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Abstract
Automatic Text Categorisation (TC) involves the assignment of one or more 
predefined categories to text documents in order that they can be effectively 
managed. In this thesis we examine the possibility of applying automatic 
text categorisation to the problem of categorising texts (web pages) based 
on whether or not they are racist.

TC has proven successful for topic-based problems such as news story 
categorisation. However, the problem of detecting racism is dissimilar to 
topic-based problems in that lexical items present in racist documents can 
also appear in anti-racist documents or indeed potentially any document. 
The mere presence of a potentially racist term does not necessarily mean the 
document is racist. The difficulty is finding what discerns racist documents 
from non-racist.

We use a machine learning method called Support Vector Machines (SVM) 
to automatically learn features of racism in order to be capable of making 
a decision about the target class of unseen documents. We examine various 
representations within an SVM so as to identify the most effective method 
for handling this problem. Our work shows that it is possible to develop 
automatic categorisation of web pages, based on these approaches.

1



Chapter 1
Introduction

1.1 M otivation
Automatic text categorisation is concerned with the assignment of documents 
to predefined categories and has been successfully applied in many areas that 
involve the organisation, filing, filtering or routing of documents. These tasks 
are part of our everyday lives and can be applied to many contexts such as, 
assigning patents, advertisements or library books into categories, assigning 
webpages to YAHOO!-style directories or filtering spam. Text categorisation 
has proven successful for such problems, with results comparable to human 
evaluation and performance. Such methods can lead to vast improvements 
in terms of time, manpower and productivity -  the same human effort is no 
longer required as the machine takes over the classification task.

Existing methods for the detection and removal of hate online include the 
setting up of regulatory authorities. For example the Netherlands has set up 
the Complaints Bureau for Discrimination; and hotlines exist in EU coun­

2



CHAPTER 1. INTRODUCTION 3

tries which allow for potential breaches of legislation to be reported. Sites 
are investigated and if found to be illegal, axe eventually removed. Such 
solutions are found to be weak because of the fluidity and size of the Inter­
net. Documents originating in the USA, where legislation is most liberal, can 
be accessed across the globe but belong to another jurisdiction. Technical 
approaches thus far implemented include Internet Content Filters or Label 
Bureaus, which simply label sites and filter offensive ones (Internet Content 
Rating Association1). Email is typically filtered using regular expressions 
containing offensive keywords but this approach is unreliable, as it will only 
filter those emails containing the known keywords and not newer ones. The 
Safer Internet Action Plan, sponsored by the European Commission, is cur­
rently funding various filtering and rating projects including:

• ICRAsafe project will create a system to allow responsible adults to 
restrict children’s access to Internet content that may harm them or 
which is otherwise considered undesirable by the adult;

•  NETPROTECTII is a European tool for Internet access filtering to 
provide textual filtering in eight European languages;

• PRINCIP aims at the development of a multilingual system for the 
detection of racism on the Internet.

All project descriptions can be viewed on the Safer Internet Action Plan 
website.2

Current methods of filtering racism rely heavily on either keywords or the 
labelling of offensive material. In order to implement successful systems, a

1http://ww w.icra.org/
2http: /  /  www.saferinternet.org/

http://www.icra.org/
http://www.saferinternet.org/
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considerable human effort is required, not only in the initial stages of filter 
construction but also on an ongoing basis as the targets of racism change, 
the language evolves, existing websites are edited or new websites are added. 
Given the fluidity of the web, this is one area that may benefit from the 
application of automatic techniques to text categorisation.

1.2 Our O bjective
Our objective is to apply automatic text categorisation techniques to the 
problem of detecting racism online. We will use Support Vector Machines3, 
a machine learning method, to build a classifier that will classify texts based 
on whether or not they are racist. We will talk briefly about the PRINCIP 
project4 and how it helped in our approach to solving this problem using text 
categorisation techniques. We analyse the problem of detecting racism and 
highlight the difficulty of this task comparing it to similar problems in the 
literature. We will investigate different representations of the training data 
within the Support Vector Machine in order to evaluate the most effective 
method for detecting racism online.

1.3 Thesis Layout
Chapter 2: A utom atic Text Categorisation serves as an introduction 

to the area of automatic text catgorisation (TC). We provide a brief 
history of the area and list some of the applications of TC. The vari-

3http: / /svm light .joachirns .org/
4http://www.princip.net

http://www.princip.net
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ous steps and methods involved in building an appropriate document 
representation interpretable by the classifier is core to this chapter. In­
dexing, stemming, stop-word removal and dimensionality reduction are 
examined.

Chapter 3: Machine Learning introduces various methods to classifier 
construction that have been described in the literature. We focus on 
Support Vector Machines (SVM), as this is the approach we will be 
using for this thesis.

Chapter 4: Text Categorisation for Racism on the W W W  takes a closer 
look at the problem of detecting racism online. We introduce research 
that influenced our approach to the problem and the various method­
ologies used for data collection. We also discuss the processes the data 
must undergo for the building of the training and test data and explain 
how the Support Vector Machine is trained and used for classification.

Chapter 5: R esults presents the findings of the text categorisation sys­
tem. We introduce and define each of the representations that will 
be experimented within this thesis. We compare and contrast bag-of- 
words (BOW), n-gram and part-of-speech (POS) representations and 
analyse the effectiveness of the TC system on each representation.

Chapter 6: Conclusion summarises the previous chapters which show that 
text categorisation is possible for the problem of detecting racism on­
line. We discuss the results of our experiments, highlighting the vari­
ous advantages and disadvantages of each approach. We discuss future 
work and experiments to be considered in this area.



Chapter 2 

Autom atic Text Categorisation
This chapter serves as an introduction to the area of automatic text cat- 
gorisation (TC). It provides an overview of the subject area giving a brief 
history of the field and will touch on the various steps involved in building 
an appropriate document representation which can be fed into a classifier. 
Indexing, stemming, stop-word removal and dimensionality reduction will be 
examined in this chapter. This chapter serves as an introduction to the fol­
lowing chapter, which will deal more extensively with machine learning and 
the building of an inductive classifier and will focus in particular on Support 
Vector Machines (SVMs).

2.1 Defining Text Categorisation
“Text Categorisation (TC) is the task of assigning predefined categories to 
free text documents” Yang and Liu [1999]. Texts are assigned to categories 
based on a likelihood or confidence score that is suggested by a training set of

6
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labelled documents to correspond to each category in the assignment. This 
confidence ranges between either {0,1} or { — 1,1} and in order to arrive at 
a yes/no decision or a plus/minus figure for the inclusion/exclusion of a doc­
ument in a category, the confidence score must be mapped onto one of the 
Boolean values {0,1} or one of {—1,1} using thresholds. Text categorisation 
is formally described by Sebastiani [2002] as the task of determining an as­
signment of a value from {0,1} to each entry of the decision matrix where 
{C =  c i , . . . ,  Cm} is a set of pre-defined categories, and {D =  d i , . . . ,  dn} is 
a set of documents to be classified. A value of 1 for indicates a decision 
to assign document dj the category q , while a value of 0 indicates a decision 
not to assign dj the category Cj. The problem of assigning a category to a 
document is made more complex by the fact that sometimes a document may 
belong to more than one category. This is generally application-dependent 
and certain constraints must be enforced on the categorisation system in or­
der for it to cope with multi-labelling. However in the work described in this 
project we will be dealing with single-labelled documents as in this instance 
a document will be either racist or not racist and therefore the categories do 
not overlap.

2.2 Brief H istory of Text Categorisation
Automatic text categorisation has a history dating back to the 1960s. Up 
until the mid 1980s the problem of text categorisation was solved by man­
ually building automatic classifiers. Knowledge engineering techniques were 
used which involved the employment of knowledge engineers and domain ex­
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perts to manually define a set of logical rules which encoded the membership 
rules for each category. These rules were then encoded into a system and 
used to automatically classify documents into a given set of categories. Rules 
typically took the form of if (D NFBooleanf oi'mula) then (assigncategory), 
meaning that if the document satisfied the condition (D N F  Booleanformula) 
then the document was classified under the category (category). The down­
side to this approach is the major human effort that is required in order to 
build and maintain such a system. Knowledge experts must work alongside 
domain experts with the aim of formally defining a set of rules. If the domain 
changes then another domain expert must be employed as a new set of rules 
is required since no two sets of categories are the same. If the set of categories 
requires updating then both professionals are once again employed in order 
to add new rules to the system.

A common and successful example of a rule-based expert system which 
does document categorisation is CONSTRUE, built by the Carnegie Group 
(Hayes et al. [1990]) for use at the Reuters news agency. Rules were manually 
constructed to automatically assign subject categories to news stories and 
Hayes et al. [1990] reports the system to have done so with a precision and 
recall of over 90%. However, Sebastiani [2002] pointed out that no other 
classifier has been tested on the same dataset and that it is unclear whether 
the dataset selected by Reuters was a random or favourable subset of the 
whole collection. Apte et al. [1994] agreed that the results of the CONSTRUE 
system were exceptional but criticised the test set for being relatively sparse 
compared to the number of possible topics, while Yang [1999] pointed out 
that adapting the CONSTRUE system to other application domains would
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be costly and labour-intensive, a reason which has probably discouraged a 
lot of people from testing CONSTRUE on other domains.

The 1990s saw a renewed interest in the field of automatic text categori­
sation for various reasons. The availability of more powerful hardware led 
to a surge in efficiency and productivity. The explosion of documents avail­
able in electronic format and the advent of machine learning approaches to 
automatic classifier construction also contributed towards reigniting interest 
in the field. These new approaches of automatically constructing classifiers 
to perform automatic text classification superseded the earlier and costlier 
knowledge engineering techniques and provided us with results comparable 
to human evaluation and performance and savings in terms of manpower, 
as knowledge experts were no longer necessary. The promise of a future of 
machines capable of reading, examining and making decisions on the cate­
gorisation of free text has also led to a growth in interest in the area and 
subsequently TC has become a major field of research.

2.3 Applications of Text Categorisation
Text categorisation - the organisation, filing, filtering or routing of docu­
ments - is something that is part of our everyday lives and it can be applied 
to many contexts. The assigning of documents to predefined categories is 
a task that is required in many domains on an everyday basis, such as the 
labelling of library books or the assignment of patents into associated cat­
egories. Until the introduction of automatic solutions, such work has been



CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 10

carried out manually. PubMed1, a service of the National Library of Medicine 
providing access to over 12 million MEDLINE citations and additional life 
science journals, spends huge amounts of money each year on human index­
ers. There is, therefore, a strong justification for automatic or semi-automatic 
text categorisation. The following examples outline some of the more salient 
applications of TC.

One of the first uses of automatic text categorisation was automatic docu­
ment indexing for use in information retrieval systems relying on a controlled 
dictionary. In such a system, each document is assigned one or more key­
words or key phrases. These words are used to describe the content of the 
document and belong to a finite set of words referred to as a controlled 
dictionary which is often composed of a hierarchical thesaurus, such as the 
MeSH thesaurus which covers the medical field. Trained human indexers 
assign keywords or key phrases to a document, thereby making it a costly 
procedure. By viewing entries in the dictionary/thesaurus as categories, doc­
ument indexing then becomes a categorisation problem and can therefore be 
addressed by the more sophisticated automatic techniques. The issue is also 
closely related to the task of automatic metadata generation of documents 
in digital libraries. To ease retrieval of books they are tagged according 
to information (metadata)  that describe them under headings such as title, 
author, creation date, document format and so on. Through the use of a 
controlled dictionary the task of automatically generating metadata may be 
dealt with in a similar manner to document indexing and may thus be solved 
using automatic text categorisation methods.

