
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCS-2007-17

2007-04-03

Proceedings Work-In-Progress Session of the 13th Real-Time and Proceedings Work-In-Progress Session of the 13th Real-Time and

Embedded Technology and Applications Symposium Embedded Technology and Applications Symposium

Chenyang Lu

The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS'07) presents papers describing contributions both to state of

the art and state of the practice in the broad field of real-time and embedded systems. The 17

accepted papers were selected from 19 submissions. This proceedings is also available as

Washington University in St. Louis Technical Report WUCSE-2007-17, at

http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the

General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank

Mueller for their support and guidance.

... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Lu, Chenyang, "Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology
and Applications Symposium" Report Number: WUCS-2007-17 (2007). All Computer Science and
Engineering Research.
https://openscholarship.wustl.edu/cse_research/918

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/918?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/918

Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded
Technology and Applications Symposium Technology and Applications Symposium

Chenyang Lu

Complete Abstract: Complete Abstract:

The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'07) presents papers describing contributions both to state of the art and state of the
practice in the broad field of real-time and embedded systems. The 17 accepted papers were selected
from 19 submissions. This proceedings is also available as Washington University in St. Louis Technical
Report WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special
thanks go to the General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and
Frank Mueller for their support and guidance.

https://openscholarship.wustl.edu/cse_research/918?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/918?utm_source=openscholarship.wustl.edu%2Fcse_research%2F918&utm_medium=PDF&utm_campaign=PDFCoverPages

Proceedings

Work-In-Progress Session
of the 13th Real-Time and

Embedded Technology and
Applications Symposium

3-6 April, 2007
Bellevue, USA

Organized by the
IEEE Technical Committee on Real-Time Systems

Edited by Chenyang Lu

© Copyright 2007 by the authors

Introduction

The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS'07) presents papers describing contributions both to state of the art and state of the practice
in the broad field of real-time and embedded systems. The 17 accepted papers were selected from 19
submissions. This proceedings is also available as Washington University in St. Louis Technical Report
WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the
General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank Mueller for their
support and guidance.

Chenyang Lu
Work-In-Progress Chair
13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS'07)

Table of Contents

S. Gopalakrishnan, M. Caccamo, Sharp Threshold Result for Rate Monotonic Scheduling. 1

T.L. Allen, A.M.K. Cheng, Real-Time, Dynamic Calculations of Polynomial Coefficients for Use in Telemetry. 5

A.M.K. Cheng, J. Rasheed, Detection of Malicious Nodes by Immediate Parents (DoMNiP) in Wireless Sensor
Networks.

 9

A.M.K. Cheng, J. Ras, The Implementation of the Priority Ceiling Protocol in Ada-2005 Using a Shared
Memory Programming Model.

 13

A. Hjertström, D. Nyström, M. Åkerholm, M. Nolin, INCENSE: Information-Centric Run-Time Support for
Component-Based Embedded Real-Time Systems.

 17

A. Karsko, J. Hodapp, FPGA Design and Performance Analysis of a Mobile Video Processing System. 21

F. Kluge, J. Mische, S. Uhrig, T. Ungerer, R. Zalman, Use of Helper Threads for OS Support in the
Multithreaded Embedded TriCore 2 Processor.

 25

X. Li, K. Wang, L. Ma, H. Wang, Adaptive Mixed Query Scheduling in Real-Time Data Streams. 28

H. Wang, Y. Fu, Y. Qiao, Application of Feedback Control Real-Time Scheduling to Synthetic Aperture
Radar.

 32

R. Marau, L. Almeida, P. Pedreiras, M. González Harbour, D. Sangorrín, J. L. Medina, Integration of a
Flexible Network in a Resource Contracting Framework.

 36

S. Mohan, F. Mueller, CheckerMode: a Hybrid Scheme for Timing Analysis of Modern Processor Pipelines
Involving Hardware/Software Interactions.

 40

F.K. Morita, O. Saotome, D.S. Loubach, G. Dias, Applying Colored Petri Nets to Develop Real Time Routines
and Procedures.

 44

F. Salewski, S. Kowalewski, Testing Issues in Empirical Reliability Evaluation of Embedded Real-Time
Systems.

 48

R. Sprick, S. Goddard, L.C. Perez, C. Xia, Indoor Passive Localization System Performance Issues. 52

M. Sugaya, Y. Kinebuchi, S. Oikawa, T. Nakajima, VPE: Virtual Periodic Execution for Embedded System. 56

E. Toscano, G.A. Kaczynski, L.L. Bello, RTPAW: a Real-Time Power Aware Framework for Wireless Sensor
Networks.

 60

S. Vittorio, G.A. Kaczynski, L.L. Bello, Improving the Real-Time Capabilities of IEEE 802.11e through a
Contention Window Adapter.

 64

Sharp threshold result for rate monotonic scheduling

Sathish Gopalakrishnan Marco Caccamo
University of British Columbia University of Illinois

Abstract
Scheduling policies for real-time systems exhibit

threshold behavior that is related to the utilization of the
task set they schedule, and in some cases this threshold
is sharp. For the rate monotonic scheduling policy, we
show that periodic workload with utilization less than a
threshold U∗

RM can be scheduled almost surely and that
all workload with utilization greater than U∗

RM is almost
surely not schedulable. We study such sharp thresh-
old behavior in the context of uniprocessor scheduling
using static task priorities. The notion of a utilization
threshold provides a simple schedulability test for most
real-time applications. These results improve our un-
derstanding of scheduling policies and provide an inter-
esting characterization of the typical behavior of poli-
cies. The threshold is sharp (small deviations around
the threshold cause schedulability to appear or disap-
pear) for most policies; this is a happy consequence
that can be used to address the limitations of existing
utilization-based tests for schedulability.

1. Introduction

Computing systems have become larger in scale
and more pervasive in their applications. The constant
interaction between embedded computing systems and
the physical world requires a notion of predictable be-
havior from the deployed computing systems. Even in
large-scale computing clusters and server farms there
is a growing emphasis on providing service guarantees.
This need for predictable operation can often be char-
acterized by a need for timely completion of activities.
Tasks can usually be associated with deadlines; systems
need to ensure that the tasks meet their deadlines.

In a sense, the convergence of computation, com-
munication and control, which is often seen in dis-
tributed embedded systems, has led to a renewed inter-
est in understanding the conditions for a system to meet
deadlines. Additionally, most tasks are recurring: they
need to be performed repeatedly because of the constant
interaction with the physical environment (or because
of user demand). Such problems have been at the heart
of real-time scheduling since the seminal work by Liu
and Layland [11] on utilization bounds for schedulabil-
ity using static and dynamic priority scheduling poli-
cies.

The fundamental contribution that Liu and Layland
made was to show that for a specific scheduling pol-

icy ζ – they studied the Rate Monotone policy and the
Earliest Deadline First policy – there exists a utiliza-
tion bound Uζ such that any task set with utilization
U < Uζ is definitely schedulable (all deadlines will be
met). This has formed the basis for much work in real-
time systems.

There are, however, some obvious limitations to
Liu and Layland’s result. The first drawback is that
the utilization bound test is pessimistic: there are many
task sets that may exceed the bound but are still schedu-
lable. Second, for models when the relative deadline
does not equal the period, additional tests are needed.
Lastly, obtaining the utilization bound is difficult for
many policies because such derivations involve identi-
fying the worst-case task set (the task set with low uti-
lization that is not schedulable) and this is non-trivial
for certain policies.

In contrast with prior work on schedulability and
predictability, we show that the rate monotonic schedul-
ing policy has a utilization threshold U∗

RM such that
any task set with utilization less than U∗

RM is almost
surely schedulable and a task set with utilization greater
than U∗

RM is almost surely not schedulable. Establishing
the sharpness of utilization thresholds provides a bet-
ter understanding of scheduling policies and removes
most of the pessimism that is associated with traditional
utilization bounds because of the implication that task
sets with utilization greater than U∗ are unlikely to be
schedulable. These results are independent of the rela-
tionship between task periods and task deadlines.On the
other hand, it is prudent to note that these results indi-
cate that schedulability appears and disappears almost
surely. For hard real-time systems, which cannot afford
to miss any deadlines, this suggests that the threshold
can be used as an initial estimate and as an aid to opti-
mization; schedulability needs to be verified by an ex-
act test at some step but the almost sure nature of the
threshold allows us to be confident. For soft real-time
systems, which can tolerate some deadline misses, our
results provide a simple test and a tight performance
guarantee.

As an example, consider rate monotonic schedul-
ing with the Liu and Layland task model. We would like
to show that when n, the number of tasks to schedule,
is large, a task set of utilization less than about 0.80 uti-
lization is almost surely schedulable and a task sets with
greater utilization is almost surely unschedulable. This
shows that the average performance of the rate mono-
tonic policy is much better than the Liu and Layland
worst-case utilization of 0.69 [11]. Our results concern

1

the behavior of RM scheduling in expectation. Note
that the worst-case results for RM scheduling are ob-
tained from task sets that have many tasks with the same
utilization. The worst-case, however, requires low uti-
lization from each task and a specific period ratio. The
sharp threshold results consider the more general case
when the periods are uniformly distributed.

In this article, our emphasis is on rate monotonic
scheduling on a uniprocessor although some prelimi-
nary experiments lead us to believe that these results
will hold for deadline monotonic scheduling, and for
multiprocessor and distributed (multistage) systems as
well.

Motivation The main reason for studying sharp
thresholds is to ease resource provisioning for soft real-
time systems, and, in some cases, simplify the offline
optimization of hard real-time systems. The existence
of sharp thresholds allows us to make efficient use of
computing resources. Many mainstream operating sys-
tems (especially Linux) support simple fixed-priority
scheduling and being able to identify a workload limit
for such systems allows for simple admission control
and resource management. Many applications have
tasks with deadlines but are built to tolerate a few dead-
line misses. Multimedia applications have been tradi-
tional examples, but many emerging pervasive comput-
ing applications are of a similar nature. Timely response
leads to high quality of service but occasional delays are
not catastrophic. For these systems, being able to utilize
resources better can lead to substantial cost savings that
will allow these applications to achieve greater market
penetration.

2. System and task models

We consider Liu and Layland task model [11] for
uniprocessor scheduling.

Task model Each task τi is periodic with period Pi.
Each instance of the task has an execution time require-
ment ci on the processor and a relative deadline Pi. If
a job of τi is released (ready for execution) at at time
t then it is expected to finish execution by time t + Pi.
Tasks are independent of each other.

The utilization of a periodic task set is U := ∑i
ci
Pi

.

Monotone scheduling policies In this article, we will
mostly be concerned with the rate monotonic schedul-
ing policy, which is a work-conserving (non-idling) pol-
icy. It is also useful to keep in mind a more general
classification of policies: the class of monotone poli-
cies. Let us suppose that a scheduling policy success-
fully schedules a set of tasks Γ = {τi}. We will call the
policy a monotone scheduling policy if and only if: a) It
can schedule any set ∆⊂ Γ successfully; b) For any task
τi ∈ Γ, the policy can schedule all tasks successfully if
ci were to be reduced; c) For any task τi ∈ Γ, the policy
can schedule all jobs successfully if Pi were increased.

3. Utilization thresholds

Let Sn represent the set of all schedulable task sets
with n tasks and let µ(U,Sn) represent the probability
that a task set with utilization U is schedulable using
the rate monotonic policy. This can also be stated in the
following manner. Suppose Γ, a task set with n tasks, is
drawn at random from the space of all possible task sets
of utilization U . Then, µ(U,Sn) is the probability of the
event “Γ ∈ Sn."

Definition 1 (Threshold) U∗
n is said to be a threshold

for Sn if for any U

lim
n→∞

µ(U,Sn) =
{

0 if U �U∗
n ,

1 if U �U∗
n .

(1)

Note that f � g means f /g→ 0.

Definition 2 (Sharp threshold) A threshold is said to
be sharp if there exists a U∗

n such that for every ε > 0
and any U

lim
n→∞

µ(U,Sn) =
{

0 if U > (1+ ε)U∗
n ,

1 if U < (1− ε)U∗
n .

(2)

ε , typically, is inversely proportional to n. Thresh-
olds become sharper with increasing values of n. The
interval of width 2ε over which the probability of find-
ing a valid schedule drops from 1 to 0 is called the
threshold interval. A threshold that is not sharp is a
coarse threshold. Sharp thresholds represent phase tran-
sition phenomena because we can divide the task set
space into two phases: one in which the property holds
almost always and one in which it almost always does
not hold.

We emphasize once more that, although the results
are asymptotic, in practice a reasonable number of tasks
suffices for observing sharp thresholds. When we think
of n→ ∞, we do not conjure up task sets with 1000s of
tasks; we are usually dealing with many 10s of tasks.

The main result of our work is that schedulability,
with the rate monotonic scheduling policy, of periodic
tasks has a sharp threshold.

By proving such a result we provide a platform for
the average-case analysis of real-time scheduling prob-
lems and highlight the validity of using empirical uti-
lization thresholds for managing resource allocation.

4. Analyzing typical-case schedulability

To show that scheduling problems of the type that
we are interested in have a sharp threshold we lever-
age some excellent work carried out in the context of
random graphs. The study of phase transitions can be
traced back to the work of Erdös and Rényi on random
graphs [5, 6]. A random graph is a graph with a fixed
set of vertices and edges between two given nodes occur
with some probability, p. Erdös and Rényi showed that
as the parameter controlling the edge probability varies,
the random graph system experiences a swift qualita-
tive change. This transition is similar to observations

2

in the physical world. Akin to water freezing abruptly
as its temperature drops below zero, the random graph
changes rapidly from having many small components to
a graph with a giant component that contains a constant
proportion of vertices.

We use results that have been obtained by Friedgut
and Bourgain [7] to prove the existence of a sharp uti-
lization threshold for schedulability by mapping the
real-time scheduling problem to a problem on a com-
plete bipartite graph. We do not discuss the entire proof
owing to space limitations. We will, instead, present
some empirical evidence to illustrate the theoretical re-
sults.

5. Sharpness of utilization thresholds

When examining experimental data, it behooves us
to recall that sharp threshold behavior is a property of
very large task sets. For moderate size task sets, one
can observe a threshold but it many not be as sharp as
one would expect. (We present only a limited number
of graphs for space considerations. Given the immense
number of graphs that can be obtained, those shown
here are intended as a visual cue to the theoretical ma-
chinery we have used.)

If Γ is a task set drawn at random, the sharp thresh-
old result suggests that E(Γ), the expected task set,
can almost surely be scheduled for U < U∗ and almost
surely not be scheduled for U > U∗.1 Utilizations were
generated using this approach for n tasks. Periods were
then drawn uniformly at random from [1,105]. Task set
utilization was varied in steps of 0.1 and at each level
we tested 104 task sets. The different numbers of tasks
in a task set for the experiments were 8,16,32 and 64.
Notice (in Figure 1(a)) that schedulability drops rapidly
when utilization is in the range [0.8,0.9]. The width
of the threshold interval is smaller for larger task sets.
Within a rather short interval, we go from almost all
task sets being schedulable to almost no task set being
schedulable. This transition allows us to approximate
the schedulbility test by using a utilization threshold
close to 0.8.

There are multiple ways to generate task sets to test
schedulability. Bini and Buttazzo [3] have studied dif-
ferent approaches to generating random task sets and
have suggested methods with almost no bias. The goal
of Bini and Buttazzo’s work is to generate task sets uni-
formly at random from the space of all possible task sets
that achieve utilization U . This is a slightly different ap-
proach from the typical case task set because it allows
certain tasks to dominate the overall utilization. Dom-
inance prevents us from observing sharp threshold be-
havior because it does not allow for reasonable scaling
in the number of tasks. Even with limited dominance,
we can generate task sets uniformly at random and still
see a sharp threshold. For instance, we can bound the
maximum possible utilization of an individual task at

1E(Γ) is such that each task has almost the same utilization level.
This is the configuration that generates the worst task sets for rate
monotonic scheduling [3] and yet the thresholds are better than the
Liu and Layland asymptotic results of 0.69.

1/3 (maxi ui ≤ 1/3) and obtain a sharp threshold (Fig-
ure 1(b)). This is not a significant restriction because
this is typical with most modern processors. Increas-
ing processor speeds have led to smaller per-task uti-
lization. For these set of experiments, we retained the
same sets of parameters and altered only the procedure
for generating per-task utilization. We employed the
UUNISORT procedure from the article by Bini and But-
tazzo [3]. The threshold when task sets are generated
uniformly across all possible task sets is still close to 0.8
but the width of the interval is not as sharp as in the ear-
lier batch of experiments. There is a small contraction
in the width of the interval with increasing number of
tasks. Overall, we can still approximate schedulability
for task sets reasonably well using threshold behavior.

The sharp utilization threshold is remarkable be-
cause it makes no assumptions about task periods and
yet provides quite a precise estimate of schedulabil-
ity. The general methodology for deriving utilization
bounds for any scheduling policy involves identifying
a task set that achieves low utilization and is yet un-
schedulable. It is not always easy to isolate the worst-
case task set and determine its utilization. Sharp thresh-
old results provide us with the support for empirical de-
termination of the threshold. When the worst case is
rare (a low probability event) we are not burdened with
a low utilization bound.

A possible concern is the asymptotic nature of the
result. Sharp threshold behavior occurs when the num-
ber of tasks is large. We contend that this exactly the
case for which existing real-time scheduling results are
often inefficient (high complexity for analysis). As ex-
periments reveal, a moderate number of tasks is suffi-
cient for observing sharp thresholds. For small task sets,
even exact tests may be performed very quickly. There
is a dependency between the threshold and the number
of tasks. It is easily possible to compute – offline – the
threshold for different numbers of tasks and utilize the
appropriate threshold.

The use of thresholds becomes extremely useful in
the case of soft real-time systems and for performing
fast exploration of design space in developing (near-
)optimal systems. An example is radar dwell schedul-
ing, explored by Gopalakrishnan et al. [9] and Ghosh
et al. [8]. There are many task parameters that need
to be tuned in a radar system to minimize tracking er-
ror subject to schedulability but the scheduling algo-
rithms are hard to analyze; using thresholds for these
problems simplifies the online optimization. Because
performance is controlled at run-time, optimization rou-
tines cannot invoke exact tests that have high time com-
plexity. Apart from online optimization, thresholds can
be used as offline guidance measures to improve system
designs.

6. Conclusions

Sharp thresholds are indicators of phase transi-
tions. Phase transitions are common in physical sys-
tems. Freezing of ice and superconductivity are phe-
nomena that have temperature as the critical parameter.
Phase transitions have been identified in many combina-

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 fe

as
ib

le
 sc

he
du

le
s

Utilization

n=8
n=16
n=32
n=64

(a) Expected task set method

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fr
ac

tio
n

of
 fe

as
ib

le
 sc

he
du

le
s

Utilization

n=8
n=16
n=32
n=64

(b) UUNISORT method (maxi ui ≤ 1
3)

Figure 1. Thresholds for rate monotonic scheduling

torial optimization problems, especially constraint sat-
isfaction problems [4, 13, 10]. Phase transitions provide
very interesting insight into the behavior of combinato-
rial optimization problems, of which scheduling is an
instance, and mayhold the key to faster, near-optimal
solutions.

The search for efficient tests for schedulability has
been at the center of real-time systems research. We
have generalized the use of utilization as a schedula-
bility metric. By identifying the sharp threshold be-
havior of scheduling policies with respect to utilization,
we provide a new test for schedulability. Schedulabil-
ity tests using utilization thresholds are well-suited for
soft real-time systems. For hard real-time systems these
tests can be backed up by exact tests; thresholds can be
used to perform initial filtering before using exact tests.

It appears that the sharp threshold results can also
be extended to the case of aperiodic task systems. This
will allow us to further the work of Abdelzaher, Sharma
and Lu [1] for uniprocessor systems, and Abdelzaher et
al. [2] for multistage systems.

Our approach to dealing with average or typical
case behavior of scheduling policies makes interesting
connections with results from percolation theory and
random graphs. We hope to explore these links fur-
ther to fully characterize the performance of scheduling
policies.

References

[1] ABDELZAHER, T., SHARMA, V., AND LU, C. A uti-
lization bound for aperiodic tasks and priority-driven
scheduling. IEEE Transactions on Computers 53, 3
(Mar. 2004), 334–350.

[2] ABDELZAHER, T., THAKER, G., AND LARDIERI, P. A
feasible region for meeting aperiodic end-to-end dead-
lines in resource pipelines. In Proceedings of the
IEEE International Conference on Distributed Comput-
ing Systems (Mar. 2004).

[3] BINI, E., AND BUTTAZZO, G. C. Measuring the per-

formance of schedulability tests. Real-Time Systems 30,
1-2 (May 2005), 129–154.

[4] CHEESEMAN, P., KANEFSKY, B., AND TAYLOR,
W. M. Where the really hard problems are. In Proceed-
ings of the International Joint Conference on Artificial
Intelligence (1991), pp. 331–337.

[5] ERDÖS, P., AND RÉNYI, A. On random graphs I. Pub-
licationes Mathematicae Debrecen 6 (1959), 290–297.

[6] ERDÖS, P., AND RÉNYI, A. On the evolution of random
graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960),
17–61.

[7] FRIEDGUT, E. Sharp thresholds for graph properties,
and the k-SAT problem; with an appendix by Jean Bour-
gain. Journal of the American Mathematical Society 12,
4 (1999), 1017–1054.

[8] GHOSH, S., RAJKUMAR, R., HANSEN, J., AND

LEHOCZKY, J. P. Integrated resource management and
scheduling with multi-resource constraints. In Proceed-
ings of the IEEE Real-Time Systems Symposium (Dec.
2004), pp. 12–22.

[9] GOPALAKRISHNAN, S., CACCAMO, M., SHIH, C.-S.,
LEE, C.-G., AND SHA, L. Finite horizon scheduling
of radar dwells with online template construction. In
Proceedings of the IEEE Real-Time Systems Symposium
(Dec. 2004), pp. 23–33.

[10] KIRKPATRICK, S., AND SELMAN, B. Critical behav-
ior in the satisfiability of random boolean expressions.
Science 264 (1994), 1297–1301.

[11] LIU, C. L., AND LAYLAND, J. W. Scheduling algo-
rithms for multiprogramming in a hard real-time envi-
ronment. Journal of the ACM 20, 1 (Jan. 1973), 46–61.

[12] LU, C., STANKOVIC, J. A., TAO, G., AND SON,
S. H. Feedback control real-time scheduling: Frame-
work, modeling and algorithms. Real-Time Systems 23,
1/2 (Jul./Sept. 2002), 85–126.

[13] MITCHELL, D., SELMAN, B., AND LEVESQUE, H.
Hard and easy distributions of SAT problems. In Pro-
ceedings of the National Conference on Artificial Intel-
ligence (AAAI92) (1992), pp. 459–465.

4

Abstract—This paper presents several new techniques for
sending telemetry. These new techniques include dynamically
altering the polynomial coefficients used to translate and
compress the engineering values of the measurands in the
telemetry stream. Using these new techniques, it is now possible
to increase the precision of the data stream, thus reducing error.
It also enables us to broaden the range of visible values, providing
meaningful data streams for measurands that were previously out
of range. Further, general algorithms are provided so that it is no
longer necessary to dedicate an engineer’s time to generate the
polynomial coefficients of every measurand onboard the airborne
system before deployment based on approximations and
assumptions; rather these coefficients can be generated
automatically in real-time, after a sufficient sample set of precise
data has been obtained directly from the sensors. Additionally,
telemetric systems that support 2-way telemetry can be
programmed to recalculate these coefficients upon command.

Index Terms—Telemetry, Polynomials, Real-Time Systems,
Optimization Methods

I. INTRODUCTION

ELEMETRIC systems are becoming ubiquitous1. While some
may argue that Moore’s law no longer applies, it is evident

that components, in general, are getting better and less
expensive. Not only does this provide opportunities to
introduce telemetric systems where they’ve never been, but it
also enables us to customize the telemetry in real-time.

 Telemetric systems are usually comprised of two separate
subsystems. In the industry, these subsystems are generally
called an airborne system and a ground system. These systems
are designated as such only by the roles they play in the
telemetric system; the physical location of each system could
be anywhere. Data that is sent from the airborne system to the
ground system is called telemetry. Two-way telemetry occurs
when data is also sent from the ground system to the airborne
system. This data is called tele-commands, or just commands.
A few examples of airborne systems are spacecrafts, missiles,
RPVs, (remotely piloted vehicles), the Formula One race car,
oil rigs, and heart monitors.
 The two most common techniques used in transmitting
telemetry are table lookups and polynomial conversions. The
airborne system collects sensor data. To reduce bandwidth, the
sensor data is converted using one of these two techniques,

1 A few examples include vending machines that can report their inventory
wirelessly, vehicles that can transmit 2 way vehicle telemetry through OnStar,
and Verizon’s introduction of “Chaperone” which reports the location of your
child’s cell phone.

* Work supported in part by Lockheed Martin and a 2007 GEAR Grant.

whose conversion data (the whole table and the polynomial
coefficients respectively) are usually hard coded in the ROM
(Read Only Memory) of the airborne system. When the
transmitted data is received by the ground system, it is
converted back into its original units. This paper introduces
new dynamic telemetry transmission techniques. In particular,
the paper describes the methodology of generating the
polynomial coefficients for these conversions in real-time and
transmitting these coefficients so that the airborne and ground
systems are in sync, and discusses the benefits and drawbacks.

II. TELEMETRY OVERVIEW

Each specific attribute of an airborne system that is
measured is called a measurand. Each sensor populates one
measurand’s value. For example, a system that includes 11
temperature sensors on a wing will have 11 different
measurands, which could be called port_wing_temp_1 through
port_wing_temp_11, each populating the value associated with
it. These values are sent to the encoder, which contains a
commutator or multiplexer, and an output formatter.

The output formatter converts the engineering unit into a
counts value, which is more suited for data transmission. It
does this by looking up the type of conversion required for the
specific measurand, usually a polynomial conversion or a table
lookup. It then takes the data represented in engineering units
and performs the required conversion to package the data into
the limited space for it in the output telemetry stream.

The true engineering value in a specific unit is translated
into a counts value, or counts, for short. After the transmission
has occurred, the ground unit must be equipped to translate the
counts back into its natural engineering unit.
 For a simple example, if a sensor is intended to consistently
measure temperatures ranging from 118.312º Fahrenheit to
118.319º Fahrenheit, and the digital representation can only
provide precision to the thousandths, much bandwidth could
be saved by only transmitting 3 bits for this signal (0
corresponding to 118.312º, 1 corresponding to 118.313º, etc.).

Using a polynomial conversion, the engineering value is run
through an equation to produce the counts value (the value
transmitted). For this example, the following equation could be
used:

1000*)312.118(−= xy (1)

 When the ground system receives the signal and in order to
obtain the engineering value, the ground system would then

Real-Time, Dynamic Calculations of
Polynomial Coefficients for Use in Telemetry

T

Timothy L. Allen
Lockheed Martin and University of Houston

Timothy.Allen.ctr@cisf.af.mil

Albert Mo Kim Cheng
University of Houston

cheng@cs.uh.edu

5

run the counts value it obtained (of which only 0-7 are legal
values in the example) through an equation which is
(approximately) the inverse of the equation used in the
airborne system.

312.1181000/ += xy (2)

 The airborne system usually has the coefficients of the
polynomials built into the read only portion of the hardware.
These values are painstakingly engineered a long time before
deployment or launch of the ground system, usually during the
design phase of the airborne system. For every sensor on every
airborne system, a decision needs to be made and a set of
coefficients found that best fits its projected output.

The output, however, is only a prediction until the airborne
system reaches its intended environment. In making these
predictions, there exists an element of chance and the
possibility of erroneous calculations. Once deployed, the
airborne system cannot reallocate the number of bits used in
transmitting specific data or adjust the polynomial coefficients
or curves.

Given the number of sensors in complicated systems, the
chances of making a mistake are high, the time to engineer the
coefficients is expensive, and once the airborne system has
been deployed, there is usually nothing that can be done to
correct an error. Additionally, a proven technique for
obtaining these coefficients in an automated manner could be
reused across many sensors on many types of real-time
systems.

The coefficients and polynomials on the airborne system
that convert engineering units to counts are called reverse
coefficients and reverse polynomials, respectively. Conversely,
the coefficients and polynomials on the ground system that
convert counts back into engineering units are called forward
coefficients and forward polynomials, respectively.

When a polynomial method is used, each measurand is
associated with one or more polynomials. Sometimes, in order
to achieve the desired accuracy with limited order
polynomials, more than one polynomial is associated with each
measurand. Each polynomial is defined and only considered
valid over a specific range for each measurand. To maintain a
deterministic system, the ranges should never overlap. Once
this conversion has occurred, the output formatter takes the
counts value and packages it into the appropriate telemetry
page.

In large telemetric systems, the airborne system may use
some form of lossless data compression 2and encryption before

2 Although the method of creating polynomial coefficients in real-time and

converting engineering units to counts using actual obtained data may seem
like an adaptive compression algorithm, and this process, whether the
coefficients were computed in real-time or not, can reduce the bandwidth
required to transmit the data, the improvements suggested by the authors in
this paper are not made with the intent of reducing bandwidth. It is true that it
would be possible in some cases to get the same accuracy and shave off a bit
here or there, however, telemetry frames, pages and some encryption

algorithms usually require data in complete chunks of n2 bits. In fact, it is

the telemetry stream is transmitted to the ground.

III. OBTAINING DYNAMIC POLYNOMIAL COEFFICIENTS

A. Calculating the Reverse Polynomial Coefficients on the
Airborne System
It is quite possible for the airborne system to gather data

from a particular sensor, and using that data, calculate new
coefficients to be used in conjunction with that sensor. Of
course, as the price of storage decreases, as storage capacities
increase, and as CPU speeds continue to increase, this option
is continually becoming more feasible. Attention would need
to be given to which algorithms are used for the computations,
and that they converge, among many other requirements.

After enough data is collected and the coefficients are
calculated, they would need to be transmitted to the ground
system. Despite the cost in bandwidth, the coefficients will be
transmitted without a lossy compression. Because the
transition to the new coefficients isn’t as time critical as other
telemetry, the coefficients could be sent in a subframe of a
page controlled by an internal variable set by the ground.
When all of the coefficients are obtained by the ground, the
ground system must transmit an acknowledgement of reception
so that it will be clear when the new coefficients are going to
be used. Since large samples of data facilitate calculating more
efficient polynomial coefficients and transmitting the new
coefficients is costly, these updates would not be occurring too
frequently. A toggle bit packaged in the page could be altered
to signify that the new coefficients are being used. This is
better than sending a one-time acknowledgement which might
get lost in transit. If the ground system doesn’t see the toggle
bit updated, it would retransmit the acknowledgement. Using
the new reverse coefficients, the ground system would then
need to generate corresponding forward polynomials to decode
the data.

B. Calculating the Coefficients on the Ground System
As data is received from the airborne system using the

coefficients that were originally deployed, the ground system,
which generally has significantly more resources than the
airborne system and is already storing all of the transmitted
data streams, could generate new polynomial coefficients.
When it is determined that a new set of coefficients is to be
used on the airborne system, the ground system would transmit
a command to the airborne system with the coefficients to be
used for the specific measurand, or group of measurands. Then
the airborne system would need to transmit an
acknowledgement that a transition to the new coefficients has
taken place. A toggle bit packaged in the page could be altered
to signify that the new coefficients are being used.

Although the ground system generally has ample resources
for such tasks, one drawback of this method is that the ground
system only has access to the counts values that were

quite common to have extra bits in a frame that are padded with data to fill

n2 bits.

6

transmitted. Of course, the engineering values can be
computed from the counts, but the new engineering units are
not 100% accurate. New coefficients created on the ground
have the limitation of only being created from data that has
gone through the transmission process. Because of machine
error and limited digits of precision on both systems, this
process produces engineering values that are generally less
accurate than the original engineering values on the airborne
system.

C. Calculating the Coefficients on both the Ground System
and on the Airborne System
Of course, whenever the coefficients need to be transmitted,

this takes away valuable bandwidth. An alternative to
transmitting the values is to recalculate them on both the
airborne system and on the ground system. Both systems could
be independently triggered to use the new coefficients created
using the exact same algorithms and inputs. Though the
airborne system has access to more accurate data than the
ground system, it would need to use the data sent to the ground
system to be in synch. This would mean that the airborne
system would only need to store counts values, which are
much smaller than engineering values, but it would also
require forward polynomial coefficients for each measurand.

IV. ADVANTAGES AND DISADVANTAGES

Depending on the method of obtaining the dynamic
polynomial coefficients, the advantages and disadvantages can
vary. Common to all of the methods mentioned is the ability to
replace erroneous or less accurate coefficients with more
accurate ones. This could mean a lot less time spent up front in
engineering. Since the airborne system’s intended environment
is often difficult to predict, such calibrations of the conversion
polynomials could result in obtaining information more precise
than what could be obtained otherwise. Flexibility exists to
narrowly focus on a specific point of interest, obtaining
significant precision, possibly disregarding parts of the
original range. Conversely, we could widen the function’s
range and, while still transmitting the same number of bits,
start receiving values that would have shown as out of range
before.

 Of course, if caution is not taken in recalculating the
coefficients, valuable resources such as power, CPU usage,
memory, and bandwidth could be used without benefit.
However, if this technique is done prudently, one could obtain
more accurate engineering values than could ever have been
obtained otherwise. Additionally, incorrect values could be
fixed; ranges could be broadened or narrowed, providing the
ability to zoom-in and obtain more precision. A possible
extension to this could be to alter the implementation of a
minor frame to dynamically adjust the bandwidth dedicated to
particular sensors. If, for example, a hardware failure were to
occur disabling a sensor, or whether we simply decide we
don’t care about certain readings as much as others, we could
reallocate our available telemetry stream in real-time.

V. RESULTS

The authors have written a Java program that implements
some of the ideas mentioned in this paper. First, we generated
a simulated signal which produced values based on a function.
The function we used was as follows:

200)100/sin(*200 += xy (3)

 We chose a sinusoid because it was simple and like the
values being obtained from most sensors, it doesn’t diverge to
positive or negative infinity. Although our program allows
real-time user input to alter the values produced by the
function, one possible upgrade is to use an actual data stream
from an airborne system as input. The signal is spawned in its
own thread, changing its value with time.

Then we created a sensor. The sensor periodically queries
the signal, and stores and sorts the most recent unique signals
obtained.

Finally, we created two different transmitters. The first is an
implementation of the way telemetry is normally processed.
The second starts off like the first in transmitting data with a
built-in polynomial. However, after a certain number of
engineering values are collected, a new set of polynomial
coefficients are calculated. We calculated them using our own
Java implementations of the Least Squares method and
Gaussian Elimination.

Figure 1: Error before recalculating coefficients

The graph above represents the error in engineering units
(EUs) generated by the normal method of transmitting
telemetry. Since the output of equation 3 ranges from 0 to 400,
we translated the output to an 8 bit count value using the
following simple equation:

xy
2
1= (4)

The output of the equation was truncated to an integer,
transmitted, and then converted back to engineering units with
using equation 4’s inverse.
 The above graph was obtained by taking the absolute value
of the difference of the original engineering value and the
engineering value obtained from the transmission. The average
error over the first 255 points was 1.10376, and the average
error over the first 1000 points was 1.01086 engineering units.
 The second transmitter transmitted the first 255 points
exactly as the first, but at that point recalculated the

7

polynomial coefficients. The time of recalculation is indicated
with a vertical red line on the following graph.

