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ABSTRACT 

On Email Spam Filtering Using Support Vector Machine 

Ola Amayri 

Electronic mail is a major revolution taking place over traditional communication systems due 

to its convenient, economical, fast, and easy to use nature. A major bottleneck in electronic 

communications is the enormous dissemination of unwanted, harmful emails known as "spam 

emails". A major concern is the developing of suitable filters that can adequately capture those 

emails and achieve high performance rate. Machine learning (ML) researchers have developed 

many approaches in order to tackle this problem. Within the context of machine learning, 

support vector machines (SVM) have made a large contribution to the development of spam 

email filtering. Based on SVM, different schemes have been proposed through text classifi-

cation approaches (TC). A crucial problem when using SVM is the choice of kernels as they 

directly affect the separation of emails in the feature space. We investigate the use of several 

distance-based kernels to specify spam filtering behaviors using SVM. However, most of used 

kernels concern continuous data, and neglect the structure of the text. In contrast to classical 

blind kernels, we propose the use of various string kernels for spam filtering. We show how 

effectively string kernels suit spam filtering problem. On the other hand, data preprocessing 

is a vital part of text classification where the objective is to generate feature vectors usable by 

SVM kernels. We detail a feature mapping variant in TC that yields improved performance for 

the standard SVM in filtering task. Furthermore, we propose an online active framework for 

spam filtering. We present empirical results from an extensive study of online, transductive, 

and online active methods for classifying spam emails in real time. We show that active online 

method using string kernels achieves higher precision and recall rates. 
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CHAPTER 

Introduction 

This chapter presents a brief overview of spam emails phenomenon, along with contributing 

factors, damage impact, and briefly discusses possible countermeasures to mitigate spam prob-

lem. Moreover, we explore how to use Support Vector Machines (SVMs) to model anti-spam 

filters, and introduce deployed kernels properties. 

1.1 General Overview of Spam Phenomenon 

Years ago, much attention has been paid for automation services, business, and communica-

tion. Internet affords evolutionary automated communication that greatly proved its efficiency 

such as electronic mail. Electronic mail has gained immense usage in everyday communication 

for different purposes, due to its convenient, economical, fast, and easy to use nature over tradi-

tional methods. Beyond the rapid proliferation of legitimate emails lies adaptive proliferation 

of unwanted emails that take the advantage of the internet, known as spam emails. Generally, 

spam is defined as "unsolicited bulk email" [1], 

By definition, spam emails can be recognized either by content or delivery manner. Spam 

emails can be sent, for instance, for commercial purposes, where some companies take the 

advantage of emails to widely advertise their own products and services. Fraudulent spam 

emails "phishing" [2] were employed to serve online frauds. In this case, spammers imper-

sonate trusted authorities, such as server's administrator at schools, banks and ask users for 

sensitive information such as passwords, credit cards numbers, etc. Other spam emails contain 

a piece of malicious code that might be harmful and might cause a damage to the end user ma-

chines [3]. Furthermore, some of the investigations that dealt with the content of spam emails 

has applied "genres" concept in analysis of spam, where spam emails have the same structure 
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as legitimate emails such as letters, memo (for instance, see [5]). Alternatively, spam emails 

were recognized according to the volume of dissemination and permissible delivery "Spam is 

about consent, not content" [1], 

Various means were used to propagate spam emails worldwide. Spam propagation under-

goes three main stages: harvesting, validation, and spamming. Furthermore, spammers have 

benefited from the Internet medium nature, where some mail providers on the Internet such as 

yahoo.com became an origin for spam. Since creating accounts is priceless and easy, spam-

mers developed automated tool to create and then send spam emails. Generally, harvesting 

is collecting victims email addresses using number of cost-effective and easy techniques. In-

volved techniques range from buying, where they buy a list of valid email addresses which 

were harvested from web sites. Unfortunately, although list-sale is prohibited by law in coun-

tries, it is allowed at others. Network News Transfer Protocol (NNTP) was lunched years 

before world wide web with newsgroup and forums that have rich information including email 

addresses of writer of the articles, visitors, for instance, and they are accessible to everyone. 

The fact that make it a public and easy source for collecting email addresses. Spammers use 

more techniques for harvesting such as direct access to the servers, Simple Mail Transfer Pro-

tocol (SMTP) brute force attack, and viruses (for instance, see [31]). Next, in validation stage 

spammer tries to verify if the recipient of their email read the email or not. Spammers can 

verify using return recipient approval, SMTP verification, active user intervention, and virus 

verification [6]. Finally, spamming is dissemination of spam messages using harvested email 

addresses. Pursuing this further, spammer benefits from some server configuration standards, 

such as SMTP that doesn't verify the source of the message. Consequently, spammers can 

forge the source of the message and impersonate other users in the Internet by hijacking their 

unsecured network servers to send spam emails which is known as "Open relays". Moreover, 

"Open proxy" is designed for web requests and can be accessible from any Internet user. It is 

helping the user to forward Internet service request by passing the firewalls, which might block 

their requests. Identifying the source of the request using open proxy is impossible. Conse-

quently, spam filtering techniques fail to detect spam origin, and block it. Other techniques 

were used for spamming such as end-to-end delivery, zombie systems, etc [31], 

The problem raised when the phenomenon considers plaguy effects. Although, some In-

ternet service providers (ISPs) remove a lot of known spams before deposit them in user email 
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accounts, a lot of spam emails bypass ISPs as well, causing ISP's CPU time consuming. Pre-

ciously, the lower cost of disturbing spam emails might cause financial disasters. Even more, 

users complain the privacy of their email, claim the offensive content of spam email, wasting 

time in filtering, and sorting their emails, decreasing business productivity, and wasting the 

connection bandwidth. Receiving few spam emails a day won't be that matter. In meanwhile, 

the overwhelmed users of a huge quantity of spam emails, might spend more money to make 

their inbox larger in order to save losing legitimate emails (for instance, see [7]). Suffering 

caused from spam emails is far worse, where some of spam messages might crash the email 

server temporary [8], 

1.2 Counter-measures For Blocking Spam Emails 

As the threat is widely spread, variety of techniques have been developed to mitigate sufferings 

of spam emails [6], Involved techniques were implemented on server side, where the server 

block the spam message before it starts its SMTP transaction. Others were implemented on 

client side, where the decision is left to the end user to define the spam (i.e. what is spam for 

some users, might not for others). Some of them were adopted in industry and have reported 

good result in decreasing the misclassification of legitimate emails. However, there is no uni-

versal solution to this problem regarding the dynamic nature of the spam problem which is 

known as "Arm force" [31]. In what follows we introduce some of the techniques which have 

been proposed to mitigate the damage impact [22]. 

1.2.1 White List/Black List 

White list (Safe list) is a list constructed by individual users, and contains the addresses of 

their friends or more general the addresses they recognized as legitimate. This technique has 

been employed besides other techniques such as machine learning techniques and matching 

system techniques which we shall discuss next. Safe list is a good technique so far for people 

who do not expect to receive emails from people they do not know, where only the people 

in the safe list can deposit their emails in user inbox, all others not mentioned are marked as 

spam. On the other hand, for commercial, research purposes, for instance, people in those 

fields expect to receive a legitimate email from senders they do not know as a usual routine 
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of their work. Furthermore, they do not want to miss any of these emails so far, nor wasting 

their time scanning the spam folder to check if they have any legitimate email resides there 

[6]. However, spoofing is a trick that has been used by the spammers to forge the safe lists 

addresses, where they can impersonate anyone else in the internet as the email protocol allows 

this. Consequently, you can receive a spam email from your self or any of addresses in your 

safe lists. 

Black list (Block list) has constructed on a router level with IP "Internet Protocol" address 

which were considered as an end-point of known spam email. Clearly, then no IP address 

mentioned in this list can start SMTP transaction, which would save the bandwidth from spam 

traffic [31]. However, sometimes black lists contain non-spammers (victims). Moreover, some 

of the IP address are a source for either spam emails or good emails at the same time, which 

prevent sending the legitimate emails. Furthermore, it is not up to date for new spam tech-

niques. 

1.2.2 Challenge-Response and Micropayment or Postage Systems 

Generally, if the end users system doesn't recognize the received email as legitimate, it will ask 

the sender to enter a challenge response in a form of a picture with few letters or numbers, this 

is called Human challenges. However, spammers easily overcome this problem by using tools 

to solve the issue. Another type is micropayment systems [7]. This technique attempts to force 

the spammers pay some money when they send spam emails, where the user asks the spammer 

to deposit a small amount of money in his account. If the end user takes the grant, he would 

then open the email, otherwise he should return it back. Some receivers sometimes take the 

money even if the email is not spam [29]. Computational challenge is an automated techniques 

that ask the sender for a hash value of the message (or the header only) if the sender gives the 

correct answer, his message is removed from spam folder to the user inbox. If the challenge is 

more complex, the spammer spends more time to solve it which results in less number of spam 

emails sent [25] [26] [27]. 
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1.2.3 Matching Systems 

In this technique the email system attempts to find a match between the new incoming spam 

message and the old messages list marked by the end user as a spam, if there is a match it is 

reported as spam, otherwise as legitimate email. Spammers trick these systems by randomizing 

their message (adding a random numbers or letters at the end of each subject) [31]. Rule-based 

systems were constructed to overcome these randomization, where there is a team of techni-

cians who attempt to find the similarities between those messages and writing rules to capture 

future messages [6], Fuzzy-hashing is a matching technique that searches for the similarity be-

tween messages and compute a large hash number for each spam message, if the next incoming 

message has the same hash number then it is spam. 

1.2.4 Machine Learning System 

One of the solutions is an automated email filtering. Variety of feasible contributions in the case 

of machine learning have addressed the problem of separating spam emails from legitimate 

emails. Traditionally, many researchers have illustrated spam filtering problem as a case of text 

categorization after it reported a good result in machine learning [10]. However, the researchers 

have realized later the nature and structure of emails are more than text such as images, links, 

etc. Supervised machine learning starts by obtaining the training data, which is manually 

prepared by individuals. The training data have two classes, one is the legitimate emails, 

another is the spam emails. Next, each message is converted into features (words); that is, 

words, time, images, for instance in the message. Then, build the classifier that would predict 

the nature of future incoming message. 

The best classifier is the one that reduces the misclassification rate. Many machine learning 

techniques have been employed in the sake of spam filtering such as Boosting Trees [15], k-

nearest neighbour classifier [23], Rocchio algorithm [16], Naive Bayesian classifier [17], and 

Ripper [9]. Furthermore, these algorithms filter the email by analyzing the header only, or the 

body only, or the whole message. Support Vector Machine is one of the most used techniques as 

the base classifier to overcome the spam problem [18], Some studies developed spam filtering 

in a batch mode [11]. Lately, studies have focused on online mode [12] [13] which prove its 

effectiveness in real time. A comparison between those two modes can be found in [14], In the 
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following section we briefly introduce an overview of SVMs. 

1.3 Support Vector Machine 

In this section, we describe briefly the mathematical derivation of Support Vector Machines 

(SVMs). Support Vector Machines are known to give accurate discrimination in high feature 

space [9], and it received a great attention in many applications such as text classification [10], 

SVMs have out-performed other learning algorithms with good generalization, global solution, 

number of tuning parameters, and its solid theoretical background. The core concept of SVMs 

is to discriminate two or more classes with a hyperplane maximizing the margin by solving 

quadratic programming (qp) problem with linear equality and inequality constraints. 

