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Abstract—Addressing power and energy consumption related issues early in the system design flow ensures good design and

minimizes iterations for faster turnaround time. In particular, optimizations at software level, e.g., those supported by compilers, are

very important for minimizing energy consumption of embedded applications. Recent research demonstrates that voltage islands

provide the flexibility to reduce power by selectively shutting down the different regions of the chip and/or running the select parts of the

chip at different voltage/frequency levels. As against most of the prior work on voltage islands that mainly focused on the architecture

design and IP placement related issues, this paper studies the necessary software compiler support for voltage islands. Specifically,

we focus on an embedded multiprocessor architecture that supports both voltage islands and control domains within these islands, and

determine how an optimizing compiler can automatically map an embedded application onto this architecture. Such an automated

support is critical since it is unrealistic to expect an application programmer to reach a good mapping correlating multiple factors such

as performance and energy at the same time. Our experiments with the proposed compiler support show that our approach is very

effective in reducing energy consumption. The experiments also show that the energy savings we achieve are consistent across a wide

range of values of our major simulation parameters.

Index Terms—Voltage islands, compiler optimizations, energy consumption, voltage scaling, compiler-based parallelization

Ç

1 INTRODUCTION

POWER and energy related issues in deep submicron
embedded designs may limit functionality, reliability,

and performance and severely affect yield and manufactur-
ability. It is well known that higher power dissipation
increases junction temperatures, which in turn slows down
transistors and increases interconnect resistance. Therefore,
power consumption needs to be considered as one of the
primary metrics in embedded system design, and any
optimization approach targeted at improving performance
may therefore fall short if power is not also taken into account.

Recent years have witnessed several efforts aimed at
reducing power consumption from both hardware and
software perspectives. One such hardware approach is
voltage islands, which are areas (logic and/or memory)
supplied through separate, dedicated power feed. The prior
work on voltage islands so far generally focused on the
design and placement issues, and will be discussed in detail
in Section 2. Our goal in this paper is to study the necessary
software compiler support for voltage islands. Specifically,
we focus on an embedded multiprocessor architecture that

supports both voltage islands and control domains within
these islands and determine how an optimizing compiler
can map an embedded application onto this architecture.
The specific types of applications this paper considers are
embedded multimedia codes that are built from multi-
dimensional arrays of signals and multiloop nests that
operate on these arrays. One of the nice characteristics of
these applications is that an optimizing compiler can analyze
their data access patterns at compile time and restructure
them based on the target optimization in mind (e.g.,
enhancing iteration-level parallelism or improving data
locality).

We first give, in Section 3, a characterization of a set of
embedded applications that illustrates the potential benefits
that could be obtained from a voltage island based embedded
multiprocessor architecture. Based on this characterization,
we then present, in Section 4, a compiler-directed code
parallelization scheme, which is the main contribution of this
paper. A unique characteristic of this scheme is that it
minimizes power consumption (both dynamic and leakage)
by exploiting both task and data parallelism. We tested the
impact of this approach using a suite of eight embedded
multimedia applications and a simulation environment. Our
experiments, discussed in Section 5, reveal that the proposed
parallelization strategy is very effective in reducing power
(40.7 percent energy savings on the average) as well as
execution cycles (14.6 percent performance improvement on
the average). The experiments also show that the power
savings we achieve are consistent across a wide range of
values of our simulation parameters. For example, we found
that our approach scales very well as we increase the number
of processor cores in the architecture and the number of
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voltage islands. Our results also indicate that, for the best
energy savings, both data and task parallelism need to be
employed together and application mapping should be
performed very carefully. Overall, our results show that
automated compiler support can be very effective in
exploiting unique features of a voltage island based multi-
processor architecture.

2 RELATED WORK

As power consumption and heat dissipation are becoming
increasingly important issues in chip design, major chip
manufacturers, such as IBM [3] and Intel [4], are adopting
voltage islands in their current and future products [2]. For
example, voltage islands will be used in IBM’s new CU-08
manufacturing process for application-specific integrated
processors (ASIPs) [3]. The chip design tools that support
voltage islands are also starting to appear in the market
(e.g., [1]).

Different approaches for adapting and using voltage
islands have been explored [43], [23], [34]. Specifically,
Lackey et al. [19] discuss the methods and design tools that
are being used today to design voltage island based
architectures. Hu et al. [14] present an algorithm for
simultaneous voltage island partitioning, voltage level
assignment, and physical-level floor planning. In [27],
authors discuss the problem of energy optimal local speed
and voltage selection in frequency/voltage island based
systems under given performance constraints. Liu et al. [22]
propose a method to reduce the total power under timing
constraints and to implement voltage islands with minimal
overheads. Wu et al. [42] implement a methodology to
exploit nontrivial voltage island boundaries. They evaluate
the optimal power versus design cost tradeoff under
performance requirements. In [7], authors explore a semi-
custom voltage-island approach based on internal regula-
tion and selective custom design. Giefers and Rettberg [12]
propose a technique that partitions the design into different
frequency/voltage islands during the scheduling phase of
the High-Level Synthesis (HLS). Our approach is different
from all these prior efforts on voltage islands as we focus on
automated compiler support for such architectures, with the
goal of reducing energy consumption.

An important advantage of chip multiprocessors is that it
is able to reduce the cost from both performance and power
perspectives. The prior work [5], [6], [11], [17], [18], [26],
[28], [30], [39] discusses several advantages of these
architectures over complex single-processor-based designs.
Besides voltage island based systems, there are many prior
efforts that target at reducing energy consumption of
MPSoC-based architectures and chip multiprocessors [15].
For example, Ozturk et al. [29] propose an energy-efficient
on-chip memory design for embedded chip multiprocessor
systems. Manolache et al. [25] present a fault and energy-
aware communication mapping strategy for applications
implemented on NoCs. Soteriou and Peh [38] explore the
design space for communication channel turn-on/off based
a dynamic power management technique for both on-chip
and off-chip interconnections. Yang et al. [44] present an
approximate algorithm for energy efficient scheduling. Rae
and Parameswaran [31] study voltage reduction for power
minimization. Shang et al. [35] propose applying dynamic
voltage scaling to communication channels.

There has been various compiler-based approaches to
voltage scaling. Chen et al. [10] propose a compiler-directed
approach where the compiler decides the appropriate
voltage/frequency levels to be used for each communica-
tion channel in the NoC. Their approach builds and operates
on a graph-based representation of a parallel program. In
[20], authors propose a compiler-based communication link
voltage management technique. They specifically extract the
data communication pattern among parallel processors
along with network topology to set the voltages accordingly.
In [36], authors propose a real-time loop scheduling
technique using dynamic voltage scaling. They implement
two different scheduling algorithm based on a directed
acyclic graph (DAG) using voltage scaling. Shi et al. [37]
present a framework for embedded processors using a
dynamic compiler. Their compiler-based approach specifi-
cally utilizes the OS-level information and hardware status.
Rangasamy et al. [32] propose a petri net-based performance
model where compiler is used to set the frequencies.
Jejurikar and Gupta [16] present a DVS technique that
focuses on minimizing the entire system energy consump-
tion. In addition to the leakage energy, authors also consider
the energy consumption of the components like memory
and network interfaces. Hsu et al. [13] present a compiler-
based system to identify memory-bound loops. Authors
reduce the voltage level for such loops since the memory
subsystem is much slower than the processor. Our work is
different from these compiler-based studies since our
scheme minimizes dynamic and leakage energy consump-
tion for voltage islands by exploiting both task and data
parallelism at the loop level.

3 LOAD IMBALANCE IN MULTIMEDIA APPLICATIONS

In this section, we focus on a set of multimedia applications
and study the opportunities for saving energy through
voltage scaling. Fig. 1 shows load imbalances across eight
processors for the first five loop nests of some of our
multimedia applications (we will discuss the important
characteristics of these applications later). These results were
obtained by parallelizing the loop nests of the applications
on a uniform multiprocessor architecture (simulated using
the SIMICS tool-set [24]), i.e., all the processors are the same
and operate under the highest clock frequency and voltage
levels available. Each bar in this figure corresponds to the
normalized completion time of the workload of that
processor in the corresponding loop nest, assuming that
the time of the latest processor, i.e., the one finishes last, is set
to 100 for ease of observing the load imbalance trends across
the applications. We see that, for all the applications and all
their loop nests, there is a significant load imbalance among
the parallel processors. There are several factors that
contribute to this load imbalance, which we explain next.

