic orbit is described by six constant parameters; semi-major axis 

(a), inclination (I0), right ascension of ascending node (Ω0), non singular parameters for undefined 

epicycle phase at perigee passage (needed for equatorial orbits) (ξP, ηP) and an equator crossing time 

(tE). Extremely precise selection of these parameters is needed to obtain epicyclic orbital coordinates 

appropriate to a given numerically propagated orbital coordinates. Similarly to Chapter: 3, one would 

use the term “reference or numerical trajectory” for nonlinear orbital data obtained from numerical 

integration of equations of motion and analytical trajectory for linearized orbital data obtained from 

analytic epicyclic equations (Equation: 3.35).  

4.2 Secular Variations in Epicycle Orbital Coordinates 

The expressions for the argument of latitude, λ and RAAN, Ω in Equation: 3.35 for epicycle 

coordinates contain secularly growing linear quantities (see Figures: 4.1 and 4.2) depending on 

coefficients of κ and ϑ. The equations for these coordinates are expressed as [2]: 

 

 

                                               

                    

(4.13) 

 

 

 

where,  

         ,  

    = short periodic coefficients due to J2  

   = higher order short periodic variations, derived from Equation: 4.6 

   = higher order long periodic coefficient derived from Equation: 4.11 

 

Equations: 4.2 and 4.3 reveals the dependence of the coefficients of secular change (κ and ϑ) on semi-

major axis a, and inclination I0. Note the secular growth in epicycle coordinates is significantly more 

dominant than periodic variations. Therefore, one has to accurately fix coefficients of κ and ϑ in 

epicyclic evolution equations (Equation: 3.35) in order to obtain high precision long term (i.e., weeks) 

secular variations in the orbit when compared with the coordinates of the numerical trajectory. 
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Figure 4-1: The above plot depicts the dominant linear secular growth and small periodic 

variations in λ. The inner plot (shown in green) is an augmented view to observe the oscillating terms, 

in Equation: 4.13 (see Equation: 4.20 for description of dλ), which are otherwise not viewable in main 

(shown as straight blue line). 

 

 

 

Figure 4-2: The above plot depicts the dominant linear secular growth and small periodic 

variations in Ω. The inner plot (shown in green) is an augmented view to observe the oscillating 

terms, in second of Equation: 4.13 (see Equation: 4.20 for description of dΩ). 
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4.3 Development of an Epicycle Parameter Filter 

The ensuing description develops an orbital parameter estimation algorithm called as EPF by using 

statistical data regression technique known as linear least squares [5]. The epicycle parameters to be 

estimated are: 

 

 
T

EPP tIa ),,,,,( 000  x  (4.14) 

 

4.3.1 Reference Nonlinear Satellite Trajectory 

The reference nonlinear orbital dynamical equations in ECI coordinate frame for the non-spherical 

geopotential are expressed as [13]: 

 

 

 

     

 

    
  

  
     

(4.15) 

 

 

where,            , is the position vector,             
 
, is the velocity vector, both in ECI 

coordinates, and     expresses as higher zonal gravitational perturbation terms obtained by taking the 

gradient of potential function “ ” given in Equation: 3.30. 

 

The prediction of precise satellite ephemerides are obtained by numerically integrating these 

equations given some epoch satellite state        
 . 

 

The nonlinear orbital data required by the EPF is in terms of epicycle orbital coordinates; whereas, its 

availability is in terms of ECI coordinate frame (Equation: 4.15). Therefore, the first step is to 

numerically integrate Equation: 4.15 including zonal harmonic perturbation terms up to a certain 

order for a specific duration i.e., a week. This numerical trajectory describes the satellite’s position 

and velocity in a three dimensional ECI coordinate system at specific instants of time, from epoch 

time t0 to some later time tk expressed as: 

 

 
                                    

 

 

 

 

 

 

 

(4.16) 

 

 

 

where, k is the time subscript for state vectors of a satellite. A transformation is applied to convert 
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each position and velocity vector into epicycle coordinates by using [38],[12]: 

 

 

 

                           

 

        
   

   
 

      
      

                 
     

      
      

 
 

        
       

   
  

        
       

       
                               

 

   
   

 
              

 
 

(4.17) 

 

 

The transformed data from Equation: 4.17 would be termed as “nonlinear or numerical trajectory” 

consisting of satellite nonlinear epicycle coordinates: 

 

                                                          

                                           

(4.18) 

 

where,                 is the vector of nonlinear epicycle trajectory coordinates. 

 

4.3.2 Least Squares Formulation 

Coordinates of argument of latitude (λ) and RAAN (Ω) are angular descriptions repeating themselves 

after an orbital period. Therefore, data for these coordinates from Equation: 4.18 are unravelled to 

obtain time evolution of continuously increasing angular quantities. One would unravel λ and Ω so 

that these grow linearly instead of the usual          and         , respectively. The 

equation for these two coordinates may be separated into linear and oscillating terms therefore one 

may rewrite the terms from Equation: 4.13: 

 
          

              

(4.19) 

 

where, 
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(4.20) 

 

Equation: 4.19 can be rewritten as following: 

 

 
                         

                           

(4.21) 

 

 

where, p1 and p2 are slopes of λ and Ω for the numerical trajectory, respectively; whereas,        

and    are slopes of these coordinates for the analytical trajectory (see Figure: 4.1 and 4.2) and 

         (mean motion). 

As    and    are linearly increasing coordinates therefore, the linear least squares method can be used 

to estimate                . The reason for this assumption is quite valid as linear secular growth in 

angular quantities of λ and Ω are more dominant than oscillating terms, dλ and dΩ (see Figure: 4.1 

and 4.2). Therefore, these do not make much impact on the linear least square fit. The cost function 

for linear least squares problem can now be conveniently written as: 

 

 
                     

 
 

   

                       
 

 

   

 

 

(4.22) 

 

The cost function is now differentiated with respect to four variables i.e.,                 and 

equated to zero. 

 

  

              
   

(4.23) 

 

The above gives the following four simultaneous equations: 

 

 

                      
     

                     
            

                

                
    

         

(4.24) 

 

 

where, the bar indicates an average over all data points from Equation: 4.18. These equations are 

solved algebraically to determine                : 
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(4.25) 

 

4.3.3 Determination of Semi Major Axis “a” and Inclination “I0” 

The slope estimates of p1 and p2 have an implicit dependence upon a and I0 as expressed in Equation: 

4.2. Therefore, one need to determine a and I0 to keep the secular terms of κ and ϑ accurate. The 

estimate of I0 is found out based on estimate of p2 (Equation: 4.25) in an iterative scheme wherein this 

estimate and the analytical expression for the slope      obtained from an analytical equation of Ω 

(Equation: 4.13) are equated fixing the semi major axis “a”. One starts by assuming a value of “a” 

and it is convenient to choose the first value of the radial coordinate       from Equation: 4.18. 

 

 
   

  

 
           

(4.26) 

 

where, ϑ2 is the value of ϑ for just J2. This is much larger than       . Rewriting the equation for ϑ2 

as a function of x, from Equation: 4.2 one obtains: 

 

     
 

 
   

 

 
 

 

  

(4.27) 

 

 

where,        , one can get first estimate of x  from: 

 

 
       

  

 
 

(4.28) 

 

 

The iterative scheme from Equation: 4.26 for i
th
 estimate of        would be: 

 

 

 
       

  

 
                    

(4.29) 
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The iteration of Equation: 4.29 for ϑ2 should be carried out until the change in result decreases below a 

selected threshold. One may now use the value of ϑ2 to find value of I0 from Equation: 4.27.  

The value of p1 (Equation: 4.25) would now be used to estimate the semi-major axis a. This can be 

done by using the Newton-Raphson method [100]. From Equation; 4.21 Let, 

 

 
         

        
 (4.30) 

 

When a satisfies the relation          , then f = 0. Equation: 4.30 can be written for the Newton-

Raphson formulation as: 

          
       

  
       

 

(4.31) 

 

 

where,   
 
    indicates the derivative of a function with respect to a.  After some derivations of the i

 th 

estimate of a may be written as: 

 

             

       
   

   
 
       

  
(4.32) 

 

 

where,          
 
         , and κ2s is the   

  coefficient in the post epicycle equation (see 

Appendix-C). Again Equation: 4.32 will be iterated until the change in the semi-major axis “a” is less 

than a selected tolerance. Now with the newly found out value of “a” one substitutes this value of “a” 

in Equation: 4.29 for I0 and repeat this procedure until both the values a and I0 converge. 

4.3.4 Determination of “ξ ” and “ηP” 

The quantities of    and    are now being estimated using the equations of the epicycle coordinates 

of r and vr. The equation of these coordinates can be expressed as [14]: 

 

 

                                            

                                                

(4.33) 

 

 By separating out oscillating terms, these equations may be rewritten as: 

 

 

 

 
                  

  

  
                   

(4.34) 
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where, 

 

                         

                                

(4.35) 

 

 

The above equations can be further simplified on the lines of Equation: 4.19 to 4.21, as: 

 

 

 

 
 

 
                       

  

  
                      

(4.36) 

 

 

 

One may now conveniently define the least square cost function as: 

 

 

                           
 

 

   

                           
 

 

   

 

 

(4.37) 

 

 

where,    =           The above function should be differentiated with respect to ξP and ηP and set 

equals to zero: 

 

 

  

        
   

 

(4.38) 

 

 

The resultant simultaneous equation can be solved to provide estimates of ξP, ηP expressed as: 

 

 
               

                

 

(4.39) 

 

 

Now these parameters can be conveniently used in Equation: 4.20 to compute dλ and dΩ and the 

estimates of secular terms would be repeated as in Equations 4.29 and 4.32. The algorithm is 

repeatedly executed until the estimates are converged to the orbital parameters. The estimated 

parameters are denoted as    . See Figure: 4-3 for the flow chart of the EPF. 
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Figure 4-3: Flow chart of the Epicycle Parameter Filter (EPF). Important features of the 

algorithm includes the use of numerically obtained epicycle orbital coordinates in linear least squares 

formulation to compute p1 and p2 (slopes of linear  growth in coordinates of λ and Ω), compute semi-

major axis “a” and inclination “I0” by using iterative methods and Newton-Raphson root finding 

algorithm and linear least squares to compute ξP and ηP.   
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4.4 Parameter Estimation Accuracy 

The fundamental idea of EPF is to accurately estimate the coefficients for secular variations i.e., κ and 

ϑ. Since, these two coefficients are functions of “a” and “I0”, therefore, it seems appropriate to 

validate estimation accuracies by varying these two parameters. A useful insight on variation and 

strength of these coefficients can be obtained by plotting them as a function of I0 and a (see Figure: 4-

4 and 4-5). 

 

Figure 4-4: J2 epicycle coefficients for radial offset (   , and secular drift        , are plotted as 

a function of the inclination I0 by fixing a = 7000 km. 

 

Figure 4-5: J2 epicycle coefficients for the radial offset (   , and secular drift        , are plotted 

as a function of “a” by fixing I0 = 98 deg. 
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The most significant perturbative term J2 has been used to compute epicycle coefficients in Figures: 

4-4 and 4-5. One may clearly observe higher amplitudes of these coefficients at lower inclinations and 

lower semi-major axis (LEO). Moreover, changes in I0 (Figure: 4-4) suggests more rapid and 

significant, secular effects on satellite orbits compared with changes in the semi-major axis “a”. 

Therefore, one would consider different choices of I0 for all inclinations and observe the estimation 

accuracies. 

The semi-major axis is chosen as         orbit and one considers the zonal harmonic terms up to J4 

of non-spherical geopotential for the experiments [38]. This would serve as a sequel to the generic 

scheme for estimation, developed earlier in the chapter for higher order harmonics. By taking the 

gradient of gravitational potential function “ ” expressed in Equation: 3.31, one may express the    

term in Equation: 4.15 for order up to J4 of the geopotential as under [12].  

 

 

       
       

 

   

 
 
 
 

 
 
    

   

  
  

   
   

  
  

   
   

  
  

 
 
 
 

 
 
 

 

 

       
       

 

   

 
 
 
 

 
 
     

   

  
  

    
   

  
  

     
   

  
 

 

 
   

 
 
 
 

 
 
 

 

 

      
        

 

   

 
 
 
 

 
 
    

    

  
 

    

  
  

   
    

  
 

    

  
  

   
    

   
 

    

  
  

 
 
 
 

 
 
 

 

 

 

(4.40) 

 

 

 

 

 

 

(4.41) 

 

 

 

 

(4.42) 

 

 

where X, Y, and Z are the coordinates in ECI frame (details in Chapter: 3),            , 

                     ,                       , and                       .  
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The estimation of the parameters       is compared with the true parameters      used for numerical 

propagation of the reference trajectory (Equation: 4-18). The batch of numerically propagated data 

used for estimation is for a week. The time scale of 1 week corresponds to approximately 100 orbital 

periods for LEO micro-satellites (weighs between 10 to 100 kg) or nano-satellites (weighs less than 

10 kg) [102]. Figure: 4-6 indicates percentage errors in estimating the parameters of a, Ω0, and α0; 

whereas, Figure: 4-7 illustrates errors for I0, ξP, and ηP. 

 

 

 

 

Figure 4-6: Percentage estimation errors (Δ) for semi-major axis    (top), right ascension of the 

ascending node     (middle), and initial epicycle phase     (bottom), as a function of inclination of 

the orbital plane.   

 

 

Results reveal that errors cannot be fully eliminated as the two trajectories are being propagated 

differently i.e., in the numerical and analytical solutions. In order to keep the two trajectories 

sufficiently close to each other for a long duration slightly perturbed parameters are found out in order 

to compensate for the process noise [5]. In general the, process noise is a time varying quantity and is 
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inherent to all analytically derived models due to linearization and approximations to full dynamics of 

the nonlinear problem. 

 

Figure 4-7: Estimation errors (Δ) for inclination     (top),      (middle) and      (bottom) as a 

function of inclination of the orbital plane. 

 

 

4.5 Error Statistics in Orbital Coordinates at Different I0 

The optimal parameter estimates       for all orbital inclinations, as discussed in the previous section 

are now being used for generation of analytic epicycle trajectory using the evolution equations 

(Equation: 3.35). The analytic epicycle coordinates are expressed as: 

 

                           
       

       
        

        
        

                                
        

         

(4.43) 

 

where,                   is a vector containing the coordinates of the analytic epicycle trajectory, and 

superscript “p” stands for analytic epicycle coordinates. 

 

The numerical trajectory available from Equation: 4.18 would be used to compute the error statistics 
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in terms of epicycle coordinates by subtracting numerical coordinates and analytic coordinates from 

Equation: 4.43. The maximum errors for the period of one week are observed only at lower 

inclinations. The errors decrease almost exponentially at higher inclinations. Figures: 4-8 to 4-10, 

illustrate the maximum errors in epicycle coordinates over the period of one week. 

 

 

Figure 4-8: Maximum absolute errors in “r” as function of inclination of the orbital plane. 

 

Figure 4-9: Maximum absolute errors in  ,  , and   as a function of inclination of the orbital 

plane. 
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Figure 4-10: Maximum absolute errors in    and    as a function of inclination of the orbital 

plane. 

 

 

 

The errors in radial coordinate      (Figure: 4-8) and radial / azimuthal velocity         (Figure: 4-

10) shows an unexpected increase in errors in the vicinity of critical inclination (I0 = 63.4 deg). This is 

possibly due to the approximation of long periodic variations for     given by [2]:  

 

    
  
   

  
  

 
       

 

(4.44) 

The approximation is carried out in order to avoid the term    in the denominator of Equation: 4.11, 

getting zero at            (see Appendix-C for expression of   ). This happens to be at    

         . Nevertheless the errors are small and can be minimized by replacing        with      . 

Thereby, including higher order harmonics one can avoid such a numerical instability. 

4.6 Time History of Errors in Epicycle Coordinates 

In order to observe the time history of errors in epicycle coordinates a sun synchronous LEO satellite 
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with a = 7003 km, and following initial conditions in ECI coordinates         
  is selected: 

                                          

 

                                       

(4-45) 

 

The time history of errors for the period is shown in Figures: 4-11 to 4-16. The estimates are 

approximately zero mean and converged which shows consistency in estimates. The maximum 

absolute errors over this period are          ,                ,               , 

              ,                 ,                 . 

 

 

 

Figure 4-11: (a) Time history of errors (Δ) in “r” using optimal    . Note convergence and 

negligible drift in mean error in epicycle radial coordinate (shown as red line). (b) Mean error is 

identical around zero mean value over the simulation time of one week.  

 

 

Figure 4-12: (a) Time history of errors (Δ) in argument of latitude λ” for a period one week using 

optimal    . Note Convergence and constant offset              deg in mean error. (b) The drift in 

mean error is       deg. 

(a) (b) 

(a) (b) 
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Figure 4-13: (a) Time history of errors (Δ) in inclination “I” for a period of one week using optimal 

   . Note convergence pattern and mean error offset             deg. (b) Drift in mean error is 

          deg.  

 

Figure 4-14: Time history of errors (Δ) in RAAN “Ω” for a period of one week using optimal    . 

Note convergence and mean error offset             deg. (b) Drift in mean error is         

deg.   

 

Figure 4-15: Time history of errors (Δ) in    for a period of one week using optimal    . Note 

convergence and mean error offset             km/s. (b) Drift in mean error is only         

km/s.  

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 4-16: Time history of errors (Δ) in    for a period of one week using optimal    . Note 

convergence and mean error offset             km/s. (b) Drift in mean error is         km/s. 

 

 

4.7 Time History of Errors in Epicycle Coordinates Without Estimation 

The time history of errors will now be observed for initial conditions as expressed in Equation: 4-45 

without using EPF. The errors in the coordinates are presented in Figures: 4-17 to 4-22. One may 

clearly observe the increase and drift in errors for all the coordinates if the orbital parameters are not 

properly selected. Divergence and increased errors are quite evident from these plots; especially in the 

argument of latitude and the right ascension of the ascending node which amounts to significant in-

track and cross-track errors in LVLH coordinate system. 

 

 

 

 

Figure 4-17: Time history of errors (Δ) in “r” without estimation. Notice increased divergence of 

mean error (shown as red line) and error oscillations       once compared with Figure: 4-11. 

(a) (b) 

(a) (b) 
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Figure 4-18: Time history of errors (Δ) in “λ” without estimation. Notice the significant 

divergence and periodic errors once compared with Figure: 4-12. 

 

 

Figure 4-19: Time history of errors (Δ) in “I” without estimation. Notice the increased error 

oscillations and drift in mean error compared with Figure: 4-13. 

 

 

Figure 4-20: Time history of errors (Δ) in “Ω” without estimation. Notice the divergence and 

increased periodic errors once compared with Figure: 4-14. 

(a) (b) 

(a) (b) 

(a) (b) 
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Figure 4-21: Time history of errors (Δ) in vr without estimation. Notice the increased error 

oscillations and drift once compared with Figure: 4-15. 

 

 

Figure 4-22: Time history of errors (Δ) in vθ without estimation. Notice the increased error 

oscillations and drift once compared with 4-16. 

 

4.8 Free Propagation Secular Error Growth 

The forward evolution of epicycle position coordinates           will now be observed for the 

growth of errors after having been initialized with the optimal parameters using an EPF. The choice of 

such optimal parameters is based on the orbital data of one week. The error growth criterion is 

selected as drift (secular growth) in mean errors by 10% of the maximum error in a particular position 

coordinate. Essentially one would observe the time by which the drift in mean errors in a particular 

position coordinate exceeds the error growth criterion. This would form another useful measure of 

efficiency for the linear filter. The drift in mean errors for each position coordinate is computed using 

a linear least squares approximation [99] (see Figures: 4-23 to 4-26). See Table 4-1 for the error 

growth criterion at the end of 12
th

 day. This means one would have to re-estimate the epicycle 

parameters at the end of 12
th
 day as the growth in λ exceeds 10% at that time.  

(a) (b) 

(a) (b) 
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Position Coordinate Drift of error (percentage of the maximum error) 

  1.22% 

  10.81% 

  3.11% 

  6.1% 

 

Table 4-1: The table shows the drift of error in terms of percentage of the maximum error 

in a particular coordinate at the end of 12
th
 day. 

 

Figure 4-23: Time history of radial coordinate error (Δ) over 12 days. The red line shows linear 

growth / drift computed using least squares approximation. The drift is about 1.22% of the maximum 

error at the end of 12
th
 day. 

 

Figure 4-24: Time history of errors (Δ) in argument of latitude over 12 days. The red line shows 

drift in errors, computed using linear least squares approximation. The drift is about 10.81% of the 

maximum error at the end of 12
th
 day. 
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Figure 4-25: Time history of errors (Δ) in inclination over 12 days. The red line shows drift in 

errors, computed using linear least squares approximation. The drift is about 3.11% of the maximum 

error at the end of 12
th
 day.  