Suppose that the set of random independent identically distributed training vectors drawn 

according to P(~x, y) = P(!c)P(~x'\y) belonging to two separate classes, given by i, y\), 

..., (~xi, yi)}, ~Xi G Rn , i)i G {—1,1}, where is n-dimensional training vector, y indicating 

the class in which ~x i belongs. Suppose we have a hyperplane which separates the two different 

classes, given by 

~w.~Xi + b > 1,V~Xj G Classl (1) 

w.~Xi + b < -1 ,Vlc j G Class2 (2) 

The points ~x which lie on the hyperplane satisfy ~w.~x + 6=0, where w is the normal of the 

hyperplane. The hypothesis space in this case is the set of functions, given by 

fm,b = sign{w.~x + b) (3) 

Since SVMs provide unique and global solution, looking at Eq. 3 we can observe a redun-

dancy, where if the parameter Tu and b are scaled by the same quantity, the decision surface 

is unchanged. Consider the Canonical hyperplane (The set of hyperplanes that satisfy Eq. 4), 

where the parameter vj , b are constrained by 

yi[w.~Xi + b]>l,i = l,...,l. (4) 

The optimal hyperplane is given by maximizing the margin (i.e. perpendicular distance 

from the separating hyperplane to a hyperplane through Support Vector (SV)) subject to the 
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constraints in Eq. 4. In linearly separable we need to find Canonical Hyperplanes that correctly 

classify data with minimum norm, or equivalently minimum 11 w | |2. This is formulated as 

Minimize <fr(w) = ||2 

Subject to: 

Viiw.'xi + b) > 1 (5) 

This problem can be solved using Lagrange Multipliers, where by transforming it to its 

dual problem will allow us to generalize the linear case to the nonlinear case. 

The solution that minimizes the primal problem subject to the constraints is given by 

max W{a) — max(min , b, a)) (6) 
a a w,b 

Then we construct the lagrangian 

1 1 

$(w,b,a) = -\\w\\2 -^ai{yi[w.-Xi + b) - 1) (7) 

i=1 

The solution of this optimization problem is determined by the saddle point of this Lagrangian. 

The minimum with respect to ~w and b of the Lagrangian, a, is given by1 

i=1 

i=1 

Constraint(1) yi(w*.'xi + b*) - 1 > 0 (10) 

Multiplier Condition a.i > 0 (11) 

Complementary Slackness a*[yi(vj* .~X{ + b*) — 1] = 0 (12) 

Eq. 9 shows that the solution of optimal hyperplane can be written as a linear combination 

of the training vectors. Where only training vectors ~x\ with a t > 0 involved in the derivation 

of Eq. 9. Substituting Eq. 8 and Eq. 9 in Eq. 7 the dual problem is 

i i 

"a" 2 

j I I I 
m a x W ( a ) = m a x - - Y ^ Y ^ aiajyiyfxi.lc j + Y ^ a i (13) rv rv / ( * ' * < * 

i—1 j=1 i=1 
1 Using the superscript * to denote the optimal values of the cost function. 



By the linearity of the dot product and Eq. 9, the decision function (Eq. 3) is given by 
l 

f{~x) = sign(^yiai(~x ~x i) + b*) (14) 
i=1 

For any support vector ~x.L. 

To this end, we discussed the case in which the data is separable. However, in general this 

will not be the case. So how can we extend the optimal separating hyperplane to find feasible 

solution for non-linearly separable case? 

In order to deal with this case, [9] introduced positive slack variables i = 1,..., I which 

measure the amount of violation of the constraints. And a penalty function given by 

= (15) 
i 

Eq. 1 and Eq. 2 are modified for the non-separable case to 

w.~Xi + b > 1 - for yi — 1 (16) 

w.~Xi + b < - 1 + for yi = - 1 (17) 

6 > 0 V i . (18) 

The new primal problem is given by 

1 1 

Minimize <f>(w,£) = -||w||2 + C{J2&)k (19) 
i=i 

Subject to 

yi(w.~Xi + b) > 1 - £ i = l,...,l (20) 

& > 0 i = l,...,l (21) 

where C controls the tradeoff between the penalty and margin and to be chosen by the user, 

a larger C corresponds to assigning a higher penalty to errors. Penalty functions of the form 

C(Y^i=i £i)k will lead to convex optimization problems for positive integers k [35]. 

To be on the wrong side of the separating hyperplane, a data-case would need > 1. 

Hence, the ^ could be interpreted as measure of how the violations are, and is an upper 

bound on the number of violations. We construct the lagrangian, 
^ 1 1 N 

= -\\w\\2 + - J ^ a i f o i f S T x i + 6] - 1 + &) - (22) 
i=1 i—1 i=1 
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The lagrangian has to be minimized with respect toW, b , £ and maximized with respect to a, 

fx. The dual problem is given by [34] 

max W(a, ji) = max(min b, a, fj,)) 
a a,w,b,£, 

Differentiating Eq. 23 we derive the Karush-Kuhn-Tucker (KKT) conditions 

i 
aiyi = 0 

i=1 

= 0 w 
i=1 

(23) 

(24) 

(25) 

n 

m = 0 = => C-on- Mi = 0 (26) 

Constraint( 1) yi(w*.~x + &*) - 1 + & > 0 (27) 

Constraint{ 2) £» > 0 (28) 

MultiplierCondition( 1) on > 0 (29) 

MultiplierCondition( 2) IH > 0 (30) 

Complementary Slackness(l) [*/<(«>* .~Xi + &*) — 1 + = 0 (31) 

Complementary Slackness(2) M i = o (32) 

Substituting the KKT equations we obtain: 

j l l l 
maxW(a) = m a x - - a i a j y i y j ' x i . ' x j + V ^ i (33) a a z ' * ' * z—* i=lj=l i=1 

By the linearity of the dot product and Eq. 25, the decision function can be written as 

i 
f(x) = sign(^2 yiai(~x-~xi) + &*) (34) 

i = i 

The extension to more complex decision surfaces is done by mapping the input variable ~x 

in a higher dimensional feature space, then apply linear classification in that space. In order to 

construct a hyperplane in a feature space we transform the n-dimensional input vector ~x into 

an TV-dimensional feature vector through a choice of an TV-dimensional vector function <f> [9]: 

: R" —> R N (35) 
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Then, we construct an N-dimensional linear separator w and a bias b for the transformed 

vectors [9] 

x -> <j){~x) = (a14>1(lc),a2(p2(~x), •••,an<t>n{~x)) (36) 

where {art},^°=1 are some real numbers and {4>n}%Li are some real functions. Then, apply 

Soft Margin of SVM, substituting the variable ~x with the new "feature vector" ~x). Under 

Eq. 36 SVM solution is given by 

l 
f(x) = sign(^2 Viai <i>(~x)-<i>{~x i) + b*) (37) 

i=1 

Constructing support vector networks comes from considering general forms of the dot-product 

in a Hilbert space [33]: 

<!>{!Z)4(y) = k t f , v ) (38) 

According to the Hilbert-Schmidt Theory [32] any symmetric function K(~x, y), with K(~x, y) G 

L2, can be expanded in the form: 

0 0 

= (39) 
i=1 

Using Eq. 39 SVM solution is given by 

1 
f{~x) = sign(^2 yi®*k(~x, + b*) (40) 

i=1 

where K(~x , ~Xi) is called kernel function. The state of the art of SVMs evolved mapping 

the learning data from input space into higher dimensional feature space where the classifica-

tion performance is increased. This has been developed by applying several kernels each with 

individual characteristics. Lately, the choice of the kernel became a widely discussed issue, 

since it reveals different performance result for various applications. 

1.4 Thesis Overview 

This thesis is organized as follows: 

• The first Chapter contains an introduction to Spam phenomenon and Support Vector 

Machines, a brief review of some well known approaches found in the literature. 
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• In Chapter 2, we explore several feature mapping strategies in context of text categoriza-

tion. We intensively investigate the effect of various combinations of term frequency, 

importance weight and normalization on spam filtering performance. Moreover, we pro-

pose the use of various string kernels and different distance-based kernels for spam filter-

ing. Finally, we provide a detailed result for a fair comparison between different feature 

mapping and kernel classes using typical spam filtering criteria. 

• In Chapter 3, we propose a framework of various online modes for spam filtering. We 

propose the use of online Support Vector Machines, Transductive Support Vector Ma-

chines and Active Online Support Vector Machines for spam filtering. We study pro-

posed modes using different feature mapping and kernel classes, also. 

• In the last Chapter, we summarize the various methodologies and contributions that were 

presented, and we propose some future research directions. 
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CHAPTER Z , 

Spam Filtering using Support Vector Machine 

Automated spam filtering has been proposed as an efficient solution to overcome unwanted, 

overwhelmed emails. Machine learning (ML) approaches have proven to be effective in classi-

fication tasks, in particular, for solving spam problem. These approaches can be grouped into 

generative, and discriminative. Generative approaches attempt to build a probabilistic model. 

Alternatively, discriminative approaches involve building a learner model to discriminate future 

unseen unlabeled positive and negative examples based on seen examples. Among discrimina-

tive approaches SVMs has been shown as a "universal learner" [10], and promising classifier. 

Moreover, spam filtering using SVMs has been addressed as an instance of text categorization 

(TC). 

TC is the task of constructing "automatic text classifier", in which the classifier is capable 

of assigning labels to stream of incoming natural language text documents according to their 

contents. Recently, ML approaches have dominated as a solution for this problem. Generally, 

supervised ML automatically constructs a classifier by learning, from an initial set of pre-

classified documents fl = { d i,..., d C D, trained with pre-categories C = {c i , . . . , cm} 

[55]. Indeed, the construction of learner (called inductive process) for C relies on learning the 

characteristics of C from a training set of documents TV = { d i,..., d \Tr\}. The effectiveness 

of the classifier is tested by applying it to test set Te — VL-Tr and checking out how often the 

classifier's decision match the true value of document encoded in the corpus. Spam filtering 

has been seen as a single-label TC. That is, the classifier assigns a Boolean value to each pair 

of unseen documents (d j, c,} into two mutual categories, the relevant c% and the irrelevant c[. 

In this chapter, we discuss the effectiveness of SVMs for solving spam problem. Fur-

thermore, we introduce varied feature mappings that have been employed to transform email 
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data into feature vectors usable by machine learning methods. Along with, we investigate the 

impact of using different kernels in the resulted performance. 

2.1 Feature Mapping 

Text Categorization, using kernel-based machines, evolves vector representation for the in-

volved data. For some types of data, attributes are naturally in feature vector format, while oth-

ers need some preprocessing to explicitly construct feature vectors that describe images, text 

data, etc. In this case, a document d j is described as a weighted vector dj — (Wij,..., w\T\j), 

of features 0 < Wf-j < 1, for handling word distribution over documents [40], Among existing 

approaches, the text representation dissimilarity can be showed either on what one regards the 

meaningful units of text or what approach one seeks to compute term weight [55]. Terms 

usually identified with words syntactically [56] or statistically [57]. Moreover, term weights 

can be considered by occurrence of term in the corpus (term frequency) or by its presence 

or absence (binary). Generally, supervised TC classifier is engaged into three main phases: 

term selection, term weighting, and classifier learning [54], In this section, briefly, we discuss 

different approaches that have been applied in text representation. 

2.1.1 Feature Extraction 

Many researchers have pointed out the importance of text representation in the performance 

of TC using SVMs. In the following, we review some possible term selection approaches and 

discuss their strength. 

Hand-crafted features Many industrial spam filtering techniques have employed this ap-

proach, such as the open-source filter SpamAssassin [73]. Discrimination of messages 

essentially relies on human experts to identify features within message. Consequently, 

few irrelevant features are introduced in the feature domain, which keep the computa-

tion and storage cost minimum. On the other hand, the identified features are language-

specific, demanding reformulation of features regarding each language. Moreover, the 

features require to change over time as the intelligent spammer may easily attack the 

filter [51], Thus, the experts effort is important to predict the most informative features 

[74], 
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Bag-of-Word (BoW) approach, in contrast, requires less human effort and supply a wider, 

generic feature space. It is also known as "word-based feature". Particulary, the ex-

traction of features is based on defining a substring of contiguous characters "word" w, 

where word boundary is specified using a set of symbolic delimiters such as whitespace, 

periods, and commas. Alternatively, the token document loses its context, content, and 

case of its words. All possible words w with a finite length in document d are mapped 

to sparse vector <&i(d) in feature space F of n dimensions, that is ( d) = 1 if the Wi 

is present in d , and ( d) = 0, otherwise. Consequently, a very large feature space 

F is constructed. To solve this issue researchers suggest "Stop words" and "Stemming". 

Stop word list, particulary, removes poor descriptors such as auxiliaries, articles, con-

nectives, propositions, for instance, and it might be created beforehand, based on word 

frequency. Next, using stemming [50] each word is replaced by its stem. Although, 

BoW has been shown to be efficient in solving spam filtering, it has been defeated with 

word obfuscation attack [51] which includes technique such as character substitution, 

intentional misspellings, and insertion of whitespace. 

k-mer Another feature extraction technique is k-mer. Using A>mer approach the document 

can be represented by predefined sequences of contiguous characters (i.e. sub-strings) 

of length k, where the choice of k differs with different text corpora. &-mer is a lan-

guage independent approach. Consequently, using this technique consists of defining 

the consecutive k characters only with no prior knowledge of language. This approach 

works efficiently in text categorization, where any mismatch effects the limited numbers 

of those parts (neighbor), and leaves the remainder inviolated (further). Additionally, k-

mer feature space allows the insertion or deletion of any number of characters between 

k-mer "Overlapping". The choice of k is important. Too small value of k creates am-

biguous features, while a too high value of k makes the chance of finding exact matches 

between strings improbable. Indeed, in a spam classification setting, the optimal value 

of k may be language dependent, or may vary with the amount of expected obfuscation 

within the text. 
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2.1.2 Term Weighting 

Term weighting phase is a vital step in TC, involves converting each document d to vector 

space which can be efficiently processed by SVM. It consists of three main parts: Frequency 

transformation, importance weight, and normalization. 

Frequency transformation 

Raw Frequency (TF) [41] is the simplest measure to weight each word w in document d. 

The intuition behind raw frequency is that the importance for each w is proportional to its 

occurrence in the document d. The raw frequency of the word w in document d is given by: 

W(d,w) — TF(d,w) (1) 

In TC, while raw frequency improves recall, it doesn't always improve precision, because of 

frequent appearance of words that have little discrimination power such as auxiliary. Another 

common approach is Logarithmic Frequency [41], which concerns logarithms of linguistic 

quantities rather than the quantities themselves. This is given by: 

logTF(d, w) = log(l + TF(d, w)) (2) 

Moreover, Inverse Frequency (ITF) is another approach proposed in [41]: 

F(d,w) = 1 - 7 (3) f(d, w) +7 
Where 7 > 0. 

Importance Weight 

Inverse Document Frequency (IDF) [41] concerns the occurrence of words w across the whole 

corpus. In this method, it is assumed that words that rarely occur over the corpus are valuable, 

and disregards the occurrence of word within the document, which is expected to improve the 

precision. In other words, the importance of each word is inversely proportional to the number 

of documents in which the word appears. The IDF of word w is given by: 

IDF(w) = log{N/df{w)) (4) 
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Where N is the total number of documents in the corpus, and df(w) is the number of docu-

ments that contain the word w. One popular term weight frequency combination is TF-IDF. 

TF-IDF used to evaluate how important a word is to a document in corpus. The importance 

increases proportionally to the number of times a word appears in the document but it is offset 

by the frequency of the word in the corpus. This is given by: 

TF - IDF(d, w) = TF(d, w) * l o g ( N / d f ( w ) ) (5) 

Redundancy [41], in contrast to IDF, concerns the empirical distribution of a word w over 

the entire documents d in the corpus. It is given by: 

Where f(di,Wk) is the co-occurrence of word '«;/,. in document di, f(wk) = X^Li fiAi, wk) 

is the number occurrences of term Wk in the whole document collection, and N is the total 

number of document in the corpus. 

Normalization 

Different emails vary in their length, where long email contains hundreds of words while short 

emails has some dozen words. Since long email is not more important than short email we di-

vide word frequency by the total number of words in the document. This can be done by map-

ping the word frequency vector to the unit-sphere in the L\ this is known as L\-normalization, 

[41] given by: 

We can also normalize emails by using L2-normalization which has been used widely in SVM 

application as it yields to best error bounds. It is given by: 

f - i k <8) 

Furthermore, normalization of emails resist the "sparse data attack" [51], where spammers 

attempt to defeat the spam filtering by writing short emails instead. 
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RBFGaussian exp - i|| J 
RBFLaplacian exp (-p || 2? - ~X i||) 
R B F e x p ( - p ^ I ^ J l ) 
Inverse multiquadric Kernel , 1

 9 
v l l ^ - l l +1 

Polynomial kernel ( x .~Xi -(-1) 
Sigmoid Kernel tanh (~x.~Xi + 1) 

Table 2.1: Examples of classic distance based kernels 

2.2 Kernels 

Another key design task, when constructing email spam filtering using SVMs, is the proper 

choice of kernel regarding the nature of the data. In this section, we explore different classes 

of kernels. 

2.2.1 Distance Based Kernels 

Support Vector Machines in classification problems, such as spam filtering, explore the sim-

ilarity between input emails implicitly using inner product K(X,Y) = <&(Y)) i.e. 

kernel functions. Kernels are real-valued symmetric function k(~x, ~x) of ~x e X. Let 

X = { . . . , 1 v m } be a set of vectors, the induced kernel matrix K = k(~x j, ~Xj)™.j=1 is 

called positive definite (pd) if it satisfies cTKc > 0 for any vector c £ R™ [36]. These kernel 

functions got much attention as they can be interpreted to inner products in Hilbert spaces. 

In distance based learning [36-38] the data samples ~x are not given explicitly but only by 

a distance function d(~x, Hi'). Distance measure, requires to be symmetric, has zero diagonal, 

i.e. d(Hc, ~x ) = 0, and be nonnegative. If a given distance measure does not satisfy these 

requirements, it can easily be symmetrized by d(~x , ~x') = d(lc , ~x') + d(~x ~x )), given 

zero diagonal by d(~x , ~x') = d(~x, ~x') — \{d(~x , ~x) + d(~x', ~x')) or made positive by 

d(~x , ~x') = | d(~x, ~x')\. We call such a distance isometric to an L2-norm if the data can be 

embedded in a Hilbert space H by $ : x — ' H such that ~d(~x , ~x') =|| #(lr ) - ||. 

After choice of an origin O € X every distance d induces a function 

(<&(-?), = -\(d(~x, )2 - d(It, Of - O)2) (9) 

Where represents the inner product in a Hilbert space X with respect to the 

origin O. Table 2.1 shows examples of these distance based kernels. 
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2.2.2 String Kernels 

Recent researches suggest a new approach of using SVMs for text classification, based on a 

family of kernel functions called string kernels, that perform competitively with the state-of-

the-art approaches. String kernels, in contrast of distance-based kernels, define the similarity 

between pair of documents by measuring the total occurrence of shared substrings of length k 

in feature space F. In this case, the kernel is defined via an explicit feature map. Additionally, 

string kernels are classified into two classes: the position-aware string kernel which takes ad-

vantage of positional information of characters/substrings in their parent strings such as inexact 

string match kernels, and the position-unaware string kernel such as spectrum kernel. 

The efficiency of string kernels can be justified by different factors. First, it is an appealing 

method for highly inflected natural languages ( "oriental languages" for instance, Japanese lan-

guage, in text classification problems). Indeed, defining automatic word segmentation is more 

suspectable for errors where word delimiters utilized in western languages such as English text 

are easier to define like whitespace. Second, for spam filtering problem, for instance, spam-

mer try to mislead filters by including non-alphabetical characters in their text, string kernels 

can handle these words. Third, it provides an automatic categorization for different types of 

document formats (See [46] for more details and discussion). 

In the following section, let YI t>e the alphabet. The sequence is a string of symbols drawn 

from an alphabet, s G . The k-mer refers to k consecutive symbols, a — ai, «2,..., ctk G 

In this section, We briefly presents different string kernels. 

Spectrum Kernel 

The idea of spectrum kernel is to measure the total of all possible symbolic contiguous subse-

quences of a fixed length k contained in the document. Then, the spectrum feature is defined 

as [44]: 

* r r f r m ( s ) = (0a(a)) a e E* (10) 

Where <pQ(s) is the count of occurrences of a in the sequence s. The kernel calculates the 

dot product between the vectors holding all the fc-mers counts for any pair of sequences: 

Ks
k
pectrm(S1,S2) = <<i>rctrm(S1), e c t r m(S 2)) (i i) 
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The kernel value is large if two sequences share a large number of fc-mers. Notice that, 

spectrum kernel is position independent. The kernel function can be computed very efficiently 

due to the increasing sparseness of longer fc-mers. 

Inexact String Match Kernels 

Inexact String Match Kernels is an extension of the Spectrum kernel, which allow A;-mer to 

match even if there have been a number of insertion, deletion, or character substitution. 

Mismatch Kernel 

The mismatch kernel [49] feature map obtains inexact matching of instance fc-mers from 

the input sequence to fc-mer features by allowing a restricted number of mismatches. The 

features used by mismatch kernel are the set of all possible subsequences of strings of a fixed 

length fc. If two string sequences contain many fc-length subsequences that differ by at most m 

mismatches, then their inner product under the mismatch kernel will be large. More precisely, 

the mismatch kernel is calculated based on shared occurrences of (fc, m)-patterns in the data, 

where the (fc, m)-pattern generated by a fixed fc-length subsequence consists of all fc-length 

subsequences differing from it by at most m mismatches [52], 

For a fixed fc-mer a = a^-.-au, ai G the (k,m)-neighborhood generated by a is 

the set of all fc-length sequences (3 from J2 that differ from a by at most m mismatches. We 

denote this set by N(k, m)(a). For a fc-mer a, the feature map is defined as 

^Minnatch{a) = (12) 

where <f>p{a) = 1 if j3 belongs to N(k,m)(a), and <j>p(a) — 0, otherwise. For m = 0, 

mismatch kernel, fc-spectrum, and fc-gram kernel are the same. The kernel is the dot product 

between the two fc-mers count vectors, given by 

^.Mismatch f _ „ \ //f.Mismatch f „ \ ^Mismatch / \\ ciix 

$(fc,m) (S1;S2J - (<P(fc,m) C«1 (S2j) (13) 

Restricted-Gappy Kernel 

For a fixed g-mer a = 040,2...a/; (a.t G l e t G{g, k)(a) be the set of all the fc-length 

subsequences occurring in a (with up to g — k gaps). Then the gappy feature map on a is 
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defined as [52] 

= (<M«) W ( 1 4 ) 

Where </>/?(<*) = 1 if j3 belongs to G(g, k), and (pg(a) = 0, otherwise. 

Extending the feature map to arbitrary finite sequences s by summing the feature vectors 

for all the g-mers in s : 

g—mersa£s 

Wildcard Kernel 

For the wildcard string kernel [52], the default alphabet is extended with a wildcard character 

Ŷ  U{*}, where the wildcard character matches any symbol. The presence of the wildcard 

character in an a k-mer is position-specific. 

A fc-mer a matches a subsequence 6 in W if all non-wildcard entries of [3 are equal to the 

corresponding entries of a (wildcards match all characters). The wildcard feature map is given 

by 

- E M « b e w (16) 
k—mersa<Es 

Where <i>p{a) — X' if a. matches pattern (3 containing j wildcard characters, Where <t>p{a) — 0 

if a does not match (3, and 0 < A < 1. 

Weighted Degree Kernel 

WD kernel [48] basic idea is to count the occurrences of &-mer substrings at corresponding 

positions in a comparable pair. The WD kernel of order d compares two sequences x and x' 

of equal length I by summing all contributions of A:-mer matches of lengths k G {1,..., d\, 

weighted by coefficients 

d l-k+1 

£:(*,*') = E ^ E I ( s k A x ) = skAx ' ) ) (I7) 
k=1 i=1 

Where Sk,i{x) is the string of length k starting at position i of the sequence x, /(.) is the 

indicator function which evaluates to 1 when its argument is true and to 0, otherwise, and 
a _ nd-k+l 
Pk ~ 2(d+l)' 
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Weighted Degree Kernel with Shift 

WDs kernel [49] can be shown as a mixture between spectrum kernel and the WD kernel. It 

is defined as: 
d l-k+1 J 

k(x,x') = £ / ? f c £ £ (18) 
k=1 i=1 j=0,j+i<l 

Where Hk,i,j,x,x> = I(sk,i+jix) = sk,i(x')) + Hsk,i(x) = sk,i+j(x')), (3k = = 

(2(j+i))' sk/i{x) is the subsequence of x of length k that starts at position i. The idea is to 

count the matches between two sequences x and x' between the words Skti(x) and .Sfci?;(x') 

where Sk,i{x) — for all i and 1 < k < d. The parameter d denotes the 

maximal length of the words to be compared, and J is the maximum distance by which a 

sequence is shifted. 

String subsequence kernel (SSK) 

SSK [39] exploits the similarity between pair of documents by searching for more shared 

substrings the more substrings in common, the more similar they are; where substrings are a 

sequence of unnecessary contiguous characters in text document. Moreover, the contiguity of 

such substring can be considered by a decay factor A of full length of substrings in the docu-

ment [39]. The degree of contiguity of the subsequence in the input string s determines how 

much it will contribute to the comparison. For an index sequence i = (ii,..., %k) identifying 

the occurrence of a subsequence u = s(i) in a string s, we use l(i) — ik — h + 1 to denote the 

length of the string in s. SSK is given by 

Kn(s,t)= j2(Us)Mt))= £ E E x lU)= E £ E xlU)+lij) 

ueJ2n u<e£™ i:«=s[*] j-u=t[j] «GE™ i:«=s[i] j:u=t\j] 
(19) 

Where s and t are substrings, denoted by the length of |s| and respectively. 

2.3 Experimental Results 

Experiments have been carried out to assess and compare the performance of SVMs classifi-

cation in spam categorization problem. Recently, spam filtering using SVM classifier has been 

tested and deployed using linear kernel weighted using binary weighting schemes [12] [14] 
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[19]. We extend previous research on spam filtering, as we consider two main tasks. Firstly, 

we compare the use of various feature mapping techniques described in section 2.1 for spam 

email filtering. Secondly, we investigate the use of string kernels with a number of classical 

kernels and exploring that in terms of accuracy, precision, recall, Fl, and running classification 

time. In seek of comparison, the performance of each task is examined using the same version 

of spam data set and the same pre-processing is applied for different kernels. 

Data Sets in the purpose of comparison evaluation, we used trec05-pl [76] data set which is 

a large publicly available spam data set. This data set has 92,189 labeled spam and legitimate 

emails, with 57% spam rate, and 43% ham rate. Moreover, the emails in the data set have 

a canonical order, where we used the first 50,000 emails for training and the remaining for 

testing. 

Evaluation Criteria experiments have been evaluated using typical performance measures 

that has been proposed for spam filtering problem [21]: 

1. Precision is the proportion of retrieved items that are relevant, measured by the ratio of 

the number of relevant retrieved items to the total number of retrieved items. 

true positive 
Precision = — 

true positive + jalse positive 

2. Recall is the proportion of relevant items retrieved, measured by the ratio of the number 

of relevant retrieved items to the total number of relevant items in the collection. 

_ „ true positive 
Recall — — — :— 

true positive + false negative 

3. F — measure summarizes the performance of a given classifier. 

(l + 0 ) * precision * recall 
F — measure — -—— — r, 

* precision + recall 

Where 0 determines the amount of weight assigned to precision and recall. We used 

0 = 1 for equally weighted precision and recall (also known as F 1). 

4. Accuracy: is a typical performance measure that gives an indication of overall well per-

formance of a given classifier. 
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(El) Polynomial.TF. L i (E2) P0lyn0mial.TF.L2 
(E3) RBFaaussian-TF.Ll (E4) RBFGaussi0.n-TF.L2 
(E5) RBFLapladan-TF.Ll (E6) RBFhapiac.ian-TF.L2 
(E7) RBFX2.TF.Li (E8) RBFX2.TF.L2 

(E9) Sigmoid.TF.Li (E10) Sigm0id.TF.L2 
(El l ) Inversemultiquadric. TF. L i (El 2) Inversemultiquadric.TF.L2 
(El 3) Polynomial. logTF. L i (E14) Polynomial. logTF. L2 
(E15) RBFoav,ssiarl.logTF.Li (El 6) RBFaaussian-logTF.L2 
(El 7) RBFlaplacian.logTF.L\ (El 8) RBFLaplacian-logTF. Z/2 
(E19) RBFX2 .logTF.Li (E20) RBFx2.logTF.L2 

(E21) Sigmoid.logTF. Li (E22) Sigm0id.l0gTF.L2 
(E23) Inversemultiquadric.logTF.Li (E24) Inversemultiquadric.l0gTF.L2 
(E25) Polynomial .IT F.Li (E26) Polynomial.ITF.L2 
(E27) RBFGaussian-ITF.Ll (E28) RBFGaussian.ITF.L2 
(E29) RBFLapla.cian-ITF.Ll (E30) RBFLaplacian -ITF.L2 
(E31) RBFx2.ITF.Li (E32) RBFX2.ITF.L2 

(E33) Sigmoid. IT F. L i (E34) sigm0id.ITF.L2 
(E35) Inversemultiquadric. ITF. L i (E36) Inversemultiquadric. ITF. L2 
(E37) Polynomial.logTF - IDF.Li (E38) Polynomial.logTF - IDF.L2 

(E39) RBFaaussian-logTF - IDF.Li (E40) RBFoaussian .logTF - IDF.L2 

(E41) RBFiyapiacian.logTF — IDF.Li (E42) RBFLaplacian-logTF - IDF.L2 

(E43) RBFx2.logTF - 7 D F . i i (E44) RBFX2 .logTF - IDF.L2 
(E45) Sigmoid.logTF - IDF.Li (E46) Sigmoid.logTF - IDF.L2 
(E47) Inversemultiquadric.logTF — IDF.Li (E48) Inversemultiquadric.logTF — IDF.L 
(E49) Polynomial.IDF.Li (E50) P0lyn0mial.IDF.L2 
(E51) RBFGaussian-IDF.Ll (E52) RBFGau.ssianIDF.L2 
(E53) RBF^aplacian -IDF.Li (E54) RBFLapiadan.IDF.L2 
(E55) RBFX2. IDF.Li (E56) RBFX2.IDF.L2 

(E57) Sigmoid.IDF.Li (E58) Sigm0id.IDF.L2 
(E59) Inversemultiquadric. IDF.Li (E60) Inversemultiquadric.IDF.L2 

Table 2.2: Case of experiments 

5. (AUC) area under the ROC specifies the probability that, when we draw one positive 

and one negative example at random, the decision function assigns a higher value to the 

positive than to the negative example. 

Experimental Setup SVMh9ht [20] package was used as an implementation of SVMs. 

SVMhght 'has proved its effectiveness and efficiency in the context of text categorization 

problem using large data sets. We set the value of p in RBF kernels, and C for the soft margin 

via 10-fold cross-validation. We ran experiments for similar length of substrings used in string 

kernels (value of k parameter). 

Results to examine the use of different feature mapping, we evaluate trec05p-1 data set using 

generic combinations of feature mapping approaches. As a preprocessing step, the textual part 

of each email was represented by a concatenation of headers (i.e. sender and recipient), sub-

ject line and body of the email, where HTML tags presented in the body were substituted, if 
1 http://svmlight.joachims.org/ 
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present. Moreover, using BoW approach, each email is tokenized using symbol delimiters (i.e. 

whitespace), and two dictionaries of words are constructed. The first dictionary consists of 

entire extracted words without any alteration or reduction (50000 words). The second dictio-

nary has a reduced number of words (25000 words), where words in stop words list provided 

in [56] were removed and stemming has been performed on remaining words by means of 

Porter's stemmer [50], Moreover, punctuation have been removed and all letters have been 

converted to lowercase. We tested 60 combinations of frequency transformations, importance 

weight, text-length normalization and kernel functions. Table 2.2 lists combinations involved 

in this experiments. 

Considering results in Table 2.3, classification performances vary among kernels. Indeed, 

the precision is between 50% and 81.91%, recall results are between 46.67% and 81.14%, and 

F1 is between 54.65% and 75.20%. These variations are due to different weighting schemes. 

While RBFx2.TF reports highest F1 with 75.2%, RBFX2.ITF achieves highest precision with 

81.91%. Table 2.5 shows, a slight improvement for F1 with 81.23% and precision (81.91%), 

while recall remains the same (80.56%). Thus, RBFX2.TF has gained the best performance in 

terms of Fl, precision, and recall. Clearly, classification performance is better when no stop 

word list and stemming were applied. Note that, term frequency alone, such as TF, logTF 

produces comparable performances for all combinations, and outperformed term frequency 

combined with importance weights. IDF is the worst performing weighting scheme which 

confirms previous results in [41] that its not the best weighting scheme for text classification. 

Results in Tables 2.7 and 2.9 confirm our previous observations, and show improved precision, 

recall, and Fl with, 91.81%, 90.88%, and 91.34%, respectively. An important observation is 

that emails normalized using L2-norm has given better result than emails normalized with L\-

norm. In addition, TF-IDF common weighting approach has performed well with L2-norm, 

and generally it has revealed medium performance. 

In next experiment, data have been presented as a sequence of symbols without any pro-

cessing and different string kernels have been employed. We ran the experiments for different 

values of substrings, recall that, the length of the sequence significantly influences the perfor-

mance of the string kernel to some degree [44], we set the length of all substrings used in 

those experiments equal to 4. Where experiments consider substring less than 3 states in less 

performance (the results in not included here). We varied the value of the decay vector A for 

24 



SSK to see its influence in the performance, where the higher value of A gives more weight to 

non-contiguous substrings (A = 0.4 has provided a better performance). For mismatch kernel 

(k, m), wildcard kernel (k,w), and gappy kernel (g,k), the experiments have taken place with 

fixed values of allowed mismatch, wild card and gaps which are m = 1. w — 2, k — 2, respec-

tively, as allowing higher mismatch will increase the computation cost. Table 2.11 lists the 

results. Thus, the performance among all string kernels are quite similar. For position un-aware 

kernels, SSK kernel and Spectrum kernel performed the best. 

On the basis of kernels comparison string kernels performed better than distance-based 

kernels. Besides Fl, precision, and recall, we evaluate involved kernels in terms of their com-

putational efficiency, in order to provide insight into the kernels impact on filtering time. We 

measured the duration of computation for all kernels (see results in Tables 2.12 and 2.13). 

As expected, string kernels were defeated by their computational cost [52], The cost of com-

puting each string kernels entry K{~X ,~X') scales as O ( | 1 1 | ) in the length of the input 

subsequences [52], Polynomial kernel weighting with TF has reported the minimum time 

among involved kernels (with 0.03 m), although, it has less performance. Although, spectrum 

kernel has reported the lowest time (19.45 m) among string kernels, with higher recall, and 

precision. Its time is about three times worse than worst distance based kernels, which is re-

ported by RBFiapiadan-YTF with 6.45 m. For AUC evaluation, note that although the different 

kernels and feature mapping methods achieve different performance level, with distance-based 

kernels normalized using Ll-norm being the weakest and string kernels being the strongest, 

the difference between different performances is stable through the experiments (see Tables 

2.4, 2.6, 2.8 and 2.10 for distance-based kernels, and Table 2.14 for string kernels). 

Conclusion our intent in this chapter, was to investigate how data presentation may effect 

the performance of SVM classification. Indeed, we examined the different combinations of 

term frequency, importance weight, normalization, and kernel functions. We achieved best 

performance with emails weighted using term frequency only and normalized using L2-norm. 

Besides, the kernel choice is crucial in classification problem. The good kernel is the kernel 

that gives a valuable information about the nature of data, and report good performance. RBF 

kernels have the higher performance among distance based kernels in most of experiments. In 

terms of Fl, precision, and recall, string kernels have outperformed distance-based kernels. In 

the next chapter, we depart from batch setting to more realistic settings by investigating active 

online and transductive settings. 
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Kernel Precision Recall Fl 

Polynomial.TF 0.6782 0.6010 0.6373 
RBFQaussiari'^-^ 0.6848 0.5490 0.6094 
RB FLaplaciari'T F 0.6266 0.7132 0.6671 
RBFx2 .TF 0.7433 0.7610 0.7520 
Sigmoid.TF 0.5705 0.5504 0.5603 
Inverse multiquadric.TF 0.7549 0.8041 0.7787 
Polynomial.logTF 0.7586 0.7300 0.7440 
RBFGaussian .lOgTF 0.6550 0.4679 0.5459 
RBFLaplacian-lOgTF 0.5640 0.6451 0.6018 
RBFX 2 .logTF 0.8210 0.7589 0.7887 
Sigmoid.logTF 0.5573 0.6234 0.5885 
Inverse multiquadric.logTF 0.6522 0.7122 0.6809 
Polynomial.ITF 0.7601 0.7567 0.7584 
RBFGaussian .ITF 0.5151 0.6073 0.5574 
RBFLaplacianXlF 0.6875 0.6678 0.6775 
RBFX2.TTF 0.8191 0.7956 0.8072 
Sigmoid.ITF 0.6137 0.7132 0.6597 
Inverse multiquadric.ITF 0.7549 0.8114 0.7821 
Polynomial.IDF 0.7050 0.5618 0.6253 
RBFGaussian -IDF 0.5151 0.7073 0.5961 
RBFLaplacian-IDF 0.7000 0.6660 0.6826 
RBFx2.1DF 0.6700 0.4667 0.5502 
Sigmoid.IDF 0.6073 0.7132 0.6560 
Inverse multiquadric.IDF 0.5000 0.7576 0.6024 
Polynomial.TF-IDF 0.5586 0.6300 0.5922 
RBFGaussian .TF-IDF 0.5980 0.6956 0.6431 
RB Fl,aplacian-TF-IDF 0.5500 0.5430 0.5465 
RBFx2 .TF-IDF 0.6191 0.6951 0.6549 
Sigmoid.TF-IDF 0.6789 0.7231 0.7003 
Inverse multiquadric.TF-IDF 0.7436 0.8031 0.7722 
Polynomial.logTF-IDF 0.5900 0.7729 0.6692 
RBFGaussian.\OgT¥-\DV 0.6920 0.6271 0.6580 
RBFLaplacian .logTF-IDF 0.6834 0.6312 0.6563 
RBFX2 .logTF-IDF 0.6799 0.6534 0.6664 
Sigmoid.logTF-IDF 0.6697 0.6423 0.6557 
Inverse multiquadric.logTF-IDF 0.5678 0.6543 0.6080 

Table 2.3: The performance of SVM spam filtering on trec05-l normalized using Li-norm, 
and stop words have been removed 

Precision TF logTF ITF IDF TF-IDF logTF-IDF 
Polynomial 0.6510 0.7602 0.7743 0.6379 0.6133 0.6702 
RBFGaussian 0.5922 0.5609 0.5700 0.6018 0.6611 0.6709 
RBFLaplacian 0.6799 0.6264 0.6891 0.7010 0.5587 0.6699 
RBFX 2 0.7607 0.8104 0.8253 0.5701 0.6688 0.6830 
Sigmoid 0.5742 0.6001 0.6873 0.6701 0.7114 0.6731 
Inverse multiquadric 0.7945 0.6965 0.7998 0.6254 0.7828 0.6340 

Table 2.4: The AUC value of trec05-l normalized using Li-norm, and stop words have been 
removed 
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Figure 2.1: The overall Performance of spam classification, where different feature mapping 
are applied 
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Kernel Precision Recall F1 
PoIynomial.TF 0.7841 0.7277 0.7548 
RBF(~iaussian .TP 0.7899 0.7012 0.7429 
RBFLaplacian -TF 0.7145 0.7455 0.7297 
RBFX2.TF 0.8191 0.8056 0.8123 
Sigmoid.TF 0.7089 0.7345 0.7215 
Inverse multiquadric.TF 0.7278 0.7345 0.7311 
Polynomial.logTF 0.6899 0.7108 0.7002 
RBFGaussian .logTF 0.6933 0.7178 0.7053 
RBFLaplacian .logTF 0.7145 0.7422 0.7281 
RBFX 2.logTF 0.7099 0.7345 0.7220 
Sigmoid.logTF 0.6790 0.7155 0.6968 
Inverse multiquadric.logTF 0.6532 0.7125 0.6816 
Polynomial.ITF 0.6645 0.7289 0.6952 
RBFGaussian .ITF 0.7266 0.7166 0.7216 
RBFLaplacian- ITF 0.6891 0.7326 0.7102 
RBFx2.ITF 0.6922 0.7456 0.7179 
Sigmoid.ITF 0.6921 0.7178 0.7047 
Inverse multiquadric.ITF 0.6789 0.7167 0.6973 
Polynomial.IDF 0.6489 0.6900 0.6688 
RBFGaussian-IDF 0.5951 0.6973 0.6422 
RBFLaplacian .IDF 0.6744 0.6999 0.6869 
RBFX 2.IDF 0.6789 0.7061 0.6922 
Sigmoid.IDF 0.6531 0.6723 0.6626 
Inverse multiquadric.IDF 0.6549 0.5956 0.6238 
Polynomial.TF-IDF 0.6899 0.6723 0.6810 
RBFGaussian .TF-IDF 0.6983 0.7156 0.7068 
RBFLaplacian .TF-IDF 0.6734 0.7022 0.6875 
RBFX 2 .TF-IDF 0.6903 0.7321 0.7106 
Sigmoid.TF-IDF 0.7144 0.7201 0.7172 
Inverse multiquadric.TF-IDF 0.7014 0.6845 0.6928 
Polynomial.logTF-IDF 0.6978 0.6845 0.6911 
RBFGaussian .logTF-IDF 0.7145 0.6921 0.7031 
RBFLaplacian .logTF-IDF 0.7145 0.7298 0.7221 
RBFx2 .logTF-IDF 0.7989 0.7756 0.7871 
Sigmoid.logTF-IDF 0.6189 0.7326 0.6710 
Inverse multiquadric.logTF -IDF 0.6549 0.6114 0.6324 

Table 2.5: The performance of SVM spam filtering on trec05-l normalized using Li-norm, 
and without removing stop words 

Precision TF logTF ITF IDF TF-IDF logTF-IDF 
Polynomial 0.7746 0.7201 0.7112 0.6796 0.6965 0.7067 
RBFGaussian 0.7576 0.7212 0.7338 0.6568 0.7189 0.7186 
RBFLaplacian 0.7414 0.7433 0.7354 0.7041 0.7142 0.7317 
RBFX2 0.8303 0.7378 0.7400 0.7076 0.7275 0.8022 
Sigmoid 0.7379 0.7105 0.7199 0.6786 0.7342 0.6834 
Inverse multiquadric 0.7493 0.6984 0.7097 0.6387 0.7096 0.6464 

Table 2.6: The AUC value of trec05-l normalized using Li-norm, and without removing stop 
words 
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Kernel Precision Recall Fl 
Polynomial.TF 0.7509 0.7866 0.7683 
RBFGaussian .TF 0.8034 0.8431 0.8228 
RBFLaplacian-TF 0.7984 0.8412 0.8192 
RBFX 2.TF 0.7699 0.7869 0.7783 
Sigmoid.TF 0.7973 0.7562 0.7762 
Inverse multiquadric.TF 0.7499 0.7801 0.7647 
Polynomial. logTF 0.7565 0.7609 0.7587 
RBFGaussian-lOgTF 0.8134 0.7931 0.8031 
RBFLaplacian .logTF 0.8234 0.8556 0.8392 
RBFX 2 .logTF 0.8345 0.7845 0.8087 
Sigmoid.logTF 0.7756 0.7685 0.7720 
Inverse multiquadric.logTF 0.7856 0.7645 0.7749 
Polynomial .ITF 0.7668 0.7212 0.7433 
RBFGaussian .ITF 0.8690 0.8034 0.8349 
RBFLaplacian-ITF 0.7844 0.7612 0.7726 
RBFyp. .ITF 0.8312 0.7843 0.8071 
Sigmoid.ITF 0.7430 0.7934 0.7674 
Inverse multiquadric.ITF 0.7503 0.7856 0.7675 
Polynomial.IDF 0.6812 0.7388 0.7088 
RBFGaussian .IDF 0.5151 0.7073 0.5961 
RBFLaplacian IDF 0.7345 0.7985 0.7652 
RBFX 2 .IDF 0.7045 0.7312 0.7176 
Sigmoid.IDF 0.6561 0.7066 0.6804 
Inverse multiquadric.IDF 0.6493 0.7156 0.6808 
Polynomial.TF-IDF 0.7610 0.7723 0.7666 
RBFGaussian .TF-IDF 0.7754 0.7603 0.7678 
RBFLaplacian .TF-IDF 0.8056 0.7690 0.7869 
RBFx2 .TF-IDF 0.7734 0.7651 0.7692 
Sigmoid.TF-IDF 0.6934 0.7045 0.6989 
Inverse multiquadric.TF-IDF 0.7429 0.7122 0.7272 
Polynomial.logTF-IDF 0.7061 0.6680 0.6865 
RBFGaussian-logTF-IDF 0.7896 0.7045 0.7446 
RBFLaplacian-lOgTF-IDF 0.8523 0.8063 0.8287 
RBFx2 .logTF-IDF 0.7522 0.7199 0.7357 
Sigmoid.logTF-IDF 0.6732 0.7178 0.6948 
Inverse multiquadric.logTF-IDF 0.7311 0.7026 0.7166 

Table 2.7: The performance of SVM spam filtering on trec05-l normalized using L2-norm, 
and stop words have been removed 

Precision TF logTF ITF IDF TF-IDF logTF-IDF 
Polynomial 0.7856 0.7732 0.7642 0.7249 0.7811 0.7102 
RBFGaussian 0.8397 0.8204 0.8534 0.6079 0.7809 0.7621 
RBFLaplacian 0.8376 0.8610 0.7858 0.7799 0.8063 0.8409 
RBFX 2 0.7923 0.8267 0.8198 0.7402 0.7874 0.7540 
Sigmoid 0.7902 0.7867 0.7853 0.6934 0.7142 0.709 
Inverse multiquadric 0.7810 0.7898 0.7786 0.6914 0.7432 0.7301 

Table 2.8: The AUC value of SVM spam filtering on trec05-l normalized using L2-norm, and 
stop words have been removed 
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Kernel Precision Recall F1 

Polynomial.TF 0.7999 0.8073 0.8036 
RBFGaussian .TF 0.8244 0.8037 0.8139 
RBFLaplacian »TF 0.9034 0.8427 0.8720 
RBFX 2.TF 0.8918 0.8761 0.8839 
Sigmoid.TF 0.8965 0.787^ 0.8385 
Inverse multiquadric.TF 0.7912 0.8066 0.7988 
Polynomial.logTF 0.8580 0.8356 0.8467 
RBFGaussian-logTF 0.8151 0.8243 0.8197 
RBFLaplacian-logTF 0.8712 0.8867 0.8789 
RBFX 2.logTF 0.9181 0.9088 0.9134 
Sigmoid.logTF 0.8033 0.8123 0.8078 
Inverse multiquadric.logTF 0.7994 0.8414 0.8199 
Polynomial.ITF 0.8566 0.8033 0.8291 
RBFGaussian- ITF 0.8119 0.7924 0.8020 
RBFLaplacian- ITF 0.7489 0.7721 0.7603 
RBFx2 .ITF 0.8916 0.8922 0.8919 
Sigmoid.ITF 0.7833 0.7652 0.7741 
Inverse multiquadric.ITF 0.7423 0.7694 0.7556 
Polynomial.IDF 0.7077 0.7160 0.7118 
RBFGaussian .IDF 0.7430 0.7689 0.7557 
RBFLaplacian-IDF 0.7456 0.7089 0.7268 
RBFX2 .IDF 0.7134 0.7666 0.7390 
Sigmoid.IDF 0.7034 0.6892 0.6962 
Inverse multiquadric.IDF 0.7491 0.701^ 0.7245 
Polynomial.TF-IDF 0.8066 0.8245 0.8155 
RBFGaussian TF -IDF 0.8015 0.8173 0.8093 
RBFLaplacian .TF-IDF 0.8499 0.8846 0.8669 
RBFX2 .TF-IDF 0.8163 0.7612 0.7878 
Sigmoid.TF-IDF 0.7489 0.7820 0.7651 
Inverse multiquadric.TF-IDF 0.7494 0.8041 0.7758 
Polynomial.logTF-IDF 0.7466 0.7399 0.7432 
i?SFGa«Mian.l0gTF-IDF 0.7934 0.7054 0.7468 
RBFLaplacian- logTF-IDF 0.8400 0.8632 0.8514 
RBFx2 .logTF-IDF 0.8034 0.7861 0.7947 
Sigmoid.logTF-IDF 0.7900 0.7123 0.7491 
Inverse multiquadric.logTF-IDF 0.8241 0.7324 0.7755 

Table 2.9: The performance of SVM spam filtering on trec05-l normalized using L2-norm, 
and without removing stop words 

Precision TF logTF ITF IDF TF-IDF logTF-IDF 
Polynomial 0.8214 0.8634 0.8475 0.7266 0.8404 0.7411 
RBFGaussian 0.8312 0.8375 0.8200 0.7698 0.8267 0.7612 
RBFLaplacian 0.8891 0.8958 0.7596 0.7414 0.8839 0.8679 
RBFX 2 0.9042 0.9302 0.9101 0.7494 0.8035 0.8123 
Sigmoid 0.8563 0.8243 0.7898 0.7101 0.7812 0.7614 
Inverse multiquadric 0.8164 0.8357 0.7731 0.7389 0.7912 0.7906 

Table 2.10: The AUC value of SVM spam filtering on trec05-l normalized using L2-norm, 
and without removing stop words 

30 



Kernel Precision Recall Fl 
SSk 0.9278 0.9281 0.9279 
Spectrum 0.9249 0.9362 0.9305 
Mismatch 0.8745 0.9100 0.8919 
Wildcard 0.9356 0.8890 0.9117 
Gappy 0.9190 0.9167 0.9178 
WD 0.8978 0.9021 0.8999 
WDs 0.8987 0.9189 0.9087 

Table 2.11: The performance of SVM spam filtering on trec05-l using string kernels 

Polynomail RBFGaussian RBFLaplacian RBFX 2 Sigmoid Inverse multiquadric 
TF 0.03 0.40 3.48 0.49 0.10 3.43 
logTF 0.45 1.25 5.54 5.47 6.36 3.21 
ITF 1.55 2.39 6.48 5.49 3.03 4.02 
IDF 0.47 2.02 2.05 4.57 3.07 4.11 
TF-IDF 0.02 0.39 3.00 0.35 0.55 3.43 
logTF-IDF 0.45 1.20 4.30 5.00 6.40 3.20 

Table 2.12: Training time for different combinations of frequency and distance kernels 

SSk Spectrum Mismatch Wildcard Gappy WD WDs 
20.08 19.45 21.43 20.47 20.02 19.56 20.32 

Table 2.13: Training time for string kernels 

SSk Spectrum Mismatch Wildcard Gappy WD WDs 
0.9458 0.9510 0.9089 0.9304 0.9374 0.9187 0.9276 

Table 2.14: The AUC value of SVM spam filtering on trec05-l, using string kernels. 
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CHAPTER 

Spam Filtering using Online Active Support 

Vector Machine 

In reality, spam filtering is typically tested and deployed in an online setting, by proceeding 

incrementally. Online learning allows a deployed system to adapt itself in a dynamic environ-

ment. While, labeled data sets are not often affordable prior classification, label data set is time 

consuming and tedious process. To overcome this problem, researchers have introduced new 

strategies to reduce the amount of required labeled data without altering the performance of 

the classifier, this is known as "active learning". 

In this chapter, we describe various methods and techniques to adapt spam filtering for real 

time settings. We develop new online active framework for spam filtering using string kernels. 

Furthermore, we review several strategies in both active learning and transductive learning. 

We present our detailed results based on different kernels and feature mapping discussed in 

Chapter 2. 

3.1 Online SVM 

Batch spam filtering, using SVM, has suffered from the dynamical nature of spam email char-

acteristics. In batch model, training and testing sets are random samples drawn from a common 

source of populations which have been used for learning phase. In reality, spam filtering is a 

continuous task, the data is often collected continuously in time, and more importantly, the 

characteristics of spam emails evolve over time and no such common population exists [14]. 

Moreover, it is difficult to identify sufficient samples prior to spam filtering. Recently, more 

efforts have been spent in the development of online SVM learning algorithms [67] [68], 
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where incremental SVM [66] provides a framework for exact online learning. 

Online learning has been shown to be efficient for boosting spam filtering performance. In 

contrast to batch model, the online model presents to the filter a sequence of emails W\, mo = 

, Vo) through m^-i — (xk-i,yk-i), where sequence order is determined by the design (i.e. 

it might be in chronological order or even randomized). We adopted a simple algorithm intro-

duced in [80] to adapt batch model to online model. The algorithm is summarized in Algorithm 

1. Initially, suppose a spam filter is trained on training set TR = {(xo, yo), (a^-i, Vi-i)}-

The hyperplane with maximum margin is fully defined through small portion of emails called 

"Support Vectors" SVs. Next, when a new email is presented to the filter, corresponding to the 

KKT conditions, is poorly classified, then a new hyperplane is needed. Re-training of SVM 

from scratch involves solving a quadratic programming problem which is cost prohibitive. In 

SVM model, examples closer to the hyperplane are most uncertain and informative. More-

over, SVs are able to summarize the data space and preserve the essential class boundary. 

Consequently, in our model, using SVs as seeds (starting point) for the future retraining and 

discarding all non-SVs samples would not effect SVM classification performance. 

3.2 Transductive Support Vector Machine (TSVM) 

In Chapter 2, we deployed inductive SVM in which the learner attempts to build a model to 

approximate data from the whole problem space, and then using this model to predict out-

put values for a new input vector. In other words, the learner has focused on constructing a 

universal model for spam, and general purpose strategy in detecting spam emails. However, 

individual's email has different characteristics. Indeed, it is difficult to use publicly labeled 

emails to classify individuals inbox, although may most of users agree that such emails are 

spams, the remaining may still wish to receive such emails [62], In addition, acquiring labels 

is time prohibitive. TSVM model, in contrast to inductive SVM, estimates the value of a clas-

sification function at given points. In particular, TSVM model constructs a maximum margin 

by employing the large collection of unlabeled data jointly with a few labeled examples for im-

proving generalization performance. In literature, several approaches have discussed TSVM 

from different perspectives, such as margin-based classification [58] [59], graph-based meth-

ods [60], and information regularization [61], 

33 



Algorithm 1: Online Support Vector Classifier 
Set W: = xk„yk, for k = 0,..., i - 1. and \E2\ = 0 
Train and obtain an optimal boundary f i 
for k = i,..., I. do 

obtain a new example Sk — {xk,yk} 
if Ukfk-i{xk) violates the KKT conditions 
or \Ek-i \ > 0 then 

if Vkfk-i{xk) violates the KKT conditions or 
\Ek-i \ = 0 then 

Wk = { S x t \ S y t i y f = V r i ^ S k 
end if 
if Vkfk-i (Xk) satisfy the KKT conditions or 
\Ek-i\ > Othen 

Wk = {Sx'-^Sy^jll^UEk-! 
end if 
if Vkfk-i (xk) violates the KKT conditions and 
|£ f c_i | > Othen 

Wk = {Sxt^Sy?-1}^-1' U Ek-i U Sk 
end if 

Re-train to obtain an optimal boundary fk with Wk 

Ek = {xi,yi\yifk{xi)violatestheKKTconditions}i=1 
end if 

end for 
while |jEi| > 0 do 

Wi = SVi U Ei 
Solving quadratic programming problem to obtain an optimal boundary f i 
Ei = {xi,yi\yifi(xi)violatestheKKTconditions}l

i=i 
end while 

In TSVM, suppose that the set of random independent identically distributed (i.i.d) train-

ing vectors drawn according to P(~x, y) — P(y\~x)P(~x) belonging to two separate classes. 

Suppose we have a hyperplane vj .~x\ + b which separates the two different classes and a 

sample set train Strain of n training examples (~xi,yi), (~x 2,2/2)) •••> (~xn- yn)- Each training 

example consists of a feature vector ~x G X and a binary label y G {—1, +1}. In contrast 

to the inductive setting, the learner is also given a sample set test Stest of k test examples 

(a?!, y*), (~x 2,2/2)' •••) ( ^ n ; Vn) where y* are the labels of ~x* the classifier have to pre-

dict. In the linearly separable case, the optimization problem is solved by minimizing over 

{y\,...,y*n,w,b) [69]: 
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subject to 

VJL x : yi[w.^ + b}> 1 (2) 

V* : + (3) 

(4) 

Where ~w is the normal of the hyperplane. 

In the non-separable case, the optimization problem can be represented by solving the 

trade-off between maximizing the margin and minimizing the number of misclassified exam-

ples; this is given by minimizing over (y^,..., y*n, w, b, ..., ^ , . . . , [69]: 

1 n k 

- i i^H 2 + + (5) 
i=0 j=0 

subject to 

V?=1 : yi[w.tl + b]> 1 -e< (6) 

v f = 1 : + a) 

V?=1 : ^ > 0 (8) 

V,fc=1 : ^ > 0 (9) 

where & and Q are slack variables which measure the violation of the constraints (related to 

labeled and unlabeled examples), C and C* are parameters which control the tradeoff between 

the penalty and margin (chosen by the user). 

3.3 Active Learning 

Traditionally, the task of spam filtering involves a manual assignment of labels to emails in the 

data set. On one hand, manual labeling is error-prone, time and cost prohibitive. In reality, 

training data may not well represent the future emails to be classified, for instance, new user 

may not receive emails similar to what they have used to train their filters, while other users 

who received spam emails more often may not label each email they received [62], This fact 

is exploited by spammers by establishing millions of emails in a "never-before-used" format 

sent to defeat spam filters prior the new format is learned. To this end, active learning provides 

an appealing solution to overcome labeling cost by identifying informative emails for which 
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labels are requested [70], In this section, we describe several active learning strategies for 

SVM. 

Pool-based approach, is a common approach developed in machine learning to reduce the 

labeling effort required by humans [12]. Pool-based model can be explained as follows. Sup-

pose we have a two pools of labeled emails L and unlabeled emails U. Assume that emails 

~~x are i.i.d according to some underlying distribution P{~x), and the labels are distributed 

according to some conditional distribution P(y\~x). An active learner has three components: 

( / , q, L). The first component is a classifier, / : L —> {—1,1}, trained on the current set 

of labeled data L and unlabeled instances u E U. q(L) is the querying function that, given a 

current labeled set L, decides which instance in U to query next. In online setting, the active 

learner returns a classifier / after each pool-query, or after some fixed number of pool-queries 

in passive settings [65]. 

There are several methods for selecting these unlabeled batches u G U, such as specu-

lative sampling, batch-simple, and error-reduction [64], Such methods can reduce labeling 

effort dramatically, without significant reduction in classification performance. However, prior 

applications of active learning in this setting have been both computationally expensive and 

prone to selecting redundant examples which have harmed classification performance. Angle 

diversity [63] approach introduces a strategy in attempt of diversity to select emails to label. 

