Linear-response time-dependent (TD) density-functional theory (DFT) has been
implemented in the pseudopotential wavelet-based electronic structure program
BigDFT and results are compared against those obtained with the all-electron
Gaussian-type orbital program deMon2k for the calculation of electronic
absorption spectra of N2 using the TD local density approximation (LDA). The
two programs give comparable excitation energies and absorption spectra once
suitably extensive basis sets are used. Convergence of LDA density orbitals and
orbital energies to the basis-set limit is significantly faster for BigDFT than
for deMon2k. However the number of virtual orbitals used in TD-DFT calculations
is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT
calculations in deMon2k. As a reality check, we report the x-ray crystal
structure and the measured and calculated absorption spectrum (excitation
energies and oscillator strengths) of the small organic molecule
N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine