639 research outputs found

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    Adaptive relaxation for the steady-state analysis of Markov chains

    Get PDF
    We consider a variant of the well-known Gauss-Seidel method for the solution of Markov chains in steady state. Whereas the standard algorithm visits each state exactly once per iteration in a predetermined order, the alternative approach uses a dynamic strategy. A set of states to be visited is maintained which can grow and shrink as the computation progresses. In this manner, we hope to concentrate the computational work in those areas of the chain in which maximum improvement in the solution can be achieved. We consider the adaptive approach both as a solver in its own right and as a relaxation method within the multi-level algorithm. Experimental results show significant computational savings in both cases

    Problems related to the integration of fault tolerant aircraft electronic systems

    Get PDF
    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included

    Method for concurrent execution of primitive operations by dynamically assigning operations based upon computational marked graph and availability of data

    Get PDF
    Computationally complex primitive operations of an algorithm are executed concurrently in a plurality of functional units under the control of an assignment manager. The algorithm is preferably defined as a computationally marked graph contianing data status edges (paths) corresponding to each of the data flow edges. The assignment manager assigns primitive operations to the functional units and monitors completion of the primitive operations to determine data availability using the computational marked graph of the algorithm. All data accessing of the primitive operations is performed by the functional units independently of the assignment manager

    Context flow architecture

    Get PDF

    Distributed Handler Architecture

    Get PDF
    Thesis (PhD) - Indiana University, Computer Sciences, 2007Over the last couple of decades, distributed systems have been demonstrated an architectural evolvement based on models including client/server, multi-tier, distributed objects, messaging and peer-to-peer. One recent evolutionary step is Service Oriented Architecture (SOA), whose goal is to achieve loose-coupling among the interacting software applications for scalability and interoperability. The SOA model is engendered in Web Services, which provide software platforms to build applications as services and to create seamless and loosely-coupled interactions. Web Services utilize supportive functionalities such as security, reliability, monitoring, logging and so forth. These functionalities are typically provisioned as handlers, which incrementally add new capabilities to the services by building an execution chain. Even though handlers are very important to the service, the way of utilization is very crucial to attain the potential benefits. Every attempt to support a service with an additive functionality increases the chance of having an overwhelmingly crowded chain: this makes Web Service fat. Moreover, a handler may become a bottleneck because of having a comparably higher processing time. In this dissertation, we present Distributed Handler Architecture (DHArch) to provide an efficient, scalable and modular architecture to manage the execution of the handlers. The system distributes the handlers by utilizing a Message Oriented Middleware and orchestrates their execution in an efficient fashion. We also present an empirical evaluation of the system to demonstrate the suitability of this architecture to cope with the issues that exist in the conventional Web Service handler structures

    Software development for analysis of stochastic petri nets using transfer functions

    Get PDF
    This thesis research is an implementation of a closed-form analytical technique for study, evaluation and analysis of Stochastic Petri Nets (SPN). The technique is based on a theorem that an isomorphism exists between an SPN and a Markov Chain. The procedure comprises five main steps: reachability graph generation of the underlying Petri net, transformation of the reachability graph to a state machine Petri net, calculation of transfer functions, computation of equivalent transfer functions via Mason\u27s rule, and computation of performance parameters of the SPN model from the equivalent transfer functions and their derivatives. The software is developed in UNIX using C and applied to various SPN models. Future research includes implementation of Mason\u27s rule for complex cases and symbolic derivation of equivalent transfer functions

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi

    Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium

    Get PDF
    The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS\u2707) presents papers describing contributions both to state of the art and state of the practice in the broad field of real-time and embedded systems. The 17 accepted papers were selected from 19 submissions. This proceedings is also available as Washington University in St. Louis Technical Report WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank Mueller for their support and guidance

    Compiler-directed energy reduction using dynamic voltage scaling and voltage Islands for embedded systems

    Get PDF
    Cataloged from PDF version of article.Addressing power and energy consumption related issues early in the system design flow ensures good design and minimizes iterations for faster turnaround time. In particular, optimizations at software level, e.g., those supported by compilers, are very important for minimizing energy consumption of embedded applications. Recent research demonstrates that voltage islands provide the flexibility to reduce power by selectively shutting down the different regions of the chip and/or running the select parts of the chip at different voltage/frequency levels. As against most of the prior work on voltage islands that mainly focused on the architecture design and IP placement related issues, this paper studies the necessary software compiler support for voltage islands. Specifically, we focus on an embedded multiprocessor architecture that supports both voltage islands and control domains within these islands, and determine how an optimizing compiler can automatically map an embedded application onto this architecture. Such an automated support is critical since it is unrealistic to expect an application programmer to reach a good mapping correlating multiple factors such as performance and energy at the same time. Our experiments with the proposed compiler support show that our approach is very effective in reducing energy consumption. The experiments also show that the energy savings we achieve are consistent across a wide range of values of our major simulation parameters
    corecore