The main idea of angle-diversity is to select emails close to the hyperplane with high angle 

diversity [71]. Assume, two samples ~Xi, ~Xj, their normal vectors are given by </>( 

(f>(~Xj). The similarity between (p(~oci) and <fi(~Xj) is measured using cosine distance, given by 

[63]: 

I onal/th \(<t>(~Xi^i))\ _ \k{~X j,~X j)\ cos{Z.(hi, hj)) \ - i i ^ m i ^ i i - (1U) 

In order to balance the distance to the classification hyperplane and the diversity of angles 

among samples, [63] introduces A parameter. Incorporating A (trade-off factor), the final score 

for the unlabeled instance ~x r is given by: 

arg mm(X\f(xi)\ + |1 - A|) * (max g j ) l ) ( 1 1 ) xieu xjGS x i, x i)k( x j, x j) 

where S is the sample set which is provided to users for label (feedback), ~x, is the selected 

sample which will be added into S, f(xi) represents the distance from to the hyperplane, 
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U represents unlabeled emails set, and A is the parameter to adjust the weight of the angle 

diversity and the distance to the hyperplane. According to Eq. 11, we find unlabeled email 

~x i with smallest value, which guarantees that % is closer to the hyperplane, and at the same 

time, far away from the existing training emails. Thus, the email ~Xi will be included in the 

training set. 

For Online Active SVM learning [65] messages come to the filter in a stream, and the 

filter must classify them one by one. Each time a new example presented to the filter, the filter 

has the option of requesting a label for the given message. The goal is for the filter to achieve 

strong classification performance with as few label requests as possible. 

3.4 Experimental Results 

In this section, we report results from experiments testing the effectiveness of the online, 

TSVM, and online active learning methods, presented in previous sections, with SVM as a 

base classifier for spam filtering. We used string kernels, along with combinations of distance-

based kernels and feature mapping from chapter 2 for our experiments. In our experiments, we 

have focused on combinations with L2-norm, no stop words and stemming employed, since 

they give the best performance (see table 2.2). 

Data Set to evaluate the strategies mentioned in previous sections we have conducted several 

experiments on two publicly available data sets, trec06p and trec05p-l. Trec05p-1 is described 

in chapter 2 and trec06p data set has 24912 labeled spam and 12910 legitimate emails. Our 

evaluation is based on precision, recall and Fl. 

Experiments Setup the value of p in RBF kernels, and C for the soft margin were determined 

via 10-fold cross-validation by training an inductive SVM on the entire data set. For TSVM, 

the value of C* is set similar to C [78], The length of substrings used in string kernels is set 

to 4 (value of k parameter). For mismatch kernel (k, m), wildcard kernel (k, w), and gappy 

kernel (g, k) the experiments have taken place with fixed values of allowed mismatch, wild 

card and gaps which are m — 1, w — 2, k = 2, respectively. 

Online SVM learning 

To demonstrate the effectiveness of Online SVM learning, we applied the Online learning 

algorithm described in section 3.1 to trec05p-l data set, and compared it to batch learning. We 



have chosen the first 80000 emails for training and the remaining 12189 emails for testing. 

Emails, in training and testing processes, have been represented as a stream of chronological 

order, as a classifier has to classify them one by one. 

Generally, results show that all classes of kernels have improved performance in online 

model compared to batch model. Moreover, results vary significantly among kernels, e.g. pre-

cision is between 70.41% and 91.39% , recall is between 67.88% and 92.15%, and F1 results 

are between 67.40% and 90.65% for distance-based kernels. For string kernels, results are 

rather better, where precision varies between 89.67% and 96.89%, recall results are between 

90.12% and 95.31%, and F1 reported results between 91.02% and 95.20%. The classifica-

tion results for distance-based kernels are listed in Table 3.1. RBFX2 weighted with logTF 

has achieved best performance over other distance-based kernels in terms of precision, recall, 

and Fl. In addition, one can note that the second and third highest recall have been achieved 

by RBFLaplacian.TF-IDF and RBFLaplaaan.\ogTF-lDF, respectively, which prove that online 

setting provides natural environment for spam filtering. Moreover, for string kernels, SSK ker-

nel reported the highest precision and Fl with 95.05%, 94.86%, respectively. While spectrum 

kernel has achieved the highest recall with 94.78%. Obviously, spectrum kernel and SSK have 

a very close performance in terms of precision, recall and Fl. For position ware string kernels, 

restricted gappy kernel has a comparable performance to SSk and spectrum kernels. Results 

are given in Table 3.2. 

Transductive SVM 

To examine the effectiveness of TSVM classification, we conducted two experiments. In 

the first one, we trained TSVM classifier using 30000 labeled emails (from each class) from 

trec05p-l data set and 37822 unlabeled emails from trec06 data set (semi-supervised settings). 

Then, TSVM was evaluated using the remaining emails in trec05p-l. In next experiment, 

trec05p-l was divided into halves from each class with 30000 labeled and 50000 unlabeled 

emails for training, and the remaining for testing. In entire experiments, emails were repre-

sented in stream and the canonical order of emails was reserved. 

In Tables 3.3, 3.4, 3.5 and 3.6, TSVM yields better filtering performance than its SVM 

counterpart. In particular, the performance of TSVM trained with unlabeled emails from the 

same test set led to better filtering performance. In both cases string kernels out-performed 
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Kernel Precision Recall Fl 
Polynomial.TF 0.7865 0.8173 0.8016 
RBFGaussian TF 0.8689 0.8416 0.8550 
RBFLaplacian-TF 0.9189 0.8628 0.8900 
RBFx2 .TF 0.8976 0.8444 0.8702 
Sigmoid.TF 0.8987 0.7943 0.8433 
Inverse multiquadric.TF 0.7867 0.8126 0.7994 
Polynomial. logTF 0.8612 0.8234 0.8419 
RBFGaussian- logTF 0.8366 0.8347 0.8356 
RBFLaplacian- logTF 0.8852 0.8876 0.8864 
RBFX 2 .logTF 0.9215 0.9065 0.9139 
Sigmoid.logTF 0.7945 0.8248 0.8094 
Inverse multiquadric.logTF 0.7652 0.8589 0.8093 
PolynomialJTF 0.8267 0.8180 0.8223 
RB FGaussian .ITF 0.8631 0.7898 0.8248 
RBFLaplacian -ITF 0.7645 0.7721 0.7683 
RBFx2 .ITF 0.8972 0.8873 0.8922 
Sigmoid.ITF 0.7737 0.7928 0.7831 
Inverse multiquadric.ITF 0.7778 0.7603 0.7690 
Polynomial.IDF 0.6788 0.7569 0.7157 
RBFGaussian .IDF 0.7578 0.7852 0.7713 
RBFLaplacian IDF 0.7285 0.7857 0.7560 
RBFX 2 .IDF 0.7321 0.7783 0.7545 
Sigmoid.IDF 0.7349 0.6956 0.7147 
Inverse multiquadric.IDF 0.7371 0.6740 0.7041 
Polynomial.TF-IDF 0.8356 0.8089 0.8220 
RBFGaussian-TF -IDF 0.8312 0.8264 0.8288 
RBFLa.placian-TF-IDF 0.8611 0.8931 0.8768 
RBFX 2 .TF-IDF 0.8077 0.7854 0.7964 
Sigmoid.TF-IDF 0.7937 0.8088 0.8012 
Inverse multiquadric.TF-IDF 0.7877 0.8156 0.8014 
Polynomial.logTF-IDF 0.7321 0.7450 0.7385 
RBFGaussian .logTF-IDF 0.7385 0.7467 0.7426 
RBFLaPlacian-l0gTF-JDF 0.8178 0.8879 0.8514 
RBFX 2.logTF-IDF 0.7999 0.7934 0.7966 
Sigmoid.logTF-IDF 0.8096 0.7670 0.7877 
Inverse multiquadric.logTF-IDF 0.7988 0.7657 0.7819 

Table 3.1: The performance of Online SVM spam filtering on trec05-l 

Kernel Precision Recall Fl 
SSk 0.9505 0.9468 0.9486 
Spectrum 0.9466 0.9478 0.9472 
Mismatch 0.9012 0.9145 0.9078 
Wildcard 0.9432 0.8952 0.9186 
Gappy 0.9256 0.9189 0.9222 
WD 0.9189 0.9067 0.9128 
WDs 0.9109 0.9001 0.9055 

Table 3.2: The performance of Online SVM spam filtering on trec05-l using string kernels 
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distance-based kernels. Consequently, It would be of interest to adopt string kernels in con-

structing filters for individuals inbox. The 2006 ECML/PKDD learning challenge tested sev-

eral methods for semi-supervised learning on a small data set of emails spam and ham [62], 

Our initial results confirmed the promising results reported in the challenge, which show that 

TSVMs is strong strategy for spam filtering. 

Indeed, wildcard kernel reported the highest precision among kernels with 96.89%. Mean-

while, SSK reported the highest recall, and Fl with 95.31%, 95.20%, respectively. Besides, 

the best results we obtained for distance-based kernels were precision of 92.01%, recall of 

91.57%, and Fl of 91.79% reported by RBFX2 .logTF. RBFLaplacian.logTF is the second best 

distance-based kernel. However, inverse multiquadratic.IDF is the worst performing kernel 

which confirms our previous results in chapter 2. 

It is interesting to investigate the classification performance against the number of involved 

unlabeled emails over time. From figure 3.1 we can see that unlabeled data can improve the 

results on this problem, especially in the case of few training data. However, when enough 

training data is available to the filter, the improvement is not much (graph is flat) [69]. Figure 

3.2 shows the effect of varying the size of labeled training emails. 

] U n l a b e l e d e m a i l s | 

Figure 3.1: Classification Error on the trec05p-l for RBFX2 .logTF and SSk kernels by varying 
the number of unlabeled emails in training for TSVM 

Online Active Learning 

We combined the online algorithm described in section 3.1 with angle diversity approach 

described in section 3.3 to perform online active learning. We chose the first 60000 emails 
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Kernel Precision Recall Fl 
Polynomial .TF 0.7789 0.8045 0.7915 
RR ^Gaussian .TF 0.8756 0.8501 0.8627 
RBFLaplacian-'^^ 0.9194 0.8794 0.8990 
RBFX 2.TF 0.8930 0.8788 0.8858 
Sigmoid.TF 0.8966 0.8170 0.8550 
Inverse multiquadric.TF 0.7787 0.8240 0.8007 
Polynomial.logTF 0.8537 0.8378 0.8457 
RBF,Gaussian .logTF 0.8189 0.8490 0.8337 
RBFLaplacian .logTF 0.9012 0.8934 0.8973 
RBFx2. logTF 0.9201 0.9157 0.9179 
Sigmoid.logTF 0.8031 0.8358 0.8191 
Inverse multiquadric.logTF 0.7967 0.8731 0.8332 
Polynomial.ITF 0.8345 0.8360 0.8352 
RBFGaussian -ITF 0.8717 0.7956 0.8319 
RBFLaplacian' ITF 0.7930 0.7904 0.7917 
RBFx2 .ITF 0.8989 0.8930 0.8959 
Sigmoid.ITF 0.7689 0.7948 0.7816 
Inverse multiquadric.ITF 0.7947 0.7879 0.7913 
Polynomial.IDF 0.6831 0.7678 0.7230 
RBF,Gaussian .IDF 0.7781 0.7645 0.7712 
RBFLaplacian-TDF 0.7467 0.8012 0.7730 
RBFx2 .IDF 0.7189 0.7370 0.7278 
Sigmoid.IDF 0.7480 0.7089 0.7279 
Inverse multiquadric.IDF 0.7278 0.6978 0.7125 
Polynomial.TF-IDF 0.8540 0.8230 0.8382 
RBFGaussian TF -IDF 0.8356 0.8345 0.8350 
RB FLaplacian-TF-IDF 0.8321 0.8890 0.8596 
RBFx2 .TF-IDF 0.8163 0.7925 0.8042 
Sigmoid.TF-IDF 0.7969 0.8310 0.8136 
Inverse multiquadric.TF-IDF 0.7956 0.8106 0.8030 
Polynomial.logTF-IDF 0.7416 0.7520 0.7468 
ftBFCaussxan.lOgTF-IDF 0.7260 0.7689 0.7468 
RBFLaplacian.\OgTF-lDF 0.8269 0.8659 0.8460 
RBFX 2 .logTF-IDF 0.8166 0.8907 0.8520 
Sigmoid.logTF-IDF 0.8133 0.7950 0.8040 
Inverse multiquadric.logTF-IDF 0.7891 0.7745 0.7817 

Table 3.3: The performance of TSVM spam filtering on trec05-l 

for training and the remaining 32189 emails for testing from trec05p-l data set. Emails, in 

training and testing processes, have been represented as a stream of chronological order, as the 

classifier has the choice to request the label each time. For the parameter A used in Eq. 11, we 

set its value to 0.6. 

