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Abstract

Statistical Analysis of Spherical Data: Clustering, Feature Selection and Applications

Ola Amayri, Ph.D.

Concordia University, 2014

In the light of interdisciplinary applications, data to be studied and analyzed have witnessed a

growth in volume and change in their intrinsic structure and type. In other words, in practice the

diversity of resources generating objects have imposed several challenges for decision maker to

determine informative data in terms of time, model capability, scalability and knowledge discov-

ery. Thus, it is highly desirable to be able to extract patterns of interest that support the decision

of data management. Clustering, among other machine learning approaches, is an important data

engineering technique that empowers the automatic discovery of similar object’s clusters and the

consequent assignment of new unseen objects to appropriate clusters. In this context, the majority

of current research does not completely address the true structure and nature of data for particu-

lar application at hand. In contrast to most previous research, our proposed work focuses on the

modeling and classification of spherical data that are naturally generated in many data mining and

knowledge discovery applications. Thus, in this thesis we propose several estimation and feature

selection frameworks based on Langevin distribution which are devoted to spherical patterns in

offline and online settings.

In this thesis, we first formulate a unified probabilistic framework, where we build probabilis-

tic kernels based on Fisher score and information divergences from finite Langevin mixture for

Support Vector Machine. We are motivated by the fact that the blending of generative and discrim-

inative approaches has prevailed by exploring and adopting distinct characteristic of each approach

toward constructing a complementary system combining the best of both.

Due to the high demand to construct compact and accurate statistical models that are automati-

cally adjustable to dynamic changes, next in this thesis, we propose probabilistic frameworks for
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high-dimensional spherical data modeling based on finite Langevin mixtures that allow simultane-

ous clustering and feature selection in offline and online settings. To this end, we adopted finite

mixture models which have long been heavily relied on deterministic learning approaches such as

maximum likelihood estimation. Despite their successful utilization in wide spectrum of areas,

these approaches have several drawbacks as we will discuss in this thesis. An alternative approach

is the adoption of Bayesian inference that naturally addresses data uncertainty while ensuring good

generalization. To address this issue, we also propose a Bayesian approach for finite Langevin mix-

ture model estimation and selection.

When data change dynamically and grow drastically, finite mixture is not always a feasible solu-

tion. In contrast with previous approaches, which suppose an unknown finite number of mixture

components, we finally propose a nonparametric Bayesian approach which assumes an infinite

number of components. We further enhance our model by simultaneously detecting informative

features in the process of clustering.

Through extensive empirical experiments, we demonstrate the merits of the proposed learning

frameworks on diverse high dimensional datasets and challenging real-world applications.
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CHAPTER 1
Introduction

As various disciplines have witnessed integration of digital technologies, high-dimensional sparse

data are becoming more prevalent in every field of human endeavor. In the particular case of ma-

chine learning, such problems have been tackled using statistical learning, providing a rich and

flexible techniques that can be applied to model data randomness and uncertainty. In this context,

often one tries to understand this mass of data through analyzing informative patterns and de-

scribing the best possible model which succeeds in capturing the regularities in the data generating

process. Nonetheless selecting an appropriate model that solves all aspects of application at hand is

a major challenge as different approaches are needed, for distinct aspects, and often depend on dif-

ferent representational choices. For instance, although modeling based on Gaussian mixtures has

provided good performance in some applications, recent works have shown that Gaussian model

is sensitive to noise and irresistible to outliers when dealing with high-dimensional data. Indeed,

among the challenges when using finite mixture modeling, there is the choice of appropriate para-

metric form of the probability density functions to represent the components.

Compared to the Gaussian, Langevin distribution has been shown to be a good alternative [1–3].

Usually, it is adopted to model problems involving high-dimensional spherical (L2-normalized)

vectors [1]. Indeed, it implicitly uses cosine similarity that is easy to interpret and simple to com-

pute for sparse vectors, and has been widely used in text mining [4], spam filtering [2], gene

expression analysis [5], and topic detection [6–8]. Works about directional data in general and
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spherical ones in particular have been developed thanks to the efforts of Watson, Stephens and

others [9–19]. Thus, in this thesis we shall consider Langevin model to build our statistical frame-

works.

1.1 Background

In ML applications, data points are usually represented as vectors of features. During the pre-

processing step, normalization is generally applied to resolve some domain-related problems (e.g.

long document domination in case of text classification). Different normalization approaches have

been extensively used in the past such as L1 [20] and L2 [21] (known as Euclidean norm). In this

thesis, we shall concentrate on L2 normalization which has been shown repeatedly to improve the

performance of classification [22]. More importantly, once the feature vectors are L2 normalized

they can be visualized as points on the circumference of a circle (two dimensions) or on the surface

of a sphere (three dimensions) or generally on a hypersphere (for a higher number of dimensions).

Spherical data are also common in astronomy, biology, geology, medicine and meteorology 1.

1.1.1 Langevin Distribution

Let �X = (X1, . . . , XD) be a random unit vector in RD. �X has D-variate Langevin distribution if

its probability density function is given by [24]:

pD( �X|�μ, κ) = exp{κ�μT �X − aD(κ)} (1)

on the (D − 1)-dimensional unit sphere SD−1 = { �X| �X ∈ RD : || �X|| =
√
�X �XT = 1}, with

mean direction unit vector �μ ∈ SD−1, where �μT denotes the transpose of �μ and non-negative real
1More details and thorough discussions about the statistics of spherical data in particular and directional data in

general can be found in [23].

2



concentration parameter κ ≥ 0. The normalizing constant function aD(κ) is given by:

aD(κ) = − log
{ κ

D
2
−1

(2π)
D
2 ID

2
−1(κ)

}
(2)

where ID(κ) denotes the modified Bessel function of first kind [24]. From Eq.1 we can notice

that Langevin distribution is a member of (curved)-exponential family of order D, whose shape

is symmetric and unimodal, with minimal canonical parameter κ�μ and minimal canonical statistic
�X . Moreover, its mean and covariance values are given by [25]:

E(�μ,κ){ �X} = áD(κ)�μ (3)

Σ = Cov( �Xi, �Xj) = áD(κ)�μi�μj +
aD(κ)

κ
(ID − �μi�μj) (4)

where áD(κ) is given by:

áD(κ) = AD(κ) =
ID

2
(κ)

ID
2
−1(κ)

(5)

If κ = 0 the distribution is uniform, and for small κ, it is close to uniform. While if κ is large

(κ → ∞), the distribution becomes very concentrated about the angle �μ with κ being a measure

of the concentration. In fact, as κ increases, the distribution approaches a normal distribution in �X

with mean �μ and variance 1/κ.

For the 2-dimensional (D = 2) and 3-dimensional (D = 3) cases we find vM and vMF dis-

tributions, respectively. vM distribution 1 [26] is a probability distribution in which the data are

concentrated on the circumference of a unit circle. Using Eq.1 the vM probability density function

can be written as follows

p2( �X|�μ, κ) =
1

2πI0(κ)
exp{κ�μT �X} (6)

where I0 is the modified Bessel function of the first kind and order zero [24]. When directions

in free space are of interest, a circular distribution will no longer be sufficient. It is necessary to
1Also known as the circular normal distribution [26].
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consider a distribution on the surface of a sphere. Hence, vMF [27] can be adopted as a generative

model for modeling spherical data in spherical unit and has been used successfully in text, speech

and video clustering applications [1, 28, 29] [29]. For vMF, Eq.1 is reduced to

p3( �X|�μ, κ) =
κ

4π sinh(κ)
exp(κ�μT �X) (7)

It is noteworthy that maximum likelihood estimations for von Mises and von Mises Fisher distri-

butions have been proposed in [30] and [31], respectively.

1.1.2 Finite Langevin Mixture Model

Let p( �Xi|Θ) be a mixture of M Langevin distributions (i.e. a linear combination of some M

component distributions). The probability density function p( �Xi|Θ) is then given by

p( �Xi|Θ) =

M∑
j=1

pD( �Xi|θj)pj (8)

whereΘ = {�P = (p1, . . . , pM), �θ = (θ1, . . . , θM)} denotes all the parameters of the mixture model

such as θj = (μj, κj) and �P represents the vector of clusters probabilities (i.e. mixing weights)

such that pj ≥ 0 and
M∑
j=1

pj = 1.

Learning finite mixture models has received lots of attention over the years and can be broadly

grouped into deterministic methods and Bayesian methods [32]. In one hand, deterministic meth-

ods aim at optimizing the model likelihood function which are generally implemented within the

expectation-maximization (EM) framework. The EM algorithm is known to converge to local

solutions and is highly dependent on initialization. However, convergence to a globally optimal

solution is not guaranteed. On the other hand, there is a growing interest in Bayesian methods

which are considered as an alternative way to deal with mixture models in order to overcome

the problems generally faced when using deterministic approaches such as EM. Indeed, Bayesian

methods have been widely and successfully applied in different domains by allowing powerful

4



frameworks that combine information brought by the data (likelihood function) with expert opin-

ion (prior information) to produce an updated expert opinion (posterior information).

1.2 Contributions

Our main contributions can be summarized as:

• We propose [2, 3] hybrid generative/ discriminative models as we are motivated by the

capability of injecting priori information and inferring hidden pattern of objects when

using Langevin mixture model, and the speed and good generalization when adopting

SVMs. Indeed, instead of using Langevin mixture directly for classification, we build

probabilistic kernels based on Langevin mixture and information divergence.

• We propose simultaneous clustering and feature selection frameworks in offline [33]

and online sttings [34] devoted to the applications in which spherical data representa-

tions are involved [8].

• We propose [35] a Bayesian algorithm based on finite Langevin mixture. More-

over, we extend this work to allow simultaneous clustering and feature selection using

Bayesian inference [36].

• We propose a nonparametric Bayesian infinite mixture for spherical patterns. We also

consider the problem of feature selection within the same framework by proposing a

unified efficient framework [37].

1.3 Thesis Overview

The organization of this thesis is as follows:

• In Chapter 2, we propose a unified probabilistic framework, where we build proba-

bilistic kernels from mixture of Langevin distributions for Support Vector Machine.

• In Chapter 3, a probabilistic framework that allows simultaneous clustering and feature
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selection in offline and online settings using finite mixtures of Von Mises distributions

(movM) (which are special cases of Langevin distributions) are presented.

• In Chapter 4, we introduce a Bayesian approach for Langevin mixture model estima-

tion and selection. Moreover, we further enhance our model by considering the prob-

lem of feature selection, and hence, we propose a framework that allows simultaneous

clustering and feature selection in Bayesian settings using movM.

• In Chapter 5, motivated by the need to adapt to dynamic settings, we devote this chap-

ter to develop a clustering framework based on nonparametric Bayesian approach for

spherical patterns. Furthermore, we extend our model to simultaneously handle fea-

ture selection in infinite settings.

• Finally, Chapter 6 provides concluding remarks and future work directions.
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CHAPTER 2
Hybrids of Generative Discriminative

Models for Spherical Data

In this chapter we develop an MML criterion for the Langevin mixture model. Moreover, we derive

different SVM probabilistic kernels based on information divergence and Fisher score from mix-

ture of Langevin distributions. Finally, we present experimental results of applying our approach

on synthetic data, email spam classification and email categorization.

2.1 Introduction

Nowadays, machine learning (ML) and data mining researchers have made substantial break-

throughs in every field of human endeavor and newer applications are adequately emerging. For

example, automated categorization of digital multimedia into predefined categories is a major rev-

olution taking place over traditional categorization, due to its effectiveness, savings of labor power

and its portability to different domains [38, 39]. Such modern applications have been driving the

research in ML to construct flexible statistical representations for different kind of data (i.e. con-

tinuous, discrete, binary, etc) which we confront in these particular kind of applications. Broadly

speaking, the approaches adopted when using ML techniques can be grouped into: generative

models and discriminative models.

7



In supervised classification problems, discriminative models define the boundaries between dif-

ferent classes (i.e. categories) by maximizing the margin between data of interest in the training

phase. Then, in classification phase, the label that will be assigned for new unseen data depends

on which side of the boundary the mapped input data point was set according to the constructed

model. To illustrate, let (X , C) = { �Xi, cj}, where 1 < i ≤ N and j = 1, . . . ,M be a training

dataset composed of N labeled data associated with M labels. A discriminative classifier esti-

mates a classification function C = f( �X) directly from data. Therein, the data will be associated

with one label defined by the sign of the function. Examples include SVMs [40], Neural network,

Gaussian process, Logistic regression [41], etc. Discriminative models have received a great deal

of attention in many areas such as bio-informatics, text classification, speech recognition and im-

age classification, object categorization, etc. In contrast, the fundamental purpose of generative

approaches is to present a probability density model p over input data points, hidden variables and

output labels of tailored system. To achieve this goal, generative models learn the joint probability

density function p( �Xi, C) of input data point �Xi and class C for each class and then classifying

using Bayes rule (p(C| �X) ∝ (p(C)p( �X|C))) to estimate p(C| �X) and choose the most probable

label [42]. Examples include, Hidden Markov Model, Bayesian Network, mixture models, etc.

Diversified applications, sophisticated mechanisms, unique features and immense volume of unla-

beled data in unrelated fields has made it difficult and very expensive to prepare potential labeled

training examples to design probabilistic models in the scientific and industrial areas. To handle

this particular obstacle and unlike discriminative approaches, generative approaches have shown

both analytically and experimentally a better performance with small number of training and un-

labeled examples and they present a principled framework for handling uncertainty and missing

data [43]. Furthermore, in generative learning phase each class is learned individually and we can

explicitly define the correspondence between the variables in the underlying model equally. Hence,

unlike discriminative models, in which all classes are needed to be considered simultaneously, we

can easily retrain old classes or even learn new classes with updating the previous model of learned

classes rather than rebuild our model from scratch. Yet, discriminative approaches don’t regard the
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details of the given model for different classes and don’t engage prior knowledge of application

environment and expert impression, they perform more like a black box where they return the class

of the input data point without presenting a clear principled reason and way. This is particularity

crucial as it makes discriminative models faster than generative models by focusing on construct-

ing the boundaries between different classes rather than wasting the time on finding the structure

of the data and trying to figure out the density from which the data were drawn. Another charac-

teristic of discriminative models is the fact that they have lower asymptotic error than generative

models [43].

Problem Statement

The blending of generative and discriminative approaches has prevailed by exploring and adopting

distinct characteristics of each approach toward constructing a complementary system combining

the best of both [44–46]. There are several approaches that have been proposed based on generic

properties of the generative and discriminative models which in turn don’t provide realistic mod-

eling for specific domains problems as in ML applications, for instance. In the context of ML,

evolved learning approaches target applications that vary in their complexity, emerged data repre-

sentations, modeling capabilities and generalization power. In particular applications, analyzing

the data of interest is a vital component in learning procedure such as in multimedia classification.

A standard representation method of multimedia examples (e.g. videos, images, text, etc.) is vec-

tor space representation which has witnessed a massive shift from well-known extensively used

vectorial representation in which each document (or image) is described by a single vector to bags

of vectors representation in which each document (or image) is described by a set of vectors.

In the same vein, the adoption of L2 normalization has been shown to play an important role, as a

preprocessing step, in many practical applications especially those generating count data. Indeed,
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L2-normalization1 has been used in an attempt to overcome sparsity problem and improve cluster-

ing performance especially in the domain of text, image and video classification [22]. Consider,

for example, text classification, it has been noticed that L2 normalization alleviates the impact of

dominating long documents on the classification decision [22, 48]. Also, L2 normalization has

been shown to increase the robustness to various changes, such as illumination changes in image

classification [47, 49]. It is noteworthy that once the feature vectors are L2 normalized they can

be visualized as points on a hypersphere, which can be naturally modeled using spherical distribu-

tions. In one hand, normalized set (or bag) of vectors representation has challenged the capability

of using discriminative approaches (e.g. SVM) to classify this particular data. On other hand, it

has raised the awareness of generative models (e.g. mixtures of distributions) capability to model

such rich presentation of the data at hand. In this chapter, our main contributions are:

• We tackle the problem of automatic determination of the number of components (i.e.

model selection) of Langevin mixture model by proposing MML criterion [50] for

model selection. Previously, the authors in [51] and [52] proposed MML for a low

dimensional data D = 1 (Von Mises mixture) and D = 2 (Von Mises Fisher mixture),

respectively and are hence limited solutions to many complicated problems when the

data has high dimensionality such as image classification. To this aim, in this chapter,

we generalize these expressions to the multidimensional case D > 2.

• We develop several well-motivated probabilistic SVM kernels based on Langevin

mixture models. In particular, we develop closed-form expressions of the Kullback-

Leibler kernel, Rényi kernel, Jensen-Shannon kernel, probability product kernel and

Fisher kernel between two Langevin distributions.

• We discuss the properties of proposed framework on abundant (hundreds of thou-

sands), high-dimensional, directional and challenging data: Enron dataset (used for

email categorization), trec05-p1 and Princeton dataset (used for spam filtering).
1In particular, the authors in [47] recommended strongly the normalization of data in feature space when consider-

ing SVM and have shown that normalization leads to considerably superior generalization performance.
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• In case of spam filtering, we argue that existing filtering techniques based on either

the body text of emails or attached images are no longer effective. Accordingly, in

this chapter we propose a general framework to construct an intelligent, adaptive and

well-grounded spam filter that utilizes the information provided in different parts of

the email and prevents potential defeatism of user privacy. To achieve this goal, we

propose a hybrid statistical framework that combines and uses simultaneously both

textual and visual email information to filter spam emails.

• We present detailed comparison of Langevinmixture model and the widely used Gaus-

sian mixture model (GMM) in terms of the selection of the number of clusters and

SVMs kernels generation performance based on the developed probabilistic kernels.

2.2 Langevin Mixture Model Parameter Estimation

In this section, we describe an EM learning algorithm to estimate the parameters of Langevin

mixture model. Subsequently, we derive the equations for estimating the number of Langevin

mixture components from data at hand using MML criterion. In order to estimate the parameters

Θ of the underlying mixture we use common EM [32] framework which generates a sequence of

models with non-decreasing log-likelihood on the data. Following EM, consider the complete data

to be { �Xi, �Zi}, where �Zi = {Zi1, . . . , ZiM} denotes the missing vectors, such that
∑M

j=1Zij = 1

withZij = 1 if �Xi belongs to class j and 0, otherwise. The E-step in the EM computes the posterior

probabilities given by the following equation:

Ẑt
ij =

pj( �Xi|θj)pj
M∑
j=1

pj( �Xi|θj)pj

(1)

where Ẑij ∈ [0, 1],
∑M

j=1 Ẑij = 1 and denotes the degree of membership of �Xi in the jth clus-

ter. In the M-step, given the conditional expectation of complete log-likelihood Q(Θ,Θt) =∑N
i=1

∑M
j=1 Ẑ

t
ij log(p(

�Xi|θj)pj), we update the parameters estimate according toΘt+1 = argmaxΘQ(Θ,Θt).
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A complete EM algorithm for Langevin mixture has been proposed in [1] and we shall use it in

our work. The EM algorithm iterates and depends on initialization because the likelihood function

often has numerous local maxima. Thus, good initialization is crucial for finding ML estimates.

Many different initialization procedures have been suggested in the literature but no method uni-

formly outperforms the others. Among proposed approaches, we used spherical K-means [53]

since it takes into account the spherical nature of our data. The complete parameter estimation

steps for Langevin mixture are summarized in algorithm 1 (interested readers might see [1] [54]

for further details). It is noteworthy that algorithm 1 assumes that the number of components is

Algorithm 1 Initialization and Complete Estimation Algorithm

INPUT: Set of N D-dimensional data points X on SD−1

OUTPUT: Clusters of X over a mixture ofM Langevin distributions
1: Apply spherical K-means [53] onN D-dimensional vectors to obtain the initial parameters for
each component μj , κj , j = 1, . . . ,M

2: E step: Compute Ẑt
ij using Eq.1.

3: M step:

pt+1
j =

1

N

N∑
i=1

Ẑt
ij �μt+1

j =

N∑
i=1

�XiẐ
t
ij

R̄ =
‖�μj‖

Npj
�μt+1

j =

∑N

i=1
�XiẐ

t
ij

‖
N∑
i=1

�XiẐ
t
ij‖

κt+1
j =

R̄p− R̄3

1− R̄2

known which is in general not true. Indeed, apart from parameter estimation, another important

problem is the selection of the appropriate number of componentsM . We discuss this issue in the

next subsection.
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2.2.1 Mixture of Langevin Selection Using MML

One of the central issues in mixture models is to determine the optimal degree of complexity (i.e.

optimal number of clusters). A too limited mixture model (i.e. with few number of components)

will not capture the structure of the data, while a too complex one (i.e. with many components) will

cause overfitting of the data, and in both cases the generalization capability of the model will be

poor. The model selection problem can be viewed then as one that helps finding the optimal trade-

off between the complexity of the model and goodness of fit. Thus, many approaches have been

proposed and can broadly be divided into deterministic and stochastic approaches. In this chapter,

we consider deterministic approaches which are widely deployed in the field of pattern recogni-

tion and are less computationally demanding comparing to stochastic approaches. Deterministic

approaches are based on the minimization of the negative log likelihood function p(X |Θ) to which

penalty function is added. Examples include AIC [55], BIC [56], MDL [57] and MML [50] 2.

As a well-established selection criterion, MML has been repeatedly shown to demonstrate good

performance in case of Gaussian, Gamma, Poisson, Dirichlet and generalized Dirichlet mixtures

and outperforms AIC and MDL approaches [59, 60]. Thus, we propose the consideration of MML

criterion to find the optimal number of mixture components by minimizing the following objective

function [50]:

MessLength(M) 
 − log(h(Θ))− log(p(X |Θ)) + 1
2
log(|F (Θ)|) (2)

+Np
2
(1− log(12))

where h(Θ) is the prior probability, p(X |Θ) is the likelihood, F (Θ) is the expected Fisher infor-

mation matrix which is generally approximated by complete-data Fisher information matrix in the

case of finite mixture models [59], |F (Θ)| is its determinant, and Np is the number of free param-

eters to be estimated which is equal toM(D + 1) − 1 in our case. In the following, we calculate
2Other approaches are possible also. For instance, in [58], the authors have used mixture of von Mises distributions

learned using maximum likelihood for parameters estimation and bootstrap likelihood ratio approach to assess the
optimal number of components and applied to study the problem of sudden infant death.
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the Fisher information and we propose a prior to obtain the complete message length expression

for a finite Langevin mixture.

Fisher Information (F (Θ))

Fisher information matrix is the expected value of Hessian matrix of the logarithm of minus

the likelihood of the mixture F (Θ) ≡ −E[ ∂2

∂k1∂k2
log p(X |Θ)], for k1 = 1, . . . ,M × D and

k2 = 1, . . . ,M × D. Analytically, for mixture models it is difficult to obtain the Fisher infor-

mation matrix. Instead, we replace F (Θ) by complete data Fisher information matrix F (Θ)c ≡

−E[ ∂2

∂k1∂k2
log p(X ,Z|Θ)], which has a block diagonal structure and its determinant is given by:

|F (Θ)| 
 |F (�P )|
M∏
j=1

|F (�μj, κj)| (3)

where |F (�P )| is the determinant of the information matrix of �P and |F (�μj, κj)| is the Fisher

information of the Langevin distribution representing component j. For |F (�P )|, we can easily

show that:

|F (�P )| =
NM−1∏M

j=1 p(j)
(4)

where N is the number of data vector. As for |F (�μj, κj)| we can show that [61]:

|F (�μj, κj)| = n
D
j u

2(κj)v
2(�μj,0) (5)

where nj is the number of vectors assigned to cluster j, and

u(κj) = κ
1
2
(D−2)

j AD(κj)
1
2
(D−1)

(
κj −AD(κj)− κjAD(κj)

2

) 1
2

(6)

v(�μj,0) =
D−1∏
d=1

sinD−2 μj,0,d−1 (7)

where �μj,0 = (μj,0,1, . . . , μj,0,D) denotes the spherical polar coordinates of �μj . Substituting Eq.4

and Eq.5 into Eq.3, the Fisher information for a mixture of Langevin distribution can be written
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as:

|F (Θ)| 

NM−1∏M

j=1 p(j)

M∏
j=1

nD
j u

2(κj)v
2(�μj,0) (8)

Prior distribution h(Θ)

In the absence of any other knowledge about �P , �μj and κj , we suppose that they are mutually

independent, which yields to the following prior distribution over the parameters:

h(Θ) = h(�P )
M∏
j=1

h(κj)h(�μj) (9)

For the mixing probabilities �P , a common choice as a prior is the Dirichlet distribution as a prior:

h(�P ) =
Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

p
ηj−1
j (10)

where η = (η1, . . . , ηM) is the parameter vector of the Drichlet distribution. The choice of η1 =

1, . . . , ηM = 1 gives uniform prior over the space where p1+. . .+pM = 1. This prior is formulated

by:

h(�P ) = (M − 1)! (11)

Note that this uniform prior is defined over the (M − 1)-dimensional region of hypervolume

1/(M − 1)!. For the parameter �μj , we consider a uniform prior on the surface of the unit (D− 1)-

sphere:

h(�μj) =
1

SD

(12)

where SD is the surface of a unit (D − 1)-sphere which is given by:

SD =

⎧⎪⎨
⎪⎩
D π

D
2
D
2
!
, if D is even

D 2
D+1
2 π

D−1
2

D!!
, if D is odd

(13)
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where “!!” denotes the double factorial. Furthermore, we consider the following prior, which has

been found appropriate according to our experimental results, for the concentration parameter of a

Langevin distribution [52]:

h(κj) =
κD−1
j

(1 + κ2j )
D+1
2

(14)

Substituting Eq.11, Eq.12 and Eq.14 into Eq.9, we obtain

h(Θ) =
(M − 1)!