Figure 2: Error using recalculation method after 255
points

Of course, the average error for the first 255 points was
identical, but the average error for the following 1000 points
was only 0.5678. Additionally, we incorporated the limitation
of truncating all of the values to 32 bits for both test cases in
performing the calculations to create reverse polynomial
coefficients, since this is a common limitation on real-time
systems in the industry. In this test, we also limited this
program to generating 1st order polynomials. This required 256
kB of memory and 375 ms. When the program was allowed to
calculate polynomials up to the 13th degree, it still only used
355 kB of memory and finished in 578 ms, well within a 1 s
deadline. The longer version of this paper will show higher
order polynomials, and test cases where in order for the
dynamically generated reverse polynomial’s error to be within
a certain error, the algorithm used multiple reverse
polynomials for a single forward polynomial.

We’ve found that the higher order polynomials produced by
the program are likely to produce even more favorable results,
but that this is not always the case. When calculating forward
polynomials on the ground to match the new reverse
polynomials, we kept standard deviation error metrics of the
errors of hundreds of with evenly distributed points. When a
lower order polynomial produced less error, we used it instead.

In the example graphed, the new reverse polynomial
generated was

324.12164- 1.4371428x=y (6)

And the new forward polynomial was

225.53197x0.69582504 +=y (7)

VI. FUTURE WORK

We imagine the telemetry of the future could be similar to
viewing a movie where you have the ability to zoom in or out,
and alter the resolution depending on your interest. Future
work we would like to see includes using the idea of
dynamically updateable polynomial coefficients in actual real-
time systems that contain airborne systems (possibly satellite
systems or manned space craft), that can handle the extra
overhead processing and where the extra detail obtained is
important.

VII. CONCLUSION

Dynamically altering polynomial coefficients for use in
telemetry can be a powerful, yet dangerous tool. If done
haphazardly, valuable resources could be wasted with little or
no benefit, including CPU time, power, bandwidth, and
memory. This could put a real strain on timing constraints, and
affect adversely many parts of the airborne system, and our
view of every part of it as seen through the telemetry stream.

However, problems with original coefficients could be
fixed, and code could be reused, thus decreasing delivery time
of large systems that are often behind schedule and over
budget. Moreover, this ability could provide ranges of data, or
data precision that simply would not have been possible
otherwise. Additionally, the structure of the telemetry minor
frames or pages could be altered to provide more bandwidth to
measurands deemed important at any time.

References
[1] L3 Communications, Telemetry West. (2006, January). Telemetry

Tutorial. [Online]. 21(3). Available: http://www.tw.l-
3com.com/tutorial/preface.html

[2] Telemetry Available: http://en.wikipedia.org/wiki/Telemetry

[3] Advanced Extremely High Frequency (AEHF) Available:

http://www.lockheedmartin.com/wms/findPage.do?dsp=fec&ci=114
56&rsbci=0&fti=126&ti=0&sc=400

[4] Flight Test Data Cycle Map Optimization, ITEA Instrumentation

Workshop 28 March 2000, Available:
http://www.unisa.edu.au/seec/pubs/00papers/ITEA%20Workshop
%20USA,%20Panton%20and%20Cook%20paper2000_24.pdf

[5] Global Precipitation Measurement Available:

http://gpm.gsfc.nasa.gov/glossary.html

[6] Verification of the Redundancy Management System for Space Launch

Vehicle: A Case Study, Oleg Sokolsky, Mohamed Younisy, Insup Lee,
Hee Hwan Kwak, and Jeff Zhouy, Available:
http://www.ece.mtu.edu/faculty/rmkieckh/cla/5755/X33-rms-sok98.pdf

8

Albert Mo Kim Cheng
Department of Computer Science

University of Houston
cheng@cs.uh.edu

I. Abstract:

Wireless Sensor Networks (WSNs) are becoming
popular day by day. These networks consist of large number
of sensor devices, which are called nodes. In a WSN, the base
station is considered to be the most powerful node in the
network and does most of the computations on the data
received from the sensor nodes. A base station can also be
considered as the bridge between two or more WSNs. Sensor
nodes are considered to be very weak as compared to the base
station in terms of memory size and computational power.
These sensor nodes operate on very low power supply; their
life and the functionality depend upon the low energy
consumption.

WSNs are being used in many applications for
different purposes such as surveillance and safety-critical
missions. These networks are also being deployed in
environments where human presence is not practical; this
makes these networks very crucial. In such environments
where human presence is not possible, security is the main
issue. In security-critical missions, these networks require a
secure protocol for message broadcast. This makes it possible
to keep these networks functioning properly for their sole
intended purpose at all times.

II. Introduction:

When the network is under attack/intrusion, sensor
nodes become compromised and then these compromised
nodes along with the malicious nodes try to compromise their
neighboring nodes. In terms of security, this behavior of
sensor nodes is not acceptable. Many protocols and algorithms
have been proposed as a solution for this problem. One of the
most widely and commonly used technique is called blind
flooding. The blind flooding technique fulfills the security
requirements well but it does not satisfy real-time constraints.
The other major disadvantage of this technique is that, instead
of reducing the workload on the base station and the
transmission load on the nodes, it does the opposite.

III. DENIAL of MESSAGE ATTACK (DoM):
 When sensor nodes in the network are deprived of
receiving broadcast messages by malicious nodes from the
base station, the attack is called denial of message attack. In
order to detect DoM in the network, base station broadcasts a
special message and requests an authenticated
acknowledgement message from each and every sensor node
in the network. In response, all the sensor nodes send
acknowledgement messages to the base station except the
compromised nodes. The sending of these acknowledgement
messages to the base station is called blind blooding. Since the
network can be spread over several miles and the
acknowledgement messages arrive at the base station at
different times, the base station keeps polling for newly

Jawad Rasheed
Department of Computer Science

University of Houston
r4rasheed@yahoo.com

arrived acknowledgement messages. This way, base station
wastes lots of its computational power just for processing
these acknowledgement messages. On the other hand, sensor
nodes cannot directly communicate with the base station, they
pass the acknowledgement message to their neighboring
nodes. Finally these messages arrive at the base station; as a
result of this message propagation to the base station through
neighboring nodes, lots of bandwidth of wireless link is
wasted.

IV. DETECTION of MALICIOUS NODES by immediate
PARENTS (DoMNiP):
 Here we propose a new technique called “DoMNiP
which can be implemented in wireless sensor networks. The
main motivations behind designing DoMNiP are as follows

� To reduce the workload on the base station and
network meeting all real time constraints

� To detect malicious (compromised) nodes in the
network

� To conserve energy at sensor nodes in the network
The DoMNiP is a very simple technique and easy to

implement. It can work with any kind of tree structured
wireless network. Whenever the base station scans the
network, DoMNiP reduces the number of acknowledgements
sent back to the base from each node. It does this by
processing acknowledgements at immediate parents. The
backbone of this technique is based on the algorithm which is
used to generate acknowledgement messages (format of this
messages is shown later in the paper) for the sensor nodes in
the wireless sensor networks. The algorithm is very simple
and is controlled by the base station. Basically, the algorithm
assigns a ��� to each sensor node such that the ��� is
generated following all the constraints imposed by the base
station. The same ��� can be assigned to more than one sensor
nodes in the network.
Following assumptions are made for the DoMNiP model in
this paper:

� The structure of the wireless sensor network is tree
like.

� There is only one base station in the network.
� Base station is not under attack.
� Each node in the WSN has 0 to n child nodes
� Each node has only one path to the base station.
� Depth of the network is directly proportional to the

number of nodes in the network
� There is no packet lost in the network
� The distance between the parent node and child node

is same for all the nodes

V. DoMNiP ALGORITHM:

DoMNiP algorithm is not too different from any
other intrusion detection algorithms. We have assumed that

Detection of Malicious Nodes by Immediate Parents (DoMNiP)
in Wireless Sensor Networks

9

there is no packet lost in the network and every node in the
WSN receives broadcast messages from the base station. The
only reason when the sensor nodes do not receive broadcast
messages is just because of the DoM attack.

When the base station scans the network for the
detection of DoM attack by broadcasting special message, a
message is sent over the network which requires every node in
the network to send its acknowledgement message back to the
base station. In blind flooding model, every node gets
acknowledged by the base station. This model has an extreme
overhead since every sensor node, except the non-leaf nodes,
has to pass its acknowledgement message to the base station.
In DoMNiP, sensor nodes get acknowledged by the immediate
parents or by the base station while reducing the workload on
the network in terms of message propagation to the base
station.

The number of sensor nodes and the level at which
these acknowledgement messages get acknowledged heavily
depends upon the mechanism by which ���s are assigned to
the nodes (unique or duplicate).The base station keeps all the
assigned ���s in its database.

VI. DoMNiP ��� GENERATION:

DoMNiP ��� generation algorithm is very flexible
and dynamic. In addition to its flexibility and dynamic
behavior, it can be modified according to the security
requirements of the network and how fast the base station
needs to conclude if there is any attack.

Basically, base station controls the ��� generation
mechanism, it generates and assigns ��� to the sensor nodes in
such a manner that the parent node and the child node never
gets the same ���. ��� generation mechanism also assures that
the two siblings never get the same ���. Based upon the
security requirements, base station assigns the same ��� to the
sensor nodes in the path after some depth difference. This
depth difference, used for assigning the same ��� to more than
one sensor nodes, is actually used as the level of security
required by the WSN.

The ��� generation algorithm is as follow

��� generate_new_key (��� parent_node_���, ���
siblings_ ���[])
{
 ��� new_ ���;
 bool = FALSE

 while (bool = = FALSE)
 {
 - Get parent_node_���
 - Create new _��� from parent_node_���
 - if (new _��� ! = parent_node_��� & new_���!=
 siblings_���[i])
 {
 bool=TRUE
 }
 }
 -return new_���
}

VIII. ACKNOWLEDGEMENT MESSAGE FORMAT:
 The following is the format of the acknowledgement
message. This message is generated by the sensor node for
sending it to the base station, when requested.

AM (���)C Message
Length

(ID)C

0/1 Key of the
sending node
(child node)

Integer value ID of the
child node in
the tree (ID)c

The following algorithm is run by every node till AM field is
false.

Process Acknowledgement ()
{
 if (AM is false & parent node != base station)
 {
 //Compare (���)C with its own (���)P where
 //(���)P is the parent key
 if((���)P == (���)C)
 {
 -Set AM=1;
 -Crop & modify acknowledgement message;
 -Pass the Cropped & modified acknowledgement
 message it to its parent;
 }
 }
 else (parent node != base station)
 {
 -Pass the received acknowledgement
 message to the parent
 }
}

Until the AM field is false and parent node != base station,
every node in the path matches its (���)p with the (���)c in the
received acknowledgement message. If (���)p and (���)c
matches hundred percent, then the received acknowledgement
message is modified and passed it to the parent.
The following is the format of the modified acknowledgement
message.

10

DoMNiP load reduction graph

0

20000

40000

60000

80000

100000

120000

0 20000 40000 60000 80000 100000 120000

Network size (nodes)

B
as

e
A

ck
n
o
w

le
d
g
em

en
t
(m

es
sa

g
es

)

Base-ACK

Base

AM Message
Length

(ID)C (ID)P

1 Integer value ID of the
child node in
the tree (ID)c

ID of the
parent node in
the tree (ID)p

This message is generated by the node whose (���)P matches
with (���)C in the original acknowledgement message. The
modified acknowledgement message is much smaller than the
original acknowledgement message because it doesn’t have
(���)C

� (ID)C is the ID of the node which generated the
acknowledgment message.

� (ID)P is the ID of the node which modified the
original acknowledgement message.
These are the two necessary fields in the

acknowledgement message because base station uses these
two fields and extract the depth of the sensor nodes in the
WSN which is only known by the base station. Then the base
station calculates the number of traversal steps as follows

TSteps = Extract (IDC) - Extract (IDP)

The Extract (IDX) function returns the depth of the node in the
network. The TSteps value provides the crucial information
for detecting attacks. The TSteps value is discussed in the next
section.

IX. PRE-CALCULATED TSteps VALUE:
 When a new ��� is generated and assigned to the
sensor node, the base station calculates the TSteps for the new
node at that time. The new sensor node generates an
acknowledgement message and sends it to the base station
through its parent sensor node. The parent node then matches
its (���)P with the child node (���)C in the acknowledgement
message using the acknowledgement() function as described
in the previous section. If at some level, the (���)C matches
with (���)P, then the base station calculates the TSteps value
for the new sensor node by first extracting the information
from the acknowledgement message and then using the

formula as described in section VII. iii. This calculated TSteps
value is called pre-calculated TSteps value which is kept only
by the base station. If the (���)C doesn’t matches with any

(���)P , then its TSteps value is stored as 0. None of the sensor
nodes know their TSteps value that is why if the attacker
modifies the ���, its TSteps value remain unchanged at the
base station.

X. SECURITY FEATURES OF IDx:

If the attacker modifies the ��� of any sensor node,
then it is possible that the modified (���)c in the
acknowledgement message may match with some (���)P. Even
if (���)C matches (���)P, the base station will detect the attack
on the network by calculating TSteps value which is only
known by the base station.

We assume that base station can never be
compromised by the attacker. Whenever base station receives
an acknowledgement message, it extract the (ID)c and (ID)p
then calculates TSteps value. This TSteps value is compared
with the pre-calculated TSteps value, if both the values are
equal, then network in not under DoM attack.

XI. DoMNiP Simulation Results
 For the simulation, we created different networks
using different ���s. Depth of the network was dependent on
the number of nodes. Maximum numbers of nodes allowed in
the network were 105. Readings were taken at an interval of
104 nodes in the network. After running several simulations
using different ���, average values were tabulated and plotted
on the graph. Simulation results are explained with the help of
graph.
 The red plot shows when no load reducing
technique was used. All the acknowledgement messages were
acknowledged by the base station. The red plot shows directly
proportional results.
 The green plot shows the results when DoMNiP is
applied to the network. It showed that approximately 25%
workload was reduced on the base station. 25%
acknowledgement messages were acknowledged by the
immediate parents whereas the station acknowledged only
75% when scanning the network for the DoM attack.

11

XII. CONCLUSION:
 Simulation results show that DoMNiP reduces the
workload on the base station without trading the security level
required by the WSN.
 From the graph, we can predict that whenever the
network would be under a DoM attack, it would be detected
earlier by DoMNiP as compared to blind flooding. It would be
detected earlier because once the acknowledgement message
is acknowledged by any parent sensor node on the path toward
the base station, the length of the acknowledgement message
is reduced because the (���)c is dropped from the message.
The smaller the message is, the faster it can propagate over the
wireless link. When the message arrives at the base station, it
first checks the AM field in the message. If the AM field is
true then it does not have to do anything with the ���, it just
have to calculate the TSteps value and compare it with the pre
calculated TSteps value. This also shows that half of the
workload on the base station is reduced.
 We found three important relations between TSteps
value, load on the wireless link, security of the WSN, and the
time requirement.

� TSteps value has a directly proportional relation with
the security.

� TSteps value has a directly proportionally relation
with the load on the wireless link between the sensor
nodes.

� TSteps value has a directly proportional relation with
time.

A large TSteps value means that a large pool of ���s is used
meaning that ���s are reassigned to new sensor node at greater
depth difference. In this way, acknowledgement messages get
acknowledgement by traversing through many parent nodes.

� This increases the security of the WSN because none
the acknowledgement message will be acknowledged
by the nearby neighbors (sensor nodes).

� This increases the load on the wireless link because
the original acknowledgement message is bigger in
size because it has the (���)c field.

� This increases the time required to scan the WSN for
the Dom attack.

DoMNiP is very simple and easy to implement. It is a
software approach for reducing the workload on the base
station and for detecting the DoM attack meeting the real-time
constraint. DoMNiP is flexible and provides tunable features
like pool of ���s. Different levels of security can be achieved
by simply not assigning the previously used ���s to new
sensor nodes.

Acknowledgment:

This work is supported in part by a 2006-2007 GEAR grant.

References:

[1] J.M. McCune, E.Shi, A. Perrig, M.K. Reiter. Detection of
Denial-of-Message Attacks on Sensor Network Broadcasts. In
Proc. 2005 IEEE Symp.on Security and Privacy.

[2] Nahla Ben Amor, Salem Benferhat, Zied Elouedi.
Computer security (SEC): Naïve
Bayes vs. decision trees in intrusion detection systems. In
Proc. 2004 ACM Symp. on Applied computing.

[3] Paul Innella, Oba McMillan. An Introduction to Intrusion
Detection Systems. 2001 Tetrad Digital Integrity, LLC.
http://www.securityfocus.com/infocus/1520

[5] C. Karlof, D. Wagner. Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures.

[6] Edith Cohen, Carsten Lund. Packet classification in large
ISPs: design and evaluation of decision tree classifiers. In
Proc. 2005 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems.

[7] James F. Kurose, Keith W. Ross, Computer Networking: A
Top-Down Approach Featuring the Internet, 3rd ed. Pearson
Education 2005

[8] J. Aslam, M. Cremonini, D. Kotz, D Rust. Using Mobile
Agents for Analyzing Intrusion in Computer Networks.
Department of Computer Science, Institute for Security
Technology Studies, Dartmouth College , Hanover, NH 03755
http://www.ists.dartmouth.edu/library/uma0901.pdf

12

The Implementation of the Priority Ceiling Protocol in Ada-2005
Using a Shared Memory Programming Model

Albert Mo Kim Cheng and James Ras

Real-Time System Laboratory
Department of Computer Science

University of Houston
Houston, TX 77204, USA

cheng@cs.uh.edu, jras@cs.uh.edu

Abstract

 Over the past few years, researchers have been
developing the building blocks in Ada-2005 upon
which it is possible to construct flexible real-time
systems on parallel platforms. Now, under the
semantics of Ada-2005, a comprehensive set of
mechanisms are available that can deliver modern
real-time scheduling theory to the system engineer. In
this paper, we will show how Ada-2005 can be used
to construct the Priority Ceiling Protocol in shared
memory systems.

1. Introduction

 In this work we turn our attention from
uniprocessor to multiprocessor systems. Writing truly
concurrent software is difficult. Scaling software to
fully utilize hardware is one of the reasons why this
is so. In a technological sense, concurrency can be
defined as simultaneous execution within a computer
system. Concurrency in shared-memory systems is
exploited through multi-threading. Multi-threading
means that more than one thread is running at the
same time--one thread per processor core. In terms of
hardware, this normally means more than one stream
of instruction execution is taking place at the same
time. Concurrency presents many challenges both in
terms of creating concurrency, and utilizing
concurrent systems.
 One model of hardware concurrency that has
recently become exceedingly popular is Symmetric
Multiprocessors (SMP). It is a model in which more
than one general purpose processor executes
instructions. All of the processors operate in one
shared memory space. Each processor shares all
hardware resources, including memory, disks, and the
system bus. Each processor sees the memory as
directly addressable. When two or more processors
access the same piece of data, we call that sharing.

__
*This work is supported in part by a 2006-2007 GEAR grant.

When data is shared, it has to be synchronized
between all the other processors in the system. Each
processor can view the results generated by another
processor by simply looking at the appropriate
section of memory. Sharing introduces serious
overheads to write operations, especially if they are
frequent and on different processors. Unfortunately,
sharing is inherent in many common data structures,
and more generally in many common real-time
workloads.
 In this paper, we consider resource
synchronization issues in the context of real-time
applications. To reasonably constrain the discussion,
we will limit our attention to shared memory systems.
Specifically, we will implement the Multiprocessor
Priority Ceiling Protocol (MPCP) in Ada-2005. It
should be noted that Ada is not just another
programming language, but is a system for software
engineering. Even if Ada is seen as just another
programming language, it still reaches parts of the
software development process that other languages
do not attain.

2. The Problem

 The problem addressed herein is motivated by
the work of Chen and Tripathi [9]. They noted that
the major problems associated with concurrent
programming arise from task interaction. Rarely are
tasks completely independent. Tasks execute
essentially independently, but there are situations
where it is necessary for two or more tasks to
coordinate their work. Accordingly, in embedded
systems design, it is important to distinguish between
those activities that should be represented as tasks,
and those that should be represented as protected
shared resources. Additionally, it is critically
important to indicate the nature of the interfaces
between concurrent objects.
 In priority-based pre-emptive scheduling, a task
only waits for equal priority tasks that arrive earlier,
or for higher priority tasks. The Priority Inheritance
Protocol (PIP) [8,16] is a remedy for the uncontrolled
priority inversion problem on uniprocessors. In PIP

13

the need for synchronized access to shared resources
can force a task to wait for lower priority tasks. This
blocking is a form of priority inversion. If there were
no sharing of resources, a task would not be blocked.
There are potentially three types of blocking: direct
blocking, push-through blocking, and ceiling
blocking.
 In multiple processor environments, there is an
additional type of blocking. We shall refer to this
new form of blocking as remote blocking. It is caused
by remote tasks, regardless of their priorities. A task
may have to wait for a task running on a remote
processor to release a needed global shared resource,
and for this reason, the concept of waiting needs to be
generalized to include remote blocking.

3. Related work

 The uniprocessor Priority Ceiling Protocol or
PCP [17] is one of the best known policies for
avoiding priority inversion and minimizing the
blocking time in a single processor system. PCP has
the following desirable properties: (i) a high priority
task can be blocked by at most one lower priority
task. Thus, there is no chained priority inversion,
even if the tasks suspend themselves within critical
sections. (ii) No deadlock is possible.

PCP is not known to be implemented on any of the
popular operating systems. It is based on pre-emptive
scheduling. PCP has the following rules: (i) A lower
priority task that blocks a higher priority task J
inherits the priority of J.

(ii) Semaphore Locking Conditions: A task J can
only lock a semaphore S if: (a) the semaphore S is
not locked, and (b) the priority of J is greater than
the priority ceilings of all semaphores that are
currently locked by tasks other than J.

The priority ceiling of a semaphore is defined as the
highest priority of all tasks that may request to lock
the semaphore at any time.
 Of greatest importance to our paper is another
work by Sha, Rajkumar, and Lehoczky [14]
pertaining to MPCP and synchronizations in multiple
processor systems. Sha et al noted that a high priority
task must not be assigned the processor when a
globally shared resource is locked by a local task. To
be precise, we are going to enforce this rule only if a
higher-priority remote task is waiting on the same
locked global resource.
 Sha et al assumed that tasks are statically bound
to a processor. Once a task is allocated to a processor,
each processor runs the same task. Thus, each task
runs on its host core. No dynamic binding of tasks to

processors was considered. In the work done by Chen
and Tripathi [9], MPCP was extended to an EDF-
based resource synchronization protocol.
Unfortunately, Dhall and Liu [10] noted that the rate-
monotonic algorithm, which performs well on
uniprocessors, behaves poorly for multiple processor
systems with dynamic binding. For example,
consider the m-task set consisting of m-1 identical
tasks, each with computational requirement of 2� and
period of 1, and one task with computation time of 1
and period of 1+�. If we schedule this set of tasks on
m-1 processor system with dynamic binding, the
highest priority m-1 tasks ready to run are scheduled
on the m-1 processors. However, the first task with
period 1+� will miss its deadline. The utilization
factor of this task set is U=C/T=2�(m-1) /(1+�). As
��0, U�1, thus a deadline can be missed with just
1/m-1 of the available processor cycles being utilized.
In contrast, with static binding, the task with period
1+� can be scheduled to a dedicated processor and
the other task statically scheduled to a different
processor. The task set becomes schedulable with just
two processors.
 Dynamic binding could give better performance
if certain combinations of task bindings were not
allowed to occur. In the example above, the worse-
case scenario must be detected and avoided during
run-time. Without such run-time evaluation,
undesirable combinations could happen. However,
note that in all of these methods, there are many
context switches introducing significant overhead.
 Our focus in this work is to construct MPCP
under the semantics of Ada-2005. To the best of our
knowledge, no prior research on MPCP and Ada-
2005 has been presented in the past. Nevertheless,
prior work on priority inheritance and Ada is of
relevance to our work [7, 8, 9, 14, and 17].

4. Proposed approach

 The goal of our approach is to maximize the
overall symbiosis factor. This is a measure that
indicates how well various tasks work in concert with
one another. The basic objective is to discourage
high-priority tasks from being co-scheduled when a
globally shared resource is locked by a local task.
Strictly, we are going to enforce this rule only if a
higher-priority remote task is waiting on the same
locked global resource. To further reduce priority
inversion and missed deadlines, we will disallow
global critical sections to overlap or nest with local
critical sections. The objective reduces concurrency
within task groups, but nonetheless, remote blocking
is minimized, and a finer granularity is achieved
allowing for a greater degree of concurrency overall.
If we let dj, i denote the number of times that task Ji

14

locks a global semaphore. And let GLBk be the
worst-case access time of a global semaphore
accessed by a lower priority task Jk. Then Task Ji can
experience at most dj,i * GLBk blocking delay.

 We now define the base priority ceiling PG to be
p(Ji) + 1, where Ji denotes the highest priority task
that may lock Gi. And note that p(Ji) > p(Ji+1). Then,
using the same priority inheritance policy used in
PCP, when Jh blocks on SGi, Jl<h's gcs will execute at
the priority of PG+Ph, where Ph is Jh's priority. Then,
our approach for implementing MPCP in Ada-2005 is
a five-step process:

(i) When task J wants to access a local critical section,
it uses PCP to see if it can lock the associated
semaphore. Task J can get the lock, only if P(J) >
Ceiling(S*

locked), where S*
locked denotes the semaphore

with the highest priority ceiling of all local
semaphores currently locked by tasks other than J.
PCP is used to synchronize access to local resources.

(ii) If task J attempts to access a global critical
section, it locks the associated semaphore S if no
other task has already locked S, and no other global
or local critical section is locked by J. Otherwise, it
joins the priority-ordered queue associated with S
using the original priority P(J).

(iii) A task J locking a global semaphore Sg inherits
the extended priority PJ,Sg, and reverts to its previous
priority upon releasing Sg.

(iv) A task J can lock Sg and pre-empt another task J'
within another global critical section guarded by S', if
P(J,Sg) > P(J',S'g).

(v) Whenever a global semaphore is released, it will
be given to the highest priority task waiting, if the
associated queue is not empty.

 It is important to state that the remote blocking
duration is a function of the duration of the global
critical sections of other tasks, and not a function of
the duration of executing non-critical section code. In
other words, it is forbidden that a task be blocked on
one processor while another task executes on another
processor outside a critical section. For example,
suppose that task J1, J2, J3 are bound to processor P2,
and that task J0 is bound to processor P1 (Figure 3). J4
has the lowest priority. It is executing on processor P1
and attempts to lock semaphore S. But S is currently
locked by J3 executing on processor P2. However, J1
now pre-empts J3 on processor P2, J4 will be blocked
until J1 completes. Thus, the blocking time of J4 will
continue until arriving higher priority tasks on P2

(such as J1 and J2) complete execution or suspend
themselves. Since J1 and J2 are periodic tasks, the
blocking duration of J4 can be of indefinite length.
 We should note that in the example above, even
the imposition of priority inheritance does not force
any changes in the event sequence, and the blocking
of J0 remains unchanged. Additionally, the direct use
of PCP does not induce any changes in the execution.
Unfortunately, the blocking duration of J4 is a
function of the entire execution times of tasks J1 and
J2. This example shows that remote blocking is
different from the method of uniprocessor blocking.
Thus, under the semantics of Ada-2005, it is
forbidden for a task to be blocked on one processor,
while another task executes on another processor
outside a globally shared resource.

 Another important goal is to let a lower priority
task wait for a higher priority task. For example, if
two tasks are waiting for the release of a shared
resource, the higher priority task will be allowed to
access the resource first even if the lower priority
task has been waiting for a longer time. Such
situation happens when two tasks are executing on
two different processors, and both need a shared
resource currently locked by a task on a third
processor. Under the earliest deadline scheduling
algorithm, a lower priority task has a longer period
and thus less schedulability loss. This objective is
also reflected in our prioritized queues on the
semaphores’ requests.

5. Contribution

 Our contributions to this research are three-fold.
First, we will show how the Ada-2005 concurrent

15

programming model helps construct MPCP without
the use of outdated models that could only
communicate directly, via the rendezvous mechanism,
thereby causing a number of task switches on each
invocation. Ada now gives direct support to
concurrency in the form of tasks representing threads
of control, and protected objects that provide mutual
exclusion and condition synchronization in a high-
level, yet efficient, manner.
 Second, our MPCP design will be equally
applicable to multiprocessor systems as well as
distributed and shared memory systems. Therefore,
we do not assume the processors have synchronized
or equivalent operations. Atomic test-and-set
instructions are not a sufficient or necessary
condition for the implementation of MPCP. The
objective is not only to enforce mutual exclusion, but
to also minimize blocking, especially remote
blocking. Furthermore, if a task's active priority is not
tracked - and dynamically raised and lowered when
essential - then other tasks' deadlines are missed, and
we cannot ensure schedulability.
 Third, we propose a scheme for incorporating a
semaphore-scheduler into the implementation of
MPCP. Our choice of semaphore-scheduler is the
best way to optimally grant requests of shared
resources on multiprocessor systems. It may seem
that the logical choice in Ada-2005 is to implement
one semaphore by one synchronized protected object.
However, before granting a lock on a semaphore, it is
necessary to check the status of every other
semaphore in the system to ensure that Locking
Conditions (i-v) of MPCP (discussed in Section 4)
are satisfied. Implementing one semaphore as one
protected object will thus require intricate
communication and synchronization between the
semaphore protected objects. Accordingly, a single
protected object is instead used to serve as the
scheduler for granting all semaphores.

6. Conclusion and future works

 The Multiprocessor Priority Ceiling Protocol is
designed for use in tightly-coupled systems. It is an
efficient synchronization method for preventing
deadlocks and minimizing blocking time. The
protocol can be supported well under the semantics
of Ada-2005 in a system with multiple processors.
 Our motivation of this study is to show that the
performance of any method does not so much depend
on the hardware but more on the implementation. A
program is functionally correct if when running on
any minimal execution environment it behaves
according to the specification. We will report on the
effectiveness of this in a future paper.

References

[1] Burns A. and Wellings A.J. Programming Execution-
Time Servers in Ada-2005. RTSS 2006.

[2] Burns A. and Wellings A.J. Task attribute-based
scheduling - extending Ada's support for scheduling. ACM
ADA letters, 2003.

[3] Burns A. and Wellings A.J. Real-Time Systems and
Programming Languages. 3rd. ed.: Addison-Wesley, 2001.

[4] Burns A. and Wellings A.J. Concurrency in Ada.
Cambridge University Press (1995).

[5] Burns A. and Wellings A.J. Real-Time Systems and
Programming Languages. 3rd. ed: Addison-Wesley. 2001.

[6] Cheng A. M. K. Real-Time Systems Scheduling.
Analysis. and Verification. 2nd. ed.: Wiley & Sons 2002.

[7] Cheng A. M. K. and Ras J. The Implementation of the
Priority Ceiling Protocol in Ada-2005. ACM Ada Letters,
4/ 2007.

[8] Aburas J. The Optimal Mutex Policy in Ada 95. ACM
Ada Letters, 12/1995.

[9] Chen C.M. and Tripathi S. Multiprocessor priority
ceiling based protocols. Rapport technique n CS-TR-3252.
University of Maryland. 1994.

[10] Dhall S.K. and Liu C., On a Real-Time Scheduling
problem, Operation Research, 1978.

[11] Leontyev & Anderson, Tardiness Bounds for EDF
Scheduling on Dual-Speed Multicore Platforms. RTSS
2006.

[12] Liu C. and Layland J. Scheduling algorithms for
multiprogramming in hard real-time environments. Journal
of the ACM. Vol.20. No.1. 1973.

[13] Lehoczky J.P. and Ramos-Thuel S. An optimal
algorithm for scheduling soft-periodic tasks fixed-priority
preemptive systems. RTSS 1992.

[14] Sha L. Rajkumar R. and Lehoczky J. Time
Synchronization Protocols for Multiprocessors. RTSS 1988.

[15] Sha L. Rajkumar R. and Lehoczky J. Generalized rate-
monotonic scheduling theory: a framework for developing
real-time systems. Proc. of the IEEE, Vol. 82, 1994.

[16] Sha. L. and Goodenough. J. Real-time scheduling
theory and Ada. IEEE Trans. on Computers 4/1990.

[17] Sha L., Rajkumar R., and Lehoczky J., Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization. IEEE Trans. on Computers, 9/1990.

16

INCENSE: Information-Centric Run-Time Support for
Component-Based Embedded Real-Time Systems ∗

Andreas Hjertström, Dag Nyström, Mikael Åkerholm, and Mikael Nolin
Mälardalen Real-Time Research Centre, Västerås, Sweden

{andreas.hjertstrom, dag.nystrom, mikael.akerholm, mikael.nolin}@mdh.se

Abstract

In this paper we present a technique to allow the use of
real-time database management together with component-
based software development, to achieve an information cen-
tric run-time platform for the development of embedded
real-time systems. The technique allows components to
benefit from the advantages of a real-time database man-
agement system while still retaining desirable component
properties, such as isolation and a high level of reusabil-
ity. We propose that a database is integrated in the com-
ponent framework, and introduce the concept of database
proxies to decouple components from the database schema.
The resulting system fully benefits from the advantages of
component-based software development, such as reusabil-
ity, all component interaction through interfaces, etc, com-
bined with the advantages of a real-time database manage-
ment system, i.e., system openness, controlled data access,
and dynamic query language capabilities.

1. Introduction

Today’s vehicle systems have an increasing number of
computer nodes, called Electronic Control Units (ECUs),
often developed by different hardware vendors, controlling
engine, brakes, gearbox etc. The cost for development of
electronics in high-end vehicles have increased to more than
23% of the total manufacturing cost [4]. Including sub-
systems a modern automotive system can contain over 70
ECUs communicating on different networks and exchang-
ing up to 2500 signals [6]. The continuous increase of ECUs
and exchanging of signals, leads to an growing amount of
data that needs to be managed. A significant amount of
the tasks using this data are critical hard real-time transac-
tions, often operating at high frequencies and updated peri-
odically. Furthermore, current trends also show an increase
∗This work is supported by the Swedish Foundation for Strategic Re-

search within the PROGRESS Centre for Predictable Embedded Software
Systems.

of tasks running non-critical, soft transactions in the system
at lower frequency. These transactions, often read transac-
tions, use the same data as hard critical tasks for logging or
to present statistical information about the current state of
the vehicle to the user.

To handle the increasing complexity in these systems,
new approaches and design paradigms to reduce complex-
ity are needed, since current techniques (internal data struc-
tures) are becoming increasingly insufficient. Two upcom-
ing approaches to reduce complexity are Component-Based
Software Engineering (CBSE) and DataBase Management
Systems (DBMS). Real-Time Database (RTDB) [10] and
RTDBMS (Real-Time Database Management System) are
upcoming technologies both within research society and
in industry [5] to help developers solve information man-
agement problems regarding synchronization, deadlock and
persistency. This area has mainly been focused towards
concurrency-control, temporal consistency, overload man-
agement and scheduling. The focus within CBSE is to cre-
ate software components that are reusable entities mounted
together as building blocks with a possibility to maintain
and improve systems by replacing individual components
[3]. Even though RTDBMS and CBSE share the same goal,
their means of achieving it is unfortunately conflicting.
One key philosophy for most component models is that all
communication with the surrounding environment should
be performed through the component’s interface, eliminat-
ing all component side-effects. By introducing a real-time
database management system (RTDBMS) and giving com-
ponents direct access to shared data in the database intro-
duces such side-effects. Furthermore, constructing compo-
nents that query a certain database engine, with a certain
database structure (schema) severely reduces the possibil-
ity of component reuse. To remove conflicts between RT-
DBMS and CBSE we introduce INCENSE (information-
centric run-time support for component-based embedded
real-time systems), a framework which combines the best
of these technologies.