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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Classified advertisements for newspapers can be organised into their as­
sociated predefined category using TC. This procedure is referred to as docu­
ment organisation. In a printed newspaper, classified advertisements appear 
under certain categories such as Home, Property, Auto, Travel, etc., which 
means that prior to publication incoming advertisements must be filed ac­
cording to the newspaper’s list of classified categories. Automatic techniques 
may be employed to relieve the pressure and time-consuming activity of man­
ual classification.

TC may also be employed to filter or route SPAM on an email server, i.e. 
document routing or document filtering. The abundance of SPAM being sent 
via email servers is a major disadvantage of the information age. According 
to a report by ePrivacy Group [2003], AOL claims to block 2.4 billion spam 
emails per day . Since such information is unlikely to be of interest to the 
average email recipient, normal practice is to delete or filter such emails from 
the inbox. However, email filters are not very effective unless looking for a 
specific string or strings but not all SPAM can be detected by simply looking 
for candidate strings. Using automatic techniques, a system can be trained 
on a dataset of typical examples of SPAM, which is then used to identify 
patterns that will detect and filter future SPAM entering the email server or 
a person’s inbox.

TC techniques have been successfully used to automatically populate 
YAHOO!-like hierarchical directories. YAHOOl-like hierarchical catalogues 
allow users to refine their search to the particular area of the subject hierar­
chy of interest to them. Such catalogues guarantee that the user is exposed 
to documents relating only to a particular category. These catalogues or
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directories may be populated using TC, namely by classifying web pages or 
web sites into one of the several categories that make up the directory.

Some recent applications of TC reported by Dumais et al. [2002] in the 
2002 Workshop on Operational Text Classification include:

• Multimedia Categorisation by Thomson Multimedia2 and Singingfish3 
who categorise multimedia streams based on the metadata associated 
with each file; spam detection by Elron Software4;

• The use of text categorisation to support question-answering systems 
by the Electronics and Telecommunications Research Institute5 in Ko­
rea;

• The use of text categorisation to support Northern Light Technology’s6 
search engine where “category assignments are used to group the docu­
ments returned by free text search, and to improve the quality of their 
ranking” Dumais et al. [2002].

There are many more applications of TC, both existing and potential. Text 
categorisation, either automatic or semi-automatic, can lead to vast improve­
ments in productivity as well as savings in terms of time and human effort.

2 http://ww w.thom son.net/EN /hom e
3http://www.singingfish.com/
4http://www.zixcorp.com /
5http://www.etri.re.kr
6http://www.northernU ght.com/

http://www.thomson.net/EN/home
http://www.singingfish.com/
http://www.zixcorp.com/
http://www.etri.re.kr
http://www.northernU
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2.4 Text Categorisation and Information Re­
trieval

So what do TC and Information Retrieval (IR) have in common? IR is 
concerned with the matching of a user’s information need, expressed as a 
query, against a corpus of documents in order to rank documents in the corpus 
in order of their estimated relevance to the information need. TC on the other 
hand is concerned with assigning documents to predefined categories. Both 
are content-based management tasks and for this reason TC relies heavily 
on the basic machinery of IR, borrowing many of the techniques that are 
traditionally and primarily associated with IR. There are three main steps 
involved in the building of a text categorisation system. IR techniques are 
borrowed and applied to each stage.
Indexing: Indexing is the first step in the building of a text categorisation 

system. The TC system cannot understand documents in plain text 
format so they must be transformed into a format amenable to the 
TC system. Indexing is performed on the initial training corpus and 
on those documents to be categorised by the classifier when it is in 
operation. We will discuss indexing in the next section 2.5.

Classifier Construction: Classifiers take the training data as input and 
learn features of that data so that when presented with unseen data, 
those learned features will be used to make a decision about the cate­
gory in which the document is assigned. Some techniques traditionally 
associated with IR are employed during the inductive construction of 
classifiers. We will introduce some of the approaches to classifier con-
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truction in chapter 3 and talk about Support Vector Machines in more 
detail.

Evaluation: An evaluation procedure is used to measure the effectiveness of 
the classifier. Having being trained on the training data, the classifier 
is presented with test data and the performance of the classifier is 
evaluated. TR-style evaluative measures are commonly employed, such 
as precision and recall. The evaluative methods used in this thesis will 
be discussed in section 4.5 of chapter 4.

2.5 The Indexing Procedure
The first stage in the building of a text categorisation system is the index­
ing procedure. As text documents are not interpretable by a classifier, an 
indexing procedure must be applied to the text so as to convert or map it 
onto an appropriate representation that can be fed into the classification sys­
tem. Indexing is an important step in text classification as the way in which 
a document is indexed can have a dramatic effect on the performance of a 
classifier. Term generation and weighting methods that have been tried and 
tested in the literature will be discussed in greater detail in section 2.5.1.

A number of other operations can be performed on documents before, 
during and after indexing, the idea being to reduce the number of index 
terms in the term space and thereby enhance the overall efficiency of the 
classifier without any loss in effectiveness. We discuss these operations in 
section 2.5.2.
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2.5.1 Indexing
In IR each document is usually represented by a vector of n  weighted index 
term,s. TC has adopted this approach but differences between the various 
indexing approaches axe reflected by different interpretations regarding what 
constitutes a term and how weights are measured in a document.

Term Generation
Term generation varies in the amount of linguistic and statistical sophistica­
tion that is applied. To form the simplest indexing language, each word can 
be treated as a feature. This is a common approach and is referred to as the 
bag of words (BOW) approach. However, relationships such as polysemy and 
synonymy which exist between words, do not make this approach an ideal 
one and for this reason more complex methods are investigated for the cre­
ation of an effective set of terms or features. For instance, many experiments 
have been carried out using phrases as indexing terms Lewis [1992], Cohen 
and Singer [1996], Kelledy and Smeaton [1997], Chandrasekar and Srinivas 
[1997], Fiirnkranz [1998], Mladenic and Globelnik [1998], Tan et al. [2002]. 
In such cases a phrase is either defined using linguistic information (i.e. the 
phrase is identified as such according to the grammar of the language of the 
document) or by using statistical methods (i.e. the phrase is identified as 
such according to the recurring frequency of a set of words).

There is conflicting evidence regarding the effectiveness and usefulness of 
the employment of linguistic methods in TC. Lewis [1992] and Smeaton [1997] 
have found that experiments using more sophisticated linguistic methods do 
not perform as well as individual words. On the other hand, Furnkranz [1998]
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claims that a richer, more fine-grained representation of the document can 
provide a learner with valuable information about a document and lead to 
improvements in performance. The application of linguistic procedures does 
allow us to express language in a clearer structure in terms of the roles words 
play in a text and the relationships between words, and this in turn provides 
a classifier with richer information about a document. Unfortunately much 
of the research that has employed linguistic methods has not been as effective 
as hoped. But, despite this, many are still investigating the impact of such 
methods and Lewis [1992] believes that a combined linguistic and statistical 
approach may be one solution to the problems of text categorisation. In the 
following section we will introduce some of the literature that uses linguistic 
methods and those that use statisical methods for term generation and in­
dexing.

Using Linguistic Information in Term Generation
Various linguistic approaches to generating index terms, a process that can 
also be part of indexing for TC, have been tried and tested in the literature 
and some of the approaches will be discussed in greater detail in this section.

Chandrasekar and Srinivas [1997] illustrated how syntactic information 
can be effective in filtering out irrelevant documents after documents have 
been retrieved by a search engine. They reported on the performance of 
two different methods of syntactic labelling, namely Part of Speech (POS) 
Tagging and Supertagging. POS was performed using an n-gram tagger 
which used a tagset from the Penn Treebank7 and a trigram model to assign

7http://w w w .cis.upenn.edu/ treebank/home.html

http://www.cis.upenn.edu/
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supertags to each word. The difference between the two approaches is that 
Supertagging contains richer more fine-grained information including sub­
categorisation and agreement information about words. Chandrasekar and 
Srinivas claim that syntactic filtering works; however both training and test 
sets were very small and so larger datasets may produce conflicting results. 
Since taggers were used to tag the training and test sets, presumably this 
system would work best on data similar to that on which the taggers were 
trained; different data might not be tagged as accurately thereby, increasing 
the error rate of the taggers. POS taggers are prone to mistakes and do 
not tag correctly 100% of the time. This can in turn lead to erroneous 
patterns being created, which could be responsible for the miscategorisation 
of some documents. Figure 2.1 is taken from a POS-tagged document in the 
non-racist dataset and illustrates a tagging error. In the sentence Wear or 
display the flag, the VERB wear is falsely fagged as a NOUN.

Fiirnkranz [1998] illustrated how the use of linguistic phrases as input 
features can improve precision at the expense of recall. Linguistic phrases 
were constructed using a system called AUTOSLOG which is an automatic 
method for extracting patterns from a POS-tagged text. The system is fed 
noun phrases which are used in the construction of linguistic patterns which 
are in turn used by the classifier during the categorisation of documents. 
Fiirnkranz et al. tested two classifiers using words as features, phrases as 
features and words and phrases as features. Inconsistencies were noted in 
how the data was prepared in the pre-processing stages of the learning stage; 
this may have had an effect on the differences in performance between the 
two classifiers. Phrases were shown to be more precise at classifying docu-
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<Aexeme>
«lexeme n 59' CCC2 4 :

j ß M  läce-fot'm-Waar -.'surface-form--- 
/ < s e n s e - l i s t  disambiguated-'yes">

<sense id="1 ">
<part-of-speech:=NOUN=4Dart-of-speech> 
<base-form>wear</base-form> 

ll</sense></sense-iiötJa.
*/lexeme>
«lexeme id="598" start="3697" length="2"> 

<surface-form>or</surface-form>
<sense-list disambiguated="yes">

<sense id="1 ">
<part-of-speech>COORD</part-of-speech>
<base-form^or=:/base-forms-

</sense>
</sense-list>

<rtexeme>
«lexeme id="599" start=,,3700" length="7"> 

<surface-form>display=:/surface-form>
<sense-list disambiguated="yes">

<sense ld="1 ">
<part-of-speech>VI</part-of-speech>
<base-form>display</base-form>

</sense>
</sense-list>

<^exeme>
«lexeme id="600" start="3708" length="3"> 

<surface-form>the</surface-form>
<sense-list disambiguated="yes"> 

ásen se id="1 ">
<part-of-speech>DET</part-of-speech>
<base-form>the</base-form>

</sense>
</sense-list>

«flexeme>
Figure 2.1: An example of a POS tagging error
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ments but at the expense of recall. It was noted that phrases were chosen as 
rules by the classifier less frequently and that a word-based rule was deemed 
to be the most productive. In fact it was found that few of the phrasal 
rules featured as the top rules which may be explained by the fact that their 
classifier sacrifices precision for recall. One of the major drawbacks with the 
use of syntactic information in indexing and in classification is the compu­
tational cost of POS-tagging a document. In general many more extensive 
tests must be carried out before it can be said that linguistic phrases improve 
the classification.