As expected, the best results were obtained using string kernels and in particular SSK and 

Spectrum kernel. Compared to the best performance of Online SVM (94.86%) and Active 

Online SVM (96.59%) the latter illustrates improved performance (see Table 3.8). One can 

note a slight reduction for RBF%2 in term of precision, yet it has reported the best results in 

Online Active learning. In general, we can see the improvement of distance based kernels in 
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Kernel Precision Recall Fl 

Polynomial.TF 0.7598 0.8000| 0.7794 
RBFGaussian-TF 0.8506 0.8489 0.8497 
RBFLaplacian .TF 0.9090 0.8644 0.8861 
RBFx2 .TF 0.8739 0.8801 0.8770 
Sigmoid.TF 0.8960 0.8032 0.8471 
Inverse multiquadric.TF 0.7707 0.8103 0.7900 
Polynomial.logTF 0.8367 0.8187 0.8276 
RBFGaussian- logTF 0.8289 0.8401 0.8345 
RBFLaplacian-\ogTF 0.9010 0.8705 0.8855 
RBFX 2.logTF 0.9190 0.8937 0.9062 
Sigmoid.logTF 0.8001 0.8401 0.8196 
Inverse multiquadric.logTF 0.7697 0.8555 0.8103 
Polynomial.ITF 0.8178 0.8109 0.8143 
RBFGaussian .ITF 0.8571 0.8095 0.8326 
RBFLaplacian -ITF 0.7693 0.7445 0.7567 
RBFX 2 .ITF 0.8819 0.8636 0.8727 
Sigmoid.ITF 0.7871 0.7801 0.7836 
Inverse multiquadric.ITF 0.8049 0.7799 0.7922 
Polynomial.IDF 0.6988 0.7709 0.7331 
RBFGaussian .IDF 0.7513 0.7534 0.7523 
RBFLaplacian-IDF 0.7259 0.8105 0.7659 
RBFx2.IDF 0.7164 0.7074 0.7119 
Sigmoid.IDF 0.7355 0.6808 0.7071 
Inverse multiquadric.IDF 0.7270 0.6901 0.7081 
Polynomial.TF-IDF 0.8489 0.8099 0.8289 
RBFGaussian-TF -IDF 0.8263 0.8104 0.8183 
RBFLaplacian- TF-IDF 0.8239 0.8745 0.8484 
RBFxi .TF-IDF 0.8096 0.780^ 0.7948 
Sigmoid.TF-IDF 0.7858 0.8321 0.8083 
Inverse multiquadric.TF-IDF 0.7865 0.7913 0.7889 
Polynomial.logTF-IDF 0.7391 0.7403 0.7397 
jRSFcau^ian.logTF-IDF 0.7301 0.7598 0.7447 
RBFLaplacian- logTF-IDF 0.8196 0.8405 0.8299 
RBFX2 .logTF-IDF 0.8023 0.8900 0.8439 
Sigmoid.logTF-IDF 0.8201 0.7866 0.8030 
Inverse multiquadric.logTF-IDF 0.7756 0.7601 0.7678 

Table 3.4: The performance of TSVM spam filtering on trec05-l, where unlabeled training 
emails are from trec06 data set 

Kernel Precision Recall Fl 

SSk 0.9509 0.9531 0.9520 
Spectrum 0.9657 0.9345 0.9498 
Mismatch 0.8967 0.9277 0.9119 
Wildcard 0.9689 0.9056 0.9362 
Gappy 0.9678 0.9012 0.9333 
WD 0.9571 0.9100 0.9330 
WDs 0.9124 0.9080 0.9102 

Table 3.5: The performance of TSVM spam filtering on trec05-1 using string kernels 
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Kernel Precision Recall Fl 
SSk 0.9507 0.9505 0.9506 
Spectrum 0.9650 0.9205 0.9422 
Mismatch 0.8966 0.9170 0.9067 
Wildcard 0.9501 0.8946 0.9215 
Gappy 0.9656 0.9000 0.9316 
WD 0.9570 0.9099 0.9329 
WDs 0.9105 0.8909 0.9006 

Table 3.6: The performance of TSVM spam filtering on trec05-l using string kernels, where 
unlabeled training emails are from trec06 data set 

Figure 3.2: Classification Error on the trec05p-l for RBFX2 .logTF and SSk kernels by varying 
the number of labeled emails in training for TSVM 

online active model (see Table 3.7). 

It should be noted that online active filter can also be beneficial from a computational 

complexity viewpoint, since the number of labels requested tends to decrease over time. It 

is evident that online active SVM overwhelmingly outperforms online SVM and TSVM on 

the trec05p-1 data set. In particular, Online Active SVM exhibits excellent performance using 

string kernels. However, string kernels are significantly inferior to distance-based kernels in 

term of computational cost. Tables 3.9 and 3.10 illustrates an improvement for both classes 

in time computations. 

Conclusion our experimental results suggest that online active learning is able to yield a size-

able improvement in performance. For instance, string kernels, in particular SSK, yields im-

proved performance compared to batch supervised learning, with reduced number of labels and 

reasonable computational time. These results are very encouraging for spam filtering where 

labeled data are costly while unlabeled data are easy to obtain. In addition, results show a clear 
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Kernel Precision Recall Fl 
Polynomial.TF 0.7978 0.8101 0.8039 
RBFGaussian -TF 0.8696 0.8579 0.8637 
RBFLaplacian - I F 0.9041 0.8678 0.8856 
RBFx2.TF 0.8911 0.8801 0.8856 
Sigmoid.TF 0.8759 0.8204 0.8472 
Inverse multiquadric.TF 0.7976 0.8678 0.8312 
Polynomial.logTF 0.8501 0.8423 0.8462 
RBFGaussian. logTF 0.8325 0.8534 0.8428 
RBFLaplacian .logTF 0.9100 0.8898 0.8998 
RBFx2. logTF 0.9034 0.9167 0.9100 
Sigmoid.logTF 0.8145 0.8404 0.8272 
Inverse multiquadric.logTF 0.7893 0.8821 0.8331 
Polynomial.ITF 0.8306 0.8453 0.8379 
RBFGaussian -ITF 0.8890 0.8011 0.8428 
RBFLaplacian ITF 0.8356 0.7896 0.8119 
RBFX 2 .ITF 0.9054 0.8831 0.8941 
Sigmoid.ITF 0.7965 0.7834 0.7899 
Inverse multiquadric.ITF 0.7997 0.7951 0.7974 
Polynomial.IDF 0.6976 0.7781 0.7357 
RBFGaussian .IDF 0.7591 0.7798 0.7693 
RBFLaplacian IDF 0.7598 0.8120 0.7850 
RBFX 2 .IDF 0.7290 0.7589 0.7436 
Sigmoid.IDF 0.7987 0.7143 0.7541 
Inverse multiquadric.IDF 0.7177 0.7328 0.7252 
Polynomial.TF-IDF 0.8497 0.8345 0.8420 
RBFGaussian-TF -IDF 0.8419 0.8459 0.8439 
RBFLaplacian .TF-IDF 0.8201 0.8977 0.8571 
RBFx2 .TF-IDF 0.8178 0.7956 0.8065 
Sigmoid.TF-IDF 0.7901 0.8422 0.8153 
Inverse multiquadric.TF-IDF 0.7901 0.8200 0.8048 
Polynomial.logTF-IDF 0.7678 0.7690 0.7684 
RBFGaussian- logTF-IDF 0.7580 0.7731 0.7655 
RBFLaplacian-logTF-TDF 0.8308 0.8662 0.8481 
RBFX 2 .logTF-IDF 0.8201 0.8923 0.8547 
Sigmoid.logTF-IDF 0.8324 0.7869 0.8090 
Inverse multiquadric.logTF-IDF 0.7793 0.7856 0.7824 

Table 3.7: The performance of Online Active SVM spam filtering on trec05-l 

Kernel Precision Recall Fl 
SSk 0.9590 0.9729 0.9659 
Spectrum 0.9800 0.9479 0.9637 
Mismatch 0.9033 0.9265 0.9148 
Wildcard 0.9900 0.9112 0.9490 
Gappy 0.9943 0.9043 0.9472 
WD 0.9700 0.9190 0.9438 
WDs 0.9167 0.9088 0.9127 

Table 3.8: The performance of Online Active SVM spam filtering on trec05-l using string 
kernels 
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Polynomail RBFQaussiari RB FLaplacian RBFX 2 Sigmoid Inverse multiquadric 
TF 0.03 0.30 2.40 0.38 0.10 3.10 
logTF 0.40 1.10 4.44 5.00 6.00 2.45 
ITF 1.35 1.55 6.30 4.55 3.03 4.00 
IDF 0.46 2.00 2.00 4.50 3.01 4.05 
TF-IDF 0.02 0.37 3.00 0.34 0.53 3.10 
logTF-IDF 0.40 1.10 3.25 5.00 5.59 2.55 

Table 3.9: Training time for different combinations of frequency and distance kernels 

SSk Spectrum Mismatch Wildcard Gappy WD WDs 
17.37 18.55 19.30 20.20 19.32 19.10 20.00 

Table 3.10: Training time for string kernels 

dominance of online active learning methods, compared to both Online SVM and TSVM. 
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CHAPTER 

Conclusions and Future work 

In this thesis, we described the use of string kernels in order to improve spam filter perfor-

mance. We implemented, tested, integrated various preprocessing algorithms based on term 

frequency, importance weight with normalization to investigate their impact on classifier per-

formance. Moreover, we applied algorithms to adapt batch theoretical models to online real 

world models using string kernels and well-performed preprocessing combinations, and hence 

maximize the overall performance. Furthermore, we applied typical evaluation criteria such as 

precision, recall, Fl, and computational cost to test the effectiveness of potential solutions. 

In chapter two, we gathered legtimate and spam emails and encoded each as a training 

examples using Bag of Words for distance-based kernels and /c-mers for string kernels. For 

feature mapping, extracted features using BoW approach were weighted using one of already 

established weighting schemes in TC. It was found that each frequency transformation has an 

effect on the performance; where applying some frequency transformation the performance 

reaches a comparable values as using TF, logTF , while with others it reaches lower perfor-

mance such as IDF. Results suggest that deletion of stop words is not necessary when using 

SVM to classify emails. We also evaluated how well SVM classified emails based on used 

kernels. The kernels that consistently perform well and tend to produce the most powerful 

classifier are the RBF kernels, in particular, RBFX2 and unaware position string kernels (for 

instance, spectrum kernel and SSk). After extensive experiments we can say that string kernels 

offer an excellent alternative discriminative approach for spam filtering. However, its compu-

tational costs are higher than any of other distance-based kernels, with 10 minutes as best case. 

In chapter three, several algorithms were employed to support the evaluation process of 
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Chapter 4. Conclusions and Future work 

string kernels and preprocessing algorithms and to reproduce effective potential spam filter. 

For fair comparison, we used the same appropriate preprocessing for kernels on the same data 

sets. We modeled three designs: online SVM, TSVM, and Active online SVM. Online SVM 

supplies a real world environment where data come in stream one-by-one, human effort in 

labeling emails was reduced using Transductive and active models. To cope for real scenarios 

we implemented and tested active online model. Ultimately, active online SVM outperformed 

other algorithms using string kernels. 

Spam filtering solutions presented in this thesis generates acceptable, accurate results, but 

further enhancement can be made by taking into account user feedback. Moreover, email 

content is richer than text, it has images, attachment, links, routing and meta information. 

Consequently, classifier might be improved if we consider such information. 
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