It would be desirable to achieve a component-based sys-
tem where data is reliably managed and structured to enable

17

TASK oilTemp(void){
//Initialization part
int temp;

1 MimerDbP dbp;
2 MimRTDBPBind(&dbp,"Select TEMP from

ENGINE where
SUBSYSTEM=’oil’");

//Control part
while(1){

3 temp=readOilTempSensor();
4 MimRTWriteInt(dbp,temp);

waitForNextPeriod();
}

}

Figure 1. An I/O task that uses a Mimer RT
database pointer.

flexibility, a system where soft and hard real-time tasks can
execute and keep isolation properties, a system that can han-
dle critical transactions and at the same time enable open-
ness, a system where new functionality can be added or re-
moved without side effects to the system. To achieve this
we propose to use a RTDBMS, in this case Mimer SQL
Real-Time Edition [5], a commercially available1 real-time
database, together with a component technology, in this
case SaveCCT, to achieve an information-centric run-time
platform.

1.1. Mimer SQL Real-Time Edition

The Mimer SQL Real-Time Edition (Mimer RT) [5] is a
real-time database management system intended for appli-
cations with a mix of hard and soft real-time requirements.
The hard real-time algorithms are based upon the work per-
formed within the COMET research project [8]. Mimer RT
uses the concept of database pointers [9] to access individ-
ual data elements in an efficient and deterministic manner.
For soft real-time database management, standard SQL [2]
queries are used. To achieve database consistency without
jeopardizing the real-time requirements the 2V-DBP con-
currency control algorithm [7] is used. 2V-DBP allows
hard and soft transactions to share data independent of each
other.

In Figure 1 an I/O task that reads a sensor and propagates
it into the database is shown. The task consists of two parts,
an initializing part, and a control part. In the initialization
part, the database pointer is created (line 1) and associated
with a data element (line 2). The MimRTDBPBind func-
tion executes the query and a direct link to the data element
is established. In the control part, the sensor is scanned
(line 3) and its value is written to the database (line 4). The

1Mimer SQL Real-Time edition will be available during Q2 2007.

MimRTWriteInt call uses the direct link and performs
the write in constant time.

1.2. SaveCCT Real-Time Component Tech-
nology

The SaveComp Component Technology (SaveCCT) [1]
is described by distinguishing manual design, automated
activities, and execution. The entry point for a developer
is the Integrated Development Environment (IDE), a tool
supporting graphical composition of components, where the
application is created. Developers can utilize a number of
available analysis tools with automated connectivity to the
design tool. SaveCCT is based on a textual XML syntax
which allows components and applications to be specified.
Automated synthesis activities generate code used to glue
components together and allocate them to tasks. Resource
usage and timing are resolved statically during the synthesis
instead of using costly run-time algorithms. SaveCCT is, as
Mimer RT, intended for applications with both hard and soft
real-time requirements.

<<Assembly>>
EngineContoller

<<SaveComp>>

oilTempIO
50 Hz

oilTempSensor

<<SaveComp>>

oilTempIO
50 Hz50 Hz

oilTempSensoroilTempSensor

Figure 2. Save graphical application design

In SaveCCT applications are built by connecting compo-
nents input and output ports using well defined interfaces,
see Figure 2. Components are then executed using trigger
based strict "read-execute-write" semantics. A component
is always inactive until triggered. Once triggered it starts to
execute by reading data on input ports to perform its compu-
tations. Data is then written to its output ports and outgoing
triggering ports are activated.

Figure 2 shows how the XML code in Figure 3 is graph-
ically represented. There are two inports into the Engine
Controller application, data and trigger port. Data is read
by the oilTempIO component from its inport oilTempSen-
sor once triggered every 50Hz. Computations are done and
results propagated onto the output port. In this case the out-
put port is a combined trigger and output port. The XML
code also includes ATTRIBUTE which describes the differ-
ent component properties. In this example we have chosen
to exclude all attributes except Worst Case Execution Time
(WCET), which is analyzed and entered to the system.

18

<APPLICATION id="EngineController">
<IODEF>

<INPORT mode="trig" type="void"
id="trigFiftyHz" value="20"/>

<INPORT mode="data" type="int"
id="oilTempSensor" />

</IODEF>
<TYPEDEFS>

<COMPONENTDESC id="oilTempIO">
<INPORT mode="trig" type="void"

id="trigOilTemp" />
<INPORT mode="data" type="int"

id="oilTemp" />
<OUTPORT mode="combined" type="int"

id="newOilTemp" />
<ATTRIBUTE id="WCET" type="ms"

value="5" />
</COMPONENTDESC>
...

</TYPEDEFS>
<CONNECTIONLIST>

<CONNECTION>
<FROM id="EngineController"

port="trigFiftyHz" />
<TO id="oilTempIO"

port="trigOilTemp" />
</CONNECTION>
<CONNECTION>

<FROM id="EngineController"
port="oilTempSensor" />

<TO id="OilTempIO" port="oilTemp" />
</CONNECTION>
...

</CONNECTIONLIST>
</APPLICATION>

(Figure simplified for readability)

Figure 3. SaveCCT XML description file

2. The Information-centric Component
Framework

To efficiently integrate real-time database management
and component-based software engineering in order to gain
the potential benefits of both approaches, we propose that
the RTDBMS is made part of the component framework.
Figure 4 shows the architecture of the framework in which
it acts as a proxy between the application components and
the RTDBMS. This allows components to be database un-
aware. We define a database unaware component as a com-
ponent which does not have knowledge of the database
schema, i.e., the structure of the data in the database. This
database decoupling is made possible due to database prox-
ies, see Figure 4, which creates a database view that is con-
sistent with the interface of the component.

If components are database aware, i.e., calls to a database
is made from within the component-code, a number of un-
wanted properties emerge, such as (i) decreased component
reusability, since the component can only be used in sys-

tems with a certain database schema, and (ii) undesirable
component side-effects since interaction with the environ-
ment is made from outside the component interface.

In this paper, we distinguish between two types of
database proxies, namely hard real-time database prox-
ies (hard proxies) and soft real-time database proxies (soft
proxies).

Component Framework

DB
Unaware
Comp. A

DB
Unaware
Comp. B

DB Proxies

Mimer SQL Real-Time Edition

Figure 4. The Incense component framework

2.1. Hard real-time database proxies

Hard proxies are intended for hard real-time compo-
nents, which need efficient and deterministic access to indi-
vidual data elements. In Figure 5, a hard proxy is declared
as a DBHARDPROXY. The declaration contains all informa-
tion to set up a database pointer, which will be constructed
in the component framework as glue code between compo-
nent calls. Since 2V-DBP provides constant response-time
for database pointers, an attribute for worst-case execution
time is included in the declaration.

Hard proxies are connected to a component’s in- or out-
port, and the data element in the database is either provided
to the component or written back to the database after com-
pletion of the component’s execution. As a hard proxy can
provide a data element of any type, they can be used with
any existing components since the database is fully trans-
parent to the component.

2.2. Soft real-time database proxies

Soft proxies are intended for soft real-time components,
which might need more complex data-structures. Consider
a component monitoring the overall status of a subsystem,
e.g., all the temperatures in an engine, or logging of errors
etc.

In order for a component to be able to use a soft proxy, it
must have a relational interface, which means that it must
be able to take a relational table as a parameter (or return
value). Therefore, the SaveCCT component-model is ex-
tended to include TABLEDESC’s as parameters, see Fig-

19

<TYPEDEFS>
<TABLEDESC id="temperatureTable">

<ATTRIBUTES>
<ATTRIBUTE type="CHAR(20)"

id="subsystem"
key="primary" />

<ATTRIBUTE type="int"
id="temperature"
key="false" />

</ATTRIBUTES>
</TABLEDESC>

</TYPEDEFS>

<DBPROXIES>
<DBHARDPROXY type="int" id="oilTemperature"

bind="SELECT temp FROM engine
WHERE subsystem=’oil’"

<ATTRIBUTE id="WCET" type="us"
value="5" />

/>
<DBSOFTPROXY type="temperatureTable"

id="engineTemperatures"
bind="SELECT temp from engine"
<ATTRIBUTE id="WCET" type="ms"

value="3" />
/>

</DBPROXIES>

Figure 5. SaveCCT proxy representations

ure 5. A TABLEDESC table descriptor is a relational ta-
ble containing the information needed by the component. It
is worth noting that the structure of this descriptor is com-
pletely decoupled from the database schema.

Soft proxies are, as hard proxies, connected to a compo-
nent’s in- or out-ports. At run-time, the hard proxy converts
the database schema into the format of the table descriptor.
This glue-code, i.e., the database query associated with the
proxy, is embedded into the component framework.

This approach implies that the component is aware that
an RTDBMS is present, but it is still generic with respect
to the schema of the database, i.e., component reusability is
maintained.

3. Conclusions and Future Work

In this paper we present a technique to integrate a real-
time database management system into a component-based
system, and thereby gaining the advantages of high level
data management while retaining important properties, such
as component isolation and reusability, of component-based
software engineering. We introduce the concept of a
database proxy to enable components to be database un-
aware, i.e., components do not need to be tailored to fit
a certain database engine or database schema. Instead all
database interactions are performed from the information-
centric component framework used in this technique.

Key benefits of this approach include, system openness
due to standardized query language languages, the possi-
bility of creating on-the-fly dynamic database queries, to-
tal decoupling of data and components. Furthermore, when
using a hard real-time database engine such as Mimer SQL
Real-Time edition, hard real-time guarantees on data access
is provided and synchronization of shared data is transpar-
ently managed. By separating data access and components,
component isolation is retained and managed by applica-
tion specific database proxies connected to component in-
terfaces.

In our future work we intend to extend the information-
centric view with high level tools and design paradigms
to manage and organize data in a logical view rather than
a physical. During design, developers should have full
control of each data item involved, who are the produc-
ers/consumers, timing requirements etc. The overall aim
of our work is to create an information-centric design
paradigm for real-time systems, where data management is
treated as its own design entity.

References

[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The
Save Approach to Component-Based Development of Ve-
hicular Systems. Journal of Systems and Software, 2006.

[2] S. Cannan and G. Otten. SQL - The Standard Handbook.
MacGraw-Hill International, 1993.

[3] I. Crnkovic. Component-Based Software Engineering - New
Challenges in Software Development. Software Focus, De-
cember 2001.

[4] L. Gabriel and H. Donal. Expanding Automotive Electronic
Systems. Computer, 35(1):88–93, Jan 2002.

[5] Mimer SQL Real-Time Edition, Mimer Information Tech-
nology. Uppsala, Sweden. http://www.mimer.se.

[6] N. Navet. Trends in Automotive Communication Systems.
In Proceedings of the IEEE.

[7] D. Nyström, M. Nolin, A. Tešanović, C. Norström, and
J. Hansson. Pessimistic Concurrency Control and Version-
ing to Support Database Pointers in Real-Time Databases.
In Proceedings of the 16th Euromicro Conference on Real-
Time Systems, 2004.

[8] D. Nyström, A. Tešanović, M. Nolin, C. Norström, and
J. Hansson. COMET: A Component-Based Real-Time
Database for Automotive Systems. In Proceedings of the
Workshop on Software Engineering for Automotive Systems,
pages 1–8. The IEE, June 2004.

[9] D. Nyström, A. Tešanović, C. Norström, and J. Hansson.
Database Pointers: a Predictable Way of Manipulating Hot
Data in Hard Real-Time Systems. In Proceedings of the
9th International Conference on Real-Time and Embed-
ded Computing Systems and Applications, pages 623–634,
February 2003.

[10] K. Ramamritham, S. H. Son, and L. C. Dipippo. Real-Time
Databases and Data Services. Journal of Real-Time Systems,
28(2/3):179–215, November/December 2004.

20

FPGA Design and Performance Analysis of a
Mobile Video Processing System

Andréa Karsko, Member, IEEE and John Hodapp, Member, IEEE

Abstract—We describe an architecture design and imple-
mentation approach for a mobile real-time multi-camera
video capture and processing system used to detect changes
in scenery that have occurred between successive runs down
the same path. The current system is implemented using
traditional processor hardware and uses multiple cameras
operating in different wavelengths to capture imagery in
real-time. Captured imagery is analyzed by various image
processing techniques in near real-time. We propose that
these image processing algorithms be ported to a FPGA
design for increased speed and flexibility with the goal of
achieving hard real-time performance. Analysis and imple-
mentation are currently underway.

Index Terms—FPGA, VHDL, mobile video processing

I. Introduction

IN late 2005 a need for a vehicle-based video acquisi-
tion testbed was identified. This acquisition testbed

requires a flexible and modular design to support rapid
prototyping of signal and image processing algorithms. To
achieve this requirement, a small multidisciplinary team
of engineers were established and directed to design, de-
velop, and use a vehicle-based testbed. Real-time acqui-
sition and near real-time processing of georegistered data
acquired simultaneously from multiple sensors was an ini-
tial requirement. The use of multiple sensors and sensor
types in combination with GPS technology would permit
the system to capture a wealth of data for algorithm re-
search and development in areas such as object detection,
scene change detection, and surveillance.

During development, various operational concepts
(CONOPs) were explored to identify how such a testbed
system could be configured to address specific require-
ments. One CONOP that resulted from the effort involves
the use of two operators working together as a team to de-
tect and identify objects in live streaming imagery. Here,
one operator (OP1) screens the data acquired from wide
field-of-view (WFOV) streaming sensors, taking advantage
of any automated cues provided by the processing algo-
rithms and overlaid onto the imagery. With the availability
of archived imagery from previous runs on the same path,
OP1 has sufficient information to perform visual change de-
tection. When areas of interest are detected by OP1, image
chips centered around these areas are sent to the second
operator (OP2). OP2 has access to this imagery, as well
as imagery taken from an additional pair of narrow field-
of-view (NFOV) high resolution sensors that take detailed
snap shots of these objects for identification purposes. This

US Army RDECOM CERDEC NVESD
Ft Belvoir, VA 22060, USA

US Army RDECOM CERDEC NVESD
Ft Belvoir, VA 22060, USA
APPROVED FOR PUBLIC RELEASE

is the configuration of the system discussed here. The pro-
cessing system associated with OP2 is not addressed here
as the computational load of its software is minimal in
comparison with that of OP1. Its overall system archi-
tecture, however, is similar. As such, any performance
improvements resulting from architectural enhancements
discussed here would apply to both operating systems.

Initial operational capability of the testbed was achieved
in early 2006 with field trials. Currently, the system oper-
ates with measurable latency and does not provide hard
real-time performance. Planned sensor enhancements,
such as higher resolution cameras, increased frame rates,
and new processing algorithms will add to the processor
loading. In order to support an increased processor load
while satisfying hard real-time requirements, Field Pro-
grammable Gate Array (FPGA) technology is being de-
signed into the next generation system to support the ad-
ditional workload.

II. System Design

To provide the greatest algorithm research and devel-
opment capability in a variety of test environments, the
system design must satisfy the following requirements, as
shown in Figure 1.

• Simultaneous multi-sensor real-time acquisition
• Georegistration of imagery and time synchronization
• Real-time display and playback
• Near real-time algorithm execution
• Support vehicular operation

Fig. 1. Functional Vehicle Testbed System Requirements

The cameras selected for this application are all digi-
tal in nature. They each provide uncompressed raw digi-

21

tal data directly from an imaging CCD or focal plane ar-
ray (FPA). The visible camera used for the fixed-forward
WFOV context view is a bayer-encoded color camera.
This camera produces imagery that consists of 1600×1200
frames. In the current testbed system, this sensor is trig-
gered via a time-synched external source and maintains a
30 Hz input rate. Paired with this camera providing the
WFOV infrared imagery is an uncooled microbolometer-
based Foward Looking Infrared (FLIR) camera with a res-
olution of 640×512 at 30 Hz. This camera is not externally
triggered and operates in free-run mode. The data rate re-
sulting from these two cameras is approximately 134 MB/s.

Each acquired frame of input data is tagged with geolo-
cation and heading information as well as time information
from a microsecond-accurate clock. A positioning system
comprised of a wide area augmentation system (WAAS)
enabled GPS, coupled with an inertial measurement unit
(IMU), is connected to the testbed via a serial connection.
The data from this system are generated at a 100 Hz rate
and provide sub-meter outputs once the IMU is initial-
ized. This tagged data is placed in archived data sets and
stored at a one frame per meter rate. A RAID subsystem
combined with the high precision and high rate GPS/IMU
measurements, provides real-time storage and playback of
the georeferenced imagery.

Two Intel CPUs currently provide the computation
resources available for the image and signal processing
modules. These processors, combined with the various
slots and interfaces needed to instantiate the acquisition
and storage subsystems, are available on several standard
workstation-class motherboards from commercial vendors.
The current system utilizes the Windows XP/Pro operat-
ing system (OS). This OS was chosen because it provided
the greatest base of compatible third-party products from
which to select the cameras, interfaces, and support tools
and libraries.

The software development tools are self-hosted and the
design allows testing of various user-interface (GUI) config-
urations. The software development tools are flexible and
compatible with each other at the application program-
ming interface (API) level. Initial analysis of requirements,
heavily influenced by the short development time, resulted
in the use of many commercial off the shelf (COTS) prod-
ucts.

In order to refine the design, a market survey of the
relevant technologies was conducted. In some cases, repre-
sentative samples of the technologies were obtained, eval-
uated, and benchmarked. One result of the market survey,
is the selection of the Camera Link standard for the digi-
tal camera interface which permits for a wide selection of
camera technology. To support research and development
using sensors that do not adhere to the Camera Link stan-
dard, flexible off-the-shelf translators that convert RS422
and low-voltage differential signaling (LVDS) to Camera
Link are employed.

III. Current Architecture, Performance, and
Limitations

The hardware architecture of the testbed is based upon
an Intel server system and consists of dual Intel Xeon (No-
coma) processors in a Symmetric Multiprocessor (SMP)
configuration, each executing at 3.60 GHz. A general out-
line of the hardware architecture is shown in Figure 2.
Note there are only two frame grabbers in the system, CL

Fig. 2. Current Hardware Architecture

FG on the left side. However, each of the frame grabbers
permit acquisition from two Camera Link sensors simul-
taneously. Therefore, as configured, the system can thus
support four of these cameras. A high resolution ruggedi-
zed touchscreen serves as the primary operator interface
to the system. Although not pictured in Figure 2, lower
bandwidth interfaces including RS232 and gigabit ethernet
(GigE) interface are also provided.

The design of the software architecture is modular in
nature and a description is shown in Figure 3. Each of the
main functional areas are implemented as software threads.
These threads consist of the application, data manage-
ment, and display threads, to name a few, and are im-
plemented in a similar fashion. Each of the major threads
contain code and buffers to permit synchronization and
exchange of data between the various software subsystems
in a controlled manner. Once started, the main applica-
tion does the customary initializations typically found in
a complex application with multiple software subsystems.
Upon completion of setup and initialization, application
threads are launched. These threads then remain active for
the duration of the application. The threading approach
employed spawns all user-level threads during system ini-
tialization and destroys those threads at system shutdown.
No new threads are spawned to service incoming data. Af-
ter the system is fully initialized, video data arrives into
buffers residing in the frame grabbers. After each frame
grabber transfers the data into local system memory, a call-
back function is invoked to notify the appropriate thread
that data is available. These callback functions are key
and their implementation requires real-time operation (ex-
ecution within 33 ms).

22

Karsko and Hodapp: FPGA DESIGN AND PERFORMANCE ANALYSIS OF A MOBILE VIDEO PROCESSING SYSTEM

Fig. 3. Current Software Architecture of the Vehicle Testbed

A key role of the callback function is to acquire a set
of meta-data, such as GPS location and time, to accom-
pany each frame of acquired data. The callback functions
retrieve the meta-data from a continuously updated ring
of GPS data that is managed independently by a GPS
thread. The digital video data, as well as data from the
non-imaging sensors, are dequeued by a separate thread
and forwarded to the individual application threads. These
include the algorithm threads such as video change detec-
tion. Data is also forwarded to the data storage subsystem
for archiving.

The performance of the current system is such that live
video acquisition and storage from the two high resolution
WFOV streaming cameras is sustained at 30Hz. The dis-
play rate of the WFOV visible camera is supported at 11
Hz and the FLIR at 30Hz, in parallel with display of the
each georeferenced archived data stream, respectively. Al-
though acceptably responsive, the system is heavily loaded
with high CPU utilization when all algorithm and display
modules are in operation. This can be seen from Table I.
Steps have been taken to optimize the implementation of
the code modules that are CPU and I/O intensive. Opti-
mized math libraries are also currently employed and de-
tailed code analysis of critical sections have been done, re-
sulting in improved data flow and reduced execution times.
However, since the system is dynamic, methods must be
investigated to continue increasing performance.

Average Display Rate 11.554 Hz
Object Detection Alg1 0.0308 sec/frame
Object Detection Alg2 1.041 sec/frame

Bayer Conversion 0.0565 sec/frame
IR Image Display Prep 0.0173 sec/frame

TABLE I

Current Performance Characteristics

It is believed that the current performance limitations of
the system can be eliminated by a well-defined application
utilizing FPGA technology. Functions such as Bayer de-

coding, display preprocessing, IR histogram equalization,
video stabilization and key portions of various algorithms,
to name a few, are promising candidates for FPGA execu-
tion.

IV. Next Generation Architecture

As stated, the current architecture of the system is de-
signed to be modular. This permits the redesign of this
system from a complete software implementation to a com-
bination of software and hardware implementation. A PCI
based FPGA card will be inserted into an unused back-
plane slot. The FPGA contained on the development card
is a Xilinx Virtex-II Pro 30. This FPGA has two PowerPC
processor blocks, 644 user defined I/O, and approximately
31,000 logic cells. The design therefore should not be lim-
ited by the size of the FPGA.

There are two distinct approaches currently being con-
sidered for the next generation system. Both approaches
utilize different aspects and strengths of the FPGA. The
first approach does not utilize the FPGA as much as the
second, but may offer reduced complexity and a shorter
implementation time frame. This design keeps a majority
of the pre-processing duties on the host computer. These
pre-processing duties consist of preparing the data to be
analyzed by the FPGA modules and selecting the appro-
priate FPGA modules to be executed. With this approach
the necessary data will be transfered over the PCI bus to
memory located on the FPGA board. The PowerPC is
notified with a data ready flag then the VHDL modules
on the FPGA will perform the necessary operations and
notify the host computer when finished. In this approach,
the slowest and most portable portions of the system are
moved to the FPGA and the system does not take full ad-
vantage of the built in PowerPC.

In contrast, the second approach utilizes the PowerPC
of the FPGA. This design moves the pre-processing duties
into the PowerPC so that the communication between the
pre-processing and the VHDL hardware modules are closer
together. This will allow for increased speed between the
PowerPC and the VHDL modules since communication is
contained on only the FPGA board, as opposed to com-
munication occurring between the host computer and the
development board over the PCI bus. Here, the PowerPC
is directly involved in the entire system design by con-
trolling the communications between the host computer
and the FPGA development card. At this point, it is not
known which approach is optimum, although it is hypoth-
esized that the second approach (taking advantage of the
PowerPC cores) may simplify host-FPGA control.

V. Research Tasks

Although the next generation design of the vehicle
testbed is still in the development stages, an implemen-
tation approach as well as possible challenges must also
be considered. A comprehensive approach that permits
an evaluation of the two candidate FPGA solutions sug-
gested in the previous section shall be performed. First, a
thorough examination of the current working system and

23

subsystems will be completed. Each part of the system
will be analyzed to identify functions, algorithms, or en-
tire subsystems that can benefit from the strengths of a
FPGA implementation. Using this analysis, these selected
functions, algorithms, or subsystems will be implemented
and tested on a FPGA. Finally, the current system will
be evaluated against the FPGA-augmented system, with
performance differences measured and documented.

Section III identifies several bottlenecks in the system.
These include image analysis functionality, such as the
change detection, video stabilization, and display latency.
For the next generation system, the design will remove
the software implementations of these modules and replace
them with VHDL cores. These VHDL modules will be de-
signed with portability in mind. Therefore, once they are
designed, implemented, and tested, the modules can be
added to both next generation design approaches so that
both can be fully evaluated and tested for performance dif-
ferences.

Algorithms such as change detection and video stabiliza-
tion fit well into a parallel processing system. Typically,
image processing algorithms are computationally intense
and therefore are more efficient in the FPGA fabric. When
implemented in the FPGA fabric, their only limiting factor
is the speed required to pull data into the FPGA and to
push it out of the FPGA.

While the theory of implementing a PowerPC system
with custom VHDL modules is straight forward, the actual
implementation can be challenging. Some of these chal-
lenges includes efficient VHDL design and determining an
optimal degree of FPGA/CPU coupling to preserve quick
implementations and hard real time requirements. Signif-
icant improvement in processing capability due to the use
of a FPGA makes an increase in implementation complex-
ity worthwhile given future algorithm plans. Depending on
the FPGA design size this may pose to be difficult. Other
challenges exist during the testing phase of development.
Testing the VHDL modules, is relatively straight forward
with simulators using waveform test benches to simulate
valid data. But when testing the PowerPC system uti-
lizing the VHDL modules more variables are introduced
resulting in a longer debug and testing cycle. However, by
anticipating these issues, it is hopeful that proper planning
can help eliminate these challenges with more ease.

To test the next generation system for performance im-
provements, subjective and quantitative aspects will be
considered. Pre-recorded digital data serving as controlled
test data will be injected into each system. The data will
be processed by both implementations (FPGA and non-
FPGA) and timed for system efficiency, display latency,
and accuracy of results (from the various algorithm mod-
ules.) The qualitative results are measured via timing
results on each perspective system. With respect to the
FPGA design, simulations combined with actual timing re-
sults will be used to establish the system processing time.
In the case of the software system, timers will be used in
the software to calculate the time needed to perform the
same calculations. Using the qualitative in conjunction

with the subjective comparisons, adequate knowledge of
the FPGA performance increase will be obtained.

VI. Next Steps

Upon review of the system, software modules that are
best suited for a VHDL implementation must be identi-
fied. Next, coding and development of test benches for the
VHDL cores shall be performed to establish performance
baselines. Test data shall be executed in the VHDL cores
and compared against outputs from the software modules
in the current system, documenting differences in order
to understand and eliminate them as much as possible.
VHDL cores and associated control software shall be in-
tegrated into the overall system and tested. Finally, the
performance of the implementations shall be measured and
evaluated.

Acknowledgment

The authors wish to acknowledge Dr. Christopher Mar-
shall (US Army RDECOM CERDEC NVESD), Mr. Sean
Jellish (US Army RDECOM CERDEC NVESD), and Mr.
Ken Ramsey (EOIR Technologies) for their significant con-
tributions to this effort.

24

Use of Helper Threads for OS Support in the
Multithreaded Embedded TriCore 2 Processor

Florian Kluge, J̈org Mische, Sascha Uhrig, Theo Ungerer
HiPEAC European Network of Excellence

University of Augsburg, Augsburg, Germany
{kluge|uhrig|ungerer}@informatik.uni-augsburg.de

Rafael Zalman
HiPEAC European Network of Excellence

Infineon Technologies AG, Munich, Germany
rafael.zalman@infineon.com

Abstract— Infineon equipped their TriCore 2 microcontroller
with multithreading capabilities. As memory protection tech-
niques are getting more important, it also implements a range-
based memory protection system. Based on the multithreading
capability a helper thread can run in a thread slot in separation
from the real-time application thread to support embedded oper-
ating systems like OSEK or AUTOSAR OS used in automotive
systems. We show that our concept can save more than 70%
of task switching time by pre-loading the memory protection
registers for the application that is predicted to be scheduled
next. Also, we propose modifications to the TriCore 2 architecture
that would support our concept.

I. I NTRODUCTION

A multithreaded processor [14] is characterized by the
ability to execute instructions of different threads within the
processor pipeline simultaneously. The contexts of two or
more threads of control are stored in separate on-chip hardware
thread slots each including its own register set, instruction
pointer, and processor status registers. Multithreading within
one processor can be used to hide memory latencies (e.g.
from instruction fetching or data loading) of one thread while
executing another thread. Typically, application threads are
loaded into the hardware thread slots. Another application
domain for this kind of threads are helper threads that run
separated from an application and support the application or
a running operating system. Such helper threads are proposed
for tasks like branch prediction [2], prediction of accessed
memory addresses [3], [9], [16], exception handling [8], [15]
and accelerated execution of loops [10]. In the embedded Java
microcontroller Komodo helper threads are also used for the
garbage collection of hard real-time threads [13] and dynamic
preloading of software upgrades of running hard real-time
threads [12].

In section II we present characteristics of the TriCore 2
architecture relevant for our work. In section III we develop
a helper thread concept to utilize the TriCore 2’s second
thread and propose some changes to the TriCore 2 architecture.
Section IV concludes this paper.

II. I NFINEON TRICORE 2 ARCHITECTURE

The Infineon TriCore architecture defines a 32-bit micro-
controller, which is mostly used for automotive applications.
It combines a RISC load/store architecture with a DSP-like
Harvard memory architecture.

The TriCore 2 is binary compatible to its predecessor, but
provides a second hardware thread slot, which can be used
to bridge long instruction fetch latencies [11]. Currently, the
TriCore 2 architecture is licenced as an IP Core.

A. TriCore 2 Multithreading

The Infineon TriCore 2 features two hardware threads, T0
and T1 [5]. Generally, a program is executed in T0. When the
pipeline impends to stall due to long instruction fetch latencies,
execution can be transferred to the second thread T1. This
thread usually is executed from fast on-chip scratchpad RAM.
It is also possible to have T0 and T1 running alternately by
setting for each thread a number of clock cycles it should run.
Although, there are some restrictions to T1. Interrupt service
requests will always be served by T0. Furthermore, T1 is only
allowed to run with interrupts enabled. Disabling interrupts
automatically transfers execution to T0.

As can be seen from these restrictions, the two threads of
the TriCore 2 are not fully equal. Applications running in T1
are restricted to threads that need not to disable interrupts.
Examples are the ”untrusted” applications in AUTOSAR [1].
Another use for T1 would be as helper thread that supports
a running application or operating system, as proposed in the
next section. The TriCore 2 scheduler ensures that the real-
time behaviour of the application thread in T0 is not disturbed
by the execution of a helper thread in T1.

B. Memory Protection

Current automotive control units usually run several appli-
cations. There need to be ways to ensure that an application
cannot be harmed by other applications, i.e. to prevent other
applications from manipulating their data or even code. This
can happen due to programming errors, for example. Cur-
rent automotive software specifications, like AUTOSAR or
Protected OSEK [4] pick up this problem by claiming the
existence of some kind of hardware-based Memory Protection
System (MPS).

Usually one of two kinds of MPS are implemented in
current microcontrollers. Thepage-basedapproach allocates
memory in the form of equal-sized pages, e.g. 1kB. It is pos-
sible, to have as many pages as desired for an applications. The
management of these pages is usually done by the Memory
Management Unit (MMU) or a special Memory Protection
Unit (MPU).

25

The other technique is therange-basedapproach. Here,
the CPU or MMU has some special registers, where memory
ranges are described by lower and upper bounds. There are
usually separate sets for data and code memory, differing in
the kind of access privileges (Read/Write/eXecute).

The Infineon TriCore family offers a range-based memory
protection system (MPS) with two to four Memory Protection
Register (MPR) sets each for data and code memory [7] (see
Figure 1).

Fig. 1. Memory Protection Register Sets of the TriCore architecture [7]

The real number of MPR sets depends on the implementa-
tion of the processor. Each register set is made up of several
range registers. Here again, the number of range registers is
implementation dependent. Figure 1 shows the range register
sets of the TriCore architecture, however, a TC1130 [6]
TriCore processor implements only two of the possible four
MPR sets. Most other TriCore implementations share this
configuration with four data memory protection ranges and
two code memory protection ranges (as far as they implement
a MPS at all). For the TriCore 2 architecture the afore said
also applies [5]. From the available MPR sets, at each time
exactly one can be active, while the others are not considered.
The active set is referenced in thePSW.PRSbits, as shown
in Figure 1. If within one set there are overlapping ranges, the
least restrictive access privileges are applied to the memory
access.

III. A H ELPERTHREAD FOR THETRICORE 2
M ICROCONTROLLER

A. Design

Within an AUTOSAR OS implementation, each application
is assigned its own Memory Protection Register Set. During
scheduling, the MPR set must be changed along with the ap-
plication’s other context data. On a TC1130, the whole process
of switching from one application to another (determining the
next application and switching the context data) takes about
1400 clock cycles.

As the software on such a node usually is statically con-
figured, it is simple to determine the next application at each
point of time. The only exception to this rule is the occurence
of interrupts. Here the regular flow of execution may be

disturbed, but as it is induced from outside the processor, we
cannot do anything about this case.

Now, ideally we have a helper thread running that predicts
the next application and loads all context data in advance into
the processor. Thus, at the point of scheduling the processor
would only have to switch from one context set to another.
This is not possible, because the processor contains only
two sets of context data that both are in use already for the
application thread and for the helper thread. So this technique
would require a third set of context data.

However, we can speculatively determine the next task to
be scheduled and pre-load its Memory Protection Registers.
Here we assume a minimum of two MPR sets from which
only one can be active at a time. So the other one could be
used for the pre-loading of memory protection registers.

All calls to operating system functions will be done using
thesyscall trap that transfers the execution into a privileged
mode. The operating system itself will then have full access
to all memory areas. Thereby we assume the OS is correctly
implemented. Thus, we would get by with the two available
register sets.

Although, there is one drawback to our concept. As men-
tioned above, the currently selected MPR set of a running
task is referenced in thePSWregister of the CPU (PSW.PRS,
see figure 1). This register is saved at eachcall instruction
into the context save area and restored at the corresponding
return . Now, if a task is assigned another MPR set than it
had before its last preemption, all these values in the task’s
context save area need to be adjusted. The complexity of this
operation depends linearly on the depth of the task’s current
call stack and would nullify our gained speed-up. Therefore,
we could not yet evaluate our concept on a real TriCore 2
processor.

B. Proposed Architectural Changes

To overcome these problems and make good use of the
second hardware thread, we propose the following changes to
the TriCore 2 architecture:

• Implementation of all four memory protection register
sets, and

• Split PSW.PRSinto a local bit (PRSL) that is saved with
each context, and a global bit (PRSG) that is not put into
the context save area.

Thus, we would have two sets of memory protection reg-
ister sets, where the globally active one is referenced by
the PSW.PRSGbit, and therein the actually active one is
referenced by thePSW.PRSLbit.

With the additional MPR sets, we would also be able to
protect the operating system. Thus, risks through programming
bugs would be reduced.

Figure 2 shows how we intend to use the four MPR sets.
Both sets withPSW.PRSL=0 will be used for the operating
system, i.e. they contain the same values. Thus they could
be mapped onto the same hardware registers. The other two
sets are used for the application. Now, the helper thread can
preload the register values in the currently inactive set, and

26

Fig. 2. Proposed organization of the Memory Protection Register Sets of the
TriCore architecture

at an application switch, only thePSW.PRSGbit needs to be
flipped, and the processor would automatically run with the
correct MPR set.

C. Evaluation

We did some measurements using a TC1130 to find out
what improvement would be possible. Here the complete
process of scheduling takes about 1400 clock cycles. Thereof,
determination of the task to be scheduled next amounts up to
about 900 clock cycles. Nearly 300 cycles are needed for the
swapping of OS management data. Loading of the memory
protection registers amounts to 200 cycles. So if a helper
thread predicts the next task correctly and already loads its
memory protection registers, 1100 cycles (78%) of the total
context switch time can be saved. For the remaining 300
cycles, we see no way for further improvements, as the data
processed here directly depends on the program flow.