Lewis [1992] performed tests on the use of syntactic indexing phrases, clus­
tering of these phrases and clustering of words and found these approaches to 
be less effective than frequency of occurrence, and in order to be productive, 
many more phrases were needed by the classifier. Lewis showed word-based 
features to be more effective. This type of representation outweighs the use 
of the phrases for now, especially since a greater effort is required to build 
a feature set of phrases (i.e. POS-tagging, feature extraction). Many pre­
processing decisions or tunings (which can have a considerable impact on 
the performance of the classifier) must be made before the classifier can be 
tested and evaluated. For example in this experiment, Lewis [1992] uses a 
statistical model for probabilistic text, retrieval. In order to work for text 
categorisation, the probabilities are converted into a binary output using a 
threshold. However, such a formula assumes that these estimates are equally 
weighted or equally consistent across categories and also across documents 
where in reality, this may be far from the truth. The criteria used to select 
features, estimate probabilities, cluster terms each contribute towards the
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performance of a classifier and so perhaps it is a case of finding the right 
combination or blend of criteria or methods when employing syntactic infor­
mation. Lewis believes syntactic information adds valuable information and 
combined with statistical measures is a potentially promising approach to 
text categorisation.

Freitag [1997] uses grammatical inference methods together with machine 
learning methods for the extraction of essential information -  such as seminar 
location, starting time, ending time, speaker -  from a collection of seminar 
annoucements taken from online bulletin boards. Freitag treats this problem 
as a classification problem by training the machine to classify fragments of 
text into, for instance, one of location or non-location. For this type of 
problem the bag of words approach does not suffice. Freitag points out that 
“it can be effective at identifying the approximate location of the relevant 
text fragments” but it can have “difficulty identifying the location of the 
correct field boundaries”. So grammatical inferences are used to add syntac­
tic information about the structure of the type of information that is being 
sought. For instance, if we want to find the start time of the conference or 
seminar we would be looking for something of the form (number, colon, 
number, number). Prior to training, the data must be transferred into a 
format amenable to automatic methods -  the training samples are tokenised, 
tokens are translated into abstract symbols and a grammar is inferred over 
the abstract sequences. This information is then used in training. Freitag 
found that this method resulted in improved precision and believes that such 
a method could prove fruitful for information extraction systems.

Musuyama and Nakagawa [2004] recognise that recent research has re­
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ported lower performance of SVM-based text categorisation methods when 
parts of speech are used as input words and large datasets are used. To im­
prove performance, Musuyama and Nakagawa use a two-step categorisation 
method with a variable cascaded feature selection to predict a pair of the 
best number of words and the best POS combination for each category. Dif­
ferent POS combinations and number of words (100,200,300,..., 1000) are 
tested so as to identify the best POS combination and the optimal number 
of features for each category. Mutual information is performed on the ex­
tracted words to identify the potential keywords of a category. In this paper, 
for a category C, categorisation involves two steps -  step one extracts words 
from the POS combination for C and categorises texts into positive or nega­
tive. Further classification is performed on the texts in the positive category 
-  this time words from all POS types are extracted, mutual information is 
performed and the documents are classified a second time. Musuyama and 
Nakagawa reported higher precision than other practitioners such as Fuku- 
moto and Suzuki [2002] who have conducted similar experiments using POS. 
Although both experiments were conducted on Reuters corpora, Musuyama 
and Nakagawa used a different dataset to Fukumoto and Suzuki [2002] -  and 
this may well have influenced performance.

Using Statistics in Term Generation
The following illustrates the kinds of statistics-oriented approaches to the 
generation of indexing terms that have been explored in the literature.

Mladenic and Globelnik [1998] propose an interesting approach, combin­
ing feature generation with feature selection through the use of statistical
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methods. What is interesting about this method is the fact that the bag-of- 
words vector space is enriched with phrasal information (word sequences), 
meaning the classifier is not relying on the performance of phrases alone. 
N-gram (2 >  n > 5) sequences of words were tested, with n = 3 proving to 
be the most effective. Two training corpora were used consisting of 5406 and 
1995 web documents. The training corpus was represented as a word-vector, 
stop words were removed and the vector was pruned, removing all words 
with a term frequency less than 3. The vector was then enriched by adding 
all n-gram (where 2 > n  > 5) word sequences with a frequency greater than 
3. Feature selection techniques (cf. section 2.5.2) were then applied to the 
feature set, assigning a score to each feature so as to allow a subset of the 
highly scoring features to be chosen as the final feature set. Mladenic and 
Globelnik [1998] did not report on how many features (k ) were most effective; 
it would be interesting to compare different values of k so as to identify the 
most effective k features. It would also be interesting to investigate whether 
words or word sequences scored highly. This information is not provided in 
the published paper and may provide some further insight into the value of 
n-gram word sequences in text classification. The addition of n-gram word 
sequences improved the performance of the classifier by 7-8%. The size of the 
training (5406 and 1995) and test sets (300) were rather small and it would 
be interesting to test this approach on a more widely used dataset such as 
Reuters and also by using various other classifiers to see if they outperform 
the Naïve Bayesian Classifier used in this experiment.

Typically, linear classifiers (based on algorithms such as Bayes and Roc- 
chio (cf. chapter 3) assume that the context of a word w has no impact
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on the meaning of w, which is of course not true. For this reason Cohen 
and Singer [1996] aimed to construct a classifier that allows the context of a 
word w to affect whether the presence or absence of w will contribute to a 
classification. In this paper, Cohen and Singer investigated two algorithms 
each of which have different notions as to what constitutes context. For 
the RIPPER algorithm, a context of a word w is interpreted as a number 
of other words that must co-occur with w but their order and location in 
the document is irrelevant. So the presence of a word w will only influence 
the prediction of document D into class C if w co-occurs with w2, . . . ,  wk. 
The Sleeping-Experts system, on the other hand, interprets the context of 
a word w as consisting of words that occur near w and in a fixed order. 
So the presence of a word w will influence the prediction of document D 
into class C if certain words occur in a certain order and near w. Cohen 
and Singer reported impressive results on numerous datasets (Reuters-22173 
corpus, AP titles corpus, TREC-AP titles and the Reuters-21578 corpus). 
Both algorithms achieved lower error rates than the Rocchio classifier and 
reportedly performed better on the Reuters corpus than any comparable al­
gorithms that were previously applied to this corpus. It is difficult to directly 
compare the performance of these classifiers with other similar experiments, 
but since both RIPPER and Sleeping-Experts were thoroughly tested on sev­
eral datasets and outperformed the Rocchio algorithm each time, it can be 
deduced that contextual information is useful in text classification.

Firrnkranz [1998] employed a simple but efficient algorithm, very similar 
to that used by Mladenic and Globelnik [1998], for the generation of n-grams 
for use in classification. He investigated the use of n-grams as features on two



datasets (Reuters and Ken Lang’s 20 newsgroup dataset) using the RIPPER 
classifier. Stop words were removed from the corpora, sentence boundaries 
were ignored, numbers were converted to the letter D  and all characters 
were converted to lower case. An algorithm was used to generate n-grams. 
Each document represented m  set-valued features, one for each n-gram size 
1 < m  < M axNG ram Size, i.e., when m  =  3, for example all 3-grams, 
2-grams and 1-grams are included in the feature set. The feature set under­
went pruning experiments (light, moderate and heavy pruning) in order to 
find the most effective feature set size. Pruning was based on a user-specified

Table 2.1: Light, Moderate and Heavy Pruning Thresholds used in Fiirnkranz 
[1998] _______________________________________________
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M inTermFrequency MinDocFrequency
Light 3 5
Moderate 5 10
Heavy 10 20

term and document frequency thresholds, where all sequences that occurred 
at least MinTermFrequency and MinDocFrequency in the documents were 
included. Table 2.1 outlines the thresholds that were used during light, mod­
erate and heaving pruning. Like Mladenic and Globelnik [1998] who used 
a similar method for the generation of features, Fiirnkranz also found that 
word trigrams actually improved the precision of the classifier. The top ten 
most frequent features for the Ken Lang dataset interestingly enough con­
sisted of unigrams only, most of which were not indicative of any class. All in 
all Fiirnkranz showed promising results for the use of word sequences in text 
classification -  it was shown that after heavy pruning unigrams seem to be
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as effective performance-wise as bigrams generated after moderate pruning.
Another similar reported piece of work investigating the use of bigrams 

to enhance text classification is that of Tan et al. [2002], who used bigrams in 
addition to unigrams. Those unigrams that appeared in a significant number 
of documents were selected and used as seeds for the generation of bigrams. 
Bigrams were generated and chosen on the basis that at least one of the 
elements of the bigrams had to be a seed. Further feature selection tech­
niques, namely information gain, term frequency and document frequency, 
were applied to the feature set to find the best discriminators and reduce the 
dimensionality of the term space. Tan et al. reported improvements in the 
performance of the system when unigrams and bigrams were used instead 
of just unigrams. The classifier was tested on two datasets (Reuters and 
YAHOO!-Science), each of which reported improvements. For the YAHOO!- 
Science collection 35.2 of the top 100 features in terms of information gain 
were bigrams while for the Reuters collection 44.6 were bigrams. Considering 
there were 1426 bigrams and over 160,000 unigrams in the YAHOOl-Science 
feature set and only 531 bigrams and about 40,000 unigrams in the Reuters 
features set, these figures are pretty impressive. Although Tan et al. showed 
that the use of bigrams enhanced the overall performance of the classifier, 
some of the categories seemed to benefit from the addition of bigrams much 
more than others. One reason for this was that some categories were best 
categorised by unigrams meaning bigrams were not necessary for the cate­
gorisation task. Another reason suggested that there was an over-emphasis 
on some concepts for some classes, thereby leading to a misclassification.
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Term W eighting
As previously mentioned, each document in a text categorisation task is 
usually represented by a vector of n  weighted index terms. One of the things 
that differs among methods of term generation is the way in which a term 
is weighted. The simplest term weighting technique is the binary approach 
where 1 denotes presence and 0 denotes absence. Alternatively, the number 
of occurrences or the frequency can be used to weight a term. Frequency is 
calculated by dividing the number of occurrences of the term in the document 
by the total number of words in the document. More complex term weighting 
methods exist, with weights usually ranging between 0 and 1. The term 
weighting function (see 2.1) by Salton and Buckley [1988] is a commonly 
used method.

T F  * IDF(t„, dj) =  #((*, dj) • log
(2.1)

where #(ifc, dj) refers to the number of times the term tk occurs in document 
dj and #T r(tk)  refers to the number of documents in the dataset T r  in which 
the term tk occurs. This is also known as the document frequency of the term. 
TF*IDF measures the relevance of a term to a document, i.e. the more a 
term occurs in a document, the more important it is and therefore more 
representative it is of the content of a document. This function also takes 
into consideration the fact that a term is less discriminating if it occurs in 
many documents. For example function words such at, the, a, of, at, in, etc.
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occur many times in many documents and are not good content indicators. 
In order to make weights fall between 0 and 1, they are normalised using 
cosine normalisation.

2.5.2 Other Operations
Removal of Stop Words
Before a document is indexed, the normal procedure in information retrieval 
and in text classification is to remove stop words. Stop words comprise 
those words which are neutral to the topic of the document (or query in 
information retrieval) and would therefore generally contribute very little 
to the classification of a document. They are often defined by a stoplist 
and include articles, prepositions, conjunctions, pronouns and some high- 
frequency occurring words. This technique is always performed in IR so as to 
reduce the number of index terms in a document, to enhance computational 
efficiency and to minimise the amount of superfluous information in the term 
space — prepositions, conjunctions etc. do not provide information about a 
document or help in discerning to which category a document belongs.

