12 research outputs found

    Improved validation framework and R-package for artificial neural network models

    Get PDF
    Validation is a critical component of any modelling process. In artificial neural network (ANN) modelling, validation generally consists of the assessment of model predictive performance on an independent validation set (predictive validity). However, this ignores other aspects of model validation considered to be good practice in other areas of environmental modelling, such as residual analysis (replicative validity) and checking the plausibility of the model in relation to a priori system understanding (structural validity). In order to address this shortcoming, a validation framework for ANNs is introduced in this paper that covers all of the above aspects of validation. In addition, the validann R-package is introduced that enables these validation methods to be implemented in a user-friendly and consistent fashion. The benefits of the framework and R-package are demonstrated for two environmental modelling case studies, highlighting the importance of considering replicative and structural validity in addition to predictive validity

    On how data are partitioned in model development and evaluation: Confronting the elephant in the room to enhance model generalization

    Get PDF
    Models play a pivotal role in advancing our understanding of Earth\u27s physical nature and environmental systems, aiding in their efficient planning and management. The accuracy and reliability of these models heavily rely on data, which are generally partitioned into subsets for model development and evaluation. Surprisingly, how this partitioning is done is often not justified, even though it determines what model we end up with, how we assess its performance and what decisions we make based on the resulting model outputs. In this study, we shed light on the paramount importance of meticulously considering data partitioning in the model development and evaluation process, and its significant impact on model generalization. We identify flaws in existing data-splitting approaches and propose a forward-looking strategy to effectively confront the “elephant in the room”, leading to improved model generalization capabilities

    Rockfall Source Identification Using a Hybrid Gaussian Mixture-Ensemble Machine Learning Model and LiDAR Data

    Get PDF
    The availability of high-resolution laser scanning data and advanced machine learning algorithms has enabled an accurate potential rockfall source identification. However, the presence of other mass movements, such as landslides within the same region of interest, poses additional challenges to this task. Thus, this research presents a method based on an integration of Gaussian mixture model (GMM) and ensemble artificial neural network (bagging ANN [BANN]) for automatic detection of potential rockfall sources at Kinta Valley area, Malaysia. The GMM was utilised to determine slope angle thresholds of various geomorphological units. Different algorithms(ANN, support vector machine [SVM] and k nearest neighbour [kNN]) were individually tested with various ensemble models (bagging, voting and boosting). Grid search method was adopted to optimise the hyperparameters of the investigated base models. The proposed model achieves excellent results with success and prediction accuracies at 95% and 94%, respectively. In addition, this technique has achieved excellent accuracies (ROC = 95%) over other methods used. Moreover, the proposed model has achieved the optimal prediction accuracies (92%) on the basis of testing data, thereby indicating that the model can be generalised and replicated in different regions, and the proposed method can be applied to various landslide studies

    Two step calibration method for ozone low-cost sensor: Field experiences with the UrbanSense DCUs

    Get PDF
    Urban air pollution is a global concern impairing citizens' health, thus monitoring is a pressing need for city managers. City-wide networks for air pollution monitoring based on low-cost sensors are promising to provide real-time data with detail and scale never before possible. However, they still present limitations preventing their ubiquitous use. Thus, this study aimed to perform a post-deployment validation and calibration based on two step methods for ozone low-cost sensor of a city-wide network for air pollution and meteorology monitoring using low-cost sensors focusing on the main challenges. Four of the 23 data collection units (DCUs) of the UrbanSense network installed in Porto city (Portugal) with low-cost sensors for particulate matter (PM), carbon monoxide (CO), ozone (O-3), and meteorological variables (temperature, relative humidity, luminosity, precipitation, and wind speed and direction) were evaluated. This study identified post-deployment challenges related to their validation and calibration. The preliminary validation showed that PM, CO and precipitation sensors recorded only unreliable data, and other sensors (wind speed and direction) very few data. A multi-step calibration strategy was implemented: inter-DCU calibration (1st step, for O-3, temperature and relative humidity) and calibration with a reference-grade instrument (2nd step, for O-3). In the 1st step, multivariate linear regression (MLR) resulted in models with better performance than non-linear models such as artificial neural networks (errors almost zero and R-2 > 0.80). In the 2nd step, the calibration models using non-linear machine learning boosting algorithms, namely Stochastic Gradient Boosting Regressor (both with the default and posttuning hyper-parameters), performed better than artificial neural networks and linear regression approaches. The calibrated O-3 data resulted in a marginal improvement from the raw data, with error values close to zero, with low predictability (R-2 similar to 0.32). The lessons learned with the present study evidenced the need to redesign the calibration strategy. Thus, a novel multi-step calibration strategy is proposed, based on two steps (pre and post-deployment calibration). When performed cyclically and continuously, this strategy reduces the need for reference instruments, while probably minimising data drifts over time. More experimental campaigns are needed to collect more data and further improve calibration models