SM
D

M∏
j=1

[
κD−1
j

(1 + κ2j )
D+1
2

]
(15)

Thus, by substituting log |F (Θ)| and log(h(Θ)) we can obtain the message length of a finite mix-

ture of Langevin distribution and the complete algorithm to learn the Langevin mixture can be

summarized as follows:

Algorithm 2 Complete Learning Algorithm
1: Estimate the parameters of the Langevin mixture distribution using the estimation algorithm 1
2: Calculate the associated message lengthMessLength(M) using Eq. 2
3: Select the optimal modelM∗ such thatM∗ = argminMessLength(M)

2.3 Support Vector Machines Kernels Generation

SVMs [40] are known to give accurate discrimination in high-dimensional feature spaces and have

received a great deal of attention in categorization and classification applications. Briefly, SVMs

have outperformed other learning algorithms with good generalization, global solution, number of

tuning parameters and their solid theoretical background. The core concept of SVMs is to discrim-

inate classes with a hyperplane that maximizes the margin by solving quadratic programming (qp)

problem with linear equality and inequality constraints. Let {( �X1, C1), . . . , ( �Xl, Cl)}, �Xi ∈ RN

be a training set of random independent identically distributed vectors belonging to two separate
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classes Ci ∈ {−1, 1}. SVMs solution for binary classification is given by [40]

f( �X) = sign(
l∑

i=1

Ciα
∗
i (
�X. �Xi) + b

∗) (16)

where α∗ is 1a Lagrangian parameter. SVM evolves non-linear mapping of learned data from input

spaceX into higher dimensional feature spaceZ where the classification performance is increased.

This has been developed by applying several kernels K( �X, �Xi) that measure the similarities be-

tween vectors. Note that the inner product in Eq. 16 in the non-linear mapping is replaced by

Φ( �X).Φ( �Xi), which is simply the kernel function in input space X . For background reading on

SVMs and kernel methods, the reader is referred to [40].

It has been proved that the choice of the kernel is crucial to to provide reliable results and good

generalization. In particular, the adoption of classic kernels (i.e. polynomial, Gaussian RBF) over

the years has been challenged lately by the need to build problem oriented classifier that regards

the nature of the problem at hand by exploiting a prior knowledge about the problem through data

representation. For instance, in multimedia classification, multimedia objects O are generally rep-

resented as sets of local descriptors3 X = ( �X1, . . . , �XN), rather than one high-dimensional vector.

Thereby, examples are represented as set of features which may vary in cardinality and as a re-

sult classical kernels cannot be deployed in this situation. To address certain limitation of SVMs,

based on the complementary attributes of generative approaches, we propose a hybrid framework

that models these descriptors, in an unsupervised way, using finite Langevin mixtures model from

which probabilistic kernels are generated for SVMs.

Let X = ( �X1, . . . , �XN) and X́ = (
�́
X1, . . . ,

�́
XŃ) be two sequences of spherical feature vectors

representing two multimedia objects O and Ó, respectively, and modeled by two Langevin finite

mixtures p( �X|Θ) and q( �X|Θ́), respectively, defined on Ω space (Ω is the p-dimensional space of

Langevin distribution). In the following subsections, we derive different kernels, from Langevin

mixture, based on probabilistic distances and Fisher score to tackle the problem of spherical data
1Using the superscript * to denote the optimal values of the cost function.
3This localized data presentation alleviates many problems associated with representing data in complex applica-

tions (e.g. video categorization) such as data sparsity and curse of dimensionality.
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sequences classification using SVM. It is noteworthy that these kernels will allow to take into

account the generative process of the data and could then be also called generative kernels [62].

2.3.1 Fisher Kernels

Authors in [63] have shown that a generative model can be used in a discriminative context by

extracting Fisher scores UX (Θ) = ∇ log(p(X |Θ)) from the generative model and converting them

into a Gram Kernel usable by SVMs. Each component of UX (Θ) is the derivative of the log-

likelihood of the sequence X with respect to particular parameter. In the following, we shall show

the derivations of the Fisher kernel

K(X ,X ′) = U tr
X (Θ)I−1(Θ)UX ′(Θ′) (17)

forM-Langevin mixture models, where I(Θ) is the Fisher information matrix that has less signif-

icant role as was shown in [63] and can be approximated using the identity matrix. Through the

computation of gradient of the log probability with respect to our model parameters: pj , κj and �μj ,

where j = 1, . . . ,M , we obtain

∂ log p(X |Θ)

∂κj

=

N∑
i=1

Ẑij

[
�μT

j
�Xi − a

′
D(κj)

]
(18)

∂ log p(X |Θ)

∂�μj

=

∑N

i=1 Ẑijκj
�Xi

‖
∑N

i=1 Ẑijκj
�Xi‖

(19)

∂ log p(X |Θ)

∂pj
=

N∑
i=1

[Ẑij

pj
−
Ẑi1

p1

]
j = 2, . . . ,M (20)

where Ẑij =
p( �Xi|Θ)pj

∑M
j=1 p( �Xi|Θ)pj

represents the probability that a vector �Xi will be assigned to cluster j.

It is noteworthy that in Eq.32, we take into account the fact that the sum of the mixing parameters

equals one and thus there are onlyM − 1 free mixing parameters.
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2.3.2 Probability Product Kernels

Another approach is developing kernels between probabilistic distributions K:P × P → R that

injects the domain-knowledge and invariance of generative models to SVMs [64]. PPK [42], for

instance, maps data points in the input space to distributions over the sample space and a general

inner product is then evaluated as the integral of the product of pairs of distributions and defined

as

K(p( �X|Θ), q( �X|Θ́)) =

∫
Ω

p( �X|Θ)ρq( �X|Θ́)ρd �X (21)

where ρ is a positive parameter. In the case of Langevin distribution, we can find a closed-form

expression for the PPK and is given by (See Appendix A)∫
Ω

p( �X|θ)ρq( �X|θ́)ρd �X =
[(κκ́

4

)D
2
−1 1

(2π)DID
2
−1(κ)ID

2
−1(κ́)

]ρ[(2π)D2 ID
2
−1(ξκ,κ́ρ)

(ξκ,κ́ρ)
D
2
−1

]
(22)

A special case of PPK is when ρ = 1, which is called Expected Likelihood Kernel (ELK). Using

Eq. (22) ELK for a Langevin distribution has the following form:∫
Ω

p( �X|θ)q( �X|θ́)d �X =
(κκ́

4

)D
2
−1 ID

2
−1(ξκ,κ́)

(2π)
D
2 ID

2
−1(κ)ID

2
−1(κ́)(ξκ,κ́)

D
2
−1

(23)

When ρ = 1
2
PPK has the form of Bhattacharyya kernel (BK) based on Bhattacharyya’s measure

of affinity between distributions. For Langevin distribution, BK is given by:∫
Ω

p( �X|θ)
1
2 q( �X|θ́)

1
2d �X =

√(κκ́
4

)D
2
−1 1

(2π)DID
2
−1(κ)ID

2
−1(κ́)

[(2π)D2 ID
2
−1(

ξκ,κ́
2
)

(
ξκ,κ́
2
)
D
2
−1

]
(24)

In the absence of closed forum for mixture models, we can approximate PPK using Monte Carlo

simulations [64]

K(p( �X|Θ), q( �X|Θ́)) ≈
β

N

N∑
i=1

pρ( �Xi|Θ)

Z
pρ( �Xi|Θ) +

1− β

Ń

Ń∑
í=1

qρ( �Xí|Θ́)

Ź
qρ( �Xí|Θ́) (25)

Where β ∈ [0, 1] and �X1, . . . , �XN and �X1, . . . , �XŃ are generated from p( �X|Θ) and q( �X|Θ́),

respectively. And Z and Ź are normalizer for p( �X|Θ) and q( �X|Θ́) after they are taken to the

power of ρ, respectively.
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2.3.3 Kernels Based on Information Divergence

An alternative method is to generate SVM kernels based on information divergence between dis-

tributions. In particular, it is a group of kernels obtained by exponentiating divergence measure

between p( �X|Θ) and q( �X|Θ́). For instance, the authors in [64, 65] have derived kernel distances

between Gaussian mixtures and Liouville mixtures, respectively, using the following expression:

K(p( �X|Θ), q( �X|Θ́)) = e−aF (p( �X|Θ),q( �X|Θ́)) (26)

where a > 0 is a kernel parameter included for numerical stability and F (p( �X|Θ), q( �X|Θ́)) can

be any information divergence method as we shall explain in the following.

1. Kullback-Leibler Kernel (KL): is based on symmetric Kullback-Leibler divergence that mea-

sures the dissimilarity between two probability distributions p( �X|Θ) and q( �X|Θ́) which is

given by [66]:

F (p( �X|Θ), q( �X|Θ́)) =

∫
Ω

[
p( �X|Θ) log

p( �X|Θ)

q( �X|Θ́)
+ q( �X|Θ) log

q( �X|Θ)

p( �X|Θ́)
d �X

]
(27)

The fact that the Langevin distribution belongs to the exponential family of distributions

allows us to find a closed-form expression for the KL divergence between two Langevin

distributions (See Appendix B)

KL(p( �X|θ), q( �X|θ́)) = − log
κ
D
2
−1

(2π)
D
2 ID

2
−1(κ)

+ log
κ́
D
2
−1

(2π)
D
2 ID

2
−1(κ́)

(28)

+ [κ�μ− κ́�́μ]T áD(κ)�μ

However, a closed form expression does not exist in the case of finite mixture models. Thus,

we propose the use of different sampling approaches that have been proposed in [67] for

Gaussian mixture models. Let p( �X|Θ) =
∑M

j=1 pjp(
�X|θj) and q( �X|Θ́) =

∑Ḿ

j́=1 ṕjq(
�X|θ́j),

the KL is given by finding the mapping π from one distribution to another:

KLMA(p( �X|Θ), q( �X|Θ́)) ≈
M∑
j=1

(
KL(p( �X|θj), q( �X|θ́j)) + log

pj
ṕπ(j)

)
(29)
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where π(j) = argminj́

(
KL(p( �X|θj), q( �X|θ́j))− log ṕj́

)
. Moreover, variational (KLV AR)

and upper bound (KlUPP ) approximations have been proposed in the case of Gaussian mix-

tures and are given by [68]

KLV AR(p( �X|Θ), q( �X|Θ́)) ≈
M∑
j=1

pj log

∑M

j=1 pje
−KL(p( �X|θj),q( �X |θ́j́))

∑Ḿ

j́=1 ṕj́e
−KL(p( �X|θj),q( �X |θ́j́))

(30)

KLUPP (p( �X|Θ), q( �X|Θ́)) ≈
M∑
j=1

pj log
pj
ṕj

+

M∑
j=1

pjKL(p( �X |θj), q( �X|θ́j)) (31)

Another idea is to use Monte Carlo numerical approximation method [64]:

KLMC(p( �X|Θ), q( �X|Θ́)) ≈
1

L

L∑
l=1

log
p( �X|Θ)

q( �X|Θ́)
(32)

where �X1, . . . , �XL is a sample generated from p( �X|Θ).

2. Jensen-Shannon kernel (JS): is based on the Jensen-Shannon divergence which is given by

[69]:

JS(p( �X|Θ), q( �X|Θ́)) = H [βp( �X|Θ) + (1− β)q( �X|Θ́)]− βH [p( �X|Θ)] (33)

− (1− β)H [q( �X|Θ́)]

where β is a parameter and H [p( �X|Θ)] = −
∫
p( �X|Θ) log p( �X|Θ)d �X is the Shannon en-

tropy of p( �X|Θ). Thus, the Shannon entropy of Langevin distribution is given by (See

Appendix C)

H [p( �X|θ)] = κa′D(κ) +
(κ
2

)D
2
−1 1

(2π)
D
2 ID

2
−1(κ)

(34)

It is clear that when β = 1
2
, the JS is average the distance of Kullback-Leibler.

3. Rényi Kernel (RK) is another common kernel which is based on symmetric Rényi divergence

of order σ [70]:

F (p( �X|Θ), q( �X|Θ́)) =
1

σ − 1

∫ [
p( �X|Θ)σq( �X|Θ́)1−σ + q( �X|Θ)σp( �X|Θ́)1−σd �X

]
(35)
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where σ controls the amount of smoothing for the distributions, σ > 0 and σ �= 1. Thus, we

find the Rényi divergence of order σ between two Langevin distributions (See Appendix D)∫
Ω

p( �X|θ)σq( �X|θ́)1−σd �X =
[(κ

2

)D
2
−1 1

(2π)
D
2 ID

2
−1(κ)

]σ
(36)

×
[( κ́

2

)D
2
−1 1

(2π)
D
2 ID

2
−1(κ́)

]1−σ[(2π)D2 ID
2
−1(ζκ,κ́)

(ζκ,κ́)
D
2
−1

]

Note that when σ = 1
2
RK is reduced to BK. Because of the absence of closed form solutions

for mixture models in case of JS and RK, we shall use in our experiments Monte Carlo

simulation.

2.4 Experimental Results

Experiments were conducted to assess the performance of the proposed framework by comparing it

to other techniques mentioned previously in the literature. To achieve this goal, we used synthetic

data and two challenging problems which are: email categorization and spam email classification.

The libsvm4 software was used for SVMs classifier. We used stratified 10-fold cross validation

to train and test each dataset, and averaged results were reported. We trained and tested our data

sets with the five probabilistic kernels we proposed in section 2.3 which are: KL divergence ker-

nel using the approximations in Eq.29 Eq.30 and Eq.31 that we call KLMA, KLV AR, KLUPP ,

respectively, Rényi kernel (RK), Bhattacharyya kernel (BK), Expected likelihood kernel (ELK),

Jensen-Shannon kernel (JS) and Fisher kernel (FK). For KL, RK, and JK parameters a and σ were

selected from {2−10, 2−9, . . . , 24} and {0.1, 0.2, ..., 0.8}, respectively [64]. In the case where a

closed-form expression does not exist for a given probabilistic kernel, we have used Monte Carlo

approximation with 5000 generated points.
4http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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(a) Two-components (b) Three-components

Figure 2.1: Artificial Histograms.

2.4.1 Synthetic Dataset

In this section, we use synthetic datasets to validate the correctness of our finite Langevin mixture

model (LMM) learning algorithm (Algorithm 2 in Section 3.3.1). Langevin distribution can be

efficiently sampled using the simulation algorithm developed in [71], which was further improved

in [72]. For the sake of verification, we generated artificial datasets from LMM, and we estimated

the mixture parameters and tried to find the corresponding number of components. In our first

experiment, we generated two one-dimensional datasets, where the first dataset represents LMM

of two well separated components while the second one represents LMM of three overlapped com-

ponents each of which has a total of 300 vectors grouped into two and three clusters, respectively.

Figure 2.1 shows artificial histograms for those datasets. The real and estimated parameters for

those datasets are given in Table 2.1. Figures 2.2 and 2.3 show the number of components found

by our proposed algorithm and when adopting MDL criterion, which is given by [57]

MDL = − log p(X |Θ) +
Np

2
log(N) (37)

Clearly, our algorithm was able to find the exact number of clusters for each dataset. Accordingly,

our algorithm was able to accurately estimate the mixture parameters and find the corresponding

number of components for well-separated and overlapped data. Moreover, we tested our al-

gorithm on multidimensional synthetic datasets. In particular, we generated two two-dimensional
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Table 2.1: True and estimated parameters for synthetic data using one-dimensional Langvin mix-
ture. N denotes the total number of elements, Nj denotes the number of elements in cluster j, μj ,
κj and pj are the true parameters. μ̂j , κ̂j and p̂j are estimated parameters.

Nj j μj μ̂j κj κ̂j pj p̂j
Dataset 1 100 1 -0.5 -0.49 10 11.50 0.48 0.50
(N =300) 200 2 0.1 0.09 10 11.50 0.52 0.50
Dataset 2 100 1 -0.40 -0.40 10 10.20 0.30 0.28
(N =300) 100 2 0.20 0.18 6.56 6.60 0.50 0.52

100 3 0.60 0.60 2.10 2.44 0.20 0.20

Figure 2.2: Number of clusters found using MML (left) and MDL (right) criteria for the first
dataset.

datasets from four and five components LMM with different parameters as shown in Table 2.2. A

total of 100 vectors for each of the densities were taken for the first dataset. For the second dataset a

total of 100 vectors were taken for the first three densities and a total of 200 for the fourth and fifth

Figure 2.3: Number of clusters found using MML (left) and MDL (right) criteria for the second
dataset.
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Table 2.2: True and estimated parameters for synthetic data generated from four and five compo-
nents LMM.N denotes the total number of elements,Nj denotes the number of elements in cluster
j, μj , κj and pj are the true parameters. μ̂j , κ̂j and p̂j are estimated parameters.

Nj j μj μ̂j κj κ̂j pj p̂j
Dataset 3 100 1 (0.9547,0.2976) (0.9565,0.2918) 100.20 99.78 0.35 0.35
(N =400) 100 2 (0.8570,0.5153) (0.8614,0.5079) 40.56 39.04 0.20 0.19

100 3 (-0.9993,0.0383) (-0.9997,0.0264) 60.10 57.87 0.20 0.21
100 4 (-0.8556,0.5176) (-0.8667,0.4989) 64.89 63.45 0.25 0.25

Dataset 4 100 1 (-0.4885,0.8725) (-0.4934,0.8698) 10 10.20 0.20 0.21
(N =700) 100 2 (0.2001,0.9798) (0.2107,0.9776) 10 11.00 0.30 0.29

100 3 (-0.0191,0.9998) (-0.0134,0.9999) 10 9.082 0.20 0.19
200 4 (-0.2269,0.9739) (-0.2280,0.9737) 10 11.10 0.15 0.15
200 5 (0.4360,0.8999) (0.4444,0.8958) 10 10.45 0.15 0.16

Figure 2.4: Number of clusters found usingMML (left) andMDL (right) criteria for 4-components
LMM for 2-dimensional datasets.

densities. Reported results were averaged over 10 runs. It is clear that the clustering performed by

different mixtures is accurate when the dataset is small and well separated. Furthermore, Tables 2.1

and 2.2 show the true and estimated parameters for those two datasets. Figures 2.4 and 2.5 show

the components found by MML and MDL for the generated datasets. Obtained results show that

our algorithm was able to get the exact number of clusters and good approximation for mixture

parameters. Finally, we verified our algorithm on four-dimensional dataset that was generated

from six-components mixture model each of which densities has a total of 100 samples. Table 2.3

shows the real and estimated parameters found by our algorithm. Obviously, our algorithm was

able to estimate accurately the parameters and the correct number of components (See Figure 2.6).
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Figure 2.5: Number of clusters found usingMML (left) andMDL (right) criteria for 5-components
LMM for 2-dimensional datasets.

Table 2.3: True and estimated parameters for four-dimensional synthetic data generated from six–
components LMM. N denotes the total number of elements, Nj denotes the number of elements
in cluster j, μj , κj and pj are the true parameters. μ̂j , κ̂j and p̂j are estimated parameters.

Nj j μj μ̂j κj κ̂j pj p̂j
Dataset 5 100 1 (0.1997,0.0189,-0.3685,0.9077) (0.2226,0.0191,-0.3561,0.9074) 10 11.00 0.14 0.16
(N =600) 100 2 (-0.1588,-0.3477,-0.1244,0.9156) (-0.1629,-0.3412,-0.1340,0.9160) 10 10.81 0.16 0.14

100 3 (0.1011,-0.0485,0.0471,0.9926) (0.0985,-0.0465,0.0470,0.9929) 100.20 100.1 0.30 0.28
100 4 (0.1242,0.3738,-0.0043,0.9191) (0.1200,0.3753,-0.0019,0.9191) 40.56 39.85 0.15 0.16
100 5 (-0.2645,0.1520,0.0227,0.9521) (-0.2664,0.1522,0.0238,0.9515) 60.1 59.12 0.12 0.12
100 6 (-0.0526,-0.1399,0.5361,0.8308) (-0.0526,-0.1399,0.5361,0.8308) 64.89 63.36 0.13 0.14

2.4.2 Email Categorization

Email categorization is a rich and multifarious problem that poses several challenges. In particular,

email folders may vary across different users and more importantly are richer than simple semantic

topics since they may correspond to project groups, certain recipients, etc. Indeed, the manner that

email users organize their files might change overtime, for instance, users may create new folders,

while stop using already existing ones. The goal of this first application is twofold. First, validate

the efficiency of the proposed learning algorithm of LMM (See algorithm 2). Second, compare its

performance to another generative model and one discriminative model that were widely used in

the past, namely, GMM and SVMs.
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Figure 2.6: Number of clusters found using MML (left) and MDL (right) criteria for six-compo-
nents LMM for four-dimensioal dataset.

Table 2.4: Enron Dataset Statistics.
No. of Folders No. of Emails No. of Terms

beck-s 101 1971 97690
farmer-d 25 3672 315153
kaminski-v 41 4477 513460
kitchen-l 47 4015 60921
lokay-m 11 2489 15870
sanders-r 30 1188 56004
williams-w3 18 2769 81719

We conducted our experiments on a challenging dataset that has been widely considered in the

past called Enron Email dataset 5 and is composed of 200,399 emails belonging to 158 users.

We conducted experiments on the largest email directories that have been used in the past. The

data set involves seven users: beck-s, farmer-d, kaminski-v, kitchen-l, lokay-m, sanders-r, and

williams-w3. Each of those directories has subfolders, where we characterize them as topical and

non-topical (i.e. computer generated). We removed the non-topical folders from all the directories,

examples include calender, sent items, sent, notes inbox, discussion threads, sent mail, contacts,

deleted items, inbox (See Table 2.4 for Enron dataset statistics). Next, we flatten all the folder

hierarchies and remove all folders that contain less than three emails. In order to classify given

data, we need to present the data in vector space. First, we start by tokenizing emails where we

use extracted words to build dataset dictionary after all stop words and words which occur less
5http://www.cs.cmu.edu/ enron/
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than three times are removed. Second, we present each document by a vector of counts, which

is in turn normalized using L2 normalization, thus, we start classification. In classification, we

first sort all emails chronologically (according to the time stamp) and start training our classifier

incrementally. Indeed, we split the emails into K splits each has the same portion of emails, say

N . We start training on the first N emails and then test on the next N emails, then we train on the

next 2N + 1 emails and test on the following N and we continue until we reach the last split of

emails.