Many systems use the same generic stoplist consisting of between 300 and 
400 words for English. However, research has been conducted into the gener­
ation of domain-specific stoplists by Yang and Wilbur [1996]. Such stoplists 
are typically much larger than the average domain-independent stoplist so 
as to make the scaling of categorisation systems more tractable when ap­
plied to large amounts of data. In a 1996 JASIS paper, Yang and Wilbur
[1996] apply the Wilbur-Sirotkin stop word identification method (Wilbur
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and Sirotkin [1995]) to text classification in order to reduce the computa­
tional cost without having to trade-off on categorisation effectiveness. The 
Wilbur-Siroktin approach aggressively removes words by estimating the im­
portance of a word using relevance information between texts instead of tra­
ditional word weighting methods which are only based on word frequencies 
in a text collection. Yang reported that automated word removal based on 
corpus statistics resulted in considerable savings in time and memory and 
improvements in retrieval with respect to precision.

Stop words are not removed in experiments using syntactic information 
to represent the text, for example Lewis [1992], Chandrasekar and Srinivas
[1997]. Such experiments require the presence of all of the original words 
in a sentence or document in order to assign the correct POS tag. Term 
or feature extraction techniques are used to identify the most discriminating 
and effective patterns. Term extraction techniques will be dealt with later 
on in the chapter under the heading dimensionality reduction.

Stemming
Stemming is another step performed in IR in order to normalise indexing 
terms. Stemming involves collapsing words that share the same stem by re­
moving the inflectional ending of the word e.g. race, racism, racist, racially 
all become rac which in turn leads to a considerable reduction in the di­
mensionality of the term space. However, this step is not always included in 
TC pre-indexing steps, as some have found it to be beneficial and improve 
performance, while others have not.

A variation of stemming, but an approach that employs linguistic rather
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than statistical methods, is lemmatisation. Lemmatisation is a linguistic 
rather than a statistical task because it is closely related to the identification 
of the part-of-speech of a word. It involves the reduction of words in a 
document or corpus to their respective lexemes, thereby allowing a researcher 
to extract all variants of a lexeme. For the text categorisation task, it is more 
important to know the root (lexeme)  of a word than to know the word stem. 
A lemmatiser automatically disambiguates which root applies to each word 
in a document or corpus. The main difference between a lemmatiser and 
stemmer can be illustrated in the following example:

be (lexeme/root) — » is, am, was, were, are, be 
be (stem) — * be

A stemmer on the other hand is incapable of making this sort of summarisa­
tion. Lemmatisation is therefore more sophisticated and a potentially useful 
pre-indexing step for text categorisation.

In the UPLIFT8 project Kraaij and Pohlmann [1996] have shown that 
linguistic stemming, also known as lemmatising, can “yield a significant im­
provement in recall over non-linguistic stemming, without causing a signifi­
cant deterioration in precision”. In contrast, Krovetz [1993] found that his 
stemming technique does not result in improvements in performance. There 
are pros and cons to stemming and lemmatisation and as we have seen these 
pre-processing steps do not always result in an improvement in performance. 
Performance improvements may be related to the type of categorisation prob­
lem at hand. For instance stemming/lemmatisation may lead to improvments 
in the performance of a classifer for categorisation tasks that can be described

8Utrecht Project: Linguistic Information for Free Text Retrieval
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as crispy bounded discourse domains, i.e. a category that is clearly defined 
by a representative set of keywords which are not used to decribe other cate­
gories. The classifier does not suffer as a result of the lack of specificity of the 
terms, i.e. rac instead of racially, race, races, racist, as the discourse domain 
is well defined and crisply bound. As a result, the reduced number of terms 
leads to a reduction in dimensionality, thereby making the classifier more 
efficient. For discourse domains that are not crisply bound, for example the 
detection of racism, my expectation would be that stemming/lemmatisation 
would not lead to an improvement in performance. Slight inflectional varia­
tions of words can influence the orienation of a text. For instance, racially is 
predominantly found in racist texts while racial is more likely to be found in 
anti-racist texts. Stemming would reduce both forms to rac, thereby making 
us unable to make a distinction between the two variations -  for that reason 
stemming/lemmatisation could have a negative impact on the performance 
of the classifier.

Dimensionality Reduction
In TC, since the number of terms occurring just once in a corpus can be 
extremely high, efforts are made to try and reduce the dimensionality of the 
term or vector space from r  to rf < r. A larger number of term spaces 
can prove to be quite problematic in TC, as such systems do not always 
scale well to term spaces with high values. Also, vector spaces with high 
dimensionality can lead to a problem referred to as overfitting, whereby a 
classifier is also trained to recognise characteristics of the training data that 
are not necessary.
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A good example of overfitting as provided by Sebastiani [2002] is that of 
a classifier trained on three examples for the category CARS FOR SALE. Two 
of the advertisements were concerned with the sale of blue cars and as a 
result a classifier would consider the colour of the car (i.e. blue) to be a char­
acteristic of the category. Therefore classifiers affected by overfitting tend 
to be exceedingly good at classifying training data but not so effective at 
classifying unseen data. For these reasons efforts have been made to reduce 
the dimensionality of a vector space from r terms to rl < r. Dimensionality 
reduction (DR) can be applied either locally or globally. Local DR aims to 
reduce the number of terms chosen for each category while global DR aims 
to reduce the number of terms that are chosen across the set of all categories. 
There are two main approaches to doing DR, namely term selection and term 
extraction. Both will be discussed in further detail in the next section.

Term Selection
The rf terms are chosen by selecting a subset of the original r terms. The 
idea is to choose a term set that would yield the least reduction in effective­
ness but at the same time result in a reduction in the number of terms in 
the term space. There are many methods of reducing the dimensionality of 
a term space; the following briefly introduces some of those methods:
Docum ent Frequency #Tr(£fc) is one of the more simple methods of di­

mensionality reduction and refers to the number of documents in the 
set T r  in which the term tk occurs. Using this technique it is possible 
to reduce a term space by a factor of 10.

Information Gain measures the number of bits of information obtained



for category prediction by knowing the presence or absence of a term 
in a document. Joachims [1998b] used the information gain criterion 
to avoid overfitting and to reduce the number of irrelevant features.

M utual Information of a term t, i.e. M I(t, c) is the amount of information 
gained about t  when c is learned. This information can be represented 
in a two-way contingency table where t is a term and c is the category. 
X  is the number of times t and c co-occur, Y  is the number of times 
that t  occurs without c, Z  is the number of times c occurs without t 
and N  is the total number of documents. See equation 2.2 (below) for 
how mutual information is measured.
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log

(2.2)

X x N
(X + Z )x (X + Y )

M I(t, c) =  0 if and only if t  and c are independent. Lewis [1992] used mutual 
information to assess and rank features for each category

Chi-Square measures the lack of independence between t and c. It is a 
rough measure of confidence, testing whether or not a difference in fre­
quency reflects a real difference between two texts/categories or just an 
accident. The null hypothesis i.e. where there is no difference between 
the two texts/categories, is taken as the expected frequency and the 
observed frequencies are estimated. A 2 x 2 contingency table is used



where t is a term and c is the category. A  is the number of times t 
and c co-occur, B  is the number of times t occurs without c, C  is the 
number of times c occurs without t , D is the number of times neither 
c nor t  occurs and N  is the total number of documents (see Table 2.2 
for calculation of chi-square).

Table 2.2: Contingency Table for Chi-square
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t not t
c A C
not c B D

If the chi-square value is greater than 3.84 then there is less than a 5% 
probability that there is no difference between two texts. Unfortunately 
chi-square is said to be not very reliable for low-frequency terms, as the 
chi-square distribution can no longer be accurately compared if cells in 
the contingency table are lightly populated.

Term Strength used a confidence score to measure the strength of a term. 
Term strength indicates how important a word is and measures how 
informative a word is in identifying related documents. As discussed 
earlier in the chapter, this method was investigated by Yang and Wilbur
[1996] in order to remove redundant (non-informative) words and thereby 
enhance text categorisation. The cosine co-efficiency is used in order to 
identify document pairs that are similar. Using this information, term 
strength then measures the likelihood of a term appearing in a related 
document by estimating the conditional probability of a term occur­
ring in the second half of a pair of related documents given it occurs
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in the first half. Scores fall between 0 and 1 with 0 being the lowest 
strength (i.e. words occurring only in non-related documents) and 1 
being the highest value, therefore implying that shared words among 
related documents are more informative than others. This method is 
more similar to document frequency than to any of the other methods 
discussed.

Case Study: Yang and Pedersen [1997]
Yang and Pedersen [1997] tested each of the above term selection meth­
ods on two corpora (Reuters and a subset of the MEDLINE corpus) 
using two learning algorithms -  the k nearest neighbour (kNN) and 
Least Linear Squares Fit (LLSF) algorithms. The effectiveness of the 
feature selection technique was evaluated by accessing the performance 
of the classifier on the dataset using precision and recall. They showed 
that document frequency performed nearly as well as information gain. 
Since document frequency has a lower computational cost, this ap­
proach is favoured over the more computationally expensive informa­
tion gain. Mutual information was found to perform poorly.

Term Extraction
The rf terms are not chosen by selecting a subset of the original r terms 
and may not at all resemble the original r terms. Rather the rf terms are 
obtained through a series of alterations, combinations and transformations 
of the original r  terms.

Term Clustering is a cluster analysis method that involves the grouping 
of terms which are similar. In some cases similarity between terms is
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measured by the degree to which two terms occur in the same docu­
ment. Term clustering can be used for example to group redundant 
terms, thereby reducing noise and the dimensionality of the term space 
and increasing the frequency of assignment of a term. It is also used 
to cluster terms which are similar, based on a similarity measure such 
as Cosine. Since phrases have a low frequency of occurrence in docu­
ments, it is desirable to apply clustering to phrases so as to reduce the 
r  terms to rf < r and to increase their frequency of assignment. Lewis 
and Croft [1990] conducted experiments on combining syntactic phrase 
indexing and term clustering techniques to generate phrase clusters. 
They felt that this was a complementary approach. Syntactic phrase 
indexing compensates for the loss in semantics, while clustering aids in 
remedying the poor statistical qualities of syntactic phrases. Despite 
this seemingly logical approach, Lewis and Croft showed this method to 
degrade performance and claimed that the results were poor due to the 
small size of the corpus he used (110,000 words approximately). The 
statistical inferiority of phrases (the high number of phrases occurring 
just once or twice) indicates that a much larger corpus is required for 
phrasal indexing to be able to prove its worth.

Latent Semantic Indexing (LSI) - Deerwester et al. [1990] tries to over­
come the problems associated with word-based methods, as the use 
of polysemy or synonymous words and phrases in a document can be 
problematic; Schütze et al. [1995] observe that “if there is a great num­
ber of terms which all contribute a small amount of critical information, 
then the combination of evidence is a major problem for a term-based
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classifier” . LSI tries to overcome this by organising information into 
a semantic structure. Instead of characterising documents according 
to terms in the document, they are characterised accoriding to the do­
mains within which the terms occur. LSI is typically based on Singular 
Value Decomposition which is a statistical technique. Sorensen et al.
[1997] used a semantic network to represent user profiles and articles 
in the INFOrmer system so as to overcome the problem of polysemy 
and the negative effect it has on precision.