    On how data are partitioned in model development and evaluation: Confronting the elephant in the room to enhance model generalization

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: No data was used for the research described in the article.Models play a pivotal role in advancing our understanding of Earth's physical nature and environmental systems, aiding in their efficient planning and management. The accuracy and reliability of these models heavily rely on data, which are generally partitioned into subsets for model development and evaluation. Surprisingly, how this partitioning is done is often not justified, even though it determines what model we end up with, how we assess its performance and what decisions we make based on the resulting model outputs. In this study, we shed light on the paramount importance of meticulously considering data partitioning in the model development and evaluation process, and its significant impact on model generalization. We identify flaws in existing data-splitting approaches and propose a forward-looking strategy to effectively confront the “elephant in the room”, leading to improved model generalization capabilities.National Natural Science Foundation of ChinaAustralian Research Council (ARC

    Exploding the myths: An introduction to artificial neural networks for prediction and forecasting

    Get PDF
    Artificial Neural Networks (ANNs), sometimes also called models for deep learning, are used extensively for the prediction of a range of environmental variables. While the potential of ANNs is unquestioned, they are surrounded by an air of mystery and intrigue, leading to a lack of understanding of their inner workings. This has led to the perpetuation of a number of myths, resulting in the misconception that applying ANNs primarily involves "throwing" a large amount of data at "black-box" software packages. While this is a convenient way to side-step the principles applied to the development of other types of models, this comes at significant cost in terms of the usefulness of the resulting models. To address these issues, this inroductory overview paper explodes a number of the common myths surrounding the use of ANNs and outlines state-of-the-art approaches to developing ANNs that enable them to be applied with confidence in practice

    A review of artificial neural network models for ambient air pollution prediction

    Get PDF
    Research activity in the field of air pollution forecasting using artificial neural networks (ANNs) has increased dramatically in recent years. However, the development of ANN models entails levels of uncertainty given the black-box nature of ANNs. In this paper, a protocol by Maier et al. (2010) for ANN model development is presented and applied to assess journal papers dealing with air pollution forecasting using ANN models. The majority of the reviewed works are aimed at the long-term forecasting of outdoor PM10, PM2.5, and oxides of nitrogen, and ozone. The vast majority of the identified works utilised meteorological and source emissions predictors almost exclusively. Furthermore, ad-hoc approaches are found to be predominantly used for determining optimal model predictors, appropriate data subsets and the optimal model structure. Multilayer perceptron and ensemble-type models are predominantly implemented. Overall, the findings highlight the need for developing systematic protocols for developing powerful ANN models

    The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support

    Get PDF
    Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling. The tremendous potential benefits of SA are, however, yet to be fully realized, both for advancing mechanistic and data-driven modeling of human and natural systems, and in support of decision making. In this perspective paper, a multidisciplinary group of researchers and practitioners revisit the current status of SA, and outline research challenges in regard to both theoretical frameworks and their applications to solve real-world problems. Six areas are discussed that warrant further attention, including (1) structuring and standardizing SA as a discipline, (2) realizing the untapped potential of SA for systems modeling, (3) addressing the computational burden of SA, (4) progressing SA in the context of machine learning, (5) clarifying the relationship and role of SA to uncertainty quantification, and (6) evolving the use of SA in support of decision making. An outlook for the future of SA is provided that underlines how SA must underpin a wide variety of activities to better serve science and society.John Jakeman’s work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program. Joseph Guillaume received funding from an Australian Research Council Discovery Early Career Award (project no. DE190100317). Arnald Puy worked on this paper on a Marie Sklodowska-Curie Global Fellowship, grant number 792178. Takuya Iwanaga is supported through an Australian Government Research Training Program (AGRTP) Scholarship and the ANU Hilda-John Endowment Fun