First, sometimes, the upper bound or lower bound of an
inner loop in a nest depends on the index of the outer loop.
This situation is illustrated by the following loop nest
written in a pseudolanguage:

for I :¼ 1; N

for J :¼ I;N
f:::g:
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In this loop nest, assuming that the outer loop is
parallelized over multiple processors and the inner loop
is run sequentially, it is easy to see that each processor will
execute a different number of loop iterations. This is
because the number of loop iterations that will be executed
by the inner loop (J) of each processor is different since the
lower bound of J depends on I. The second possible reason
for the load imbalance among the processors is the different
data cache behavior of the different processors. Since each
processor can experience a different number of data cache
hits and misses, this can cause load imbalance across them.
A third possible reason for load imbalance is the condi-
tional constructs such as IF statements within the bodies of
the parallelized loop nests. If two different processors
happen to take the different branches of an IF statement in
the loop iterations they execute, their execution times (i.e.,
the time it takes for a processor to complete its workload in
that loop nest) can be different from each other. Fig. 2 gives
the contribution of these three factors to the overall load
imbalance for each of our applications. The segment
marked “Other” in each bar shown in this figure represents
the remaining load imbalances in the corresponding
application whose source we could not identify. We see
from these results that the loop bound based imbalance, the
first reason discussed above, dominates the remaining
factors for all eight applications. This, in a sense, is good
news from the compiler’s perspective, as this is the only
type of load imbalance, among those mentioned above, that
we can identify at compile time and try to eliminate as
much as possible; the remaining causes of load imbalance
are very difficult to capture and characterize at compile

time. The next section discusses such a compiler approach

to exploit the load imbalances across processors in the

context of a voltage island based embedded multiprocessor

architecture.

4 COMPILER-DIRECTED APPLICATION CODE

MAPPING

4.1 Architecture Abstraction

A high-level view of the embedded architecture considered

in this paper is shown in Fig. 3. In this architecture, the chip

area is divided into multiple voltage islands, each of which is
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Fig. 1. Load imbalance across eight processors for the first five loop nests of some of our multimedia applications.

Fig. 2. Breakdown of the load imbalances in our applications.



controlled by a separate power feed and operates under a
different voltage level/frequency. We further assume that
each voltage island is divided into multiple power domains.
All the domains within an island are fed by same Vdd source
but independently controlled through intraisland switches.
To implement power domains, a power isolation logic
ensures that all inputs to the active power domain are
clamped to a stable value. The important point to note is that
this island-based architecture can help save both dynamic
and leakage power. Specifically, it can save dynamic energy
by employing different voltage levels for the different
islands, and leakage energy by shutting down the power
domains that are not needed by the current computation. The
difficult task however is to decide how a given embedded
multimedia application needs to be mapped to this multi-
processor architecture, i.e., code parallelization in this island-
based architecture, which is discussed in the rest of our
paper.

4.2 Mapping Algorithm

In order to map a given multimedia code to the architecture
shown in Fig. 3, our approach uses both data parallelism and
task parallelism. Data parallelism involves performing a
similar computation on many data objects simultaneously.
In our approach, this corresponds to a group of processors
executing a given loop nest in parallel. All the processors
execute a similar code (i.e., the same loop body) but work on
the different parts of array data, i.e., they execute different
iterations of the loop. Task parallelism, in comparison,
involves performing different tasks in parallel, where a task
is an arbitrary sequence of computations. In our approach,
this type of parallelism represents executing different loop
nests in different processors at the same time. Our compiler
uses a structure called the Loop Dependence Graph (LDG) to
represent the application code being optimized. Each node,
Ni, of this graph corresponds to a loop nest in the application
and there is a directed edge from node Ni to Nj if the loop
nest represented by the latter is dependent on the loop nest
represented by the former. The proposed compiler support
maps this application onto our voltage island based
architecture. In the rest of this section, we describe the
details of three different voltage island and power domain
aware code mapping (parallelization) schemes that map a
given LDG onto our architecture.