2.6 Summary
In this chapter we dealt with indexing in depth. Indexing is the first task 
involved in building a text categorisation system. It transforms documents, 
which are typically strings of characters, into a representation interpretable 
by the classifier. We discussed the various ways in which documents can be 
indexed, highlighting the different interpretations of what constitutes a term 
and also the different ways in which terms are weighted. We also presented 
the various steps that can be taken before, during and after indexing to 
further reduce the size of the term/feature space so as to make the classifier 
more efficient without loss in effectiveness.

The next chapter will deal with the role of machine learning in text cate­
gorisation, and we will introduce the state of the art and various approaches 
to classifier construction, focussing on our chosen method, Support Vector 
Machines.



Chapter 3 

Machine Learning
Machine learning techniques are used in text categorisation to build a sys­
tem that will make a decision about whether a document D  belongs to a 
category C. We call this system a classifier. This chapter will introduce the 
various methods to classifier construction that have been described in the 
literature. It will focus mostly on Support Vector Machines (SVM), as this 
is the approach we will be using in this thesis.

3.1 W hat is M achine Learning?
There is no conventional algorithm for the task of assigning any as yet unseen 
documents to a predefined category, as no mathematical model of the solution 
can exist and therefore all we are left to work with in building a classifier 
are examples. Given a set of examples, we might be able to define input and 
output values for each given example in the dataset, but we cannot do so for 
every possible example that exists. It is difficult to generalise from examples

37
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to a set of rules or a fixed algorithm for this process. The relationship between 
the input documents and the desired output category is often too complex 
to be captured as an algorithm, and so we turn to the technique of machine 
learning. A machine is said to learn whenever it changes its structure so as 
to improve expected future performance.

A classic example of an application of machine learning is the speech 
recogniser. There exists no algorithm to automatically recognise speech from 
unknown speakers, i.e. no mathematical model can be implemented in order 
to recognise a person saying, for example, the word learn. For English, 
for example, we have (or have the potential to obtain) many examples of 
speech spoken by many different people of different nationalities (English, 
Irish, American, Australian, Canadian etc). In order to solve the problem 
of speech recognition we can take a number of examples of different people 
with different accents saying a particular word and present these examples 
to the learning machine. The machine can then learn to recognise the word 
learn by examining a number of examples, some of which may be spoken by 
British men, some by Irish children, some by American women etc. When the 
performance of a speech recognition machine improves after hearing many 
examples of people’s speech, we can say the machine has learned.

Machine learning can be broadly split into two main areas: supervised 
learning and unsuper-vised learning. In supervised learning the training data 
used to train the learning algorithm consists of many pairs of input/output 
training patterns -  in other words the machine is given the class or output 
of an input pattern and tries to learn patterns that would arrive at the 
expected output. In unsupervised learning the training set consists of input
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training patterns only and so the machine is trained without having any prior 
knowledge of the output classes. The machine learns to adapt based on the 
experiences of the previous training pattern. In machine learning the output 
can be binary, multi-class or regression. Binary classifiers have a binary 
output, i.e. (0 , 1 ) meaning a document either belongs to a class or it does 
not. Multiclass classifiers allow a document to be categorised into one of a 
finite number of categories - such classifiers are typically built using multiple 
binary classifiers. In regression models the output is a real numbered output 
where a document is given a membership value for each class. In this thesis 
we will be concerned with supervised learning and binary classifiers only.

3.2 Training and Test Sets
Since any classifier relies heavily on the existence of examples, one of the 
first things required for us to build a classifier, is a dataset or corpus of 
test and training examples. The training set should already be classified 
into the correct categories as the system will learn from this set and make 
classification decisions based on the training corpus. The training set is 
usually denoted by equation 3.1.

(3.1)
'S' {(-^1 ) 2/l)i • • ■ ) Vn)}
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where n  is the number of examples. We refer to x t as examples or instances 
and yi as their labels -  Cristianini and Shawe-Taylor |2000]. The test is to 
test the effectiveness of the classifier. In evaluation, each document is fed 
to the classifier and the classifier’s decision is compared with an expert’s 
decision so as to evaluate the performance of the classifier. We refer the 
reader to section 4.5 in chapter 4 for more on evaluation measures.

Data is crucial to automatic text categorisation as the machine draws on 
examples to build a classification system. For that reason, a representative 
dataset is of the utmost importance for the classification of unseen docu­
ments. In recent years there has been a surge in the availability of documents 
available in electronic format. Therefore, appropriate datasets are sometimes 
already available. For instance, many corpora are freely available and might 
prove useful for a particular TC problem. TREC, the Text REtrieval Con­
ference1, encourages information retrieval research on large quantities of text 
and provides datasets to researchers so that methods can be evaluated on the 
same data. These datasets are large enough so as to model real problems. 
Because all researchers work with the same data, the results are not affected 
by variations in the data but are due only to the effectiveness of the methods 
and techniques being applied. TREC datasets eventually become available 
in the public domain so it is not just those involved in TREC experiments 
that benefit from these large datasets.

In some cases the effort required to collect appropriate documents might 
not be substantial -  as in the case of news story categorisation where docu­
ments must simply be saved over a period of time. However, an appropriate

1http://trec.nist.gov/

http://trec.nist.gov/


dataset is not always at hand and, as in our case, must be manually collected 
before work on the text categorisation system can proceed. In section 4.3.1 
we give further information on the methodologies used in data collection for 
TC of racism online.

In chapter 4 we describe the dataset used in our experiments and the 
criteria that were used to select that dataset. We also explain the processes 
the training and test sets must undergo so that the classifier is capable of 
interpreting the information contained within them.

3.3 M ethods for Classifier Construction
Classifier construction is the second stage in the building of a text cate­
gorisation system. Many methods, approaches and algorithms exist for the 
construction of a text classification system. This section will briefly introduce 
the different approaches that have been investigated in the literature.

3.3.1 Probabilistic Classifiers
Probabilistic classifiers view the classification problem in terms of a proba­
bility that a document D of binary or weighted terms belongs to a category 
C. The probability is calculated by applying Bayes Theorem in equation 3.2.
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(3.2)
n a ld j )  =
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P(dj) is the probability that a randomly picked document has vector dj 
as its representation and P(ci) represents the probability that a randomly 
selected document belongs to category q . The Naïve Bayes approach is more 
commonly used and makes the classifier more efficient and effective. The 
naïve part assumes that words are statistically independent of each other 
and so word combinations are not used as predictors of a class.

Naïve Bayes is one of the more popular methods for classifier construction 
and many practioners have experimented with it in the literature — Lewis 
and Ringuette [1994], Yang and Liu [1999], Chai et al. [2002], Mladenic and 
Globelnik [1998], Joachims [1998b], Freitag [1997].

3.3.2 Decision Trees
A decision tree classifier consists of a tree generated as a result of processing a 
set of training examples where leaf nodes correspond to classes, each non-leaf 
or internal node is labelled by terms which are used to test an attribute, each 
branch corresponds to an attribute value representing the weight that a term 
has in a test document and each leaf node is labelled by a category which 
is used to assign a classification. A document d is categorised by recursively 
testing for the weights that the terms have in the representation of d. This 
step is repeated until a leaf node is reached; the label of this leaf node is then 
assigned to d (see Lewis and Ringuette [1994], Goller et al. [2000], Joachims 
[1998b] for experiments using this method).



3.3.3 Decision Rules
The first step involved in the construction of a decision rule classifier is the 
creation of a dictionary containing the features or attributes that represent 
individual documents in a collection or domain. A representation maps each 
individual document in a training set using the dictionary. Each document is 
assigned a label that denotes which category it belongs to and the objective 
is to find sets of decision rules or patterns that distinguish one category from 
the others (see Apte et al. [1994]).

3.3.4 Rocchio
The Rocchio technique is a commonly used method in text categorisation. It 
is a vector-space method which is also very often used in information retrieval 
for relevance feedback and document filtering and routing. A prototype vec­
tor is created for each category using a training corpus. The prototype vector 
is also known as the centroid, which is in effect the average of all positive 
examples for each category. Document vectors belonging to a category are 
weighted positively and other documents are weighted negatively. The Roc­
chio classifier rewards the closeness of a test document to the centroid of the 
positive training examples and its distance from the centroid of the negative 
training examples (see Goller et al. [2000), Drucker et al. [2001], de Kroon 
et al. [1996] and Joachims [1998b]).
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3.3.5 Neural Networks
A neural network classifier consists of a network of units. Input units rep­
resent terms and output terms represent categories. Input and output units 
are connected by edges that have weights. The weight represents the condi­
tional dependence relations between input and output units. A document d 
is classified by taking its term weights and assigning them to the input units; 
the units are then propagated through the network and the value that the 
output unit takes up determines the categorisation decision (see Yang and 
Liu [1999]).

3.3.6 Example-based Classifiers
The most widely known case of an example-based classifier is kNN (k nearest 
neighbour). In a kNN classifier, a document d is categorised under a category 
c by looking at how the k documents most similar or nearest to d have been 
classified. The similarity score of each neighbouring document to d is used to 
determine the category of the neighbouring documents. If a large proportion 
of them have been classified under c, d is classified under c, otherwise d is 
not classified under category c (see Yang and Pedersen [1997], Yang and Liu
[1999], Goller et al. [2000], Yang [2001] and Joachims [1998b]).

3.3.7 Regression Classifiers
One of the most popular examples of a regression classifier is the Linear Least 
Squares Fit (LLSF) model introduced by Yang and Chute [1994]. In LLSF, 
each document d has an input vector consisting of words with weights and an
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output vector consisting of the categories of the corresponding document. In 
order to classify a document, the output vector must be determined. LLSF 
is computed on the training pair of vectors (input and output) to produce 
a matrrx of word-category coefficients. This matrix measures how likely it 
is that a word is related to a category. These weights are dependent on the 
information in the training corpus but LLSF assigns weights in such a way 
as to minimize error. The matrix aids in the classification of a document as 
it defines a mapping from a document to a vector of weighted categories. A 
ranked list of categories is obtained for the input document by sorting these 
category weights (see Yang and Chute [1994], Yang and Liu [1999], Yang and 
Pedersen [1997], Yang [1995]).

3.3.8 Inductive Rule Learning
RIPPER (Cohen and Singer [1996], Cohen [1995]) is a rule-learning algorithm 
based on reduced error rate pruning. Rules are learned by greedily adding 
one condition at a time using information gain until no incorrect predictions 
are made on the growing set. The growing set is a randomly chosen collection 
of training documents and it is used to grow or generate rules. The pruning 
set is used to refine and simplify rules without decreasing the performance 
of the rule. Those examples in the training set that are covered by a rule are 
removed so that new rules can be generated for the remaining examples. In 
this way at least one rule covers each example in the training set.



3.3.9 On-line Learning
In on-line learning the learner receives one example at a time and gives 
their estimate of the output before receiving the correct value. The current 
hypothesis is updated in response to each new example and the quality of 
learning is assessed by the total number of mistakes made during learning 
(see Cristianini and Shawe-Taylor [2000]).

3.3.10 Support Vector Machine Versus Other Methods
The methods discussed here have their own pros and cons. For this thesis 
we will be using Support Vector Machines (SVMs), a method introduced by 
Vapnik [1995] and implemented by Joachims in S V M Ught.2 We have chosen 
SVMs over other more simplistic methods (Naïve Bayes, Rocchio) for the 
reasons outlined below.