    Real-time Control and Optimization of Water Supply and Distribution infrastructure

    Get PDF
    Across North America, water supply and distribution systems (WSDs) are controlled manually by operational staff - who place a heavy reliance on their experience and judgement when rendering operational decisions. These decisions range from scheduling the operation of pumps, valves and chemical dosing in the system. However, due to the uncertainty of demand, stringent water quality regulatory constraints, external forcing (cold/drought climates, fires, bursts) from the environment, and the non-stationarity of climate change, operators have the tendency to control their systems conservatively and reactively. WSDs that are operated in such fashion are said to be 'reactive' because: (i) the operators manually react to changes in the system behaviour, as measured by Supervisory Control and Data Acquisition (SCADA) systems; and (ii) are not always aware of any anomalies in the system until they are reported by consumers and authorities. The net result is that the overall operations of WSDs are suboptimal with respect to energy consumption, water losses, infrastructure damage and water quality. In this research, an intelligent platform, namely the Real-time Dynamically Dimensioned Scheduler (RT-DDS), is developed and quantitatively assessed for the proactive control and optimization of WSD operations. The RT-DDS platform was configured to solve a dynamic control problem at every timestep (hour) of the day. The control problem involved the minimization of energy costs (over the 24-hour period) by recommending 'near-optimal' pump schedules, while satisfying hydraulic reliability constraints. These constraints were predefined by operational staff and regulatory limits and define a tolerance band for pressure and storage levels across the WSD system. The RT-DDS platform includes three essential modules. The first module produces high-resolution forecasts of water demand via ensemble machine learning techniques. A water demand profile for the next 24-hours is predicted based on historical demand, ambient conditions (i.e. temperature, precipitation) and current calendar information. The predicted profile is then fed into the second module, which involves a simulation model of the WSD. The model is used to determine the hydraulic impacts of particular control settings. The results of the simulation model are used to guide the search strategy of the final module - a stochastic single solution optimization algorithm. The optimizer is parallelized for computational efficiency, such that the reporting frequency of the platform is within 15 minutes of execution time. The fidelity of the prediction engine of the RT-DDS platform was evaluated with an Advanced Metering Infrastructure (AMI) driven case study, whereby the short-term water consumption of the residential units in the city were predicted. A Multi-Layer Perceptron (MLP) model alongside ensemble-driven learning techniques (Random forests, Bagging trees and Boosted trees) were built, trained and validated as part of this research. A three-stage validation process was adopted to assess the replicative, predictive and structural validity of the models. Further, the models were assessed in their predictive capacity at two different spatial resolutions: at a single meter and at the city-level. While the models proved to have strong generalization capability, via good performance in the cross-validation testing, the models displayed slight biases when aiming to predict extreme peak events in the single meter dataset. It was concluded that the models performed far better with a lower spatial resolution (at the city or district level) whereby peak events are far more normalized. In general, the models demonstrated the capacity of using machine learning techniques in the context of short term water demand forecasting - particularly for real-time control and optimization. In determining the optimal representation of pump schedules for real-time optimization, multiple control variable formulations were assessed. These included binary control statuses and time-controlled triggers, whereby the pump schedule was represented as a sequence of on/off binary variables and active/idle discrete time periods, respectively. While the time controlled trigger representation systematically outperformed the binary representation in terms of computational efficiency, it was found that both formulations led to conditions whereby the system would violate the predefined maximum number of pump switches per calendar day. This occurred because at each timestep the control variable formulation was unaware of the previously elapsed pump switches in the subsequent hours. Violations in the maximum pump switch limits lead to transient instabilities and thus create hydraulically undesirable conditions. As such, a novel feedback architecture was proposed, such that at every timestep, the number of switches that had elapsed in the previous hours was explicitly encoded into the formulation. In this manner, the maximum number of switches per calendar day was never violated since the optimizer was aware of the current trajectory of the system. Using this novel formulation, daily energy cost savings of up to 25\% were achievable on an average day, leading to cost savings of over 2.3 million dollars over a ten-year period. Moreover, stable hydraulic conditions were produced in the system, thereby changing very little when compared to baseline operations in terms of quality of service and overall condition of assets
    corecore