 

 

Figure 4-26: Time history of errors (Δ) in RAAN over 12 days. The red line shows drift in errors, 

computed using linear least squares approximation. The drift is about 6.1% of the maximum error at 

the end of 12
th
 day.  
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4.9 Summary 

This chapter discusses the development of an EPF for epicycle orbits including higher order zonal 

harmonic terms. As an example the methodology of EPF has been simulated for terms up to J4. 

Nevertheless, the higher order perturbative terms can easily be extended using Equations: 4.1 and 4.6 

for use by EPF. The estimation results show improved epicycle coordinates compared to the nonlinear 

numerical trajectory. The maximum errors were reduced as 97% in r, 93% in λ, 41% in I, 16% in Ω, 

97% in vr and 97% in vθ. By keeping the drift in the mean errors as 10% of the maximum error in a 

particular position coordinate, repeated estimation of the epicycle parameters would be needed after 

twelve days. The repeated parameter estimates can be performed on ground stations for later update to 

satellite onboard Attitude and Orbit Control Systems (AOCS) using telemetry and telecommand 

communication links. The epicyclic orbit equations (Equation: 3-35) can be used on board as a 

replacement of high precision computationally expensive numerical propagators. It can be 

conveniently used for computing epicycle orbital parameters from NORAD TLE fit for long durations 

[101]. The parameters can be used to update orbital parameters for the space catalogues of 

commercial and non – commercial spacecrafts. Design constellations based on orbital parameters 

which are more intuitive rather than using differential equations. 
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5 Development of Gram Charlier Series and its 

Mixture Particle Filters 

 

 

5.1 Introduction 

Nonlinear Bayesian state estimation for Discrete State Space Model (DSSM) [22], known as discrete 

time filtering has been briefly introduced in Chapters: 1 and 2. In this chapter, a detailed description 

on such methods will be carried out with a view to developing SMC [47] estimation algorithms based 

on GCS [29] and its mixture model [34] approximation of Bayes’ a posteriori PDF [68]. Continuing 

the work from Chapters: 3 and 4, where the estimation process is carried out over a batch of nonlinear 

data, the sequential state estimation is based on processing of an individual nonlinear update, as soon 

as data is made available. First a review of the fundamentals of discrete time filtering and SMC 

methods will be given. A brief description of the seminal work by reference [41] on SIS-R commonly 

known as bootstrap PF follows and its extension based on Gaussian or Gaussian Mixture Model 

(GMM) particle filtering [42],[43]. The latter two algorithms based on Gaussian or GMM 

approximation of Bayes’ a posteriori PDF can be termed here as parametric bootstrap particle filters. 

Subsequently, this chapter develops new nonlinear Bayesian SMC estimation methods based on GCS 

and its mixture models. This would form as unification of ideas for improved parametric bootstrap 

particle filtering within the broader context of SMC estimation.  

A nonlinear dynamical and measurement system can be formulated as DSSM, expressed as 

[5],[8],[103],[21]: 

 

 

 

                

 

           
 

 

 

(5.1) 

 

(5.2) 

 

 

where,       is the d-dimensional state vector to be estimated, denoted with discrete time subscript 

“k”,           is a nonlinear function which evolves the state from             discrete 

instant of time,         is a dispersion matrix,       is a q-dimensional measurement vector, 

          is nonlinear measurement function of evolved state,       and       is the m-

dimensional and q-dimensional mutually independent additive white Gaussian process and 
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measurement noise variables, respectively. The whiteness of noise variables is equivalent to requiring 

the state and measurement sequences to be Markov processes [5] (the development of filtering 

algorithms is restricted here to such processes only). The state variable    is usually considered as 

hidden variable, being measured only through    at discrete time instants (see Figure: 5.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: In discrete filtering discrete hidden sequence of state xk is observed by noisy sequence 

of observations yk. The evolution of state and measurements are obtained at discrete instants of time 

using positive integer subscripts      . 

 

 

The estimation problem is termed nonlinear if at least one of the models (Equations: 5.1 and 5.2) is 

the nonlinear function of the state [5]. In a Bayesian framework a posteriori PDF of the state 

           given all the observations                   constitutes the complete solution to the 

probabilistic inference problem and allows to compute any function of the state       [22]. For 

example, an optimal estimate of the state         , in terms of Minimum Mean Square Error 

(MMSE) estimation criterion would be [5][22]: 

 

                              

  

  

 

 

 

 

(5.3) 

 

 

where,      is the expectation operator [99]. 

 

The integration of Equation: 5.3 would provide the mean       of Bayes’ a posteriori PDF termed as 

MMSE state estimate. The sequential method to obtain Bayes’ a posteriori PDF as new measurements 

arrive is achieved by Bayesian recursive formula. By employing Bayes’ rule and DSSM as given in 

Equations: 5.1-5.2 one arrives at following recursive form of a posteriori PDF [8],[68],[22]: 

               

               

Observed: 

Hidden: 
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(5.4) 

 

 

The numerator on right hand side of Equation: 5.4, consists of the likelihood of measurement 

conditioned on the evolved state         , and state predictive PDF             . The state 

predictive PDF is obtained through the use of the CKE [5] (Equation: 5.5), using Bayes’ a posteriori 

PDF at time instant    , expressed as                and the state transition PDF            

obtained through the nonlinear process model (Equation: 5.1) [22]: 

 

 

                                         

  

  

 

                                    

  

  

 

 

 

 

 

(5.5) 

 

(5.6) 

 

The likelihood of the measurement conditioned on the evolved state is given by [22]: 

 

                                 

  

  

 

 

 

 

 

(5.7) 

 
 

where,      is the Dirac-delta function [104]. Figure: 5-2 depicts the block description of the classic 

Bayesian recursive filtering methodology. 

 

 

 

 

 

 

 

  

 

 

 

Figure 5-2: Block description of Bayesian prediction and update stages (see text for details). 

 

Equations: 5.4 to 5.7 provide the complete information about the state of a dynamic system in 

probabilistic sense, from which any type of state inference such as MMSE (Equation: 5.3) or MAP 
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estimates can be obtained. In this thesis, one would only consider the former type for the development 

of nonlinear Bayesian filters. The multidimensional integrals in these equations are only tractable for 

linear dynamic and measurement systems for which the KF is the optimal solution [10]. The KF 

provides finite dimensional sufficient statistics, comprising of the conditional mean and covariance of 

the state which completely summarizes the past in a probabilistic sense [5].  

Most of the dynamical systems in the real world are nonlinear such as satellite orbital dynamics 

discussed in Chapter: 3 and 4.  If the dynamic system expressed in first of Equation: 5.1 is nonlinear 

and our belief about its initial conditions and noise distribution are Gaussian or even non-Gaussian, 

then in general there is no sufficient statistics and Bayesian recursion (Equation: 5.3 to 5.7) has to be 

used to obtain optimal MMSE estimates. This amounts to an infinite dimensional process in terms of 

need for an infinite order moment evolution or the requirement to store the entire PDF, which is 

practically not viable. Therefore, one has to approximate PDFs used in Equations: 5.3 to 5.7 by some 

tractable form to facilitate solutions for this problem and avoid such a formidable complexity.  

Recently a new class of Bayesian filtering methods based on the SMC approach have been considered 

in the literature called particle filters [41],[68],[42],[22]. SMC methods can be approximately defined 

as a collection of methods that employs Monte Carlo (MC) simulation scheme in order to fulfil online 

estimation and prediction requirements [8]. The SMC technique achieves filtering by recursively 

producing an ensemble of weighted samples termed as particles of the state variables or parameters. 

These weighted samples are used to approximate a complicated or a non-Gaussian Bayes’ a posteriori 

PDF. There have also been many efficient modifications and improvements on these methods briefly 

described in Chapter: 2.  

In this chapter, a brief review of the generic PF also known as bootstrap PF or (SIS-R) filter, and 

parametric PFs based on Gaussian and GMM approximation of Bayes’ a posteriori PDF will be 

carried out. Next, new efficient SMC methods are developed that utilize the GCS and its mixture 

model to augment and improve the standard PF. The filtering methods include GCS Particle Filter 

(GCSPF), GCS Mixture Particle Filter (GCSMPF), and Hybrid GCS Culver Particle Filter (HGCPF). 

The first algorithm, GCSPF is an extension of Gaussian PF (GPF) by reference [42] and the last 

algorithm HGCPF is nonlinear MC adaptation and modification of Culver Filter (CF) [1] . 

There are situations where the evolution of a dynamical system cannot be measured at each time 

instant, for example, in space object (i.e., satellites or space debris) radar tracking requirements, the 

physical appearance of an object over the horizon is needed to record radar measurements (details 

later in this chapter). The appearance is usually 5-10 minutes for a LEO object depending upon a 

particular type of orbit. This forms about 1/10
th
 of the time taken by the object to orbit around the 

Earth. Moreover, there could be practical limitations associated with measurement devices, which 

restrict availability of measurements at each time instant during the appearance as well. Therefore, an 

ability to accurately predict the state evolution for such a dynamical system along with state 

uncertainty i.e., state probability distribution (state predictive PDF) is very critical. The filtering 
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algorithms based on Gaussian or GMM approximation of state predictive PDF such as EKF [6], GPF 

[42] or GSPF [43] may not be sufficient for such requirements. In this chapter, two nonlinear 

dynamical systems modelled in continuous time form i.e., a simple pendulum and satellite orbital 

dynamics have been used for the implementation of filtering algorithms discussed in the chapter, 

under less or sparse measurements availability. The simple pendulum’s analogy to various two 

dimensional nonlinear physical phenomena has lead researchers in filtering community to experiment 

their filtering algorithm [21]. For example consider the cross track relative motion of a satellite 

described by HCW Equations (see third of Equation: 3.49), which can be considered as a simple 

harmonic oscillator similarly to the simple pendulum. The particle filtering algorithms based on GCS 

and its mixture models have shown improved performances over other methods.      

5.2 Fundamentals of Particle Filters 

Particle filtering is based on MC simulations to obtain approximation of PDFs given in Equations: 5.3 

to 5.7. The main objective is to sequentially sample and resample particles from a particular choice of 

PDF known as proposal PDF, considered by the filter as approximation of Bayes’ a posteriori PDF. 

The choice of proposal PDF is a major issue for the different variants of PF [22],[13],[42],[45]. 

Optimal Bayesian estimation (Equations: 5.3 to 5.7) is directly implemented, wherein entire Bayes’ a 

posteriori PDF is approximated sequentially. 

5.2.1 Monte Carlo Integration 

PFs employ MC integration scheme to compute integrals. For example, an ensemble of weighted 

particles (samples), acquired from Bayes’ a posteriori PDF can be used to formulate integrals into 

discrete sums. Therefore, one may approximate Bayes’ a posteriori PDF as [22],[47]: 

 

                        
 

 
     

 

   

   
     

 

(5.8) 

 

where, randomly distributed samples    
              , are drawn from           , N is the 

number of samples, and      denotes the Dirac delta function [104].  

 

Therefore, any expectations of form expressed in Equation: 5.3 can be approximated by the following 

estimates: 

 

                    
 

 
   

 

   

  
     

 

 

 

 

(5.9) 
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Assume that    
               are independent variables and each random variable has the same 

marginal PDF [99]. As a consequence of being from the same marginal PDF the variables are said to 

be identically distributed. Therefore, if the particles   
    are independent and identically distributed 

(i.i.d) then its mean can be computed as follows [99]: 

 

       
 

 
   

   

 

   

 

 

 

(5.10) 

 

The covariance     can be approximated by: 

 

      
 

 
    

        

 

   

   
          

 

(5.11) 

 

According to law of large numbers as N approaches infinity the estimates and true expectations 

converge almost surely [22]. 

 

 
         

   
             

 

(5.12) 

where,           is MC expectation (Equation: 5.9). 

5.2.2 Bayesian Importance Sampling 

One can approximate the Bayes’ a posteriori PDF with a discrete function as shown in Equation: 5.8. 

However, samples cannot be drawn from this PDF as it is not known. One may overcome this 

problem by sampling from a known, easy to sample, proposal PDF           . This procedure is 

known as importance sampling [22]. The selection of this distribution is an important design issue for 

different variants and/or improvements of particle based inference algorithms like Extended Kalman 

Particle Filter (EKPF) [105], Sigma Point Particle Filter (SPPF), and Gaussian Mixture Sigma Point 

Particle Filter (GMSPPF) [22]. Expectations for functions of states (Equation: 5.9) are computed from 

particles drawn from proposal PDF. For example            could be a PDF with a complex function 

or no analytical expression and            could be an analytical Gaussian PDF. Therefore, one can 

write                       where, the symbol   means that            is proportional to 

           at every   . As            is normalized density function, then            must be 

scaled un-normalized equivalent of            with a unique scaling weight at each    [103]. Thus 

we may write scaling factor or weight as [22],[8]: 
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(5.13) 

Now the MC Expectation of       (by making use Equation: 5.13) can be derived as (for proof see 

ref [22]): 

 

               
          

          
          

  

  

    

 
               

          
 

                    

 
 

     
         

     
   

 
 

      
     

   

 

 

 

(5.14) 

 

 

If one samples   particles from            then the expectation of interest can now easily be re-

expressed using particle representation of proposal PDF as: 

 

 

                        
   

    
    

 

   

 

 

(5.15) 

 

where, the normalized weights    
   

 are given by: 

 

 
   

   
 

  
   

   
    

   

 

 

 

(5.16) 

5.2.3 Sequential Importance Sampling  

In order to obtain sequential state estimates one has to construct a sequential form of the proposal 

PDF for sampling and use the Equation: 5.15. Let       
    

    
  

 
 and       

    
    

  
 

 be 

the stacked vector of states and observations up to time step k. Under the assumption of the state being 

a Markov process [5] one may write [8] : 

 

                               

 

   

 

 

 

(5.17) 
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The measurements    are considered as conditionally independent, given the states   : 

 

                                  

 

   

 

 

 

(5.18) 

 

One can now conveniently express a sequential form of proposal PDF on the basis of above Markov 

property [5] of DSSM (Equations: 5.17 and 5.18) as [47]: 

 

 

                                             

   

   

 

                                               

 

(5.19) 

 

Similarly, the weight equation (Equation: 5.13) can be re-expressed in terms of full states and 

measurements up to time “k” as: 

 

          
                          

            
 

 

(5.20) 

 

By substituting Equations: 5.17 to 5.19 in Equation: 5.20, recursive estimates for weights can be 

expressed as (for proof see [22]): 

 

        

                  

                  

(5.21) 

 

The most popular choice for proposal PDF expressed in the denominator of Equation: 5.21, is the 

state transition PDF           , primarily due to ease of implementation [41],[22]: 

 

                              (5.22) 

 

By substituting Equation: 5.22 into Equation 5.21, the recursive weight expression becomes: 

 

                 (5.23) 

 
 

Equation: 5.23 can easily be implemented by obtaining sample from the state transition PDF 
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          , evaluation of the measurement likelihood         , which will then be multiplied by 

sample weights from the previous time step      . The recursive flow of weights starts by 

generating an initial set of particles (samples) of equal weight: 

 

     
   

 
 

 
       

(5.24) 

 

 

This procedure is known as Sequential Importance Sampling (SIS) [22]. 

5.2.4 Degeneration of Particles and its Minimization 

Sequential estimation would require a repeated use and sampling from the state transition PDF and 

implementation of Equation: 5.23. However, the disadvantage of this simple approach is dispersion of 

particles from the expected value of     due to unbounded increase of variance of    as     [103]. 

Thus, the sample   
   

 that disperses from the expected value of    , its weight   
   

 approaches zero. 

This problem has been termed as degeneracy of particle filters. To measure the degeneracy of the 

particle filter, the effective sample size,    is computed. It is a way to measure how well particles are 

concentrated in the regions of interest and is expressed as [64]: 

 
   

 

    
    

 
 
   

 

 

 

(5.25) 

Degeneration of particles is highly undesirable. To reduce its effect, one may employ a brute force 

method of increasing the number of particles for filtering at the cost of prohibitively high 

computation. Another approach to minimize the effect of this problem is resampling of particles 

[8],[47],[41]. Resampling is essentially elimination of samples with low importance weights and 

multiplication of samples with high importance weights [22]. In this step one generate children 

samples    associated to each particle   
   

 such that,        
   . Different types of resampling 

techniques are proposed such as SIR [45] and Residual Resampling (RR) [64],[22],[105]. In SIR a 

Dirac random measure    
   

    
     is mapped into an equally weighted random measure    

   
     . 

This is accomplished by sampling from a discrete set    
               with probabilities 

    
   

           . Firstly, the Cumulative Distribution Function (CDF) using the weights    
   

 is 

constructed. Then one obtains the sampling index (i) from the uniform distribution          and 

projects it onto the distribution range and then onto the distribution domain (see Figure: 5-3). The 

intersection with the domain constitutes the new resampled index (j). That means that a particle   
    

is selected as a new sample. Therefore, the particles with larger weights will end up having more 

children [105].  
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RR is performed in two steps. In the first step the number of particles / children are deterministically 

computed using the floor function        : 

          
   

  
(5.26) 

 

where, each   
   

 particle is replicated     times. In the second step, SIR is used to select the remaining 

    particles: 

           

 

   

 

(5.27) 

 

with new weights expressed for each particle as: 

 

    
   

    
      

   
       

(5.28) 

 

The children samples for each individual particle (as obtained from SIR) would form the second set 

   , such that         
 
   . Finally the results are added to get the total number of children for each 

sample           . In general, an adaptive resampling strategy is adopted in the PF wherein the 

resampling step is only performed if effective size of particles    (Equation: 5.25) becomes less than 

some threshold size   . 

 

 

Figure 5-3: In SIR a random measure    
   

    
     is mapped into equally weighted random 

measure    
   

     . The index i is drawn from a uniform distribution shown on right hand side (not 

to scale). 

i 

Sampling 
index 

   
   

 
    



124 

 

5.2.5 Generic Bootstrap Particle Filter Algorithm 

As expressed in Equation: 5.22, the state transition PDF is the most popular choice of proposal PDF 

due to the ease of implementation. For this choice of proposal PDF the generic PF is also known as 

SIS-R or bootstrap PF [41]. The term bootstrap is associated due to non parametric form of the PDF 

approximation by samples [67]. Successful implementations of the SIS-R algorithm assume: (1) 

availability of a suitable proposal PDF for sampling and resampling and, (2) Dirac point mass 

approximation of the Bayes’ a posteriori PDF. Therefore, if these conditions are not met the PF may 

produce undesirable estimates. One may increase the number of particles for filtering but it requires 

heavy computations. Moreover, in order to capture the true structure of the Bayes’ a posteriori PDF, 

which might be multi-modal, sample variety is highly desirable. A resampling stage may introduce 

depletion of samples, therefore; it is unable to form approximation of true Bayes’ a posteriori PDF 

with sufficient accuracy due to the multiple duplication of the same sample with a higher weight. 

Thus samples might eventually collapse, to a single sample with most dominant weight. This situation 

would severely degenerate PF output. 

5.2.6 Parametric Bootstrap Particle Filtering Algorithms 

In parametric bootstrap based PFs, assumptions on the form of the Bayes’ a posteriori, state 

predictive and transition PDFs is considered. In this section a brief review on the work by reference 

[42],[43], would be considered. This is based on the assumption of Gaussian or GMM form for 

aforementioned PDFs. The PF which is based on single Gaussian PDF is known as Gaussian Particle 

Filter (GPF) [42] and the one based on GMM is Gaussian Sum Particle Filter (GSPF) [43].  

5.2.6.1 Gaussian Particle Filter 

The GPF approximates the state predictive and Bayes’ a posteriori PDF as Gaussian. However, 

contrary to the EKF, which also assumes that these PDFs are Gaussian, and employ linearization of 

the functions in the process and observation equations (Equation: 5.1), the GPF generates the 

Gaussian approximations by using particles that are propagated through process and observation 

equations without approximation. At “k
th
” instant of time, the samples obtained from initial state PDF 

        are propagated forward in time (referred as time update) through the nonlinear function as 

expressed in Equation: 5.1. This would provide particle approximation of the state transition PDF 

          . An MC integration is performed to obtain the mean and covariance of the state 

predictive PDF using the following equation [42]: 

 

                                                   

  

  

 
(5.29) 
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The sample mean and covariance for state predictive PDF              are expressed as follows: 

 

 

   
 

 
   

   

 

   

 

   
 

 
    

   
       

   
    

 
 

   

 

(5.30) 

where, the particles   
    are obtained from state transition PDF                   

 

In the measurement update (Bayesian update using Equation: 5.4) resampling of particles from state 

predictive PDF is performed. These particles are then used to compute weights by evaluating 

measurement likelihood          as in the PF. The weights   
   

 are computed in a non-iterative 

manner using the following likelihood: 

   
   

        
     

 

(5.31) 

This is followed by the normalization step given in Equation: 5.16. The inference of the mean and 

covariance is then drawn using these normalized weights. Resampling techniques i.e., residual 

resampling described earlier are not required for the GPF. Unlike SIS-R PF, GPF computes weights in 

non-sequential manner using Equation: 5.31. Better choice of proposal density are possible in GPF 

i.e., EKF generated Bayes’ a posteriori PDF. However, this needs a separate EKF running in parallel 

which makes it susceptible to linearization errors.  