Figure 2.7 shows the number of clusters obtained using LMM and GMM, to categorize emails

into folders. According to this figure, LMM and GMM were able to find the exact number of

clusters. This can be explained by the fact that MML criterion uses prior information that allows

better comprehension to the application and data at hand. Figure 2.8 shows the influence of the

number of training documents on classifier performance using different approaches. According

to this figure, we clearly observe the incremental increase of performance of all classifier as the

number of documents involved in the training increased. However, at some point the performance

of generative models (i.e. LMM and GMM) has reached its optimal value when smaller number

of training documents where used comparing to SVM which needed more documents. Table 2.5

shows the classification using LMM, GMM and SVM with different kernels, namely, polynomial

kernel (SVM-p), RBF kernel (SVM-RBF) and sigmoid kernel (SVM-s) respectively. According

to these results, when using LMM the average classification accuracy was better than the accuracy

achieved by GMM which itself performs better than SVM classifier using different kernels. These

results again prove that LMM is a good choice.

2.4.3 Spam email Filtering

One of the major problems of today’s Internet is email spam. This problem is costly, poses seri-

ous security threats, and is getting worse. According to some studies spam emails constitute up

to 75-80% of total amount of email messages and have caused financial losses of $50 billion in
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Figure 2.7: Number of clusters of Enron dataset found using MML when considering LMM and
GMM.

Figure 2.8: Classification accuracy as a function of the number of training documents.

2005 [73] and $130 billion in 2009 [74]. The main approach to build automated adaptive clas-

sifiers to discriminate legitimate and spam emails has been the content-based analysis of emails.

In particular, the analysis of the semantic textual content via the adoption of text categorization

techniques [75], based generally on machine learning and pattern recognition approaches, has re-

ceived a lot of attention in the past and has achieved acceptable results as compared to techniques
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Table 2.5: Classification performance (average±variance) obtained for Enron using LMM, GMM,
SVM-p, SVM-RBF and SVM-s.
Enron User LMM GMM SVM-p SVM-RBF SVM-s
beck − s 60.0 ± 1.5 55.34 ± 0.9 54.01 ± 0.1 55.9 ± 0.3 56.22± 0.2
farmer − d 80.12 ± 1.15 78.7± 0.8 70.1± 1.0 71.77± 0.4 72.51± 1.3
kaminski− v 70.4± 1.0 71.21 ± 0.2 68.19 ± 0.5 70.31± 0.8 66.54± 0.22
kitchen− l 66.78±3.4 61.13± 1.14 61.87± 0.1 60.24± 0.33 59.23± 1.02
lokay −m 81.98 ± 1.0 75.01 ± 3.2 71.42 ± 2.1 74.31± 1.0 73.22± 0.2
sanders− r 73.01± 1.1 69.1 ± 0.5 68.40 ± 0.6 66.35± 0.1 68.88± 1.3
williams− w3 93.2± 4.5 58.10± 1.4 59.11± 0.3 55.20± 1.0 57.39± 0.7

based on hand-made rules (see, for instance, [48, 76–78]). Many open sources and commercial

spam filters, such as SpamBayes and SpamAssassin, currently adopt this approach where emails

are described as bags of words (BoW). However, this approach has been defeated in the past by

spammers using very simple tricks such as misspelling words or adding bogus text to their emails.

Thus, some approaches went to analyze document space density [79], the non-content knowledge

of the email social network [80, 81], or additional information presented by header of the email,

time of delivery, the batch size of delivered emails, etc [82]. Unfortunately, the dynamic nature

and the diversity of spam emails have easily circumvented the majority of the existing spam filters

especially if we take into account the fact that email’s content has massive shift from text con-

tent only to enriched multimedia content. Indeed, very recently researchers have figured out that

text-based techniques might be ineffective because of a novel spammers trick namely image-based

spam (i.e. email which includes embedded image) [83]. Studies conducted in 2006 suggested that

more than 30% of all spam emails were image-based and most of these spams were undetected by

filters.

Proposed Approach

In this chapter, we propose a novel approach that combines and uses simultaneously both textual

and visual email information to filter spam emails within the hybrid framework we proposed in

section 2.3. While the textual content is represented using the classic BOW formalism, the visual
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image spam information is represented as a bag of local descriptors extracted from detected image

keypoints. To the best of our knowledge, there is no prior research work in considering simul-

taneously, within the same statistical framework, textual and low-level visual contents of spam.

Particularly, previous work have considered statistical frameworks base on learning approaches

using either generative (e.g. GMM) or discriminative models (e.g. SVM, maximum entropy). See

Figure 2.9 for proposed spam filter.

Problem Statement: in this chapter, we consider a supervised email classification task. The

Figure 2.9: Spam Filter Architecture

main goal is to build a classifier using training emails in order to be able to correctly classify new

unseen emails. Formally, consider that we have a corpus of emails E = {E1, . . . , E|E|} that were

pre-classified under a set of categories C = {c1, . . . , c|C|}. We first split the corpus into two sets

which are: training ETrain = {E1, . . . , E|ETrain|} set and testing ETest = {E|ETrain|+1, . . . , E|E|}

set. Once email classifier has been constructed based on the characteristics of emails that were

given in training set ETrain. Then, test set ETest is used to evaluate the effectiveness of the

classifier, where each new email is fitted to a LMM and the classifier decision for each pair

(En, ci) ⊂ ETest × C, 1 < n ≤ |E| is compared to the ground truth label. The class of a new

email (in the test set) is based on the probabilistic distances developed in section 2.3 and hence
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the email is classified accordingly. In particular, given email En the classifier assigns a label

C = {c1 = spam, c2 = legitimate} to each pair (En, ci) ∈ E × C.

Preprocessing of the Dataset The body of a given email En might have textual content only,

graphical content (images) only or mix of both. In this chapter we build our framework based on

the following assumptions. First, we consider the textual part and the graphical part simultane-

ously in the classification. Second, we assume that each email contains only one image. Third,

text embedded in the images has the same importance as text extracted from the body and subject

fields of the email and both extracted words are added to the same dictionary. In the case where no

text can be found in the images, we still consider images in the classification.

For text preprocessing: we extracted features from the body, subject and header information pre-

sented in sender (From, Reply-to) and recipient (To, CC, Bcc) fields. Each email was tokenized

using symbol delimiters (i.e. whitespace). Next, we removed words that only appear less than

three times in whole emails. As a result, the initial number of unique terms is reduced from about

100000 to 45329 for each corpus. We didn’t apply any feature selection, stemming and stop words

as it has proven not to effect the accuracy of classifier [48]. Each email was presented by a sin-

gle BoW vector. Therein, each component consists of feature (word) frequency in the dictionary

DTerm. Let �Xi presents a given email described in terms of counts of features that appear in the

dictionary �Xi = (Xi1, . . . , Xij, . . . , Xi|DTerm|), where Xij presents the frequency of the j-th word

in the dictionary that appears in the i-th email. In order to resist sparse data attack [22] we nor-

malized each feature vector �Xi using L2 normalization ‖ �Xi ‖=
√
�XT

i
�Xi. Then, we model the

probability distribution for each class by LMM given in Eq.8. Subsequently, we computed the

probabilistic distance presented in section 2.3 between each of these LMM giving us textual kernel

matrix GText to feed SVM.

Moreover, in image preprocessing: for image spam we classified each image according to its

textual and visual content. Tremendous efforts have been done for image spam preprocessing,

particularly it is noteworthy that the choice of the features in order to discriminate future unseen
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legitimate emails from spam emails is crucial to the performance of the classifier. We chose local

features since global representation of images is known to be sensitive to imaging conditions, noise

and geometric transformations [84]. In particular, to extract visual features, first we use difference-

of-Gaussian (DoG) to extract patches around detected interest points [85]. Then, we used SIFT

descriptor computed on detected key points of all images where we used a 4×4 descriptor with

8 orientations, resulting in feature vectors with 128 dimensions for each detected interest point in

each image [85]. Finally, we normalize extracted vectors using L2 normalization. Formally, each

image is presented now as I = {�I1, . . . , �In} where n is the total number of detected key points

and �Ii is the SIFT vector associated with that detected point. Thus, we can model each image I

by a mixture of Langevin distribution (see Eq. 8) and learn each LMM using algorithm 1. After

all the LMM have been learnt for every image, as in textual part, we develop kernel matrix for

image spam visual content GV isual based on different probabilistic distances presented in section

2.3 between each of these mixtures models. Nonetheless, we simultaneously performed OCR to

extract the written part (if presented) from the image and add it to the BOW of text extracted from

email textual parts. The Tesseract OCR suite 6 was used to recognize the embedded text in images.

Now, we need to discriminate spam emails from legitimate emails. In particular, we have two ker-

nel matrices to feed SVMs classifier: kernel matrix for textual content of the emailGText (includes

text in the body and in the image) and kernel matrix for image spam visual content GV isual. In

order to simultaneously consider the textual and visual features we use Absolute Value (AV) ap-

proach that has proved its efficiency to combine kernels when it has high dimensional data. Using

AV, gives us the ability to control the importance of information among given kernel matrices.

Evaluation Criteria

To evaluate the performance of spam email classifier, we calculate accuracy (Acc), weighted ac-

curacy (WAcc), spam recall (SR), spam precision (See Table 2.6 for definitions) and Compute

Receiver Operating Characteristic (ROC) curve. ROC graph is a visualization tool for selecting
6(open source by Google) http://code.google.com/p/tesseract-ocr/
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Category set C Expert decision

Decision Folder ci TP =
∑|C|

i=1 TPi FP =
∑|C|

i=1 FPi

Folder c̄i FN =
∑|C|

i=1 FNi TN =
∑|C|

i=1 TNi

Table 2.6: Global Contingency Table for Spam Classifier.

classifiers based on their performance where it draws the tradeoff between hit rates and false alarm

rates for a given classifiers. One of the main goals of our experiments is to calculate the conditional

probability with respect to the category ci, that is, the probability that set of emails were classified

as spam they were truly spam (filter protection) and this can be measured using SP . Similarly,

SR with respect to the category ci measures the probability that if email is classified to be spam

the filter will consider this decision (filter effectiveness to block). Moreover, to validate the ef-

fectiveness of classifying emails considering the cost of losing legitimate emails authors in [86]

suggested the use of WAcc, in which we consider a certain threshold (λ) to correctly classifying

legitimate emails instead of typical accuracy measure which assigns equal weights to the accurate

classification of spam and legitimate emails. In particular, when a legitimate email is misclassified,

this counts as λ error. Similarly, when legitimate email is correctly classified, this also counts as λ

success. It is noteworthy, that λ7 can be any value, but in our experiments we considered the same

values (i.e. λ = 1, λ = 9, λ = 999) were given by [86]. SP , SR, Acc andWAcc are thus given

by:

SP = TP
TP+FP

, Acc = TP+TN
TP+FN+TN+FP

(38)

SR = TP
TP+FN

, WAcc = TP+λTN
TP+FN+λ(TN+FP )

Results

To evaluate the performance of our proposed hybrid framework for spam classification, we used

publicly available datasets that have been used in the past. The trec05-p1 dataset contains [88]
7In [87] the threshold (t) has been set to 0.5, 0.9, 0.999, respectively, where t = λ

1+λ
.
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Spam legitimate
Spam 52400 345
legitimate 344 39100

(a)

Spam legitimate
Spam 50431 450
legitimate 2341 38967

(b)

Spam legitimate
Spam 1200 80
legitimate 20 230

(c)

Spam legitimate
Spam 1000 40
legitimate 50 440

(d)

Spam legitimate
Spam 52430 300
legitimate 339 39120

(e)

Spam legitimate
Spam 51200 200
legitimate 1801 38988

(f)

Table 2.7: Average rounded confusion matrices for Text-based 2.7(a)2.7(b), Image-based
2.7(c)2.7(d), “Text+ Image”-based 2.7(e)2.7(f) spam classifiers by LMM (left column) and GMM
(right column).

92,189 emails, where 57% are spam emails. In addition, we extracted 1530 images form terc05-p1

including 1256 spam images and 274 legitimate images. Tables 2.7 show the average confusion

matrices for spam filtering using LMM and GMM, respectively, when considering different scenar-

ios (image, text, image+text). Obtained results show that “text+image”-based classifier provides a

slight improvement over text-based classifier. However, image-based classifier reported the worst

performance, that might be because of the lack of images in our dataset and particularly the images

in legitimate emails. Moreover, in all cases results of LMM are more accurate and precise than

those obtained using Gaussian mixture model.

Experiment 1: in the next experiment, we fed SVM spam classifier with probabilistic kernels

generated from LMM and GMM (see section 2.3). When using LMM (See Table 2.8) the re-

sults vary significantly across kernels. For instance, SP results are between 89.30% and 69.34%
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Table 2.8: Results (in%) on terc05-p1 using different tested kernels for LMM and GMM. All
results reported in the table are for “Image +Text” as it has shown to provide best performance.

Kernels LMM GMM
SP SR SP SR

KLV AR 86.26 82.14 86.01 70.28
KLUPP 89.30 87.43 81.00 79.49
KLMA 82.41 84.12 85.07 81.61
ELK 75.29 69.15 56.98 66.01
BK 88.59 91.00 85.19 88.90
RK 83.10 89.81 88.41 88.09
JSK 81.16 82.89 81.10 84.56
FK 82.05 85.11 81.73 81.97

and SR results are between 91.00% and 53.00%. Furthermore, we can notice that the informa-

tion divergence-based kernels (accuracy 90.74% for KLMA) has a comparable results with PPK

(95.92% for BK), while Fisher kernel has shown a slight degradation in the performance. In partic-

ular, ELK has the worst accuracy among those kernels. This degradation in performance supports

the fact that linear kernels are not expressive enough for nonlinear high dimensional spaces. It is

noteworthy that a ROC graphs (see Figure 2.10), with 95% confidence, show that the kernels gen-

erated from LMM tends to the left-top corner of the graph which supports the results previously

presented in Table 2.8 that hybrid LMMmodel outperform hybrid GMMmodel. The cost sensitive

evaluation on trec05-p1 shows that all kernels were quite sensitive to the higher weight of legit-

imate misclassification (see Table 2.9). By comparing WAcc, SP and SR, we find that overall

kernels derived based on LMM is better choice than GMM. This can be justified by the fact that the

Gaussian mixture, which clustering is based implicitly on the Euclidean distance or Mahalanobis,

is inadequate for characterizing L2 normalized data which clustering structure is better uncovered

by considering the cosine similarity as assumed by the LMM.

Experiment 2: in order to compare our proposed hybrid framework with previous studies, exper-

iments were conducted on datasets that were used recently in [89], namely, Princeton dataset8 and

Dredze et al. [90] (we will call it Dredze dataset in our experiments) dataset. Princeton dataset
8Available at http://www.princeton.edu/cass/spam/spam bench/
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Figure 2.10: ROC graphs for different kernels using LMM and GMM.
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Table 2.9: WAcc (in%) when considering terc05-p1 using LMM and GMM.
Kernel LMM GMM

λ = 1 λ = 9 λ = 999 λ = 1 λ = 9 λ = 999

KLV AR 83.80 94.9 89.10 83.60 91.30 80.70
KLUPP 91.70 78.00 87.80 89.10 76.50 78.80
KLMA 70.50 83.00 61.00 71.70 76.90 59.70
ELK 87.10 69.50 85.90 84.60 66.30 81.30
BK 89.10 90.80 80.60 88.00 86.60 78.50
RK 88.90 96.10 95.70 86.00 93.90 79.00
JSK 90.00 97.70 95.80 79.50 82.38 79.91
FK 80.98 87.21 80.06 80.54 72.00 77.79

has 1071 emails which spread into 178 categories. Dredze dataset contains emails from publicly

well-known SpamArchive datasets along with many personal emails of the authors. The main goal

of this experiment is to investigate the hybrid framework based on SVMs probabilistic kernels

between Lanegvin mixtures (see section 2.3) by following the approach proposed in [89]. The ap-

proach in [89] is based on modeling of the data using generative models, represented by Gaussian

mixtures, and then using the Jensen-Shannon divergence to classify new emails. In the follow-

ing experiments we used our hybrid framework (based on LMM and GMM) on the same datasets

where we applied the same settings for a fair comparison. Following [89], we start by resizing

all images to 100 ×100 pixels, which has been shown to have reasonable computation time and

it is robust to pixels scaling and randomization. Then, we start extracting visual features from

each image �Ii, namely, colors, pixel coordinates and texture. In particular, we presented each pixel

in the image by a vector of seven tuples: two parameters for pixel coordinates (xi, yi), three for

(L∗, a∗, b∗) color attributes and two for texture attributes for anisotropy and contrast features. Next,

we L2 normalize all vectors and subsequently we can model each image by a mixture of Langevin

distributions using algorithm 2. Next, we split our datasets into two halves 75% for training and

25% for testing. A summary of the classification as displayed in table 2.10 clearly shows that our

hybrid framework achievers superior performance than that in [89] where the best result achieved

was 84%.

A potential future work can focus on online learning where the learning will be updated and re-
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Table 2.10: Accuracy (in%) of different approaches on Princeton and Dredze dataset
Kernel LMM GMM
KLVAR 91.01 84.09
KLUPP 82.24 79.22
KLMA 83.11 78.58
ELK 85.89 82.00
BK 90.61 86.56
RK 89.72 77.03
JSK 93.45 87.4

fined to be able to adapt the dynamic nature of multimedia data. Furthermore, we can investigate

proposed approach on different applications.
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CHAPTER 3
Simultaneous Online Spherical Data

Clustering and Feature Selection

In this chapter we start by a brief introduction to movM and describe our feature selection ap-

proach. Next, we propose an approach to learn our model parameters and to find the optimal

number of components. Later, we propose an online learning algorithm for our simultaneous

clustering and feature selection model. Finally, the merits of proposed approaches are validated

through extensive experiments.

3.1 Introduction

Finite mixture models are among the most applied approaches to data clustering [32]. Finite mix-

ture models as a formal approach to unsupervised learning allows the extraction of hidden structure

in data which results in salient and compact representation. Thereby, to group these objects, before-

hand, each object is usually preprocessed in order to generate input in a form usable by mixtures.

The dominant approach is the description of objects as vectors of features by finding an effective

representation space (i.e. feature engineering) [91]. Indeed, features can be used as means of in-

telligently describing objects, so that one can simply extract and select diverse features and then

decides which features require most attention according to the problem at hand [92]. To illustrate,
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using finite mixtures, the assignment of �Xi = (Xi1, . . . , XiD) to cluster j is defined by the mem-

bership that is given as a posterior probability according to the Bayes decision rule. However, not

all the D features in the document �Xi contribute equally to the determination of cluster member-

ship. To cope with this problem, many feature selection approaches have been devoted to select

the subset of relevant (i.e. most informative) features that boost the performance of the models and

hold good generalization to unseen data [92].

Generally, there are many potential advantages of feature selection such as resisting the curse of

dimensionality, helping in construction of realistic models that are more flexible, have a room for

error recovery and more efficient in terms of time and storage saving. Feature selection impor-

tance can be seen in wide range of practical problems such as detection of spam emails [48] and

text clustering [93]. Indeed, if we take the example of text clustering, in most cases the vocabulary

of features (i.e. words) is large and the vectors of features are extremely sparse. Not all features

presented in the vocabulary contribute equally to classification such as stop words which have been

shown to degrade clustering performance. Thus, selecting the most relevant features to reduce the

dimensionality of feature space is an important step that generally improve generalization capabil-

ities of the model [94–99].

The majority of research works on feature selection, based on finite mixtures, have been blindly

directed to develop generic models that do not take the nature of the data into account. In spite

of that, there has been some recent works [93, 94, 100–102] directed for particular data types in

the literature. For instance, authors in [100] have proposed a simultaneous clustering and feature

selection approach for non-Gaussian data applied to images and videos segmentation. Feature se-

lection approaches for proportional, discrete and binary data have been proposed in [101], [102]

and [93], respectively, and successfully applied to the problems of documents classification and

images categorization. In contrast to these previous efforts, the work in this chapter is devoted

to high-dimensional spherical vectors. In previous works, we have shown that we can infer this

kind of data (i.e. L2-normalized) via spherical distributions. For instance, movM models L2-

normalized data that reside on unit circle [2, 103, 104]. The movM has been a subject of study
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in wide spectrum of areas ranging from biology, medicine, geology [26], Deoxyribonucleic acid

(DNA) microarray analysis [105] to pattern recognition, data mining and computer vision as in

video surveillance [106], image classification [107] and audio signals modeling [108]. Thus, in

this work we shall consider movM in our statistical framework.

Our approach combines clustering and feature selection based on movM learned using EM. The

interrelatedness challenge to find the optimal number of clusters while assessing the features rel-

evancy is tackled also using MML criterion [50] that permits model selection. In addition, we

illustrate the potential of hybrid generative discriminative frameworks upon integrating feature se-

lection, based on both movM and Support Vector Machines (SVM), on data described by bags of

L2-normalized vectors. Despite the numerous researches on feature selection, to the best of our

knowledge none of them has considered the case where these feature vectors are spherical so far.

In applications where time plays an increasingly essential role, defining a prior subset of informa-

tive relevant features for diverse problems is not necessarily satisfactory to cope with new features

that may be introduced continuously in online learning [109, 110]. Recently, researchers tend to

update models incrementally [111–115]. Unlike supervised learning [114], online learning in un-

supervisedmanner confront several challenges on error constraints, restoring objects labels, finding

optimal number of model clusters and finding relevant features at each time step. In [116], an algo-

rithm for online learning of von Mises Fisher mixture (a.k.a Langevin mixture [2]) was proposed

based on online sphericalK-means for text clustering. The model proposed in [116], however, up-

dates clusters centroids up on the arrival of new documents while keeping the variance and mixing

proportions unchanged. Author in [117] proposed a recursive version of EM (RSEM) algorithm

to update mixture model parameters based on stochastic gradient descent1 in the case of Gaussian
1It is noteworthy that stochastic gradient have been utilized in different approaches for incremental updates due

to its simplicity, its ability to scale to large dataset without losing the accuracy and its fast convergence as compared
to other approaches [118–120]. Accordingly, other online clustering algorithms are possible, for instance, in [121]
authors proposed online classification EM (CEM) based on the stochastic gradient ascent algorithm, where they proved
the superior performance of online CEM compared to online k-means algorithm. Another example is using Stochastic
Gradient Descent in reproducingHilbert space for online learning of SVM [118]. The comparison of different learning
algorithms is beyond the scope of this chapter, interested reader may refer to [110, 118–120] and references therein.
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mixture model (GMM). The RSEM was also used in [111] where the authors proposed online

finite Dirichlet mixture to the problem of image databases summarization. Yet, previous works

do not consider the problem of feature selection. In contrast to these previous works, we propose

unsupervised approach that incrementally learns and adjusts the weights of all features. The chal-

lenge here is in defining a subset of relevant and irrelevant features at each time step which yields

comparably to better optimal performance rate. We approach this problem by extending RSEM to

simultaneously consider feature relevancy while gradually updating given model. In this chapter,

our main contributions are:

• We first propose [33] a simultaneous feature selection and clustering in the case of

spherical data in off-line settings. However, this is limited solution to many dynamic

problems when the data appears as a steam of sequence with time. To this aim, in this

chapter, we extend this work to online settings extending RSEM to simultaneously

consider feature relevancy while gradually updating given model.

• We tackle the problem of automatic determination of the number of components (i.e.

model selection) of Von Mises mixture model in both off-line and online settings by

developing a minimum message length objective that was minimized using EM in

off-line scenario and RSEM for online scenario.

• Due to the fact that hybrid generative discriminative frameworks have shown improved

performance as compared to their generative or discriminative counterparts, we pro-

pose the combination of movM and SVM upon integrating feature selection. Indeed,

we develop a hybrid framework that models image descriptors, in an unsupervised

way, using movM from which Fisher kernel is generated for SVMs.

• We present detailed comparison of the proposed Framework using Von Mises mixture

model with the widely used Gaussian mixture model (GMM). We discuss the proper-

ties of proposed framework on abundant (hundreds of thousands), high-dimensional,

directional and challenging data: Yahoo20 dataset (used for web categorization), and

Dredze dataset (used for spam filtering).
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3.2 Mixture Density and Feature Selection

Given a datasetX = { �X1, . . . , �XN} ofN documents (or images). Therein, each document (image)
�Xi = (Xi1, . . . , XiD) is described by a L2-normalized D-dimensional feature vector, such that

( �Xi)
T �Xi = 1. As we consider L2 normalized vectors, then each document is best modeled using

von Mises (vM) distribution. The vM distribution2 [26] is a probability distribution in which the

data are concentrated on the circumference of a unit circle. In particular, we shall suppose that the

features in each vector �Xi are independent and follows a vM distributionwhich gives the following:

p( �Xi|�μ,�κ) =
D∏

d=1

p(�Yid|θd) =
D∏

d=1

1

2πI0(κd)
exp{κd�μ

T
d
�Yid} (1)

where I0 is the modified Bessel function of the first kind and order zero [24], θd = (�μd, κd),

�μ = (�μ1, . . . , �μD), �μd = (μd1, μd2) is the mean direction, �κ = (κ1, . . . , κD), κd is the concentration

parameter 3 and �Yid = (Yid1, Yid2) such that Yid1 = Xid and (�Yid)
T �Yid = 1 and D is the number

of features. Generally, a set of vectors is comprised of examples that vary in their characteristics

and represent dissimilar information and hence belong to many clusters which can be modeled by

a finite mixture of distributions. Thus, let p( �Xi|ΘM) be a mixture ofM distributions represented

by Eq. 1. The probability density function of aM-components movM is given by

p( �Xi|ΘM) =

M∑
j=1

pj

D∏
d=1

p(�Yid|θjd) (2)

where ΘM = {�P = (p1, . . . , pM), �θjd = (θ1d, . . . , θMd)} denotes all the parameters of the mixture

model such that θjd = (�μjd, �κjd) are the parameters of the jth movM component for feature d, pj

represents the weight of the jth movM component and �P is the vector of mixing parameters that

are positive and sum to one.

The clustering based on finite mixture models is explored by grouping similar documents, where
2Also known as the circular normal distribution [26, 122] and maximum entropy distribution in [123].
3κd reflects the dispersion of the distribution and can be viewed then as the analogue of the inverse of the variance

(i.e. invariance or reciprocal of the variance) in the case of the Gaussian [124, 125].
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this similarity depends basically on the features that represent each document. Indeed, researchers

have proven over the years the fallacy assumption that the more features representing the document

the better discrimination capability the classifier has [95–98]. This can be due to the presence of

noisy and non-informative (i.e. irrelevant) features that generally highly drop the performance.

In order to overcome this problem, we adopt the approach proposed in [94], in the case of the

Gaussian mixture, that assigns smaller weights to irrelevant features by introducing the notion

of feature saliency using the assumption that a given feature is irrelevant if it follows a common

density p(�Yid|λjd) across clusters while maintaining the independency of class labels [94, 101,

102]. In particular, each dth feature is represented by movM of two components p(�Yid|θjd) and

p(�Yid|λjd)) governed by ρjd that denotes the weight of the dth feature on cluster j. In fact, if ρjd is

very high, then there is no significant difference with the classical movMmodel p(�Yid|θjd) without

any saliency. Thus, our model, to take feature selection into account, can be written as:

p( �Xi|Θ) =
M∑
j=1

pj

D∏
d=1

(ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)) (3)

where Θ = {ΘM , {ρjd}, {λjd}}, λjd = (�μjd|λ, κjd|λ) are the parameters of vM from which the

irrelevant feature is drawn.

3.3 Unsupervised Learning of the Model

In the following, we present our unsupervised learning approach for simultaneous clustering and

feature selection. In particular, we propose an approach to find the optimal number of model

components and to estimate the different parameters.

3.3.1 Model Selection

One of finite mixture learning’s crucial factors is the determination of the optimal number of com-

ponents that best describe the data. The model selection problem can be viewed as one that helps
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finding the optimal trade-off between the complexity of the model and goodness of fit. Over the

years, many approaches have been proposed [55–57, 126]. In this work, we propose the consid-

eration of MML criterion to find the optimal number of mixture components by minimizing the

following function [126]:

MessLen(M) 
 − log h(Θ) +
1

2
log |F (Θ)|+

Np

2
(1 + log

1

12
)− log p(X |Θ) (4)

where h(Θ) is the prior probability, p(X |Θ) is the likelihood, F (Θ) is the expected Fisher infor-

mation matrix which is generally approximated by complete-data Fisher information matrix in the

case of finite mixture models, |F (Θ)| is its determinant, and Np = M(1 + 5D)− 1 is the number

of free parameters to be estimated in the case of our unsupervised feature selection model.

In order to define MessLen for our model, in what follow, we assume the independence of the

different groups of parameters, which facilitates the factorization of both prior h(Θ) and Fisher

information matrix F (Θ). In particular, this yields to the following prior distribution over the

parameters:

h(Θ) = h(�P )
M∏
j=1

D∏
d=1

h(ρjd)h(θjd)h(λjd) (5)

with [94]:

h(�P ) ∝
M∏
j

p−D
j , h(ρjd) ∝ [ρjd(1− ρjd)]

−M (6)

Moreover, we consider the following priors that we found efficient through our experiments for the

concentration 4 and mean parameters:

h(�μjd) =
1

2π
, h(�κjd) =

2

π(1 + κ2jd)
, h(�μjd|λ) =

1

2π
, h(κjd|λ) =

2

π(1 + κ2
jd|λ)

(7)

4Another prior is possible: κjd =
κjd

(1+κ2

jd
)
3

2

as in [127]. However, according to [123] the prior we consider in Eq.7

has shown superior performance.
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For Fisher Information matrix, we replace F (Θ) by complete data Fisher information matrix,

which has a block diagonal structure

Fc(Θ) = block-diagonal[F (�P ),
1

ρ11(1− ρ11)
, . . . ,

1

ρMD(1− ρMD)
, (8)

p1ρ11F (θ11), . . . , pMρMDF (θMD),

p1(1− ρ11)F (λ11), . . . , pM(1− ρMD)F (λMD)]

where F (�P ) is the Fisher information of the mixing proportions �P , (ρjd(1 − ρjd))−1 for j =

1, . . . ,M and d = 1, . . . , D is the information matrix F (ρjd) corresponding to ρjd, F (θjd) and

F (λjd) are the information matrices related to model parameters θjd for relevant features and λjd

for irrelevant features, respectively. Thus, the determinant of complete Fisher information matrix

|Fc(Θ)| is given by:

|Fc(Θ)| = |F (�P )|
M∏
j=1

|F (θj)||F (λj)|
[ D∏
d=1

|F (ρjd)|
]

(9)

Following [101], we can approximate the determinant of the Fisher information matrix of �P and

ρjd as follow:

|F (�P )| = N (M−1)
M∏
j=1

1

pj
, |F (ρjd)| =

N

ρjd(1− ρjd)
(10)

As for F (θjd) and F (λjd), we need to consider expected value of the negative log likelihood for

each feature in �Xi separately. Thus,

|F (θj)| = N
2
j

D∏
d=1

|F1(θjd)|, |F (λj)| = N
2
j

D∏
d=1

|F1(λjd)| (11)

where Nj is the number observations affected to cluster j and |F1(θjd)| is given by [123]:

F1(θjd) =

⎛
⎝ κjdA(κjd) 0

0 A′(κjd)

⎞
⎠
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where A(κjd) =
I1(κjd)

I0(κjd)
and A′(κjd) = 1 − (

I1(κjd)

I0(κjd)
)2 −

I1(κjd)

I0(κjd)
. Similarly, we can find F1(λjd). By

substituting log |Fc(Θ)| and log h(Θ) for model parameters Θ, we can find:

MessLen(M) =
1

2
(M + 5MD − 1) logN +

D

2

M∑
j=1

log pj +
M

2

D∑
d=1

log ρjd (12)

+
M

2

D∑
d=1

log(1− ρjd) +
1

2

M∑
j=1

D∑
d=1

log(|F1(θjd)|)

+
1

2

M∑
j=1

D∑
d=1

log(|F1(λjd)|) +
Np

2
(1 + log

1

12
)− log p(X |Θ)

+

M∑
j=1

D∑
d=1

[4 log π + log(1 + κ2jd) + log(1 + κ2jd|λ)]

It is worth mentioning that Eq. 12 is MML-Laplace which can be simplified to MML-Jeffrey [33]

by adopting Jeffrey’s prior for Θ [101]. In what follow, we will use MML-Laplace to learn our

model.

3.3.2 Parameter Estimation

In this section, we develop the equations that learn movM while simultaneously considering the

relevancy of features. To achieve this goal, we adopt common EM approach which generates a

sequence of models with non-decreasing log-likelihood on the data. The main goal is to optimize

the following objective function:

S(Θ,X ) = −MessLen(M) + ξ
(
1−

M∑
j=1

pj

)
+

D∑
d=1

νjd

(
1− ρjd1 − ρjd2

)
(13)

where ρjd1 = ρjd and ρjd2 = 1 − ρjd, ξ and νjd are Lagrange multipliers to satisfy the constraints∑M

j=1 pj = 1 and ρjd1 + ρjd2 = 1, respectively. Thus, straightforward manipulations allow us to

obtain the following by maximizing Eq. 13 (See Appendices A, B, C, D):

Ẑij =
pj

∏D
d=1

(
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

)
∑M

j=1 pj
∏D

d=1

(
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

) (14)
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pj =
max(

∑N

i=1 Ẑij −D, 0)∑M

j=1max(
∑N

i=1 Ẑij −D, 0)
(15)

ρjd =

max
( N∑

i=1

Ẑij

ρjdp(�Yid|θjd)

ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)
−M, 0

)
νjd

(16)

where

νjd = max
( N∑

i=1

Ẑij

[ ρjdp(�Yid|θjd)

ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

]
−M, 0

)

+max
( N∑

i=1

Ẑij

[ (1− ρjd)p(�Yid|λjd)

ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

]
−M, 0

)

�μjd =

∑N
i=1 Ẑij

ρjdp(�Yid|θjd)

ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd)
�Yid∑N

i=1 Ẑij
ρjdp(�Yid|θjd)

ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd)

(17)

�μjd|λ =

∑N
i=1 Ẑij

(1−ρjd)p(�Yid|λjd)

ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd)
�Yid∑N

i=1 Ẑij
(1−ρjd)p(�Yid|λjd)

ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd)

(18)

and

�μjd =
�μjd

‖�μjd‖
, �μjd|λ =

�μjd|λ

‖�μjd|λ‖
(19)

Since, we cannot find tractable form for A−1(κjd), we use Newton-Raphson iterations to find κjd,

where:

κnew
jd = κold

jd −
∂S(Θ,X )

∂κjd

(∂2S(Θ,X )

∂2κjd

)−1
(20)

Similarly we can calculate κnew
jd|λ. Having our selection criterion and estimation equations in hand,

the complete learning algorithm is as follows:

Algorithm 1. For each candidate value ofM :

Step 0: Apply spherical K-means [53] to obtain the initial parameters for each component.

Step 1: Iterate the two following steps until convergence:

1. E-Step: Update Ẑij using Eq. 14
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2. M-Step: Update pj , ρjd, �μjd, �μjd|λ, κjd and κjd|λ using Eqs. 15,16, 19, 20, respectively.

Step 2: Calculate the associated message lengthMessLength(M) using Eq 12.

• Select the optimal modelM∗ such thatM∗ = argminMessLength(M).

Note that the computational cost of proposed framework is based on the EM estimation framework

cost where both E- and M-steps have a complexity of O(NMD) which is the same complexity

associated with standard EM-based learning approaches.

3.4 Online Learning with Feature Selection

As aforementioned, in many dynamic applications data appear in stream of sequences and hence

online learning is favored over off-line counterpart. The main idea is to update mixture model

parameters incrementally as data are presented to the classifier [117]. Formally, assume that at

time t we have a dataset X = { �X1, . . . , �XN} of N documents which is represented by a M-

component movM with parametersΘt
N . At time t+1 a new document �XN+1 is introduced and the

model should be updated considering the new document. In this section, our intention is to develop

flexible and accurate online mixture model that lets us to simultaneously choose relevant features

and optimal number of model components. To achieve this goal, in the following we adopt RSEM

approach proposed in [117]. The same way as EM, the RSEM is mainly obtained by computing

the conditional expectation of the complete available data at time t+ 1 in the E-step, thus:

P ( �XN+1, �ZN+1, �ΛN+1) = p(�ZN+1)p(�ΛN+1)p( �XN+1|�ZN+1, �ΛN+1) (21)
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and

E[logP ( �XN+1, �ZN+1, �ΛN+1)] =

N∑
i=1

M∑
j=1

P (ZN+1,j = j|XN+1,d) log pj

+

N∑
i=1

M∑
j=1

D∑
d=1

1∑
φ=0

P (ZN+1,j = j, φjd|XN+1,d)

×
[
φjd

(
log p(YN+1,d|θjd) + log ρjd

)
+(1− φjd)

(
log p(YN+1,d|λjd) + log(1− ρjd)

)]
where ( �XN+1, �ZN+1, �ΛN+1) is the complete data, and �ZN+1 = (ZN+1,1, . . . , ZN+1,M) is a random

vector of missing data that indicates if the new document is associated with component j, such as

ZN+1,j = 1 if the new vector �XN+1 belongs to class j, 0 otherwise. �ΛN+1 = {φ11, . . . , φMD}

is a random vector of missing data that indicates if feature d is relevant to cluster j, where

ρjd = p(φjd = 1).

Using RSEM, in the M-step we update the model parameters with respect to Θt = {Φt =

{μt
jd, κ

t
jd, μ

t
jd|λ, κ

t
jd|λ}, {ρ

t
jd}} and with the constraints 0 < pj ≤ 1 and

∑M

j=1 pj = 1 [117]:⎧⎪⎨
⎪⎩
w(j)t+1 = w(j)t + γN(ẐN+1,j − ptj), 1 ≤ j < M

Φ(t+1) = Φ(t) + γN
∂ log(p( �XN+1, �ZN+1,�ΛN+1|Φ(t)))

∂Φ
, 1 ≤ j ≤ M

(22)

where

ẐN+1,j =
ptjp(

�XN+1|Θt)∑M

j=1 p
t
jp(
�XN+1|Θt)

(23)

is the posterior probability, and γN represents any sequence of positive numbers which decreases

to zero or positive definite matrix such that
∑
|γN | = ∞ and

∑
|γN |2 < ∞. In our case we have

chosen γN = 1
N+1

[111, 117]. Note that w(j)t+1 in Eq. 22 is used to ensure the unity of the mixing

proportion pj by introducing the Logit transform w(j) = log
pj
pM
such that wM = 0, where:

pt+1
j =

exp(w(j)t+1)

1 +
∑M−1

j=1 exp(w(j)t+1)
, j = 1, ...,M − 1 (24)

pt+1
M =

1

1 +
∑M−1

j=1 exp(w(j)t+1)
(25)
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In order to figure out the relevancy of features for the new vector, we need to update ρjd such that

ρjd ∈ [0, 1]. Let ρjd1 = ρjd and ρjd2 = 1 − ρjd such that ρjd1 + ρjd2 = 1 ∀d = 1, . . . , D. Hence,

we propose to use parametrization based on Logit transform hjd = log(ρjd) = log
ρjd

1−ρjd
, and we

obtain:

ht+1
jd = ht

jd +
Λ̂jd

N + 1

[∂ log(p( �XN+1, �ZN+1, �ΛN+1|ρ
(t)
jd ))

∂ρjd

]
(26)

ρt+1
jd1 =

exp(ht+1
jd )

1 + exp(ht+1
jd )

, d = 1, . . . , D (27)

ρt+1
jd2 =

1

1 + exp(ht+1
jd )

, d = 1, . . . , D (28)

where

Λ̂jd =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẐN+1,j

ρtjdp(YN+1,d|θtjd)

ρtjdp(
�YN+1,d|θtjd) + (1− ρtjd)p(

�YN+1,d|λt
jd)
, If d is relevant

ẐN+1,j

(1− ρtjd)p(YN+1,d|λ
t
jd)

ρtjdp(
�YN+1,d|θtjd) + (1− ρtjd)p(

�YN+1,d|λt
jd)
, If d is irrelevant

(29)

Note that it is straight forward to calculate ρjd2 based on Eq. 27. Finally, the RSEM algorithm in

the case of our model can be defined as follows:

Algorithm 2. For each candidateM :

Step 0: (at iteration t) Initialization: Θ(t)
Mmin

, . . . ,Θ
(t)
Mmax

Step 1: (at iteration t+ 1) new document �XN+1 is introduced.

• Compute the posterior probabilities using Eq. 23.

• Assign �XN+1 to cluster which maximizes ẐN+1,j

Step 2: (at iteration t + 1) Update the different mixtures models using Eqs. 22, 24 and 27 for

j ∈ {Mmin, ...,Mmax}.

Step 3: if ρt+1
jd approaches to zero we can discard feature d.

Step 4: Calculate the associated message lengthMessLength(M) using Eq 12.
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• Select the optimal model M∗ such that M∗ = argminMessLength(M) for M∗ ∈

{Mmin, ...,Mmax}.

Note that in our model, we find the optimal number of clusters by running MML model concur-

rently for models {Mmin, . . . ,Mmax} and select the solution which minimize message length. For

computational complexity sake, when the number of components is large and the estimation of the

candidate model is slow, we keep all the candidate model fitting with {ΘMmin , . . . ,ΘMmax}.

3.5 Experimental Results

In this section, we present the experimental results of applying proposed framework on high di-

mensional data extracted from challenging applications, namely, image-based spam filtering and

web page categorization problem. The goal of the experiments is twofold. First, we investigate the

impact of feature selection in improving the overall clustering performance. Second, we determine

how online learning is desirable with dynamic data. In all experiments, we initialize the feature

saliency values to ρjd = 0.5 as we assume that each feature has equal probability of being relevant

or irrelevant.

Datasets

In our experiments we used publicly available datasets for both applications to evaluate the perfor-

mance of our proposed framework.

• For spam filtering, we use Dredze5 dataset [90] which contains emails from publicly

well-known SpamArchive datasets along with many personal emails of the authors. In

particular, it consists of 2021 ham images (HPer) and 3299 spam images (SPer) and

a SpamArchive spam (SArc) set with 16035 images. After preprocessing, we remove
5To the best of our knowledge, due to the privacy issues, this is the only publicly available spam dataset that

includes private legitimate images. Yet, many researchers have added their own private legitimate images which
makes it harder to have a fair comparison [128].
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images smaller than 10×10 and those cannot be recognized with image processer we

end up having 1770 ham and 3112 spam images and 8719 spams from SpamArchive.

• For web categorization, we used Yahoo206 dataset which contains 2340 articles be-

longing to 20 categories: Business (142), Entertainment (9), art (24), cable (44), cul-

ture (74), film (278), industry (70), media (21), multimedia (14), music (125), online

(65), people (248), review (158), stage (18), television (187), variety (54), Health

(494), Politics (114), Sports (141), Technology(60).

Evaluation Criteria

For evaluation we used typical measures for spam filtering and web categorization. We reported

the execution time of the batch framework on an Intel(R) Core(TM) 64 Processor PC with the

Windows XP Service Pack 3 operating system and a 4 GB main memory. While in the online,

we reported the average time to assign new document (image). Moreover, we calculated accuracy,

micro-averaged F1 and macro-averaged F1 as follows:

Accuracy =
Number of documents correctly clustered

Total number of documents

F1(micro-averaged) =
2× Precision× Recall
Precision+ Recall

F1(macro-averaged) =
∑M

j=1 Fj

M
, Fj =

2× Precisionj × Recallj
Precisionj + Recallj

where

Precision =
number of documents correctly predicted in classi

number of documents in classi

Recall =
number of documents correctly predicted in classi

number of correct prediction of classi

It is worth mentioning that larger values of F1 ∈ (0, 1) represent higher classification quality.
6fttp://fttp.cs.umn.edu/dept/users/boley
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3.5.1 Filtering Using Bag of Visual Words Approach

Image-based spam email circumvents easily classic text based spam filters, thus some approaches

have been proposed to detect the nature of email from its image content. Most of proposed ap-

proaches consider, however, only the textual content of the image and ignore its rich low-level

visual content (e.g. color, texture, shape) which can be very helpful as clearly shown for instance

in previous works about content-based image indexing and retrieval [89]. Moreover, spam images

may not contain text (e.g. the picture of an object without text to advertise a website). Only few pa-

pers have considered the low level visual content of spam images as a solution to make filters more

robust and smarter [90, 129]. Motivated by the recent success of local descriptors in computer vi-

sion applications, the authors in [130] proposed the modeling of images using the so called visual

keywords (i.e. quantization of local descriptors) which are then classified as spam or ham using

SVM. This approach has some merits since the local descriptor used (i.e. scale-invariant feature

transform (SIFT)) is robust to several geometric transformations that may be used by spammers,

but the quantization step applied can cause the loss of important information about the image con-

tent as shown in [131].

The goal of this first application is to investigate the impact of feature selection in clustering per-

formance and comparing movM to GMM both with feature selection (movMFS, GMMFS) and

without feature selection (movM, GMM). An important step in our application is the extraction of

local features which well-describe given images. To this sake, we adopt the Bag-of-visual-words

(BoVW) approach; thereby each image is represented by a single vector of frequencies. We start

by detecting local regions on each image, using difference-of-Gaussian (DoG) detector, which we

describe using their SIFT descriptors [85], giving 128 dimensional vector for each local region.

Extracted vectors are clustered using the K-Means algorithm providing 900 visual-words vocabu-

lary. We have tested several vocabulary sizes and the best classification results were obtained with

900 visual words, as illustrated in Fig. 3.1(a). Thus, each image in the dataset is then represented

by a 900-dimensional vector describing the frequencies of a set of visual words, provided from
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(a) (b)

Figure 3.1: Classification accuracy for the spam data set as a function of (a) the vocabulary size,
(b) the number of aspects.

Table 3.1: Performance For Spam Filtering based on movM and GMM with and without feature
selection.

with Feature Selection Without Feature Selection
movM GMM movM GMM

Accuracy (%) 80.09 80.10 77.52 70.45
Run Time (sec) 24.15 31.34 40.26 47.05

the constructed visual vocabulary. Having these feature vectors, the Probabilistic Latent Semantic

Analysis (pLSA) model is applied by considering 40 topics, for dimensionality reduction which

has been shown to improve classification performance. Fig. 3.1(b) shows that the choice of the

number of aspects has a real impact on the accuracy of filtering and the optimal accuracy obtained

when the number of aspects is set to 40. After we prepared our dataset we randomly split dataset

10 times into training and testing sets, then we start spam filtering.

Figure 3.2 shows the number of components found by our proposed algorithm when adopting

movM and GMM. Evaluation results are shown in Table 3.1. Note that in most cases we found the

optimal number of mixture components. According to these results, it is clear that the presence

of irrelevant features affects both the classification accuracy and estimation of model components.

Moreover, using movM shows a slight improvement over GMM in the majority of the scenarios.

In our next experiments, we investigate the performance of the online framework with feature

selection (Section 3.4) on the spam dataset. We first arranged images in chronological order. Then,
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(d) GMM

Figure 3.2: Number of clusters determined to represent spam and legitimate emails.

we select the oldest 1000 articles from both classes (i.e. spam ad legitimate) to initialize, where

we clustered using the algorithm proposed in 3.3.2. Later, we used the online algorithm (Sec-

tion 3.4) each time we insert new image until the end. We initialize the number of components

to be Mmin = 1 and Mmax = 4 for all our experiments. It is worth mentioning that the choice

of Mmin and Mmax is user defined and depends on the dataset at hand. In our experiments, after

trying several values we find our choice a feasible one to achieve the optimal performance without
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Table 3.2: Performance For Spam Filtering based on movM and GMM with feature selection in
online settings.

movM GMM
Accuracy (%) 79.81 76.03
Run Time (sec) 1.06 1.17

compromising the model complexity.

Table 3.2 presents the results of spam filter after inserting the whole images. In terms of running

time, in all the experiments, both movM and GMM show a quite similar speed. However, GMM

shows worse performance in terms of accuracy. Moreover, we can observe that the online algo-

rithm gives worse clustering performance than its batch counterpart, which is expected since the

online algorithm can only update the cluster statistics incrementally.

