557,476 research outputs found

    Improved automation of dissolved organic carbon sampling for organic-rich surface waters

    Get PDF
    In-situ UV-Vis spectrophotometers offer the potential for improved estimates of dissolved organic carbon (DOC) fluxes for organic-rich systems such as peatlands because they are able to sample and log DOC proxies automatically through time at low cost. In turn, this could enable improved total carbon budget estimates for peatlands. The ability of such instruments to accurately measure DOC depends on a number of factors, not least of which is how absorbance measurements relate to DOC and the environmental conditions. Here we test the ability of a S::can Spectro::lyserTM for measuring DOC in peatland streams with routinely high DOC concentrations. Through analysis of the spectral response data collected by the instrument we have been able to accurately measure DOC up to 66 mg L-1, which is more than double the original upper calibration limit for this particular instrument. A linear regression modelling approach resulted in an accuracy > 95%. The greatest accuracy was achieved when absorbance values for several different wavelengths were used at the same time in the model. However, an accuracy > 90% was achieved using absorbance values for a single wavelength to predict DOC concentration. Our calculations indicated that, for organic-rich systems, in-situ measurement with a scanning spectrophotometer can improve fluvial DOC flux estimates by 6 to 8% compared with traditional sampling methods. Thus, our techniques pave the way for improved long-term carbon budget calculations from organic-rich systems such as peatlands

    Transient responses of phosphoric acid fuel cell power plant system

    Get PDF
    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center

    Nuclear structure far from stability

    Full text link
    Modern nuclear structure theory is rapidly evolving towards regions of exotic short-lived nuclei far from stability, nuclear astrophysics applications, and bridging the gap between low-energy QCD and the phenomenology of finite nuclei. The principal objective is to build a consistent microscopic theoretical framework that will provide a unified description of bulk properties, nuclear excitations and reactions. Stringent constraints on the microscopic approach to nuclear dynamics, effective nuclear interactions, and nuclear energy density functionals, are obtained from studies of the structure and stability of exotic nuclei with extreme isospin values, as well as extended asymmetric nucleonic matter. Recent theoretical advances in the description of structure phenomena in exotic nuclei far from stability are reviewed.Comment: 18 pp, plenary talk, International Nuclear Physics Conference (INPC 2004), Goeteborg, Sweden, June 27 - July 2, 200

    Response to Vanderbilt University's LAPOP Critique of CEPR Report, "Have US-Funded CARSI Programs Reduced Crime and Violence in Central America?"

    Get PDF
    This report is a response to Vanderbilt University's Latin American Public Opinion Project (LAPOP) critique of our report, "Have US-Funded CARSI Programs Reduced Crime and Violence in Central America?" released in September 2016. That September report was an examination of the only publicly accessible impact assessment of USAID-funded anticrime and community-based violence prevention programs carried out under the umbrella of the US State Department's Central American Regional Security Initiative (CARSI). LAPOP took issue with our illustration of certain methodological flaws in LAPOP's study, as well as with the manner in which we presented our conclusions. LAPOP's criticisms appear to be largely based on misunderstanding and misinterpretation of our arguments and fail to address our main findings. The problems with the LAPOP study that we identified still stand, as does the validity of our conclusion: LAPOP's study cannot support the conclusion that intervention caused the areas subject to treatment in the CARSI programs to improve relative to those areas where no intervention took place

    Wavelet-Based Linear-Response Time-Dependent Density-Functional Theory

    Full text link
    Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbital program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine

    Investigating the effectiveness of an efficient label placement method using eye movement data

    Get PDF
    This paper focuses on improving the efficiency and effectiveness of dynamic and interactive maps in relation to the user. A label placement method with an improved algorithmic efficiency is presented. Since this algorithm has an influence on the actual placement of the name labels on the map, it is tested if this efficient algorithms also creates more effective maps: how well is the information processed by the user. We tested 30 participants while they were working on a dynamic and interactive map display. Their task was to locate geographical names on each of the presented maps. Their eye movements were registered together with the time at which a given label was found. The gathered data reveal no difference in the user's response times, neither in the number and the duration of the fixations between both map designs. The results of this study show that the efficiency of label placement algorithms can be improved without disturbing the user's cognitive map. Consequently, we created a more efficient map without affecting its effectiveness towards the user
    corecore