5.2.6.2 Gaussian Sum Particle Filter 

Any probability density       can be approximated as closely as desired by a GMM of the following 

form [22],[60]: 

                   
   

       
   

   
   

 

 

   

 

 

(5.32) 

where, G is the number of mixing components,   
   

 are the mixing weights of      component and 

       
   

   
   

  denotes the Gaussian (normal) PDF function with   
   

  is the mean vector of     
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component, and   
   

 is the positive definite covariance matrix of      component.  

 

Therefore, one may write the GMM Bayes’ a posteriori and process noise PDFs at       time 

instant as: 

                        
   

           
   

     
   

 

 

   

 

 

(5.33) 

 

                
   

             
   

     
    

 

   

 

 

  

 

(5.34) 

where,      is the process noise variable with        being the mean vector and      is the 

covariance of the process noise, respectively. Now in order to initialize the filter for the time update 

(prediction of dynamics without using measurements), consider the availability of GMM 

approximated Bayes’ a posteriori PDF at time       (Equation: 5.33). The goal is to obtain the 

state the state predictive PDF                 also as GMM. As already defined for a single 

Gaussian PDF (Equation: 5.29), the state transition PDF            is now defined in terms of a 

probabilistic model governing the system’s state evolution and process noise statistics i.e., GMM. The 

state transition PDF can be expressed as [43]: 

 

 
                   

   
                 

   
 

 

   

 

 

(5.35) 

 

 

where,      is the nonlinear process model expressed in Equation: 5.1. For the sake of simplicity 

consider        = 0. After substituting Equation: 5.33 and 5.35 in Equation: 5.5 one has: 

 

 

 

                  

       
   

    
   

 

   

 

   

                              
   

     
         

  

  
 

 

(5.36) 

 

The expression inside the integral in Equation: 5.36, is quite extensive and may not be solvable due to 

nonlinearity of the process equation (Equation: 5.1) [43]. However, the solution of this integral can be 

approximated by the Gaussian PDF [60]. Therefore, using the similar procedure as adopted for a 

single Gaussian PDF in GPF (Equation: 5.29 and 5.30), is now being used here for each individual 

GMM component separately. This provides the GMM approximation of the state predictive PDF. In 
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the measurement update (Bayesian update using Equation: 5.4) step, resampling from the state 

predictive PDF is performed, in order to compute weights for each sample of individual GMM 

component, using the measurement likelihood         . Due to the repeated use of Equation: 5.36 

the size of the number of components of GMM Bayes’ a posteriori PDF would grow exponentially. 

However, this can be resolved by using a resampling step i.e., RR in measurement update. The small 

weights are discarded whereas children samples are produced for GMM components having high 

weights. The subsequent sections develop more efficient particle filtering algorithms based on GCS 

and its mixture model. Hence, SIS-R PF, GPF and GSPF will be used for comparison purposes.  

5.3 Gram Charlier Series 

GCS is an orthogonal series expansion of a PDF in terms of its higher order moments. It can be 

utilized to approximate arbitrary PDFs, especially heavy tails and any higher order PDF structures like 

skew and kurtosis [28],[26]. It is a very rich classical form similar to Taylor series and is based on the 

Gaussian PDF, developed in early 19
th

 Century by [29],[32]. The series employs a set of Hermite 

polynomials which are orthogonal with respect to a Gaussian weighting function i.e.,        
 over the 

domain        [31].   

5.3.1 Univariate GCS 

The univariate GCS expansion          of an arbitrary PDF       around its best Gaussian estimate 

       with mean    , and standard deviation    , is given by [28],[34]: 

 

 

               

                     
 

  
             

 

  
            

 
 

  
             

  

  
                

 

(5.37) 

 

where,    is the     standardized cumulant (defined as    
  

   ) and    is the univariate Hermite 

polynomial of order i. The standard Hermite polynomials of order n can be obtained by putting     

and      using Rodrigues formula expressed as [27]: 

 

             
  

 
  

   
  

  

  

 

 

 

(5.38) 

where,   
     

 
. 

The Hermite polynomials obey the following recursive relationship [26]: 
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(5.39) 

5.3.2 Multivariate GCS 

In a manner similar to the orthogonally expanded univariate PDFs, multivariate expansions can be 

described. If all the moments of a d-dimensional random vector    are finite, then any probability 

density       can be expressed as Gaussian density             multiplied by an infinite series of 

multidimensional Hermite polynomials as [28]: 

                        
      

  
              

     

  
        

  
               

       

  
          

  
                

         

  
                               

  
                     

           

  

(5.40) 

 

where, the subscripts       denotes the dimension,   is the time subscript. The 

functions                and similar forms are multidimensional Hermite polynomials with 

corresponding input dimensions             , and        is the corresponding third multivariate 

cumulant over input dimensions      , where sum over all input dimensions       is considered. 

Similarly,          is the fourth multivariate cumulant and            is the fifth multivariate cumulant 

and time subscript     are omitted (considering their time dependence implicitly) for multivariate 

cumulants to simplify their notation. Hermite polynomials can be obtained by differentiating 

             again using the Rodrigues formula [33]: 

 

 

 

              

           
 

           

       

   
     

 
            

 

 

 

(5.41) 

 

Some useful functional forms of Hermite polynomials are expressed as [28]: 
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(5.42) 

 

where,    
   and similar forms indicate the      component of the inverse of covariance matrix   ,    

and    indicate the     variable and its mean, respectively. The subscripts implicitly imply summation 

over indices. The connection between cumulants and multivariate central moments is defined as [28]: 

 

 

         

           
   

 

              
   

           

                 
   

               

                    
   

                                 

               

 

 

 

 

(5.43) 

where,     
   

 and similar forms indicate the       component of the third order (coskewness) tensor etc. 

The bracket notations used in Equations: 5.40, 5.42 and 5.43 are sums over partition of combinations 

of indices. For example: 

 

                               

 

5.4 Gram Charlier Series Mixture Model  

A detailed viewpoint on single GCS expansions has already been described earlier in Chapter: 1. The 

GCS expansions of lower order (         do not estimate well near the centroid of the PDF. 

Moreover, the resulting PDF could be negative and not unimodal [106]. To improve the density 

estimation accuracy one can increase the order of these expansions, but unfortunately it renders the 

estimate more sensitive to outliers. Therefore, rather than increasing the order of the GCS expansion 
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by using single Gaussian PDF (Equation: 5.37 and 5.40), it was suggested by [34] to use mixtures of 

GCS expanded Gaussian PDFs of moderate the order. Therefore, one now describes GCSMM and 

later in this chapter, this form of orthogonal expansion is considered for improving particle filters for 

nonlinear dynamical systems. 

5.4.1 Univariate Gram Charlier Series Mixture Model 

The univariate GCSMM approximation           until order four, for an arbitrary non-Gaussian 

PDF       is given by [28],[34]: 

                

             
   

       
   

   
   

    
 

  
  

   
        

   
   

   
 

 

   

 
 

  
  

   
        

   
   

      

 

(5.44) 

 

where,  G is the number of GCSMM components. The parameters of above mixture PDF can be 

conveniently estimated using statistical Expectation Maximization (EM) Algorithm 

[34],[67],[107],[108] (more details of EM are described in Section: 5.4.2) : 

 

     
 

 
   

   

 

 

   
   

 
 

 
 

  
   

  

    

 

 

   
   

 
 

 
 

  
         

    
 

    

 

 

  

  
   

 
 

 
 

  
         

    
 

    

 

 

   
   

 
 

 
 

  
         

    
 

    

 

 

  

 

 

(5.45) 

 

 

 

 

 

 

 

 

where, 

  
   

 
           

   
   

       
 
    

   
        

   
   

     
 
    

   
        

   
   

     

   
   

       
   

   
       

 
    

   
        

   
   

     
 
    

   
        

   
   

      
   

  

 

j is the subscript for j
th
 data point, N is the number of data points,   

   
  is the posterior probability and 

            are the mean, the second, third and fourth order univariate moments respectively (for 

proof of higher order EM equations for univariate moments    and    in Equation: 5.45 see [34]). 

The standardized third and fourth cumulants are [26]: 



131 

 

 

 

  
   

 
  

   

   
   

  
   

  
   

  

  
   

 
  

   
    

   
  

   

   
   

  
   

  
   

  
   

  

 

 

(5.46) 

 

The quantities computed in Equation: 5.45 and 5.46 are called parameters of a univariate GCSMM. 

As an example, consider the GCSMM in Equation: 5.44 to approximate two non-Gaussian PDF’s i.e., 

the exponential and uniform and compare them with a single GCS and GMM approximations. The 

comparison is illustrated in Figures: 5-4 and 5-5. The figures clearly indicate inability of single GCS 

to capture centroid of the non-Gaussian PDFs. Moreover, if a single GCS is truncated at lower order 

of Hermite polynomial, then it might produce negative probability regions. Negative probability 

regions are visible in both these figures. Table: 5-1 presents the Root Mean Square Error (RMSE) for 

these approximations. The RMSE clearly suggests improvement in approximating non-Gaussian 

PDFs using mixture models and one could consider the GCSMM as a natural extension to the GMM. 

 

 

Figure 5-4: The comparison of true exponential PDF with GCSMM               , GMM 

               and single GCS approximation. 



132 

 

 

 

Figure 5-5: The comparison of true uniform PDF with GCSMM               , GMM 

               and single GCS approximations. 

 

 

 

PDF Exponential Uniform 

GCS 0.109070 0.171282 

GMM 0.071867 0.133243 

GCSMM 0.057867 0.106224 

 

 

Table 5-1: RMSE PDF approximations comparison results 

 

5.4.2 Multivariate GCSMM 

On similar lines to univariate GCSMM, one can approximate a d-dimensional arbitrary non-Gaussian 

PDF       using a mixture of multivariate GCS, as expressed in Equation: 5.40. The GCSMM 

expansion of       up to order five is given by: 
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(5.47) 

 

where, G is the number of mixands.  

The parameters of the above PDF including higher order moments and cumulants can be readily 

estimated by adapting the EM Algorithm [107],[108],[22] for a GMM. The details of these 

adjustments are now being described. 

Essentially, the parameters of the multivariate GCSMM are estimated by adapting the concept of 

parameter estimates of univariate GCSMM (Equation: 5.45 and 5.46). Therefore, the EM equations 

(until third order) for a multivariate GCSMM parameter estimation can be expressed as: 

 

     
 

 
   

   

 

 

      
 

 
 

  
   

  

    

 

 

      
 

 
 

  
   

                  
 

    

 

 

 

        
 

 
 

  
   

                  
 

          
 

    

 

 

 

(5.48) 

where, j is the subscript for j
th

 data vector and N is the total number of data vectors. Computationally 

more involved higher order multivariate EM moment estimates are:  

        
 

 
 

  
                     

 
  

          
 

    

 

 

 

        
 

 
 

  
   

                  
 

  
          

 

    

 

 

 

 

(5.49) 

where, the time subscript “k” has been omitted for clarity and replaced with data vector variable “j” 

and   
  denotes the Kronecker product from 1 to x times e.g.,   

          . Equations: 
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5.43 can now be used to convert moments into cumulants in order to fully parameterize the functional 

form of GCSMM given in Equation: 5.47. Usually these Kronecker products are not required to be 

implemented in a computer programme. Instead only unique order moments are calculated using 

vectorized methods. This makes the computation faster and more efficient. The approximate posterior 

probability calculations in the EM algorithm are computed using each Gaussian component of 

GCSMM to avoid numerical instability. Numerical instability could arise due to likely negative 

posterior probabilities produced by the lower order GCS, which may result into negative weights      

or negative diagonals of covariance matrices      (making them non-positive definite). Hence by 

using only Gaussian a component of each GCS, one can acquire positive posterior probabilities and 

always ensure avoidance of their probable negative regions. The computation of posterior 

probabilities is expressed as: 

 

 
  

   
 

          
         

                     
   

 

(5.50) 

 

where,   
   

 is the estimated posterior probability that point    is associated to the     main Gaussian 

term       
          of Equation: 5.47.  

Construction of GCS as corrections to a Gaussian PDF makes this a justified proposition. The EM 

algorithm is an iteration based algorithm thus, the parameters     
,     

,     ,        ,         and 

        for each component of GCSMM as given in Equations: 5.48 and 5.49 need some initial values. 

In order to initialize the EM, we used the k-means algorithm of [109],[22]. The algorithm (k-means) is 

an essential tool for clustering of data in pattern recognition applications such as image analysis. 

Therefore, here the data vector    (where, j = 1....N and N is the total number of data vectors) are 

partitioned into G clusters (where G is the number of clusters). Each cluster is represented by a mean 

vector      (where,      ) and each data vector    is assigned to a particular cluster based on its 

closest Euclidean distance vector to      expressed as [67]: 

 

           
 
          

 

(5.51) 

 

This algorithm also works iteratively wherein at each iteration the N data vectors are partitioned into 

G disjoint clusters   . An error function that is minimized is the total within the cluster sum of squares 
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expressed as [109]: 

              
 

    

 

   

 

 

 

(5.52) 

 

where,     is the Euclidean distance. 

The initial partition of clusters is random. The condition expressed in Equation: 5.52 is checked at 

each iteration until further change in the error function is below a certain threshold. The initial 

parameters (statistics:     
,     ,        ,         and         for each cluster) are then computed 

using data vectors in each cluster. 

The initial parameters obtained from the output of k-means are provided to the EM algorithm. A 

likelihood function is defined in the EM algorithm which has to be maximized. Here a likelihood 

function is formulated, again using only the Gaussian component of GCSMM and defined as: 

 

                    
         

 

   

 

   

 

 

 

(5.53) 

where,   is a matrix with parameters of GCSMM.  

The characterization of the maximum of likelihood function is done by using its logarithm [110]. 

Therefore, by taking the logarithm of Equation: 5.53 we get: 

 

                  
         

 

   

 

   

 

 

(5.54) 

 

For more details on the EM algorithm see references [107],[108],[110]. The expression in Equation: 

5.54, is checked at each iteration until the change in that value decreases than a certain threshold or 

the number of preselected iterations end [110]. A modified Matlab function for EM based parameter 

estimation of GCSMM is termed as gcsmmfit function which finally provides following estimates: 

 

 

 

      
   

   
   

   
   

       
   

         
   

           
   

  

   
   

   
   

   
   

       
   

         
   

           
   

  

 

(5.55) 

where,    is the optimal parameters estimate and the superscript denotes the GCSMM individual 

component index. 

If one critically views the above hybrid scheme (k-means and EM,) it appears that for any given 
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samples of non-Gaussian distributed data vectors, one can obtain its multivariate GCSMM density 

estimates in a much simplified manner. The simplification is based on main Gaussian component (see 

Equation: 5.50 and 5.53). This is justifiable because each GCS component of GCSMM is essentially 

an extension / correction of the Gaussian PDF in terms of cumulant (function of higher order 

moments) based coefficients and Hermite polynomials. The use of Hermite polynomials is well suited 

for this problem due to its orthogonality with respect to the Gaussian weighting function (see Section: 

5.3). The use of the main Gaussian component based approximation is also supported by practical 

issues associated with the PF. For example, these filters employ a limited number (i.e., 200-1000) of 

particles for computationally tractable algorithms e.g., if one is computing only Gaussian statistics 

(mean and covariance) from 200 particles would surely be neglecting the higher order moment 

structure (i.e., skewness, kurtosis etc), practically existing in particles. Therefore, there should be 

some methodology in PF (especially parametric bootstrap PF) which can capture these higher order 

structures such as by using GCS or GCSMM. As a consequence of use of GCS or GCSMM in PF 

algorithms one also needs generation of such particles which approximate well the original particles. 

Therefore next section describes a random number generation of GCS.  

5.5 Random Number Generation 

One of the most vital components of Gaussian PDF based PF algorithms is the normal random 

numbers generator. Therefore, to utilize GCS in PF, we have developed two different types of random 

number generator for GCS in Matlab named as randngcs and coprandngcs. 

5.5.1 GCS Random Number Generator using Acceptance Rejection 

The method of Acceptance Rejection (AR) [67] has been used for generation of GCS distributed 

random numbers. In AR, firstly we select a PDF         from which it is simple to generate a 

random   . This random vector    will be considered as a random vector of actual PDF          

with probability proportional to 
        

       
. In order to do this we have to define a constant “c” so as to 

adjust the height of         to be always more than         : 

 

 
        

       
        

 

 

(5.56) 

 

Actually the vectors are generated from          and only accepted if they fall under the curve of the 

desired PDF         . Those vectors which are outside this curve are rejected. To achieve maximum 

efficiency, the number of rejected vectors should be minimal [67]. See Table: 5-2 for details of its 

algorithm.  
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The procedure for randngcs is outlined below: 

1. Estimate the maximum height of          as expressed in Equation: 5.40 using 

Matlab fminsearch (This function finds unconstrained minimum of a multivariable 

function using the derivative free method known as Nelder-Mead Algorithm [78]). 

This value is used to get “c”.  

2. Select Gaussian PDF                     such that Equation: 5.56 is satisfied. 

3. Generate a random number / vector    from            . 

4. Generate a Uniform random number   between 0 and 1.  

5. If following condition holds: 

  
        

        
 

 

6. Accept    as the value from          otherwise go to step 3. 

 

 

Table 5-2:  Description of AR algorithm for generation of GCS distributed random vectors    

 

 

In order to evaluate the usefulness of randngcs, and in particular the ability of GCS to model non-

Gaussian PDFs, we selected phase space distribution of a simple nonlinear pendulum. The simple 

pendulum nonlinear dynamics are of considerable interest to researchers due to its simple form [111]. 

The equations for un-damped dynamics are expressed as: 

 

     
 

 
     

 

 

 

 

 

 

 

 

 

(5.57) 

 

where,           , l is the length of the pendulum string and   is the angle in radians. A simple 

pendulum with time period                is selected. One may now proceed by providing 

approximately       normally (Gaussian) distributed initial conditions of the angular position     

and angular velocity      at time = 0 sec to this pendulum. The collection of final conditions (or 

particles) of angular position and angular velocity after time = 10 sec is now considered for PDF 

estimation. Firstly, a non-parametric based PDF estimation result is shown in Figure: 5-6. The black 

contour lines on top represents the multivariate “Gaussian kernel  ” based non-parametric density 

estimation of these particles. The equation for this PDF approximation is expressed as [67]: 
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(5.58) 

where,     is the     component of     data particle and     is the smoothing parameter (usually a 

function of moments of the distribution). 

 

 

Figure 5-6: Gaussian kernel based non-parametric density estimation for simple nonlinear 

pendulum. The black lines show PDF contours over its true final conditions (particles). 

 

 

Now consider a single Gaussian, GCS (5
th
 order), GMM and GCSMM types, for PDF estimation of 

final conditions of the simple pendulum. The results are shown in Figures: 5-7 to 5-10. A single 

Gaussian distribution is clearly incapable of capturing the bent (skewness) and layout of particles 

which produces lot of gaps in estimated PDF (Figure: 5-7); whereas, GCS approximations appear to 

be more close fitting distribution (Figure: 5-8). However, note GCS does not estimate well near 

centroid of the PDF. Moreover, it is unable to capture the skewness (extended tails) of a PDF. 

GCSMM and GMM estimation results are closely related, one may relate the similarities in their 

structure and form (see Figure: 5-9 and 5-10). These estimations are based on three mixture 

components each, which appear to provide sufficient accuracy.  

The random number generation for different PDFs using a particular type of algorithm vary in the 

output and may produce changing levels of noise. The results shown in the comparisons (Figure: 5-7 

to 5-10) are basically estimation of outputs of Matlab built in randn and our randngcs, using a 
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Gaussian kernel estimator (Equation: 5.58). This serves as an independent test or criteria for judging 

the efficiency of a particular random number generator for use in any PF algorithm.    

 

Figure 5-7: Single Gaussian PDF contours (red) for a Matlab (built in) “randn” generator 

plotted over true final conditions (particles in blue). 

 

 

Figure 5-8: Single GCS (5
th
 order) PDF contours (green) for a Matlab “randngcs” generator 

over true final conditions (particles in blue). 
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Figure 5-9: Three components GMM PDF contours (red) over true final conditions (particles in 

blue). Each component of GMM is generated using Matlab (built in) “randn” generator. 

 

Figure 5-10: Three components GCSMM (5
th
 order) PDF contours (green) over true final 

conditions (particles in blue). Each component of GCSMM is generated using Matlab “randngcs” 

generator. 
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5.5.2 Gram Charlier Series Random Number Generator using Gaussian Copula 

Another random number generator for GCS in Matlab is also developed and is named as 

coprandngcs based on Gaussian copula. The word “copula” is a Latin word for “bond” or “link”. 

It is a function which defines dependencies among variables and is used to generate correlated 

multivariate random numbers with specific marginal PDFs [112]. Given a joint PDF of two random 

variables, a marginal PDF of one variable is obtained by integrating the joint PDF over the other 

variable [5]. Thus, one may now express a bivariate Gaussian copula function as [112]: 

 

                         

 
 

       
   

  
          

       
 

      

  

    
      

  

 

 

 

 

 

 

 

 

 

 

 

(5.59) 

where, u and v are the marginal CDFs for bivariate random numbers and   is the correlation 

coefficient. In coprandngcs GCS is chosen as marginal PDFs and use   from Gaussian PDF to 

generate correlations. Table: 5-3 describes the algorithm which is used to generate Gaussian copula 

based random numbers with GCS marginals up to order three, which can be extended to higher orders 

in similar manner. The Gaussian copula method is computationally more attractive than AR as it, (1) 

avoids the computation of higher order cross moments, and (2) aptly incorporates correlations 

between variables using rank correlation or linear correlation parameter. The effectiveness of 

coprandngcs based PF over Gaussian or GMM based PF would be presented in the later part of 

the chapter. Again comparison on the lines of Section: 5.5.1 for coprandngcs is carried out. The 

result is shown in Figure: 5.11 which is comparable to the results illustrated in Figure: 5-10.  

 

Figure 5-11: Three components GCSMM (3
rd
 order) PDF contours (green) over true final 

conditions (particles in blue). Each component of GCSMM is generated using “coprandngcs” 

generator. 
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1. Consider mean  , variance   , skew    are available for each dimension separately. 

2. Compute linear correlation   or (rank correlation [26]) to construct dependency. For example 

the multivariate linear correlation is expressed as: 

    
   

       
 

       

                                        

3. Establish grid for each dimension. 

4. Convert statistics from step (1) to standardized cumulants    
  

   where    are cumulants 

expressed in terms of central moments (only first four are shown): 

         

      

         
  

5. Compute CDFs for GCS marginals for each dimension as: 

                  
 

  
               

  

  

    

6. Compute inverse CDF         for each dimension from step (5) by inverting the function.  

7. Generate Gaussian copula random variables with dependency structure (correlations) as in 

step (2) using Matlab copularnd function the function generates correlated multivariate 

Gaussian random variables domain (-1, 1). 

8. Generate vector random variables    by table look up method of probabilities from step (3) 

and (6) with correlations structure provided by step (7). 

 

 

Table 5-3: Description of the algorithm for Gaussian copula based random number generator for 

GCS. 

 

 

5.6 Gram Charlier Series and its Mixture Particle Filtering 

This section describes the new estimation algorithms that are developed for estimation of nonlinear 

dynamical systems, such as estimating satellite orbits. As presented in Section: 5.3 to 5.4, GCS is 

found to be a natural extension of a Gaussian PDF. The higher order moments of any PDF can be 

aptly incorporated into the GCS or GCSMM formulation (Equation: 5.40 and 5.47), albeit making it a 

complex proposition. Now the basic ideas presented in generic (SIS-R) PF, GPF and GSPF algorithms 
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is extended by relaxing the Gaussian assumption with more useful GCS and GCSMM. The basic 

concept of PF remains the same with some dissimilarity among different algorithmic schemes. The 

following algorithms are developed and implemented: (1) Single GCS Particle Filter (GCSPF), (2) 

GCS Mixture Particle Filter (GCSMPF), and (3) Hybrid GCS Culver Particle Filter (HGCPF). As far 

as the author is aware use of GCS or GCSMM type of PDF in SMC filtering has not been previously 

attempted or considered in the literature. Moreover, the restriction on use of GCS for PF is also 

removed by fast generation of random numbers (see Table: 5-4). 

 

 

Random generator Number of bivariate random  

vectors generated 

Time 

(sec) 

Order of 

Hermite polynomial 

 

randngcs 200 0.17 5
th
  

coprandngcs 250 0.09 3
rd
  

  

 

Table 5-4: Random number generation timings for randngcs and coprandngcs for order 5 

and 3, respectively. 

 

 

5.6.1 Single Gram Charlier Series Particle Filtering 

The single GCS (Equation: 5.40) can be conveniently used for the SMC Bayesian filtering of 

nonlinear dynamical systems. The basic idea of the GCSPF is adapted from GPF. However, in 

GCSPF one approximates the Bayes’ a posteriori PDF by GCS. GCS is considered as point mass 

approximated PDF. The function randngcs will be employed for generation of random vectors. In 

order to present algorithms for PF we proceed with GCS up to order five of Hermite polynomials. The 

extension to higher orders is possible but it would be computationally very expensive (see Figure: 1-4 

and Section: 1.2). Compact notation of GCS up to order five is expressed as: 

 

                 
   

   
   

   
     

(5.60) 

 

where,    denotes the state for multivariate statistics     denotes a mean,    is the covariance matrix, 

  
   

 is the coskewness tensor,   
   

 is the fourth order tensor, and   
   

 is the fifth order tensor. In this 

compact notation (Equation: 5.60) and more to follow, moments are used instead of cumulants 

(because of the convenient conversion relations between moments into cumulants given in Equation: 
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5.43) for the sake of simplicity. Two different algorithms GCSPF and HGCPF for SMC filtering 

employing truncated GCS up to order five and three respectively will be described. The former 

considers noise PDF also as GCS, expressed compactly as: 

 

                   
   

   
   

   
     

(5.61) 

 

where, the notation for noise variable is   . The statistics for this variable      is the mean,   , is the 

covariance   
   

 is the coskewness tensor,   
   

 is the fourth order tensor, and   
   

 is the fifth order 

tensor. Using Equation: 5.6 and the property of delta function [104] the state transition PDF can be 

expressed as: 

                                           
   

   
   

   
   

    

  

  

 

                           
   

   
   

   
   

  

 

 

(5.62) 

Now by using Equation: 5.5, the state predictive PDF can be derived as: 

                                           
   

   
   

   
   

 
  

  

 

                         
   

     
   

     
   

       

                                            
   

   
   

   
   

   

 

 

(5.63) 

where, the expectation operator      or marginalization in second of Equation: 5.63 is performed 

using the Bayes’ a posteriori PDF at       instant. One may consider a solution of Equation: 5.63 

as GCS, therefore the statistics of samples i.e., mean, covariance using Equation: 5.30, and higher 

order moment tensors of state predictive PDF at k
th
 instant are expressed as: 

  
   

 
 

 
    

          
       

 

    
       

 
 

   

  

  
   

 
 

 
    

          
       

 

  
    

       
 

 

   

 

  
   

 
 

 
    

          
       

 

  
    

       
 

 

   

 

 

 

(5.64) 

Now consider the state predictive PDF as a proposal PDF. Therefore, we now substitute the proposal 
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PDF from Equation: 5.63 in Equation: 5.20. Thus, in the measurement update step, the evaluation of 

weights is computed in a non-iterative manner using   
   

           
   

  where, the samples   
   

 

are drawn from the state predictive PDF during the time update step. The Bayesian inference is then 

drawn by computing weighted statistics of the Bayes’ a posteriori PDF at “k
th

” step. A pseudo-code 

for the algorithm pertaining to fifth order GCSPF is described in Table: 5-5. In HGCPF third order 

GCS is used to approximate the Bayes’ a posteriori PDF. The word hybrid is used in this filter to 

signify use of third order CF measurement update equations. CF has already been briefly described in 

Chapter: 1 and 2. It pertains to continuous-discrete type of filtering therefore we would describe it in 

more detail, later in Chapter: 6. However, a brief description of the filter is given in this section as 

well. In the CF, a second order Taylor series linearization of the dynamical system is carried out in 

order to express the higher order moment (until third order) evolution equations of the system using 

the Ito differential rule [1],[6]. During the time update, these evolution equations are integrated 

forward in time to obtain parameters (moments) of the state predictive PDF approximated as GCS. 

Much like, the EKF the measurement function is also linearized to obtain the measurement likelihood 

also as Gaussian. MMSE and higher order moment solutions are found by analytically solving Bayes’ 

formula. The measurement update equations for the CF are expressed as [1]:  

 

   
           

   
               

    
    

                                

 

(5.65) 

where,   
  is the mean of Bayes’ a posteriori PDF for dimension (i),    

  is the covariance of Bayes’ a 

posteriori PDF between dimensions (ij),     
    

 is the coskewness of Bayes’ a posteriori PDF between 

dimension (   )  

 

The other variables expressed on right hand side in Equation: 5.65 are described in Chapter: 6. In 

HGCPF time update equations, instead of linearizing the function using Taylor series the propagation 

of nonlinear function (first of Equation: 5.1) is carried out without any linearization. However, the 

measurement function is linearized as in original CF. The process noise in HGCPF is considered as 

additive Gaussian. However, a non-Gaussian process noise can also be considered. The state 

predictive PDF in HGCPF is approximated as done in GCSPF where the sample statistics of this PDF 

are computed on the lines of Equation: 5.30 and 5.64. See Table: 5-6 for the pseudo-code of HGCPF. 
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From time k-1..., 

Time Update  

For each       , obtain samples  

       
   

 
   

 
                                         

   
     

   
     

   
  

For each        , obtain samples  

           
   

 
   

 
                      

          
          

   
     

   
     

   
   

For    
   

 
   

 
are distributed as GCS samples, obtain mean   , covariance   ,   
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Measurement Update 

For       , obtain samples from  

   
    

   

 
                               

   
   

   
   

      

For each i = 1,…,N, compute weights   
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Weighted statistics /Inference from filtering density   ,      
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*,** See Equation: 5.64 

 

Table 5-5: The Gram Charlier Series Particle Filter (GCSPF) 
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From time k-1..., 

Time Update  

For each       , obtain samples  

       
   

 
   

 
                                         

   
  

For each        , obtain samples 

           
   

 
   

 
                      

          
       

For    
   

 
   

 
are distributed as GCS samples, obtain mean   , covariance   ,   
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Measurement Update 

Use Culver Filter (CF) measurement update equations [1](See details for CF in Chapter: 6) 

   
           

   
               

    
                                    

Measurement updated Bayes’ a posteriori PDF 

                
     

where, 

  
        

         
       

   
  

 

 

 

 

 

Table 5-6: The Hybrid GCS and Culver Particle PF (HGCPF) 
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5.6.2 Gram Charlier Series Mixture Particle Filtering 

The improved fidelity of GCSMM has already been demonstrated in Section: 5.4 and 5.5. Therefore 

the truncated GCS up to order three in a mixture model configuration is used in nonlinear SMC 

filtering. Note that the order of GCS in this filter can be conveniently extended to higher orders using 

the same methodology. The Bayes’ a posteriori of the state and noise PDF in this filter are considered 

as GCSMM. However, one may consider additive Gaussian noise also. The compact form of 

GCSMM can be expressed as:  

 

             
   

          
   

   
   

   
      

 

 

   

 

(5.66) 

 

An important point to note is the ability of the GCSMPF to incorporate (additive) highly non-

Gaussian process noise expressed compactly as: 

             
               

      
      

     

 

   

 

(5.67) 

During the time update, firstly the samples from the PDF expressed in Equations: 5.66 and 5.67 are 

drawn as per weights   
   

 and   
   

. For example one may use the SIR as explained in Section: 5.2.4. 

These samples are propagated through the nonlinear dynamical system      (Equation: 5.1) just like 

SIS-R PF. By approximating the propagated distribution as GCSMM one employs an EM step using 

gcsmmfit function (see Section: 5.4.2) to obtain time updated “G” component state predictive 

GCSMM PDF. The proposal PDF in this filter is also considered as state predictive PDF available 

from the time update. Therefore, in the measurement update step the samples are redrawn from state 

predictive GCSMM PDF and the weights for “M” particles of each mixand (component) are 

computed using the observation likelihood           
     just as in the GSPF. Here Equation: 5.20 

is used again. The weighted updates of parameters for each mixand are computed as: 

 

  
   

 
   

      
  

       
   

   

       
   

   
   

 
   

         
      

   
       

      
   

    
 

 
   

   
       

   

 

  
      

 
   

         
      

   
       

      
   

    
 

    
      

   
    

 
 
   

   
       

   

 

(5.68) 

The inference can now be conveniently drawn through parameters of GCSMM given in Equation: 

5.68. The Pseudo-code for the filter is presented in Table: 5-7. 
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From time k-1..., 

Time Update 

For       , obtain samples as per the weights     
   

 

       
   

 
   

 
                         

   
              

   
     

   
     

      
 

 

   

 

For        , obtain samples from             as per weights     
   

 and propagate through 

nonlinear system (first of Equation: 5.1). 

Perform EM (gcsmmfit) step on propagated    
    

   

 
 particles to extract “G” component GCSMM 

time updated predictive PDF: 

                    
   

          
   

   
   

   
      

 

 

   

 

Measurement Update 

For       , obtain samples from     
        and denote them as    

      
 
   

 
. 

For        each j = 1,…,M, compute weights ,   
      

           
        

For       , Compute mean, covariance and tensor* components   
      

: 

  
   

 
   

      
  

       
   

   
       

   

   
   

 
   

      
   

      
   

   
    

      
   

   
 

 
 
   

   
       

   

 

Update weights   
   

     
      

     
   

   
 
     

   
 
 

   
   

 
  

   

  
 
    

 

 

Inference: The conditional mean state estimate                and Covariance 

                         can be estimated by: 

       
   

  
   

 

   

        
   

   
   

    
   

        
   

     
 

 

 

   

 

Optional Step: Residual Resampling (Section: 5.2.4) applied on mixture weights to avoid use of 

insignificant (very small) weights in next time step. 

 

*(See Equation: 5.68) 

 

 

Table 5-7: The GCS Mixture PF (GCSMPF) 
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5.7 Experiments – Nonlinear Simple Pendulum 

A nonlinear simple pendulum is standard example due to its interesting dynamical properties [111]. 

Particle representation of simple pendulum phase space in Figure: 5-6 depict non-Gaussian 

distributions. Therefore, state estimation of such a dynamical system under sparse measurement data 

requires better approximation of state predictive and Bayes’ a posteriori PDF such as GCS or 

GCSMM. 

5.7.1 Atmospheric Drag  

The equations of motion of an undamped simple pendulum have already been expressed in Equation: 

5.57. Here, we shall consider the damped simple pendulum’s equation of motion. The damping 

accelerations are a suitable model for the effects of atmospheric or air drag accelerations upon a 

satellite orbit. The function used is a velocity-squared damping is [113]: 

 

 
    

 

 
                  

 

(5.69) 

where, the constant = 0.1211 (coefficient of atmospheric drag acceleration), and the model for 

atmospheric drag upon satellites is expressed as [13],[12]: 

 

 
    

 

 
 

   

 
  

 
  

    
 

 

(5.70) 

where,    =      (is the relative velocity of a satellite with respect to the atmosphere),   is the satellite 

mass,    is the drag coefficient (dimensionless quantity that describes the interaction of atmosphere 

with satellite’s surface material),   is the atmospheric density at the location of satellite, and   is the 

satellite cross-sectional area. Also, like the un-damped pendulum this oscillator (Equation: 5.69) 

accounts for the nonlinear performance inherent in large amplitude swings [113]. Consider the model 

expressed in Equation: 5.69 as the true model for generating the reference trajectory. By a reference 

trajectory one means the state trajectory of the simple pendulum              that is being used to 

compare the output from the filters termed as estimated trajectory.  

The discrete time measurement equation which gives the reference trajectory is described by: 

 

             (5.71) 

 

where,    is the     measurement of angular position       at the time instant    and    is the white 

Gaussian measurement noise due to sensor errors with the following statistics: 
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(5.72) 

 

where, R is the correlation function and     is the Dirac delta function.  

 

Consider next a filter model. Suppose that only the dynamics of an undamped simple pendulum is 

known and nothing is known about the damping acceleration                as given in Equation: 

5.69. The most appropriate choice to account for this unknown acceleration in a filter model is to 

formulate a model based on a Stochastic Differential Equation (SDE) [1]. In a SDE dynamics are 

described in terms of deterministic and stochastic forms. Therefore, a filter model is expressed for the 

simple pendulum using a SDE as [6],[23]: 

 

 

 

                        

 

   
  

  
   

 
             

  

 
 

 
       

          
  
    

    

 

 

 

(5.73) 

 

 where,      is a white noise,        is the dispersion matrix and     is the diffusion coefficient.  

 

 

The white noise is considered as zero mean and its diffusion matrix is expressed as: 

 

 

 

                       

 

 

 

 

 

 

(5.74) 

 

Additive white noise inputs in Equation: 5.73 are based on the fact that the desired time correlation 

properties of a physically observed phenomena can be produced sufficiently well when white noise is 

passed through a linear shaping filter [23]. Thus, the term            is augmented to basic 

deterministic dynamics to formulate a stochastic simple pendulum model. Another useful form of the 

SDE can be expressed as [23]: 
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(5.75) 

where,      is the Brownian motion vector,    is the scalar Brownian motion increment.  

 

Here, we made use of the fact that, the white noise is derivative of the Brownian motion,      

         [6],[23]. In general, the scalar Brownian motion over the time domain       is defined as 

the random variable      that depends continuously on         and satisfies three conditions 

expressed in Table: 5-8 [114]. 

 

 

1.        (with probability 1). 

2. For             the random variable given by the increment               is 

normally distributed with mean = 0 and variance =         or               

               , where        = Gaussian distributed random variable with zero mean 

and unity variance. 

3. For                      , the increments               and         

        are independent. 

 

 

Table 5-8: The conditions defining the scalar Brownian motion process. 

 

The formulation in Equation: 5.75 is basically an undamped simple pendulum dynamics 

(deterministic dynamics), added with a stochastic term             which accounts for unknown 

accelerations and state uncertainty as time progresses. Moreover, these dynamics are expressed in 

continuous time notation; therefore in order to utilize discrete filtering algorithms described earlier in 

this chapter, one has to express these into a discrete time formulation. In general, the solution of SDE 

(Equation: 5.73 and 5.75) is given by [23],[6] : 

 

                              
 

  

                   
 

  

         

 

(5.76) 

The first integral in Equation: 5.76 is an ordinary integral which can be solved usually through 
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numerical integration methods such as Runge-Kutta (RK-4). However, the evaluation of the second 

integral is not possible using ordinary differential calculus as the Brownian motion is a zero mean 

process with Gaussian increments, which is continuous but nowhere differentiable (with probability 1) 

[23],[6]. By considering the dispersion matrix        as diagonal (Equation: 5.73) one can 

approximate the solution of the second integral in Equation: 5.76 by considering Brownian motion as 

[114]: 

 
 

                        

 

(5.77) 

 

Now one can select an appropriate fixed integration step size    for the solution of the first integral 

using RK-4 and solve the second integral of Equation: 5.76 using Equation: 5.77. This would yield an 

approximate discrete time solution of the SDE for a simple pendulum filter model (Equation: 5.73). In 

the conducted experiment the time period of the simple pendulum is selected as 1 sec. Therefore, a 

fixed step size is selected as             to solve both the true model and filter model in order to 

obtain high fidelity solution. In order to gauge the filtering performance one has to select some 

assessment criteria. The most direct approach is to evaluate the difference between the true trajectory 

and estimated trajectory at all instants of time. This would not only provide time history of 

Instantaneous Errors (IE), but also maximum and minimum error amplitudes, peculiarities in error 

pattern (i.e., periodicity / secular trends), convergence or divergence pattern and biases. However, 

another useful measure is to find out the standard deviation of errors over the complete estimated time 

span which provides us confidence in estimates. It could be found out by computing the square root of 

second moment of distribution of errors and termed as Root Mean Square Error (RMSE) or   

                   error. For example in case of Gaussian distributed errors, 

                     error in a particular dimension provides us 68.27% confidence that our errors 

at any time are within this value. Another important criterion of filtering performance is consistency 

in estimates. This could be measured by computing first moment (mean) of distribution of errors 

termed here as Mean Error (ME). Ideally, ME should be equal to zero for estimates to be termed as 

consistent [5]. Now we define the equations for these error criteria: 

 IE 

             

 

 

(5.78) 

     RMSE 

                   

 

 

(5.79) 

    

 ME 

                   

 

 

(5.80) 

 where,      = true state from k = 0 to simulation time k = T,       = estimated state from k = 0 to 
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simulation time k = T, and E [.] = Expectation operator. 