It is worth mentioning that in this chapter we have considered generative models for feature se-

lection and online learning. However, for spam filtering problem, many discriminative approaches

have been used in the past. For instance, in our previous work [48, 132] we have studied the use

of SVM in off-line and online settings to solve the problem of spam filtering for textual part of

the email (i.e. we didn’t use images). In one hand, feature selection is performed as a prepro-

cessing step in the case of SVM and the computational cost increases linearly with the number of

feature vectors [110, 133]. On the other hand, we argue that our proposed model presents a unified

framework to simultaneously consider feature relevancy while gradually updating given model in

unsupervised way. In addition, unlike discriminative models, we can further engage prior knowl-

edge of application environment and expert impression where we can describe each image as a bag

of vectors instead of one single vector as we will show in our next experiments which has shown

to improve the quality of clustering. For further comparison interested user may refer to [134] and

references therein.
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3.5.2 Filtering Using Hybrid Generative/Discriminative Learning

Many researchers have paid attention to the complementary characteristics of generative and dis-

criminative approaches and have attempted to merge the flexibility of generative approaches and

the performance of discriminative approaches, and hence many procedures have been proposed.

One common approach that has been suggested is “Fisher Kernel” [63] which has been shown to

provide an elegant way to build hybrid models and has been widely used in different applications.

Thus, we develop a hybrid framework that models image descriptors using movM from which

Fisher kernel is generated for SVMs [40]. Thereby, we calculate the Fisher score of each com-

ponent by finding the derivative of the log-likelihood of the sequence X with respect to particular

parameter. Through the computation of gradient of the log likelihood with respect to our model

parameters: pj , κjd, �μjd, ρjd, �μjd|λ and κjd|λ where j = 1, . . . ,M , we obtain

∂ log p(X |Θ)

∂pj
=

N∑
i=1

[Ẑij

pj
−
Ẑi1

p1

]
, 1 < j ≤M (30)

∂ log p(X |Θ)

∂μjd

=

∑N

i=1 Ẑij
�Yidκjdρjd

‖
∑N

i=1 Ẑij
�Yidκjdρjd ‖

(31)

∂ log p(X |Θ)

∂κjd

=

N∑
i=1

Ẑijρjd

[
�μT

jd
�Yid −A(κjd)

]
(32)

∂ log p(X |Θ)

∂ρjd
=

N∑
i=1

Ẑij

[ p(�Yid|θjd)− p(�Yid|λjd)

ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

]
(33)

where Ẑij is the posterior we found previously in E-step. Similarly we can find the Fisher scores

for �μjd|λ and κjd|λ. It is noteworthy that in Eq. 30, we take into account the fact that the sum of the

mixing parameters equals one and thus there are onlyM−1 free mixing parameters. The main goal

of this experiment is to evaluate the advantages of performing feature selection in hybrid generative

discriminative framework by comparing: hybrid learning of movM and GMM with (HmovMFS,
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Table 3.3: Performance For Spam Filtering based on hybrid framework for both models in different
scenarios.

with Feature Selection Without Feature Selection
HmovM HGMM HmovM HGMM

Accuracy (%) 91.43 88.82 86.45 84.78
Run time (sec) 22.01 31.41 49.3 50.42

HGMMFS) and without feature selection (HmovM, HGMM). Details about the learning of GMM

can be found in [94]. The libsvm7 software was used for SVMs classifier.

In this experiment, we replaced the visual words generation by fitting directly a given generative

model (movM, GMM) to the local SIFT feature vectors, normalized using L2 normalization, ex-

tracted from the images (i.e. each image is encoded as a bag of SIFT feature vectors). As a result

each image (in both training and testing sets) was represented by a finite mixture model which can

be viewed actually as the generative stage. Then, the Fisher scores between each of these mixture

models were computed giving us kernel matrices to feed SVM classifier which represents our dis-

criminative stage. A summary of the classification results obtained for the different classification

tasks, is shown in Table 3.3. These results show that combining mixture models and SVMs out-

performs classification using pure generative models only. Note that the best results were obtained

when hybrid framework was applied using feature selection. The performance of hybrid frame-

work is rather promising, comparing to Maximum Entropy (.91±.006), Naive Bayes (.80±.007)

and an ID3 Decision Tree (.87±.020) in [90].

3.5.3 Online Web pages Clustering

The revolution of the Internet has made Web a popular place for individuals and organizations to

share and collect information. Nevertheless, the dissemination of useful information on the Web

in many cases has been accompanied by a large amount of noise that can seriously ruin automated
7http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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information collection and mining on the Web such in Web pages clustering and information re-

trieval. Online web pages clustering goal is to automatically discover the clusters of similar web

pages as long as they arrive in a stream of sequence [135]. This is particularly a challenging

problem as one would need to deal with high-dimensional vectors sometimes tens of thousands

of features, and as a result, the number of clusters can be considerably large [135]. Two clus-

tering tasks were considered for this application. The first one is to study the impact of feature

selection on web pages clustering in off-line settings using Algorithm 1 that we have proposed in

Section 3.3.2. The second one is to explore the influence of feature selection in online settings

using Algorithm 2 that we have proposed in Section 3.4.

We start by preparing our data by extracting the text of the news articles. Next, we applied stem-

ming and removed words that occur less than 5 times and rare words while we kept stop words.

This gives us a vocabulary of 21839 words, in the second step we presented each document as a

vector of words frequencies that we normalize using L2 normalization. Experimental results (see

Figure 3.3) show that both movMFS and GMMFS with Feature selection outperform movM and

GMM without feature selection. This is actually justified by the fact that most of the features that

were assigned lower weight are pronouns, adverbs, etc which are generally in stop words list, that

has been shown to affect clustering results. In all the experiments, all models achieve their higher

value at M = 20 which is the correct number of categories. Looking closely to macro-averaged F1

we can clearly see that clustering was influenced by the fact that the categories are imbalanced.

Accordingly, feature selection influences web clustering in off-line settings. In order to explore if

this is the case for online settings in our next experiment we learnt web articles incrementally. As

we proved in previous experiment that feature selection improves the clustering performance, we

decided to remove stop words and rare words and apply stemming before clustering. Each article

is then described a L2-normalized frequency vector. We initializeMmin = 1 andMmax = 30 for

all our experiments. We randomly select 1000 articles out of 2340 to initialize and we insert the

remaining articles during the running time of the algorithm. The number of clusters found each

time we insert 286 images based on movM and GMM is given in Figures 3.5 and 3.6, respectively.
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(a) micro-averaged F1 (b) macro-averaged F1

Figure 3.3: Micro-averaged F1 and macro-averaged F1 vs number of categories on Yahoo20
dataset with and without feature selection based on movM and GMM in off-line framework.

Table 3.4: Performance For Yahoo20 dataset in off-line and online settings for both movM and
GMM using Feature selection.

Off-line Online
movMFS GMMFS movMFS GMMFS

Accuracy (%) 88.97 86.26 87.04 85.95
Run time (sec) 18.98 25.76 2.074 2.092

From these figures, we clearly observe that MML found the exact number of clusters (20 clusters)

after the insertion of the remaining 1340 articles in case of movM. Fig. 3.4 shows the F1(micro-

averaged) and F1(macro-averaged) over different number of documents fed to the system over

time. Note that both movM and GMM achieve best F1(microaveraged) and F1(macro-averaged)

when we insert the whole set of documents in both dataset. According to those figures we notice

again that using feature selection as apart of online learning has improved the quality of the clus-

ters.

Table 3.4 shows that the accuracy of online settings is comparable to its off-line counterpart

when we insert the rest of articles.
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(a) micro-averaged F1

(b) macro-averaged F1

Figure 3.4: Micro-averaged F1 and macro-averaged F1 in Online Framework with and without
feature selection based on movM and GMM.
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Figure 3.5: Number of clusters determined to represent Yahoo20 categories based on online movM
with feature selection (movMFS).
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Figure 3.6: Number of clusters determined to represent Yahoo20 categories based on online GMM
with feature selection (GMMFS).
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CHAPTER 4
A Bayesian Clustering and Feature

Selection for Spherical Data

In this Chapter, we propose a new parameter estimation methods based on Bayesian inference. In

particular, we first propose a pure Bayesian algorithm for the estimation and selection of Langevin

mixture model. To extend Bayesian framework to consider feature selection, we propose a frame-

work that combines clustering and feature selection based on movM learned using RJMCMC

approach. Experimental results in vital and challenging problems, namely topic detection and

tracking and image categorization, are presented.

4.1 Introduction

In this chapter, we shall consider finite Langevin mixtures. A key step in mixture-based modeling

of data is parameter estimation. Many methods have been proposed in the literature in order to esti-

mate mixture parameters, including frequentist (a.k.a deterministic) and Bayesian approaches [32].

In this chapter, we focus in developing parameter estimation and model selection from Bayesian

perspective. We are mainly motivated by the fact that Bayesian learning has several desirable prop-

erties that make it widely used in several applications. For instance, it does not suffer over-fitting

and prior knowledge is incorporated naturally in a principled way. In this chapter we shall not
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motivate further Bayesian learning which has been widely discussed in the past (interested reader

may refer to [136–138] for further details and interesting discussions).

Rooted in the early work of [139] Bayesian inference for the Von Mises Fisher (vMF) distribu-

tion (3-dimensional case of the Langevin distribution) was proposed. This work was based on the

development of a conjugate prior for the mean (Jeffreys prior was also developed for the polar

coordinates) when concentration parameter is known. In the area of radio signals, authors in [140]

applied Bayesian approach for finding the location of an emergency transmitter signal based on

the von Mises (vM) distribution (2-dimensional case of the Langevin distribution) by develop-

ing conjugate priors using the canonical parameterizations. A Gibbs sampler for vM distribution

was introduced in [141] by developing conjugate priors for the polar coordinates. In [142] au-

thors provide a full Bayesian analysis of directional data using the vMF distribution, again using

standard conjugate priors and obtaining samples from the posterior using a sampling-importance-

resampling method. Compared to these methods, our work is not restricted to low dimensional

data (i.e. Von Mises (2D) or Von Mises Fisher (3D)) which is a limited solution for many real-

world problems. On contrary, we extend previous models to high dimensional data using Langevin

mixture (for D>3) where both the concentration and mean parameters are unknown. In partic-

ular, we propose a Markov Chain Monte Carlo (MCMC) algorithm that relies on Gibbs sampler

and Metropolis-Hastings (M-H) for the estimation of the parameters. To this end, we develop a

conjugate prior for the Langevin distribution taking into account the fact that it belongs to the

exponential family. As well as considering the estimation over model parameters, we also wish

to consider the optimal number of components that best describe data at hand. One common ap-

proach is integrated likelihood [143] which we shall adopt for Langevin mixture in this chapter.

Note that, despite various efforts to use Bayesian inference to learn mixtures [134, 144], to the best

of our knowledge, none of the recent works has considered the case where the feature vectors to

model are spherical so far.

Due to its high computational cost, these Bayesian models most often have be disregarded es-

pecially when one considers the necessity of feature selection which ironically provides superior
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performance. This motivates the need to find unified framework that combines the efficient mod-

els with feature selection. Subsequently, we propose an ambitious framework that simultaneously

learn spherical clusters and identify relevant features. The learning of proposed framework is car-

ried out using RJMCMC to estimate developed posterior distributions.

4.2 Bayesian Estimation

As we previously discussed EM provides an elegant and simple way to estimate the parameters of

a given model, yet, EM algorithm is sensitive to the initialization and generally converges to local

solution in the best case. To avoid this problem, an alternative way is to use Bayesian estimation

for Langevin mixture model.

Bayesian estimation is based on finding the conditional distribution p(Θ|X ,Z) of parameters vec-

tor Θ which is brought by complete data (X ,Z), where Z = {�Z1, . . . , �ZN}. We therefore select

a prior distribution p(Θ) and then develop posterior distribution p(Θ|X ,Z) which is derived from

the joint distribution p(Z,Θ,X ) via Bayes formula p(Θ|X ,Z) ∝ p(Z,Θ,X ). The joint distribu-

tion of all variables can be written as:

p(Θ|X ,Z) = p(�θ, �P |X ,Z) ∝ p(�P )p(�θ)p(Z|�P )
∏
Zij=1

p( �Xi|θj) (1)

where p(�θ) and p(�P ) are the priors of θ and �P which we will describe in what follows.

Priors and Posteriors

In order to derive our Bayesian algorithm we now turn to defining our priors over the parameters.

Langevin distribution is a member of (curved)-exponential family of order D, whose shape is

symmetric and unimodal. Thus, we can write it as the following [145]:

p( �X|θ) = H( �X) exp(G(θ)TT ( �X) + Φ(θ)) (2)
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where G(θ) = (G1(θ), . . . , Gl(θ)), T ( �X) = (T1( �X), . . . , Tl( �X)) where l is the number of param-

eters of the distribution and tr denotes transpose. The conjugate prior 1 on θ, in this case, can be

written as [138]:

p(θ) ∝ exp(
S∑

l=1

ρlGl(θ) + λΦ(θ)) (3)

where ρ = (ρ1, . . . , ρS) ∈ RS and λ > 0 are referred as hyperparameters. To this end, Langevin

distribution can be written as follows:

pD( �X|�μ, κ) = exp{κ�μT �X − aD(κ)} (4)

where aD(κ) = − log
{ κ

D
2
−1

(2π)
D
2 ID

2
−1(κ)

}
. Then, by letting Φθ = −aD(κ) and Gθ = κ�μ, the prior

can be written as:

p(θ) ∝ (exp(

D∑
d=1

κ0�μ
T
0 �μj − λaD(κ0))) (5)

The prior hyperparameters are: (κ0, �μ0, λ), where �μ0 ∈ SD is the mean of the observations, κ0 is

the concentration parameter and λ is a non-negative integer. Having the prior at hand, the posterior

is given as following:

p(θj |Z,X ) ∝p(θj)
∏

Zij=1

p( �Xi|θj) ∝
[ κ

D
2
−1

0

(2π)
D
2 ID

2
−1(κ0)

]λ
exp(κ0�μ

t
0�μj) (6)

×
[ κ

D
2
−1

j

(2π)
D
2 ID

2
−1(κj)

]nj
exp(njκj�μ

t
j

∏
Zij=1

�Xi)

∝(aD(κj))
λ+nj exp(Rjβ

T
j �μj)

1 [146] contains an interesting discussion about the characteristics of conjugate priors and their induced posteriors
in Bayesian inference for von Mises Fisher distributions, using either the canonical natural exponential family or the
more commonly employed polar coordinate parameterizations.
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where

Rj =‖ κ0�μ0 + njκj

∏
Zij=1

�Xi ‖ (7)

βj =
κ0�μ0 + njκj

∏
Zij=1

�Xi

Rj

Next, we develop distribution p(�P |Z) and according to Eq. 1, we have:

p(�P |Z) ∝ p(�P )p(Z|�P ) (8)

We know that the vector �P is defined on the simplex {(p1, . . . , pM) :
∑M−1

j=1 pj < 1}, and

hence a natural choice, as a prior, for this vector is a Dirichlet distribution with parameters η =

(η1, . . . , ηM). Then,

p(�P |Z) =
Γ(
∑M

j=1 ηj)∏M
j=1 Γ(ηj)

M∏
j=1

p
ηj−1
j

M∏
j=1

p
ηj
j ∝ D(η1 + n1, . . . , ηM + nM) (9)

where D is a Dirichlet distribution with parameters (η1 + n1, . . . , ηM + nM) and

p(Z|�P ) =
N∏
i=1

p(�Zi|�P ) =
N∏
i=1

pZi11 . . . pZiMM =

N∏
i=1

M∏
j=1

p
Zij
j =

M∏
j=1

p
nj
j (10)

where nj =
∑N

i=1 IZij=j . One of the most common approaches to conduct Bayesian inference

is Gibbs sampler [137], which we adopt in this chapter. The standard Gibbs sampler for mixture

models is based on the successive simulations of �θ, Z, and �P and is given as follows [137]:

Algorithm 1:

1. Initialization

2. Step t: For t = 1, . . .

• Generate �Z(t)
i ∼M(1; Ẑ

(t−1)
i1 , . . . , Ẑ

(t−1)
iM )

• Compute n(t)j =
∑N

i=1 IZ(t)
ij =j

• Generate �P (t) from Eq. 9.
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• Generate θ(t)j , j = 1, . . . ,M , from Eq. 6 using M-H algorithm [147].

whereM(1; Ẑ
(t−1)
i1 , . . . , Ẑ

(t−1)
iM ) denotes a multinomial of order one with parameters (Ẑ(t−1)

i1 , . . . , Ẑ
(t−1)
iM ),

where Ẑij is calculated according to Eq. 1.

The major problem in the M-H algorithm is the need to choose a proposal distribution. In order

to tackle this problem, random walk Metropolis−Hastings algorithm is the most generic proposal

where each unconstrained parameter is the mean of the proposal distribution for the new value. In

our case, the distributions of parameters are considered as: Langevin μ̃j ∼ LM(μt−1
j |μ̃j, κj) for

the mean μ, where μj is a constant unit vector, κj is concentration parameter. As we know the con-

centration parameter is non-negative integer κ > 0, we consider log-normal κ̃j ∼ LN (log(κt−1
j ), σ2)

for the concentration parameter κ with mean log(κt−1
j ) and variance σ2. With these proposals2 at

hand the random walk M−H algorithm is given by:

M-H Algorithm:

• Generate μ̃j ∼ LM(μt−1
j |μ̃j, κj), κ̃j ∼ LN (log(κt−1

j ), σ2) and u ∼ U[0,1]

• Compute r = p(θ̃j |Z,X )
∏D
d=1 LM(μt−1

j |μ̃j ,κj)LN (κt−1
j | log(κ̃j),σ2)

p(θt−1
j |Z,X )

∏D
d=1 LM(μ̃j |μ

t−1
j ,κj)LN (κ̃j | log(κ

t−1
j ),σ2)

• if r < u then θtj = θ̃j else θtj = θ
t−1
j .

Model Selection

This algorithm requires some further enhancement. Indeed, it is crucial to find also the optimal

number of components. In this chapter we adopt integrated likelihood to determine the number of

clustersM defined by [143]:

p(X |M) =

∫
p(Θ|X ,M)dΘ =

∫
p(X |Θ,M)p(Θ|M)dΘ (11)

where p(X |Θ,M) is the likelihood function of finite mixture model taking into account the number

of clusters, which is M in this case, Θ is the vector of parameters and p(Θ|M) is prior density.
2It is worth mentioning that other proposals are possible. For instance, in [142] authors chose Gamma distribu-

tion as a proposal for concentration parameter κ. But our experiments have proven better results with log-normal
distribution selected as proposal.
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This integral is not analytically tractable and is generally computed via Laplace approximation, on

the logarithm scale, as follows [143]:

log p(X |M) = log p(X |Θ̂,M) + log p(Θ̂|M) +
Np

2
log(2π) +

1

2
log |H(Θ̂)| (12)

where |H(Θ̂)| is the determinant of the Hessian matrix and Np =M(D + 1)− 1 is the number of

parameters in the model. A simple and accurate solution to estimate Θ̂ is to chooseΘ in the sample

at which p(X |Θ̂,M) achieves its maximum [148]. Moreover,H(Θ̂) is asymptotically equal to the

posterior variance matrix, and hence, we could estimate it by the sample covariance matrix of

the posterior simulation output [148]. Thus, the complete Bayesian algorithm of finite Langevin

mixture is as follows:

Algorithm 2:

1. Apply Algorithm 1

2. Select the optimal modelM∗ such thatM∗ = argmaxM log p(X |M)

One common argument when using MCMC is the convergence of the model. Many techniques

have been proposed in the past to determine the convergence of the model, see for instance [149],

however the discussion of those methods is beyond the scope of this chapter. Thus, in our chapter

we used a diagnostic approach based on a single long run of the Gibbs sampler, proposed in [150]

which has been shown to be sufficient for high dimensional data [134]. See Figure 4.1 for proposed

learning model.

4.3 Mixture Density and Feature Selection

Given a datasetX = { �X1, . . . , �XN} ofN documents (or images). Therein, each document (image)
�Xi = (Xi1, . . . , XiD) is described by a L2-normalized D-dimensional feature vector, such that

( �Xi)
T �Xi = 1. Each document is best modeled using vM distribution. In particular, we shall
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Figure 4.1: Proposed Bayesian framework.
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suppose that the features in each vector �Xi are independent and follows a vM distribution which

gives the following:

p( �Xi|θj) =
D∏

d=1

p(Yid|θjd) =
D∏

d=1

1

2πI0(κjd)
exp{κjdμjdYid} (13)

where I0 is the modified Bessel function of the first kind and order zero [24], θj = (�μj, κj),

θjd = (μjd, κjd), �μj = (μj1, . . . , μjD) is the mean direction, κ = (κj1, . . . , κjD) is the concen-

tration parameter and D is the number of features. let p( �Xi|ΘM) be a mixture ofM distributions

represented by Eq. 1. The probability density function of aM-components movM is given by

p( �Xi|ΘM) =
M∑
j=1

pj

D∏
d=1

p(Yid|θjd) (14)

where ΘM = {�P = (p1, . . . , pM), θjd} denotes all the parameters of the mixture model, pj rep-

resents the weight of the jth movM component and �P is the vector of mixing parameters that are

positive and sum to one.

Each dth feature is represented by movM of two components p(Yid|θjd) and p(Yid|θirrjd )) governed

by ρjd that denotes the weight of the dth feature on cluster j. In fact, if ρjd is very high, then there

is no significant difference with the classical movM model p(Yid|θjd) without any saliency. Thus,

our model, to take feature selection into account, can be written as:

p( �Xi|Θ) =

M∑
j=1

pj

D∏
d=1

(ρjdp(Yid|θjd) + (1− ρjd)p(Yid|θ
irr
jd )) (15)

where Θ = {ΘM , {ρjd}, {θirrjd }}, θirrjd = (�μirr
jd , κ

irr
jd ) are the parameters of vM from which the

irrelevant feature is drawn.

4.3.1 Bayesian Learning using RJMCMC

Hierarchical model, Priors and Posteriors

In contrast to classical Bayesian model, which we proposed previously in Section 4.2, that relies

on other model selection approaches (see Section 4.2) in order to find the optimal number of
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components, in this section we shall find the optimal number of components simultaneously with

the estimation process. Thus, we shall adopt RJMCMC [151] approach, in which the number

of components M is regarded as a model’s parameter drawn from prior distributions. The joint

distribution of our model is given by:

p(M, �P , Z, z, �ρ, �θ, �θirr,X ) = p(M)p(X |�P , Z, �ρ, z, �θ, �θirr,M)p(�θirr|�P , Z, �ρ, z, �θ,M)

× p(�θ|�P , Z, �ρ, z,M)p(�P )p(Z|�P ,M)p(�ρ|�P , Z,M) (16)

× p(z|�ρ, �P , Z,M) (17)

where Z = (Z1, . . . , ZN) denotes the missing allocation variables, such that Zi shows the cluster

that vector �Xi was generated from, z = (z1, . . . , zN), such that zi = (�zi1, . . . , �ziM), where �zij =

(zij1, . . . , zijD) are the missing binary vectors that indicate if a given feature Yid is relevant or not.

