469 research outputs found

    On email spam filtering using support vector machine

    Get PDF
    Electronic mail is a major revolution taking place over traditional communication systems due to its convenient, economical, fast, and easy to use nature. A major bottleneck in electronic communications is the enormous dissemination of unwanted, harmful emails known as "spam emails". A major concern is the developing of suitable filters that can adequately capture those emails and achieve high performance rate. Machine learning (ML) researchers have developed many approaches in order to tackle this problem. Within the context of machine learning, support vector machines (SVM) have made a large contribution to the development of spam email filtering. Based on SVM, different schemes have been proposed through text classification approaches (TC). A crucial problem when using SVM is the choice of kernels as they directly affect the separation of emails in the feature space. We investigate the use of several distance-based kernels to specify spam filtering behaviors using SVM. However, most of used kernels concern continuous data, and neglect the structure of the text. In contrast to classical blind kernels, we propose the use of various string kernels for spam filtering. We show how effectively string kernels suit spam filtering problem. On the other hand, data preprocessing is a vital part of text classification where the objective is to generate feature vectors usable by SVM kernels. We detail a feature mapping variant in TC that yields improved performance for the standard SVM in filtering task. Furthermore, we propose an online active framework for spam filtering. We present empirical results from an extensive study of online, transductive, and online active methods for classifying spam emails in real time. We show that active online method using string kernels achieves higher precision and recall rates

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Investigation into the Application of Personality Insights and Language Tone Analysis in Spam Classification

    Get PDF
    Due to its persistence spam remains as one of the biggest problems facing users and suppliers of email communication services. Machine learning techniques have been very successful at preventing many spam mails from arriving in user mailboxes, however they still account for over 50% of all emails sent. Despite this relative success the economic cost of spam has been estimated as high as 50billionin2005andmorerecentlyat50 billion in 2005 and more recently at 20 billion so spam can still be considered a considerable problem. In essence a spam email is a commercial communication trying to entice the receiver to take some positive action. This project uses the text from emails and creates personality insight and language tone scores through the use of IBM Watsons’ Tone Analyzer API. Those scores are used to investigate whether the language used in emails can be transformed into useful features that can be used to correctly classify them as spam or genuine emails. And during the course of this investigation a range of machine learning techniques are applied. Results from this experiment found that where just the personality insight and language tone features are used in the model some promising results with one dataset were shown. However over all datasets results were inconclusive with this model. Furthermore it was found that in a model where these features were used in combination with a normalised term-frequency feature-set no real improvement in the classification performance was shown

    Deep learning to filter SMS spam

    Get PDF
    The popularity of short message service (SMS) has been growing over the last decade. For businesses, these text messages are more effective than even emails. This is because while 98% of mobile users read their SMS by the end of the day, about 80% of the emails remain unopened. The popularity of SMS has also given rise to SMS Spam, which refers to any irrelevant text messages delivered using mobile networks. They are severely annoying to users. Most existing research that has attempted to filter SMS Spam has relied on manually identified features. Extending the current literature, this paper uses deep learning to classify Spam and Not-Spam text messages. Specifically, Convolutional Neural Network and Long Short-term memory models were employed. The proposed models were based on text data only, and self-extracted the feature set. On a benchmark dataset consisting of 747 Spam and 4,827 Not-Spam text messages, a remarkable accuracy of 99.44% was achieved

    Automatic text categorisation of racist webpages

    Get PDF
    Automatic Text Categorisation (TC) involves the assignment of one or more predefined categories to text documents in order that they can be effectively managed. In this thesis we examine the possibility of applying automatic text categorisation to the problem of categorising texts (web pages) based on whether or not they are racist. TC has proven successful for topic-based problems such as news story categorisation. However, the problem of detecting racism is dissimilar to topic-based problems in that lexical items present in racist documents can also appear in anti-racist documents or indeed potentially any document. The mere presence of a potentially racist term does not necessarily mean the document is racist. The difficulty is finding what discerns racist documents from non-racist. We use a machine learning method called Support Vector Machines (SVM) to automatically learn features of racism in order to be capable of making a decision about the target class of unseen documents. We examine various representations within an SVM so as to identify the most effective method for handling this problem. Our work shows that it is possible to develop automatic categorisation of web pages, based on these approache

    Kernel methods in machine learning

    Full text link
    We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.Comment: Published in at http://dx.doi.org/10.1214/009053607000000677 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Statistical Analysis of Spherical Data: Clustering, Feature Selection and Applications

    Get PDF
    In the light of interdisciplinary applications, data to be studied and analyzed have witnessed a growth in volume and change in their intrinsic structure and type. In other words, in practice the diversity of resources generating objects have imposed several challenges for decision maker to determine informative data in terms of time, model capability, scalability and knowledge discovery. Thus, it is highly desirable to be able to extract patterns of interest that support the decision of data management. Clustering, among other machine learning approaches, is an important data engineering technique that empowers the automatic discovery of similar object’s clusters and the consequent assignment of new unseen objects to appropriate clusters. In this context, the majority of current research does not completely address the true structure and nature of data for particular application at hand. In contrast to most previous research, our proposed work focuses on the modeling and classification of spherical data that are naturally generated in many data mining and knowledge discovery applications. Thus, in this thesis we propose several estimation and feature selection frameworks based on Langevin distribution which are devoted to spherical patterns in offline and online settings. In this thesis, we first formulate a unified probabilistic framework, where we build probabilistic kernels based on Fisher score and information divergences from finite Langevin mixture for Support Vector Machine. We are motivated by the fact that the blending of generative and discriminative approaches has prevailed by exploring and adopting distinct characteristic of each approach toward constructing a complementary system combining the best of both. Due to the high demand to construct compact and accurate statistical models that are automatically adjustable to dynamic changes, next in this thesis, we propose probabilistic frameworks for high-dimensional spherical data modeling based on finite Langevin mixtures that allow simultaneous clustering and feature selection in offline and online settings. To this end, we adopted finite mixture models which have long been heavily relied on deterministic learning approaches such as maximum likelihood estimation. Despite their successful utilization in wide spectrum of areas, these approaches have several drawbacks as we will discuss in this thesis. An alternative approach is the adoption of Bayesian inference that naturally addresses data uncertainty while ensuring good generalization. To address this issue, we also propose a Bayesian approach for finite Langevin mixture model estimation and selection. When data change dynamically and grow drastically, finite mixture is not always a feasible solution. In contrast with previous approaches, which suppose an unknown finite number of mixture components, we finally propose a nonparametric Bayesian approach which assumes an infinite number of components. We further enhance our model by simultaneously detecting informative features in the process of clustering. Through extensive empirical experiments, we demonstrate the merits of the proposed learning frameworks on diverse high dimensional datasets and challenging real-world applications
    corecore