IV. CONCLUSION

We have presented a possible application for the Tricore 2’s
second hardware thread. As shown, the use of a helper thread
for the pre-loading of memory protection registers would speed
up application switching over 70%, if the next application is
predicted correctly. Also, we have shown that only a small
change in the processor architecture would be necessary to
implement our proposed helper thread concept. As the TriCore
2 is traded as an IP Core, licensees would be able to easily
adopt our proposed enhancements into their processors.

In the future, we intend to apply the proposed changes to
a TriCore 2 simulator and evaluate the actual possible speed-
up. The outcome of this evaluation is particularly dependent
on the ratio of a correct task prediction.

V. ACKNOWLEDGEMENTS

This work was performed during a PhD internship of Flo-
rian Kluge at Infineon Technologies AG. The internship was
supported by the EC Network of Excellence HiPEAC. Florian
Kluge would like to thank Erik Norden for his mentoring
during the internship.

REFERENCES

[1] AUTOSAR AUTomotive Open System ARchitecture.
http://www.autosar.org.

[2] CHAPPELL, R. S., STARK , J., KIM , S. P., REINHARDT, S. K., AND

PATT, Y. N. Simultaneous subordinate microthreading (ssmt). InISCA
(1999), pp. 186–195.

[3] COLLINS, J. D., WANG, H., TULLSEN, D. M., HUGHES, C. J., LEE,
Y.-F., LAVERY, D. M., AND SHEN, J. P. Speculative precomputation:
long-range prefetching of delinquent loads. InISCA (2001), pp. 14–25.

[4] HIS STANDARD SOFTWARE WORKING GROUP. OSEK OS Extensions
for Protected Applications, 1.0 ed., July 2003.

[5] I NFINEON TECHNOLOGIES AG. TricoreTM 2 Architecture Manual,
1.1 ed., June 2003.

[6] I NFINEON TECHNOLOGIES AG. TC1130 User’s Manual, 1.3 ed.,
November 2004.

[7] I NFINEON TECHNOLOGIESAG. TricoreTM 1 Core Architecture, 1.3 ed.,
February 2005.

[8] K ECKLER, S. W., CHANG, A., LEE, W. S., CHATTERJEE, S., AND

DALLY , W. J. Concurrent event handling through multithreading.IEEE
Trans. Computers 48, 9 (1999), 903–916.

[9] L UK , C.-K. Tolerating memory latency through software-controlled pre-
execution in simultaneous multithreading processors. InISCA (2001),
pp. 40–51.

[10] MARCUELLO, P., GONZÁLEZ , A., AND TUBELLA , J. Speculative mul-
tithreaded processors. InInternational Conference on Supercomputing
(1998), pp. 77–84.

[11] NORDEN, E. Keynote: Multithreading for low-cost, low-power appli-
cations. InARCS(2004), C. M̈uller-Schloer, T. Ungerer, and B. Bauer,
Eds., vol. 2981 ofLecture Notes in Computer Science, Springer, pp. 4–5.

[12] PFEFFER, M., AND UNGERER, T. Dynamic real-time reconfiguration on
a multithreaded java-microcontroller. InISORC(2004), IEEE Computer
Society, pp. 86–92.

[13] PFEFFER, M., UNGERER, T., FUHRMANN , S., KREUZINGER, J., AND

BRINKSCHULTE, U. Real-time garbage collection for a multithreaded
java microcontroller.Real-Time Systems 26, 1 (2004), 89–106.

[14] UNGERER, T., ROBIC, B., AND SILC , J. A survey of processors with
explicit multithreading.ACM Comput. Surv. 35, 1 (2003), 29–63.

[15] ZILLES, C. B., EMER, J. S.,AND SOHI, G. S. The use of multithreading
for exception handling. InMICRO (1999), pp. 219–229.

[16] ZILLES, C. B., AND SOHI, G. S. Execution-based prediction using
speculative slices. InISCA (2001), pp. 2–13.

27

Adaptive Mixed Query Scheduling in Real-Time Data Streams

Xin Li, Li Ma, Li Kun, Kun Wang, Hongan Wang, Member, IEEE

Abstract
This paper focuses the problems of real-time query

scheduling and load management in a data stream
management system. A mixed query model is introduced,
which characterizes periodic and continuous real-time
queries on data streams. Based on the strategy of
bandwidth preserving, an integrated algorithm called
Adaptive Mixed Query Scheduling (AMQS) is proposed.
The objective of the scheduling algorithm is to guarantee
the deadlines of periodic queries and minimize the
number of deadline violations for continuous queries,
while at the same time maximize the overall query quality
according to load management strategy.

1. Introduction
A growing number of information processing

applications, including traffic engineering, stock trading,
network monitoring and sensor network, have to
manipulate high volume stream data in a timely
manner[1]. These applications have sparked researchers’
interest in the area of data stream management system
(DSMS) in both the database and real-time computing
communities. A growing body of research rages from
synopsis and algorithms for stream processing to
prototype systems such as Aurora[3], STREAM[4]. Run-
time resource allocation and optimization is one of the
most important components in DSMS. In this paper we
focus on CPU time allocation and load management in
real-time circumstance.

In a real-time DSMS, continuous queries have to be
completed by certain deadlines for the results to be of full
value. For real-time applications, approximate query
answers in time are more preferred to accurate results that
miss deadlines. To provide predictable query responses,
RTStream [2] proposed a periodic real-time query model
for data streams, which eliminates the drawback that the
triggered time and frequency of query instances can not
be controlled in a continuous query model. In this paper,
we consider both periodic and continuous queries with
timing constraints and propose a mixed query model for
real-time applications.

Several algorithms based on bandwidth preserving
strategy are proposed to joint schedule soft aperiodic tasks
and hard periodic tasks in real-time system, such as
DDS[5], DSS[5], TBS[6,7], DPE[6] and EDL[6]. Among
these algorithms, the Total Bandwidth Server (TBS or TB
Server) showed the best performance/cost ratio [7]. The

CPU utilization factors for a given periodic and aperiodic
tasks are fixed in TB Server. However, the workloads for
periodic queries often vary for the unpredictable arrival
time and content of stream data. So the existing
algorithms can not be using directly for the mixed queries
over data streams.

To process both periodic and continuous queries, we
give an adaptive mixed query scheduling (AMQS), in
which EDF is used to schedule periodic queries and TB
Server for continuous queries. The objective of the
scheduling is to guarantee the deadlines of periodic
queries and minimize the number of deadline violations
for continuous queries. In order to guarantee the
schedulability of periodic queries, some continuous query
must be rejected in overload conditions. To achieve fair
scheduling for mixed queries, QoS-aware load
management and adaptive adjustment for CPU utilization
factors using feedback mechanism are adopted according
to system resource configuration and workloads. In our
new mixed query model, the strategy introduces graceful
degradation and effectiveness under any load condition.

2. System Overview
Now we are developing a prototype named RT-DSMS

based on the STREAM [4] system running on a Linux
PC to experimentally evaluate our mixed query model
and real-time scheduling strategy. We have implemented
the detailed design of the system.

Figure 1 illustrates the system architecture of our
proposed prototype system. The system consists of five
components: data source manager, query processing
engine, real-time scheduler, QoS Monitor and Load
Shedder. Data source manager receives data from
multiple streams and inserts data into corresponding
input queues of query plans as well as monitors input
characteristics of streams (e.g. stream rates). The query
processing engine compiles user-defined queries into
query plans, i.e. operator network, and optimizes them
dynamically. According to scheduling strategy, the real-
time scheduler chooses one operator in operator network
to execute during running time. To meet QoS
requirements of queries, the QoS monitor periodically
collects system performance, evaluates workload and
employs various delivery mechanisms(such as load
shedding and admission control) to guarantee the QoS of
various queries. The load shedder reduces workloads by
dropping a portion of tuples. The statistical
characteristics of each stream and operator provide

28

useful information for query optimization, cost
estimation and load shedding. In this paper, we
concentrate on query model, real-time scheduler and
load shedder.

Figure 1. Architecture of RT-DSMS

In RT-DSMS, a long-running query (periodic or

aperiodic) is pre-registered and decomposed into an
execution plan tree composed of a set of basic pipelined
operators (such as project, select, join, aggregate) and
rooted by an output operator. Multiple query execution
plans over streams can be modeled as a directed acyclic
graph, termed operator network, in which a node
represents an operator that process tuples and a directed
edge between two adjacent nodes represents the queue
connecting those two operators. In query plans, the
output of a former (or child) operator is buffered in a
queue which acts as the input queue to the later (or
parent) operator. The path between a source node and an
output node excluding the two nodes forms an Operator
Path (OP).

3. Query Model
3.1 Assumptions and Notations

A data stream is defined as a real-time, continuous,
ordered sequence of data items [1]. It is impossible to
control the arrival rates and contents of the data streams.
Typically, queries are constrained to process data inside a
sliding window, which is a recent segment of data stream.
Although the memory constraint is an important yet
complicated research problem, in this paper, we only
consider the CPU resource constraints and assume that
there is always enough main memory space for query
processing.

A Data stream management system is a query
processing system on dynamic data streams, in which
queries are known as long-running and persistent queries.
Any kind of query Qi consists of a sequence of instances
(or jobs) qi (j).

In this paper, we consider a firm real-time DSMS, i.e. a
query instance becomes worthless if it fails to complete
by its deadline.

In addition, we make the following assumptions:
1. The arrival time of each tuple and stream rates ri are

unknown.

2. The selectivity si and the execution cost ci of any
operator are known as they can be derived by running-
time statistics of operators.

3. The deadline of a periodic query is equal to its period
for simplicity, i.e., Di=Ti.

4. The transient system overload does not persist for a
long period of time.

3.2 Mixed Query Model

We propose the Mixed Query Model (MQM) for real-
time applications that need QoS-aware query processing.
In this model, all queries fall into two categories:
Continuous Query (CQ) and Periodic Query (PQ). The
former is trigged to execute by aperiodic data while the
latter runs periodically.

For continuous queries, the query instances are
triggered by unpredictable streaming data. These queries
run repeatedly at an interval of unfixed time after they are
registered. They are data-initiative, i.e., the execution
instance of continuous queries are released by data arrival.
Continuous query processing is suitable to use in an
environment where input rate is low and gentle.

For the periodic queries, they are registered in advance
and run repeatedly over a fixed period of time. Their
instances are initiated periodically by the system. The life
time of a periodic query can be divided into two parts:
execution stage and dormancy stage. During execution
stage, a query instance takes the data in a jumping
window [1] over streams as input tuples and processes
them in batches according to query plan. Consequently,
the results are produced and outputted to external
applications periodically. The data in a window do not
change during dormancy stage even when new data arrive
in its input queue.

Each query (periodic or continuous) is decomposed into
a query plan when it is registered in the system. After the
query plans are generated, the operators are sent to the
scheduler to execute. The scheduler creates periodic query
instances at intervals of their periods and adds them into
ready queue of the scheduler. For a continuous query, the
query instance is added to ready queue when a tuple
arrives at its input queue. After the scheduler chooses a
query instance to execute, the operators in corresponding
query plan are scheduled one by one to process input
tuples. Finally, those tuples are pushed through the
operator paths and outputted to applications or they are
consumed by intermediate operators.

3.3 Performance Metrics

 Deadline Miss Ratio
In a firm real-time DSMS, query execution time is

constrained by deadline and a query result is useful for
applications only if it is produced within its deadline.
Therefore, the primary metric is deadline miss ratio
(DMR), which denotes the percentage of query instances
that do not complete before their deadlines.

29

=1 =1
= m mC

i ii i
DMR N N∑ ∑ (1)
In the above formula, Ni and Ni

C are the count of all
instances of the i-th query and those finished in their
deadlines, respectively.

 Data Sample Ratio
During high overload stage, a feasible solution is to

gracefully drop a portion of unprocessed or partially
processed tuples. To depict the problem, the date sample
ratio is used to measure the percentage of input tuples
processed to produce query results. RT-DSMS allows
applications to specify the relations between output
quality and sample ratio by a two-dimensional QoS graph.

Quality (%)

Sample
Ratio (%)

100

10080

TQ

30

Q1

Q2 Q3

600
Figure 2. QoS Graph based on Sample Ratio

For simplicity, the QoS graph is shown as a piece-wise

linear function of sample ratio with one critical point, at
which a query reaches its tolerable quality (TQ) with the
least sample ratio. In figure 2, Q1 can tolerate dropping
more tuples than Q2 and Q3.The sample ration at the
critical point is called the Least Tolerable Sample Ratio
(LTSR). The LTSRs are equal to 30%, 60% and 80% for
Q1, Q2 and Q3 separately. Based on the QoS graph
assigned by applications, RT-DSMS can supply satisfying
QoS for as many queries as possible, meanwhile minimize
the system workloads.

4. Real-time Query Scheduling
For a mixed query set, an available approach that does

jeopardize the schedulability of periodic queries is to
introduce a special purpose query called server [6], whose
computation time is used to process continuous queries. In
order to improve the response time for continuous queries,
the server is usually scheduled by a specific algorithm. In
this paper, the Total Bandwidth Server [6] is used as the
aperiodic server algorithm.

As illustrated in figure 3, the adaptive mixed query
scheduling is composed by two levels: the Earliest
Deadline First (EDF) scheduler is used to schedule
periodic queries in ready queue and a TB server to choose
one of instances in CQ instance queue into ready queue.
The TB server organizes the CQ instance queue according
the EDF strategy. At a time, only one continuous query
instance can enter into the ready queue and be scheduled
together with periodic queries by the EDF scheduler.

Periodic queries EDF
Scheduler

Ready Queue

Continuous
queries CQ Instance

Queue

TB Server

Figure 3. Mixed Query Scheduling Model

The objective of this scheduling is to guarantee the

deadlines of periodic queries and minimize the number of
deadline violations for continuous queries, while at the
same time maximize the overall query quality according
to load management strategy.

4.1 Total Bandwidth Server Algorithm

The key idea of the TB Server algorithm is to assign
each CQ instance a deadline as early as possible, only if
the schedulability of PQ instances is not affected. Suppose
that UP is the CPU utilization factor for PQ, and UC is for
CQ instances. It has been proven in [7] that, the
schedulability of periodic tasks in the presence of TB
server can simply be tested by verifying the following
condition: UP+UC ≤ 1.

TB server assigns a suitable pseudo-deadline to the
query instance and to schedule it according to the EDF
algorithm together with the periodic queries in the system.
On one hand, the deadline is the shortest possible to
improve the aperiodic responsiveness. On the other hand
it must not jeopardize the schedule of periodic queries.
The definition of the server is the following. When the k-
th continuous query instance arrives at time t=ak, it
receives a deadline 1= max(,) /k k k k Cd a d C U− + , where Ck is
the remaining time of expected execution cost of the
instance and UC is the CQ server utilization factor. By
definition d0=0. The CQ instance is then inserted into the
ready queue of the system and scheduled by EDF
scheduler, as any PQ instance.

 Different PQs maybe have different periods, so we
introduce the term super-period to analysis the
schedulability of multiple PQs. The super-period is the
least common multiple of all periods of PQs. Given a set
of PQs, the super-period is fixed before query execution.
Since the starting time and count of the periodic query
instances in a super-period are easier to estimate at any
given time, it is available to check the schedulability of
the set of PQs.

4.2 Feedback Mechanism

The performance of the mixed scheduling strategy is
affected by the two parameter UP and UC. Statically
setting the parameters does not work well because the
query execution time determined by the cost and
selectivity of operators and stream characteristics changes

30

over time. Therefore, we use feedback mechanism to
adjust the parameters dynamically.

Proportional-Integral-Derivative (PID) controller is not
suit to DSMS because the workloads vary dramatically
from one sampling period to another [2]. We use a
Proportional-Integral (PI) controller to control the
parameter UP.

() max((1) (), ())
()= ((1)) ((1))

P P P P

S L
P C C

U k U k U k EL k
U k MR MR k MR MR kδ δ

Δ
Δ α β

= − +⎧
⎨ − − + × − −⎩

 (2)

ELP(k) is the average workload of periodic queries in
one unit and it is estimated through LTSRs.

1

m
P i i i

i
EL r C LTSR

=

= × ×∑ (3)

where m is the count of period queries and iC is the
cost that the i-th query plan takes to process one input
tuple. ri and LTSRi is the stream rate and the least
tolerable sample ratio corresponding to the i-th query
plan.

MRC
S and MRC

L are the short-term and long-term miss
ratio of continuous queries measured periodically by QoS
monitor, respectively. MRδ is the maximum miss ratio for
continuous queries assigned by the administrator. α and β
are two controller parameters which control the weights
for the ELP and short-term query miss ratio. In this paper,
α and β are set by the administrator to give the balanced
allocation between periodic and continuous queries to
achieve the scheduling objective.

5. Load Management
The RT-DSMS must be able to predict the workload in

supper-period and distribute CPU time over the query
instances before execution, or some of the instances might
miss their deadlines. Due to the unpredicted stream rates
and time-varying contents, the system can be overloaded
for a short time. To solve the problem, the accuracy of
query result may often be traded off for timely response.
Our load management is driven by the quality of query
service.

The load management is divided into two levels:
global management and local management.

In global load management, CPU time is pre-
distributed fairly over all active query instances in a
super-period and global load shedding is adopted under
overload to guarantee maximal overall query quality.
Every query instance is assigned a pseudo-deadline,
based on the estimated execution time.

 The local load management is adopted to distribute
the allocated time over different operators during the
execution of one query instance to maximize its quality.
The sample ratio of the operators is calculated to finish
the instance within the pseudo-deadline.

6. Future Work
For future work, we plan to test the mixed query model

and scheduling algorithm with different workloads and

configurations. Based on the mixed model, a scheduling
strategy involving the requirements of CPU and memory
usage will be considered in the future. Another work is to
explore ways to shorten the adjustment time of workload
evaluation and improve the accuracy of workload
estimation. The QoS management will be able to take
account of all queries and allocate CPU and memory
resources fairly among queries. In addition, we would like
to make several enhancements to scheduling and load
management using feedback control theory.

References
[1] L. Golab, M.T. Ozsu. Issues in Data Stream Management.

SIGMOD Record, 2003, 32(2):5-14.
[2] Y. Wei, V. Prasad, S.H. Son, J. Stankovic. Prediction-based

QoS Management for Real-time Data Stream. IEEE Real-
Time Systems Symposium (RTSS'06), Dec. 2006

[3] J.A. Daniel, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik.
Aurora: A new model and architecture for data stream
management. Journal on VLDB, 2003,12(2):120-139.

[4] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K.
Ito, R. Motwani, U. Srivastava, J. Widom. STREAM: The
Stanford Stream Data Manager, IEEE Data Engineering
Bulletin,2003,26(1). http://dbpubs.stanford.edu:
8090/pub/2003-21.

[5] T. M. Ghazalie, T. P. Baker. Aperiodic servers in a deadline
scheduling environment. In Journal of Real-Time Systems,
1995, 9(1): 31-67

[6] M. Spuri, G. Buttazzo. Efficient Aperiodic Service under
Earliest Deadline Scheduling. In Proc. Of Real-time
Systems Symposium,1994:2-11

[7] M. Spuri, G. Buttazzo. Scheduling Aperiodic Tasks in
Dynamic Priority Systems. Journal of Real-Time Systems,
1996, 10(2): 179-210

31

Application of Feedback Control Real-Time
Scheduling to Synthetic Aperture Radar

Hongan Wang, Yong Fu, Ying Qiao

Intelligence Engineering Lab, Institute of Software, Chinese Academy of Sciences
Beijing, 100080, China

Abstract-SAR (Synthetic Aperture Radar) is a radar system

that uses remote sensing techniques to obtain high-resolution
radar images of the earth’s surface. SAR imaging system is a
real-time heterogeneous system in which the real-time scheduling
is a vital issue. In this paper, we present a feedback control
scheduling algorithm for SAR imaging system (FC-SAR) to
simultaneously maintain deadline guarantee of the hard real-
time tasks in SAR system and improve CPU utilization of soft
real-time tasks such as image display. Furthermore, the proposed
algorithm is evaluated by experiments simulating the SAR
imaging system.

I. INTRODUCTION

SAR (Synthetic Aperture Radar) is a radar system that
produces high-resolution, all-weather images of the observed
terrain using signal processing techniques [1,2]. It is used to
identify man-made objects on the ground or in the air [3]. The
radar is placed on moving object, such as airplane or satellite
[4] to transmit pluses and receives the echoed signals [5]. SAR
system has been widely used in many fields such as homeland
defense, the exploration and flood monitoring/evaluation etc.
Plane-based SAR imaging system receives the raw data via
the radar [6] mounted on the plane, and then processes these
data to form images. The system also records and displays
these processed data to support the online monitoring and off-
line analysis. Furthermore, all above procedures are performed
in a real-time manner. Thus, how to guarantee deadlines of all
tasks in the system is a challengeable issue. The real-time
scheduling provides an elementary way to ensure real-time
properties of a planed-based SAR imaging system.

However, few works have been done on developing
dedicated scheduling algorithm for SAR imaging system.
Moreover, traditional scheduling algorithm in real-time
system can not handle fluctuation of workload in the SAR
system, for example, when displaying terrain with rich
features, the image display tasks consume more CPU
utilization than the case of plain terrain. Therefore, more
flexible real-time scheduling is required to meet the needs of
the SAR system.

In this paper, we present a Feedback Control scheduling
algorithm on SAR (FC-SAR) which features a feedback
controller designed by control theory. FC-SAR schedules hard
and soft real-time tasks together in the system through
adaptive resource reservation. CBS [8] is chosen for resource
reservation of soft real-time tasks while the controller
monitors the soft real-time tasks in the SAR system and

adjusts these tasks to accommodate the utilization allocation.
This algorithm not only maintains temporal guarantee of the
hard real-time tasks but also improves CPU utilization of soft
real-time tasks. Unlike previous work of adaptive resource
reservation [11], both utilization and fairness control between
different real-time tasks are considered in FC-SAR.

The rest of the paper is organized as follows: section 2
addresses the model of a SAR imaging system; section 3
presents the FC-SAR algorithm and controller design; Section
4 evaluates the proposed scheduling algorithm via the
experiments simulating the SAR imaging system; Conclusions
and future works are stated in section 5.

II. MODELING SAR IMAGING SYSTEM

The SAR imaging system is composed of a main system
and several sub-systems including input board, range
dimension FDC board, CTM (Corner Turn Module) board,
azimuth dimension FDC board and ICTM (Inverse Corner
Turn Module) board. The main system includes the following
functional modules, i.e., device monitoring, real-time data
receiving, real-time data storage, real-time data visualizing,
GPS information processing, geographical information
processing, real-time diagnose and record, system parameter
management and real-time imaging simulation [6]. We denote
these tasks as }10 1|{ <<iTi . A SAR imaging system is in fact a
real-time heterogeneous system composed of a set of
multiprocessors with different speed. There are 6 processors in
the system. They are denoted as P1, P2, P3, P4, P5, P6. Each
of first five processors (P1, P2, P3, P4 and P5) has one task
(T1, T2, T3, T4 and T5) while P6 has other five tasks (T5, T6,
T7, T8, T9 and T10). The independencies between tasks are as
follows: (Here, means that task Tx must precede task T .) TT yx≺ y

106967654321 TTand,TT,TTTTTTT ≺≺≺≺≺≺≺≺ (1)
All these tasks are either hard real-time or soft real-time.

Each task T in the SAR imaging system is described as a
tuple TTTTT . Here, aT is ’s arrival time
and T is T ’s ready time. PT is the interval between two
instances of task T. DT denotes ’s deadline. vT is the
number of T ’s different logic versions. ET represents ’s
maximum execution time. For hard real-time tasks, E is a
vector denoted by (TTT where e (

)E,v,D,P,r,a(
r

e m21 j

T T

T
T

T
),e,...,e, j

T)m,...,1=
is the maximum execution time of task when it executes on
processor . For soft real-time tasks, ET is a matrix
denoted by

p j
}e{ ij

T j;v,...,1i(T),m,...,1== where is eij
T

32

the maximum execution time of T ’s logic version i when it
executes on processor . Furthermore, for each

, .
p j

)m,...,1j(j = e...ee jv
T

j2
T

j1
T

T≤≤≤
 Thus, we develop two different models corresponding to

the behavior of the SAR system. First, we model the dynamics
of utilization. Since only soft real-time tasks can be
reallocated with the utilization, the model of utilization
involves the utilization of soft real-time tasks T9 and T10. The
utilization model can be formulated as:

)k(rg)k(u)1k(u uu+=+ , (2)
where is the sum of utilization of T9 and T10 at

sampling time k , u is the utilization gain and is
estimation of utilization change. Secondly, the fairness model
is considered. Let the utilization of display task, T9,
be and geography information processing task, and
T10, be u . We denote the utilization ratio
as gdf . When the utilization of each soft
real-time task changes the ratio between them also varied
accordingly. The fairness control needs to maintain such ratio
as a constant. However the ratio is subject to the
constraint . Like utilization
modeling, we can also model the ratio of the utilization as:

)k(u
g)k(r

)k(ud
)k(g

)k(u/)k(u)k(c =

)k(u)k(u)k(u gd +=

)k(rg)k(c)1k(c fff f
+=+ , (3)

where r is the gain of ratio change and is the
controller output. It is noted that the utilization gain u and

r may change in the execution. For robustness of the closed-
loop system, the maximum values are chosen as gains. For
simplicity, in our approach we assign them as unity, that
is, .

g)k(rf
g

g

1gg ru ==

III. FEEDBACK CONTROL SCHEDULING ALGORITHM

In this section based on the model aforementioned we
present the feedback control scheduling algorithm for SAR
imaging system (FC-SAR). Essentially, our algorithm ensures
the SAR system to avoid being overloaded to crash and
maintaining the utilization of the processors to improve
system’s efficiency.

 According to the system task model addressed in previous
section, the scheduling for SAR system can be formulated as a
mixed real-time scheduling problem, i.e., the hard real-time
tasks and soft real-time tasks are scheduled together. For hard
real-time tasks, T1, T2, T3, T4 and T5, there is no need to
consider the scheduling of them since they are executed in
dedicated processors (P1, P2, P3, P4 and P5). Thus, for SAR
system, we only consider the real-time scheduling for tasks in
processor P6. When scheduling mixed real-time tasks in
processor P6, three aspects should be considered:
schedulibility, overload protection and fairness. First, the
schedulibility of hard real-time tasks, such as data storage,
must be guaranteed to avoid missing their deadlines. Secondly
the overall utilization of the processor, including hard and soft
real-time tasks utilization, should keep close to the predefined
set point so that the processor could prevent crash caused by

transient workload. Finally, the two soft real-time tasks,
display task and geography information processing task, need
to run fairly. It is not preferred that one task, for example
display task, consumes all processor resources to achieve high
service quality while another task, geography information
processing task, can not acquire any portion of computation
time to run. Based on these three requisitions, we can
formulate the scheduling problem in SAR system as: Given a
set of hard real-time tasks {Thi | 1<i<n} and a set of soft real-
time tasks {Tsi | 1<i<n} running on a processor P, design an
adaptive scheduling algorithm to maintain schedulibility of the
hard real-time tasks Thi while keeping the utilization of the
processor and fairness among these soft real-time tasks Tsi
close to their set points.

 We design a feedback scheduling algorithm with the
structure illustrated in Figure 1 to address the adaptive mixed
real-time scheduling problem. Two control loops are involved
in this scheduling algorithm. First control loop adjusts
utilization of the processor. Specifically, in this loop, we
control the portion of the processor’s utilization consumed by
the soft real-time tasks, display and geography information
processing tasks in SAR system. Thereby the controller of the
first loop is called utilization controller. The controller of the
second control loop is a fairness controller which makes the
display and geography information processing tasks run fairly.
We use a ratio of tasks’ utilization as the set point of fairness
control. In addition, fairness control depends on the output of
the utilization control. Fairness control always changes the
utilization ratio between display and geography information
processing tasks in CBS server [8] based on utilization
controller output. The architecture of overall scheduling
algorithm is shown in Figure 1.

Figure 1. Architecture of FC-SAR

 To design utilization and fairness controller, we first
transform equation (2) and (3) from the time domain model to
Z domain in which the model can be accommodated to be
analyzed by control theory [9]. Based on derived dynamic
models, we can design PI controller to control utilization and
fairness of SAR tasks which includes Proportional and
Integral term.

)k(eTk)1k(ek)k(ek)1k(u)k(u sipppp −−−+−= , (4)

where is the output of the PID controller, pk and
i are coefficient of proportional and integral terms

respectively and Ts is sampling interval. The general
procedure to determine pk and i is firstly to set the
performance index, such as settling time, overshoot and so on,
and then to solve the coefficients according to these

)k(u p
k

k

33

performance index through root locus method. Details of
design of PI controller can be found in [9].

IV. EXPERIMENTS

 We employ RTSim [10], a real-time simulation library
written in C++, and Matlab Control Toolbox [12] to build the
simulation environment of Feedback Control Scheduling
Algorithm for SAR system with Linux 2.6 and GCC 3.2.4. We
implement the CBS scheduler, workload generator and
utilization monitor through RTSim. The utilization controller
and fairness controller are developed through Matlab Control
Toolbox. In the experiment running, the controller and other
components communicate through shared memory. For the
SAR system, there are totally 10 real-time tasks but we only
consider T6-T10 as described in SAR system model. T6, T7
and T8 are hard real-time tasks that totally use 71.2% CPU
utilization. T9 and T10 are soft real-time tasks that are
allocated with 13.8% CPU utilization. Note that there is 15%
CPU utilization unused for overload protection. The utilization
ratio of task T9, image displaying, and task T10, geography
information processing, is 2:1, that is, normally T9 consumes
9.2% CPU utilization and T10 consumes 4.6% CPU
utilization. We denote etf as estimated factor of execution time
of the task. The actual execution time of the task is the product
of estimated execution time and etf. The utilization of the real-
time tasks can be adjusted by changing etf.

 FC-SAR employs two PI controllers that control utilization
and fairness of the system respectively. The controller of
utilization has parameters and while
fairness controller has and . In addition, we
also develop a baseline algorithm which is denoted as OPEN-
SAR. In the baseline algorithm, only CBS scheduler is
adopted and the utilization as well as its ratio can not be
adjusted in running but is assigned initially.

35.1k p = 05.0ki =
1.1k p = 4.4ki =

 We first compare the performance of FC-SAR and
OPEN-SAR under utilization variation. In this experiment
both algorithms are stress tested under varied workload. The
experiment runs 300s. In the first 100s, the utilization of T9
and T10 is 13.8%，which is the normal utilization. At 100s,
the utilization increases abruptly by changing etf from 1 to 1.5.
Thus the utilization at this time is 1.5 times of the normal case.
At 200s, we decrease the utilization by changing etf to 0.8,
which means that the utilization declines 20% than the normal
utilization.

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time(s)

U
til

iz
at

io
n/

M
is

s
R

at
io

Utilization
Miss Ratio

(a) FC-SAR

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time(s)

U
til

iz
at

io
n/

M
is

s
R

at
io

Utilization
Miss Ratio

 (b) OPEN-SAR

Figure 2. Utilization of T9 and T10
 Figure 2(a) shows the performance of FC-SAR under

utilization variation. At 100s, although the utilization
increases significantly, the utilization maintains at the initial
value 13.8% after 10s adjustment. At 200s, the utilization
drops greatly caused by decreasing etf. In this case, the
utilization also experiences a decline, but after 7s adjustment
the utilization restores the initial value and maintains it in the
rest time. Moreover, in the whole running, miss ratio keeps
small except some points where the adjustment is invoked.
From this result, we can conclude the utilization controller can
maintain the utilization allocation even under the significant
variation. As shown in Figure 2(b), OPEN-SAR, as a sharp
comparison, can only keep the utilization when there is no
disturbance at the first 100s. At 200s the miss ratio increases
greatly and at 300s the utilization drops below the normal
level which leaves some spare CPU utilization.

 Meanwhile we also test the performance of FC-SAR
under the case of the utilization and its variation together.
Thus, the test profile includes two portions. First, we use the
same utilization variation profile like the experiment of
utilization variation. Then for utilization ratio, we change it by
adjusting T9’s etf at each time utilization varies. For example,
at 100s in running, the utilization ratio increases to 3.0 and
recovers. Then at 120s the ratio decreases to 1.0 for 10s. In
other points of utilization variations, the ratios change in the
same way.

90 95 100 105 110 115 120 125 130 135 140
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Time(s)

R
at

io

(a) FC-SAR

34

90 95 100 105 110 115 120 125 130 135 140

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Time(s)

R
at

io

 (b) OPEN-SAR

Figure 3 Utilization ratio of T9 and T10

Figure 3(a) shows FC-SAR fairness control under

utilization ratio varies from 90s to 140s. At other times there
are the same results. In whole running the utilization ratio
keeps constant in FC-SAR except some points. At 100s, the
ratio increases to 3.0 but the controller adjusts ratio by
allocating more reservation to T10 while the reservation of T9
is decreased. This procedure is inversed at 110s where the
reservation assigned to T9 is greater than T10. At other times
controller can also keep the utilization ratio constant. In
contrast, OPEN-SAR, illustrated in Figure 3(b), varies its
utilization ratio according to the test profile, that is, it can not
handle the utilization ratio variation.

V. CONCLUSION

In this paper, we present a feedback control scheduling
algorithm for SAR system, called FC-SAR. The tasks in SAR
system are analyzed. Based on the analysis, the task model is
developed. Next the FC-SAR architecture is described and the
outline of controllers design is presented. Finally we evaluate
the proposed algorithm by experiments. The results show that
our approach not only maintains the utilization under
workload variation but also the ratio between soft real-time
tasks.

ACKNOWLEDGMENT

Authors are supported in part by National Natural Science
Foundation of China (Grant No. 60373055, 60542005 and
60374058).

REFERENCES
[1] D. R. Wehner, High resolution radar, Second Edition, Artech House,

1995.
[2] J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar-Systems

and Signal Processing, Wiley, 1991.
[3] B.Zuerndorfer, G.A. Shaw, “SAR Processing for RASSP Application”, in

Proceedings of 1st Annual RASSP Conference, Arlington, VA.,1994.
[4] B.Dawidowica, et al, “Space synthetic aperture radar system analysis,”

available at: http://www.stec2005.space.aau.dk/getpdf.php?id=53K.
[5] J. Suh, et al, “Parallel implementation of synthetic aperture radar on high

performance computing platforms,” in Proceedings of 3rd International
Conference on Algorithms and Architectures for Parallel Processing.
1997.

 [6] K. Wang, et al, 2003. “Study of Real-time imaging systems,” Journal of
Computer Research and Development, Vol.40, No.1, pp.26-32.

 [7] C. Lu, et al, “Feedback control real-time scheduling: Framework,
modeling, and algorithms.” Real-Time Systems, Vol. 23. No (1/2), pp 85-
126, 2002.

 [8] Luca Abeni, et al, “Analysis of a Reservation-Based Feedback
Scheduler,” in Proceedings of the Real Time Systems Symposium (RTSS
2002), Austin, Texas, 2002.

 [9] Gene F. Franklin, et al, 1998. Digital Control of Dynamic Systems, Third
Ed., Addison Wesley Longman.

[10] Cesare Bartolini and Giuseppe Lipari, RTsim, available at:
http://rtsim.sssup.it/

[11] L. Abeni, G.Buttazzo, “Adaptive Bandwidth Reservation for Multimedia
Computing”, in Sixth International Conference on Real-Time Computing
Systems and Applications (RTCSA'99), pp.70, 1999

[12]Mathworks, Matlab Control Toolbox, available at:
http://www.mathworks.com

35

mailto:cbartolini@sssup.it
mailto:lipari@sssup.it
http://rtsim.sssup.it/
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Luca%20Abeni
http://search2.computer.org/advanced/Author_Result.jsp?qtype=3&select=50&qOpt1=DC_CREATOR&sortOrder=d&queryName=Giorgio%20Buttazzo

Integration of a flexible network in a resource
contracting framework∗

R. Marau, L. Almeida, P. Pedreiras
DETI/IEETA

Universidade de Aveiro, 3810-193 Aveiro, Portugal
{marau,lda,pedreiras}@det.ua.pt

M. González Harbour, D. Sangorrín
Universidad de Cantabria
39005 - Santander, Spain

{mgh,daniel.sangorrin}@unican.es

J. L. Medina
CEA LIST, Boîte 94

F-91191, Gif-sur-Yvette, France
julio.medina@cea.fr

Abstract— In this paper we overview the integration of a
framework that generically manages the system resources in the
form of contracts, namely the FRESCOR framework, with a
flexible network resource. We describe how a network resource,
namely FTT-SE, supports the FRESCOR framework services
and, likewise, how the network services are made available to
the application through the contracting framework.

I. INTRODUCTION

Networked Embedded Systems (NES) were originally as-
sociated with industrial supervision and control applications,
which employed simple sensors, actuators and controllers.
However, a steep evolution in this application domain is being
experienced, pushed by the growing number of sensors and
overall complexity present at the plant level. As an example,
the use of imaging sensors, both for supervision and control
purposes, is spreading widely in classes of applications such as
mobile robotics, traffic control and assembly lines inspection.
Consequently, the sensors become inherently more complex,
so as the flows of information exchanged at the cell and
plant levels, integrating periodic and aperiodic flows of short
and large data, some of multimedia nature, with considerable
variability during run-time.

The new demands and increased complexity posed by these
applications pushed the development on new techniques and
design methodologies. Two key aspects in this regard are
the complexity management and the resource management.
Complexity management is being addressed by the adoption
of adequate middleware layers in NES (e.g. CORBA and Java
RMI, DCOM, etc) [1], which facilitate distribution, aiming
at transparent interaction mechanisms between objects, com-
ponents or applications. Regarding the resource management
(e.g. CPU, memory, network, energy, etc) several approaches
have been proposed recently, aiming at fulfilling the needs of
those emerging applications in aspects like dynamic configura-
tion and QoS management, support for new and more efficient
scheduling techniques, etc.

The FIRST Scheduling Framework (FSF) [2] provides
a high-level abstraction for real time resource schedulers

∗ This work has been funded in part by the Plan Nacional de I+D+I
of the Spanish Government under grant TIC2005-08665-C03 (THREAD
project), and by the European Union’s Sixth Framework Programme un-
der contracts FP6/2005/IST/5-034026 (FRESCOR project) and IST-004527
(ARTIST2 NoE). This work reflects only the author’s views; the EU is not
liable for any use that may be made of the information contained herein.

while maintaining predictability and performance efficiency.
It provides a homogeneous interface so it can be used in
different platform architectures. This framework was initially
designed to cope with the application needs for processor
and network management, although with some limitations in
the latter. The Framework for Real-time Embedded Systems
based on COntRACTS (FRESCOR) aims at extending the FSF
framework for multi-resource reservation, comprising various
classes of resources commonly found in NES applications.

Regarding the communication subsystem, the recently pro-
posed Flexible Time triggered communication over Switched
Ethernet (FTT-SE) [3] provides flexible and deterministic real-
time communication services combined with dynamic Quality-
of-Service (QoS) management. This protocol has been de-
veloped specifically to address the requirements presented by
the emerging applications referred above, combining realtime
requirements with a high degree of adaptability. It looks, thus,
a natural network candidate for inclusion in a contracting
framework, to efficiently exploit and enrich the high level of
flexibility that it already offers.

This paper analyzes the integration of the FTT-SE protocol
in the scope of the contract model framework and describes
how this integration can be performed. Using the former FSF
framework, a network resource implementation exists for the
Real-Time Ethernet Protocol (RT-EP) [4]. However, for FTT-
SE, a different architecture must be used due to the different
data link layer features of the two network protocols.

The remainder of the paper presents an overview of
FRESCOR and FTT-SE background in sections II and III,
discusses the integration of FTT-SE under FRESCOR in
section IV, details the contracting procedure in section V and
shows conclusions and on-going work in section VI.

II. FRESCOR BACKGROUND

The FRESCOR framework is based on the notion of
contracts between the application and the system resources
manager. These contracts are created, managed and enforced
by a Contract Layer, which assures that sufficient resources
capacity is available. The framework is divided in modules that
allow abstracting away the specificities of the resources typi-
cally found in NES. Of particular interest to this work are the
Core module, which contains the basic contract information
that must exist in all contracted resources, the Spare capacity

36

Fig. 1. Contract layer

module, which defines how the application may take advantage
of currently unused resource capacity, and the Distribution
module that deals with issues of distributed applications.

The contract parameters associated to these modules are
referred in table I. The Contract id is a unique identifier inside
one resource (here a network resource) that distinguishes the
contracts globally, the Resource type and the Resource id
inform about the kind of, and which resource the contract
refers to; the Minimum budget and Maximum period define
the minimum resource capacity required by the application,
Importance and Weight allow prioritizing the contracts asso-
ciated to one resource when distributing spare bandwidth.

TABLE I
CONTRACT PARAMETERS

Core

Contract id
Resource type
Resource id
Minimum budget
Maximum period
Deadline

Spare capacity

Granularity
Maximum budget
Minimum period
Utilization set
Importance & Weight
Stability

Distribution Protocol dependent information

A. FRESCOR application model

Within FRESCOR, the application is a global entity enclos-
ing several Threads that access the system resources by means
of Virtual resources (Vres) residing in the Contract Layer.
Each Vres holds one associated contract. In distributed appli-
cations, this layer is also distributed and comprises the man-
agement of both, the processors and the network resources.
Several network contracts may be atomically negotiated as a
group, ensuring that they are either all accepted, or all rejected
as a whole. The contract negotiation for a given stream is

initiated at the sending node. If successful, the associated Vres
may be created in that node, or in some other node that may
be in charge of scheduling the network traffic.

In a distributed application, the FRESCOR framework con-
siders the network as just another resource that is managed
by contracts. Each of these contracts refers to one Stream
through which application threads exchange messages. Each
stream has a unique identifier mapped on the Contract id
and used as a stream descriptor by the application when
accessing the Contract Layer. Figure 1 shows the FRESCOR
distributed application model with a network resource high-
lighting just the network contracts under two possible sit-
uations: when a contract Virtual resource is created in a
transmitter node (Stream 1), or in a contract group situation
(Streams 2 .. (2+n)).

III. FTT-SE BASICS

The FTT-SE protocol was designed to support hard real time
applications using Switched Ethernet networks in a flexible
but predictable manner. It supports both time-triggered and
event-triggered communication semantics in two well defined
and temporally isolated communication subsystems, namely
the Synchronous and the Asynchronous Messaging Systems,
SMS and AMS, respectively [3].

The protocol is based on a master-slave paradigm, in which
a master controls the access to the network by the remaining
nodes in the system (slaves). This allows managing the com-
munication load submitted to the switch at each instant, thus
preventing overloads and maintaining a predictable behavior.

However, the master-slave control is carried out on a cyclic
basis, i.e., the master sends out one control message per cycle,
only, indicating which messages must be transmitted therein.
The cycle is called Elementary Cycle (EC) and it is triggered
by the master control message called Trigger Message (TM),
which is broadcast to all nodes.

The master holds the System Requirements DataBase
(SRDB) that contains, among other information, the current
communication requirements, and builds the traffic schedules
for each EC on-line. Changes to these requirements can be
carried out at run-time and are subject to an admission control
that guarantees continued timely communication.

The requirements tables for synchronous and asynchronous
message streams hold the following parameters, respectively:

SMi

(
Ci, Di, Ti, Oi, Si, {R1

i ..R
ki
i }

)
, i = 1..N

AMi

(
Ci, Di,miti, Si, {R1

i ..R
ki
i }

)
, i = 1..N

Ci is message i transmission time, Di is its deadline, Ti the
period, miti is the minimmum inter-transmission time and Oi

the offset. Both Di, Ti/miti and Oi are expressed as integer
numbers of ECs. Si is the sender node and {R1

i ..R
ki
i } is the

set of ki receivers for this message stream.
Finally, FTT-SE also provides mechanisms to synchronize

the application threads with their periodic communications.
This synchronization plus the use of offsets is the basis for the

37

so-called network-centric approach to the design of distributed
systems, which facilitates the synchronization of threads in
different nodes and the reduction of end-to-end delays.

IV. INTEGRATION OF FTT-SE UNDER FRESCOR
One important goal of the integration was to keep the

performance level of the FTT-SE real-time communication
services throughout the abstraction process associated with
the creation of a middleware. The FRESCOR framework was
selected as middleware because it facilitates achieving this
goal given its simple and generic application interface and
real time concerns. Moreover, its modular flexibility extends
the resource management to an holistic application perspective
which reduces the project design complexity.

This section describes how the FTT-SE protocol can be
integrated as a FRESCOR pluggable resource. This integration
allows abstracting away the network access from the applica-
tion perspective and it defines two sets of services, the negoti-
ation procedure and the communication access primitives. The
former handles the contract (re-)negotiations requested by the
application to change the Stream properties provided by the
network resource. Once a contract is accepted the application
may start using the respective communication Stream through
the services provided by the latter.

As referred before, the FRESCOR modules used when inte-
grating FTT-SE are the Core, Spare capacity and Distribution
modules. Each of these takes its role in the contract negotiation
with the parameters described in table I. The Distribution mod-
ule needs specific attention since it contains network protocol
dependent information. For the RT-EP distributed resource no
special parameters were required, thus the Core parameters
Minimum period and Maximum Budget were enough to carry
out the network management. However, FTT-SE includes
several features that require appropriate configuration and
management, which must thus be included in this module:

• Two communication triggering models are provided by
the network, namely time-driven and event-driven, which
must be defined in the contract specification;

• To take advantage of the multiple forwarding paths in the
network switch and still provide real-time guarantees, the
contract must include the specific switching path used
by each channel, i.e., the identification of the producer
and consumers involved and the switch ports they are
connected to;

• To exploit the explicit synchronization between time-
driven channels supported by the network, the contracts,
or contract groups, must include two additional param-
eters, one describing the Contract id of the channel
to synchronize with, and another specifying the desired
synchronization offset. If no synchronization is specified
the channel is considered as float and the network will
arbitrarily allocate relative offsets to the contract;

The integrated FRESCOR / FTT-SE architecture is sketched
in Fig. 2. The network contract negotiation procedure is
centralized in the FTT master node and it is handled by the
Master Contract Layer. This is a natural choice since the FTT

Fig. 2. Architecture overview

master centralizes all the real time requirements of current
communication channels and controls the network access.
The contracts are then reflected on the involved slave nodes.
The Slave Contract Layer handles network contract requests,
holds local contract copies and makes them available to the
application threads. This centralized approach is substantially
different from the one taken in the RT-EP implementation,
where the negotiation procedure is fully distributed requiring
every node to keep a consistent replica of all running contracts.

A. The FRESCOR / FTT-SE interface

The communication between the Master Contract Layer
and the Slaves Contract Layer, both for conveying negotiation
requests and publishing the contract copies, uses permanent
bi-directional channels between the master and each slave
node in the network, implemented with FTT-SE asynchronous
messages (AM).

The network contracts in the Master Contract Layer are
reflected in the FTT Master, in its Requirements Table (RT).
On the other side, the Slave Contract Layer keeps the copies
of its contracts, reflecting them in the respective FTT Slave, in
the Node Requirements Table (NRT). This layer also provides
interfaces to the application, to negotiate contracts and to
access the communication services, both synchronous (SM)
and asynchronous (AM).

B. Supporting the application interface

Figure 3 shows the FRESCOR common resource interface
and the objects involved in network contracts. The Negotiation
service allows the system to establish the required resource
reservations and, in this case, involves communication with

Fig. 3. FRESCOR interface for network contracts

38

Fig. 4. Negotiation steps

the Master Contract Layer. Upon a negotiation success, the
respective contract Virtual resource(s) is created/updated in
the Master Contract Layer and the Virtual resource copies
are created/updated in the Slaves Contract Layer. The Thread
Bind allows associating an application thread with a contracted
resource and provides access to the respective Vres copy. The
access to the contracted resource, a Stream in this case, is
made through an endpoint, which is created and bound to the
Vres by the Create & Bind Endpoint services. Finally, the
Send/Receive services allow the communication through the
respective endpoint.

The network Virtual resources in the contract layer must be
consistent with the communication parameters within FTT-SE
so that the protocol actually enforces the contracted commu-
nication parameters with its control mechanisms. Therefore, a
parameters daemon is used to keep such consistency.

V. INTERNALS OF THE CONTRACTING PROCEDURE

The establishment of network contracts with FTT-SE, as
referred before, requires an interaction between the Slave
Contract Layer of the involved nodes and the Master Contract
Layer. The process is triggered by the thread that manages
the contract or the contract group and its sequence diagram is
depicted in Fig. 4.

The request is enqueued in the Master Contract Layer until
it can be processed (Fig. 5). At that point, it is removed from
the requests queue and submitted for admission process, which
involves the admission control in the FTT-SE master. If the
contract is accepted, which may result in changes to other
contracts, the master updates the FTT-SE internal structures
and publishes all Vres that were updated. The respective slaves
receive this information and update/create the respective Vres
copies. Then, the master acknowledges the negotiation result.

VI. CONCLUDING REMARKS AND ON-GOING WORK

The FRESCOR framework has been proposed recently to
cope with the growing application complexity and interop-
erability requirements in embedded systems. The approach
followed by FRESCOR allows abstracting the management

Fig. 5. Master contract negotiation procedure

of the application resources, which are accessed through a
common interface based on contracts.

In this paper we discussed the integration of the FTT-
SE real-time communication protocol within the FRESCOR
contract layer framework. This framework efficiently exploits
the FTT-SE natural ability for dynamically adapting the net-
work resource usage while maintaining predictability. Another
positive aspect in this symbiosis is that the interface given by
the framework to the application can be commonly applied
together with other shared resources of the system.

Previously, only the RT-EP network protocol had been inte-
grated within the FSF/FRESCOR framework. Such protocol
works over a shared medium with a priority based event-
triggered messaging paradigm. The integration of FTT-SE
brings in the features of a different network paradigm and
topology, namely time-triggered and event-triggered communi-
cation over Switched Ethernet. We believe that the dynamism
of FTT-SE will impact positively on the efficiency of network
management in the FRESCOR framework. On the other hand,
the abstraction provided by FRESCOR will benefit the FTT-SE
protocol in terms of its usability and applications development.

Currently we are carrying out the temporal analysis of the
negotiation process. In the near future we plan to apply the
implementation herein described to an application that allows
illustrating its flexibility and negotiation capabilities.

REFERENCES

[1] N. Wang, D. Schmidt, K. Parameswaran, and M. Kircher, “Towards a
Reflective Middleware Framework for QoS-enabled CORBA Component
Model Applications,” IEEE Distributed Systems Online special issue on
Reflective Middleware (Vol. 2, No. 5), May 2001.

[2] M. Aldea et al., “FSF: A Real-Time Scheduling Architecture Framework,”
in 12th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’06). San Jose (CA, USA): IEEE, Apr. 2006, pp.
113–124.

[3] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing real-time communi-
cation over COTS Ethernet switches,” in WFCS’06: IEEE International
Workshop on Factory Communication Systems, 27 June 2006, pp. 295–
302.

[4] J. M. Martínez and M. G. Harbour, “RT-EP: A Fixed-Priority Real Time
Communication Protocol over Standard Ethernet,” in 10th International
Conference on Reliable Software Technologies, Ada-Europe. Springer,
June 2005, pp. 180–195.

39

CheckerMode : A hybrid scheme for timing analysis of modern processor
pipelines involving hardware/software interactions

Sibin Mohan and Frank Mueller
Dept. of Computer Science, Center for Embedded Systems Research,

North Carolina State University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu

Abstract
Real-time systems often require determinism to ensure

that task deadlines are met. Schedulability analysis provides
a firm basis to ensure that tasks deadlines are met, and for
this, knowledge of bounds on worst-case execution times
(WCET) of tasks is a critical piece of information. Static tim-
ing analysis derives these bounds on WCETs. A limiting fac-
tor for real-time systems design is the class of processors
that may be used. Contemporary processors with their ad-
vanced architectural features, such as out-of-order execu-
tion, branch prediction, speculation, and prefetching, can-
not be statically analyzed to obtain WCETs for tasks because
these features introduce non-determinism to task execution,
which can only be resolved at run-time. We introduce a new
paradigm which proposes minor enhancements to modern
processor architectures, which, on interaction with software
modules, is able to obtain tight, accurate timing analysis re-
sults for modern processors. To the best of our knowledge,
this method of hardware/software interactions to calculate
WCET results for out-of-order processors is the first of its
kind.

1. Introduction
Embedded systems are increasingly deployed in safety-

critical applications and environments, such as avionics,
power plants, automobiles,etc. The software used, in gen-
eral, must be validated . This traditionally amounts to check-
ing the correctness of the input/output relationship. Many
such systems also impose timing constraints, which, if vi-
olated, may result in fallouts that are dangerous to the envi-
ronment. Such systems are typically referred to asreal-time
systems. They impose timing constraints (”deadlines”) on the
computation to ensure that necessary results are provided on
time. The worst-case execution time (WCET) of each task is
one critical piece of information required by real-time sys-
tems designers to verify that tasks meet their deadlines.

Static timing analysis [3–7, 9] provides bounds on the
WCET. Thetighter that these bounds are relative to the ac-
tual worst-case times, the better the value of the analysis.Of
course, any tight bound has to besafein that it mustneverun-
derestimate the true WCET; it may only match or exceed it.

A serious handicap in performing static timing analysis
is the complexity of modern processors and their functional
units. Out of order (OOO) processing [8], branch predic-
tion [10] etc. introduce non-determinism to task execution
that cannot be resolved at compile time. Hence, designers of
real-time systems are often forced to use older, less compli-
cated and inherently less powerful processors. In this paper,
we attempt to bridge this gap by the use of theCheckerMode
infrastructure.

We propose minor enhancements to the micro-
architecture of future processors that will aid the pro-
cesses of obtaining tight WCET bounds. A ”checker mode”
is added to processors that will, on demand, capture vary-
ing details of the processor state (called “snapshots”).
This information is communicated to a software mod-
ule that stores the snapshots and also drives the execution
of the processors along statically determined paths to cap-
ture accurate timing information for each of them. The
snapshots are used to track back along the various execu-
tion paths and to restart along a different path if necessary.
The execution times obtained for each of the paths is an-
alyzed and combined by the software driver to calculate
an accurate WCET for the entire module/program. Deci-
sions on where to obtain snapshots, the details required fora
snapshot,etc., are made by the software ”driver”.

The CheckerMode concept (implemented on an enhanced
SimpleScalar processor simulator [2]), widens the scope of
processors that may be used in a real-time system. Contem-
porary processors with state-of-the-art functionality and per-
formance may subsequently be used in a real-time system.
We believe that this also changes the landscape for timing
analysis as more accurate results can be obtained on mod-
ern pipelines without loss of functionality. To the best of
our knowledge, this method is the first of its kind in using
a hardware/software co-design technique to obtain accurate
WCETs for modern, out-of-order processors.

This paper is organized as follows. Section 2 discusses
the CheckerMode idea, while section 3 talks about the ex-
perimental setup and preliminary results. Section 4 summa-
rizes the work.

2. CheckerMode
We use hardware/software interactions to perform WCET

analysis of contemporary processors. We propose enhance-
ments to embedded processors that, in addition to executing
software normally (in “deployment” mode), are capable of
executing in a novelCheckerModethat supports timing anal-
ysis. The CheckerMode provides cycle-accurate bounds on
the WCET by assessing alternate execution paths in a pro-
gram. In deployment mode, a processor executes along just
one path following a conditional branch depending on in-
put data. In CheckerMode a processor executes all alternate
paths, one at a time, following each conditional branch in or-
der to find the path with the largest execution time. Before the
execution of each alternate path, the original execution con-
text, named “snapshot” (caches, branch history tables etc.),
is restored to correctly simulate the effect of alternations in
isolation from one another. The timing information as well

40

Checkpoint

Current PC

Start/Stop PCs

Exec Cycles

CheckerMode

Regs BPred

I$ D$

ROB

Pipeline

Path 1

proc. state
cycles

proc. state
cycles
Path 2

proc. state
cycles
Path n

Timing Analyzer

Start PC

Stop PC

Path Exec Time

Latest Checkpoint

Tuning Knob

Driver

Checkpoint 1
PC A

PC X
Checkpoint c

Checkpoint Manager

WCET

Software Side

Hardware Side

Figure 1. CheckerMode Design for High-Confidence WCET Analy sis

as the “state” of the processor are combined when alternate
paths join. The combination (“merge”) is performed such
that the state that results from the combination must not un-
derestimate the execution time of the alternate paths, or even
the future execution of the task. These low-level WCET re-
sults are propagated inter-procedurally in a bottom-up fash-
ion until the WCET for an entire task has been computed.

We will represent input-dependent register values as
“NaN” (not-a-number) values. Operations on unknown val-
ues are straightforward: if any input is unknown then the out-
put is also unknown, even for condition codes at the bit level.
A branch condition based on an unknown value then indi-
cates a need to consider alternate paths. Conversely, concrete
(known) values are evaluated as always, and input-invariant
branches will result in timing of only the taken execution
path. We will alter the semantics of execution (for instruc-
tions that depend on input-dependent or memory-loaded op-
erations) in CheckerMode to include this NaN value.E.g.,
addition will now be rewritten as:

rresult =

{

NaN if ra = NaN
∨

rb = NaN

ra + rb otherwise

Hence, any operation with NaN as one of the operands
will result in NaN (unless the result is independent of that
particular operand, fore.g., multiplication with0 will always
result in0).

2.1. Overview of the framework
The hardware-supported CheckerMode is complemented

by software analysis to govern execution (Figure 1). The
analysis controller (or driver) steers execution along dis-
tinct execution paths,i.e., it indicates which direction a
branch along the path should take till all paths have been tra-
versed. The timing information and the states of the proces-
sor obtained for each possible path are then used by a “tim-
ing analyzer” to obtain the WCET for the entire task (or even
certain code sections).

Processor enhancements:The embedded hardware is
also enhanced to support access to the unit-level context of
hardware resources, which can be saved and restored. The
analysis phase restores a context prior to examining a path
and then saves the newly composed context at the end of a

path, together with the timing of the path. The novelCheck-
erMode unit of the processor supports the following func-
tions (right-hand side of Figure 1):(a) Capturesnapshotsof
the processor state and communicate them to the software
controller. Snapshots capture the current state of the pipeline,
functional units, caches, ROB, etc.(b) Reset the processor to
a previously saved state. The state of the pipeline, caches,
functional units,etc., is overwritten with information from
the stored checkpoint.(c) Start and stop execution between
arbitrarily provided program counter (PC) values. This in-
cludes support to calculate the number of cycles elapsed be-
tween the execution of the given start and stop PCs. The
CheckerMode tracks the execution time for a given path (de-
lineated by start and stop PCs) and is controlled by the driver
on the software side.

Software controller: The left-hand side of Figure 1 il-
lustrates the various components that make up the software
side of the design. It consists of the following components:
(a) Timing Analyzer (TA): breaks down the task code into
a control-flow graph (CFG) and then extracts path informa-
tion from it. It is able to determine the start of alternate ex-
ecution flows – points where snapshots must be obtained. It
also provides the start and stop PCs to the driver and obtains
the WCET and processor state for that particular path from
the driver.(b) Checkpoint Manager (CM): maintains vari-
ous snapshots that have been captured as well as the PCs at
which they were obtained. CM abstractions can be integrated
into the processor as depicted in Fig. 1, or, alternatively,into
the driver within the software controller.(c) Driver: controls
the hardware side of the system. It instructs the hardware on
when to start and stop execution, when snapshots must be
captured, and when the state of a processor must be reset to
a given snapshot.

The input to the TA is the executable of a task, which is
then converted to internal representations. Start and stopPCs
provided by the TA encapsulate a single path. The TA, the
driver, and the CM interact to decide which checkpoint cor-
responds to which path, which PC,etc., and thereby con-
trol program execution. The TA is responsible for obtain-
ing the final WCET for the entire program as well for var-
ious program segments (functions/scopes). It “combines”
the information from various paths (execution time/pipeline

41

1

2 3

4

(a) CFG

Path SimIO delta SupIO delta OOO delta

BB1 82 BB1-BB0=56 66 BB1-BB 0=4 47 BB1-BB0=1
BB1,2 114 BB1,2-BB1=32 94 BB1,2-BB1=28 59 BB1,2-BB1=12
BB1,3 241 BB1,3-BB1=159 131 BB1,3-BB1=65 92 BB1,3-BB1=45

BB1,2,4 151 BB1,2,4-BB1,2=37 97 BB1,2,4-BB1,2=3 61 BB1,2,4-BB2=2
BB1,3,4 278 BB1,3,4-BB1,3=37 134 BB1,3,4-BB1,3=3 94 BB1,3,4-BB1,3=2

(b)Measured Cycles for Aggregate Technique
Figure 2. Control Flow Graph and Measured Cycles for Aggrega te Technique

state/etc.) for this purpose.
Driver / analysis controller and tuning: The driver is

responsible for controlling processor operations. Besides di-
recting the execution of the code on the pipeline, it relays
instructions from the TA, such as when to capture/restore
checkpoints. The driver represents the interface between the
hardware and software components and provides reconfig-
urability in terms of the amount of information to capture
for the pipeline state and the state of associated functional
units. We propose to provide avirtual “knob” that will al-
low real-time systems designers to tune the analysis, thereby
trading off accuracy with overhead. We intend to explore the
full design space of tuning options to assess which processor
state information is more vital for WCET accuracy (and anal-
ysis performance) than some others. The more information
is checkpointed, the tighter and more accurate WCET val-
ues will be. Conversely, less information will lead to a looser
and more conservative WCET bound. Of course, greater de-
mands on the amount of information being captured will lead
to a slower WCET analysis whereas less information speeds
up the analysis.

Reducing analysis overheads:We can reduce the com-
plexity of determining WCETs bypartial execution of
loops such that the analysis overhead is independent of the
number of loop iterations. Using our prior approach of a fix-
point algorithm to determine a stable execution time for the
loop body [1], we can steer loop executions such that paths
of a loop body are repeatedly executed until a stable value
is reached. The controller records the decaying execution
times for each iteration up to the fixpoint using the hard-
ware CheckerMode. When reaching the fixpoint, the WCET
of the remainder of loop iterations up to the loop bound is
calculated by a closed formula based on the fixpoint value.
Typically, loops reach a fixpoint after only 2–4 iterations,
which implies that this partial execution can reduce the over-
head of WCET analysis significantly. Thus, the complexity
of WCET analysis isindependent of the number of itera-
tions, i.e., it does not depend on the actual execution time of
analyzed code.

3. Experimental setup and Results
We have prototyped some of the key components of our

design in the SimpleScalar processor simulator [2]. This
cycle-accurate simulator can be configured for the various
processor and branch prediction schemes mentioned in the
previous section. Current enhancements include path-level
timing capabilities and snapshot/restore of selected state in-
formation within the processor.

We used SimpleScalar in three configurations:(a) Simple-

IO (SimIO) simulates a simple, in-order (IO) processor
pipeline with pipeline width 1, instruction issue in program
order); (b) Superscalar-IO(SupIO)with a pipeline width
(from fetch to retire) of 16 and in-order instruction execution;
(c) Out-of-order (OOO)execution with the same pipeline
width as in Superscalar-IO.

Notice that instructions are retired in order, even for OOO.
Execution time for paths is measured using four different
techniques, extending a basic block (BB) to paths (sequences
of consecutive BBs):(a) Shortmeasures the execution time
for a singular BB, starting from the time thatany instruction
in the BB moves into theexecutestage of the pipeline and fin-
ishing when the last of instruction of the BB exits from the
retire stage;(b) Path-Shortcaptures the execution time for
paths (concatenated BBs) using the “short” technique so that
timing starts at the first BB and ends with the last BB in the
path;(c) Program-Aggregateincludes the time from the start
of the execution (main function) to the end of a BB in the path
being timed, starting when the first instruction in the main
function isfetchedand finishing when the last of the path ex-
its from theretire stage;(d) Path-Aggregatecaptures the time
for concatenated paths using the aggregate technique so that
timing starts at the first BB and ends with the last BB of path.

The results obtained for the “short” and “path-short” tech-
niques (numerical details omitted due to space) show that
timings for the processor modes SimIO and SupIO accu-
rately reflect the actual WCET bounds, both for single BBs
and paths. However, the OOO results exceed those of Su-
pIO, due to early out-of-order execution of some instructions
in parallel to other instructions from prior BBs in the path.
Even timing multiple BBs of a path in sequence does not al-
leviate this problem. In contrast, the “aggregate” technique
(Figure 2(b)) reflects the time from instruction fetch (instead
of execute), which addresses the above problem of early ex-
ecution by some instructions. It shows a strict ordering of
SimIO ≥ SupIO ≥ OOO, as expected by the amount
of instruction parallelism, since time is measured from the
first fetch of an instruction. The differences between paths
(“delta”) provide a bound on the number of cycles for the
tail BB in the path excluding any pipeline overlap with prior
BBs. Hence, these delta values can be used to assess the
amount of cycles attributed to specific BBs. They also ad-
here to the same strict ordering. In general, such timings are
only valid in the same execution context / path,i.e., differ-
ent BB sequences of one path may influence a subsequent
BB in the control flow.

Our objective is to leverage path timings under the “path-
aggregate” technique as a refinement to the “aggregate” tech-
nique discussed so far. Consider the construct depicted in

42

Path SimIO SupIO OOO
+ o δ + o δ + o δ

LLL 453 443 10 291 193 98 183 123 60
LLR 580 570 10 328 230 98 216 156 60
LRL 580 570 10 328 230 98 216 156 60
LRR 707 697 10 365 267 98 249 189 60
RLL 580 570 10 328 230 98 216 156 60
RLR 707 697 10 365 267 98 249 189 60
RRL 707 697 10 365 267 98 216 189 60
RRR 834 824 10 402 304 98 282 222 60

Table 1. Program-Aggregate Cycles (3 Itera-
tions)

Figure 2(a) embedded within a loop (dashed vertex) such that
consecutive executions of paths can be assessed.E.g., within
one iteration, the L-left (BB 1,2,4) and R-right (BB 1,3,4)
paths are timed; within two iterations, concatenations of all
permutations for these paths are timed (L-L/L-R/R-L/R-R);
and so on for three and four iterations. Since this search space
grows exponentially with the number of alternate paths and
loop iterations, we propose to devise a bounded technique to
limit the path space in depth and breadth.

Table 1 depicts the results for 3 iterations of this loop
around the left (L) or right (R) paths for the 3 processor mod-
els. It also distinguishes path composition without overlap
(+) and with overlap (o), where the former is equivalent to
draining the pipeline while the latter captures continuousex-
ecution. The difference between the compositions is depicted
asδ and indicates constantδ values for all processor mod-
els regardless of the paths executed. (D-caches are disabled
here.) More significantly, early results within our experimen-
tation environment indicate that 2-4 iterations generallysuf-
fice to reach a fix point. After that point, concatenation of an-
other iteration results in a constant increase in cycles forthis
path that does not change for the remainder of the loop. For
instance, a 2-path experiment (omitted here) resulted in ex-
actly half theδ values of the 3-path experiment, which rein-
forces the claim about reaching a fix point.

4. Conclusion
We have outlined a “hybrid” mechanism for perform-

ing timing analysis that utilizes interactions between hard-
ware and software. This “CheckerMode” concept provides
the foundation to make contemporary processors predictable
and analyzable. These higher-end microprocessors can safely
be used in real-time systems. Current trends in microproces-
sor features indicate that our proposed hardware modifica-
tions are realistic [11]. Once fully implemented within the
SimpleScalar simulator, the CheckerMode unit will have the
ability to drive execution along given program paths and also
capture and writeback processor state to/from snapshots. It
will also be able to accurately gauge the execution time for
a given program path. We believe this work will enhance the
choices available to real-time systems designers. The Check-
erMode concept will provide them with the ability to use cur-
rent and future microprocessors in their systems and utilize
a hybrid of static and dynamic timing techniques to validate

WCETs.

References
[1] R. Arnold, F. Mueller, D. B. Whalley, and M. Harmon. Bound-

ing worst-case instruction cache performance. InIEEE Real-
Time Systems Symposium, pages 172–181, Dec. 1994.

[2] D. Burger, T. M. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar tool set. Technical Report
CS-TR-1996-1308, University of Wisconsin, Madison, July
1996.

[3] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley, and M. G.
Harmon. Bounding pipeline and instruction cache perfor-
mance. IEEE Transactions on Computers, 48(1):53–70, Jan.
1999.

[4] S. Malik, M. Martonosi, and Y.-T. S. Li. Static timing anal-
ysis of embedded software. InProceedings of the 34th Con-
ference on Design Automation (DAC-97), pages 147–152, NY,
June 1997. ACM Press.

[5] S. Mohan, F. Mueller, W. Hawkins, M. Root, C. Healy, and
D. Whalley. Parascale: Expoliting parametric timing analysis
for real-time schedulers and dynamic voltage scaling. InIEEE
Real-Time Systems Symposium, pages 233–242, Dec. 2005.

[6] S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing anal-
ysis for sensor network nodes of the atmega processor family.
In IEEE Real-Time Embedded Technology and Applications
Symposium, pages 405–414, Mar. 2005.

[7] F. Mueller. Timing analysis for instruction caches.Real-Time
Systems, 18(2/3):209–239, May 2000.

[8] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. InISCA, pages 206–218,
1997.

[9] P. Puschner and C. Koza. Calculating the maximum execution
time of real-time programs.Real-Time Systems, 1(2):159–
176, Sept. 1989.

[10] Smith, J. E. A study of branch prediction strategies. In
Proc. 8

th International Symposium on Computer Architec-
ture, pages 135–148, Minneapolis, 1981.

[11] B. Sprunt. Pentium 4 performance monitoring features.2002.

43

Applying Colored Petri Nets to Develop Real Time
Routines and Procedures

Fabricio Kenjy Morita, Osamu Saotome, Denis Silva Loubach and Giovani Dias
Electronics & Computer Engineering Dept.

Brazilian Aeronautical Institute of Technology
São Jośe dos Campos, S̃ao Paulo, Brasil

e-mail: {fkmorita, osaotome}@ita.br, dloubach@ieee.org, giovani.d@uol.com.br

Abstract— On engineering world one can see many systems,
softwares, and tools, but altogether it does not have all necessary
resources to develop and debug a good real time embedded
systems - RTES without too many errors.

Petri Nets comes demonstrating to be an alternative and a
good tool to help understanding complex systems. Among them
the critical real time embedded systems are of our main concern.

This paper shows an academic case study of the Brazilian
Aeronautical Institute of Technology (Instituto Tecnoĺogico de
Aeronáutica - ITA) graduate students. That work tackles both
Petri Nets and RTES. Recently, the National Space Agency
(Agência Espacial Brasileira - AEB) and the National Institute
for Space Research (Instituto Nacional de Pesquisas Espaciais -
INPE) had launched an student satellite program called ITASAT.
The main program goal is to build up an experimental scientific
small satellite.