Indeed, a proiri probability that the feature Yid is relevant for component j is given by:

p(zijd = 1, Zi = j| �Xi) =
ρjdp(Yid|θjd)

ρjdp(Yid|θjd) + (1− ρjd)p(Yid|θirrjd )
p(Zi = j| �Xi)

p(zijd = 0, Zi = j| �Xi) =
(1− ρjd)p(Yid|θjd)

ρjdp(Yid|θjd) + (1− ρjd)p(Yid|θirrjd )
p(Zi = j| �Xi)

Following [151] we can impose some conditional independencies, such that:

p(�θ|�P , Z, �ρ, z,M) = p(�θ|M), p(�θirr|�P , Z, �ρ, z, �θ,M) = p(�θirr|M)

p(�ρ|�P , Z,M) = p(�ρ|M), p(z|�ρ, �P , Z,M) = p(z|�ρ),

p(X |�P , Z, �ρ, z, �θ, �θirr,M) = p(X |Z, z, �θ, �θirr) =
N∏
i=1

D∏
d=1

[(p(Yid|θZid))
zid(p(Yid|θ

irr
Zid

))1−zid]

which give us the following joint distribution:

p(�P , Z, �ρ, z, �θ, �θirr,X ,M) = p(�P )p(Z|�P )p(�ρ|M)p(z|�ρ)p(�θ|M)p(�θirr|M)

×
N∏
i=1

D∏
d=1

[(p(Yid|θZid))
zid(p(Yid|θ

irr
Zid

))1−zid] (18)
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Furthermore, an extra layer can be introduced to the hierarchy in order to add more flexibility

and hence we suppose that the model parameters (�θ, �θirr, �ρ, �P ,M) follows priors depending on

hyperparamters (Λ,Λirr, ξ, η,δ). Such that Λ = (Λ1, . . . ,ΛM), Λj = (Λj|μ,Λj|κ), and the same for

the irrelevant model, where Λ = (Λirr
1 , . . . ,Λ

irr
M ) and Λj = (Λirr

j|μ,Λ
irr
j|κ). Thus,

p(�θ|Λ) =
M∏
j=1

p(μj, κj |Λj|θj) p(�θirr|Λirr) =

M∏
j=1

p(μirr
j , κ

irr
j |Λ

irr
j|θirrj

)

Hence the joint distribution of our model is given by:

p(�P , Z, z, �ρ,Λ,Λirr, η, ξ, δ, θ, θirr,X ) = p(Λ)p(Λirr)p(ξ)p(η)p(δ)

× p(�P |η)p(Z|�P )p(�ρ|ξ,M)p(z|�ρ)p(X |�θ, �θirr, Z, z)

×
M∏
j=1

[
p(�μj, κj |Λj|θj)p(�μ

irr
j , κ

irr
j |Λ

irr
j|θirrj

)
]

(19)

Now will define our priors, where we suppose that vM parameters μ, κ and μirr, κirr are drawn

independently from the rest of parameters in our hierarchical model. Thus, our conjugate prior is

given by:

p(�μj, κj |κ0, μ0) ∝ (exp(

D∑
d=1

κ0μ0�μj − λa2(κ0))) (20)

The prior hyperparameters are: (κ0, μ0, λ), where μ0 ∈ SD is the mean of the observations, κ0 is

the concentration parameter and λ is a non-negative integer. And p(�μirr
j , κ

irr
j |κ0, μ0) has the same

form as p(�μj , κj|κ0, μ0). Using the above equation we have:

p(�θ|M, τ) =
M∏
j=1

p(�μj , κj|κ0, μ0) (21)

Thus, the generic hyperparameters Λj|θj and Λirr
j|θirrj

become τ = (κ0, μ0, λ) and hence the condi-

tional posterior distributions for θj and θirrj , giving the rest of the parameters, are:

p(θj | . . .) ∝ p(�μj, κj|κ0, μ0)p(X |�θ, �θ
irr, Z, z) (22)
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p(θirrj | . . .) ∝ p(�μ
irr
j , κ

irr
j |κ0, μ0)p(X |�θ, �θ

irr, Z, z) (23)

The hyperparameters μ0 and κ0 are given Von Mises and Gamma priors, respectively:

p(μ0|μ1, κ1) =
D∏

d=1

1

2πI0(κ1)
exp{κ1μ1μ0} p(κ0|a, b) =

D∏
d=1

κa−1
0 ba exp(−bκ0)

Γ(a)
(24)

Thus, according to Eqs. 19, 20 and 24 we obtain the following posteriors:

p(μ0| . . .) ∝ p(μ0|μ1, κ1)
M∏
j=1

p(�μj, κj|κ0, μ0)p(�μ
irr
j , κ

irr
j |κ0, μ0) (25)

p(κ0| . . .) ∝ p(κ0|a, b)
M∏
j=1

p(�μj, κj|κ0, μ0)p(�μ
irr
j , κ

irr
j |κ0, μ0) (26)

We know that the vector �P is defined on the simplex {(p1, . . . , pM) :
∑M−1

j=1 pj < 1}, and

hence a natural choice, as a prior, for this vector is a Dirichlet distribution with parameters η =

(η1, . . . , ηM). Then,

p(�P |η,M) =
Γ(
∑M

j=1 ηj)∏M

j=1 Γ(ηj)

M∏
j=1

p
ηj−1
j

M∏
j=1

p
ηj
j ∝ D(η1 + n1, . . . , ηM + nM) (27)

where D is a Dirichlet distribution with parameters (η1 + n1, . . . , ηM + nM) and

p(�P | . . .) ∝ p(Z| �P,M)p(�P |M, η) ∝
M∏
j=1

p
nj+ηj−1
j (28)

where nj =
∑N

i=1 IZij=j . Now the posterior of the membership variables can be given by:

p(Zi = j| �Xi) =
pj

∏D
d=1

(
ρjdp(Yid|θjd) + (1− ρjd)p(Yid|θ

irr
jd )

)
∑M

j=1 pj
∏D

d=1

(
ρjdp(Yid|θjd) + (1− ρjd)p(Yid|θ

irr
jd )

) (29)

is the probability that vector i is in cluster j, conditional on having observing �Xi. For M we

take as a prior a common choice which is uniform distribution {1, . . . , σ}, where σ is a constant
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representing the maximum value allowed for M . As ρjd is defined in the compact support [0,1],

we consider Beta distribution with parameters ε1 and ε2, common to all classes and dimensions, as

prior:

p(�ρ|ε) =
[Γ(ε1 + ε2)
Γ(ε1)Γ(ε2)

]MD
M∏
j=1

D∏
d=1

ρε1−1jd (1− ρjd)
ε2−1 (30)

Hence, the generic hyperparameter ε becomes (ε1,ε2). Recall that ρjd = p(zjd = 1) and 1 − ρjd =

p(zjd = 0), d = 1, . . . , D, j = 1, . . . ,M thus each zjd follows a D-variate Bernoulli distribution

and we have

p(z|�ρ) =
N∏
i=1

M∏
j=1

D∏
d=1

ρ
zijd
jd (1− ρjd)

1−zijd =

M∏
j=1

D∏
d=1

ρ
fjd
jd (1− ρjd)

N−fjd (31)

where fjd =
∑N

i=1 Izijd=1. Then, according to Eqs. 19 30 31, we have

p(�ρ| . . .) ∝ p(�ρ|ε)p(z|�ρ) ∝
M∏
j=1

D∏
d=1

ρ
fjd+ε1−1
jd (1− ρjd)

N−fjd+ε2−1 (32)

Then, we suppose that the hyperparameters ε1 and ε2 are given Gamma priors with common hy-

perparameters (εε, �ε) which gives us the following posteriors:

p(ε1| . . .) = p(ε1|εε, �ε)p(�ρ|ε) p(ε2| . . .) = p(ε2|εε, �ε)p(�ρ|ε) (33)

Model Learning using RJMCMC

Gibbs sampling moves

As for the first move, we start by updating the mixing parameters �P which generated from Eq. 28.

The second move is based on Update the model parameters �μj , κj , �μirr
j and κirr

j from Eqs. 22

and 23. However, the conditional posteriors of model parameters do not have known forms. Thus,

we have used the random walk MH algorithm with Langevin model proposal for �μj and �μirr
j and

log-normal proposals for κj and κirr
j (See previous sections). In the next move we update the

allocation (missing data) Zi, i = 1, . . . , N from standard uniform random variables rn, where
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Zij = 1 if (p(Zi1 = 1| . . .) + . . . , p(Zij−1 = 1| . . .)) < rn ≤ (p(Zi1 = 1| . . .) + . . . , p(Zij =

1| . . .)) (see Eq. 29). In the fourth move we update the hyperparameters μ0, κ0, ε1, ε2 and η using

Eqs. 25, 26 and 36. As we can clearly see those equations are hard to sample from, thus we use

ARS [152].

Split and merge moves

In split and merge move, we have the choice to choose between splitting a given component or

merging two components with probabilities gM and kM , respectively, where gσ = 0 and k1 = 1

and gM = kM = 0.5, otherwise. Following [151] we need to preserve the first two moments before

and after the combine and split moves. In our case,the merging proposal works as follows: choose

two components j1 and j2, where �μj1 < �μj2 with no other �μj ∈ [�μj1, �μj2] (i.e adjacency condition).

If these components are merged, we reduceM by 1, which forms a new components j∗ containing

all the observation previously allocated to j1 and j2 and then creates values for p∗, �μj∗ and κj∗ by

preserving the first two moments, as follows:

pj∗ = pj1 + pj2 (34)

ρj∗ = 1− ρj2 , ρj1 = ρj∗ (35)

μdj∗ =
pj1μdj1 + pj2μdj2

pj∗
, d = 1, . . . , D (36)

κdj∗ =
pj1(μ

2
dj1

+ κdj1) + pj2(μ
2
dj2

+ κdj2)

pj∗
− μ2dj∗ (37)

When the decision is to split, we choose a component j∗ at random to define two new components

j1 and j2 having weights and parameters (pj1, �μj1, κj1, ρj1) and (pj2, �μj2, κj2, ρj2), respectively.

Clearly, resolving these equations is an ill-posed problem for which we adopt the same solution as

in:

pj1 = u1pj∗, pj2 = (1− u1)pj∗ (38)

μdj1 = μdj∗ − u2

√
κdj∗

pj2
pj1

(39)
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μdj2 = μdj∗ + u2

√
κdj∗

pj1
pj2

(40)

κdj1 = u3(1− u
2
2)κdj∗

pj∗
pj1

(41)

κdj2 = (1− u3)(1− u
2
2)κdj∗

pj∗
pj2

(42)

ρj1 = u4ρj∗, ρj2 = (1− u4)ρj∗ (43)

where u1, u2, u3 and u4 are drawn from Beta distributions with parameters (2,2), (2,2), (1,1) and

(1,1), respectively [151]. Then, we assign the different Yid previously in j∗ to j1 or j2 using

Eq. 29. Next, we calculate the acceptance probabilities of split and combine moves: min{1;R}

and min{1;R−1}, where according to R = p(s′|X )rm(s′)
p(s|X )rm(s)q(u)

∣∣∣ ∂s′

∂(s,u)

∣∣∣, we have the following:
R =

p(Z, �P ,M + 1, �θ, �θirr, �ρ,Λ,Λirr, z, η|X )kM+1

p(Z, �P ,M, �θ, �θirr, �ρ,Λ,Λirr, z, η|X )gMPallocq(u)

∣∣∣ ∂s′

∂(s, u)

∣∣∣ (44)

where

Palloc =
∏

Zi=j1

ρj1pj1p(Xi|θj1)

ρj1pj1p(Xi|θj1) + ρj2pj2p(Xi|θj2)

∏
Zi=j2

ρj2pj2p(Xi|θj2)

ρj1pj1p(Xi|θj1) + ρj2pj2p(Xi|θj2)
(45)

q(u) = p(u1)p(u2)p(u3)p(u4) (46)

∣∣∣ ∂s′

∂(s, u)

∣∣∣ = ∣∣∣∂(pj1 , pj2, �μj1, �μj2, κj1, κj2 , �ρj1, �ρj2)

∂(pj∗, �ρj∗, κj∗, �μj∗, u1, u2, u3, u4)

∣∣∣ = ρj∗pj∗ D∏
d=1

(μdj2 − μdj1)κdj1κdj2

u2(1− u22)(1− u3)κdj∗
(47)

Knowing that:

p(Z, �P,M + 1, �θ, �θirr, �ρ,Λ,Λirr, z, η|X )

p(Z, �P ,M, �θ, �θirr, �ρ,Λ,Λirr, z, η|X )
= (likelihood ratio)(M + 1)

p(M + 1)

p(M)
(48)

×
p(�P |M + 1, η)p(Z|�P,M + 1)p(�θ|M + 1, τ)p(�θirr|M + 1, τ)

p(�P |M, η)p(Z|�P,M)p(�θ|M, τ)p(�θirr|M, τ)

83



where

p(�P |M + 1, η)

p(�P |M, η)
=

Γ(
∑M+1
j=1 ηj)

∑M+1
j=1 ηj

∏M+1
j=1 p

ηj−1
j

Γ(
∑M
j=1 ηj)

∑M
j=1 ηj

∏M

j=1 p
ηj−1
j

,
p(Z|�P ,M + 1)

p(Z|�P ,M)
=
p
nj1
j1
p
nj2
j2

∏M−1
j=1 p

nj
j

p
nj∗
j∗

∏M−1
j=1 p

nj
j

where nj1 and nj2 are the number of observations to be assigned to j1 and j2 components, respec-

tively, τ is the set of the hyperparameters.

Birth and death moves

In birth and death moves, we start by making a random choice between birth and death with

probabilities gM and kM as above. For a birth, the parameters of the new component proposed a

redrawn from the associated prior distributions. The weight of the new component, pj∗, is gener-

ated from the marginal distribution of pj∗ derived from the distribution of �P = (p1, . . . , pM , pj∗).

The vector �P follows a Dirichlet with parameters (η1, . . . , ηM , ηj∗), thus the marginal of pj∗ is a

Beta distribution with parameters ηj∗
∑M

j=1 ηj . Note that in order to keep the mixture constraint∑M

j=1 pj + pj∗ = 1, the previous weights pj , j = 1, . . . ,M have to be rescaled and then all multi-

plied by (1− pj∗). The Jacobian corresponding to the birth move is then (1− pj∗)M . For the death

move, we choose randomly an existing empty component to delete, then of course the remaining

weights have to be rescaled to keep the unit-sum constraint. The acceptance probabilities of birth

and death moves: min{1;R} and min{1;R−1}, are calculated according as the following

R =
p(M + 1)

p(M)

Γ(ηj∗ +
∑M

j=1 ηj)

Γ(ηj∗)Γ(
∑M

j=1 ηj)
(M + 1)p

ηj∗−1
j∗ (1− pj∗)

N+
∑M
j=1 ηj−M (49)

×
kM+1

gM(M0 + 1)p(pj∗)
(1− pj∗)

M

whereM0 is the number of empty components before the birth.
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4.4 Experimental Results

Experiments were conducted to assess the performance of the proposed framework by comparing

it to other techniques mentioned previously in the literature. To achieve this goal, we used syn-

thetic data and two challenging problems which are: Topic Detection and Tracking (TDT) and

image categorization. In what follows, we used 5000 iteration in all for our algorithm where we

discarded the first 500 iterations as burn-in. As for hyperparameters (μ0, κ0, σ2, λ, η1, . . . , ηM) =

(0, 1, 0.01, 0.12, 1, . . . , 1)we have conducted a sensitivity test that showed the impact of the hyper-

parameters on the results. Thus, following [136] the Dirichlet parameters (η1, . . . , ηM) are set to 1

as a common choice in the Bayesian case. As for σ2 we set it to 0.01 as it has previously shown

to increase the sensitivity of random walk sampler [134, 144]. Note that we tested different values

for μ0, λ in the range of [0,1] and the differences between results were not statistically significant.

The remainder of this section is organized as follows. First, we present our experiments using gen-

erated data. Subsequently, we apply our approach on two challenging applications namely topic

detection and tracking, and content-based image categorization.

4.4.1 Synthetic Data

We used several synthetic data to illustrate the performance of proposed framework. The first goal

of this part is to compare Bayesian and EM learning of Langevin mixture model. In particular, we

tested the performance of the two approaches for estimating the mixture’s parameters and selecting

the number of clusters by generating different datasets using different parameters. The results that

we present were averaged over 20 runs. The real and estimated parameters of the generated datasets

are given in Table 4.1. Figure 4.2 shows the time series plot of our Bayesian algorithm iterations for

the first dataset. Figure 4.3 displays the number of clusters determined for generated datasets when

using both Bayesian and EM approaches. Accordingly, we can clearly see that Bayesian approach

provides more accurate estimates of the mixture parameters as compared to the EM. Moreover,

Figure 4.3 represents the number of clusters found by both algorithms. It clearly shows that the
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Table 4.1: True and estimated parameters for synthetic data generated from LMM.N and j denote
the total number of elements and component number in each dataset. μj , κj and pj are the true
parameters. μ̂B

j , κ̂B
j and p̂Bj are estimated parameters using Bayesian approach. μ̂EM

j , κ̂EM
j and

p̂EM
j are estimated parameters using the EM algorithm.

j μj κj pj μ̂Bj κ̂Bj p̂Bj μ̂EM
j κ̂EM

j p̂EM
j

Dataset 1 1 (0.9547,0.2976) 10 0.5 (0.9500,0.2916) 10 0.5 (0.9499,0.2917) 9.97 0.5
(N =1000) 2 (0.8570,0.5153) 10 0.5 (0.8490,0.5150) 9.99 0.5 (0.8489,0.5149) 10 0.5
Dataset 2 1 (0.1997,0.0189,-0.3685) 10 0.3 (0.1996,0.0167,-0.3604) 10 0.3 (0.1901,0.0180,-0.3597) 8.79 0.34
(N =10000) 2 (-0.1588,-0.3477,-0.1244) 40 0.3 (-0.1534,-0.3397,-0.1213) 38 0.29 (-0.1510,-0.3400,-0.1200) 34.00 0.28

3 (0.1011,-0.0485,0.0471) 30 0.2 (0.1010,-0.0476,0.0430) 29 0.21 (0.1001,-0.0474,0.0431) 30.40 0.22
4 (0.1242,0.3738,-0.0043) 10 0.2 (0.1239,0.3721,-0.0041) 10 0.2 (0.1240,0.3721,-0.0040) 9.60 0.16

Dataset 3 1 (0.1997,0.0189,-0.3685,0.9077) 100 0.2 (0.1999,0.0180,-0.3605,0.9097) 97 0.18 (0.1900,0.0192,-0.3680,0.9060) 90 0.24
(N =15000) 2 (-0.1588,-0.3477,-0.1244,0.9156) 20 0.2 (-0.1590,-0.3475,-0.1254,0.9120) 19.9 0.19 (-0.1580,-0.3479,-0.1200,0.9100) 15.67 0.22

3 (0.1011,-0.0485,0.0471,0.9926) 20 0.2 (0.1005,-0.04931,0.0470,0.9931) 21.54 0.22 (0.0987,-0.0480,0.0380,0.9901) 23.1 0.29
4 (0.1242,0.3738,-0.0043,0.9191) 10 0.2 (0.1266,0.3711,-0.0040,0.9096) 9.80 0.21 (0.1120,0.3650,-0.0039,0.9020) 8.2 0.15
5 (-0.2645,0.1520,0.0227,0.9521) 100 0.2 (-0.2590,0.1518,0.0221,0.9500) 99.10 0.2 (-0.2599,0.1460,0.0200,0.9502) 89.05 0.10

Dataset 4 1 (0.1997,0.0189,-0.3685,0.9077) 23 0.2 (0.2001,0.0190,-0.3680,0.9072) 21.57 0.19 (0.1990,0.0196,-0.3675,0.9057) 19.02 0.28
(N =20000) 2 (-0.1588,-0.3477,-0.1244,0.9156) 27 0.2 (-0.1570,-0.3479,-0.1243,0.9160) 27.88 0.22 (-0.1597,-0.3502,-0.1220,0.9140) 28.59 0.22

3 (0.1011,-0.0485,0.0471,0.9926) 15 0.2 (0.1020,-0.0489,0.0460,0.9921) 14.98 0.28 (0.1005,-0.0474,0.0479,0.9929) 15.88 0.17
4 (0.1242,0.3738,-0.0043,0.9191) 75 0.2 (0.1240,0.3740,-0.0037,0.9199) 75.01 0.23 (0.1333,0.3701,-0.0025,0.9200) 70.09 0.18
5 (-0.2645,0.1520,0.0227,0.9521) 90 0.1 (-0.2649,0.1534,0.0217,0.9518) 87.25 0.13 (-0.2658,0.1566,0.0210,0.9546) 90.64 0.15
6 (-0.0526,-0.1399,0.5361,0.8308) 100 0.1 (-0.0524,-0.1402,0.5359,0.8300) 110.01 0.11 - - -

correct number of clusters has been favored for all datasets using Bayesian algorithm, while EM

failed to select the correct number of clusters for the last dataset.

4.4.2 Image Categorization

Image categorization problem is classical problem in computer vision and essential prerequisite

for many important applications such as face and car detection, and video surveillance [153, 154].

Considerable attention on this topic in the past decades has produced diverse and rich collection

of algorithms [154–157]. Many of these are based on exploiting contextual information [158].

However, the main goal of this section is not the comparison of all these approaches, which is

actually beyond the scope of this chapter, but the investigation of our Bayesian when applied to

image categorization.

The experiments were conducted on PASCALVisual Object Classes (VOC) 2005 challenge dataset [159]

that contains high variation objects and consists of 2232 images grouped into four categories: car,

motorbike, people and bicycle. Figure 4.4 shows examples of images from all categories. An

important step in our application is the extraction of local features to describe the visual objects.
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To this sake, we adopt the Bag-of-visual-words (BoVW) approach; thereby each image is rep-

resented by a single vector of frequencies. We start by detecting local regions on each image,

using difference-of-Gaussian (DoG) detector, which we describe using their SIFT descriptors [85],

giving 128 dimensional vector for each local region. Extracted vectors are clustered using the K-

Means algorithm providing 700 visual-words vocabulary. We have tested several vocabulary sizes

and the best classification results were obtained with 700 visual words, as illustrated in Fig.4.5(b).
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Figure 4.2: Time series plot of Gibbs-within-Metropolis for the first dataset.
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Each image in the dataset is then represented by a 700-dimensional vector describing the frequen-

cies of a set of visual words, provided from the constructed visual vocabulary. Having these feature

vectors, the Probabilistic Latent Semantic Analysis (pLSA) model is applied by considering 32

topics, for dimensionality reduction which has been shown to improve classification performance.

Figure 4.5(a) shows that the choice of the number of aspects has a real impact on the accuracy of

filtering and the optimal accuracy obtained when the number of aspects is set to 32. Finally, we

employ our Langevin mixture model (LMM) model as a classifier to categorize images by assign-

ing the testing image to the group which has the highest posterior probability according to Baye’s
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Figure 4.3: Number of clusters found for the different generated datasets using both the Bayesian
(a,c,e,g) and EM (b,d,f,h) approaches.

decision rule. After we prepared our dataset, we have used 684 images (which are included in

”train+val” set) for training and 859 images (in ”test2” set) for testing. We evaluated the catego-

rization performance of the proposed algorithm by running it 20 times.

We plot the receiver operating characteristic (ROC) curve using the code provided in the challenge

toolkit. In particular, ROC curve is a visualization tool which illustrates the performance of our

classifier by plotting the fraction of true positives out of the total actual positives vs. the fraction
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Figure 4.4: Sample images from each category in the VOC data set.

of false positives out of the total actual negatives. Figure 4.6 shows the ROC curve for the cate-

gorization of four categories. From these curves, it is evident that categorization using Bayesian

inference based on LMM improves the categorization performance. However, for person category

the lack of improvement is due to the wide variation of backgrounds in these images. A further en-

hancement can be considered by applying HOG (histogram of oriented gradients) detector which

was originally optimized to detect people.
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Figure 4.5: Classification accuracy for the PASCAL VOC2005 dataset as a function of (a) the
number of aspects, (b) the vocabulary size.

4.4.3 Topic Detection and Tracking

Topic detection and tracking (TDT) is a challenging problem which has been the subject of ex-

tensive research in the past [160, 161]. The original research for TDT was initiated in Defense

Advanced Research Projects Agency (DARPA) [162] and driven by the demand of deep insight

into tremendous amounts of news. In this chapter we formulate TDT task as a text clustering [163]

problem of partitioning stories (from different topics) distributed on unit sphere.

Datasets: TDT results are presented on two public news datasets, namely, The Topic Detection
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Figure 4.6: ROC curves for the categorization of four object categories in PASCAL VOC2005.
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and Tracking (TDT-2) dataset [164] and 20 Newsgroup dataset3. TDT-2 dataset contains news

stories classified into 96 topics and has been collected in 1998 from six sources: two newswires

(Associated Presss World Stream and New York Times), two radio programs (Voice of America

and Public Radio International’s The World) and two television programs (CNN and ABC). The

TDT-2 corpus is subdivided into three two-month sets: a training set (Jan-Feb), a development test

set (Mar-Apr), and an evaluation set (May-Jun). In preprocessing step, we removed the documents

that belong to several topics, and hence, only 30 topics were left, resulting in 9394 patterns over

36771 dimensions. On the other hand, 20 Newsgroup was collected from UseNet postings over

several months in 1993. In our experiments, we find 26214 patterns over 24876 dimensions classi-

fied into 20 categories. Figure 4.7 shows the distribution of documents over topics in both datasets.