4.2.1 The EA_DP Scheme

The first scheme that we describe, referred to as EA_DP,
exploits only data parallelism. It proceeds in three steps, as
suggested by its pseudocode given in Algorithm 1. The first
step is the parallelization step. In this step, the compiler
parallelizes an application in a loop nest basis. That is, each
loop nest of the given LDG is parallelized independently
considering the intrinsic data dependencies it has. Since we
are targeting a chip multiprocessor, our parallelization
strategy tries to achieve for each nest the outer loop
parallelism to the extent allowed by the data dependencies
exhibited by the loop nests [21]. The second step is the
processor workload estimation step. In this step, the
compiler estimates the load of each processor in each nest.
To do this, it performs two calculations: 1) iteration count
estimation and 2) per-iteration cost estimation. Since in
most array-based applications bounds of loops are known
before execution starts or they can be estimated through
profiling, estimating the iteration count for each loop nest is
not very difficult. The challenge is in determining the cost,
in terms of execution cycles, of a single iteration of a given
loop nest. Note that, various Worst Case Execution Time
(WCET) calculation methods have been explored in
literature [40]. Since the processors employed in our chip
multiprocessor are simple single-issue embedded cores, the
cost computation is closely dependent on the number and
types of the assembly instructions that will be generated for
the loop body. Specifically, we associate a base execution
cost with each type of assembly instruction. In addition, we
also estimate the number of cache misses. Since loop-based
embedded applications exhibit very good instruction
locality, we focus on data cache only and estimate data
cache misses using the method proposed by Carr et al. [8].
An important issue is to estimate, at the source level, what
assembly instructions will be generated for the loop body in
question. We address this problem as follows. The
constructs that are vital to the studied group of codes, that
is, array-based multimedia applications, include a typical
loop, a nested loop, assignment statements, array refer-
ences, and scalar variable references within and outside
loops. Our objective is to estimate the number of assembly
instructions of each type associated with the actual
execution of these constructs. To achieve this, the assembly
equivalents of several codes were obtained using our back-
end compiler (a variant of gcc) with the O3-level optimiza-
tion flag. Next, the portions of the assembly code were
correlated with corresponding high-level constructs to
extract the number and type of each instruction associated
with the construct.

Algorithm 1. EA DP

NL : Number of loop nests

NP : Number of processors

Li : Loop nest i

Pi : Processor i

SPi : Keeps the IDs of processors (based on a sorted
workload)

Wi : Workload of processor i

Ti : Execution time of processor i

Vmax : Highest voltage level

Tmax : Execution time of SP1 (maximum workload)
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processors.



1: i ¼ 1

2: while i � NL do

3: Parallelize loop nest Li among the NP processors

4: i++

5: end while

6: i ¼ 1

7: while i � NP do

8: IterCounti ¼ Estimate the number of iterations

executed by Pi
9: IterCosti ¼ Estimate the average cost per iteration

executed by Pi
10: Estimated Workload for Pi is, Wi ¼ IterCounti �

IterCosti
11: i++

12: end while

13: Sort the processors in non-increasing order of their

workloads (SP1 . . .SPNP
)

14: Assign the highest voltage level Vmax to SP1

15: Tmax ¼ Time to execute the workload of SP1

16: i ¼ 2

17: while i � NP do

18: Select lowest voltage level VL for SPi such that

Ti � Tmax
19: i++

20: end while

To illustrate our parameter extraction process in more
detail, let us focus on some specifics of the following sample
constructs. First, let us focus on a loop construct. Each loop
construct is modeled to have a one-time overhead to load
the loop index variable into a register and initialize it. Each
loop also has an index comparison and an index increment
(or decrement) overhead, whose costs are proportional to
the number of loop iterations (called trip count or trip).
From correlating the high-level loop construct to the
corresponding assembly code, each loop initialization code
is estimated to execute one load (lw) and one add (add)
instruction (in general). Similarly, an estimate of trip+1 load
(lw), store-if-less-than (stl), and branch (bra) instructions is
associated with the index variable comparison. For index
variable increment (resp. decrement), 2� trip addition
(resp. subtraction) and trip load, store, and jump instruc-
tions are estimated to be performed. We next consider
extracting the number of instructions associated with array
accesses. First, the number and types of instructions
required to compute the address of the element are
identified. This requires the evaluation of the base address
of the array and the offset provided by the subscript(s). Our
current implementation considers the dimensionality of the
array in question, and computes the necessary instructions
for obtaining each subscript value. Computation of the
subscript operations is modeled using multiple shift and
addition/subtraction instructions, instead of multiplica-
tions, as this is the way our back-end compiler generates
code when invoked with the O3 optimization flag. Finally,
an additional load/store instruction was associated with
read/write the corresponding array element.