ITASAT students are using Petri Nets tool to aid development
and debugging some satellite subsystems like on-board data
handling - OBDH and attitude and control determination - ACD.

This program aims to adopt a new software and hardware
architecture. Real-Time Executive for Multiprocessor Systems -
RTEMS was adopted as real time operating system and Blackfin
processor was chosen as on-board computer test platform.
RTEMS is still being tailored to be embedded in Blackfin. Then,
Petri Nets were adopted as testing tool of those systems.

I. I NTRODUCTION

The National Space Agency (Agência Espacial Brasileira
- AEB) and Brazilian Institute for Space Research (Instituto
Nacional de Pesquisas Espaciais - INPE) had launched an
student satellite program so-called ITASAT [1]. That program
involves some brazilian universities in order to make an
experimental small satellite. Among the universities is found
the Brazilian Aeronautical Institute of Technology (Instituto
Tecnoĺogico de Aerońautica - ITA). Some of the main goals
proposed to ITASAT Program, is the merging of the attitude
control on-board computer, and the data handling computer
in just one on-board computer. The use of new hardware and
software technologies were comprised too.

So, it was defined starting with one essencial functionality
to a satellite, the attitude control & data handling - ACDH.

The ACDH is a satellite subsystem which was programmed
to verify and control satellite orbit. Thus it was necessary
to study some motors, sensors, controls and programming
languages to accomplish this subsystem and program system
control.

To help developing the software Petri Nets were used. It
is a graphical and mathematical modelling tool which can
be applied to model a variety of systems types and become
possible system verification [2], [3]. Embedded systems are
a special kind of computer system which is scalable on both
hardware and software. It must satisfy strict requirements of
functionality, reliability, cost, volume, and power consumption
of a particular application.

It is known that real time embedded system development
has some critical constraints. Then developing and debugging
it without tools are quite impossible. These constraints can
be better understood by using graphical languages which
shows all dynamic process and events occurring during system
execution. Colored Petri Nets - CPN has been chosen because
it is considered the complete one. Some high level languages
commands can be inserted on it. Using CPN a new RTEMS
port is still being developed based on Blackfin platform.

In this paper RTEMS, Blackfin structures, and ACDH
subsystem are shown.

II. PETRI NETS

On next two subsections Colored Petri Net is presented.

A. Colored Petri Nets

Colored Petri Nets - CPN are considered the most complete
type of Petri Nets. CPN has colors which does not means
just colors or standards. Actually they represent complex data
types, using color nomenclature to refer distinction possibili-
ties among tokens. CPN has different notations for places, arcs,
and transitions, related to ordinary Petri Nets. For each one of
those, it has objects configurations, data types, and conditional
codes which can be associated with. Furthermore in the places
data types, tokens quantity, and colors can also be associated.
That helps understand and discern how processes works and
how data pass through. On arcs can be defined tokens quantity,
data types, restrictions (high level languages code) which are
passing through them. Finally, transitions timers and data types
can be associated too.

B. Colored Petri Net Tools

To create and simulate diagrams system tools are necessary.
To perform that, CPN tools were used. It is a tool to simulation
and analysis. Its Graphical User Interface - GUI is based on

44

advanced interaction techniques, such as toolglasses, marking
menus, and bi-manual interactions [4].

Some feedback facilities provide contextual error messages
and indicate dependency relationships between net elements.
Tool features increment syntax and logical checking to added
code which take place while a net is being constructed. A
fast simulator efficiently handles both un-timed and timed
nets. Both full and partial state spaces can be generated
and analyzed, and a standard state space report contains
information such as bounded properties and liveness properties
[5].

Functionality of the simulation engine and state space
facilities are similar to the corresponding components in
Design/CPN, which is a widespread tool for CPN [4].

III. R EAL TIME SYSTEMS

On next section RTEMS is presented with a little much
details. After, some Blackfin main features is shown.

A. Real-Time Executive for Multiprocessor Systems - RTEMS

Real-time embedded systems are found in practically every
facet of our everyday lives. Today there are systems ranging
from the common telephone, automobile control systems, and
kitchen appliances, to complex air traffic control systems,
military weapon systems, and production line control including
robotics and automation [6]. However, in the current environ-
ment of rapidly changing technology, it is difficult to reach
consensus about real-time embedded system definition.

Hardware costs are continuing to rapidly decline while at
the same time it is increasing in power and functionality. As
a result, embedded systems which were not considered viable
two years ago, are suddenly a cost effective solution. In this
domain, it is not uncommon for a single hardware configu-
ration to employ a variety of architectures and technologies.
Therefore, it is possible to define an embedded system as any
computer system which is built into a large system consisting
of multiple technologies such as digital and analog electronics,
mechanical devices, and sensors.

Even though hardware platforms becomes powerful, most
of all embedded systems are critically dependent on the real-
time software embedded in it. Regardless of how efficiently
the hardware operates, the performance of the embedded real-
time software determines the success or not of a system. As
the complexity of the embedded hardware platform grows, so
does the size and complexity of the embedded software [6].

There are RTEMS ports for many different processor plat-
forms like ERC32, ARM, m68K, among others, but not to
Blackfin yet. Then, tailoring RTEMS to make a port to embed
on Blackfin processor was first task. This port has many
configurations to use on ITASAT project. It was necessary
to create and develop a lot of procedures [7].

Error discovery process along RTEMS is a highly important
task. Tailoring is directly on to the fact of being a critical
system of high risk and has as premise management of
concurrent and parallel processes.

It is needed to make one system diagram and insert all
necessary parameters, constraints and data types. One may has
different approach and ideas about how to solve the problem
or errors.

B. Blackfin processor structure

Blackfin processor is a powerful embedded processor. It is
of easy access considering the benefit/cost rate, and there are a
lot of available material over the Internet [8]. Blackfin is a new
breed of 16-32-bit embedded processor designed specifically
to meet the computational demands and power constraints
of nowadays embedded audio, video and communications
applications. Based on the micro signal architecture - MSA
jointly developed with Intel Corporation. These processors
combine a 32-bit reduced instruction set computer - RISC.
The instruction set of Blackfin processor family is comprised
by small and simple instruction set which is executed directly
by processor without interpreter (microcode) interventions.

This instruction set makes use of dual 16-bit multiply
accumulate - MAC signal processing functionality, along with
the ease-of-use attributes found in general-purpose micro-
controllers. All Blackfin processors offers fundamental ben-
efits to the system designer which includes:

• High-performance signal processing and efficient control
processing capability enabling a variety of new markets
and applications; and

• Dynamic power management - DPM enabling the system
designer to specifically tailor the device power consump-
tion profile to the end system requirements, and an easy
to use mixed 16-/32-bit instruction set architecture and
development tool suite ensuring that product development
time is minimized.

It also offers a variety of benefits most often found on RISC
control processors. These features include a powerful and flex-
ible hierarchical memory architecture, superior code density,
and a variety of micro-controller-style peripherals including
items such as 10/100 ethernet MAC, universal asynchronous
receiver/transmitter - UARTS support, watchdog timer, real-
time clock, and a glueless synchronous and asynchronous
memory controller. All of these features provides the system
designer with a great deal of design flexibility while minimiz-
ing end system costs.

IV. CASE STUDY

Inside the aerospace context, attitude control means control
of angular position and rotation of the satellite, either relative
to the object that it is orbiting, or relative to the Earth Planet
[9].

On flight dynamics, the orientation is often described us-
ing three angles called yaw, pitch, and roll. These angles
are controlled by satellite attitude control system, according
preprogrammed coordinates. That is for where the satellite will
have to be pointing. Thus to analyze these coordinates other
resources are required, as for example sensors, actuators, etc.

To work with sensors, it is needed to choose and analyze
among diverse models, types and results. The sensor named

45

3DM-GX1, manufactured by MicroStrain, denominated by
Gyro Enhanced Orientation Sensor are being used in this work.
Thus it is used on the first stage of satellite system prototype
[10].

On next steps, solar sensors will be used on integrated
housekeeping unit - IHU to help determine position of the
spacecraft. This is not only for normal operation in the three-
axis-stabilized mode, but also to orient the satellite for rocket
firings. Some accuracy is required.

The sun sensor uses a special-purpose photocell from Hama-
matsu Photonics Co. called position-sensitive detector - PSD.
That sensor housing acts as a pinhole camera, so the sun
forms a small spot of light on the surface of the PSD. It
has four electrical contacts, two of that determines the spot
position along the ’X’ axis and two for the ’Y’ axis. Electronics
assembly converts the currents from the four contacts into a
pair of voltages that represents the sun position in the ’X’ and
’Y’ directions. These signals are sent to an analog-to-digital
converter - ADC on IHU for processing [11].

Parallel of it there are actuators to correct functioning of
satellite attitude. They are responsible to move the satellite
to correct path. Reaction wheels is being developed with a
brushless DC-servomotor with its respective servo amplifier
control board. This motor has a nominal voltage of 24 volts (V)
and no-load speed of 18000 rotation per minute - RPM. It has
also hall effect sensors integrated which are directly connected
over the servo amplifier control board for a better control of
the output voltage. The servo amplifier control board has an
analog control and its input voltage varies from -5V to +5V. It
has to control motors with nominal voltage up to 56V and no-
load speed up to 40000 RPM. To connect BlackFin to servo
amplifier control board it will be required other devices like a
digital to analog converters - DAC or a digital potentiometer. It
will be used Blackfin programmable flags - PFs to accomplish
the connection with this device. A motor-speed sign of monitor
is available on servo amplifier control board. It will be used
on attitude control development.

RTEMS is the real time operating system embedded on
Blackfin and both are responsible for control the whole sub-
system surrounding the small satellite. Figure 1 illustrates the
system behavior of satellite attitude control, modelled with
Colored Petri Nets.

Using CPN for development system charts, it is possible
to visualize the whole processes and functionalities which
surround satellite system. Thus, it is also possible to develop
systems through oriented objects and abstraction layers.

Figure 1 shows the satellite and its processes and sub-
systems. Thus it is possible to divide the system in small
subsystems or blocks and design its diagrams on CPN tools
before making development processes. Searching for errors not
predictable, for example logical errors, invalid conditional er-
rors, validation and integration, are activities strongly executed
through Colored Petri Nets concepts.

Figure 2 shows a prototype scheme comprising Blackfin,
RTEMS, and ACDH application and some of its processes. In
this case the real time operating system RTEMS is embedded

Fig. 1. Illustration of RTEMS and its subsystem controls, modelled with
Colored Petri Nets

in a Blackfin processor. The attitude control and data handling
is running on RTEMS accessing some system functions.
ACDH control sends a message asking for sensor data, and
after processes this data. The processed data is returned to
ACDH control. If this data is different than pre-programmed
data, commands are sent to actuators and the orbit is corrected
in on each one of the angles (row, pitch, and yaw).

Fig. 2. Snapshot of the application

V. CONCLUSION

This work is still being developed at the same time of stud-
ies about real time embedded systems, RTEMS and Blackfin

46

platform structure.
The attitude control and data handling - ACDH development

process is being done with the help of Petri Net tools.
Creating subsystem diagrams on Colored Petri Nets - CPN

makes the integration process less complex, once subsystems
has interdependent functionalities over the real time operating
system and hardware platform structures. System routines are
dependent of RTEMS and Blackfin due to management mech-
anisms which controls the hardware part through software.

By using CPN modeling, dependencies will be graphically
visible. This strongly helps development tasks and error de-
tection activities.

This work is helping each team member to understand
functionalities of the whole satellite. Without this approach
adopted here, students vision would be limited because they
have worked on only one or two subsystems. Thus, through
the use of subsystems diagrams with CPN, system behavior
can be understood much easily.

ACKNOWLEDGMENTS

The authors of this paper would like to thank the follow-
ing institutions for their support to this work: the Brazilian
Aeronautical Institute of Technology (Instituto Tecnológico
de Aerońautica - ITA); the Brazilian Space Agency (Agência
Espacial Brasileira - AEB); and the Brazilian National Institute
for Space Research (Instituto Nacional de Pesquisas Espaciais
- INPE).

REFERENCES

[1] I. Group, “Itasat student satellite program,” World-Wide Web document,
2007. [Online]. Available: http://www.itasat.ita.br/

[2] C. A. Petri, Communication with Automata. New York: Griffiss Air
Force Base, Tech. Rep.RADC-TR-65-377, vol. 1, Suppl. 1, 1966.

[3] ——, Kommunikation mit Automaten. Bonn: Institut fr Instrumentelle
Mathematik, Schriften des IIM Nr. 3, 1962.

[4] C. Group, “What is cpn tools,” World-Wide Web document, 2006.
[Online]. Available: ”http://wiki.daimi.au.dk/cpntools/cpntools.wiki”

[5] T. Murata,Petri Nets: Properties, Analysis and Applications. Campinas,
SP - Brasil: Proceedings of the IEEE, Vol. 77, pp. 541-580., 1989.

[6] RTEMS, “Real time operating system for multiprocessor systems,”
World-Wide Web document, 2006.

[7] R. Group, “Blackfin configuration files,” World-
Wide Web document, 2006. [Online]. Available:
http://www.rtems.com/ftp/pub/rtems/testing2/4.8/redhat/7.3/SRPMS/

[8] A. D. Group, “Blackfin processor architecture overview,”
World-Wide Web document, 2006. [Online]. Available:
http://www.analog.com/processors/blackfin/overview/archOverview.html

[9] W. Group, “Attitude control,” World-Wide Web document, 2006.
[Online]. Available: ”http://en.wikipedia.org/wiki/Attitudecontrol”

[10] MicroStrain, “3dm-gx1 detailed specifications,” World-Wide Web
document, 2007. [Online]. Available: http://www.microstrain.com/

[11] R. Zimmermann, “Sun sensor,” World-Wide
Web document, 2006. [Online]. Available:
”http://www.amsat.org/amsat/sats/phase3d/sunsensor.html”

[12] M. M. A. C. G. CHIOLA, G., “Generalized stochastic petri nets: A
definition at the net level and its implications.” 1993.

[13] R. N. COOLAHAN, J.E.,Timing Requirements for Time-Driven Sys-
tems Using Augmented Petri Nets.IEEE Transactions on Software
Engineering, 1983., 1983.

[14] H. P. S. R. M. JENSEN, K.,Hierarchies in Coloured Petri Nets, Lectures
Notes in Computer Science.H, Vol.483, 313-341, Springer-Verlag.,
1990.

[15] K. JENSEN,Coloured Petri Nets: Basic Concepts, Analisys Methods
and Pratical Use. New York, v. 1, Springer-Verlag., 1992.

[16] P. N. World, “Petri nets world,” World-Wide Web document, 2006.
[Online]. Available: http://www.daimi.au.dk/PetriNets/

[17] J. R. Norris,Markov Chains. Cambridge: Cambridge University Press,
1998.

[18] P. R. Maciel,Introduc̃ao s Redes de Petri e Aplicacões. Campinas, SP
- Brasil: X Escola de Computacão, Campinas SP, 1996.

[19] R. Jain,The Art of Computer Systems Performance Analyses. New
York, NY, April 1991: Wiley - Interscience, 1991.

[20] P. D. A. Hennessy, J. L.,Computer Architecture: A Quantitative Ap-
proach. 3rd Edition, Morgan Kaufmann Publishers, 2003.

[21] C. Girault and R. Valk,Petri Nets for Systems Engineering: A Guide
for Modeling, Verification and Application. Verlag: Springer, 2003.

47

Testing Issues in Empirical Reliability Evaluation of
Embedded Real-Time Systems

Falk Salewski, Stefan Kowalewski

Abstract— Embedded systems containing software are
nowadays used more often in safety-critical real-time appli-
cations. Thus, the reliability of their software components
becomes an important issue. Established results about
software reliability, especially for the different combi-
nations of software and hardware components used in
embedded systems, are rare. Accordingly, we see a great
need for empirical evaluation in this context and conducted
several experiments at our institute. In this paper, the
particularities of empirical reliability evaluation in the
domain of embedded real-time systems are presented.
Testing requirements play a major role in this context and
should be considered not only for the experiment design
but also for system design in general.

I. I NTRODUCTION

EMBEDDED systems are taking over more and more
functions in industry and daily life. Failures in their

software can now directly lead to inconvenience or even
serious accidents if these systems do not meet their
requirements. In order to prevent hazards these systems
have to be evaluated according to their reliability. In case
of major design decisions and changes (e.g. software or
hardware architecture, design processes) the influence of
these measures on the reliability of the system’s software
and the overall system is of great interest. In the case of
hardware (mechanics and electronics) the reliability of a
system can be determined from the system’s architecture
and the reliability of the components used. However,
not many established results on influences regarding
software reliability are available [7], not to speak of
the specialties of software found in embedded systems
as real-time requirements and efforts caused by hard-
ware/software interdependences. For this reason, empir-
ical reliability evaluation of software in these systems
becomes an important issue. Due to specific properties of
embedded systems, this evaluation is often challenging.
These specialties of empirical evaluation in embedded
systems will be discussed in this paper.

All authors are with the Embedded Software Laboratory - Chair
of Computer Science XI, RWTH Aachen University, 52074 Aachen,
Germany,(surname)@informatik.rwth-aachen.de

II. T HE NEED FOREMPIRICAL EVALUATION

As mentioned before, not many well-founded results
exist for software reliability in the realm of embedded
systems. Systems are designed according to best practice
approaches. In some cases this may be critical, as some
approaches are based on wrong assumptions. One exam-
ple is the improvement of reliability by using redundant
structures. This structure will only improve the relia-
bility if these redundant units fail independently. When
transferred to software design one method to improve
this independence recommended by the IEC61508 [3] is
the so called N-version programming. In this approach
software for redundant units is developed by different
teams. However, 20 years ago Knight and Leveson have
already shown with an empirical experiment that even
two independent teams of software engineers tend to
make the same errors [4]. First steps in handling this
dependency structure are based either on analyzing the
fundamental domain of development or on prediction of
failure probabilities as described in [1]. One of the for-
mer methods is ”forced diversity” introduced by [5] with
an empirical evaluation in [6]. An experiment applying
the idea of forced diversity by using different hardware
platforms (microcontroller and FPGA) to achieve diver-
sity in the different versions has been conducted at our
institute. As a result of this experiment, dependencies in
failure behavior could be found, even between systems
developed on different hardware platforms (see [10] for
details).

Beside the fact that even improved methods of N-
version programming do not automatically lead to mod-
ules with independent failure behavior, a redundant struc-
ture created this way will probably still have an improved
reliability in comparison to a single module. However, it
can be questioned if this improvement justifies the effort.
Alternatively, the second team could be used for testing
and/or review only or techniques as pair programming
could be applied. In order to compare the efficiency of
different methods of reliability improvement quantitative
results are needed.

48

The evaluation of N-version programming is an exam-
ple for the importance of empirical evaluations. Other
aspects could imply the impact of design processes,
programming paradigms, programming languages, oper-
ating systems, and software and hardware architecture
on the reliability of the corresponding software.

III. E MPIRICAL EVALUATION - WHERE AND HOW?

One type of empirical evaluation is the formal experi-
ment [2]. These experiments have to be planned carefully
and a few challenges have to be met. This includes
a task being complex enough to be representative but
easy enough to take only reasonable time to complete.
Furthermore, a sufficient number of representative partic-
ipants is needed. These two aspects usually do not allow
to perform experiments in industrial settings, although
they probably offer a more realistic environment accord-
ing to programmers experience, tools available and the
task itself.

Another option are experiments in lab courses and
projects at universities. According to a relatively high
number of participants, lab courses are a good basis
for experiments. We believe that combining lab courses
with experiments whenever possible is a good option
to achieve useful results in the domain of reliability
evaluation. A high number of experiments performed
at teaching institutions around the world could form a
pool of results valuable for many analyses with respect
not only to reliability, but also to other non-functional
attributes.

When experiments are applied to evaluate the conse-
quences of design decisions to software reliability, the
different versions generated by the participants must be
analyzed with respect to their specified functionality.
Apart from reviews/inspections or formal verification,
testing is the most important means for doing that [3],
[8]. Although testing can never guarantee the absence
of failures, the number of failures found by extensive
testing can still be used as an indicator for the system’s
reliability [2], [8]. Analyzing the results of an experiment
includes the testing of all the different outcomes created
with equal test cases. Therefore, black box testing should
be applied since this technique is independent from the
individual subject tested. Since the significance of the
results gained by black box testing is increasing with
the amount of test cases a high number of different test
inputs is desirable.

In section 5 we will report on particular testing-related
experiences from experiments which we performed in
our lab courses. Before, some specific requirements for

MCU

FPGA CAN CAN

Reset

MCU
OR

.

Device under Test

Test Bench

PC

Device programming

4x Frequ.

3x BTN FPGA

Fig. 1. Automatic test environment

experiments in the embedded systems domain will be
presented.

IV. PARTICULARLY REQUIREMENTS FOREMPIRICAL

EVALUATION IN EMBEDDED SYSTEMS

Embedded systems realize functions in interaction
with their environment (e.g. an ABS control unit in
a car). In contrast to mere software functions, these
functions have to be analyzed via dedicated hard-
ware/software interfaces. In the case of an ABS control
unit these are, among others, the inputs from the wheel
sensors and the outputs to the actuators.

Additionally, embedded systems often have to fulfill
real-time requirements. According to this requirements,
it is usually of great importance to analyze the system’s
real-time behavior. In the case of an ABS control unit
it would have to be checked if the response on inputs
generates outputs according to the specified timing be-
havior. In order to analyze real-time behavior specific
measurement equipment is necessary.

The aspects presented above make an automated test
environment necessary. For the majority of embedded
applications these test environments have to be designed
for the individual application. The testing for correct
real-time behavior demands real-time properties of the
corresponding parts in the test environment, which com-
plicates the design and verification of the test environ-
ment.

V. EXPERIENCES INEMPIRICAL EVALUATION OF

EMBEDDED REAL-TIME SYSTEMS

Three experiments concerning reliability in embedded
systems have been taken place at our institute, another
is currently running. The first three experiments investi-
gated the impact of different hardware platforms used in

49

embedded systems on the reliability of the corresponding
software. One question investigated was whether N-
version programming based on software developed for
different hardware platforms significantly decreases the
dependence between the redundant software modules.
The first experiment [10] took place in a lab course
described in [9] with 26 students. During the course, the
students had to realize a quadruple speed measurement
on different hardware platforms and sent their measure-
ment data to a CAN bus. In order to mask out the
skills of individual participants a crossed design was
used (all 12 teams had to realize the same task on
both hardware platforms in random order). Then, we
analyzed the 22 versions produced in this experiment
with an automatic test bench designed for this purpose
(see Fig. 1). The majority of the following experiments
used the same basic task expanded by additional task
to investigate different aspects. During the evaluation of
the data, recorded in the different experiments, several
testing issues presented in figure 2 had to be faced which
will be discussed in the following.

The first issue was the test data generation itself.
Black box testing was used since test data independent
from the different versions tested was needed. For the
different experiments, a combination of random test data,
data representing stress tests and test data representing
different scenarios had been used for evaluation.

On basis of the test data generated, the corresponding
physical signal had to be generated. Challenges resulted
from the frequency and the complexity of the signals
which have to be fed into the device under test (DUT)
during test. For the first experiment, four signals of
independent frequency (0Hz-12kHz) and phase had to
be generated. This task had to be realized on an FPGA
since available MCUs were not able to generate these
signals. The number of signals which had to be generated
simultaneously was no specific challenge in this case,
but higher numbers (especially numbers> bit width of
MCU ports) could be an additional challenge.

A third aspect was the recording of the corresponding
response data from the DUT. The task chosen for the
experiments required measurement intervals up to 2
seconds, depending on the input (low speed required
a long measurement interval). This led to particular
long test runs (e.g.> 2h for 20000 lines of test data).
Another challenge were very short response times of
the DUT. Some versions of the first experiment sent
their CAN messages faster than expected so that the test
environment had to be adapted in order to cope with
this speed and amount of data. In order to reduce the

amount of data produced with every test run we specified
a minimum response time in the following experiments.
In the majority of our experiments, the output format
of the DUT was a CAN message which allowed a
comparatively easy evaluation of the results. Outputs
based on binary values seem easier to evaluate on the first
view, but only if the bit width is low. Accordingly, the
complexity of the output data is limited if binary outputs
are used. Additionally, the CAN communication benefits
from built in error detection and correction codes.

A major challenge resulted from the evaluation of
the recorded results. Beside every input combination the
timing of all input combinations had to be considered
during evaluation. This could be handled for the evalu-
ation of the first experiment but the complexity of the
evaluation was increased by adding additional inputs in
the second experiment. The timing of the DUT outputs
was checked by time-stamping every incoming CAN
message received by the test environment.

The following two aspects are closely related since
they consider verification of the test process and the
repeatability of the test result which is part of the
verification process. The real-time properties of the
DUT led to problems concerning the repeatability of
the measurements. The repeatability has been improved
by performing a defined reset of the DUT by the test
environment before each test run, but in some versions
little variations remained. In order to consider these
variations several test runs were performed for each DUT
and are included in the evaluations. The verification has
been eased by a strict separation between the test run
itself and the evaluation of the test results. Additionally,
all major intermediate results present during evaluation
have been added into the output file allowing manual
examination.

Finally, the modifiability of the test environment is
another aspect which turned out to be very important.
In the test environment, used for our evaluations, signal
generation has been realized with an FPGA which allows
great flexibility since new signals can be added to the test
environment without influencing already existent signals
(parallel structure of the FPGA). This concept has shown
to be very useful when new signals, needed for the
evaluation of the second and further experiments had to
be added.

The aspects discussed above in this chapter revealed
that testing plays an important role in the context of
reliability evaluation in embedded real-time systems.
The necessary effort for the testing of DUTs and the
verification of the test environment itself depends very

50

 Testing issue Sub issue Challenge
1. Test data generation test coverage achieve sufficient test coverage

frequency/complexity of input signals creation of signals in real-time
number of input signals creation of signals in real-time
long response time results in long test runs
short response time recording and preprocessing of signals in real-time
number/complexity of output signals recording and preprocessing of signals in real-time

4. Evaluation of response data relationship between input and output considering all possible relations between inputs and outputs

test environment in each test run with the same test data, the test environment
should deliver the same results

device under test (DUT) in each test run with the same test data, the DUT should deliver
the same results

data collection during test run rule out faults in the test run (recording and preprocessing)
evaluation of test data rule out faults in the evaluation of the test data
scaleability handle increasing numbers of DUT inputs and outputs
adaptability handle new types of input and output signals

7. Modifiability of test
environment

2. Test signal generation

3. Recording of response data
(DUT output)

5. Repeatability of results

6. Verification of test results

Fig. 2. Testing issues and their challenges

much on the design of the experiment. Therefore, these
issues should be considered during experiment design.

VI. CONCLUSIONS ANDFUTURE WORKS

A. Conclusions

This paper started by recalling that empirical evalua-
tion is needed to verify techniques and measures used in
software design. There is also a great need for quantita-
tive results of different approaches in order to pick the
most effective ones for the individual application.

Empirical evaluation of reliability in embedded sys-
tems requires special methods. Testing is is an integral
part of it. However, testing is usually only possible at
hardware interfaces and very often real-time require-
ments have to be checked. We presented our experience
with the evaluation of own experiments. These experi-
ences include different testing issues and their challenges
according to the domain of embedded real-time systems.

As a result, testability of the functions present in the
experiment and verifiability of the corresponding test
environment should be considered during the design of
the experiment (design for testability). These measures
could significantly simplify the evaluation process, not
only in empirical evaluations, but also in system design
in general. Furthermore, the modifiability of the test
environment should be considered during its design.

B. Future Works

As mentioned above, the task used for an experiment
does significantly influence the effort needed for evalua-
tion. Thus, the correlation between applications and test-
ing issues will be further investigated to allow sufficient
designs of experiments in the domain of embedded real-
time systems. Furthermore, it will be investigated how

well the architecture of our test environment is suited for
the evaluation of future experiment data.

The results of the second experiment mentioned in
this paper are submitted for publication. The evaluation
of the other two experiments is currently running.

REFERENCES

[1] X. Cai and M. R. Lyu. An empirical study on reliability mod-
eling for diverse software systems. InProceedings of the 15th
International Symposium on Software Reliability Engineering
(ISSRE04), 2004.

[2] N. E. Fenton and S. L. Pfleeger.Software Metrics - A Rigorous
& Practical Approach. PWS Publishing Company, 1997.

[3] IEC61508. IEC61508: Functional safety for electrical / elec-
tronic / programmable electronic safety-related systems. Inter-
national Electrotechnical Comission, 1998.

[4] J. C. Knight and N. G. Leveson. An experimental evaluation of
the assumption of independence in multiversion programming.
IEEE Trans. Softw. Eng., 12:96–109, 1986.

[5] B. Littlewood and D. R. Miller. Conceptual modeling of
coincident failures in multiversion software.IEEE Trans. Softw.
Eng., 15(12):1596–1614, 1989.

[6] M. Lyu and Y. He. Improving the n-version programming
process through the evolution of a design paradigm.IEEE
Transactions on Reliability, 42(2):179–189, 1993.

[7] T. J. Ostrand and E. J. Weyuker. The distribution of faults
in a large industrial software system. InProceedings of the
International Symposium on Software Testing and Analysis
(ISSTA), pages 55–64, 2002.

[8] D. L. Parnas, J. van Schouwen, and S. P. Kwan. Evaluation of
safety-critical software.Communications of the ACM, 33:636–
648, 1990.

[9] F. Salewski, D. Wilking, and S. Kowalewski. Diverse hardware
platforms in embedded systems lab courses: A way to teach the
differences. InFirst Workshop on Embedded System Education
(WESE), volume 2. SIGBED Review, 2005.

[10] F. Salewski, D. Wilking, and S. Kowalewski. The effect of
diverse hardware platforms on n-version programming in em-
bedded systems - an empirical evaluation. In3rd International
Workshop on Dependable Embedded Sytems (WDES’06), 2006.

51

Indoor Passive Localization System Performance Issues

Robert Sprick*, Steve Goddard*, Lance C. Pérez†, Chen Xia†

Department of Computer Science and Engineering*
Department of Electrical Engineering†

University of Nebraska–Lincoln
{rsprick, goddard}@cse.unl.edu, perez@unl.edu, chenxia@mariner.unl.edu

Abstract
Inaccurate ranging measurements and inadequate sampling

rates negatively impact the performance of real-time, two-
dimensional (2-D) indoor passive location systems. Methods
to address these issues are presented, followed by a comparison
of localization and tracking performance metrics. It is argued
that a video average distance error provides a more accurate
measure of a system’s performance than the more common per-
pendicular distance error.

1 Introduction
The performance of passive localization systems often suffer

from inaccurate ranging measurements and inadequate sampling
rates. Inaccurate ranging data is an old problem for localization
systems and methods to correct it have been implemented, e.g.,
[7]. However, these approaches typically try to correct the ef-
fects of inaccurate ranging data after localization instead of fix-
ing the data directly. Current methods of handling inaccurate
ranging data are discussed and ideas are proposed for future re-
search. Inadequate sampling rates are harder to quantify because
they are dependent on the application. Methods to improve the
sampling rate of localization systems and some of their limita-
tions in the indoor environment are discussed.

When studying inaccurate ranging measurements, the proper
metric for measuring the performance of a passive localization
system is called into question. Improper evaluation can overesti-
mate a system’s performance while hiding underlying flaws. To
illustrate this point, a passive system is first evaluated using two
different error metrics that ignore the latency created by tracking
algorithms, and then an error metric is presented that quantifies
the impact of this latency.

Section 2 defines a passive localization system and describes
current methods to reduce the impact of inaccurate ranging mea-
surements and inadequate sampling rates. Section 3 investigates
multiple approaches for measuring the localization and tracking
accuracy of moving objects. Finally, Section 4 summarizes the
paper and presents a method under investigation to combat in-
accurate ranging measurements.

2 Passive System Challenges
The motivation for this work is to improve tracking perfor-

mance by developing methods to handle the asynchronous rang-
ing data that occurs within a passive mobile node architecture.
The passive mobile node retrieves only one distance or range

value for each time step in a triple data set format: [t, p, d],
where t is the current time, p is the known position of the trans-
mitting beacon, and d is the distance between the mobile node
and the beacon [7]. Typically the last N triples from different
beacons are combined to perform a localization calculation us-
ing linear least-squares (LSQ) minimization, where N signifies
the number of valid past triples within a history window. The
accuracy of this calculation depends on the time difference be-
tween the ranging measurements, the movement characteristics
of the tracked object, and the accuracy of the individual range
measurements. The sampling rate of the system is defined as the
average frequency with which a range value is received. At high
speeds or with low sampling rates, the ranging data becomes
stale very quickly [9]. This causes an error in the localization of
the object that is similar to when bad range measurements are
used.

The Cricket Location-Support System (CLS) [6] is an excel-
lent example of a system that exhibits these traits. Thus, it is
used as a test bed to evaluate our approach to providing real-time
tracking in a noisy and under-sampled indoor environment. The
main sources of error in our environment are inaccurate ranging
data and range data staleness due to low sampling rates.

The CLS makes range measurements using the time dif-
ference of arrival (TDoA) of radio frequency (RF) and ultra-
sonic (US) signals. The beacon (RF) transmission schedule is a
CSMA/CA [1] protocol with random back-off for RF collisons.
The transmission time between two consecutive range signals
(RF-US pair) varies with an individual programmable average
of 1 Hz per beacon. The resulting sampling rate is dependant on
the beacon density within the RF signal coverage.

2.1 Inaccurate Ranging Data
Inaccurate ranging data arises when there is a timing mis-

match of incoming signals or when outside sources interfere
with the measurement process. In both passive and active sys-
tems, careful handling of inaccurate ranging data is required for
a robust localization system.

History Window and Mode

One method to reduce inaccurate ranging data is to store pre-
viously received ranging measurements in a history window for
each beacon. The size of the window can be set to the number of
data points stored or to a time limit after which the data points
are no longer valid.

52

Table 1. Average 2-D localization error for stationary
object

Method 4 beacons 8 beacons 15 beacons
Cluster 2.569 cm 4.670 cm 8.755 cm
LSQ 2.258 cm 185.712 cm 769.344 cm

The history window is analyzed to obtain statistical informa-
tion about previously received ranging data. This information
can either be used directly or as a basis for determining the va-
lidity of future range measurements. In CLS, history windows
are used to calculate the standard deviation and mode of the
previous range measurements for each beacon. The mode of
the range measurements is the most frequently occurring mea-
surement. If there are several values with the same frequency,
the measurements are averaged. In CLS, the mode is used as
the representative measurement for the beacon in the LSQ algo-
rithm. A large standard deviation for a beacon indicates a lower
confidence in the mode and may exclude the beacon from inclu-
sion in the LSQ algorithm.

The history window method is biased toward the localization
of a stationary object because it uses the mode. This creates
a problem for tracking an object during its transition from sta-
tionary to moving. Since the mode calculation is biased toward
repeated measurements, it may not use the newest range mea-
surement for a moving object. This introduces a short latency in
location updates during the transition period.

Position Clustering

Another method to reduce inaccurate ranging is to use k-
means [4] clustering during the LSQ calculation. The LSQ al-
gorithm requires 3 range measurements to calculate a position.
With dense beacon coverage, more than 3 range measurements
are contained in the input range set to the LSQ algorithm. To
generate a set of positions for the clustering algorithm, different
subsets of the input range set are iteratively applied to LSQ. The
positions are analyzed using k-means [4] clustering with k = 1
to determine the final position.