SVMs are capable of overcoming many of the problems associated with 
efficiency of training, such as overfitting. The aforementioned methods re­
quire that measures such as term selection and term extraction be carried out 
in order to avoid the problems of overfitting. These measures, also known as 
dimensionality reduction, discussed in section 2.5.2, must be carried out in 
order to avoid the curse of dimensionality (cf. section 2 ) which can lead to 
a classifier being exceedingly good at classifying documents in the training 
data but not so good at classifying unseen documents. Therefore, SVMs 
are capable of generalising well in high dimensional spaces, so SVMs should 
work well in our domain of application where there is a rich representation 
of words, bigrams etc. What this essentially means that solutions can always

2http://svm light.joachims.org/
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be found efficiently, even for training sets with not only many thousands of 
examples but also high feature spaces. In other methods, high dimensional­
ity can again lead to overfitting, so that measures must be taken in order to 
control and restrict the number of features and the number of examples in 
the training set.

SVMs produce a compact representation of the training data which re­
sults in evaluation on unseen input being very fast, thereby making it effi­
cient when it comes to testing. Parameter settings of the SVM can be tuned, 
which allows for inexpensive cross-validation, for instance, comparing one 
kernel function against another (cf. section 3.4.5 for more information on 
kernel functions). Joachims [1998b] points out that “SVMs do not require 
any parameter tuning, since they can find good parameter settings automat­
ically”. The default settings have proven to be the most effective. According 
to Joachims [1998b], another advantage of SVMs is their robustness where 
they have shown “good performance in all experiments, avoiding catastrophic 
failure, as observed with conventional methods on some tasks”.

Initially, a drawback of the SVM was the complexity of the learning theory 
and the efficiency of the classifier but this has been rectified and in Dumais 
et al. [1998] we see training speeds that are comparable to simple learning 
methods such as Rocchio. Finally, according to Cristianini and Shawe-Taylor 
[2000], SVMs are a very powerful learning method that “since its introduction 
has already outperformed most other systems in a wide variety of applica­
tions” .
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3.4.1 About SVMs
Support Vector Machines are one of the newer learning approaches to au­
tomatic classification, introduced by Vapnik in 1992. SVMs are universal 
learning machines and are based on statistical methods to minimise the risk 
of error. The actual decision function, which in this context categorises a 
document, is implemented from a subset of the overall training points and 
these points are referred to as support vectors. SVMs can be used to directly 
implement the Structural Risk Minimisation principle, the aim of which, for 
a given learning task, with a finite amount of training data, is to find the best 
generalisation performance i.e. minimise the risk of error. This is achieved 
by finding the right balance between accuracy and capacity.

Generalisation Performance
In SVMs, the performance of a machine is measured by its ability to generalise 
data where generalisation performance refers to the error rates on test sets or 
the ability of a hypothesis/function to correctly classify documents not in the 
training set. As Burges [1998] observes, the best generalisation performance 
will be achieved if the right balance is struck between the accuracy attained 
on that particular training set and the capacity of the machine.

Capacity
The capacity of a machine is the ability of the machine to learn any training 
set without error. A machine with infinite capacity is said to be capable of
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learning I points regardless of how large I is. Despite this, a machine can 
have either too much or too little capacity and this affects generalisation 
performance. A machine with too much capacity causes overfitting (as dis­
cussed in chapter 2). Burges [1998] gives a good analogy of what happens 
when a machine has too much or too little capacity: “A machine with too 
much capacity is like a botanist with a photographic memory who, when 
presented with a new tree, concludes that it is not a tree because it has a 
different number of leaves from anything she has seen before; a machine with 
too little capacity is like the botanist’s lazy brother, who declares that if i t ’s 
green, it’s a tree.”

Overfitting and Underfitting
A classifier that is not sufficiently complex can fail to classify a document 
correctly. This is referred to as underfitting and usually occurs when the 
training set is not large enough to recognise all features. Overfitting is when 
a classifier is too complex or has too much capacity so that it no longer fits 
the data. Classifiers that overfit the data may recognise noise but cannot 
make proper classification decisions. Overfitting generally occurs when the 
training set is too specific so that the machine has learned features that are 
too specific.

3.4.2 Generalisation Theory
As previously mentioned, text categorisation is formally described by Sebas- 
tiani [2 0 0 2 ] as the task of determining an assignment of a value from (0 , 1 ) 
to each entry of the decision matrix where C  =  {c\ , . . . ,  c™} is a set of
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pre-defined categories, and D =  {d \,. . .  ,dn} is a set of documents to be 
classified. Input/output pairings (Xi,yi) represent the relationship between 
a document (input) and a class (output). The task of the machine is to learn 
the relationship between the pairs -  this is known as the target function -  
so that when presented with an unseen document the machine can make a 
decision about the target class of that document. The decision function esti­
mates the target function and this function is chosen from a set of candidate 
functions referred to as hypotheses.

N  input/output pairings are represented by a vector XiSRn, i = 1, . . .  ,n  
and the associated tru th  or class yi, where iji is 1 if a document d belongs 
to category c and —1 otherwise. The task of the machine is to learn the 
mapping Xi — * yi where the idea is to find the best target function of all 
hypotheses presented. The machine is defined by a set of possible mappings 
x  — *■ f(x ,a ) .  The functions f ( x ,a )  themselves are labelled by the ad­
justable parameters a  where a  represents a weight or bias associated with 
each training point. For a given input x  and choice of a, the machine will 
always arrive at the same output f(x , a). The target function chosen from 
all the possible choices is the one that minimises risk and leads to the best 
generalisation performance. This choice of a  generates the trained machine.

Risks of Error
R(a) is referred to as the actual risk. This cannot be computed as it depends 
on the unknown probability distribution P (x ,y) from which the data are 
drawn. R emp{a) is the empirical risk and is measured by the mean rate of 
error on the training set for a fixed and finite number of observations or
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training sets (Xi,yi) -  in short, it is a measure of the number of training 
points learned incorrectly. R emp(a) is not a probability distribution but a 
fixed number for a particular choice of a  and for a particular training set

Risk Bound
If I is the number of documents, the following bound holds in equation 3.3 
with probability 1 — 77, giving an upper bound on the actual risk of error,

(3.3)

h is a non-negative integer called the Vapnik Chervonenkis (VC) dimension 
and is a direct measure of the capacity of the learning machine. 77 is an 
arbitrary constant 0  <  rj < 1 that guarantees with probability 1 — 77 that the 
equation holds. The right hand side of the equation is called the risk bound 
or the VC confidence. It is possible to compute the right hand side of the 
equation if h is known, but it is not possible to compute the left hand side. 
The lowest upper bound on the actual risk is achieved by minimising the VC 
confidence and by minimising the empirical risk Remp(a). A balance must 
be struck between the right hand side and left hand side of the equation in 
order to generate a machine with the best generalisation performance. Since 
the right hand side of the equation is partly expressed in terms of h, i.e. the
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VC dimension, minimising h bounds the actual risk of error.

The VC Dimension
VC Dimension (h) is a property of a set of functions /(« ) . For the case of a 
two-class classification problem, if a given set of I documents can be labelled 
in all possible 2l ways, and for each labelling a member of the set of functions 
f(a )  can be found which correctly assigns those labels, we can say that set 
of documents is shattered (or correctly classified) by that set of functions. 
The VC dimension for the set of functions f ( a ) is defined as the maximum 
number of training documents that can be shattered by function f(ct). If 
the VC dimension is h then there exists at least one set of h documents that 
can be shattered, but it in general it will not be true that every set of h 
documents can be shattered (see Burges [1998]).
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Figure 3.1: All possible labellings of 3 points in R 2

Figure 3.1 illustrates all possible binary labellings (i.e. 23 =  8 ) of 3 points



in R 2 (two classes). The task of the set of functions f ( a ) in R 2 is to place 
points in one of two classes (1, —1), positive or negative. In Figure 3.1, we 
show how we can shatter three points in R 2 using oriented lines as the / ( a )  
functions. In the hyperplane in Figure 3.1, points on the side in which the 
arrow is pointing, are labelled 1 (positive). The VC dimension of oriented 
lines is 3  as the maximum number of points that can be arbitrarily labelled 
in R 2 is 3.

Consider the labelling of 4 points in R2. Figure 3.2 illustrates that ori­
ented lines will not suffice for 4 points in R 2. Instead hyperplanes must be
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Figure 3.2: 4 points that cannot be shattered in R 2

used for f(a )  and the 4 points in R 2 are instead transferred to R 3. In general, 
the VC dimension of any set of m points in RJ1 is n -\-1 (refer to Burges [1998] 
for theorem proof), therefore the VC dimension of hyperplanes in R s is 4.

A learning machine with infinite VC dimension is capable of shattering 
(classifying) I points, regardless of how large I is. The VC dimension is 
therefore an indicator of the capacity of a learning machine. Given a selection 
of learning machines whose empirical risk ReTnp(a) is zero (i.e. all training 
points are correctly classified — the linear, separable case), the aim is to 
choose that learning machine whose associated set of functions has minimal 
VC dimension as this will lead to a better upper bound on the actual error.
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For empirical risk greater than zero that learning machine which minimises 
the right hand side of equation 3.3 should be chosen.

The Structural R isk M inimisation Principle
The aim of the Structural Risk Minimisation (SRM) principle is to find that 
subset of the chosen set of functions such that the bound on the actual risk is 
minimised and an appropriate VC-dimension is chosen. Both the R(a) and 
Rempi®) depend on a particular function chosen by the training procedure, 
whereas the VC-confidence depends on a chosen class of functions; these 
values are used to calculate the risk bound. In order to find the best subset 
of functions, either h or a bound on h must be computed. This can be done 
by training a series of machines. The entire set of functions is divided into 
nested subsets with decreasing capacity -  for each subset either h or a bound 
on h is computed. This can be done by training a series of machines, i.e. one 
for each subset. The goal of the training is to minimise the empirical risk 
Remp{ct) for a given subset. The subset of functions whose sum of empirical 
risk and VC confidence is minimal is chosen as the trained machine -  this is 
the machine that gives the best trade-off between the risk of error and the 
capacity of the machine.

3.4.3 Linear SVM for the Separable Case
The simplest case for the operation of an SVM classifier is that of linear 
support vector machines trained on separable data. The training data is 
completely separable -  all training samples are learned correctly and the 
data can be separated by a straight line. Figure 3.3 illustrates what we mean
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by both linear and separable.

55

Figure 3.3: The linear, separable case

The training data is labelled as follows for (#;,yi), where i =  1 
yi£{ 1 ,-1 } , xieRd. A hyperplane separates the positive examples from the 
negative examples; this is also known as the separating hyperplane. The 
points x  which lie on the separating hyperplane (Ho) satisfy equation 3.4.

w ■ x  +  b = 0

(3.4)

where w is normal to the hyperplane and is a vector which defines a direction 
perpendicular to the hyperplane, b is a bias and varying this value moves 
the hyperplane parallel to itself. These two parameters, w and b, control the 
function and must be learned from the data, is the perpendicular distance 
from the hyperplane to the origin and ||iw|| is the Euclidean norm of w. 
The shortest distance from the separating hyperplane to the closest positive 
or negative point is d +  (d—). The margin of the separating hyperplane 
is therefore the distance of the closest negative point from the separating
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hyperplane (d—) plus the distance of the closest positive point from the 
separating hyperplane (¿+) or (see Burges Burges [1998]).