Based on the process outlined above, the compiler
estimates the iteration count for each processor and per-
iteration cost. Then, by multiplying these two, it calculates

the estimated workload for each processor. While this
workload estimation may not be extremely accurate, it
allows the compiler to rank processors according to their
workloads and assign suitable voltage levels and frequen-
cies to them as will be described in the next item. As an
example, consider the code fragment shown in Fig. 4,
parallelized using three processors. Assuming that our
estimator estimates the cost of loop body as L instructions,
the loads of processors P0, P1, and P2 are 25050L, 15050L,
and 5050L, respectively.

The last step that implements EA_DP is voltage and
frequency assignment. In this step, the compiler first orders
the processors according to their nonincreasing workloads.
After that, the highest voltage is assigned to the processor
with the largest workload (the objective being not to affect
the execution time to the greatest extent possible). Then, the
processor with the second highest workload gets assigned to
the minimum voltage level Vk supported by the architecture
that does not cause its execution time to exceed that of the
processor with the largest workload. In this way, each
processor gets the minimum voltage level to save maximum
amount of power without increasing the overall parallel
execution time of the nest, which is determined by the
processor with the largest workload. The unused processors
(and their caches) are turned off to save leakage. Note that,
in EA_DP, the loop nests of the application are handled one
by one. That is, observing the dependencies between the
nodes of the given LDG, we process a single nest at a time.
Also, this scheme uses at most one processor from each
island (assuming that no two islands have the same
voltage).

4.2.2 The EA_TP Scheme

We now describe how our second voltage island aware
parallelization scheme, called EA_TP, operates. This scheme
implements only task parallelism. In fact, it implements an
algorithm similar to list scheduling on the LDG. Specifically,
it can execute multiple nests in parallel if the dependencies
captured in LDG allow such an execution. Suppose that we
have Q loop nests that can execute in parallel. We first
estimate the workload of each loop nest, using a similar
procedure to the one explained in detail above. Then, each
loop nest is assigned to an island and executed in a single
processor there. This assignment is done considering the
workloads of the processors as well as the voltage/frequency
levels of the islands. It needs to be emphasized that, since in
this scheme the iterations of the same loop are not executed in
parallel, we exploit only task parallelism. Algorithm 2 gives
the pseudocode for this scheme.
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Fig. 4. Data parallelization of a loop nest.



Algorithm 2. EA TP

NL : Number of loop nests

NP : Number of processors

NP : Number of groups

Li : Loop nest i

Pi : Processor i

Gi : A group of loop nests (that can run parallel)

WLi : Workload of loop nest i

1: i ¼ 1

2: while i � NL do

3: IterCounti ¼ Estimate the number of iterations

executed by Li
4: IterCosti ¼ Estimate the average cost per iteration

executed by Li
5: Estimated Workload for Li is, WLi ¼ IterCounti �

IterCosti
6: i++

7: end while

8: Group the loop nests using the LDG (loop dependence

graph) such that loop nests in a group can be executed

in parallel

9: G ¼ G1 . . .Gk, such that Giþ1 is dependent on Gi

10: while i � NG do

11: Assign each loop nest Lt 2 Gi to an island and
execute in a single processor

12: i++

13: end while

Let us now explain how EA_TP works using the code
fragment in Fig. 5a. Fig. 5b shows the LDG for this code
fragment. For illustration purposes, we assume that
the number of execution cycles for loop nests L1, L2, L3,
and L4 are 9000, 4000, 2000, and 1000, respectively. These
four loop nests can be divided into three groups

G1 ¼ fL1g;
G2 ¼ fL2; L3g;
G3 ¼ fL4g:

The loop nests of the same group can be executed in
parallel. Since G1 contains only one loop nest, L1, we assign
this loop nest to a processor with the highest voltage. G2

contains loop nests L2 and L3, and L2 requires twice as
many execution cycles as L3. We assign L2 to the same
processor as L1, and L3 to a processor with the lowest
voltage such that the execution time of L3 does not exceed
that of L2. Like G1, G3 contains only one loop nest (L4), and
we assign it to the same processor as L1.

4.2.3 The EA_TDP Scheme

Our third scheme, referred to as EA_TDP, combines the task
and data parallelism based approaches explained above.
More specifically, like EA_TP, it first identifies, using LDG,
the loop nests that can be executed in parallel, i.e., the nests
that do not have dependencies among them. However,
unlike EA_TP, it next calculates (estimates) the workloads
at the processor granularity. It then assigns voltages to
each processor, i.e., it determines where each workload is
executed based on the approach explained when we discuss

EA_DP above. Note that this approach exploits both task

and data parallelism. Task parallelism is exploited since the

iterations from the different loop nests are executed at the

same time, that is, different loop bodies are concurrently

executed. Data parallelism is executed because the itera-

tions of the same loop are run in parallel, which is not the

case in EA_TP. The pseudocode for the EA_TDP scheme is

shown in Algorithm 3.