 

Section: 5.1 discussed the filtering requirements for nonlinear dynamical systems under less 

measurement availability pertaining to LEO space object radar orbit determination. Depending on the 

height of the orbit from surface of Earth a space object in LEO appears for a very short span of time 

(usually 5 to 10 minutes) on the horizon. This time span forms approximately 1/10
th
 of their orbital 

period. Moreover, even during the availability of satellite on the horizon does not necessarily 

guarantee useful measurements due to its attitude (angular orientation). The attitude is very important 

for useful / strong return of radar energy. Therefore, one may approximate the availability of 

measurements for only 2-3% of the total orbital period. Keeping in view, the above situation a 2% 

measurement availability time is selected for the simple pendulum problem. Since, the time period of 

simple pendulum is selected as 1 sec; therefore the measurements would only be available for 0.02 

sec. This suggests only two measurements per time period in the experimental setup. The noise 

variance of a measurement sensor is a random parameter. For any radar system it can be estimated 

using MC simulations. Therefore, for the simulation purpose it is assumed as               

(Equation: 5.72) for all filters used in this experiment. For nonlinear dynamical systems under sparse 

(less) measurements the accuracy in the state predictive PDF becomes very crucial. As any optimal 

criteria the MMSE or MAP would then be acquired using this PDF. Table: 5-9 summarizes all the 

simulation parameters for our dynamic system including the initial conditions and initial error 

variances. The initial state uncertainty i.e., error covariance for satellites is usually large. Therefore, 

filtering under large initial state uncertainty is kept in mind while selecting error covariance for this 

experiment. 

  

Model Time 

Period 

Integration step 

size (RK-4) 

Initial Conditions Simulation 

time 

True 1 sec 0.01 sec                 
             

     

20 sec 

Filter 1 sec 0.01 sec           
       20 sec 

where,     and     diagonal components of initial error covariance matrix (assumed diagonal) with 

following values (fixed for all the filters used in this experiment): 

              

                      

 

 

Table 5-9: Summary of parameters of dynamic system (simple pendulum atmospheric drag 

model) for simulation. 
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The number of particles in this experiment for PF family which includes GPF, GCSPF (using 5
th
 order 

GCS) and generic (SIS-R) PF is selected as 200. Matlab Rebel toolkit [22] is applied to simulate 

filters (less algorithms based on GCS) in this experiment (the toolkit provides Bayesian discrete time 

sequential filters in generic form like EKF, PF and GSPF etc which are adapted for our simple 

pendulum experiment). The diffusion coefficient term     expressed in Equation: 5.73, is the tuning 

parameter for optimal performance of the PF family (PF, GPF, and GCSPF) used in this experiment. 

See Figures: 5-12 and 5-13 for results of IE between the true trajectory and estimated trajectory. The 

time histories of errors in these figures are computed by averaging errors over 50 MC runs of each 

filter as suggested by ref [5] for comparison of different filtering algorithms. Note the single run of 

filter is considered to be a naive method for assessment of the performance [5]. The figures indicate 

that the performance of GCSPF is much better than other filtering algorithms. In GCSPF one can 

clearly identify more errors initially. However, the errors decrease and converge to relatively small 

amplitudes after 10 sec (approx). PF (SIS-R) performed reasonably well thereafter and has low initial 

errors and better comparative convergence. The statistics of ME in Table: 5-13 indicate better 

consistency for all the filters. The RMSE for GCSPF is slightly higher than the expected due to more 

errors during the first 10 sec of the simulation. However, having in mind its better convergence and 

low error amplitude subsequently; it can be considered comparatively better than other filters.   

 

Figure 5-12: Comparison of time history of errors in angular position    between true trajectory 

and estimated trajectory (atmospheric drag simple pendulum model) for different filters. 
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Figure 5-13: Comparison of time history of errors angular velocity     between true trajectory and 

estimated trajectory (atmospheric drag simple pendulum model) for different filters. 

 

 

 

Filter Mean Error (ME) Root Mean Square Error (RMSE) 

                                              

EKF -0.0032   -0.0004 0.0987 0.6186 

GCSPF -0.0001 -0.0004 0.0945 0.5852 

GPF -0.0010 -0.0003 0.1733 1.0352 

PF -0.0008 -0.0008 0.0660 0.3941 

 

 

Table 5-10: Comparison of filters in terms of ME and RMSE for atmospheric drag simple 

pendulum model. 
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5.7.2 Wind Gust 

Aerospace launch vehicles which are used to transport satellites in specific orbits are imposed with 

structural loads due to wind variability along their trajectory through the Earth atmosphere into space. 

The most effective loads are due to discrete wind gusts which stand out above the general disturbance 

levels. The wind gusts are characterized by their length and amplitude which has Bivariate Gamma 

Distribution (BGD). The marginal PDF of this BGD are also univariate gamma PDF [115]. Therefore, 

it seems appropriate to add gamma distributed random numbers in nonlinear dynamics of the simple 

pendulum in order to simulate effects of wind gusts. We now describe true model for simple 

pendulum added with gamma distributed process noise: 

    
 
         

  

 
 

 
       

   
  
  

  
 
 
  

 

(5.81) 

   

The gamma PDF is given by [67]: 

 

     
             

      

                 
 

 
 

(5.82) 

 

where,    is the shape parameter,   is the scale parameter and       is the gamma function. The filter 

model is same as expressed in the SDE Equation: 5.73. Table: 5-14 summarizes all the simulation 

parameters for our dynamic system including initial conditions and initial error variances. 

Model Time 

Period 

Integration 

step size 

(RK-4) 

Initial Conditions Simulation 

time 

Gamma 

PDF 

parameters*  

True 1 sec 0.01 sec                 
 

                   

20 sec         

       

Filter 1 sec 0.01 sec           
       20 sec - 

where,     and     diagonal components of initial error covariance matrix (assumed diagonal) with 

following values (fixed for all the filters used in this experiment): 

              

                      

*These parameters are fixed so as to obtain univariate gamma random numbers appropriate for simple 

pendulum used in this experiment                  .  

 

Table 5-11: Summary of parameters of dynamic system (simple pendulum wind gust model) for 

simulation. 
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The measurement model (Equation: 5.71), noise variances (Equation: 5.72) and number of 

measurements are kept the same as in the example for the atmospheric drag simple pendulum model 

in Section: 5.7.1. Now a comparison is performed for the same error criteria to evaluate filtering 

performance as already described in Equation: 5.78 to 5.80. Figures: 5-14 and 5-15 illustrate the IE 

between the true and estimated trajectories for the EKF, GCSPF, GSPF, (SIS-R) PF and HGCPF. One 

can clearly see sub optimality of performance of these filters compared with the results for the 

atmospheric drag model. This is mainly due to the additive gamma random numbers which are 

modelled as a white Gaussian noise in the filter model (see Equation: 5.73). However, even by using a 

SDE for the filter model one find, filters based on the GCS outperform others. Overall the 

performance of PF family (GCSPF, GSPF, and HGCPF excluding (SIS-R) PF) has shown an 

improvement over the EKF. The filter error statistics of ME and RMSE are shown in Table: 5-12 

which shows comparatively better estimates can be achieved by using a filter based on GCS. 

However, the overall view of the RMSE and ME results suggests considerable angular deviation and 

inconsistency, respectively. The GSPF is initialized for two components (mixands) GMM; whereas, 

GCSPF is based on a single GCS which shows improvement over GMM. The number of particles in 

the PF family algorithms is selected as 200. This experiment is basically aimed at implementing the 

EKF, GSPF, (SIS-R) PF, GCSPF and HGCPF filters for nonlinear inference problems with non-

Gaussian process noise under sparse measurements. Nevertheless a proper selection and optimization 

of the filter model is required for its better performances. 

 

Figure 5-14: Comparison of time history of errors in angular position    between true trajectory 

and estimated trajectory (wind gust simple pendulum model) for different filters. 
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Figure 5-15: Comparison of time history of errors angular velocity     between true trajectory and 

estimated trajectory (wind gust simple pendulum model) for different filters. 

 

 

 

Filter Mean Error (ME) Root Mean Square Error (RMSE) 

                                              

EKF -0.1655 -0.1138 0.2773 1.3500 

GCSPF -0.1382 -0.0909 0.2273 1.1412 

HGCPF -0.1329 -0.1330 0.2149 1.0884 

GSPF -0.1529 -0.2365 0.2342         1.0606 

PF -0.1736 -0.1714 0.3687 1.9866 

 

 

Table 5-12: Comparison of filtering performances in terms of ME and RMSE for wind gust 

simple pendulum model. 
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5.7.3 Experiment – Radar Based Orbit Determination 

In this experiment an orbit determination of a satellite through radar measurements is being looked 

into. It has been described in Chapter: 3 and 4 that satellite dynamics around our planet are highly 

nonlinear functions of its state (position and velocity) variables. The equations of motion of a satellite 

around a non-spherical geopotential in ECI reference frame [13] are rewritten in the form: 

 

 

     

    
  

  
     

(5.83) 

(5.84) 

 

where,            , is the position vector,              
 
, is the velocity vector, both in ECI 

coordinates, and    express here as higher zonal gravitational perturbation terms obtained by taking 

the gradient of potential function   given in Equation: 3.30. 

 

Equations: 5.83 and 5.84 with perturbation accelerations     for Earth zonal harmonics up to J4 are 

considered as the true model (see Equation: 4.40 to 4.42 for accelerations expressions in ECI 

reference frame). Given some specific initial conditions           
  these equations are integrated 

using ODE Runge-Kutta 4 (RK-4) to get time history of position and velocity.  

Now the measurement system is described of a satellite. The ECI position vector of satellite is related 

with the radar range vector and radar site vector through the following equation [13]: 

 

        (5.85) 

 

where,   is the ECI coordinates of satellite,    is the ECI coordinates of radar site, and   is the range 

vector from radar site to satellite. 

 

The range vector    from the radar site to the satellite is described in Topocentric coordinate system 

(see Figure: 5-16 for illustration) in terms of the “zenith”, “east” and “north” as: 

 

                  (5.86) 

 

The range can be obtained as:  

      
    

    
 

 

(5.87) 

 

The azimuth (az) and elevation (el) angles are expressed by: 
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(5.88) 

   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-16: Measurement model description in Topocentric Coordinate System. 

 

 

 

The east, north, and zenith unit vectors in Topocentric coordinate system is given by [13]: 

 

 

     
      
    

 
      

          
         

    
      

        
        

    
   

(5.89) 

 

 

where,   and   are geographical latitude and longitude of radar site respectively. By defining the 

orthogonal transformation as: 
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                (5.90) 

 

The satellite’s Topocentric coordinates in terms of radar site latitude and longitude may be obtained 

through following transformation: 

 

    

  

  

  

                
(5.91) 

 

where,       stands for the rotation about z-axis and   = Greenwich Mean Sidereal Time (GMST) 

[13]. GMST is also termed as Greenwich hour angle which denotes the angle between the mean 

vernal equinox (see Figure: 3-3) of date and the Greenwich meridian (see Figure: 3-5). It is a direct 

measure of Earth’s rotation and expressed in angular units as well as time. For example 360 degrees 

     correspond to 24 hours. Time calculations for satellite orbit predictions and determination are 

usually carried out in Julian Date (JD) [13],[12] due to its continuous nature. A Julian Date (JD) is the 

number of days since noon 1 January, 4713 BC including the fraction of day. Presently, the JD 

numbers are already quite large therefore a Modified Julian Date is defined as:        

           (see ref [13] for computation of GMST from MJD / UTC). The filter model is defined for 

acquiring the estimated trajectory on the same lines as discussed for the simple pendulum model 

[116]: 

 

                           

 

  

 
 
 
 
 
 
 
 
 
  

  

   
 
 
 
 
 

        

 
 
 
 
 
 
 
 
 

  

  

  

 
   

  
      

 
   

  
      

 
   

  
       

 
 
 
 
 
 
 
 

 

 

       

 
 
 
 
 
 

   
   
   

     
     
      

 
 
 
 
 

        

      

      

      
   

(5.92) 
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where,                       is the zonal perturbation term until J2 for ECI X,Y and Z coordinates 

(see Equation: 4.40 for their mathematical expressions),        is the dispersion matrix       is the 

Brownian motion increment vector,                 are diffusion coefficients and subscripts denote 

row and column respectively, and                 are individual scalar Brownian motion increment 

(explained in Section: 5.7). 

The Eglin US Air Force Base (AFB) is selected as radar site with               and   

           . Each measurement consists of range, azimuth and elevation angles and the 

measurement errors were considered to be Gaussian distributed with following variances (adapted 

from ref [59]): 

 

                                                       (5.93) 

 

Initial conditions for satellite to generate true trajectory are [59] : 

 

 

              

             

             

             

             

              

(5.94) 

 

IC to filter with large position variances as        and velocity variances              are [59]: 

 

 

                                    

                                        
 

  

(5.95) 

 

In general the IC for mean and higher order moments is obtained using algorithms for initial OD 

(IOD) of satellite such as nonlinear least squares or Herricks-Gibbs (HG) methods [12]. For 

simulation purposes the IC in Equation: 5.95 are acquired from reference [59] which is based on HG 

method. Keeping in line with the experimental setup of the simple pendulum under sparse 

measurements, availability of measurements for     of the orbital period of satellite (  

            is selected. Therefore, the observations are recorded for 3 minutes per orbital period with 

a 5 sec gap between the measurements. The filtering assessment criteria are kept the same (Equations: 
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5.78 to 5.80). The time history of IE in ECI coordinates are given in Figures: 5-17 to 5-19. The 

number of particles for each filter is selected as 250 to produce these figures. However, experiments 

with different numbers of particles were carried out and the results indicated almost the same 

comparison ratios between the filters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-13: Comparison of filters Root Mean Square Errors (RMSE) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-14: Comparison of filters Mean Errors (ME) 

Filter RMSE (Position) 

meters 

RMSE(Velocity) 

meters/s 

X Y Z          

GCSMPF 81.06 112.43 116.89 3.86 4.35 5.15 

GSPF 97.05 136.77 191.01 5.02 4.53 6.16 

PF 589.22 539.80 304.94 16.17 11.50 11.44 

Filter ME (Position)[m] ME(Velocity)[m/s] 

X Y Z          

GCSMPF -20.59 88.27 -105.59 -0.79 -0.07 -0.94 

GSPF 48.78 70.93 -147.83 -1.65 0.93 -2.09 

PF -435.99 473.12 -242.65 -4.38 -0.91 -3.53 
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Figure 5-17: Time history of errors     in ECI   (top),    (middle), and   (bottom). The 

measurement frequency is 0.2 Hz. 
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Figure 5-18: Time history of errors     in ECI    (top),   (middle), and    (bottom). The 

measurement frequency is 0.2 Hz. 
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Figure 5-19: Time history of magnitude of errors in position       (top) and velocity         

(bottom). Measurement frequency is 0.2 Hz. 

 

 

The RMSE results for GCSMPF (Table: 5-13) are better than the other two types of filtering 

techniques. Copula type of random number generator (coprandngcs) has been used in GCSMPF 

with two mixands (components). The GSPF has also been implemented with two Gaussian mixands. 

The increase in number of components for GCSMPF and GSPF in this experiment decreases 

computational speed. Moreover, it is further affected with increase in number of particles used by the 

algorithms. Therefore, two component mixtures PDF for GCSMPF and GSPF are considered for 

satellite OD experiment. This selection of number of mixture components provides comparable 

computational speed with respect to (SIS-R) PF. The results of ME errors (Table: 5-14) are away by 
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meters from zero mean consistency criteria for all the filters. Nevertheless, for this type of 

experimental setting these errors are still not very large. The plots in Figures: 5-17 to 5-19 are 

averaged results over several runs for each filter. Similar efforts were performed on each filter to 

perform optimally. Therefore, these results give an indication of different inference algorithms tested 

on a nonlinear problem. The deteriorated performance of the (SIS-R) PF is due to the large 

uncertainty provided to the filter (Equation: 5.95). The performance of the PF improves considerably 

if the values provided in Equation: 5.95 are reduced. However, reduced uncertainty may not be very 

realistic for space object estimation under sparse measurements scenario. After the termination of set 

of measurements the performance of filters will now be observed for second pass over the same radar 

site after one orbital period later. The duration of measurements is kept same i.e. three minutes. The 

estimates and associated uncertainties for each filter are computed by using propagated particles until 

the first observation of second orbital period. The time history of errors in ECI coordinates are shown 

in Figure: 5-20 to 5-22. The performance of the (SIS-R) PF is significantly suboptimal compared with 

the GSPF and GCSMPF. Therefore these figures only illustrate the later two filtering comparisons. 

Table 5-15 and 5-16 shows RMSE and ME, respectively. 

 

 

 

Figure 5-20: Time history of errors     in ECI X (m) and         after one orbital period T, where 

           . 
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Figure 5-21: Time history of errors     in ECI   (top),    (middle), and   (bottom). The 

measurement frequency is 0.2 Hz after one orbital period T, where             . 
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Figure 5-22: Time history of errors     in ECI    (top),       (middle), and         (bottom). 

The measurement frequency is 0.2 Hz after one orbital period T, where             . 
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Table 5-15: Comparison of filters Root Mean Square Errors (RMSE) after one orbital period 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-16: Comparison of filters ME after one orbital period 

 

The results of sequential filters show improved efficiency of GCSMPF over GSPF, especially due to 

the lower RMSE / ME and better convergence. Note the significant divergence of the GSPF, which 

can lead to increased errors in later orbital periods. In general, divergence of filters happens due to its 

very low error covariance matrix output (extremely good confidence in estimates), which can be 

erroneous. Therefore, one may initialize the covariance matrix as soon as the error covariance matrix 

goes less than a certain threshold. In order to illustrate this situation consider an example of ECI 

positional errors of GSPF and GCSMPF along with their covariance for a single set of observations 

over the same radar site. Figures: 5-23 to 5-26 shows time history of errors and positional covariance, 

respectively for GSPF and GCSMPF.  

Filter RMSE (Position) 

meters 

RMSE(Velocity) 

meters/s 

  X   Y   Z          

GCSMPF 840 299 525 1.6 2.0 2.9 

GSPF 1346 365 1401 13.8 5.2 18.6 

Filter ME (Position)[m] ME(Velocity)[m/s] 

 X   Y    Z          

GCSMPF 805 -282 -414 1.6 -2.0 2.9 

GSPF 1099 -238 -842 -10.5 -3.9 17.2 
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Figure 5-23: Time history of position errors     in ECI coordinates for a GSPF. 

 

Figure 5-24: Time history of positional covariance for a GSPF. Note reduced (very low) covariance 

which may cause filter divergence as it assumes more confidence in estimates. 
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Figure 5-25: Time history of position errors     in ECI coordinates for a GCSMPF. 

 

Figure 5-26: Time history of positional covariance for a GCSMPF. 

 

One may clearly observe that the output covariance of GSPF is low compared to GCSMPF which 

means more confidence in estimates which could be erroneous. Hence, the GSPF is more likely to 

produce diverged estimates. In these experiments we have not considered covariance re-initializing in 
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order to evaluate filtering performances without using such engineering practice in order to gauge 

error trends. We now observe the performance of the GCSMPF for orbital periods greater than 2. 

Figures: 5-27 to 5-29 provides the time history of position errors until 7 orbital periods. 

 

Figure 5-27: Time history of ECI position errors     for GCSMPF during subsequent orbital 

periods, (a) 2
nd

 orbital period, (b) 3
rd

 orbital period, where             . 

 

Figure 5-28: Time history of ECI position errors     for GCSMPF during subsequent orbital 

periods, (a) 4
th
 orbital period, (b) 5

th
 orbital period, where             . 
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Figure 5-29: Time history of ECI position errors     for GCSMPF during subsequent orbital 

periods, (a) 6
th
 orbital period, (b) 7

th
 orbital period, where             . 

 

The figures gives an indication of convergence and almost similar error statistics for the GCSMPF. 

Hence, the performance of GCSMPF over subsequent orbital periods is gives us indication of its 

suitability for use in satellite OD.  