It is clear that TDT-2 is unbalanced where some topics have less than 60 documents while others

have more than 18000 document. On contrary, in 20 Newsgroup dataset documents are fairly dis-

tributed over different topics.

Evaluation Criteria: We evaluated the proposed framework for TDT problem using typical eval-

uation criteria that have been used, for instance, in the context of text clustering. We reported the

execution time of the batch framework on an Intel(R) Core(TM) 64 Processor PC with the Win-

dows XP Service Pack 3 operating system and a 4 GB main memory. Moreover, we calculated

F1(micro-averaged) measure as follows:

F1(micro-averaged) = 2×Precision×Recall
Precision+Recall

where (50)

Precision = number of documents correctly predicted in classi
number of documents in classi

Recall = number of documents correctly predicted in classi
number of correct prediction of classi

It is worth mentioning that the larger values of F1 ∈ (0, 1) represent higher classification quality. In

addition, we calculated normalized mutual information (NMI) [7] criterion as an external measure
3http://kdd.ics.uci.edu/databases/20newsgroups
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of how well the clustering results conform to existing class labels:

NMI =

∑
j,cNj,c log

Nj,c
NjNc√

(
∑

j Nj log
Nj
N
)(
∑

cNc log
Nc
N
)

where Nj is the number of stories in cluster j, Nc is the number of stories in true classes labels c,

and Nj,c is the number of stories that are in cluster j and class c. The larger value ofNMI reflects

better clustering. It is noteworthy that NMI , is unbiased towards high number of clusters M as

purity and entropy criteria.

Results: We start by preparing our data by extracting the text of the news articles. Next, we applied

stemming and removed stop words. This gives us vocabulary of words for each dataset. Next, each

article is described as a L2-normalized frequency vector, then each topic can be modeled accurately

using Langevin distributions. Figure 4.8 shows F1(micro-averaged) vs. number of topics for both

Bayesian and EM approaches based on Langevin mixture model (LMM) and Gaussian mixture

model (GMM). In all the experiments, both mixtures achieve their higher value at M = 20 and

M = 30 for 20 Newsgroup and TDT-2 datasets, respectively, which is the correct number of top-

ics. Tables 4.2 and 4.3 illustrate the average normalized mutual information (NMI), the estimated

number of components (M∗) and runtime results averaged over 5 runs. We compared Langevin

mixture model learned using EM algorithm with (LMMEM+FS)and without feature selection

(LMMEM ), Langevin mixture model learned using Bayesian algorithm with (LMMB+FS) and

without feature selection (LMMB), Gaussian mixture model learned using EM algorithm with

(GMMEM+FS) and without feature selection (GMMEM ), Gaussian mixture model learned us-

ing Bayesian algorithm with (GMMB+FS) and without feature selection (GMMB), spherical

k-means, k-means, and Latent Dirichlet Allocation (LDA). All results in these tables are shown in

the format of (average± standard deviation). According to these tables, LMMB shows a better

detection over the rest of the models in all experiments. Indeed, we clearly see slight improvement

of LMM detection over GMM which has been extensively used in the past. This result is expected

since we are modeling vector of stories that are defined on the unit hypershpere (i.e. non-Gaussian
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(a) TDT-2 (b) 20 Newsgroup

Figure 4.7: Analysis of datasets.

Table 4.2: Performance of TDT framework for TDT-2 dataset based on different models averaged
over 5 runs

Evaluation Criteria

NMI M∗ Runtime(sec)

LMMB 0.74 30±1.00 888

LMMB+FS 0.91 30±0.08 521

LMMEM 0.71 30±1.90 390

LMMEM+FS 0.89 30±0.14 230

GMMB 0.71 30±2.05 897

GMMB+FS 0.79 30±1.14 530

GMMEM 0.70 30±2.10 410

GMMEM+FS 0.79 30±1.36 294

Spherical k-means 0.67 29±1.56 488

k-means 0.66 27±0.20 491

LDA 0.60 30±4.01 400

vectors) and hence Langevin mixture (spherical distribution) provides a better clustering. It is note-

worthy that the improvement on the performance came on the cost of time as clearly shown in the

tables. However, one can also clearly observe that the results are further improved when feature

selection is considered while processing time has somehow decreased in all models. Moreover,

we can clearly see that we obtained better results in terms ofNMI than [6], where vMF, LDA and
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Table 4.3: Performance of TDT framework for 20 Newsgroup dataset based on different models
averaged over 5 runs.

Evaluation Criteria

NMI M∗ Runtime(sec)

LMMB 0.70 20±1.79 720

LMMB+FS 0.77 20±1.31 650

LMMEM 0.68 20±2.56 320

LMMEM+FS 0.76 20±0.49 197

GMMB 0.69 20±2.01 725

GMMB+FS 0.75 20±0.01 668

GMMEM 0.67 20±2.09 356

GMMEM+FS 0.74 20±0.01 211

Spherical k-means 0.58 21±2.00 500

k-means 0.54 18±5.41 510

LDA 0.60 20±0.11 350
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(b) TDT-2

Figure 4.8: F1(micro-averaged) vs number of topics in TDT framework for both Bayesian and
EM approaches based on Langevin mixture model (LMM)& Gaussian mixture model (GMM).
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EDCM were used for the 20 Newsgroup dataset. In another interesting work authors in [165] have

evaluated TDT-2 dataset using five approaches, namely, Canonical K-means, K-means clustering

in the principle components subspace, Normalized Cut, Graph Regularized Nonnegative Matrix

Factorization (GNMF), Nonnegative Matrix Factorization (NMF). It is noteworthy though that our

proposed TDT framework has a comparable performance with GNMF framework, in terms of

NMI , which achieved the best results in all their experiments.

In spite of the promising results achieved in this chapter, further enhancement can be done. A

crucial factor, for instance, that could be the subject of future investigation is the extension of the

proposed model to the infinite cases using Dirichlet processes.
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CHAPTER 5
On Nonparametric Bayesian Spherical Data

Clustering and Feature Selection

In this chapter we develop an Infinite model tailed to spherical data, specified hierarchically within

the Bayesian paradigm, and we discuss the construction of its priors. We then develop the complete

posteriors from which the model’s parameters are simulated. Moreover, we propose an infinite

framework that allows simultaneous feature selection selection and parameter estimation. We end

this chapter by presenting some experimental results and discuss the merits of proposed model

over others.

5.1 Introduction

The dramatic growth in data collection techniques has resulted in large dynamically growing mul-

timedia datasets. As a result, the huge amount of everyday generated data is pushing used static

models to their limits. To this end, data mining and machine learning techniques are widely used

to understand and model the content of these datasets. In particular, in this Chapter, we approach

this issue using Bayesian nonparametric approaches for modeling and selection using mixture of

Dirichlet processes [166] which has been shown to be a powerful alternative to select the number

of clusters. In contrast to classic Bayesian approaches (we proposed in Chapter 4) which suppose
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an unknown finite number of mixture components, nonparametric Bayesian approaches assume

an infinite number of components. Indeed, nonparametric Bayesian approaches allow the increas-

ing of the number of mixture components to infinity, which removes the problems underlying the

selection of the number of clusters which can increase or decrease as new data arrive. Because

of their simplicity and thanks to the development of MCMC techniques, infinite mixture models

based on Dirichlet processes are now widely used in different domains and variety of applications.

To this end, clustering analysis using a set of given features is often used to identify clusters

that are distinct from one another. However, the data at certain domains present unique chal-

lenges. For instance, the majority of research on TDT have stressed the importance of words

in identifying the topic of the story [167] and hence have applied feature selection as a prepro-

cessing step [6, 162, 167]. Since different features will yield different clustering results, a feature

selection (weighting) process is desirable to reach optimal clustering results. Previously, we pro-

posed [34, 36] a feature selection that allow simultaneous feature selection and parameter estima-

tion. Although computationally efficient, these methods would fail when the number of clusters

varies according to the dynamic changes of data over time. To address these limitations, we pro-

pose a nonparametric Bayesian approach that takes into account selection of informative features

at the same time.

5.2 Infinite Langevin Mixture Model

Consider the problem of clustering N multimedia objects, let X = ( �X1, . . . , �XN) be a set of

independent vectors representing N objects (e.g. text, video, etc), where �Xi = (Xi1, . . . , Xid)

follows a Langevin distribution if its probability density function is given by [24]:

pD( �X|�μ, κ) = exp{κ�μT �X − aD(κ)} (1)
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on the (D − 1)-dimensional unit sphere SD−1 = { �X| �X ∈ RD : || �X|| =
√
�XT �X = 1}, with mean

direction unit vector �μ ∈ SD−1, where �μT denotes the transpose of �μ and non-negative real concen-

tration parameter κ ≥ 0. And aD(κ) = − log
{

κ
D
2 −1

(2π)
D
2 ID

2 −1
(κ)

}
is the normalizing constant function,

where ID(κ) denotes the modified Bessel function of first kind [24]. By considering a Dirichlet

process, X can be modeled using a set of latent parameters {θ1, . . . , θN} where each �Xi has distri-

bution F (θi) and each θi is drawn independently and identically from a mixing distribution G on

which a Dirichlet process prior is placed:

�Xi|θi ∼ F (θi)

θi|G ∼ G

G ∼ DP (G0, η)

where G0 and η define a baseline distribution for the Dirichlet process prior and the concentration

parameter, respectively.

In infinite mixture model, we need to specify the prior distribution of the mixing proportions pj .

Thus, we know that (0 < pj < 1 and
∑M

j=1 pj = 1), then the typical choice, as a prior is symmetric

Dirichlet distribution with the positive parameters η

M
:

p(�P |η) =
Γ(η)∏M

j=1 Γ(
η

M
)

M∏
j=1

p
η

M
−1

j (2)

where

p(Z|�P ) =
M∏
j=1

p
nj
j (3)

which can be easily determined using p(Zi = j) = pj , j = 1, . . . ,M . Then using the standard

Dirichlet integral, we may integrate out the mixing proportions and write the prior directly in terms

of the indicators from which we can show:

p(Z|η) =

∫
P̄

p(Z|�P )p(�P |η)d�P =
Γ(η)

Γ(η +N)

M∏
j=1

Γ( η

M
) + nj

Γ( η

M
)

(4)
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which can be considered as a prior on Z. In order to be able to use Gibbs sampling for the missing

vector, Z, we need the conditional prior for a single indicator given all the others; this can be easily

obtained from Eq. 4 by keeping all but a single indicator fixed, we can show that [166, 168]

p(Zi = j|η, Z−i) =
n−i,j +

η

M

N − 1 + η
(5)

where Z−i = {Z1, . . . , Zi−1, Zi+1, . . . , Zn}, where nj =
∑N

i=1 IZij=1
is the number of vectors

previously affected to cluster j and n−i,j is the number of vectors, excluding �Xi, in cluster j.

LettingM −→∞ in Eq. 5, the conditional prior gives the following limits [166, 168]

p(Zi = j|η, Z−i)

⎧⎪⎨
⎪⎩

n−i,j

N−1+η
, if n−i,j > 0(clusterj ∈ R)

η

N−1+η
, if n−i,j = 0( clusterj ∈ U)

(6)

where R and U are the sets of nonempty and empty clusters, respectively. We notice that p(Zi =

j|η, Z−i) = p(Zi �= Zi′∀i �= i′|η, Z−i) when n−i,j = 0.

5.2.1 Priors and Posteriors

The main goal here is to obtain the conditional posterior distributions of our infinite models pa-

rameters given the data to cluster. This requests the choice of prior distributions. First, we need

to choose priors for mixture’s parameters. In this chapter, we suppose that the mixture parameters

are independent realizations from appropriately selected distributions. Thus, for the mean �μj we

choose Langevin distribution with μ0, κ0 as the mean and concentration parameters. For concen-

tration parameter κj we choose Gamma distribution with a, b as the shape and rate parameters,

given by:

μjd ∼ LM(μ0, κ0) κj ∼ G(a, b) (7)

where a > 0, b > 0, μ0 and κ0 > 0 are the hyperparameters chosen common to all components.

Having these priors in hand, the conditional posteriors of �μj and κj can now be determined as
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follows:

p(�μj| . . .) = exp(κ0μ0μjd)×
∏
Zi=j

D∏
d=1

exp(κjμjdXid) (8)

p(κj | . . .) =
κa−1
j ba exp(−bκj)

Γ(a)
×

[ κ
D
2
−1

(2π)
D
2 ID

2
−1(κ)

]nj ∏
Zi=j

exp(κjμjdXid) (9)

In order to add more flexibility, we add another layer to the Bayesian hierarchy as we develop prior

distribution on the hyperparameters: a, b, μ0 and κ0. Thus, we select the following priors for the

hyperparameters:

μ0 ∼ LM(μ1, κ1) κ0 ∼ G(a1, b1) a ∼ IG(α, β) b ∼ G(ν, ω)

Having these priors, the conditional posteriors of the hyperparameters are given by:

p(μ0| . . .) ∝ p(μ0|μ1, κ1)
M∏
j=1

p(�μj|μ0, κ0) ∝ exp(κ1μ1μ0)

M∏
j=1

D∏
d=1

exp(κ0μ0μjd) (10)

p(κ0| . . .) ∝ p(κ0|a1, b1)
M∏
j=1

p(�μj|μ0, κ0) ∝ κ
a1−1
0 exp(−κ0b1)

M∏
j=1

exp(κ0μ0μjd) (11)

p(a| . . .) ∝ p(a|α, β)
M∏
j=1

p(κj |a, b) ∝
exp(−β

a
)

aα+1

[ ba
Γ(a)

]Md
M∏
j=1

κa−1
j exp(−bκj) (12)

p(b| . . .) ∝ p(b|ν, ω)
M∏
j=1

p(κj |a, b) ∝ b
ν−1 exp(−ωb)

[ ba
Γ(a)

]Md
M∏
j=1

κa−1
j exp(−bκj) (13)

Having the conditional priors in Eq. 6, the conditional posteriors are obtained by combining these

priors with the likelihood of the data [169]

p(Zi = j| . . . )

⎧⎪⎨
⎪⎩

n−i,j

N−1+η
p( �Xi|θi), if j ∈ R∫

ηp( �Xi|θi)p(θi|μ1,κ1,a1,b1,α,β,ν,ω)
N−1+η

dθi, if j ∈ U
(14)

where

p(θi|μ1, κ1, a1, b1, α, β, ν, ω) = p(κj|a, b)
D∏

d=1

p(μjd|μ0, κ0) (15)
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Figure 5.1: Graphical Model representation of the Bayesian hierarchical Langevin mixture model.
Nodes in this graph represent random variables, rounded boxes are fixed hyperparameters, boxes
indicate repetition (with the number of repetitions in the upper left) and arcs describe conditional
dependencies between variables.

5.2.2 The Complete Algorithm

Our complete algorithm can be summarized as follows:

1. Generate Zi from Eq. 14 then update nj , j = 1, . . . ,M , i = 1, . . . , N .

2. Update the number of represented componentsM .

3. Update the mixing parameters for the represented components by Pj =
nj

N+η
for j =

1, . . . ,M and for the unrepresented components by PU = η

η+N
.

4. Generate the mixture parameters μj and κj from Eqs. 8 and 9.

5. Update the hyperparameters: generate μ0, κ0, a and b from Eqs. 10, 11, 12 and 13, respec-

tively.

Note that in the initialization step, the algorithm started by assuming that all the vectors are in the

same cluster and the initial parameters are generated as random samples from their prior distri-

bution. The distributions given by Eqs. 10, 11, 12 and 13 are not of standard forms. However,
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it is possible to show that they are log-concave (i.e it is straightforward to show that the second

derivatives of the logarithms of these functions are negative), then the samples generation is based

on the adaptive rejection sampling (ARS) [152]. The sampling of the vectors Zi requires the evalu-

ation of the integral in Eq. 14 which is not analytically tractable. Thus, we have used an approach,

originally proposed in [166] which consists on approximating this integral by generating a Monte

Carlo estimate by sampling from the priors of μj and κj . The sampling of μj and κj is more com-

plex, since the posteriors given by Eqs. 8 and 9 do not have known forms. Thus, we have used

the random walk Metropolis-Hastings algorithm. At iteration t, the steps of the M-H algorithm to

generate μj and κj can be described as follows:

• Generate μ̃j ∼ LM(μt−1
j |μ̃j, κj), κ̃j ∼ LN (log(κt−1

j ), σ2) and u ∼ U[0,1]

• Compute:

• rμ =
p(μ̃j |...)LM(μt−1

j
|μ̃j ,κj)

p(μ
(t−1)
j |...)LM(μ̃j |μ

(t−1)
j ,κj)

• rκ =
p(κ̃j |...)LN (log(κt−1

j |κ̃j))

p(κt−1
j
|...)LN (log(κ̃j |κ

t−1
j

))

• if

• rμ < u then μt
j = μ̃j else μt

j = μ
t−1
j .

• rκ < u then κt
j = κ̃j else κt

j = κ
t−1
j .

The convergence of MCMC is based on a single long-run of the Gibbs sampler.

5.3 Infinite Langevin Clustering and Feature Selection

As we previously proved (See Chapter 3 and Chapter 4) that selecting the informative features

has improved the performance of the classifier and enhanced the quality of cluster. Thus, in this

section we will combine infinite clustering and feature selection based on movM learned using

nonparametric Bayesian approaches. Thus, let p( �Xi|ΘM) be a mixture of M vM distributions

represented by Eq. 1. Therein, considering feature selection into account, we assume that a given

feature is relevant if it follows vM distribution p(Yid|θjd) across clusters and irrelevant if it follows
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p(Yid|θirrjd ) a vM distribution also, can be written as:

p( �Xi|Θ) =
M∑
j=1

pj

D∏
d=1

(ρjdp(Yid|θjd) + (1− ρjd)p(Yid|θ
irr
jd )) (16)

where , Θ = {ΘM , �ρ, �θ
irr}, �θirr = (θirr1 , . . . , θ

irr
M ), as θirrjd = (μirr

jd , κ
irr
jd ) are the parameters of vM

from which the irrelevant feature is drawn, and θjd = (μjd, κjd) re the parameters of vM from

which the relevant feature is drawn. �ρ = (�ρ1, . . . , �ρM) such that �ρj = (ρj1, . . . , ρjD) where each

0 ≤ ρjd ≤ 1 denotes the weight of the dth feature on cluster j.

5.3.1 Bayesian Hierarchial Model

The joint distribution of our model is given by:

p(�P , Z, z, �ρ, �θ, �θirr,X ) = p(X |�P , Z, �ρ, z, �θ, �θirr)p(�θirr|�P , Z, �ρ, z, �θ)

× p(�θ|�P , Z, �ρ, z)p(�P )p(Z|�P )p(�ρ|�P , Z) (17)

× p(z|�ρ, �P , Z) (18)

where Z = (Z1, . . . , ZN) denotes the missing allocation variables, such that Zi shows the cluster

that vector �Xi was generated from, z = (z1, . . . , zN), such that zi = (�zi1, . . . , �ziM), where �zij =

(zij1, . . . , zijD) are the missing binary vectors that indicate if a given feature Yid is relevant or not.

Moreover,

p(Zi = j| �Xi) ∝ pj

D∏
d=1

(ρjdp(Yid|θjd) + (1− ρjd)p(Yid|θ
irr
jd ))

is the probability that vector i is in cluster j, conditional on having observing �Xi. Indeed, proir

probability that the feature Yid is relevant for component j is given by:

p(zijd = 1, Zi = j| �Xi) ∝ ρjdp(Yid|θjd)p(Zi = j| �Xi)
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Note that we can easily deduce p(zijd = 0, Zi = j| �Xi) which is the case in which feature Yid is

irrelevant from Eq. 19. Next, we can impose some conditional independencies, such that:

p(�θ|�P , Z, �ρ, z) = p(�θ), p(�θirr|�P , Z, �ρ, z, �θ) = p(�θirr)

p(�ρ|�P , Z) = p(�ρ), p(z|�ρ, �P , Z) = p(z|�ρ), p(�θ|Z, P ) = p(�θ)

p(X |�P, Z, �ρ, z, �θ, �θirr) = p(X |Z, z, �θ, �θirr) =
N∏
i=1

D∏
d=1

[(p(Yid|θZid))
zid(p(Yid|θ

irr
Zid

))1−zid]

which give us the following joint distribution:

p(�P , Z, �ρ, z, �θ, �θirr,X ) = p(�P )p(Z|�P )p(�ρ)p(z|�ρ)p(�θ)p(�θirr)p(X |�P, Z, z, �θ, �θirr) (19)

To add more flexibility we suppose that the model parameters (�θ, �θirr, �ρ, �P ) follows priors de-

pending on hyperparamters (Λ,Λirr, ξ, η), which are in turn drawn from independent hyperpriors:

p(Λ),p(Λirr),p(ξ), and p(η), respectively. Such that Λ = (Λ1, . . . ,ΛM), Λj = (Λj|μ,Λj|κ), and the

same for the irrelevant model, where Λ = (Λirr
1 , . . . ,Λ

irr
M ) and Λj = (Λirr

j|μ,Λ
irr
j|κ). Thus,

p(�θ|Λ) =
M∏
j=1

p(�μj|Λj|μj)p(κj |Λj|κj) p(�θirr|Λirr) =

M∏
j=1

p(�μirr
j |Λ

irr
j|μirrj

)p(κirr
j |Λ

irr
j|κirrj

)

Hence the joint distribution of our model is given by:

p(�P , Z, z, �ρ,Λ,Λirr, η, ξ, θ, θirr,X ) = p(Λ)p(Λirr)p(ξ)p(η)

× p(�P |η)p(Z|�P )p(�ρ|ξ)p(z|�ρ)p(X |�θ, �θirr, Z, z)

M∏
j=1

[
p(�μj|Λj|μj)p(κj |Λj|κj)p(�μ

irr
j |Λ

irr
j|μirrj

)p(κirr
j |Λ

irr
j|κirrj

)
]

(20)

5.3.2 Nonparametric Bayesian Learning

In this section, we start by developing priors for our model parameters. Next, based on these

priors, we develop posterior distributions accordingly. Later, we show how we extend our model

to infinite case. Finally, we present the MCMC algorithm and complete learning algorithm.
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priors and posteriors

For the mean �μj we consider a Von Mises prior with hyperparameters μ0 ∈ SD and κ0 as the mean

of the observations and the concentration parameters, respectively, and it is given by:

p(�μj|μ0, κ0) =
D∏

d=1

1

2πI0(κ0)
exp{κ0μ0μjd} (21)

And p(�μirr
j |μ0, κ0) has the same form as p(�μj |μ0, κ0). Thus, the generic hyperparameters Λj|θj and

Λirr
j|θirrj

become (κ0, μ0) and hence the conditional posterior distributions for θj and θirrj , giving the

rest of the parameters, are:

p(�μj| . . .) ∝ p(�μj |κ0, μ0)p(X |�θ, �θ
irr, Z, z) (22)

p(�μirr
j | . . .) ∝ p(�μ

irr
j |κ0, μ0)p(X |�θ, �θ

irr, Z, z) (23)

The hyperparameters μ0 and κ0 are given Von Mises and Gamma priors, respectively:

p(μ0|μ1, κ1) =
1

2πI0(κ1)
exp{κ1μ1μ0} p(κ0|a1, b1) =

κa1−1
0 ba11 exp(−b1κ0)

Γ(a1)
(24)

Thus, according to Eqs. 20, 21 and 24 we obtain the following posteriors:

p(μ0| . . .) ∝ p(μ0|μ1, κ1)
M∏
j=1

p(�μj|κ0, μ0)p(�μ
irr
j |κ0, μ0) (25)

p(κ0| . . .) ∝ p(κ0|a1, b1)
M∏
j=1

p(�μ|κ0, μ0)p(�μ
irr
j |κ0, μ0) (26)

For the concentration parameter κ we choose Gamma distribution with a, b as the shape and rate

parameters, given by:

p(κj|a, b) =
κa−1
j ba exp(−bκj)

Γ(a)
(27)
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And so p(κirr
j |a, b) has the same form as p(κj|a, b). Thus, the generic hyperparameters Λj|θj and

Λirr
j|θirrj

become (a, b) and hence the conditional posterior distributions for θj and θirrj , giving the

rest of the parameters, are:

p(κj | . . .) ∝ p(κ|a, b)p(X |�θ, �θ
irr, Z, z) (28)

p(κirr
j | . . .) ∝ p(κ

irr
j |a, b)p(X |�θ, �θ

irr, Z, z) (29)

The hyperparameters a and b are given inverse Gamma and Gamma priors, respectively:

p(a|α, β) =
βα exp(−β/a)

Γ(α)aα+1
p(b|ν, ω) =

bν−1ων exp(−ωb)

Γ(ν)
(30)

Thus, according to Eqs. 20, 27 and 30 we obtain the following posteriors:

p(a| . . .) ∝ p(a|α, β)
M∏
j=1

p(κj |a, b)p(κ
irr
j |a, b) (31)

p(b| . . .) ∝ p(b|ν, ω)
M∏
j=1

p(κj|a, b)p(κ
irr
j |a, b) (32)

As ρjd is defined in the compact support [0,1], we consider Beta distribution with parameters ε1

and ε2, common to all classes and dimensions, as prior:

p(�ρ|ε) =
[Γ(ε1 + ε2)
Γ(ε1)Γ(ε2)

]MD
M∏
j=1

D∏
d=1

ρε1−1jd (1− ρjd)
ε2−1 (33)

Hence, the generic hyperparameter ε becomes (ε1,ε2). Recall that ρjd = p(zjd = 1) and 1 − ρjd =

p(zjd = 0), d = 1, . . . , D, j = 1, . . . ,M thus each zjd follows a D-variate Bernoulli distribution

and we have

p(z|�ρ) =
N∏
i=1

M∏
j=1

D∏
d=1

ρ
zijd
jd (1− ρjd)

1−zijd =

M∏
j=1

D∏
d=1

ρ
fjd
jd (1− ρjd)

N−fjd (34)
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where fjd =
∑N

i=1 Izijd=1. Then, according to Eqs. 20, 33 and 34, we have

p(�ρ| . . .) ∝ p(�ρ|ε)p(z|�ρ) ∝
M∏
j=1

D∏
d=1

ρ
fjd+ε1−1
jd (1− ρjd)

N−fjd+ε2−1 (35)

Then, we suppose that the hyperparameters ε1 and ε2 are given Gamma priors with common hy-

perparameters (εε, �ε) which gives us the following posteriors:

p(ε1| . . .) = p(ε1|εε, �ε)p(�ρ|ε) p(ε2| . . .) = p(ε2|εε, �ε)p(�ρ|ε) (36)

The infinite Langevin Mixture Model with Feature selection

In order to allow an infinite number

p(Zi = j| . . . )

⎧⎪⎨
⎪⎩

n−i,j

N−1+η
p( �Xi|Θ), if jis represented∫ ηp( �Xi|Θ)p(�ρj |ε)p(θj |Λj)p(θirrj |Λirrj )

N−1+η
dθjdθ

irr
j d�ρj , if jis not represented

(37)

For η hyperparameter we chose an inverse Gamma prior with the parameters (χη, ψη) which is

given by:

p(η|χη, ψη) ∝
ψ

χη
η exp(−ψη/η)

Γ(χη)ηχη+1
(38)

and hence the posterior can be written as [168]:

p(η| . . .) ∝ p(η|χη, ψη)
ηMΓ(η)

Γ(N + η)
(39)

Complete Algorithm

Having all the posteriors in hand, we can employ a Gibbs sampler and each iteration will be based

on the following steps:

• Generate Zi from Eq. 37 and then update nj , j = 1, . . . ,M , i = 1, . . . , N .