Hx : Xi • vj +  b > 1 for yt =  1

(3.5)

H2 : X i-w  + b < - 1  iov yi = -1
(3.6)

For the linear separable case the support vector algorithm looks for the sep­
arating hyperplane with the largest margin: a  large margin minimises the 
risk of error. The set of labelled training points are said to be linearly sep­
arable if there exists a vector w and a scalar b such that the inequalities in 
equations 3.5 and 3.6 are valid for all elements of the training set (see Cortes 
and Vapnik [1995]).

yi(xi • uH- b) — 1 > 0 V ?
(3.7)

Equations 3.5 and 3.6 can be combined into the inequality in 3.7. For any
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point actually lying on Hi or H% the equality yi(xi • w +  b) — 1 =  0  holds. 
These points are termed support vectors (see Figure 3.4).

Figure 3.4: Support Vectors are positioned on Hi and H2 

M aximising the Margin
The optimal hyperplane is the one that maximises the distance between Hi 
and H2 (see Figure 3.4). This is done using a standard optimisation technique 
referred to as a Lagrangian formulation. The objective function | | |w | | 2 is to 
be optimised subject to the set of constraints in equation 3.7. For constraints 
of the form q  > 0, the constraints are multiplied by positive Lagrange multi­
pliers and subtracted from the objective function. The Lagrange multipliers 
are unconstrained for constraints of the form c, -  0. This gives the primal 
Lagrangian formulation in equation 3.8.

l p  =  I I M I 2  -  E l ,  “  I f>) -  1 }
(3.8)
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where a-L are positive Lagrange multipliers, (i = 1 , . . . ,  Z) and one exists for 
each of the inequality constraints Xi in 3.7. L P is maximised subject to the 
constraint that the gradient of Lp with respect to w and b vanish and also 
subject to the constraints a* > 0 (see Burges [1998]). Prom that, the follow­
ing conditions in equations 3.9 and 3.10 apply to that the vector w which 
determines the optimal hyperplane can be written as a linear combination of 
the training vectors (see Cortes and Vapnik [1995].

w = Yji OiiViXi
(3.9)

o
(3.10)

Equation 3.9 is the result of requiring that the gradient of Lp with respect 
to w and b vanish. The vector w that determines the optimal hyperplane 
can be written as a linear combination of training vectors as in equation 3.9. 
These values can be substituted into the primal equation to give the dual 
formulation in equation 3.11.

fJD &i  2 (XiOtjyiVjXi  •  Xj
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(3.11)

Lp and Ld arise from the same objective function but with different con­
straints. The optimal solution for support vector training for the separable, 
linear case is found by maximising L d or minimising Lp with respect to ct*, 
subject to the constraints in equation 3.10 and the positivity of ct* with the 
solution given by 3.9. In this formulation of the problem in equation 3.11, the 
training data will only appear in the form of dot products between the vec­
tors; this feature allows us to generalise the training procedure to the more 
complex non-linear case. There are Lagrange multipliers for every training 
point, and in the solution any training points for which the Lagrange multi­
plier, cxi, is greater than zero are called support vectors (see Burges [1998]). 
These points lie on one of the hyperplanes Hi or H? and are closest to or 
actually on the decision boundary. All other training points lie on either side 
of Hi or Hz and have cti =  0 (meaning the equality in 3.7 holds). These 
points are of great importance to the training set as they are used to obtain 
the final solution — and therefore their removal would affect the solution. 
This gives a sparse solution, as only a subset of the original training points 
are used to calculate the final solution.

The Karush-Kuhn-Tucker Conditions
The Karush-Kuhn-Tucker (KKT) conditions play a central role in both the 
theory and practice of constrained optimisation. The KKT conditions are 
satisfied at the solution of any constrained optimisation problem. These 
conditions hold for all support vector machines, since the constraints are
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always linear and because the problem for SVM is convex. Therefore the 
KKT conditions are necessary and sufficient proof that a proposed solution 
is correct. This means that solving the SVM problem is equivalent to finding 
a solution to the KTT conditions, i.e. equivalent to finding values for w , b 
and a  which satisfy these conditions.

The KKT conditions for the primal problem for the linear, separable case 
as outlined above can be stated in 3.12 as:

=  w -  E i  OiiViXi = 0

=  -  E  i<XiVi =  o
yi(xi ■ w + b) -  1 >  0  

O i> 0  
oii(yi(xi ■ w +  b) -  1 ) =  0

(3.12)

To reiterate, if all of the above conditions hold, this implies we have a nec­
essary and sufficient proof that w, b and a  are the solution, or in other words, 
we have a classifier. The last of this set of conditions is called the Karush- 
Kuhn-Tucker complementary condition. The general form is expressed as 
equation 3.13:

CiiQiix) = 0
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(3.13)

where gi(x) is the set of inequality constraints. Once equation 3.9 is calcu­
lated, this value can be substituted into the complementary condition. Any of 
the support vectors can be used for Xi in this equation. By using appropriate 
values for and ?/;, b can be calculated.

Testing Phase
In the test phase of the development of a classifier, the task is to determine on 
which side of the decision boundary a given test pattern lies. The decision 
boundary is the hyperplane lying halfway between Hi or H% -  in the test 
phase test points are pulled either side of the decision boundary -  in either 
a positive or negative direction. This is determined by equation 3.14:

f ( x )  =  sign(w • x  -\- b)
(3.14)

or by substituting equation 3.9 we get:

(3.15)
f ( x )  = sign(J2i OiViXt ■ x  + b)



CHAPTER 3. MACHINE LEARNING 62

In the equation 3.15, the decision surface appears as a dot product between 
the training points. The dot product can be seen as a similarity measure 
and is important when it comes to adapting the SVM model to the non­
linear case. The decision function essentially measures each of the test points 
against each of the support vectors (that chosen subset of the training set 
lying on one of Hi or H2). Positively labelled support vectors drag the result 
in a positive direction depending on the similarity and the weight a  attached 
to each of the support vectors. If a test point is most similar to the positive 
support vectors, then it will be classified positively. The same holds for the 
opposite case.

3.4.4 SVM for the Non-Separable Case

Figure 3.5: Linear separating hyperplanes for the non-separable case

The problem of finding the linear separation of non-separable data with 
the smallest number of misclassifications is NP-complete. Such data cannot 
be separated by the above algorithm, as it assumes that a separating hyper- 
plane exists such that w • x  +  b =  0. This equality cannot be satisfied when
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t he data is not separable. To cater for the more common non-separable case, 
the constraints in equations 3.5 and 3.6 must be relaxed. The “algorithm 
works by adding misclassified positive training examples or subtracting nega­
tive ones to an initial arbitrary weight vector” (Cristianini and Shawe-Taylor
[2000]). Positive slack variables & =  1 , . . . ,  I are introduced in the constraints 
giving:

Xi • w  +  b >  + 1  — ¿u for y¡ =  + 1

(3.16)

Xi • w + b < - 1  +  & for yi =  - 1

(3.17)

& > 0  V*
(3.18)

Then, equations 3.16, 3.17 are combined to give the inequality in equation 
3.19:

Vi(w ■ x  + b) > I —&
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(3.19)

The slack variable is a measure of how much the constraints are broken. An 
error occurs if £ >  1 , meaning all points for which £ > L will be misclassified. 
Points with a value between 0 and 1 will be classified correctly. Points with 
such values fall inside the margin. All other points that are classified correctly 
will have a £¿ of zero. The total error therefore equates to E  and can be 
seen as an upper bound on the number of training points classified incorrectly. 
See Figure 3.5 for a graphical explanation. This value will feature in the 
primal objective function. In the linear separable case the objective function 
to be minimised was | | |w | | 2 whereas for the non-separable case it becomes:

^  +  C (E , fd ‘
(3.20)

C  is a parameter defined by the user and a larger C implies a higher penalty 
for training errors. The first term in 3.20 is the same as for the linear separa­
ble case - it acts as a bound on the VC dimension. The second term acts as a 
penalty for the number of training errors or a measure of the empirical risk. 
Note: in the linear separable case we did not have this term, as the empirical 
risk was equal to zero. In order to find the solution a balance between the 
VC dimension and the empirical risk must be found and this is the task of 
the Structural Risk Minimisation principle.
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The dual formulation of the problem appears as in 3.21. Neither the 
nor the Lagrange multipliers appear in the dual formulation.

l d e  E j  a < -  \  £  aiajViVjxi ■
(3.21)

The only difference is that the a* now have an upper bound of C (3.22). 
Note that C  is a parameter that is chosen by the user. The higher C  the 
less tolerance there is for error. We wish to maximise L q subject to two 
constraints in equations 3.22 and 3.23:

0 <  on < C
(3.22)

E  a iVi =  o
(3.23)

The solution for w is given by equation 3.24 where Ns is the number of
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support, vectors.
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w =  E S  a*y¡x i
(3.24)

As with the case for separable data, Karush-Kuhn Tucker conditions in equa­
tion 3.25 are required in order to solve the primal Lagrangian function for 
the non-scparable case.

LP =  ¿IMI2 -  E¿ oci(yi(xi ■ w + 6)1+ £*) + CYa & ~ E; /**€*
(3.25)

where f.t¡, are the Lagrange multipliers. Lagrange multipliers are introduced 
to keep the slack variables positive. Lp is maximised by differentiating 
with respect to w, b and £. The KKT conditions for the primal problem are 
therefore:

dLp/dwv — wv )  1 ^ ¡ / / ■ 0
(3.26)

dLp/db =  -  E  aiVi = 0
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(3.27)

dLp/d^i — C OLx / /-j 0
(3.28)

yi(xi •w +  6) - l + £ i > 0

(3.29)

6 > 0

(3.30)

cti > 0

(3.31)

(3.32)
> 0
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a.,{yi(xi ■ w +  b) -  1 +  &} =  0

(3.33)

(¿i î — 0

(3.34)

Equations 3.33 and 3.34 are the Karush-Kuhn-Tucker complementary 
conditions and these can be used to determine the value of b. Equations 
3.28 and 3.34 can be combined to show that = 0 if < C. By taking any 
training point for which 0 <  oti < C, b can be computed using equation 3.33 
(though it is best to take the average over all training points).

3.4.5 SVM for the Non-Linear Case
The methods we use for the classification of linear, separable data and non- 
separable data cannot be applied to the classification of non-linear data. 
By mapping the data from the input space to a higher dimensional feature 
space, linear separation becomes much easier, thereby allowing the same 
linear techniques previously discussed to be applied to the data. The term 
features represents the quantities introduced to describe the data, while the 
task of choosing the most suitable representation is referred to as feature
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selection, and the space onto which the data is mapped is called the feature 
space. A number of different techniques for selecting the best representation 
of data exist.

Typically it is best to use the smallest possible set of features that still 
convey the essential information contained in the data. This is known as 
dimensionality reduction. As the number of features grows it can become 
computationally expensive and consequently infeasible to solve the classifi­
cation task. Also, generalisation performance can diminish when faced with 
too many features, so that the learning machine is prone to overfitting. This 
phenomenon is sometimes referred to as the curse of dimensionality (refer to 
Cristianini and Shawe-Taylor [2000]).