Algorithm 3. EA TDP

NL : Number of loop nests

NP : Number of processors
NP : Number of groups

Li : Loop nest i

Pi : Processor i

Gi: A group of loop nests (that can run parallel)

SPi : Sorted processor i based on workload

Wi : Workload of processor i

Ti : Execution time of processor i

Vmax : Highest voltage level
Tmax : Execution time of SP1 (maximum workload)

1: i ¼ 1

2: Group the loop nests using the LDG (loop dependence

graph) such that loop nests in a group can be executed

in parallel

3: G ¼ G1 . . .Gk, such that Giþ1 is dependent on Gi

4: i ¼ 1

5: while i � NP do

6: IterCounti ¼ Estimate the number of iterations

executed by Pi
7: IterCosti ¼ Estimate the average cost per iteration

executed by Pi
8: Estimated Workload for Pi is, Wi ¼ IterCounti �

IterCosti
9: i++

10: end while

11: Sort (non-increasingly) the processors based on their

workloads SP1 . . .SPNP

12: Assign the highest voltage level Vmax to SP1

13: Tmax ¼ Time to execute the workload of SP1
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14: i ¼ 2

15: while i � NP do

16: Select lowest voltage level VL for SPi such that
Ti � Tmax

17: i++

18: end while

We now use the code fragment shown in Fig. 5a as an
example to show how EA_TDP works in practice. Let us
assume that we have three processors. Similar to EA_TP,
we first divide the loop nests into groups G1 ¼ fL1g,
G2 ¼ fL2; L3g, and G3 ¼ fL4g such that the loop nests of the
same group can be executed in parallel to each other. Since
we have three processors and group G1 contains only L1,
we can apply data parallelism, as shown in Fig. 4, to L1 such
that we can use three processors to execute this loop nest.
For group G2, however, we split loop nest L2 into two loop
nests, L02 and L002 . After that, we assign loop nests L02, L002 , and
L3 to the three available processors with different voltages
such that the execution time of these loop nests are
approximately equal to each other. Finally, we apply data
parallelism to loop nest L4 by splitting it into three parallel
loop nests and assigning them to the three processors.

Note that, all our voltage island aware schemes (EA_DP,
EA_TP, EA_TDP) are also power domain aware in that the
unused power domains in any voltage island are turned off
to save leakage energy.

5 EXPERIMENTS

5.1 Setup

To test the success of our code parallelization approach for
voltage island based architectures, we performed experi-
ments with five different schemes, which can be summar-
ized as follows. DP is a scheme that exploits only data
parallelism without taking into account the voltage islands
in the architecture. TP is similar to DP in that it does not
consider voltage islands; however, it exploits task paralle-
lism instead of data parallelism. Both of these approaches
assign the highest voltage to the processors to prevent
possible performance penalties. Note that, this is the highest
voltage available in the voltage island that processor
belongs to. EA_DP and EA_TP are similar to DP and TP,
respectively, except that they are voltage island aware. That
is, they perform code parallelization taking into account the
voltage islands in the architecture. The details of these two
schemes have been discussed earlier in Section 4. Finally,
EA_TDP, which is also discussed in Section 4, is the scheme
that employs both task and data parallelism in a voltage
island aware manner. Note that the main difference
between DP (resp. TP) and EA_DP (resp. EA_TP) is that,
while the latter considers workloads to select the best

processor, the former does not care about the different
voltage/frequency levels of the islands. However, even in
the schemes DP and TP, the unused power domains are
turned off to save leakage.