With 4 range measurements, four position estimates are cal-
culated using four unique range subsets of size 3. When a highly
inaccurate range measurement is in the input set, the three clos-
est positions to the center of the cluster result from the 3 subsets
containing the inaccurate range measurement. Therefore, the
outlier of the cluster is chosen as the final position estimate be-
cause its input range subset did not contain the inaccurate range
measurement.

Table 1 shows the average 2-D localization error for a sta-
tionary object with position clustering (Cluster) and without
(LSQ) in CLS with sets of 4, 8, or 15 beacons. The average
2-D localization error is calculated for the N experiment points
(xi, yi) using the 2-D Euclidean distance to the actual position
(xact, yact)

∑N
i=1

√
(xact − xi)2 + (yact − yi)2

N
. (1)

Unlike previous experiments on a stationary object [3] with 15
beacons, not all of the beacons are deployed within the US trans-
mission range. However, the RF signal is received at the listener
from all 15 beacons. Ranging data is recorded for 15 minutes
using the history window provided with CLS [7]. The window
uses the mode calculation for the range measurement to LSQ,
but only a single range measurement from a beacon is required
to be included in the input range set.

Clustering is able to identify and remove the impact of in-
accurate range measurements in the final result when there are
greater than four beacons within RF-US transmission range.
However, clustering is also biased toward objects that are sta-
tionary or have constant velocity.

2.2 Inadequate Sampling Rate

The appropriate sampling rate for a localization system is de-
pendent on the maximum speed of the object, the allowed error
level of the application and the scheduling scheme used to report
the ranges. The appropriate sampling rate is difficult to quantify
for tracking human movement.

The effective sampling rate for CLS is the average number of
successful RF-US pairs that arrive at the listener. Table 2 shows
how the effective sampling rate changes for a stationary object as
beacons are added within the RF transmission limit but outside
the US coverage. The effective sampling rate decreases as more
beacons are added for full coverage of the space. Similar results
are reported in [3] and [5].

Because of the random scheduling in the CSMA/CA proto-
col, the probability exists that a range measurement from a bea-
con will not be updated for several seconds. The lack of a range
update is equivalent to the accuracy of the measurement decreas-
ing with time. This phenomenon is labeled range staleness and
is more pronounced for high speed movements [9].

There is a tradeoff between coverage density and effective
sampling rate that can be mitigated by reducing the RF transmis-
sion power level. However, this increases the probability of RF
interference when nearby beacons cannot schedule around each
other, which is similar to the hidden node problem [2]. Another
option is to switch from a CSMA/CA to a TDMA [1] trans-
mission scheduling scheme to have a uniform and controllable
sampling rate.

A TDMA scheme was implemented for a passive architecture
in [5] using CLS. The implemented scheme uses a color-coding,
static pipelined scheduling scheme to minimize the chance of
RF and US interference at the listener. A transmission proto-
col was also simulated that used a pipelined scheme with lo-
calization result feedback. The location-aware scheme reduces
the scheduling restrictions around the collision of two beacons.
These methods report a higher sampling rate than the schedul-
ing scheme in CLS, but their performance degrades when there
are multiple listeners. In contrast, a more static TDMA protocol
will support multiple listeners, but still suffers from range stale-
ness at high speed even though range updates are structured and
expected.

53

Table 2. Sampling rate statistics for a stationary object with 4, 8, and 15 Cricket beacons
Parameter 4 Beacons 8 Beacons 15 Beacons
Individual Beacon Range Sampling Rate 0.855 Hz 0.654 Hz 0.355 Hz
Received Rate of RF packets at Listener 3.425 Hz 5.236 Hz 5.556 Hz
Effective Range Sampling Rate 3.425 Hz 5.208 Hz 2.899 Hz

−150 −100 −50 0 50 100
−150

−100

−50

0

50

100

150

Cricket X−axis (cm)

C
ric

ke
t Y

−
ax

is
 (

cm
)

Track Length = 802.65 cm, Curve Radius = 55.88 cm

Ref. Points
Track
Beacons
Boundary

Figure 1. Train Layout for Experiment

3 Evaluating Localization Error
The performance evaluation of a passive localization system

is an interesting problem. Should the estimated position be eval-
uated only on its 2-D distance away from the known path or
should the time of the estimate be matched to the actual position
of the object? How much latency is introduced by the position
computation and filtering?

To study these questions and other aspects of a passive local-
ization system, experiments are conducted with 4 Cricket bea-
cons mounted on the ceiling and a Cricket listener mounted on
a model train set for repeatable results at 3 different speeds. The
train track layout is shown in Figure 1, where one loop around
the track, measured with a string, is 802.64 cm in distance. The
curves on the corners have 55.88 cm radius. The 3 speed levels
of the train are 15.44, 29.29, and 51.09 cm/s.

In the experiments, the train is initially positioned at a pre-
set start location. The LSQ algorithm evaluates the range mea-
surements from the history window for localization. For perfor-
mance comparison, two tracking algorithms process the range
measurements and LSQ results. The first, a simple velocity
model Kalman filter (SKF) [8], uses the LSQ results as input to
track the object. The second tracking algorithm is the Extended
Kalman Filter (EKF) found in CLS, described in [7]. The EKF
accepts a single range measurement as an argument for each call
to compute a position estimate. Once the localization algorithm

identifies the train location, a video recorder is started and the
train accelerates up to a preset speed. The train performs one
loop around the track and is stopped after reaching the starting
point. The video recording is stopped and ranging data, LSQ,
SKF, and EKF results are recorded for each experiment.

The video recordings are used to retrieve data on the actual
position of the train with respect to time. The track is physically
measured to obtain 20 reference points (Figure 1) within the co-
ordinate system used by CLS in the room. The reference points
are used to generate a calculated path of the train for visual and
mathematical comparison to the LSQ and tracking results of the
experiment.

Two error metrics are used for evaluation of the experimental
results. The first metric is the average perpendicular distance
error from the known path of the train. The second metric is
the average distance error of the position compared to the actual
position of the train extracted from the analysis of the video.

3.1 Perpendicular Distance Error
Finding the perpendicular distance (PerDis) error from the

layout shown in Figure 1 is harder than it initially appears. Each
experimental position point (xexp, yexp) is naı̈vely related to the
closest section of the path. The layout is divided into 8 sections
whose boundaries are shown in Figure 1. For the straight track
sections, the equation of the line is calculated as ax+by+c = 0,
where a, b, and c are constants describing the line formed by a
set of (x, y) points. The average perpendicular distance error for
that section is calculated as

PerDis =

∑N
i=1

√
(axexp

i +byexp
i +c)2

a2+b2

N
. (2)

The distance calculation for a curved section of track is per-
formed differently. Because the radius of the track pieces is
known, the center point of each quarter circle is found. The
experimental position is transformed into polar coordinates with
the center point at the origin. The absolute value of the radial
coordinate minus 55.88 cm is the perpendicular distance error.

3.2 Video Average Distance Error
The method used to analyze the video to obtain the actual

position identifies when the train starts to move by examining
the pixel difference between 2 consecutive frames of the video.
This analysis also provides an accurate position of the train with
a time stamp after the train has moved. The initial stationary
data is related to the starting position of the train while all results
after the train has stopped are related to the final position.

The video average distance error (VidDis) uses the 2-D dis-
tance equation between the LSQ result (xexp, yexp) and the

54

Table 3. Comparison of error metrics for LSQ results
Error Metric 15.44 cm/s 29.29 cm/s 51.09 cm/s
PerDis 4.447 cm 7.098 cm 19.992 cm
VidDis 7.790 cm 11.445 cm 35.121 cm

Table 4. Comparison of latency VidDis Error in SKF
and EKF results for 3 speed levels

Error Metric 15.44 cm/s 29.29 cm/s 51.09 cm/s
LSQ VidDis 7.790 cm 11.445 cm 35.121 cm
SKF VidDis 8.475 cm 14.759 cm 52.995 cm
SKF tVidDis 13.247 cm 23.691 cm 171.971 cm
EKF VidDis 10.580 cm 20.822 cm 40.622 cm
EKF tVidDis 10.580 cm 22.982 cm 44.849 cm

video position (xact, yact) from the closest frame in time. The
average video distance error is

VidDis =
∑N

i=1

√
(xact

i − xexp
i)2 + (yact

i − yexp
i)2

N
(3)

The problem is accurately relating the time step of the exper-
imental data to when the train actually begins to move. Since
we were unable to synchronize the video analysis and the local-
ization system, the LSQ results are matched to the video results
by finding the minimum error between them. The starting point
of the video data is shifted by one video frame interval along
the first 20 seconds of LSQ position results. At each step the
VidDis is calculated and the estimated starting time of the train
is recorded for the minimum error value.

Table 3 shows a comparison of the error metrics for the LSQ
results of one loop around the track. The VidDis error metric
has a larger error because it uses the time of the calculation to
relate the location estimate to a specific point on the track. While
most literature appears to report perpendicular distance error, we
believe video average distance error is a more accurate measure.

3.3 Latency

The time component of the VidDis metric also enables the
study of additional errors caused by the latency in the process-
ing of the ranges and LSQ results by different tracking algo-
rithms. The latency error of tracking above pure localization is
an important factor in real-time applications. The VidDis for
each tracking algorithm is calculated for each set of position re-
sults. The tracking latency VidDis (tVidDis) error is found by
using the starting time stamp from the LSQ results to align the
video data and calculate the error value. LSQ is chosen as the
time baseline because the minimum error level occurred first in
the experimental time frame before the VidDis time stamp of
the tracking algorithms. Table 4 shows the VidDis and tVidDis
errors for SKF and EKF filters in comparison to LSQ VidDis er-
ror levels. The tVidDis errors are larger than their counterparts
because they take into account the extra processing time.

4 Conclusions and Future Work
Inaccurate ranging measurements and inadequate sampling

rates negatively impact the performance of passive localization
systems. Clustering during localization can reduce the impact of
inaccurate ranging measurements of stationary objects, but more
research is required to show improvement for moving objects.
Inadequate sampling rates can be difficult to counteract using a
CSMA/CA protocol. TDMA protocols provide increased sam-
pling rates, but often at the expense of flexibility to support mul-
tiple listeners. The evaluation of a passive localization system is
an important step in showing its improvement over previous sys-
tems. Detailed evaluation metrics are presented that show aver-
age video distance error more accurately measures performance
than the more common perpendicular error metric. With real-
time applications, the time of the localization and the latency
involved in delivery of the results may have a profound impact
on the systems overall performance, which is often ignored in
the literature.

Future work includes a predictor algorithm that analyzes each
new range measurement as it arrives to determine if the measure-
ment is valid based on a history window and predefined limits
around predicted range measurements. If the range measure-
ment does not meet the criteria, it could be discarded or replaced
with one of the predicted ranges before being passed to the LSQ
algorithm.

References
[1] American National Standard T1.523-2001, Telecom Glossary

2000. http://www.atis.org/tg2k/
[2] A. Bachir, D. Barthel, M. Heusse, and A. Duda, “Hidden

nodes avoidance in wireless sensor networks,” 2005 International
Conference on Wireless Networks, Communications and Mobile
Computing, vol. 1, pp. 612-617, June 2005.

[3] C. P. Gleason, L. C. Pérez and S. Goddard. “On the ranging con-
nectivity in the cricket localization system,” Proceedings of 2006
IEEE International Conference on Electro/information Technol-
ogy, pp. 619-624, May 2006.

[4] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” Proc. 5th Berkeley Symp. on Mathe-
matical Statistics and Probability, vol. 1, pp. 281-297, 1967.

[5] M. Nam, M. Al-Sabbagh, and C. Lee, “Combined scheduling of
sensing and communication for real-time indoor tracking in as-
sisted living,” RTSS ’06. 27th IEEE International Real-Time Sys-
tems Symposium, 2006, December 2006, pp. 281-290.

[6] N. B. Priyantha, The Cricket Indoor Location System. PhD thesis,
Massachusetts Institute of Technology, 2005.

[7] A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha,
“Tracking moving devices with the cricket location system,” in
Proc. MobiSYS’04, pp. 190-202, June 2004.

[8] G. Welch and G. Bishop. “An introduction to the kalman filter,”
Department of Computer Science, University of North Carolina
at Chapel Hill, Chapel Hill, NC, April 2004.

[9] C. Xia, L. C. Pérez, S. Goddard, and R. Sprick, “The ef-
fect of stale ranging data on indoor 2-D passive localiza-
tion: Technical Report #TR-CSE-EE-UNL-2007-1,” Univer-
sity of Nebraska-Lincoln, Jan 2007, http://cse.unl.edu/˜goddard/
Papers/TechReports/TR-CSE-EE-UNL-2007-1.pdf

55

VPE: Virtual Periodic Execution for Embedded System

Midori Sugaya1, Yuki Kinebuchi 1, Shuichi Oikawa2, Tatsuo Nakajima1
1 Department of Computer Science, Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

2 Deaprtment of Computer Science, University of Tsukuba
1-1-1 Tennodai,Tsukuba

Abstract— General purpose operating systems are widely used
for advanced embedded system, since they can provide varieties
of software components for the applications. They increase the
efficiency of development for embedded system. However, they
have not yet provided the enough function to completely meet
the requirement of real-time and non real-time applications.
To solve the problem, we propose an approach named Virtual
Periodic Execution (VPE) that could be used to schedule both
of real-time and non real-time application with satisfying their
practical requirements. In this paper, we present the ideas and
the architectures of the VPE system, and its development is in
progress.

I. I NTRODUCTION

In last several years, information appliances have gained
more computing capability than ever, in order to retrieve data
from sensors, to process the data, and to control devices.
These advanced information appliances require more advanced
features like networking and GUI. Those features dramatically
complicate the applications and increase their code sizes.
For example, popular type cell phone needs 600 million
lines for one model. Moreover, the competitive market forces
developers to produce these codes in short development time.
To develop advanced embedded systems efficiently, software
reusability is known to be important in the embedded system
area. To increase the software reusability, operating system is
expected to provide general API and software components for
their applications such as protocol stacks, drivers and GUI
libraries. So it is necessary to expand the general purpose
operating system like Linux in the embedded system these
days. Conventionally, embedded system develper has used tiny
real-time operating systems (RTOS), however, the developers
who consider the reusability of applications try to switch
conventional real-time operating system to general purpose
operating system as a platform for developing information
appliances.

However, there are several problems to switch operating
systems. The first is absorbing the differences of the task
models. Conventional RTOS usually use thread model shared
address with them. In contrast, general purpose operating
system adopts a process model which provides the exclusive
virtual address for each process. The second is how to map
the domain specific APIs of conventional operating system’s
to general interfaces like POSIX API. The last one is how
to schedule real-time applications which has been running on
RTOS to the general purpose operating system with satisfying
their real-time requirements.

The first two problems are actually similar and almost
solved. There have already been developed libraries and wrap-
pers to absorb the differences of task models or APIs. They
use translation techniques that mapped the functions which
have the same operations. However, the real-time scheduling
problem has not solved because of the practical reason.

In this paper, we focus on the real-time scheduling problem.
It should be considerable not only real-time requirement of
the RTOS applications, but also the requirement of the non
real-time applications that are running on the general purpose
operating system. Moreover, we have to satisfy the practical
requirements. We propose Virtual Periodic Execution (VPE).
The remainder of the paper is structured as follows.

Section II describes the problem and constrained condition
which are defined by the requirement of embedded system.
The section III presents the VPE (Virtual Periodic Execution)
model, section IV shows the example of it. We show the archi-
tecture in section V and discuss the matter of concurrency and
overhead in section VI. Finally, in section VII, we conclude
the paper.

II. T HE PROBLEMS AND REQUIREMENTS OF EMBEDDED

SYSTEM SCHEDULING

As we mentioned in previous section, the adjustment of
scheduling for applications is significantly important to pro-
vide embedded system at the time of switching operating
systems. However, there are few practical approaches. In this
section, we describe the requirements and conditions to be
satisfied to build practical embedded system.

First, we have to consider the requirements of the real-time
applications. In advanced information appliances, multimedia
applications such as video streaming programs, audio mixers
are essential for the products. These applications are defined
as the soft real-time applications, which are characterized
by temporal constraints that must be satisfied their timing
requests. These applications are configured as periodic task
by the system.

The second is the responsibility of non-real-time appli-
cations. Many of advanced embedded system will provide
services with GUI applications. These applications usually
wait events from the user through keyboard or other input
devices. They are expected to response as quick as possible
with minimum latencies. They are scheduled as non-real-time
applications, because of no timing constraints and deadlines,
and configured as aperiodic task by the system.

56

To satisfy both of the requirements, developers usually
assign static priorities to the transported real-time applica-
tions. In general purpose operating system, static priorities
are usually assigned to the higher priorities than the dynamic
priorities. And most of the applications scheduled with dy-
namic priorities[1]. If the utilization of periodic tasks is high
or no appropriate design, the periodic tasks easily occupied the
CPU. As the result, aperiodic tasks which have been scheduled
with lower priorities will not have requested responsibility.
Actually, the problem is widely recognized and has been tried
to be solved in several past years. There are a lot of theories,
however, few practical theories could give satisfying result.

In pracitical development of embedded system, in order to
avoid latencies of the aperiodic tasks, embedded developers
tend to modify the software with ad hoc solutions. For
example, if there are latencies of the aperiodic tasks, they will
try to adjust the execution time of the periodic task to yield
the CPU for the aperiodic task at the time of interrupt event
coming from hardwares. They find out these timing problems
by simulating the applications several times and correct it.
These ad hoc modifications will be the cause of the bugs.
Currently, this problem tends to be considered more serious
according to the rapid expansion of code sizes of the advanced
embedded system. As in the case of application, the scheduler
should not be modified. Moreover, scheduler controls all of the
applications that running on the system, modifications have
more effects for all of the applications. Considering about
these demerits, we should avoid the modification both of
application and scheduler. Then, our prerequisites constrained
conditions should be following.

1) Satisfy the real-time constrain for real-time applications
2) Satisfy the responsibility for non-real-time applications
3) No change of the application and scheduler

III. V IRTUAL PERIODIC EXECUTION

A. Conventional algorithms

To solve the problem under the constraint three conditions,
we propose Virtual Periodic Execution (VPE) system. VPE
system can satisfy the prerequisites which we have discussed
in previous section.

Before present our algorithm, we introduce the conven-
tional algorithms. As the first, we refer to the rate mono-
tonic algorithm[2]. The algorithm already has been proven
the optimized scheduling that maximizes the utilization of a
processor capacity with simple prioritizing that shorter period
should have higher priority. However rate monotonic algorithm
has not any prerequisite to satisfy the requirement of the
responsibility of aperiodic tasks. Therefore in practical use,
aperiodic tasks will be assigned to use idle time of periodic
tasks.

On the contrary, server algorithms such as sporadic server
[4] and deferrable server [5] that are based on the rate mono-
tonic algorithm have a distinguish purpose of improving the
responsibility of aperiodic task as prerequisite. These server
algorithms can satisfy our first two constraint requirement.

Response time 5, Execution time 5

1T1T2 3 110 165priority 8
1

T1T2 1.5 1.5 0.5 1.5 1.5 0.5Response
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.5

LinuxSimple mapping Response time 10, Execution time 4Response 1
LinuxWith VPE

RTOS

0.5 1.5

1 3 1 1
1 3 1 3 1 1 31

Response time 5, Execution time 5

1T1T2 3 110 165priority 8
11

T1T2 1.5 1.5 0.5 1.5 1.5 0.5Response
0.5 0.5 0.5 0.5 0.5 0.50.5 0.5 0.5 0.50.5 1.5

LinuxSimple mapping Response time 10, Execution time 4Response 1
LinuxWith VPE

RTOS

0.50.5 1.5

11 3 11 11
1 3 1 3 1 1 31

Fig. 1. Example of VPE scheduling

However, from the point of practical development, there
are still some problems. If we construct a system which
keeps satisfying the timing requirements of periodic tasks
and aperiodic tasks, we have to extend a general prioritized
scheduler. For example, the server algorithm needs the special
facilities for scheduler or middleware to control the aperiodic
tasks, such as creating server, and bind non-real-time priority
tasks to them. It should impose the development efforts to the
developers and risks to change the scheduler. Therefore, they
could not satisfy our constrained condition 3.

Compared with the server algorithms, the rate monotonic
can satisfy our third constrained condition, since it has no
requirements to modify the scheduler that provide simple
prioritized scheduling. However, rate monotonic do not refer
to the problem of responsibility of aperiodic task. Compared
with the demerit of changing application and scheduler, we
decide to use rate monotonic algorithm and try to improve the
responsibility of aperiodic tasks.

As the result, we propose the VPE system, which can
provide the function to improve the responsibility of the
aperiodic task still satisfy periodic requirement.

B. VPE system proposal

VPE system provides the function to give a virtual period for
periodic tasks. The tasks which are given a virtual period will
be scheduled with fine grained periodic time. The guarantee
for the periodic tasks depends on the rate monotonic algorithm.
Therefore, the periodic tasks are guaranteed and the worst case
responsibility of aperiodic tasks is improved. It can satisfy the
requirement of periodic and aperiodic responsibility without
changing both application and scheduler.

VPE algorithm based on the idea that transforming the
period and execution time of tasks. And the VPE system
can provide the facility to control the tasks with the VPE
algorithm with forcibly divide the period. In past years, Liu
showed that transforming period and execution time of the
tasks can still satisfy the condition of the rate monotonic
algorithm [6]. The definition is used for the purpose of
increases the priority of important task, however, we use it to
increase the responsibility of aperiodic tasks without overhead
of modification of application and scheduler.

In the VPE algorithm, we have to divide the period and

57

execution time by dividing constant value. We define the
dividing constant isk (0 ≤ k).

For example, the general theorem of rate monotonic algo-
rithm is shown in (1). The (2) is the theorem that shows the
formula of the period (T) and computation time (C) dividing
by k . In second theorem, ifk is delaminated, the result is the
same as the (1). It means, even if we divide both of period
and execution time of tasks, the utilization of the system will
not decrease.

U =
∑m

i=1 Ci/Ti ≤ m
(

21/m − 1
)

(1)

U =
∑m

i=1(Ci/k)/(Ti/k) ≤ m
(

21/m − 1
)

(2)

In the real-time research, workload is a metric to measure
the worst case utilization of periodic tasks. If worst case
workload of periodic tasks will miss the maximum utilization,
all periodic tasks can not scheduled without missing deadlines.
Usually, the metric is used to ensure the feasibility of the pe-
riodic task, we use it to measure the worst case responsibility
of the aperiodic tasks in our system. Because they show the
result of worst case execution time of periodic task, it is equal
to the response time of the aperiodic tasks. The worst case
responsibility of aperiodic tasks can be reduced by 1/k, the
result is shown in the (3).

Workloadm (t) :
∑m

i=1⌈t/(Ti/k)⌉Ci/k = t(3)

In that case,t is multiplied by the1/k. That means the
worst case response time of aperiodic task will be decreased.
We will show the example in the next section.

IV. EXAMPLE :

Consider an example scenario of two periodic tasksτ1, 2,
whereUj = Ci/Ti. Where C is computation time, T is period
time and U is utilization. In our example, the deadline of the
tasks is the same as the period. It comes from the prerequisite
of rate monotonic algorithm.

• Example1 :

• Taskτ1 : C1 = 1; T1 = 4; U1 = 0.25

• Taskτ2 : C2 = 7; T2 = 16;U2 = 0.43

• Workloadm (10) :
∑m

i=1⌈10/4⌉×1+⌈10/16⌉×7 = 10.

The total utilization of two tasks is0.68, which is below the
rate monotonic theorem bound for two tasks:2(21/2 − 1) =

0.828. Hence, these two tasks are schedulable, that is, they
will meet their deadlines ifτ1 is given the highest priority,τ2

the higher next. At that time, the worst case response time of
aperiodic task, which is defined as the workload of the periodic
tasks is 10.

• Example2 :

• Taskτ1 : C1 = 0.5; T1 = 2; U1 = 0.25

• Taskτ2 : C2 = 3.5; T2 = 8; U2 = 0.43

• Workloadm (5) :
∑m

i=1⌈5/2⌉ × 0.5 + ⌈5/8⌉ × 3.5 = 5.

In Example2, we give the virtual period and execution time
for the two tasks with dividing constantk = 2. The result
shows even if the scheduling parameters are divided byk,
the utilization are equal to that of theExample1’s. However,
the worst case response time of aperiodic task is improved to

5. Compared to theExample1’s, total 1/2 time is decreased.
In our system, non-real-time tasks use the idle time of the
real-time tasks, therefore, it means that the responsibility of
aperiodic tasks is improved as much ask times.

A. Overhead

The overhead which increase according to the growth of
dividing constantk is a problem to consider for our system.
In our system, as we increase thek, the cost of the overhead
which will be come up with the context switches or interrupts
will also increase.

We assume a simple model to calculate the overhead. The
computation time C is broken up the two elements. The one is
the real executing time defined asCr of a task, and the other
is the additional overhead defined asCo. The relation will be
simply modeled asC = Co + Cr.

The time ofCo should be constant and increased with the
increasing the number ofk. On the contrary, theCr will not
be affected by the number ofk. It means the formula will be
described as theC = kCo + Cr. It should be taken into the
account of theorem (1). The result is derived from (4).

U =
∑m

i=1(kCo + Cri)/Ti ≤ m
(

21/m − 1
)

(4)

When we set ak, we calculate the schedulability with the
model which contains real overhead of the task switches.
Before calculating the formula, we assumed the rate of the
overhead(Co) and real computation time(Cr) , 1:100 in the
Fig.2, 1:1000 in the Fig.3. The y axis shows the utilization
of the processor, and x axis showed the number ofk. The
simulation results showed that, if the difference of(Co) and
(Cr) numbers are large, the growth rate of the utilization is
low. And if the initial rate of theCr/T is low, that also the
growth rate ofk is low. Now we are trying to collect the data
and evaluate the system overheads.

V. A RCHITECTURE

Based on the presented VPE model, we try to give the
architecture of the system. The system will be composed with
three layers.

1) Policy layer
2) Simulation layer
3) Enforcement and Control layer
The Fig.4 depicts the whole architecture which contains the

three layers. Policy layer accepts the request from the user.
It can be selected from supported scheduling policies. The
simulation layer provides function to evaluate the parameter,
then, choose most appropriate parameter to control the system,
and pass it to the next enforcement layer. The enforcement
layer provides the function to support the execution and
period time. We use the facilities for the enforcement layer
Accounting System [7] which provide robust functions to
control the task with fine grained time.

VI. D ISCUSSION

We still have some topics to discuss at constructing VPE
system. First, we have to think about the divided lock prob-
lem. In previous sections, we discussed the scheduling of

58

0%20%40%60%80%100%120%

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851

系列1系列2系列3系列4系列5系列6
10%20%30%40%50%60%

Utilization

Fig. 2. The case ofCo : Cr(1 : 100)

0%20%40%60%80%100%120%

1 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541 571 601 631 661

系列1系列2系列3系列4系列5系列6
10%20%30%40%50%60%

Utilization

k
Fig. 3. The case ofCo : Cr(1 : 1000)

independent tasks. In an actual system, tasks are always
interact with each other. Therefore, the effect of interactions
especially under our system should be considered. The VPE
system provides function to block a task forcibly for the
purpose of dividing the computation time. When a task get
into critical section and is blocked by itself, if the forcible
blocking is executed at that time, the self blocked task could
not wakeup until the forcible blocking is released. We named
the problem divided lock problem. We have a prerequisite
that the critical section of tasks are very short, therefore,
non-blocking or restartable critical section is effective for
our implementation. However, there are still problems how
to guarantee the prerequisite that the shortness of the critical
section. It is not only needed to evaluate our system but also
the base operating system should be evaluated. This part of
research is in progress.

The second problem is how to decide the most appropriate
dividing constantk. As we mention in section IV, thek should
be decided using the model which include the overhead of the
dividing. However, the practical number ofk will also depend
on the required responsibility that non-real-time application
take good responsibility even under the high utilization of real-
time applications.

VII. C ONCLUSION

In this paper, we have proposed Virtual Periodic Execution
system. This system provides the generic scheduling system

Kernel functions

Enforcement Layer

Policy Layer

RM VPE VPE-PSI

INPUT

Simulation Layer VPE-PSI

VPE

Feasibility Check

Scheduler (Dynamic Scheduling)

Real-time Scheduler Accounting System

Kernel functions

Enforcement Layer

Policy Layer

RM VPE VPE-PSI

INPUT

Simulation Layer VPE-PSI

VPE

Feasibility Check

Scheduler (Dynamic Scheduling)

Real-time Scheduler Accounting System

Fig. 4. Architecture of VPE System

Pprev> Pcur
YesNo

End

VPE-PI Module

Sort by Importance

Compare Periodprev

VPE Module

Data from
H/W probe

ISR time

Clock resolution

CS time

Overhead
calculation

C, T parameters

Rate Analysis

Feasibility Check

Parameter arrangement

Dividing

Admission
Control

Save Result
Enforcement

Divide Periodprev

Pprev> Pcur
YesNo

End

VPE-PI Module

Sort by Importance

Compare Periodprev

VPE Module

Data from
H/W probe

ISR time

Clock resolution

CS time

Overhead
calculation

C, T parameters

Rate Analysis

Feasibility Check

Parameter arrangement

Dividing

Admission
Control

Save Result
Enforcement

Divide Periodprev

Fig. 5. Module Design in VPE

to satisfy the requirements of periodic and aperiodic tasks.
Not only to satisfy the scheduling problem, but also try to
satisfy the requirements for considering about the efficiency
of the development. Our system increase the development
efficiency and easy to implement. In embedded area, such
efficient scheduling system is on great demand. Our research
should have the great impact for them.

REFERENCES
[1] William Stallings, Operating Systems:(International Edition)

5th, Prentice Hall. July 2004.
[2] C. L. Liu, James W. Layland, Scheduling Algorithms for Mul-

tiprogramming in a Hard-Real-Time Envirnment,Journal of the
Association for Computing Machinery, Vol. 20, No. 1, January
1973.

[3] Realtime Systems, International Series in Computer Science,
Prentice Hall; 1st edition (September 1997).

[4] B. Sprunt, Aperiodic Task Scheduling for Real-Time Systems,
Ph.D. thesis, Dep. of Electrical and Computer Engineering,
Carnegie Mellon University (1990).

[5] Strosnider, J. K., Lehoczky, J. P., and Sha, L. The deferrable
server algorithm for enhanced aperiodic responsiveness in hard
real-time environments. IEEE Transactions on Computers 44, 1
(January 1995)．

[6] Lui Sha, John Lehoczky, Rangunathan Rajkumar. Solutions for
some practical problems in prioritized preemptive scheduling., In
Proc. 7th IEEE Real-Time Systems Symposium. IEEE Computer
Society Press, 1986.

[7] Midori Sugaya, Shuichi Oikawa, Tatsuo Nakajima: Accounting
System: A Fine-Grained CPU Resource Protection Mechanism
for Embedded System. ISORC 2006: 72-84.

59

RTPAW: a Real-Time Power Aware Framework for
Wireless Sensor Networks

Emanuele Toscano, Giordano A. Kaczyński, Lucia Lo Bello
RETISNET Lab

Department of Computer Engineering and Telecommunications
University of Catania

Catania, ITALY
{gakaczy, lucia.lobello}@diit.unict.it

Abstract— In the Wireless Sensor Networks (WSNs) used in
monitoring applications, the need to provide soft real-time traffic
with an appropriate QoS clashes with the energy consumption
constraints of the nodes, which have to work for long periods
without the possibility of replacing their batteries. The paper
presents the Real-Time Power Aware Framework (RTPAW),
which aims at achieving both objectives. The most significant
aspects of the RTPAW are the network architecture, which adopts
a cluster-based concept, and the implementation at different
levels of the protocol stack of the functions needed to meet
the low-power and real-time requirements. In the approach here
adopted, a new layer, called the Aggregation Layer, is introduced
between the MAC and Routing layers. This layer mainly deals
with reducing the amount of energy dissipated, while the Routing
layer is entrusted with achieving the desired QoS, in terms of
delivery speed, to allow the transmission of soft real-time traffic.

I. INTRODUCTION

A wireless sensor network (WSN) typically comprises a
large number of nodes capable of monitoring a certain phe-
nomenon (e.g. temperature, luminosity, etc.), processing the
relative data and exchanging it amongst themselves as well as
with a base station via a Sink node. The nodes in a WSN are
generally located in the proximity of or inside the phenomenon
they are monitoring. The environments involved are often
remote or hostile to humans and in some cases the nodes
are placed in their environment in ways that are far from
being ordered and predictable. A WSN therefore has to be
autonomous, and able to configure itself automatically and to
function without human intervention for as long as possible.
The main requirements of a network of this kind are therefore:
• Scalability;
• Low production costs;
• Fault-tolerance;
• Long-lasting autonomy;
• Ability to meet soft real-time constraints.
In order to provide nodes with a long period of autonomy

(i.e. low power consumption) and affordable production costs,
low-power processors and very small memories are used, but
this is not enough, as the amount of energy consumed by
communications in WSNs is usually much greater than that
used for processing. It is therefore necessary to use protocols
that aim at optimizing power consumption, so as to prolong
the lifetime of the nodes and therefore that of the system as

a whole. However, WSNs are generally used for monitoring
applications, which mostly features periodic soft real-time
traffic and require enforcing a minimum data delivery speed
so as to meet delay constraints. The requirements on power
consumption and data delivery speed often clash with each
other, and therefore most of the communication protocols
developed for WSNs fall into two categories: protocols aiming
at minimizing power consumption (e.g. [1], [2] and [3]) and
protocols aiming at providing the desired QoS to soft real-
time traffic (such as [4] and [5]). This paper proposes the
Real-Time Power Aware Framework (RTPAW), which aims at
achieving a tradeoff between power consumption and delivery
speed exploiting the features of both categories of protocols.

II. RELATED WORK AND MOTIVATION

A. Related work
Some routing protocols, such as LEACH [1] and MECH [3],

aim at minimizing power consumption, adopting a hierarchical
routing strategy in which a limited number of always active
and periodically re-elected nodes, called cluster heads, form
a backbone, while the other nodes can remain asleep and
only wake up when data is being sent. The cluster heads are
elected in rotation following a probabilistic scheme and remain
cluster heads for a certain period of time, called a round.
Communication between cluster heads and the other nodes
in the cluster takes place by means of Time Division Multiple
Access (TDMA): a super-frame is created, in which each node
has its own time slot. Once data is acquired, the cluster heads
transmit it directly to the base station. To reduce the impact
of radio interference between different clusters Code Division
Multiple Access (CDMA) is implemented, each cluster using
a different code.

An approach of this kind is very efficient from the point
of view of power consumption, but suffers from scalability
problems which make it unsuitable for large networks. In ad-
dition, both LEACH and MECH require clock synchronization
at a network level, which is only possible for small networks.
LEACH assumes that the cluster heads can communicate
directly with the base station. MECH does support message
forwarding between cluster heads, but does not guarantee any
QoS.

Following a different philosophy, other routing algorithms
have been developed with the aim of offering WSNs a

60

certain QoS; examples of these algorithms are SPEED [4]
and MMSPEED [5]. Based of geographical routing, which is
particularly efficient in networks covering a large geographical
extension, they try to guarantee a minimum speed in data
delivery. These algorithms were developed on 802.11 and do
not target power consumption.