5.8 Summary 

In this chapter a detailed description of PF and its variants have been discussed. The background 

necessary for understanding of PF methodology is elaborated in detail. New filters based on GCS 

namely GCSPF, GCSMPF, and HGCPF have been presented. The algorithms have been compared 

with PF, GPF, GSPF and EKF for nonlinear simple pendulum and orbit determination through radar 

measurements. The results show improvements in IE, RMSE and ME for the new filters (GCSPF, 

GCSMPF and HGCPF). GCS and its mixtures can be considered as better choice for replacement of 

Gaussian PDF in nonlinear filtering applications especially for improvement in particle filtering. An 

important aspect of filters based on higher order GCS and its mixture is computational complexity 

associated with generation of random numbers. In this chapter, AR and Gaussian copula based 

methods are used which may not be always optimal. For example, in AR method for bivariate GCS 

random vectors the rejected variates are approximately 20-30% (see Table: 5-2) which severely 

impacts speed of execution. Therefore, there is a need for development of better random number 

generator for GCS. In order to implement discrete-time filtering the continuous-time nonlinear 
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dynamical systems used in the experiments are discretized using a fixed time step of numerical 

integration method (RK-4). In general high fidelity numerical solution is obtained by keeping a very 

short time step (order of millisecond). This significantly affects the speed of execution in real time 

particle filtering for satellite OD which owes to high dimensionality and more number of particles 

used for such problems. However, GCSPF and GCSMPF can be implemented in parallel which makes 

it suitable for high speed Very Large Scale Integrated Circuit (VLSI) based implementation for real 

time filtering.      
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6 Development of Mixture Culver Filter   

 

 

6.1 Introduction 

In continuation to the work in Chapter: 5, which pertains to discrete filtering; this chapter describes 

the sequential state estimation known as continuous-discrete filtering. In continuous-discrete filtering, 

the evolution of a dynamical system is considered as a continuous process; whereas, the 

measurements are taken at discrete instants of time [6]. See Figure: 6-1 for description of a continuous 

process being observed at discrete time [21]. It is like a time series being observed at discrete instants. 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: In continuous-discrete filtering evolution of time is continuous and measurements are 

taken at discrete instants. The progression of time from one measurement until another measurement 

is continuous e.g.,       
    

      .  

 

 

As seen in Chapter: 5, filtering of continuous time nonlinear dynamical system (Equation: 5.69, 5.81, 

5.83 and 5.84) would require formulation of appropriate mathematical model for evolution of the state 

of the system along with its uncertainties i.e., the state predictive PDF.  Since the evolution in time is 

a continuous process therefore dynamical systems can be more realistically represented as SDE (first 

of Equation: 5.73). The advantage of continuous-discrete filtering is that the sampling interval 

             can change between the measurements unlike discrete filtering where sampling time 

should be constant [21]. Nevertheless, the mathematical model for measurement system is identical to 
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the discrete filtering (Equation: 5.2). The sequential state estimation of such a system can also be 

realized using Bayes’ formula as given in Equation: 5.4. However, the prediction of state transition 

PDF for continuous time dynamical system satisfies the FPKE. It is a linear parabolic type PDE 

expressed as [1],[5],[6]: 

  

 
  

  
   

 

   

             
 

 
  

  

      
       

  
  

 

   

 

   

 

   

 

 

 

 

(6.1) 

 

where, p is the state PDF,            is the nonlinear function modelled in continuous time also known 

as drift or advective term,   is the dispersion matrix,      is the diffusion matrix of SDE,   is the 

diffusion matrix for white Gaussian noise and d is the dimension of the system.  

The PDE in Equation: 6.1 for nonlinear dynamic systems can be solved using numerical integration 

methods such as Finite differencing (FD) [78] wherein, the Bayes’ a posteriori PDF at time step      

is propagated forward to obtain state transition PDF of the system until the measurement is received at 

time step   . On receiving the measurement, the Bayesian update step is realized using the Bayes’ 

formula given in Equation: 5.4. The block description of continuous-discrete filtering is shown in 

Figure: 6-2. 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: The block description of continuous-discrete filtering. Any optimal estimates of state 

such as MMSE can be obtained from updated conditional PDF         .  

 

The main complexity in obtaining the optimal solution (see Figure: 6-2) of nonlinear continuous-

discrete filtering problem arises due to the need for solution of Equation: 6.1. An analytical solution of 
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Equation: 6.1, is usually possible for linear dynamical systems [5]. In general, numerical methods are 

required to solve it for nonlinear systems of lower dimensions                due to recent 

increase in computational resources [25],[5]. However, sequential state estimation using numerical 

solution of PDE is not considered optimal [25]. This is due to the requirement of enormous 

computational resources in terms of storage of PDF which amounts to an infinite dimensional vector, 

and prohibitively large processing times. Therefore, numerical solution of FPKE for continuous-

discrete state estimation of satellite orbital dynamics is not practicable especially, in satellite onboard 

Orbit Determination (OD) systems such as GPS [117], Inertial Navigation System (INS) [117] or 

celestial navigation systems [118],[1]. This is mainly due to less computational resources available in 

satellite On-Board-Computers (OBC) [14]. Furthermore, even for ground based sequential satellite 

OD systems using radar measurements, numerical solution of the FPKE poses excessive memory 

requirements, owing to storage and recursion of entire Bayes’ a posteriori PDF at each time step. 

Hence, there is a need for computationally tractable solutions to Bayes’ a posteriori PDF to enable 

practicable in orbit, and ground based, satellite OD systems.  

The state transition PDF of a continuous time nonlinear dynamical system can be approximated by its 

first few moments, such as in EKF the state transition PDF is approximated as Gaussian; therefore, 

only its first two moments i.e., the mean and covariance are propagated forward between the 

measurements using linearized dynamics [5],[6]. In general, more accurate representation of state 

transition PDF can be obtained using its higher order moments, such as in third order Culver Filter 

(CF) [1], where moments up to third order are used in GCS approximation of state transition PDF.  

The most commonly used sequential nonlinear filter for satellite OD, is the EKF which approximates 

the Bayes’ a posteriori PDF as Gaussian [13],[59],[14],[117],[53]. However, as shown in Chapter: 1 

and 5, the mixture formulation of the PDFs (Gaussian and GCS) i.e., GMM and GCSMM are better 

alternatives to approximate non-Gaussian PDFs. Therefore, in this chapter one would consider an 

extension of the EKF, based on the GMM approximation of the Bayes’ a posteriori PDF for satellite 

OD. This nonlinear filter is commonly known as Gaussian Sum Filter (GSF) [44]. Together one would 

consider these two filters (EKF and GSF) as a Kalman Filter framework.  

Another viable solution for nonlinear satellite OD in continuous-discrete filtering setup is CF. As 

briefly explained in Chapter: 1, 2 and 5, CF approximates Bayes’ a posteriori PDF, as a third order 

GCS [1]. In CF, linearization of nonlinear dynamic and measurement function is done, respectively up 

to second and first order in Taylor series. Therefore, moments up to third order (i.e., mean, covariance 

and coskewness) are propagated forward (between the measurements) using linearized dynamics 

[1],[6]. However, the CF provides an exact optimal MMSE solution to the nonlinear Bayesian 

filtering problem under the assumption of third order GCS approximation of Bayes’ a posteriori PDF 

and differentiability of nonlinear dynamics. As described in Chapter: 1 and 5, a lower order         

   GCS is suboptimal representation of true non-Gaussian PDF (see Figure: 5-4 and 5-5). Therefore 
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this dissertation proposes a new nonlinear filter based on GCSMM of lower order           for an 

optimal approximation of the Bayes’ a posteriori PDF for continuous-discrete filtering for nonlinear 

dynamical systems in general, and satellite OD in particular. This would serve as an enhancement of 

the original CF, and is called as Mixture Culver Filter (MCF). Together with CF and MCF one would 

form a Culver Filter framework. In the subsequent sections Culver Filter framework would be 

described in detail and applications pertaining to onboard navigation for lunar orbiter and OD of LEO 

satellite through ground based radar and GPS system would be evaluated under sparse measurements 

availability and highly uncertain initial conditions. The dynamic and measurement function for OD of 

LEO satellite based on radar measurements and lunar optical navigation are both highly nonlinear 

functions of their state variables. Therefore, a simple pendulum model of Chapter: 5 would not be 

utilized here as its measurement function is linear (see Equation: 5.71). A comparison of Kalman and 

Culver Filter framework would also be performed for the above mentioned experiments.   

6.2 Continuous Discrete Nonlinear Filtering Problem  

Consider a continuous time dynamical system expressed by the nonlinear Ito Stochastic Differential 

Equation (SDE) of the following form [1][6]: 

 

                               

 

(6.2) 

 

where,         is the d-dimensional state of the stochastic process,                is the drift 

function of       and t describing the system dynamics,                is the dispersion matrix of 

function of      and t, and         is the white noise. However, considering white noise as 

derivative of Brownian motion       
     

  
  [21][114], a more useful form of Equation: 6.2 can be 

written as [1]: 

 

                                  

 

(6.3) 

 

where,         is Brownian motion of mean equals to zero, and diffusion     : 

  

                       (6.4) 

 

Consider measurements are observed at discrete time    expressed as [8]: 
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               (6.5) 

 

where,       is the q-dimensional observation vector,               = measurement function 

and       is the q-dimensional zero mean Gaussian noise process. The covariance of measurement 

noise is given by: 

 

       
         (6.6) 

 

where,     = Dirac delta function and    = covariance matrix. It is assumed that the initial states of 

the dynamic system (Equation: 6.2) and measurement noise are independent. The problem is to find 

out state estimates conditioned on the measurements    in the MMSE sense. Considering that the 

prior PDF of the dynamic system expressed in Equation: 6.2 is available and is continuously 

differentiable once with respect to t and twice differentiable with respect to     , then it can be shown 

that, between the observations, the conditional PDF               satisfies FPKE (Equation: 6.1). On 

receipt of measurement at    the conditional PDF known as Bayes’ a posteriori PDF is computed 

using following expression [5],[33]: 

 

 
             

                        

                               
  

  

 

(6.7) 

 

where,             is given by: 

 

 
             

 

         
     

 

 
                

     

            

(6.8) 

 

 

Equation: 6.1 and 6.7 can be considered as predictor and corrector method for evolution of PDF. The 

mean of Bayes’ a posteriori PDF (Equation: 6.7) gives the optimal state of the system in MMSE sense 

[5],[33] given by: 



182 

 

 
                           

  

  
 

(6.9) 

6.3 Culver Filter 

Restricted Gaussian assumption of state transition (Equation: 6.1) and Bayes’ a posteriori PDFs 

(Equation: 6.7) by EKF may provide suboptimal state estimates [5],[48]. The first two moments 

provided by EKF do not completely define the true Bayes’ a posteriori PDF [22]. Instead of 

numerically solving FPKE (Equation: 6.1), another useful approximation for state transition PDF and 

Bayes’ a posteriori PDF is GCS which is a function of higher order moments of the PDF and Hermite 

polynomials (see Equation: 5.37 and 5.40) [33],[11]. Culver Filter (CF) approximates Bayes’ a 

posteriori PDF as third order GCS [1]. The term third order signifies use of moments and Hermite 

polynomials up to third order for formulation of state transition and Bayes’ a posteriori PDFs. In 

general, differential equations for higher order moments required to formulate GCS (Equation: 5.37 

and 5.40) can be derived using Ito differential rule expressed as [23]: 

 

  
          

  
    

  

  
    

  

  
             

 

 
                               

   

   
  

 

(6.10) 

where,      = expectation operator,             and    = trace of a matrix.  

 

By selecting the quantity           as different order moments such as      ,              and 

                  etc, where, subscripts             and d = dimension of the dynamic system, 

the differential equations of higher order moments up to any order can be generated. However, 

truncation of moments up to a certain order will be required in order to develop practically feasible 

filtering algorithms. As discussed in Chapter: 5, the GCS can be considered as a natural extension of 

Gaussian PDF to approximate arbitrary PDFs. Using third order GCS approximation of state 

transition and Bayes’ a posteriori PDFs, CF provides MMSE estimates by solving Bayes’ formula 

(Equation: 6.7) exactly. Much like second order EKF [5] the filter expands the nonlinear advective 

term of Equation: 6.2 using second order Taylor series expansion. The differential equations for 

central moments up to third order are derived using Ito differential rule (Equation: 6.10). Using the 

component wise notation for nonlinear dynamical system expressed in Equation: 6.2, if one considers 

     where, subscripts         we would get differential equation for mean as: 
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(6.11) 

  

Keeping in view differentiability of nonlinear function             (of Equation: 6.2), its second order 

Taylor series expansion around mean    can be expressed as [1]: 

 

   

  
                                                       

 

 

(6.12) 

where,    is the white Gaussian noise,                        is a component of Jacobian matrix, 

           
 

 
                  is component of Hessian matrix, tensor subscripts (indices) 

notations              assume implicit summation of indices. By taking expectation of Equation: 

6.12 and using Ito differential rule the higher order central moments are derived as (see [1] for proof): 

 

 

      

  
                      

       

  
                            

   
 
 
     

     
      

  
               

   
                          

 
 

(6.13) 

 

(6.14) 

 

(6.15) 

 

where,       is the operation of symmetrising the expression inside the bracket with respect to all 

subscripts and number N is the number of terms in the expression, for example symmetric terms are 

expressed as          
 
                     ,     are individual components of diffusion matrix 

of SDE       ,        and     
       are components of covariance and coskewness tensors 

respectively. Similar to Equation: 6.12 the quantities on right hand side of these differential equations 

also assume implicit summation of indices (subscripts). Given some initial estimates for state mean, 

covariance and coskewness these differential equations (Equation: 6.13 to 6.15) are integrated forward 

in time to obtain time update for these parameters. For measurement update the nonlinear 

measurement function (Equation: 6.5) is also linearized (first order in Taylor series) about the current 

estimates to approximate measurement likelihood as Gaussian PDF. The state estimates from time 

update are updated on receipt of measurements using following equations known as exact third order 
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CF measurement updates [1]: 

           
   

     
       

      
      

  
 

       
       

     
     

       
  

 

     
     

        
   

 

 
    

 
 

        
       

 
 

 

  
 

 
    

   
      

  
 

     
 

   
 

 
     

   
       

         
   

         

          
   

          

 

 (6.16) 

 

 

 

 

where, third order coskewness tensor notations     
   

 assumes implicit time subscript“k”. Finally the 

measurement updated components of mean, covariance and coskewness of Bayes’ a posteriori PDF 

are [1]: 

 

 

 

   
     

        

 

   
               

 

    
                                    

(6.17) 

 

(6.18) 

 

(6.19) 
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6.4 Mixture Culver Filter 

The CF is an extension of EKF wherein nonlinear advective term of Equation: 6.2, is linearized up to 

second order in Taylor series just like second order EKF [5]. However, in CF the assumption of 

computing only first two central moments and assumption of Gaussian PDF for state transition and 

Bayes’ a posteriori PDFs is relaxed as discussed in Section: 6.3. Nevertheless, as discussed in 

Chapter: 1 (see Figures: 1-3, 1-6) and Chapter: 5 (see Section: 5.3, Figures: 5-4, 5-5) that single GCS 

of lower order           does not provides accurate estimates for mean of true PDF. Moreover, the 

expansion has regions of negative probabilities. Together these two issues are drawbacks of nonlinear 

filters based on single GCS of lower order, as the filter; (1) could possibly provide inaccurate mean 

which is optimal MMSE solution, (2) is susceptible to computational inaccuracies for example, the  

error covariance matrix output could be non positive definite. In order to improve upon these issues 

one may extend the order of GCS. However, a higher order GCS is more sensitive to outliers of true 

PDF [34]. Moreover, analytical solution of Bayes’ formula (Equation: 6.7) for higher order GCS 

approximation of Bayes’ a posteriori PDF to obtain mean (MMSE solution), and higher order 

statistics i.e., covariance matrix, coskewness, cokurtosis (fourth order) and fifth order etc would be 

very complex and hence would be of little use [1]. In Chapter: 5 GCSMM was found as better 

alternative for improving approximation for arbitrary non-Gaussian PDFs and a new SMC filter was 

developed known as GCSMPF using such approximation. Therefore, now a new extension is 

proposed based on third order GCSMM known as MCF. Each GCS component of GCSMM used in 

MCF is of third order. The basic approach used in MCF is adapted from GSF. However, the 

algorithms (MCF and GSF) have differences in terms of; (1) use of mixture of GCS instead of mixture 

of Gaussian for state transition and Bayes’ a posteriori PDFs, (2) weight updates for each component. 

Keeping our self in line with this approach one now develops MCF based on the GCSMM. Certain 

equations are re-expressed (earlier used in the text) in order to facilitate reading. The GCSMM based 

on third order GCS components can be expressed as: 

 

              
   

      
   

   
        

    
      

  
          

   
   

    

     

 

 

   

 

(6.20) 

 

where,   is the time subscript,   is the dimension subscript,                are third order 

multidimensional Hermite polynomial with corresponding input dimensions             ,     
   

 is 

multivariate third central moment,   
   

 are weight of     component of GCSMM, G is the total 

number of GCS components and sum over all input dimensions       is considered for Hermite 

polynomials and multivariate moments. Here the fact that each third order central moment     
   

 is 
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equivalent to corresponding third order cumulant        [28],[1] is kept into mind to write Equation:. 

This clarifies the alternative (see Chapter: 5) use of third order cumulants for GCS and GCSMM in 

Equation: 5.40 and 5.47. 

6.4.1 Time Update 

Consider Bayes’ a posteriori PDF expressed in Equation: 6.7 as GCSMM: 

 

 

         
 

  
       

   
           

   
       

   
   

 

   

  
    

      

  
              

   
       

   
 

     

          

 

 

 

 

(6.21) 

 

 

 where, 

       = subscript for state transition PDF,           PDF of measurement conditioned on 

evolved state and    = normalizing constant. Discrete time subscript (     ) is used to indicate 

availability of Bayes’ a posteriori PDF at discrete measurements instants. In reality state transition 

PDF for a continuous time dynamical system is obtained by solving FPKE (Equation: 6.1) between 

the measurements from time    to     .  

The parameters of        is the mean,        is covariance and     
   

 are coskewness tensor 

components which can be obtained by numerically integrating Equation: 6.13-6.15. However, in order 

to compute time update of weights        one would adapt the methodology suggested by [49] for a 

GMM replaced here by a GCSMM. The idea for optimal weight updates for each component of 

GCSMM is realized by minimizing error between FPKE equation (Equation: 6.1) and time derivative 

of GCSMM PDF. A continuous time notation (Equation: 6.20) will be used for development of time 

update of weights. The error in FPKE and time derivative of GCSMM is expressed as:   

 

 

        
           

  
                 

 

(6.22) 

 

 

 

 

where, 

        = Fokker-Planck operator [119],[49] is described as: 
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(6.23) 

 

 

 

 

where,         is the vector of weights and the elements of           are given by application 

of Fokker-Planck operator on individual GCS components: 

 

 

        
   

   
      

   

  
           

   
   

       

  
  

 

 
    

      
   

     
  

(6.24) 

 

 

 

 

The first term on right of Equation: 6.22 is obtained by taking total derivative expressed as: 

  

           

  
      

   
    

   
   

         
   

   
   

   
   

   
   

   
     

   

   
   

   
       

        
   

     
      

  
   
      

 

 

   

 

(6.25) 

 

 

 

 

where, 

 Tr = trace and the last term in above equation (Equation: 6.25) implies summation of derivatives over 

all indices (i,j,l) obtained as: 

 

   
   

 
     

   

     
      

     
      

     

 

 

 

(6.26) 

 

 

 

    

 

The total derivative of the moments    
   

,    
   

 and      
      

 for each GCS component is given in 

Equation: 6.13-6.15 and the derivative of weights,    
   

 is obtained by time discretization using the 
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first forward difference [120]: 

 

 
   

   
 

 

  
  

  
   

   
   

  

 

(6.27) 

 

 

 
where, 

         

Now by substituting Equation: 6.27 into Equation: 6.25 one may rewrite total time derivative of 

GCSMM as: 

           

  
  

 

  
    

   
 

  
   

 

   

   
      

   

   
   

   
   

    
     

   

   
   

   
   

  
     

   

     
      

     
      

 
 

  
    

   
 

                                       

   
   

 

   

  
   

 

(6.28) 

 

 

 

 

 

 
 

  
    

        
    

 

 

(6.29) 

 

 

 
 

where,          is the vector of new weights which are being found out,            is the 

vector of GCS components and the elements of          are expressed in Equation: 6.28. Now by 

substituting Equations: 6.23 and 6.29 into Equation: 6.22 one would get FPKE error as: 

  

 
       

 

  
    

                  

 

(6.30) 

 

 

 
Furthermore, analytical expressions for different derivatives used in Equation: 6.28 can be 

conveniently expressed in component wise tensor notation as: 

     

   
     

         

 
 

  
    

       
                 

          
          

          
     

  

    
     

      
     

       

(6.31) 
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(6.32) 
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(6.34) 

 

     

     
   

  
 

  
        

(6.35) 

 

where, component wise tensor notation used in above expressions utilizes implicit summation of 

indices and    denotes Gaussian PDF. For other notations used in above expressions see Section: 5.3 

(Equation: 5.42-5.43). Now by propagating the mean   
   

, covariance   
   

 and     
      

 of individual 
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GCS component using Equation: 6.13-6.15 one seeks to obtain new weights by minimizing the error 

in FPKE over a selected volume of state space [120]: 