We implemented these five schemes within an experi-
mental compiler infrastructure [41], and performed experi-
ments using the SIMICS infrastructure [24]. SIMICS is a
simulation toolset that allows execution of unmodified
binaries and can simulate a multicore architecture. We
enhanced the basic SIMICS architecture to model voltage
islands, using an execution-driven, cycle-accurate energy
model. More specifically, for estimating energy consump-
tion of the memory components, we used the CACTI [33]
tool; for the CPU data path and interconnects, we used
SimplePower [45]. SimplePower is an architectural level
cycle-accurate simulator where a single-issue five-stage
pipelined processor is being simulated according to the
voltage levels. We also have results with out of order cores;
the results were similar to those with in order cores.
Performance of individual instructions are affected with the
voltage level being used. The instruction set architecture
used in the simulator is a subset of the instruction set of
SimpleScalar. On the other hand, CACTI is an integrated
cache simulator which measures access time, area, leakage,
and dynamic power. Collected cache access traces are used
to calculate the cache energy consumption. While it is
possible to collect results for different technologies, sizes, or
associativity, we use a 65 nm, 8 KB, 2-way set associative
cache. The default simulation configuration is given in
Table 1. We used eight benchmark codes to evaluate the five
schemes explained above. The important characteristics of
these benchmarks are listed in Table 3. The third column
gives the total number of execution cycles of each
application and the fourth column gives the energy
consumption, both under the case when an application is
executed only on a single processor under the highest
clocking frequency and voltage supported by the architec-
ture. We need to mention that the values in the last column
include both dynamic and leakage energies, and capture the
energy consumed in processors, caches, interconnects, and
off-chip memory. Processor characteristics with varying
voltage levels are shown in Table 2.
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TABLE 1
Default Simulation Configuration

TABLE 2
Processor Characteristics with Different Voltage Levels

TABLE 3
Our Applications



5.2 Energy Consumption

Fig. 6 gives the energy consumption results with the default
values of our simulation parameters, shown in Table 1. These
energy results are normalized against the last column of
Table 3. We see from these results that, on the average, the
DP scheme saves 2.9 percent energy, which is not significant
at all. This means that it does not make much sense to
parallelize an application in this architecture without taking
the voltage islands into account. The results with the TP
scheme are even worse; this scheme generates similar results
to the single processor case, and in fact, it increases energy
consumption slightly on the average (0.3 percent). It needs to
be mentioned that, the schemes DP and TP bring energy
benefits in some applications. This is due to two main factors.
First, leakage energy can be reduced when the execution
cycles are cut. Second, some of the workloads or tasks can
possibly be mapped to a processor in a low-frequency
voltage island which has potential to incur less dynamic
energy. Note that, as explained in Section 4, the chip area is
divided into multiple voltage islands, each of which operates
under a different voltage level/frequency. However, the
voltage island oblivious mapping employed by these two
methods can cause critical computations to be mapped to
processors with low frequency and this can have a negative
impact on both leakage and dynamic energy. When we look
at the remaining three versions, we see that all three of them
save significant amount of energy. These reductions come
from both the dynamic and leakage components. The
average energy reductions with the EA_DP and EA_TP
schemes are 28.1 and 19.0 percent, respectively. However,
the best energy savings are obtained when both data and
task parallelism are exploited together (i.e., the EA_TDP
scheme). This scheme achieves 40.7 percent energy saving on
the average. These results clearly emphasize the importance
of exploiting both task and data parallelism in a voltage
island aware manner. That is, code parallelization employed
by a compiler that targets an architecture with voltage
islands should consider the workloads of processors and
perform computation mapping considering the voltage/
frequency levels of the processors in the system. Although
we do not present the execution cycle results in detail, the
schemes EA_DP, EA_TP, and EA_TPD also reduce execution
cycles by 11.1, 8.6, and 14.6 percent, respectively.

In the rest of our experiments, we present the results
obtained by varying our default system configuration. Since
we already established that EA_TDP is superior to both
EA_DP and EA_TP, in our experiments with different
configurations, we concentrate only on the EA_TDP scheme.

We first change the total number of processors while
keeping the number of power domains per island and
the number of processors per power domain the same as in
the default configuration. This means that we increase the
number of islands in the architecture, which also means that
we operate with a larger number of voltage/frequency levels.
Fig. 7 shows the energy results (of the EA_TDP scheme) with
the different processor counts. We see that our approach is
able to take advantage of the increase in the number of
processors. The main reason for this is that, an increased
number of islands (voltage/frequency) gives more flexibility
to our approach in performing computation mapping and
this in turn increases our energy savings.