Conversely, the RPAR [6] protocol targets real-time ap-
plications and at the same time tries to optimize power
consumption, by minimizing the number of deadline misses
while keeping power consumption low. The power efficiency
of RPAR is achieved by constantly regulating the transmission
power. This approach is, however, affected by anomalous
behavior in heavy traffic conditions, which tends to favor
network congestion.

B. Motivation

Our proposal derives from the need to find a communication
technique for WSNs that is as close as possible to LEACH as
regards power efficiency and to SPEED as regards QoS.

Another highly desirable characteristic is the ability to use,
where possible, standard protocols or established protocols that
have been widely studied [7]. For this reason in this work we
chose to use the 802.15.4 standard ([8],[9]) for the MAC layer,
whereas for the routing layer we are currently envisaging an
adapted version of SPEED.

III. THE RTPAW FRAMEWORK

A. The basic idea

As a WSN may comprise thousands of nodes distributed
over a wide geographical area, it is advisable to use advanced
routing techniques that can offer a good QoS in terms of
both (soft) real-time constraints meeting and fault-tolerance.
It is therefore useful to exploit routing techniques such as
SPEED [4] or MMSPEED [5]. Moreover, considering that the
phenomenon to be monitored may last weeks or months, it
is also necessary to have routing protocols that are efficient
from the point of view of power consumption as well. In order
to save power it is necessary to allow nodes to go to sleep
periodically.

One way to improve the routing protocols mentioned above,
which can be applied to a network with a large number of
nodes, is to send certain nodes to sleep periodically, as in
LEACH [1] and subsequent versions. The geographical routing
is not based on the physical address of a node but on its
position: if there are other nodes geographically very close to
each other, not all of them have to be active at the same time. It
is therefore possible to envisage an alternation between periods
of activity and sleep periods that could follow a number of
strategies. The simplest option is to establish, on the basis of
the density of the nodes in the network, a duty cycle for the
nodes (without the need for a global time synchronization),
so as to guarantee with a certain probability that there will
always be an active node to perform routing operations.

Another strategy would be to allow neighboring nodes to
agree on the periods of activity via signaling messages. In that
case it would be possible to guarantee a fairer distribution of
the periods of activity, with a view to minimizing the power

consumed by the nodes and at the same time to enhance
the QoS on the network. This is the strategy adopted in our
framework to achieve the desired objectives. Details will be
given in the following.

B. Network architecture proposed

The RTPAW architecture inherits the main features of [1],
but with substantial differences.

Similarly to [1] the nodes are grouped into clusters, which
we call Aggregated Units (AUs) here. However, the AU
structure here is different from that of the clusters in [1]. Here,
the nodes in an AU belong to three different categories:
• Cluster Head (CH);
• Relay Node (RN);
• Cluster Node (CN).
In each AU there is one CH, one RN and a varying number

of CNs, as shown in Fig. 1. The CH has the task of collecting
data from the sensor nodes belonging to the cluster (the CNs)
and periodically transmit it to the RN. The task of the latter
is to forward the data to other RNs or the Sink node. In this
architecture, therefore, the CH handles transmission within the
cluster, while the RN handles transmission outside the cluster.

Fig. 1. Network architecture.

There are three different types of traffic:
1) Communications between CH and the CNs;
2) Communications between CH and RN;
3) Communications between RN and RN or RN and Sink.

C. Protocol architecture of the RTPAW framework

The RTPAW protocol architecture here proposed has an
Aggregation Layer which acts as a mediator between the
MAC and Routing layers for the combined handling of energy
awareness and real-time support. The Aggregation Layer deals
with creating and managing the AU and transmitting the first
two types of traffic described in subsection B, i.e. 1 and 2. The
Routing Layer lies above the Aggregation Layer and forwards
packets between AUs, thus handling the third type of traffic
(i.e. 3).

In this architecture, the MAC layer collaborates closely with
the Aggregation layer to provide the Routing layer with a
uniform view of the set of sensor nodes making up the AU.
The basic addressable entity in the Routing layer is therefore
not the single WSN node but the single AU.

The Aggregation layer is split into two sub-layers, with the
lower part (called MAC-dependent) which strongly depends
on the MAC protocol used and represents an extension of

61

the basic functions needed to implement the level above. On
the other hand, the MAC-independent part implements a pre-
established set of primitives operating as a shared interface
between the MAC-dependent and MAC-independent layers.
The task of the Aggregation Layer is to create and handle the
cluster and the aim is to reduce consumption by scheduling
periods of activity and sleep periods. As mentioned previously,
the MAC level and the MAC-dependent part of the Aggrega-
tion Layer work closely, as the activity periods may coincide
with certain states of the MAC Layer. For example, if TDMA
is used for transmission inside a cluster, it is possible to make
nodes go to sleep during time slots other than their own.

Above the Aggregation Layer virtually any routing algo-
rithm providing a certain QoS can be used. The algorithm
will operate viewing the whole AU as a single node.

The advantages of the proposed architecture are:
• Reduced power consumption, dependent on the efficiency

of the aggregation protocol used;
• Advanced QoS management, depending on the efficiency

of the routing protocol used;
• Fault-tolerance, also depending on the aggregation pro-

tocol used: as the routing unit is the whole AU rather
than the single node, the AU will continue to live even
if several of its nodes cease to function.

IV. THE PROTOCOLS USED

A. Physical and MAC Layer

The Physical and MAC layers adopted here are the 802.15.4
standard ones [8],[9]; to guarantee greater scalability and fault-
tolerance, the non-beacon enabled mode has been chosen. This
transmission mode is generally offered by the widely available
ZigBee modules. To avoid interference between neighboring
nodes operating in different clusters, it is possible to im-
plement a cell-based architecture exploiting the 16 different
channels offered by the standard in the 2.4 GHz bandwidth.
The idea is to make the radio cells at the Physical level
coincide with the clusters of the Aggregation layer.

B. Aggregation layer

The Aggregation layer handles data transmission in a single
cluster. The communication protocol for this layer follows the
philosophy of LEACH [1], but with considerable differences
given by both the need to use a different MAC layer and the
desire to improve some of its aspects.

As in LEACH, a superframe is created, in our case at the
Aggregation level, and the nodes belonging to each cluster
send their data to their CH in their time slots. It should be
noted that the Aggregation Layer superframe is not mapped
on the 802.15.4 superframe, but is created at a higher level
using the 802.15.4 non-beacon enabled mode. As mentioned
previously, in our approach there are not only cluster heads
(CH) and nodes belonging to a cluster (CN), but also relay
nodes (RN). A CH and an RN are elected in each cluster; the
former collects data from the other nodes (except the relay
node) whereas the latter forwards packets from one cluster to
another. It is necessary to provide a period of time, very short

if compared to the duration of the whole superframe, in which
the CH and RN nodes synchronize their data. The CH and RN
must always be active while all the others can go to sleep and
only wake up to receive synchronization signals from the CH
or to transmit their data during the assigned time slot. As
RN and CH nodes consume much more power than the other
nodes, it is necessary for them to be elected in rotation in such
a way as to balance the power consumption over the network.
The CH and the RN could coincide only in the exceptional
case in which the AU comprises a single node. In this case
the CH acts as an RN and periodically forwards its own data.

The transmission power of the nodes varies according to
whether they are RNs or not. RNs have to transmit at a power
high enough to reach either the Sink node in a single hop or
the RN of the next hop. The transmission power of the other
nodes has to be gauged according to the density of the nodes
and the number of clusters. Transmitting at too low a power
could lead to premature node isolation, whereas using too high
a power would not only mean a useless waste of energy, but
would also limit the signal quality due to greater interference
between nodes belonging to different clusters.

Unlike LEACH, we do not use CDMA to prevent inter-
ference between adjacent clusters, but Frequency Division
Multiple Access (FDMA): each cluster for intra-cluster com-
munications transmits on a different channel from that of the
neighboring clusters. Selection of the transmission channel
can be automatic during initialization of the nodes, using the
Energy Detection scan (ED scan) procedure defined in [8] and
[9], or set according to the position of a node. Another impor-
tant difference between RTPAW and LEACH is that whereas
the latter required network-wide clock synchronization, our
protocol requires synchronization at the AU level only.

The normal functioning of the protocol is divided into
three different phases, i.e., initialization, election and data
transfer. The initialization phase is executed when a node is
first activated, whereas election and data transfer alternate,
not necessarily at regular intervals. In the following a brief
description of the three phases is given.

1) Initialization: The main aim of the initialization phase is
the definition of the cellular architecture. In our scenario we
assume that all the nodes know their own position and that
they have been randomly arranged with a relatively uniform
density. It is therefore possible in quite a simple and efficient
manner to create a homogeneous cellular structure, like a grid
subdividing the area being monitored into a number of small
uniform regions, each hosting a cell. Channel selection can
also be based on the position of a node (and the cell it belongs
to) or can be determined following an ED scan in such a way
as to minimize radio interference.

The next step is the first election, during which the CH
is elected. If all the nodes are the same, the CH can be any
of the nodes equipped with the greatest amount of energy.
Then the CH elects the RN (as described below) and sends
the transmission schedule to the nodes belonging to the cluster.

2) Election: In cluster-based protocols integrating a cluster
head rotation mechanism, whenever a CH is elected it is
generally necessary to reconstruct the whole cluster. This
gives the network flexibility and adaptability to changes in

62

environmental conditions. However, in the presence of tight
deadlines, or when constant updating of the variables being
monitored is needed, this may lead to excessive degradation
in the QoS. It was therefore decided to separate the distributed
algorithm for the first election from the one used later on,
which is centralized. In the latter case, the CH at a certain
point (after a pre-established time or because its remaining
power has dropped beneath a certain threshold) autonomously
decides which node is to be its successor and notifies the node
involved. From the next transmission cycle the new CH will
start operating. The decision regarding the next CH is based on
the residual energy of the nodes in the cluster, as signaled in
the frame that nodes send during normal transmission phases.

Election of the RN is different. It should be as independent
as possible from the election of the CH, because the RN
battery could run out more rapidly. However, an indepen-
dent election would require complex management algorithms
which would cancel out all the benefits. RTPAW therefore
proposes a hybrid solution. The CH normally elects the RN
autonomously. An RN whose power has dropped beneath a
certain threshold notifies the CH during their synchroniza-
tion phase. The CH consequently chooses as the next RN
whichever of the nodes with the greatest amount of energy
has the strongest signal (it is advisable for CH and RN to be
close to each other, as the synergy between them gives a good
QoS). The first information can be obtained with a negligible
ovehead, inserting it in the packets that CN nodes send to their
relevant CH, while the second one can be directly devised by
the hardware.

3) Data transfer: Data transfer in a cluster follows a pre-
established synchronized sequence which emulates a super-
frame structure in the Aggregation Layer. In this way, although
simple CSMA/CA at the MAC level is used, it is possible to
avoid collisions.

The transmission sequence making up the superframe starts
with a beacon frame from the cluster head, used to synchronize
transmissions in the cluster. It is important to point out that the
beacon frame is generated by the Aggregation Layer and so
is not a 802.15.4 beacon frame. It is used for synchronization
with the CNs, so all the CNs have to receive it.

Following this there are time slots during which the CNs
can transmit their data to the CH, using TDMA. Each CN is
assigned a time slot during which it can communicate with
the CH with no collisions. During all the time slots assigned
to the other nodes, a CN can go to sleep. It must, however,
wake up again in time to receive the next beacon frame.

The last section of the superframe is for synchronization
between the CH and the RN.

In the meanwhile the RNs form a backbone of nodes that
are always active in forwarding packets to the Sink node.
They communicate over a single dedicated channel, so during
the synchronization phase it is necessary to switch channels
temporarily. When the RN acquires the updated CN data from
the CH, it forwards it as defined by the Routing Layer. Only
RNs can forward data so they are the only nodes to execute
the routing algorithm.

C. Routing layer
As the Routing layer is located above the Aggregation layer,

packets are not addressed to single nodes, but to single AUs.
So, the only task of the routing algorithm is to forward packets
from a source AU to their final destination, usually the Sink
node. The scenario RTPAW was devised for is one in which the
WSN comprises a large number of nodes and may cover a wide
area. For this reason, although the underlying Aggregation
layer contributes towards increasing the scalability of the
network, the algorithm used for routing between the AUs has
to be able to handle large network without any difficulty. In
addition, it is advisable to use a routing algorithm that is as
much fault-tolerant as possible. As said before, the presence
of an underlying Aggregation layer considerably reduces the
impact of faults occurring in single nodes. Finally, the routing
algorithm has to make it possible to achieve the desired QoS,
which in our case is delivery speed. A routing algorithm which
possesses all these features is SPEED [4]. For this reason, in
RTPAW a SPEED-inspired approach is used.

V. CONCLUSIONS AND ON-GOING WORK

The RTPAW framework has been devised to be highly
scalable, flexible and modular and to allow various existing
routing protocols to be adopted. On-going work deals with
simulation of the network architecture and protocol stack
of the RTPAW framework using the well-known NS-2 [10]
tool. The aim is assessing the RTPAW performance, also in
comparison with other approaches, e.g. RPAR [6]. A second
activity targets the implementation of RTPAW on ZigBee
COTS modules.

REFERENCES

[1] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocols for Wireless Microsensor Networks
(LEACH),” in Proc. of the 33rd Hawaii International Conference on
Systems Science, vol. 8, 2000, pp. 3005–3014.

[2] A. Manjeshwar and D. Agrawal, “TEEN: a Routing Protocol for
Enhanced Efficient in Wireless Sensor Networks,” in Proc. of the 15th
Internat Parallel and Distributed Processing Symp, 2001, pp. 2009–
2015.

[3] R.-S. Chang and C.-J. Kuo, “An Energy Efficient Routing Mechanism
for Wireless Sensor Networks,” in Proc. of the 20th Internat. Conf. on
Advanced Information Networking and Applications, 2006.

[4] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A Stateless
Protocol for Real-Time Communication in Sensor Networks,” in Proc.
IEEE Int’l Conf. Distributed Computing Systems, 2003, pp. 46–55.

[5] E. Felemban, C.-G. Lee, and E. Ekici, “MMSPEED: multipath Multi-
SPEED protocol for QoS guarantee of reliability and. Timeliness in
wireless sensor networks,” in IEEE Transactions on Mobile Computing,
vol. 5, no. 6, June 2006, pp. 738–754.

[6] O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, and
T. Abdelzaher, “Real-time Power-Aware Routing in Sensor Networks,”
in 14th IEEE Internat. Workshop on Quality of Service, 2006, pp. 83–92.

[7] B. Bougard, F. Catthoor, D. Daly, A. Chandrakasan, and W. Dehaene,
“Energy efficiency of IEEE 802.15.4 standard in dense wireless mi-
crosensor networks: modeling and improvement perspectives,” in Proc.
of Design, Automation and Test in Europe, vol. 1, 2005, pp. 196–201.

[8] “IEEE 802.15.4 Standard Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs), IEEE Standard for Information
Technology, IEEE-SA Standards Board,” 2003.

[9] “IEEE 802.15.4-2006 Standard Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANs), IEEE Standard for
Information Technology, IEEE-SA Standards Board,” 2006.

[10] “The Network Simulator. http://www.isi.edu/nsnam/ns.”

63

Improving the real-time capabilities of IEEE
802.11e through a Contention Window Adapter

Salvatore Vittorio, Giordano A. Kaczyński, Lucia Lo Bello
RETISNET Lab

Department of Computer Engineering and Telecommunications
University of Catania

Catania, ITALY
{gakaczy, lucia.lobello}@diit.unict.it

Abstract— The paper reports on-going work on enhancing the
support provided to soft real-time traffic by the IEEE 802.11e
protocol. The proposed solution is based on a mechanism, called a
Contention Window Adapter (CWA), which dynamically changes
the contention window size of the different Access Categories
defined by the IEEE 802.11e standard according to the work-
load conditions of the wireless network. The aim is improving
throughput and deadline miss ratio for soft real-time traffic flows
under heavy traffic conditions, i.e. when the offered workload
approaches the available bandwidth. Preliminary results are
presented, which show the potential of the proposed approach.

I. INTRODUCTION

To provide support for QoS in 802.11 networks, the IEEE
Task Group E was set up and in 2005 the final version of
the 802.11e standard was finally published [1]. The IEEE
802.11e defines two new access mechanisms, i.e the Enhanced
Distributed Channel Access (EDCA) and the Hybrid Coordi-
nation Function (HCF) Controlled Access (HCCA). This paper
addresses IEEE 802.11e based networks working according to
the EDCA mode, which extends the IEEE 802.11 Distributed
Coordination Function (DCF) [2].

The IEEE 802.11 DCF operating mode, which is widely
accepted and used in commercial products, is based on
the Carrier-Sense Multiple Access with Collision Avoidance
(CSMA/CA) protocol. Before starting transmission, a node
listens to the channel for a time called a Distributed Inter-
Frame Spacing (DIFS), to assess whether the channel is idle
or not. If the channel is idle, in order to reduce the probability
of collisions with other nodes trying to access it at the same
time, each node generates a random backoff interval. Each
node decreases its backoff counter as long as the wireless
channel is sensed to be idle during a DIFS. If the counter
has not reached zero and the channel becomes busy again, the
backoff counter is frozen and reloaded as soon as the channel
becomes idle again for a DIFS. When the backoff interval
is over, if the channel is still idle, transmission starts. The
random backoff interval, expressed as a number of time slots,
is generated in the set {0,CW - 1}, where CW denotes the size
of the contention window. The initial value of the contention
window is CWmin.

In the event of an unsuccessful transmission (due to packet
collisions or losses) CW is doubled up to a maximum value

CWmax. After experiencing the maximum number of col-
lisions, a packet is dropped. In the event of a successful
transmission, the CW value is reset to CWmin before the
random backoff interval is selected. In DCF, all nodes have
the same opportunity to access the channel.

The IEEE 802.11e EDCA is similar to the DCF. However,
the EDCA differentiates traffic into four Access Categories
(ACs), mapped in the priorities defined by the 802.1D stan-
dard [3] as follows:
• AC BK (background category) for priorities 1 and 2;
• AC BE (best-effort category) for priorities 0 and 3;
• AC VI (video category) for priorities 4 and 5;
• AC VO (voice category) for priorities 6 and 7.
AC VO is the highest priority category, while AC BK is the

lowest. Each AC has its own queue and parameter set, which
includes the minimum Contention Window size (CWmin), the
maximum Contention Window size (CWmax), the Arbitration
Inter-Frame Space (AIFS), and the Transmission Opportunity
limit (TXOPlimit). CWmin and CWmax determine the size of
the CW, with CW set as CWmin at the beginning of a backoff
procedure.

When deferring, a station needs to wait for an AIFS. The
smaller CWmin, CWmax, and AIFS are, the greater the
chances for a node gaining access to the medium are. Finally,
TXOPlimit defines the minimum time interval that a node has
to wait when trying to transmit multiple frames belonging to
the same AC (this is called Contention Free Burst, or CFB).

In this paper, we propose the Contention Window Adapter
(CWA), a mechanism to enhance IEEE 802.11e EDCA per-
formance by adapting the Contention Window (CW) of the
different ACs to the current offered load over the wireless
network. One interesting feature which will be shown is
that, even in the presence of traffic from the highest priority
class only (i.e. AC VO), according to the amount of real-
time traffic and the size of packets in this class, the real-
time performance can rapidly and significantly deteriorate with
growing workloads. This is due to the CWmin and CWmax

settings provided by the standard, i.e. 7 and 15, respectively,
which determine a narrow range of backoff values for the
packets in the AC VO AC. Here in this paper we will shown
that it is beneficial to adapt CWmin and CWmax to allow for

64

a larger spectrum of backoff values, thus reducing the number
of collisions inside the AC VO AC. The proposed mechanism
does not change the IEEE 802.11e protocol, but introduces a
technique to reduce the contention overhead and therefore to
use the channel more efficiently for real-time flows, especially
when the traffic load approaches saturation conditions.

However, it has to be considered that when different ACs
are to be supported, if the CWmax of the highest priority class
is increased, the CWmin of the lower priority ACs has to be
accordingly set, so as to enforce the different QoS support
offered to the each AC according to the standard. The CWA
therefore dynamically tunes the {CWmin, CWmax} range
of the different ACs defined in the IEEE 802.11e standard
in order to reduce the potential interference (in terms of
collisions) that real-time traffic, here mapped into the highest
priority class AC VO, could suffer from other lower-priority
ACs.

The paper is organized as follows. In Sect. 2 related work
is addressed together with the motivation for our paper. Sect.
3 describes the CWA mechanism. In Sect. 4 preliminary simu-
lation results obtained using the Network Simulator version 2
are shown. Finally, in Sect. 5, conclusions and on-going work
are outlined.

II. RELATED WORK

With the swift development of 802.11 WLANs, together
with the increased need to provide QoS support in such
networks, in the last years many research work addressed the
new IEEE 802.11e protocol.

A number of studies have targeted analytical performance
models in order to evaluate the impact of changing the various
parameters of EDCA. Xiao [4], for example, extends the
Bianchi [5] model, implementing EDCA by means of 3-
dimensional Markov chains and analyzing network behaviour
for CWs of various sizes, but not including the effects of
variations in the AIFS of the various ACs. Kong [6] also uses
3-dimensional Markov chains to characterize the procedures
of the various ACs with variations in both the CWs and the
AIFS. These works have shown the effectiveness of changing
CW depending on the network load.

Recent work describing mechanisms for CW tuning in-
clude [7] and [8]. The work [7] introduces an approach called
AEDCF, that does not implement a mechanism to vary the
range of CWs, but calculates an ideal CW on the basis of the
network load estimated according to the number of collisions
experienced by the transmitted frames. Once the ideal CW is
known, the current CW (CWcurrent) for the next frame is
set by taking whichever is the lower between the minimum
CW (CWmin) of the AC the frame belongs to and the ideal
CW. The approach is shown outperforming EDCF, the IEEE
802.11e pre-standard distributed medium access mechanism.
However, it uses a parameter named Persistent Factor, that was
present in an earlier version of the IEEE 802.11e standard, but
does not appear in the final version.

The approach proposed in [8], AEDCA, estimates network
congestion by using the value of the current CW (i.e. that of

the last frame sent). The distance between the current CW and
the CWmin is compared to the maximum distance between
CWmax and CWmin for the relevant AC, deriving a parameter
that is utilized to calculate the new CW for the next frame to be
transmitted. The AEDCA approach, like the AEDCF one, does
not provide for changing the values of CWmin and CWmax,
but simply chooses the best one in that range.

Instead of setting the CW to an optimal given value in the
{CWmin, CWmax} range defined by the standard, the CWA
mechanism here proposed adjusts the range of the current
CW (i.e. the values of CWmin and CWmax) on the basis of
information on the newtork workload collected during a time
interval. This allows to have a CW adapted to the current
network status, not limited by the bounds defined by the
standard, which proved to be inappropriate in many network
load conditions, as will be pointed out in the next Section.

III. THE CONTENTION WINDOW ADAPTER

The aim of the CWA is enhancing real-time performance of
the highest priority traffic, AC VO, while maintaining a better
QoS than the other ACs. As stated before in Sect. 1, CWA
adapts CWmin and CWmax in order to reduce the number of
collisions inside the AC VO AC.

In order to clearly explain the basic principle of CWA, let
us consider the results shown in Table I. They refer to tests run
under ns-2 [9] with a 11 Mbps network made up of 20 stations,
each generating AC VO packets of 160 Bytes with a period
of 20 ms, giving an overall workload of 1280 Kbps. With
such small packets and high transmission rate, the AC VO
class obtains poor performance when the setting defined by
the IEEE 802.11e standard, i.e. CWmin[AC V O] = 7 and
CWmax[AC V O] = 15 are used. This is because in these
conditions the AC VO class is highly congested [10].

In the 6 different sets of simulations reported in Table I the
CWmin and CWmax were statically set at the beginning of
each experiment.

TABLE I
EFFECTS OF VARYING CWmin AND CWmax ON AC VO PERFORMANCE.

CWmin CWmax Average
delay (s)

Average jitter
(s)

Throughput
(%)

7 15 0.01699 0.01249 62.7
7 31 0.01811 0.01760 80.9
15 31 0.01701 0.01596 89.7
15 63 0.00970 0.00724 98.2
31 63 0.00750 0.00490 99.7
31 127 0.00790 0.00574 100

The results show that, although all the packets which are
delivered arrive on time (i.e. they meet the 20 ms deadline),
the throughput is significantly higher for settings such as
CWmin[AC V O] = 15, CWmax[AC V O] = 31 onwards
than with the default settings CWmin[AC V O] = 7 and
CWmax[AC V O] = 15 provided by the IEEE 802.11e pro-
tocol. In addition, the results show that, with wider contention
windows, the delay and jitter experienced by RT packets

65

is reduced. This is due to the smaller number of collisions
experienced by RT packets thanks to the broader range of
backoff values.

From the various tests run it also emerged that a good
way to reduce the collision probability is to vary CWmin

and CWmax by doubling both of them. These results were
also confirmed by other tests run with a greater number of
stations and different workload conditions. For this reason we
will henceforward adopt settings such as CWmin[AC V O]
= 7, CWmax[AC V O] = 15 or CWmin[AC V O] = 15,
CWmax[AC V O] = 31, etc.

The above considerations led to the development of the
CWA, which is based on the idea of dynamically varying
CWmin and CWmax according to the network load. The
parameter used in the CWA to assess the network load is the
ratio (rc) between the number of collisions (n coll) affecting
the highest priority packets AC VO and the total number of
packets sent (n pkt sent) in the AC VO AC during a given
observation interval ∆t:

rc =
n coll(AC V O)

n pkt sent(AC V O)
(1)

This parameter is an index of the level of congestion on the
network seen by the AC VO class. In order to minimize the
bias against transient collisions, an Exponentially Weighted
Moving Average (EWMA) estimator was used. In a generic
i interval, the value of ri

avg , to be used by the algorithm, is
updated in the following way:

ri
avg = (λ− 1)× ri

c + λ× ri−1
avg (2)

The CWA takes this parameter into account when adapting
the CWmin and CWmax of the various classes, every ∆t, as
follows:

1. procedure Contention Window Adapter

2. if (n pkt sent(AC V O) ! = 0) then

3. ravg := EWMA(n coll[AC V O]/n pkt sent[AC V O])

4. if (ravg ≤ α) then

5. call procedure Decrease()

6. else if ((α < ravg) && (ravg ≤ β)) then do nothing

7. else if ((β < ravg) && (ravg ≤ γ)) then

8. call procedure Increase(1)

9. else if (ravg > γ) then

10. call procedure Increase(2)

11. end if

12. end if

13. end procedure

In Sect. IV, the results obtained with α = 0.2, β = 0.6, γ =
2 and ∆t = 0.3 s are presented. These boundary values have
been heuristically selected through a broad set of simulations
run with varying parameter sets under ns-2 [9].

To maintain the differentiation between the different traffic
classes, in the CWA an increase in the CWmin and CWmax

window for the AC VO class has to correspond to a cascaded

increase in the CWmin and CWmax for the other ACs, i.e.
AC VI, AC BE and AC BK. This cascade mechanism used
to update the CW of the various ACs is shown in the two
pseudo-code procedures below.

1. procedure Increase(n)

2. repeat n times

3. if (CWmax[AC V O] ! = 63) then

4. CWmax[AC V O] := ((CWmax[AC V O] + 1)× 2)− 1

5. CWmin[AC V O] := ((CWmin[AC V O] + 1)× 2)− 1

6. CWmax[AC V I] := ((CWmax[AC V O] + 1)× 2)− 1

7. CWmin[AC V I] := CWmax[AC V O]

8. CWmin[AC BE] := CWmax[AC V I]

9. CWmin[AC BK] := CWmax[AC V I]

10. else if (CWmax[AC V I] < 511) then

11. if (CWmax[AC V O] ! = 63)

11. CWmax[AC V O] := ((CWmax[AC V O]+1)×2)−1

12. CWmin[AC V O] := ((CWmin[AC V O]+1)×2)−1

13. end if

14. CWmax[AC V I] := ((CWmax[AC V I] + 1)× 2)− 1

15. CWmin[AC BE] := CWmax[AC V I]

16. CWmin[AC BK] := CWmax[AC V I]

17. end if

18. end repeat

19. end procedure

To give an example on how the increment is done, let us
consider a CWmax[AC V O] equal to 15. Formula on line 4
of the Increase procedure will give a value of 31. In turn, a
value of 31, would give 63. Thus, the CWA shifts the range of
CW moving through the values defined in the IEEE 802.11e
standard [1]. Here the value 63 has been chosen as an upper
bound for CWmax[AC V O] in order to not compromise the
performance of this class with excessively long backoff times.

1. procedure Decrease

2. if ((CWmin[AC V I] < 127) and

(CWmax[AC V O] > 15)) then

3. CWmax[AC V O] := ((CWmax[AC V O] + 1)/2)− 1

4. CWmin[AC V O] := ((CWmin[AC V O] + 1)/2)− 1

5. CWmax[AC V I] := ((CWmax[AC V O] + 1)/2)− 1

6. CWmin[AC V I] := ((CWmin[AC V O] + 1)/2)− 1

7. CWmin[AC BE] := CWmax[AC V I]

8. CWmin[AC BK] := CWmax[AC V I]

9. end if

10. else if (CWmin[AC V I] > 63)

11. CWmax[AC V I] := ((CWmax[AC V O] + 1)/2)− 1

12. CWmin[AC V I] := ((CWmin[AC V O] + 1)/2)− 1

13. CWmin[AC BE] := CWmax[AC V I]

14. CWmin[AC BK] := CWmax[AC V I]

15. end if

16. end procedure

The Decrease procedure makes the opposite of the Increase
one, shifting backwards the values of CWmin and CWmax

of AC VO and of the rest of the ACs.

66

IV. PRELIMINARY RESULTS

Here preliminary results are shown which outline the ben-
efits of CWA. Extensive simulations using ns-2 [9] with the
TKN 802.11e patch ([11],[12]) were performed.

In the scenario addressed here, the nodes communicate
with an Access Point at 11 Mbps. Simulations showed that
if the CW size is appropriately set, RT traffic performance
is considerably improved using CWA. More specifically, the
probability of a packet of a given AC colliding with another
packet belonging to the same AC is reduced. Here we show
this with particular reference to the AC VO class.

We considered a scenario in which a number of nodes
transmit RT traffic towards a Base Station (BS). In a factory
automation scenario the BS could be, for example, a PLC
receiving field variables from a number of sensors. The type of
traffic here considered is periodic, with a period of 20 ms and
a frame size of 45 bytes, which means 18 Kbps per station.
Simulations were performed with a growing number of RT
stations, from 1 to 25. With 20 stations or more and such small
packets, the network reaches saturation around 500 Kbps [10].
All the simulations were run for 50 s.

Fig. 1(a) compares the throughput obtained with and without
CWA, while Fig. 1(b) compares the deadline hit ratio in the
two cases (a 20 ms deadline was chosen). The improvement
obtained with the CWA is due to the considerable reduction
in the number of collisions involving the RT frames.

The greatest benefit concerns the throughput obtained,
which, using CWA drops only in the scenario with 23 or
more stations, as at that point the network reaches saturation.
However, although the deadline hit degrades, the throughput is
still much higher than the one observed in the same conditions
when the CWA is not used.

V. CONCLUSION AND ON-GOING WORK

This paper has addressed an approach to enhance the soft
real-time performance of the IEEE 802.11e protocol. The
proposed solution, called CWA, is a mechanism which tunes
the Contention Windows of the different Access Categories
defined by the IEEE 802.11e standard, adapting the values
of CWmin and CWmax. Preliminary results have shown the
effectiveness of using CWA for soft real-time traffic, achieving
higher throughput and consequently a much lower number of
frame loss as compared with the standard behavior of IEEE
802.11e. A lower deadline miss ratio is also obtained.

On-going work is addressing several aspects. Firstly, the
problem of using CWA in the presence of stations that do not
have soft real-time traffic: if a station tries to transmit only traf-
fic with a priority other than the highest (AC VO), the CWA
cannot react on the basis of the collisions affecting that type
of traffic, as ratio is defined for the AC VO class. On-going
work is addressing this problem and possible enhancements of
the algorithm proposed. Secondly, we are analyzing the effect
of using CWA for lower-priority ACs, and for bigger frame
sizes. Both aspects are in development and the results obtained
so far are encouraging. We also plan to make comparisons
with other techniques in the literature. In parallel, we are also

(a)

(b)

Fig. 1. (a) Total throughput with varying number of stations. (b) Deadline
hit ratio, with a 20 ms deadline. Dashed lines refers to results with CWA,
while solid refers to results without CWA.

investigating the implementation of CWA on COTS network
boards, in particular on the Atheros chipset 5212 equipped
with the MADWiFi open source driver [13].

REFERENCES

[1] “IEEE 802.11e-2005, Medium Access Control (MAC) Quality of Ser-
vice Enhancements,” 2005.

[2] “IEEE 802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications,” 1999.

[3] “IEEE 802.1D-2004, Media access control (MAC) Bridges,” 2004.
[4] Y. Xiao, “Performance analysis of IEEE 802.11e EDCF under saturation

condition,” in Proc. of IEEE ICC, 2004, pp. 170–174.
[5] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed

coordination function,” in IEEE Journal on Selected Areas in Commu-
nications, vol. 18, 2000, pp. 535–547.

[6] Z. N. Kong, D. H. K. Tsang, B. Bensaou, and D. Gao, “Performance
Analysis of IEEE 802.11e Contention-Based Channel Access,” in IEEE
Journal on Selected Areas in Communications, vol. 22, 2004.

[7] L. Romdhani, Q. Ni, and T. Turletti, “Adaptive EDCF: Enhanced Service
Differentiation for IEEE 802.11 Wireless Ad-Hoc Networks,” in Wireless
Communications and Mobile Computing, 2004.

[8] J. Sawaya, B. Ghaddar, S. Khawam, H. Safa, H. Artail, and Z. Dawy,
“Adaptive Approach for QoS Support in IEEE 802.11e Wireless LAN,”
in Wireless Mobile, 2005.

[9] “The Network Simulator. http://www.isi.edu/nsnam/ns.”
[10] J. Jun, P. Peddabachagari, and M. Sichitiu, “Theoretical Maximum

Throughput of IEEE 802.11 and its Applications,” in Proc. of the 2nd
IEEE Int. Symp. on Net. Comp. and Applications (NCA03), 2003, pp.
249–256.

[11] S. Wiethoelther and C. Hoene, “Design and Verification of an IEEE
802.11e EDCF Simulation Model in ns-2.26,” in TR TKN-03-019.
Telecommunication Network Group, Technische Universitat Berlin,
2005.

[12] S. Wiethoelther, M. Emmelmann, and C. Hoene, “TKN EDCA model
for NS-2,” in TR TKN-06-003. Telecommunication Network Group,
Technische Universitat Berlin, 2003.

[13] “MADWiFi - Atheros Multiband Driver for WiFi. http://madwifi.org.”

67

	Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium
	Recommended Citation
	Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium

	introduction.pdf
	proceedings.pdf
	cover_page.pdf
	gopalakrishnan.pdf
	allen.pdf
	cheng1.pdf
	cheng2.pdf
	hjertström.pdf
	karsko.pdf
	kluge.pdf
	li.pdf
	wang.pdf
	marau.pdf
	Introduction
	FRESCOR background
	FRESCOR application model

	FTT-SE basics
	Integration of FTT-SE under FRESCOR
	The FRESCOR / FTT-SE interface
	Supporting the application interface

	Internals of the contracting procedure
	Concluding remarks and On-going work
	References

	mohan.pdf
	morita.pdf
	salewski.pdf
	sprick.pdf
	sugaya.pdf
	toscano.pdf
	vittorio.pdf