• Update the number of represented components M.

• Update the mixing parameters for the represented components by Pj =
nj

N+η
for j =

1, . . . ,M and for the unrepresented components by PU = η

η+N
.
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• Generate �zij from a D-variate Bernoulli distribution with parameters p(zijd = 1, Zi =

j| �Xi).

• Generate ρd, �μj , �μirr
j , κj and κirr

j from Eqs. 35, 22, 23, 28 and 29, j = 1, . . . ,M ,

respectively.

• Update the hyperparameters: generate μ0, κ0, a, b, ε1, ε2 and η from Eqs. 25, 26, 31, 32, 36

and 39, respectively.

Note that distributions given by Eqs. 25, 26, 31, 32, 36 and 39 are not of standard forms. Thus one

common solution is to sample using ARS approach [152]. Then we sample Zi using the approach

proposed in [166]. We have used the random walk Metropolis-Hastings algorithm (See Chapter 4

for further details) to sample μj , �μirr
j , κirr

j and κj . The convergence of MCMC is based on a single

long-run of the Gibbs sampler.

5.4 Experimental Results

In this section, we present the experimental results of applying proposed framework on high di-

mensional data extracted from challenging applications, namely, text categorization, and object de-

tection. In these experiments we compare Infinite Langevin mixture model with (ILMM+FS) and

without feature selection (ILMM) with other that have been used in the literature, namely, Infinite

Gaussian mixture model with (IGMM+FS) and without feature selection (IGMM), Langevin

mixture model learned using EM algorithm (LMMEM ), Langevin mixture model learned using

Bayesian algorithm (LMMB), Gaussian mixture model learned using EM algorithm (GMMEM ),

Gaussian mixture model learned using Bayesian algorithm (GMMB). In these applications, the

values of the hyperparameters have been set experimentally as following εε ∈ [1.8, 2.2], �ε ∈

[0.3, 0.7], χη ∈ [1.8, 2.2], ψη ∈ [0.8, 1.2], ν ∈ [1.0, 2.0], ω ∈ [0.3, 0.8], α ∈ [1, 2.5], β ∈ [0.1, 0.9],

κ1 ∈ [1, 10], a1 ∈∈ [1.0, 2.0], b1 ∈ [0.3, 0.8] and μ1 ∈ [0, 1]. These choices have been found

reasonable according to our experimental results. the feature saliency values are initialized at

(ρ = 0.5).
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Table 5.1: Classification F1 results for the Yahoo20 and WebKB datasets.
ILMM LMMEM LMMB IGMM GMMEM GMMB

Yahoo20 82.34 80.10 80.52 77.25 69.01 85.22
WebKB 79.88 73.12 73.59 78.15 66.93 71.04

5.4.1 Text Categorization

In the first experiment, we test our model for the classification of two well-known data sets consist-

ing of a set of documents and which were used,namely, Yahoo20 and WebKB. Yahoo201 dataset

which contains 2340 articles belonging to 20 categories (See Chapter 3). The WebKB are web-

pages collected by the World Wide Knowledge Base project of the CMU text learning group2.

These pages were manually classified into seven different classes: student, faculty, staff, depart-

ment, course, project, and other. However, we used only four categories [170] which are: student,

faculty (1641), staff (1124), course (930) and project (504).

Among preprocessing approaches one common used approach to represent text documents is the

BoW scheme. This scheme is based on representing each text document as a feature vector con-

taining the frequencies of distinct words (after tokenisation, stemming, and stop-words removal)

observed in the text. This gives us a vocabulary of words, next in the second step we normalized

document’s vectors using L2 normalization. The vectors in the different training sets were then

modeled by our infinite mixture using the algorithm in the previous sections. After this stage, each

class in the training set was represented by a mixture. Finally, in the classification stage each test

vector was affected to a given class according to the Bayes classification rule. In order to evaluate

our results we have used the F1 measure which combines the precision and recall measures.

Table 5.1 shows the classification results using ILMM , LMMEM , LMMB , IGMM , GMMEM

and GMMB models. According to this table it is clear that infinite model produces better results

than the finite one estimated for both LMM and GMM.
1fttp://fttp.cs.umn.edu/dept/users/boley
2http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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5.4.2 Topic Detection and Tracking

TDT is a multifaceted issue which requires in-depth analysis, and hence, clustering algorithms

should be able to construct flexible TDT models to adapt to real-time demands. For example, the

dynamic anatomy of topics makes it difficult to keep pace; while new stories constantly continue

to appear, outdated stories may disappear [6]. This in turn stresses the need to adequately update

the detection model (clusters) through online learning. Indeed, it also highlights the deficiency of

supervised TDT and directs the detection to unsupervised fashion [7]. Thus, in contrast to Chapter

4, which assumes a fix number of components, in the following experiments we model TDT prob-

lem by infinite Langevin mixture models.

The majority of research on TDT have stressed the importance of words in identifying the topic of

the story and hence have applied feature selection as a preprocessing step. Thus, in our second ex-

periment we enhance further our infinte TDT model by engaging feature selection in the detection

process.

We use two public news datasets, namely, The Topic Detection and Tracking (TDT-2) dataset and

20 Newsgroup dataset (See Chapter 4 for further details). We start by preparing our data by ex-

tracting the text of the news articles. Next, we applied stemming. This gives us vocabulary of

words for each dataset. Each article is then described as a L2-normalized frequency vector. We run

all the tested algorithms 5 times for evaluation.

Evaluation results for the two data sets generated by the ILMM , ILMM+FS, IGMM , IGMM+FS

and are summarized in Tables 5.2 and 5.3. Clearly, the ILMM+FS and the IGMM+FS outper-

form the ILMM and IGMM models. Indeed, the clustering time has also decreased using feature

selection approach. This can be explained by the fact that not all features have the same discrimi-

native power during the clustering process, which is actually expected and confirms the conclusion

we reached in previous Chapters. Finally, comparing these results with the one we previously

achieved in Chapter 4, we clearly see that infinite model has boost the overall performance for

involving distributions.
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Table 5.2: Performance of TDT framework for TDT-2 dataset based on different models averaged
over 5 runs

Evaluation Criteria

NMI M∗ Runtime(sec)

ILMM 0.75 30±0.90 796

ILMM+FS 0.91 30±0.81 490

IGMM 0.73 30±2.00 817

IGMM+FS 0.82 30±1.09 507

Table 5.3: Performance of TDT framework for 20 Newsgroup dataset based on different models
averaged over 5 runs.

Evaluation Criteria

NMI M∗ Runtime(sec)

ILMM 0.78 20±1.00 647

ILMM+FS 0.79 20±0.09 649

IGMM 0.71 20±2.63 700

IGMM+FS 0.74 20±1.00 654
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CHAPTER 6
Conclusion

In this digital era, when wide-scoped simulation studies have become of incredible potential, good

representation of random inputs is crucial and a poor choice of the model may hurt the experi-

ments. Many approaches have been proposed to model and analyze digital data. In this thesis, we

have focused on spherical data clustering as we have introduced several framework to learn this

kind of data.

Our first framework is based on combining generative and discriminativemodels which consists on

developing probabilistic SVMs kernels from Langevin mixture. In particular, parameter estimation

was carried out using EM approach and meanwhile we have proposed an algorithm to automat-

ically select the number of components of Langevin mixture models using MML criterion. We

also have developed SVM kernels as we have shown the existence of closed form expressions of

probabilistic product kernels, Kullback-Leibler kernels, Rényi kernel and Jensen-Shannon kernel

between two Langevin distributions. The validation was based on synthetic data, email catego-

rization and spam filtering where we justified our choice of Langevin mixture model. Interesting

application of proposed framework is the ability to learn bag of descriptors, instead of single bag

of word (BoW), usually performed to classify multimedia objects. We explored this through ap-

plication on spam filtering. Indeed, we have proposed a spam filtering framework adapted to the

enriched multimedia content of emails. The main motivation was the fact that spammers have

recently adopted image spam to defeat widely used text categorization based approaches. We
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Chapter 6. Conclusion

have empirically proved that the simultaneous exploitation of both textual and visual information

achieves better filtering results.

Next, we have proposed a principled statistical framework that simultaneously determines relevant

features, number of clusters while being able to incrementally update model’s parameters. To this

aim, we have developed a MML objective that was minimized using EM in off-line scenario and

RSEM for online scenario. Empirical experiments on spam image filtering and web documents

clustering have proven that the proposed algorithm yields to good performance in terms of accu-

racy. In addition of being an efficient feature selection approach, the proposed algorithm has been

shown to improve the quality of clustering in most cases. Besides, we have further improved our

work to show how feature selection might influence modeling capabilities.

Moreover, we have proposed a novel Bayesian algorithm based on finite Langevin mixture. We

therefore developed a conjugate prior distribution for Langevin mixture, exploiting the fact that

it belongs to the exponential family of distributions. The idea of our approach is based on Monte

Carlo simulation technique of Gibbs sampling mixed with a M-H step. Furthermore, we handle the

estimation of the number of components using marginal likelihood with Laplace approximation.

Later, we extended our Bayesian model to simultaneously handle the issue of feature selection. Ex-

periments are carried out to investigate the performance of proposed algorithm on two challenging

problems which are topic detection and tracking and image categorization. Reported results have

shown that our algorithm is robust and outperforms several existing comparable methods. Indeed,

our proposed methodology is flexible and can be easily generalized to deal with other applications.

Finally, an approach to generalize previous approaches for analyzing high-dimensional spherical

data was developed in this thesis. In particular, we have described and illustrated a nonparametric

Bayesian approach based on infinite Langevin mixture. Therein, we have shown that the problem

of determining the number of clusters can be avoided by using infinite mixtures which model the

structure of the data well. Indeed, the resulting optimal clustering is obtained by averaging over

all number of clusters of different possible models. We also considered the problem of feature

selection as we proposed a framework that allows simultaneous clustering and feature selection in
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Chapter 6. Conclusion

infinite framework. Empirical experiments on text categorization and topic detection and tracking

have proven that the proposed algorithms have provided good performance. Our model has several

natural extensions such as the development of variational estimation approach which shall save a

lot of computational time over Bayesian methods and later we could extend this work to the infinite

case.
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APPENDIX A
Proof of Equation 22

In the case of Langevin model, we can show that∫
Ω

p( �X|Θ)ρq( �X|Θ́)ρd �X (1)

=
[(κ

2

)p
2
−1 1

(2π)
p

2 I p
2
−1(κ)

]ρ[( κ́
2

) p
2
−1 1

(2π)
p

2 I p
2
−1(κ́)

]ρ ∫
Ω

(
eκ�μ

T �X
)ρ(

eκ́�́μ
T �X

)ρ

d �X

=
[(κ

2

)p
2
−1 1

(2π)
p

2 I p
2
−1(κ)

]ρ[( κ́
2

) p
2
−1 1

(2π)
p

2 I p
2
−1(κ́)

]ρ ∫
Ω

e(κ�μ+κ́�́μ)T �Xρd �X

The product of two Langevin can be written as

Mp( �X|�μ, κ)Mp( �X|�́μ, κ́) ∝Mp( �X|τ�μ,�́μ, ξκ,κ́)

where

ξκ,κ́ =

√
κ2 + κ́2 + 2κκ́(�μ�́μ) (2)

τ
�μ,�́μ

=
κ�μ+ κ́�́μ

ξκ,κ́

Using 2 and Langevin integral, we obtain:

∫
Ω

p( �X|Θ)ρq( �X|Θ́)ρd �X =
[(κκ́

4

)p
2
−1 1

(2π)pI p
2
−1(κ)I p

2
−1(κ́)

]ρ[(2π) p2 I p
2
−1(ξκ,κ́ρ)

(ξκ,κ́ρ)
p

2
−1

]
(3)
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APPENDIX B
Proof of Equation 28

The KL divergence between two exponential distributions is presented by [171]

KL(p( �X|Θ), q( �X|Θ́)) = Φ(θ)− Φ(θ́) + [G(θ)−G(θ́)]TEθ[T ( �X)] (1)

whereEθ is the expectationwith respect to p( �X|Θ),G(θ) = (G1(θ), . . . , Gl(θ)), T ( �X) = (T1( �X), . . . , Tl( �X))

where l is the number of parameters of the distribution and T denotes transpose. Furthermore, we

have the following:

Eθ[T ( �X)] = −Φ́(θ) (2)

Then by letting Φθ = −ap(κ) and Gθ = κ�μ. Thus, the KL divergence between two Langevin

distributions

KL(p( �X|Θ), q( �X|Θ́)) = − log
κ
p
2
−1

(2π)
p

2 I p
2
−1(κ)

+ log
κ́
p
2
−1

(2π)
p

2 I p
2
−1(κ́)

+ [κ�μ− κ́�́μ]T áp(κ)�μ (3)
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APPENDIX C
Proof of Equation 34

In the case of Langevin model, we can show the Shannon entropy is given by

H [p( �X|θ)] = −

∫
Ω

p( �X|θ) log p( �X|θ)d �X (1)

= −

∫
Ω

p( �X|θ)
[ P∑
p=1

κ�μTX − ap(κ)
]
d �X

= −
[
Eθ[

P∑
p=1

κ�μT �X]− ap(κ)
]

= −κa′p(κ)�μ
T�μ+ ap(κ)

Substitute Eq.1 into Eq. 33 we obtain the Jensen-Shannon divergence for Langevin model.
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APPENDIX D
Proof of Equation 36

We can show that the Rényi divergence between two Langevin distribution, is given by∫
Ω

p( �X|Θ)σq( �X|Θ́)1−σd �X (1)

=
[(κ

2

) p
2
−1 1

(2π)
p

2 I p
2
−1(κ)

]σ[( κ́
2

)p
2
−1 1

(2π)
p

2 I p
2
−1(κ́)

]1−σ
∫
Ω

(
eκ�μ

T �X
)σ(

eκ́
�́μT �X

)1−σ

d �X

=
[(κ

2

) p
2
−1 1

(2π)
p

2 I p
2
−1(κ)

]σ[( κ́
2

)p
2
−1 1

(2π)
p

2 I p
2
−1(κ́)

]1−σ
∫
Ω

e(κ�μ
T �Xσ+κ́�́μT �X(1−σ))d �X

Assume that ζκ,κ́ =

√
(σκ)2 + ((1− σ)κ́)2 + 2σκ(1− σ)κ́(�μ.�́μ) and ψ

�μ,�́μ
= σκ�μ+(1−σ)κ́�́μ

ζκ,κ́
, and

hence∫
Ω

p( �X)σq( �X)1−σd �X =
[(κ

2

) p
2
−1 1

(2π)
p
2 I p

2
−1(κ)

]σ[( κ́
2

)p
2
−1 1

(2π)
p
2 I p

2
−1(κ́)

]1−σ[(2π) p2 I p
2
−1(ζκ,κ́)

(ζκ,κ́)
p
2
−1

]
(2)

By substituting Eq. 2 in Eq. 35 we obtain the symmetric Rényi divergence for two Langevin

distributions.
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APPENDIX E
Proof of equation 15

In order to compute pj , we introduce the Lagrange multiplier ξ to incorporate the constraint∑M
j=1 pj = 1. Assigning the derivative of 13 w.r.t pj to zero, we obtain:

∂S(Θ,X )

∂pj
= 0 (1)

∂S(Θ,X )

∂pj
=

[ N∑
i=1

∏D
d=1

(
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

)
∑M

j=1 pj
∏D

d=1

(
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

)]− D
pj
− ξ

Multiplying by pj
N∑
i=1

Ẑij −D − pjξ = 0 (2)

pj =

∑N

i=1 Ẑij −D

ξ

where

Ẑij =
pj

∏D
d=1

(
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

)
∑M

j=1 pj
∏D

d=1

(
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

) (3)

Computing the derivative w.r.t ξ,we obtain 1−
∑M

j=1 pj = 0. Thus,

1−
M∑
j=1

pj =

∑N
i=1

∑M
j=1 Ẑij −D

ξ
(4)
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Appendix E. Proof of equation 15

we obtain ξ =
∑N

i=1

∑M

j=1 Ẑij −D, since pj are positive we can writs it:

pj =
max(

∑N
i=1 Ẑij −D, 0)∑M

j=1max(
∑N

i=1 Ẑij −D, 0)
(5)
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APPENDIX F
Proof of equation 16

Let ρjd = ρjd1 and ρjd2 = 1 − ρjd. We introduce Lagrange multiplier νjd to incorporate the

constraint ρjd1 + ρjd2 = 1, then we compute the derivative of Eq. 13 w.r.t ρjd1

∂S(Θ,X )

∂ρjd1
= 0 (1)

∂S(Θ,X )

∂ρjd1
=

N∑
i=1

M∑
j=1

Ẑij

[ p(�Yid|θjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−
M

ρjd1
− νjd

Multiplying by ρjd1

N∑
i=1

Ẑij

[ ρjd1p(�Yid|θjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−M − ρjd1νjd = 0 (2)

Now, we compute the derivative of Eq. 13 w.r.t ρjd2, we obtain

∂S(Θ,X )

∂ρjd2
= 0 (3)

∂S(Θ,X )

∂ρjd2
=

N∑
i=1

Ẑij

[ p(�Yid|λjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−
M

ρjd2
− νjd

Multiplying by ρjd2

N∑
i=1

Ẑij

[ ρjd2p(�Yid|λjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−M − ρjd2νjd = 0 (4)
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Appendix F. Proof of equation 16

Similarly, we compute the derivative of Eq. 13 w.r.t νjd, we obtain

1− ρjd1 − ρjd2 = 0 (5)

Summing Eqs. 2 and 4, we obtain

νjd(ρjd2 + ρjd1) = max
( N∑

i=1

Ẑij

[ ρjd1p(�Yid|θjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−M, 0

)

+max
( N∑

i=1

Ẑij

[ ρjd2p(�Yid|λjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−M, 0

)

Thus, according to Eq. 2

ρjd1 =

max
( N∑

i=1

Ẑij

[ ρjd1p(�Yid|θjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−M, 0

)
νjd

(6)

then, according to Eq. 4

ρjd2 =

max
( N∑

i=1

Ẑij

[ ρjd2p(�Yid|λjd)

ρjd1p(�Yid|θjd) + ρjd2p(�Yid|λjd)

]
−M, 0

)
νjd

(7)
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APPENDIX G
Proof of equation 17

Compute the derivative of Eq. 13 w.r.t μjd

∂S(Θ,X )

∂μjd

= 0

∂S(Θ,X )

∂μjd

=

N∑
i=1

Ẑij

∂

∂μjd

log
[
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

]

=
N∑
i=1

Ẑij

∂(ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd))

∂μjd

ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

We have

∂

∂μjd

p(�Yid|θjd) =
∂

∂μjd

[
κjd�μjd

�Yid − log(2πI0(κjd)) + αjd(1− �μ
T
jd�μjd)

]
= κjd

�Yid − 2αjd�μjd

where αjd is a Lagrange multiplier to correspond the constraint �μT
jd�μjd = 1. Derive w.r.t αjd

∂

∂αjd

p(�Yid|θjd) =
∂

∂αjd

[
κjd�μjd

�Yid − log(2πI0(κjd)) + αjd(1− �μ
T
jd�μjd)

]
= 1− �μT

jd�μjd

Thus,

�μjd =

∑N

i=1 Ẑij
ρjdp(�Yid|θjd)�Yid

ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd)∑N
i=1 Ẑij

ρjdp(�Yid|θjd)

ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd)

(1)
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Appendix G. Proof of equation 17

And

�μjd =
�μjd

‖�μjd‖
(2)
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APPENDIX H
Proof of equation 20

Compute the derivative of Eq. 13 w.r.t κjd given that κjd ≥ 0

∂S(Θ,X )

∂κjd

= 0

∂S(Θ,X )

∂κjd

=
N∑
i=1

Ẑij

∂

∂κjd

log
[
ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

]

=

N∑
i=1

Ẑij

∂(ρjdp(�Yid|θjd)+(1−ρjd)p(�Yid|λjd))

∂κjd

ρjdp(�Yid|θjd) + (1− ρjd)p(�Yid|λjd)

We have

∂

∂κjd

p(�Yid|θjd) =
∂

∂κjd

[
− log(2πI0(κjd)) + κjd�μjd

�Yid

]

= �μT
jd
�Yid −

I1(κjd)

I0(κjd)

(1)

Assume that A(κjd) =
I1(κjd)

I0(κjd)
. Since it is hard to find tractable forum of A−1(κjd) so we need to

do some approximation. Note that we can use Newton-Raphson iterations to find κjd, where:

κnew
jd = κold

jd −
∂S(X |Θ)

∂κjd

(∂2S(X |Θ)

∂2κjd

)−1
(2)
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