5.3 Sensitivity Analysis

In next last set of experiments, we studied the impact of the
number of islands, the number of power domains per
island, and the number of processor cores per power
domain, while keeping the total number of processors in the
system fixed. Each point on the x-axis of Fig. 8 represents a
different configuration (number of islands, number of
domains/island, number of processors/domain). Note that
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Fig. 6. Energy consumption with the default configuration. Fig. 7. Energy results of the EA_TDP scheme with the different
processor counts.

Fig. 8. Impact of the number of voltage islands.



the total number of processors in the chip is fixed at 12 (our
default count). Note also that the default configuration used
so far is captured by (3, 2, 2). Several observations can be
made from this graph. First, increasing the number of
voltage islands generally brings more energy savings. This
is because a larger number of islands mean a larger number
of voltage/frequency levels, and this in turn impacts energy
gains positively. This is why we observe more savings, as
compared to the default configuration, with configurations
such as (3,*,*) and (6,*,*) except (3,1,4). The reason that (3, 1,
4) generates worse results than (3, 2, 2) is that the former has
only a single power domain per island, which means we
can either turn off all the processors in an island or none of
them. This restriction limits the potential leakage savings.
On the other hand, the configuration (1, 2, 6) does not
generate very good results either, mainly because we have
only single voltage island (i.e., all benefits in this case can
come from the leakage savings). Overall, these results show
that the best energy savings are obtained when we have
sufficiently large number of voltage islands and power
domains. However, it needs to be clarified that voltage
island architecture exploration (i.e., deciding the best
combination of islands, domains, and processors) is not
the topic addressed in this paper. This paper proposes a
compiler-directed voltage island aware scheme to increase
energy benefits. The reason that we made experiments with
the different configurations and reported results in Fig. 8 is
to show that the proposed approach works well across wide
range of system configurations (not to defend one config-
uration over the others). When averaged across all config-
urations and applications used in our experiments, we
calculate that our approach (EA_TDP) reduces energy
consumption by 38.4 percent. Although not presented here
in detail, the corresponding savings with the EA_DP and
EA_TP versions were 26.8 and 18.2 percent. Again, these
results reiterate the importance of exploiting both task and
data parallelism in a voltage island based architecture for
the best energy savings.

5.4 Comparison with Optimal Scheme

Our last set of results compare our best approach (EA_TPD)
against an hypothetical scheme that performs code paralle-
lization in an optimal manner. To collect the results with such
a scheme, we first profiled each application and, by trying all
possible parallelization schemes and voltage assignments,
we distributed loop iterations across the available proces-
sors. We implemented an Integer Linear Programming (ILP)-
based approach to measure the latency of such an optimal
scheme compared to our approach. ILP execution time
exponentially increases with the problem size, thereby
making it harder to use for bigger problems with multi-
dimensional problem spaces. In our implementation, there
are three main variables effecting the optimality: 1) paralle-
lization schemes used, 2) the number of voltage levels,
3) loop iteration distribution on available processors. In our
experiments, the optimal approach took between 3-4 hours
even when some of the variables are excluded or simplified,
whereas our approach generates results in 47 seconds on
average. Note that, we report the optimal scheme results
based on either completion or the best results generated
within 24 hours. These comparison results are presented in

Fig. 9 under the default values of our simulation parameters.
We observe from these results that our approach comes close
to optimal for many of our embedded applications. In fact,
the average energy saving values with our scheme and the
optimal scheme are 40.7 and 45.6 percent, respectively. But,
we also see some relatively larger difference in some
benchmarks (e.g., H.263) due to the heuristic nature of our
scheme.

6 CONCLUSIONS

Advances in semiconductor technology are enabling designs
with several hundred million transistors. Since building
sophisticated single processor based systems is a complex
process from the design, verification, and software devel-
opment perspectives, the use of chip multiprocessing is
inevitable in future embedded systems. Another important
architectural trend that we observe in embedded systems,
namely, multivoltage processors, is driven by the need of
reducing energy consumption during program execution.
Considering these two trends, chip multiprocessing and
voltage/frequency scaling, this paper presents an optimiza-
tion strategy for a voltage island based embedded archi-
tecture that makes use of both chip parallelism and voltage
scaling. In this approach, the compiler takes advantage of
heterogeneity in parallel execution among the loads of
different processors and assigns different voltages/frequen-
cies to different processors if doing so reduces energy
consumption without increasing overall execution cycles.
Our experiments with a set of applications show that this
optimization can bring large energy benefits in practice. To
our knowledge, this is the first compiler-based study that
targets a voltage island based embedded architecture.
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