 

 

 

   
 

  
    

 

 
   

 

        

     
  
   

  

 

   

 

 
  
   

         

 

 

(6.36) 

 

 

 

 

 

The aforementioned problem can be written as a quadratic programming problem for which efficient 

solvers are available in programming languages such as Matlab i.e., quadprog [120]: 

 

 

 

   
 

  
    

 

 
   

         
              

          

        
       

         

 

 

(6.37) 

 

 

 

 

 

where,           is a vector of ones,            is a vector of zeros and the matrices    

     and         are given by: 

 

 

 

   
 

   
     
 

    
    

 

   
 

  
     
 

             

 

 

(6.38) 

 

 

 

 

 

Analytical solutions were found out for above integrals and presented in Appendix-G. To author’s 

knowledge the adaptation of FPKE error feedback methodology [120] for GCSMM using analytical 

or numerical methods is new and has not appeared anywhere in estimation and filtering literature. 
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6.4.2 Measurement Update 

Using the time updated GCSMM along with new weights for each GCS component       
   

, one now 

consider treatment of Bayes’ a posteriori PDF (Equation: 6.21) for MMSE solution of our filtering 

problem. Firstly the normalization constant    in Equation: 6.21 can be obtained as:  

 

             

          
   

           
   

       
   

   

 

   

  

  

  
    

      

  
              

   
       

   
 

     

              

 

(6.39) 

 

 

 

Each “ ” GCS component inside integral of Equation: 6.39 can be written as: 

 

             
   

       
   

     
    

      

  
              

   
       

   
 

     

          
  

  

    

(6.40) 

 

 

 

 

By linearizing the measurement function      (Equation: 6.5) using first order Taylor series 

expansion, around predicted estimates       
   

 one may approximate          as a multidimensional 

Gaussian PDF [1]: 

 

         
 

      
     

 

 
            

                 
     

 

      

         
                 

       

(6.41) 

 

 

 

 

where,               
         

    

 

By substituting Equation: 6.41 in Equation: 6.40 and solving the integral would give (see reference [1] 

for proof): 
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(6.42) 

 

 

 

where, I denotes identity matrix. Therefore, by integrating each term inside integral of Equation: 6.40 

would yield the denominator    as:  

           
   

 

   

  
   

 

(6.43) 

 

 

 
 

Now mean, covariance and coskewness tensor of Bayes’ a posteriori PDF (Equation: 6.21) can be 

calculated using following integrals: 

 

 

  
  

 

  
         

  

  

      

  
  

 

  
         

  

  

      
        

       

  
    

 
 

  
         

  

  

      
        

          
       

 

(6.44) 

 

 

 

Firstly one compute mean   
  by rewriting first of Equation: 6.44 as: 

 

  

  
  

 

       
    

     
   

        
   

           
   

       
      

 

   

  

  

  
    

   

  
              

   
       

    

     

               

(6.45) 

 

 

 

 

 

The integral in Equation: 6.45 can be solved by treating each GCS component individually as: 
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where, 

 

    
   

                         
   

       
   

     
    

   

  
              

   
       

   
 

     

  

(6.47) 

 

 

 

 

Similar treatment for computation of covariance and coskewness tensor for each GCS component 

yields: 

 

  
    

 
 

  
   

     
          

  

  

      
           

     
 

    

  
       

 
 

  
   

     
          

  

  

      
    

       
    

 
 

       
    

 
 

    

 

(6.48) 

 

 

 

 

 

By using CF measurement update equations (Equation: 6.17 to 6.19) the solution for each of above 

integral (Equation: 6.46 and 6.48) is given as: 

 

 

 

   
    

    
    

   
   

   
   

 

 

   
    

    
   

    
   

   
   

  
   

 

 

    
       

     
   

   
   

   
   

   
   

   
   

   
   

   
   

    
   

  
   

  
   

 

(6.49) 

 

 

 

 

The weights could be conveniently updated using zero moment   
   

 (Equation: 6.42) of each GCS 
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component of the Bayes’ a posteriori PDF: 

 

   
   

 
      

   
  

   

       
    

     
    

(6.50) 

 

 

 
 

 

MCF can be initialized using EM algorithm [107],[108] already explained in Chapter: 5. In order to 

simplify computation initial PDF can be assumed as GMM. A RR step (see Section: 5.2.4) in MCF 

algorithm after weight update is added to produce children of GCS components having more 

significant weights and discarding components having insignificant weights. The resampling strategy 

for mixands in MCF and GSF (later used for comparison) is adapted from [64]. Thus, the effective 

size of weight    could be expressed as: 

 

 
   

 

    
   

 
 

 
   

 

 

 

(6.51) 

 

 

If        where    is required (threshold) size of weights we would perform RR step. 

 

Time update of weights for each GCS component in MCF described in Section: 6.4.1 could become 

quite extensive for higher dimensional systems. Therefore, one can simplify the algorithm by keeping 

the weights constant between the measurements. This is essentially the same methodology used in 

traditional GSF. In sequel a comparison for benefits of full MCF algorithm (complete with time 

update of weights as described in Section: 6.4.1) and simplified MCF wherein weight of each GCS 

mixand is kept constant between the measurements is being done. Thus one is now able to furnish a 

computational algorithm for a MCF as shown in Table: 6.3. It is well documented in the estimation 

theory literature that with just a minor change in mechanization ahead of standard EKF (as in case of 

GSF) implementation can result in a significant improvement in EKF performance [121]. Therefore, 

one expects minor changes in single GCS filter to obtain significant filtering performance. The 

comparison of MCF with single GCS filter (CF) [1], GSF [44] and EKF [5][10] has been carried out. 

The new filter has shown improvement over other methods especially under uncertain initial 

conditions and sparse data availability. 
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1. Initial estimates / higher order statistics and noise statistics: 

   
    

    
    

                

2. Perform EM to obtain GCSMM from (1) 

3. Time Update - State Propagation: For       

      
    

  
    

   
   

  
   

              
            

   
  

  

    

 

      
    

  
    

      

  
      

            
   

     
             

       
 
    

  

    

   

       
       

  
     

         

  
      

             
      

     
   

          
   

   
   

    
   

   
   

  
 

  

    

   

4. Time update of GCSMM weights        (Optional see text for remarks) 

5. Measurement Update: For       

  
   

         
    

    
   

   
    

     
   

   
   

    
     

   
   

 
  

  

  
   

   
   

  
    

     
   

   
   

   
     

  
   

   
   

   
   

  
     

   
   

   
     

  
   

 

  
   

   
   

   
     

 
 

 
  

   
  

    
   

   
   

   
   

     
   

   
  

    
 

6. Tensor Notations (time subscript “k” is removed for clarity) 

     
 

 
    

      
  

   
   

   
      

 

        
   

   
 

 

 
        

      
   

   
   

   
 

   
   

         
      

  
   

   
   

   
   

     
   

         
      

   
   

   
   

   
   

 

   
    

    
    

   
   

   
   

    
    

    
   

    
   

   
   

  
   

 

    
       

     
   

   
   

   
   

   
   

   
   

   
   

   
   

    
   

  
   

  
   

 

7. Weight Updates:                           
   

 
    

   
    

   

  
   
    

    
   
    

     Optional: RR Step:   
 

   
 
   

 
 

 
   

 , where       is prescribed threshold criteria 

8. Inference: The conditional mean state estimate    
  and Covariance   

  can be estimated by: 

   
     

   
   

    

 

   

   
     

   
   

    
     

    
    

      
    

    
  

 

 

 

   

 

 

Table 6-1: Mixture Culver Filter 
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6.5 Orbit Determination using Radar Measurements 

In this section algorithms for Kalman and Culver filter frameworks would now be implemented for 

satellite OD using ground based radars. The equations of motion for true model used in this 

experiment are given as: 

 

 

     

    
  

  
        

   
 

 
 

   

 
  

 

    

(6.52) 

(6.53) 

 

(6.54) 

 

 

where, 

           ,               are position and velocity of a satellite in ECI coordinates, 

    = perturbation acceleration due to zonal gravitational harmonic up to J4, and 

   = atmospheric drag acceleration.  

 

The parameters used in Equation: 6.54 are assumed as: 

  

mass (         , cross-sectional area         ,  

atmospheric density                 and  

drag coefficient          [12].  

 

Given some specific initial conditions           
  these equations (Equations: 6.52 to 6.54) are 

integrated using numerical method such as Adams-Bashforth-Moulton PECE solver ode113 (with 

adaptive time step) of Matlab to get time history of position and velocity in ECI reference frame 

termed here as true trajectory. The true trajectory is being measured by a radar system fixed at some 

location on Earth. Reader is referred to Section: 5.7.3 for details on measurement model, radar site 

location and other measurement parameters i.e., noise variances.  

The filter model used in this experiment is identical to Equations: 5.92 (2 body dynamics perturbed by 

J2 only). However, in continuous-discrete filtering one would integrate differential equations for 

mean, covariance and coskewness tensor (with variable time step) for time update. An important 

computational aspect of higher order filters like CF is the increase in the number of differential 

equations vis-à-vis increase in the dimension of the system.  

For an OD problem the number of differential equations for EKF and CF are tabulated in Table: 6-2. 

The comparison clearly indicates the computational intensiveness of higher order filters especially 

once MCF and GSF are being time updated. 



197 

 

Type of  

Filter 

Number of differential equations  

required to compute each given moment  

Total number  

of differential  

equations 1
st
 order  

moment 

2
nd

 order  

moment 

3
rd

 order 

moment 

EKF 6 21 - 27 

CF 6 21 56 83 

 

 

Table 6-2: Comparison of number of first order differential equations for time updates in EKF 

and CF. 

 

6.5.1 State Uncertainty and Sparse Measurements 

In this section one would carry out OD for the satellite in a LEO orbit under sparse measurements i.e., 

the measurements are available for approximately 4% for orbital period. The reason for this selection 

is already described in Section: 5.7.3. Moreover, an analysis of the filtering performance under highly 

uncertain initial conditions for estimates of state, covariance and coskewness tensors is done. Space 

object initial estimates could be extremely uncertain especially in case of a sparsely tracked object. 

Therefore, one would now observe filtering performance with increased uncertainty in position 

variances as        and velocity variance               . The position and velocity deviation of 

our initial estimate       from true initial state      is        and           respectively. This could 

be considered as significant initial deviation. The initial conditions for the satellite used to generate 

true trajectory are given as (adapted from reference [59]): 

 

 

 

                                             
   

      
   

   

                                              
 

  

(6.55) 

 

The process noise is selected as                                           due to zonal 

harmonic J3, J4 (order of                      [14] and atmospheric drag term (see Table: 5-1 

for details) used for true model shown in Equation: 6.52 to 6.54. The error criteria of IE and RMSE 

are being used to gauge filtering performance. Firstly, one provides the measurement data availability 

of 1 Hz. Due to this high frequency of measurement availability the time update (Step-4, Table: 6-1) 

is avoided in our first simulation. The time history of IE in ECI coordinates are given in Figure: 6.3 

and 6.4 shows that the estimates of CF, MCF, GSF and EKF are close to each other.  The convergence 

to lower errors of MCF is comparatively better than other three filters. The MCF and GSF are both 
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being propagated using two GCSMM and GMM components respectively. The error plots of these 

figures (Figure: 6.3 and 6.4) are obtained after averaging 100 MC runs for each filter. 

 

Figure 6-3: Time history of absolute position errors     in ECI coordinates (shown in log scale) 

for filters with initial conditions of Equation: 6.55 and measurement availability is 1 Hz. 

 

Figure 6-4: Time history of absolute velocity errors     in ECI coordinates (shown in log scale) 

for filters with initial conditions of Equation: 6.55 and measurement availability of 1 Hz. 
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One of the drawbacks of filters based on mixture PDFs is the suboptimal time update of mixand 

weights when there are fewer or no measurements. In this situation the weights would remain constant 

until a measurement is received. This could possibly produce inferior estimates for filters based on 

mixture models. One would now incorporate optimal time update of weights (described in Section: 

6.4.1) in MCF algorithm to compare filters for 0.033 Hz measurement availability (see Figures: 6.5) 

and also consider filtering performance over period of time once no observation is available. This 

frequency of measurement would require optimal time update of weights (Step-4, Table: 6.1). The 

time history of IE is shown in Figure: 6.5. The error curves of pair, (1) MCF and GSF, and (2) EKF 

and CF are close until 2 min. The convergence pattern of these filters also has many similarities. The 

figures clearly show efficiency of MCF over CF owing to use of optimal weight updates. The error 

curves for position and velocity are lower for MCF. Moreover, the RMSE criteria (Table: 6-3) and 

convergence to lower errors shows improvement provided by MCF over other filtering methods. 

Moreover, the performance of CF is slightly better than EKF. In general the filters based on mixture 

PDFs (GSF and MCF) show improvement over single approximation of Bayes’ a posteriori PDF. 

These error curves are obtained by averaging 50 MC simulations for each filter. This provides a 

reasonable confidence over these estimation results. 

 

 

 

 

 

 

Figure 6-5: Time history of absolute errors     in ECI coordinates (shown in log scale) for filters 

with initial conditions of Equation: 6.55 and measurement availability is 0.033 Hz. 
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Table 6-3: RMSE in ECI coordinates for filters with initial conditions of Equation: 6.55 and 

measurement availability is 0.033 Hz. 

 

 

On similar lines to Equation: 5.79 one can also define instantaneous RMS error for the filters 

expressed as [8]: 

 

 

 
       

 

 
                   

 
 

   

 

 

(6.56) 

 

 

where,         is the true state,         is the estimated, i = i
th
 component of state, j = j

th
 simulation and 

N = total number of simulations. 

Now one extends the filtering performance for later orbital period i.e., once there are no observations 

available. Figure: 6-6 to 6-9 depicts time history of IE and instantaneous RMSE (Equation: 6.56) over 

3 orbital periods. The measurements (0.033 Hz) are only available for 4 min once the satellite is in 

viewing position from the radar site. These simulations are obtained from processing 50 MC runs for 

each filter. The performance of CF and MCF are very close when compared for IE criteria, however, 

one may observe distinct improvement in RMSE results by MCF over other filtering methods (see 

Figure: 6-7 to 6-9). 

Filter RMSE (Position) 

(m) 

RMSE(Velocity) 

(m/s) 

X Y Z          

EKF 2319 2392 2335 80 81 80 

CF 1340 1328 1402 79 79 78 

MCF 1268 1423 1307 79 79 79 

GSF 1298 1390 1316 79 79 79 
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Figure 6-6: Time history of absolute errors     in ECI coordinates (shown in log scale) for filters 

with initial conditions of Equation: 6.55 and measurement availability is 0.03 Hz during the satellite is 

available on horizon only (for 4 min only). This amounts to measurement span once after an orbital 

period (~ 97 min) during above simulation time i.e., 300 min [5 hr]). 

 

 

 

 

 

 

Figure 6-7: Time history of absolute RMSE in ECI XI (shown in log scale) for filters with initial 

conditions of Equation: 6.55 and measurement availability is 0.03 Hz during the satellite is available 

on horizon only (for 4 min only). This amounts to measurement span once after an orbital period (~ 

97 min) during above simulation time i.e., 300 min [5 hr]). 
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Figure 6-8: Time history of absolute RMSE in ECI YI (shown in log scale) for filters with initial 

conditions of Equation: 6.55 and measurement availability is 0.03 Hz during the satellite is available 

on horizon only (for 4 min only). This amounts to measurement span once after an orbital period (~ 

97 min) during above simulation time i.e., 300 min [5 hr]). 

 

 

 

 

Figure 6-9: Time history of absolute RMSE in ECI ZI (shown in log scale) for filters with initial 

conditions of Equation: 6.55 and measurement availability is 0.03 Hz during the satellite is available 

on horizon only (for 4 min only). This amounts to measurement span once after an orbital period (~ 

97 min) during above simulation time i.e., 300 min [5 hr]). 
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One would now consider a small satellite LEO sun synchronous (inclination = 98 deg) mission 

consisting of a nano-satellite (weighs less than 10 kg). This satellite is equipped with a GPS receiver 

i.e., SGR-05P of Surrey Satellite Technology (SSTL). The power requirement for the GPS receiver is 

1W at 3.3V and its position and velocity accuracy are 10 m and 0.15 m/s, respectively [122]. Extreme 

care should be practiced for onboard use of GPS for OD in order to conserve the power and increase 

satellite’s mission lifetime. Therefore, one now extends the use of filters for OD using GPS in a nano-

satellite. The position and velocity through GPS device SGR-05P is available after 95 min (~ 1 orbital 

period). Time history of IE (ECI coordinates) and RMSE for different filters are shown in Figures: 6-

10 to 6-13. 

 

 

Figure 6-10: Time history of absolute position errors     in ECI coordinates for filters with initial 

conditions of Equation: 6.55 and measurement availability is once per orbital period (~95 min) using 

SGR-05P (on board GPS receiver). Simulation time is 500 min (~5 orbital periods). 

 

 

Figure 6-11: Time history of RMSE in ECI coordinates (X-axis) for filters with initial conditions 

of Equation: 6.55 and measurement availability is once per orbital period (~ 95 min) using SGR-05P 

(on board GPS receiver). Simulation time is 500 min (~ 5 orbital periods). 
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Figure 6-12: Time history of RMSE in ECI coordinates (Y-axis) for filters with initial conditions 

of Equation: 6.55 and measurement availability is once per orbital period (~ 95 min) using SGR-05P 

(on board GPS receiver). The simulation time is 500 min (~ 5 orbital periods). 

 

 

 

 

 

Figure 6-13: Time history of RMSE in ECI coordinates (Z-axis) for filters with initial conditions 

of Equation: 6.55 and measurement availability is once per orbital period (~ 95 min) using SGR-05P 

(on board GPS receiver). The simulation time is 500 min (~ 5 orbital periods). 
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The plots of Figures: 6-10 to 6-13 show that improvement can be achieved using MCF over CF. On 

careful observation of error plots one can clearly differentiate lower errors produced by MCF in just 5 

orbital periods. Although, the errors for MCF are more initially but they quickly (within 5 orbital 

periods) converge to lower errors. By using MCF one could enhance over all mission life time of a 

satellite since we are using less measurements which means less power consumed by GPS receiver in 

addition to better orbit determination. These simulation results have also been produced using 50 MC 

runs. 

6.5.2 Discussion 

The results of different filters based on sparse measurements in LEO OD case have been presented. 

The performance of MCF based on RMSE and averaged errors reveals better estimation accuracy can 

be achieved especially for extended durations (i.e., multiple orbits). However, its main complexity is 

due to extensive mathematical derivations such as use of Jacobian, Hessian, Ito calculus, FPKE, and 

quadratic optimization. The algorithm of CF is comparatively less complex, as it requires calculation 

of Jacobian, Hessian matrices and use of Ito calculus only to derive multivariate moments. These 

factors affect the speed of execution, for example based on current Matlab implementation the ratio of 

time taken by MCF and CF for a particular case is 5:1. This factor does not have much impact for OD 

based on radar measurements. However, for satellite onboard OD based on GPS, use of MCF would 

be computationally expensive. On the other hand, Kalman Filter Framework provides much 

simplified implementation due to underlying Gaussian assumption for predictive and Bayes’ a 

posteriori PDF. Consequently, the speed of execution is also considerably less, for example the ratio 

of time taken by MCF and GSF for a particular case is 14:1. Apparently, the ratio appears to be quite 

significant; however, it does not have much impact on OD based on radar measurements. However, 

for OD based on GPS measurements the Kalman Filter Framework provides significant improvement 

in computational speed and programming simplicity. Furthermore, better estimation accuracy can be 

achieved from Kalman Filter Framework if one increases the number of measurements. This is 

mainly due to short term validity of Gaussian approximation for the Bayes’ a posteriori PDF which 

may not be optimal under sparse measurements environments. Continuous-discrete filtering 

methodology is more suitable for OD problems due to accessibility of more efficient numerical 

integration methods such as multistep and extrapolation compared to fixed step RK-4 used by 

discrete-time filtering. In discrete-time filtering the nonlinear dynamical function (Equation: 6.2) is 

required to be discretized using smaller time step (order of milliseconds) for high fidelity trajectory 

generation. This places excessive computational burden on OBC or on ground computers. Whereas, 

the multistep, extrapolation or variable time step RK methods are more optimal for such requirements 

due to their better accuracy and speed of execution.             
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6.6 Lunar Orbital Navigation 

The algorithms discussed for Culver filter framework would now be implemented for a lunar 

navigation problem described in reference [1]. In the lunar landing mission the spacecraft will initially 

be placed in a low altitude circular orbit about the moon. Before the descent phase on to the surface of 

moon it is extremely important for spacecraft to determine its position and velocity accurately in the 

lunar orbit [1], in order to avoid landing inaccuracies and damage to spacecraft. This can be 

accomplished by optically measuring the angles between lunar surface landmarks and the stars at 

various times, for example in Apollo missions to moon these angular measurements were obtained 

using sextant [123]. A sextant measures angles between a celestial body like star or a planet and the 

horizon [124] (It is a traditional equipment used for finding own position during pre-GPS era 

especially in sea). However, the modern navigational aid for this purpose would be a star tracker.  

Firstly one describes the nonlinear orbital system dynamics termed as true model. The problem is 

confined to a planar problem for the sake of simplicity as shown in Figure: 6.16 [1]. The equations of 

motion in Cartesian coordinate system are expressed as [1]: 

 

 

 
    

   

          
     

   

          
  

(6.57) 

 

 

 
 

where,          and          
 

 are position and velocity vectors respectively, in Cartesian 

coordinate system of moon and                     (moon gravitational parameter).  

The equations describing the discrete time measurements are expressed as: 

 

 

 

        

           
           

   
                  

   

       
 

 
        

 

 
 

(6.58) 

 

 

 

 

where,       and other quantities are explained through Figure: 6.14. 
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Figure 6-14: Lunar navigation system description 

 

By propagating the states from initial orbit injection data and updating these estimates using discrete 

optical measurements would form a nonlinear estimation problem. Two landmarks are chosen near 

polar areas of moon as highlighted in Figure: 6.16 i.e.,        . The measurement variance is 

                [1]. The state vector to be estimated is: 

 

               

 

The initial orbit data provided to both the filters is expressed in Equation: 6.59 [1]. CF and MCF (four 

GCS components) are investigated for eleven orbital periods with observations taken six times per 

orbit (see Figure: 6-16). The results are as shown in Figure: 6.17-6.18 



208 

 

 

 

 

    

 
 
 
 
 
 
                

    

 
  

 

              
  

  
 
 
 
 
 

 

                                    

                        
   

  
   

   
   

      
   

   

(6.59) 

 

 

 

 

The Matlab pseudo-random number generator (built in randn) is set to default initial state before 

starting simulations. The initial conditions provided to generate true trajectory are slightly different 

from estimated and are given as: 

 

    

 
 
 
 
 
 
                

    

 
  

 

              
  

  
 
 
 
 
 

 

 
 
 
 
 
 

        
        

       
  

 

       
  

  
 
 
 
 
 

 

 

The estimation criteria are taken form Section: 5.7.1 (Equation: 5.78 to 5.80). See IE in Figure: 6-15 

and 6-16. These figures depict a significant improvement of MCF over CF. Moreover, the results of 

RMSE and ME also show better performance of MCF (Tables: 6-4 and 6-5). 

 

Filter RMSE (km) RMSE (km/s) 

              

CF 0.7307 0.8863 0.0006 0.0006 

MCF 0.4623 0.5288 0.0004 0.0004 

 

Table 6-4: RMSE for a lunar navigation problem 
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Figure 6-15: Time history of absolute position errors     in Cartesian positions for Culver 

framework under sparse measurements. 

 

Figure 6-16: Time history of absolute velocity errors     in Cartesian velocities for Culver 

framework under sparse measurements.  
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Filter ME (km) ME (km/s) 

              

CF -0.0658 0.6013 -0.0001 0.0 

MCF -0.1912 0.3474 -0.0001 0.0 

 

Table 6-5: ME for a lunar navigation problem 

 

6.7 Summary 

In this chapter a detailed description of filters based on KF and CF have been described. A new filter 

based on GCSMM namely MCF has been presented. The algorithm has been compared with EKF, 

GSF, and CF for nonlinear Earth satellite OD through ground based radar system, GPS and with CF 

for a lunar orbital navigation problem. The results show some improvements in RMSE and ME by 

MCF. Therefore, MCF and CF can be considered as better choice for replacement of Gaussian PDF 

based nonlinear filters especially under sparse measurements and highly uncertain initial conditions. 
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7 Conclusion and Future Work 

 

 

7.1 Introduction 

This chapter provides a brief overview of the work presented in the thesis emphasizing notable 

results. The main theme of this research pertains to Bayesian estimation of nonlinear dynamical 

systems using a mixture of orthogonal expansions along with its applications for sequential orbit 

determination of space objects around Earth. In addition, the non-Bayesian approach to estimation 

i.e., least squares has also been used with a view to carry out analysis of fidelities of LEO absolute 

and relative motion models [37] and long term parameter estimation of Epicyclic orbits [38]. 

7.2 Concluding Summary 

The analytical description of the dynamics of satellites in Earth orbits has been a focus of intense 

research since 50 years. Analytical description provides a clearer physics of the underlying motion. 

However, due to neglect of unmodelled dynamics and linearization these models only approximate 

truth. In Chapter: 3 nonlinear least squares or GLDC scheme has been adapted to analyze fidelities of 

analytical models by estimating initial conditions of absolute and relative motion models. The results 

have shown that the estimated initial conditions significantly improve the analytic orbit propagation 

accuracy for longer time i.e., weeks. Moreover, high fidelity models like Epicycle [2] or J2 modified 

HCW [20] have less free propagation errors even after batch least squares fitting span, compared to 

the unperturbed Kepler’s two body problem [13] or simple HCW equations [18]. These initial 

conditions can be used to incorporate conservative (e.g., zonal or tesseral harmonics of geopotential) 

or non-conservative (e.g., atmospheric drag) perturbative effects in satellite feedback control systems 

or simply high precision trajectory propagations.  

In Chapter: 4 a new parameter estimator for Epicyclic orbits [38] has been derived which exploits 

linear secular perturbative effects in Epicycle orbital coordinates of argument of latitude and right 

ascension of the ascending node. The accuracy achieved using EPF can easily be extended for higher 

order zonal perturbative terms. The estimation results show improved epicycle coordinates compared 

to the nonlinear numerical trajectory. It was found out that by keeping drift in the mean errors as 10% 

of the maximum error in a particular position coordinate, repeated estimation of the epicycle 

parameters would be needed after twelve days. 

In Chapter: 5 SMC methods based on weighted point mass approximation of Bayes’ a posteriori PDF 

have been used to extend more optimal parameteric bootstrap PFs using GCS, GCSMM and CF 

Hybrids. These filters employ full GCS (complete higher order moments           including cross 
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moments) and marginal GCS (axial moments for          ) using Gaussian Copula [112] in 

mixture configuration. To author’s knowledge this is first attempt of a unified presentation of GCS 

and GCSMM for discrete time SMC estimation. The algorithms have been simulated on simple 

nonlinear pendulum and orbit determination of satellite in LEO using radar measurements. The results 

show improved Instantaneous Error (IE) and Root-Mean-Square-Error (RMSE) for both the nonlinear 

problems when compared with generic PF, GPF, GSPF and EKF. Nevertheless, GCS based algorithms 

are more complex and slightly time inefficient (see Table: 5.4). 

In Chapter: 6 continuous-discrete filtering of nonlinear dynamical system has been reviewed.  A new 

filtering algorithm based on GCSMM has been developed called as MCF. The filter specializes use 

FPKE error feedback methodology [120] for time update of GCSMM weights.  A framework for 

filters i.e., Kalman and Culver Filters is formed for qualitative and quantitative analysis. MCF has 

shown better performance in terms of IE and RMSE when compared with other filters. 

In view of results presented in Chapter: 5 and 6 it can be ascertained that nonlinear Bayesian filtering 

based on mixture of orthogonal expansion is more optimal than single expansions. In particular GCS 

of lower order could be suboptimal representation of true non-Gaussian PDFs (see Figure: 1-3 and 5-

6). Use of such PDFs for nonlinear estimation could possibly lead to divergence and sub optimal 

uncertainty quantification such as non positive definite covariance matrices. Increase in the order of 

GCS could probably lead to better performance. However, it would be at the cost of tremendous 

complexity and extensive computation. Therefore use of mixture of lower order GCS for nonlinear 

estimation is deemed more suitable for performance enhancement in nonlinear estimation 

applications. 

7.3 Research Achievements 

The research achievements can be summarized as under: 

 Development of new GCSPF, GCSMPF and hybrids for nonlinear Bayesian discrete-time 

state estimation based on MC simulation approach [41],[45],[42].  The filters have shown 

improvement over other filtering methods such as EKF and generic Particle Filter (PF) 

under sparse measurements availability.  

 Development of new filter namely MCF, based on third ordered GCSMM approximation 

of the Bayes’ a posteriori PDF. More particularly it utilizes optimal FPKE error feedback, 

hybrid analytical and numerical (i.e., quadratic optimization) to compute weights 

associated with each component of GCSMM.  

 The application of new nonlinear Bayesian filters are simulated for simple pendulum, 

LEO satellite OD and navigation of lunar orbiter under sparse measurements and 

compared with other state of the art nonlinear filters such as EKF, GSF, GPF, GSPF, CF 

and PF (SIS-R). This provides a unified view on use of GCS and GCSMM for nonlinear 
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state estimation based on Taylor series and MC simulations.    

 Analysis on fidelities of linearized LEO absolute and relative motion models namely 

Kepler’s equation, Epicycle model around oblate Earth, HCW and SS equations using 

GLDC scheme [46],[39],[40]. The selection of appropriate IC or parameters of analytic 

models is vital to minimize the process noise and obtain more accurate orbital trajectories 

for such comparisons.  

 Development of a new algorithm based on linear least squares for parameter estimation of 

Epicyclic orbit namely EPF. The method exploits naturally occurring linear secular 

increase in Epicyclic coordinates of argument of latitude and RAAN. The estimated 

parameters enable minimization of the process noise and long term high fidelity orbital 

trajectory generation at all inclinations for LEO [38]. 

7.4 Extensions and Future Work 

Nonlinear estimation is a challenging and growing field. With increase in computational resources 

faster algorithms can be developed using numerical solutions of FPKE and Bayes’ formula. However, 

in near future they can only be used for ground based applications. Based on work in this thesis 

possible direction of future research are: 

(1) Further to the work presented in Chapter: 3 one may develop more realistic models of the 

process noise using differential or difference equations. For example consider use of Matlab 

system identification toolbox, linear state space modelling of dynamical systems based on 

least squares i.e., the function n4sid. In general these models could provide performance 

enhancement of batch or sequential filters for any nonlinear estimation requirement.     

(2) Enhancement of fidelity of MCF by using mixture of higher order GCS expansions. However, 

it is suggested that these expansions should be attempted for low dimensional systems i.e., 

             . As analytical solutions for higher dimensional system could be quite 

extensive. 

(3) It is envisaged that extended propagation of satellite nonlinear dynamics over several orbital 

periods / days under sparse measurements, using MC based algorithms such as GCSPF and 

GCSMPF of lower order GCS i.e.,            would be insufficient to capture non-

Gaussianity of state distribution. Therefore, higher order GCS           copula based 

random vector generators be developed for long term prediction and approximation of state 

distributions. 

(4) GCS random number generator based on AR method (see Chapter: 5), in comparison to 

Gaussian random generators available in Matlab is suboptimal with regards to speed of 

execution and percentage (approximately 25-30%) rejection of unusable random vectors. This 

poses a serious issue in real time filtering for higher dimensional               problems. 
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Therefore, it is recommended that more efficient GCS random number generators be 

developed based on analytical methods such as inverse transform method [67] instead of MC 

simulation based AR.   

(5) The more optimal GCSMM approximation of satellite state predictive PDF is useful for long 

term (i.e., months) predictions without any measurements. Thus, providing better state 

uncertainty quantification of such dynamical systems. With growing number of satellites in 

LEO, there is a requirement to carry out space object conjunction analysis. It is suggested that 

methodology of Section: 6.4.1, be used to obtain predictive PDF for computation of 

probability of likely collisions between satellites or space debris. 

(6) The nonlinear filters based on GCS and GCSMM are computationally more expensive than 

Gaussian based filters such as EKF or GSF. More specifically, methodology of Section: 6.4.1 

is currently not optimized for use on OBC due to computing resource limitations on satellites. 

Therefore, as future works the algorithm be optimized in C++ for OBC requirements and 

tested on space qualified hardware such as A712 OBC for STRanD-1 [125].                 
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Appendix A: Transformation Routines 

This material is adapted from [12][13]. 

 Classical Orbital Elements to Position and Velocity in ECI Coordinate frame. 

o Given orbital elements:             

o Convert into Perifocal Coordinate frame 

          

            

 
 
 
 
 

     

       
     

      
  

 
 
 
 

                

 
 
 
 
 
 
 

  
  

 
    

 
  

 
        

  
 
 
 
 
 
 

 

o Compute rotation matrices 

 

                           

 

where,       and       are rotation matrices for rotation about “z” and “x” axes 

respectively. For example for   = rotation angle the individual rotation matrices can be 

computed as: 

 

       
   
            
            

            
             
             

   
  

 

o Three dimensional ECI position and velocity is obtained as: 
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 From Position and Velocity in ECI coordinate frame to classical orbital elements. 

o Given Position and Velocity 

       

o Compute orbital elements 
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where,     = Z-axis component of     ,       = X and Y axis component of     and   = Z-

axis component of    



225 

 

Appendix B: Partials for State Transition 

Matrix Kepler’s Equation 

This material is adapted from [13]. 
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where,          and    are x and y component of P and Q   
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where, P = anti-symmetric     matrix made up of Poisson parentheses:  

          
   

   
   

   

    
 

 

  
   

   
   

   

    
 

 

 

with following independent matrix elements: 

               
  

  
 

               
     

    
 

               
       

    
 

               
 

            
 

               
     

        
 

rest of the Poisson parentheses vanish. 
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Appendix C: Epicycle Coefficients for 

Geopotential Zonal Harmonic Terms up to J4 

This material has been adapted from [2]: 

J2 Secular Terms are: 
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J2 coefficients for short periodic terms are: 
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The    coefficients for the long-periodic terms using only J2 in κ2 are: 

   
  
   

 
  

 
       

and short periodic terms are: 
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The J4 coefficients for secular terms are: 

   
 

  
   

  

 
 

 

                         

   
  

  
   

  

 
 

 

                  

    
 

  
   

  

 
 

 

                            

and for short-periodic terms are: 
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  2α short periodic terms are: 
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Appendix D: Partials for Epicyclic Orbit 

Analysis  

This material has been adapted from [14]: 

Matrix of partials  
        

     
 for Epicycle Orbit Estimation Problem: 


























00000

0000cos

0000sin

),,,,,,,(

),,(

324

4143

2341

rgrgg

rfrfrgf

rfrfrgf

IrIr

ZYX

 
 

And 

T

rf

rf

rg

f

ffgIrfr

ffgIrfr

gggIrgr

ffgI

IrIr

X




















































2

3

4

1

1432

4143

3424

234

sin

)sin(

)cos(

)sincossin(sin

sin

),,,,,,,(






















 

 

T

rf

rf

rg

f

ffgIrfr

ffgIrfr

gggIrgr

ffgI

IrIr

Y


















































4

1

4

3

3234

2341

3424

414

cos

)cos(

)sin(

)cossincos(cos

cos

),,,,,,,(






















 



231 

 

T

rg

rg

g

ggIrgr

ggIrgr

ggI

IrIr

Z












































3

2

4

413

142

32

0

)(

0

)(

),,,,,,,(


















 

 

The second partial derivative matrix 
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is found through Equation: 3.43 and 3.45. We will use the 

abbreviation of
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 , the partial derivative with respect to positional coordinates are obtained as 
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And the partial derivatives with respect to velocity coordinates are: 
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Partial Derivatives of the J2 first order secular perturbations are: 
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Partial derivatives of J2 first order short periodic perturbations are: 
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Appendix E: Analytical Solution of Modified 

HCW Equations by Schweighart and Sedwick 

The solutions of modified HCW by SS are expressed as [20]: 
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ER , Equatorial Radius of Earth, E , Earth Gravitational Parameter and J2, Geo-potential Second 

Zonal Harmonic. Subscripts c and d are for chief and deputy satellites respectively. 
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 Appendix F: Partials for Schweighart and 

Sedwick J2 Modified HCW Equations 

The partials of ECI position coordinates with respect to epoch relative state vector is expressed as: 
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The partials for the ECI velocity coordinates with respect to initial relative state vector are:- 
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Let suppose following: 
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Appendix G: Analytical Solution of Integrals 

for GCSMM Time Update Equations 

The analytical solutions presented in this Appendix are found out by making use of following 

important derivations: 

 Product of two Gaussian densities   
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 Results for Gaussian based expectation integrals [1]: 
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For      and       replace “j” by “i” in Equation: F.4a.  

 

For i = j: 
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 The components of matrix    are expressed as: 
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We shall utilize tensor notation to solve above integral analytically. Each of the above term inside the 

square bracket of integrand can be treated separately: 
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Substituting Equation: 6.31 and taking expectation of the function inside square bracket (Equation: 

F.7) and making use of results given in Equations: F.1-F.3 we obtain following: 
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double superscript variables are: 

 

   
    

               

  
    

    
        

   
   

     

  
    

    
     

  
   

 

 

 

Other variables used in above expression are similar to Equation: F.4. Now we solve the second 

integrand as: 
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By substituting Equation: 6.32 in above equation the solution can be expressed as: 
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Now we solve the third integrand inside square bracket of Equation: F.6. The integrand can be written 

as: 
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Substituting Equation: 6.35 and using the results of Equation: F.1 and F.2 we perform expectation of 

above integral with respect     
   

. The solution can be expressed as: 
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See Equation: F.4 for solution of following integral as these are identical: 

 

 

    
  

 

   
     

   
    

   
  

  

   

 

Now we solve for following integral: 

 

    
  

 

  
     

        
    

  
      

  

  

   

(F.11) 

 

The solution of the above integral can be simplified by expanding the nonlinear function up to second 

order in Taylor series and substituting Equation: 6.33 in F.11. The solution can be written as: 

 

    
  

 

  

     
   

              
               

     
   

                 
          

     
    

     
      

         
         

         
     

     
    

 
    

      

  
               

   
   

         
   

  
   

  
   

  
   

    
   

  
   

  
      

    
   

  
   

  
          

     
   

          
     

  
   

  
      

     
     

   
   

    
     

  
   

  
        

     
        

      
      

      
      

      
      

     
     

        

                
   

  
   

     
          

   
  

         
     

   
     

      

 
             

      

  
               

     
   

          
   

  
    

   
         

     
   

  
   

   
     

    
    

   
     

  
    

   
    

   
    

   
     

   
   

   
     

  
    

  
           

where, the new variables defined in above equation are: 
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The integral in Equation: F.12 can also be solved on similar lines as previously described 

methodology of Equation: F.11. However, in our orbit determination application (Section: 6.5) this 

integral is zero. Therefore, it will not be treated further. 

Now we solve for following integral: 
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By substituting Equation: 6.34 in Equation: F.13, the solution of above integral can be written as: 
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Now for i=j the components of matrix    are expressed as: 
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We shall utilize tensor notation to solve above integral analytically. Each of the above term inside the 

square bracket of integrand can be treated separately: 
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Substituting Equation: 6.31 and taking expectation of the function inside square bracket (Equation: 

F.16) and making use of results given in Equations: F.1-F.3 we obtain following: 

 

    
   

 

  

      
   

   
   

                
  

    
      

  
     

   
   

          
   

   
          

   
   

          

 

Now we solve the second integrand as: 

    

    
  

 

  
     

   
   

     
    

     
      

  

  

   

(F.17) 

 

By substituting Equation: 6.32 in above equation the solution can be expressed as: 

 

    
  

 

  

      
   

    
   

                
  

 

 
    

   
    

         

  

 

Now we solve the third integrand inside square bracket of Equation: F.15. The integrand can be 

written as: 
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(F.18) 

 

Substituting Equation: 6.35 and using the results of Equation: F.1 and F.2 we perform expectation of 

above integral with respect     
   

. The solution can be expressed as: 

 

    
    

(F.19) 

 

The fourth term inside square bracket of Equation: F.15 can be expressed as: 

 

 

    
  

 

   
     

       
   

  

  

   
 

   

      
   

   
 
         

 

 

 

Now we solve for following integral: 

 

    
  

 

  
     

        
    

  
      

  

  

   

(F.20) 

 

The solution of the above integral can be simplified by expanding the nonlinear function up to second 

order in Taylor series and substituting Equation: 6.33 in F.20. The solution can be written as: 
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Now we solve for following integral: 

 

 

    
   

 

  
     

    

 
    

      
   

     
 

  

  

   

(F.21) 

By substituting Equation: 6.34 in Equation: F.13, the solution of above integral can be written as: 

 

 

    
   

 

   

      
   

   

   
 
           

    
   

    
     

  

 

In solving above integrals fourth and higher order moments and multiplicative terms involving their 

differentials are neglected. 

   

 

 

 

 

 