Mapping the data to a higher dimensional space makes it easier to sep­
arate the data with a linear decision function if the target function is a 
quadratic polynomial. In the training problem the data appears in the form 
of dot products, Xi ■ Xj and, if we map the data to a higher dimensional 
space then the training algorithm would only depend on the data through 
dot products in H, i.e. on functions of the form <&(a;i) • <&(xj). The set of 
hypotheses to be considered will be functions of the type:

f{x)  =  J 2 wi®i(x ) + b
(3.35)

where $  : X  —* F  is a non-linear map from the input space to some feature



CHAPTER 3. MACHINE LEARNING 70

space. To recap, w is the vector that determines the optimal hyperplane. 
Recall that the solution for w is given by w =  E j  aiVixi- In the test phase, 
the decision rule can be evaluated using inner products between the test 
point and the training points. This can be done by computing the following:

f(x )  = sign(J2i Oiiy^^Xi) ■ $(x) +  b)
(3.36)

where x± are the support vectors. Working in a higher dimensional space 
is not always a feasible solution to the problem, due to the curse of dimen­
sionality and because it can be computationally expensive. To overcome this, 
a function referred to as a kernel function is used to map the data to a high 
dimensional space without having to actually create that feature space, i.e. 
K (xi ■ Xj) = <l>(.Ti) ■ this avoids the computational problems associ­
ated with high dimensional spaces and also makes it possible to use infinite 
dimensions efficiently. In other words, we would only need to use K  in the 
training algorithm and would never need to explicitly even know what $  is 
(see Burges [1998]). By working in a feature space where $  defines the map­
ping, we replace X{ ■ Xj with K{xi ■ xf) everywhere in the training algorithm 
such that we do not explicitly have to create the mapping &(xi) ■ 4>(x_,). In 
doing so, we allow the data to be dealt with in the same way as the pre­
viously mentioned linear, separable case in section 3.4.3. The only extra 
computational expense involved is that of computing the kernel function.
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Kernel Functions
The kernel function provides a shortcut to the above problem. Instead of 
creating the feature space from the original input space, computing the inner 
product in that feature space and then finding a way of computing that 
value in terms of the original inputs, the kernel function computes the inner 
product in the input space without having to explicitly define the feature 
space.

The choice of kernel function determines whether the resulting SVM is 
a polynomial classifier, a two-layer neural network, a radial basis function 
machine or some other learning machine (see Burges [1998]). Given a function 
K , using Mercer’s Theorem, it is possible to verify that it is a kernel (see 
Cristianini and Shawe-Taylor [2000] for proof). The set of kernels is closed 
under some operations. If K  and K ' are kernels then:

•  K  +  K ' is a kernel,

• cK  is a kernel, c > 0,

•  aK  +  bK  is a kernel for a, b > 0,

•  Complex kernels can be made by combining simpler kernels according 
to specific rules,

•  Kernels can be made from features, e.g. the polynomial kernel and the 
string kernel,

• They can be made from probabilistic generative models by transforming 
them into similarity functions.
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Gaussian RBF (radial based function), polynomial, sigmoidal and inverse 
multiquadric kernel functions are the most commonly used kernels (see Muller 
et al. [2 0 0 1 ]) and can be defined as follows:

Gaussian RBF: K (x, z) =  exp ~IMI s

Polynomial: < x ,z  >d

Sigmoidal: tanh kx ■ y — 8

Inverse multiquadric: , 1 ■V(l \x y \V + < ? )

3.5 Summary
In this chapter we introduced and discussed machine learning and the role it 
plays in text categorisation. We introduced various approaches to classifier 
construction, highlighting the advantages and disadvantages of each. Support 
Vector Machines were dealt with in greatest detail as this is the method which 
we will be using to deal with the text categorisation of racist documents on 
the Internet.

In the next chapter we will discuss the issues related to text categorisation 
for identifying racism online.



Chapter 4
Text Categorisation for Racism  
on the W W W
In this chapter we introduce the issues related to detecting racism online. 
We describe the dataset that is used in our experiments, and the methods 
used to collect the dataset. We describe our approach to text categorisation 
for racism and evaluation measures that will be applied in assessing the 
effectiveness of the TC system.

4.1 D etecting  Racism
Automatic text categorisation has proven to be successful for topic-based 
problems such as news story categorisation. This is based on the classification 
of articles into categories where there are little or no similarities between the 
content words of each class. Typically, such problems are clear cut and there 
is little doubt as to which class a document belongs. For instance, for news

73
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story classification, news items are put into categories such as sport, politics, 
finance, etc. Topic-based documents are identified on the presence/absence 
or frequency of certain strings that are more characteristic of one class than 
another. For example strings such as ISEQ, investment fund, interest rate 
are likely to be found in financial articles but not in sporting ones.

The problem of detecting racism is quite different to topic-based prob­
lems. Racist documents target potentially any race or group of people -  Jews, 
Arabs, Muslims, African-Americans, Africans, Aborigines, asylum seekers, 
refugees, Hispanics, Asians, Protestants, Catholics, Turks etc. Thus detect­
ing racism could be considered partially a topic-based problem -  for instance, 
find all documents containing the word Jew and those documents that are 
racist towards Jews are a subset of all the documents thai, are about Jews. 
The difficult task is in finding what diserns racist documents apart from the 
rest. In Figures 4.1 and 4.2 a number of words (white, black, non-white, 
African American, Jewish, Asian) have been highlighted which could indi­
cate that both texts are about race. Of course, they may also be racist but 
we cannot decipher this based on these keywords alone as other factors come 
into play.

In a recent paper Grilheres et al. [2004] describe experiments carried out 
during the European Research Project NetProtect II 1, a project similar to 
PRINCIP, in that it also aims to filter harmful webpages in order to pro­
tect children. However, the NetProtect project attempts to filter documents 
promoting drug consumption, documents containing recipes for home-made 
bombs or explosives and documents promoting violence and pornography.

1http://www.net-protect.org/

http://www.net-protect.org/
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M» riM i-an-m rvJn____ ____~ ___  ____
now dare we white foVfcsrhave any story That highlights extrene whiteness as ^ 
cornet hi no to be proud of? so. they place_a Fon-wHite qfFTl in the role of snow 
white and put it on the 3cwnsh Michael eisnorT̂  a b c  national television 
network, to be carried oh March 17, 2002.
The routine insertion of Inon-Whi tesl into all television programming grows
continually more frequent. Asianr and ;Biacki girls are mixed in with white 
girlsas best friends. Mixed groups of males naturally are shown hanging around the 
mixed groups of girls* The coupling that comes out of such groups often is racially confused, in an attempt to numb the natural instincts of self-preservation of the Whites who make up the vast majority of the watching
audience. This is not news to anyone who has watched a single television show
in the last few years,
However, Snow White is a quantum leap up on the scale of racial outrage. It 
is  ̂ . . rabsurd, but promoted as if it were not. The promotional material for the 
movie A 'doesn't mention the fact that race was intended as its primary focus, however 
the picture of a fnon-Wnfte] woman playing " snow white " is statement enough. 
There is no part ot white heritage, culture, or history that is safe from 
these degenerates. It is time that we defend ourselves, or there will be 
nothing left to defend.
Snow white is a children's story, and that is just who this perverted movie 
i saimed at. The children can now think that old Europe, where this story iss®*»was filled with people who were half-Asian, in other fantasy movies, like The 10th Kingdom , and Robin Hood r they have placed Blacks into the land where 
Blacks were not to be found in real life. It is pure and simple lying. 
Dishonesty created especially for our children, and the white parents sit ,j

Figure 4.1: A racist text

EMEi i Bmai an— a s  -n- (#-------- -------------------------------------------------------------------------------------------------------------------------------------------------------------3
In Maine, the Portland Press Herald last year reported that the city's 
minority residents feel the pressure of police bias- In a front-page article, 
the newspaper told the story of Michael Stoval1t a 35-year-oldt1 awyer who passed a police officer going in the opposite direction on acity street and watched as the patrolman did a U-turn and pulled up behind him. Stovall vvas 
¡followed for several blocks while the officer spoke into his radio. Finally, 
the newspaper said, the patrolman left, leaving Stovall to wonder.
Another ¡African American!, Judith Hyman, said she was stopped by a Portland 
police officer whiledriving on a city street with her son, who is (black.I and 
his girlfriend, who is WNi'te1;. -'The officer pulled us over to see it we had 
our (seat belts on," Hyman said, "we all were wearing seat belts and I wasn't 
speeding, so, really, why were we stopped?" -1
The newspaper also told the story of Hutima Peter, an iranigrant from Congo
andgastor of the |African) international Church, who said he was once questioned
anofficer after parking his car. "When I got out, an officer asked me for my 
driving license and asked me who is the person I know in Portland," Mutima 
said. 'I told him I know [Police chief Michael] Chitwood and he said ‘OK’ and
left. People said I should speak out, but this is a general thing for many
people.” Source: The Portland Press Herald
"I was like, 'Why aretyou guys handcuffing me about some tickets?' They had 
me standing outside with all these people passing by. It was so humiliating, 
i figured if I said anything, if I moved, that would just give them
?ernussion to beat me. And I did not want that to happen because I have a
ittle boy."

- Karen, early thirties, licensed social worker 1̂
Figure 4.2: A non-racist text
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Using a search engine such as Google to find documents about the history of 
bombs or explosives erroneously retrieves documents containing recipes for 
home-made bombs. This classification problem is, in a way, similar to the 
PRINCIP problem in that keywords and phrases which may appear to be 
racist are also found in non-racist discourse, meaning keywords alone are not 
reliable indicators of whether or not a document is racist. Grilheres et al. 
[2004] combined classifiers using images, URLs and the most pertinent n  
keywords. They did not rely on keywords alone for classification and found 
the combined classifier approach led to better filtering performances than 
single classifiers. The main difference between the NetProtect problem and 
the PRINCIP problem is that NetProtect is primarily a topic-based problem 
whereas detecting racism goes beyond the topic. Detecting racism is more 
similar to the problem of subjectivity classification as described by Finn et al.
[2002] and Finn and Kushmerick [2002]. These researchers perform classifi­
cations based on the subjectivity of a text by trying to identify whether a 
document reports facts or the opinions of the author. Like us, they are not 
really concerned with topic and are trying to make a classification based on 
something which is orthogonal to the topic. Detecting texts on the basis of 
whether they are racist or not is really about discerning the author’s opinion 
or attitude in relation to the topic.

4.2 A bout the approach
In this thesis we build several text categorisation systems based on differ­
ent representations of the data. We will analyse the performance of three
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representations -  the bag-of-words (BOW), bigrams and part-of-speech tags 
(POS). Support Vector Machines will be used to build the classification sys­
tems using each of the representations. We will compare and constrast these 
representations in the system for the purpose of identifying the most effective 
method for the detection of racism on the WWW.

All three representations have already been tried and tested, both in IR 
and in text categorisation -  Finn et al. [2002], Chandrasekar and Srinivas 
[1997], Tan et al. [2002], Finn and Kushmerick [2002], Furnkranz [1998], 
Kelledy and Smeaton [1997], Lewis [1992], Mladenic and Globelnik [1998]. 
Although they have been examined extensively in the context of other do­
mains and different classification problems (i.e. problems related to topic and 
content as opposed to attitude or opinion), limited experiments related to at­
titude or opinion have been conducted and to our knowledge no experiments 
have been carried out on the detection of racism online.

Finn et al. [2002] and Finn and Kushmerick [2002], whose work on sub­
jectivity classification is closely related to our own work, found the BOW 
approach to outperform POS tags. Also, the results of the research con­
ducted during the PRINCIP project provided further justification for our 
approach in building a text categorisation system.

4.2.1 PRINCIP Findings
Our own experiments in the PRINCIP project (see Gibbon and Greevy
[2003], Lechleiter and Greevy [2003], Martin [2003a,b]) revealed there to be 
significant differences at lexical, collocational and syntactic level between 
racist and non-racist texts.
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Lexical Level
We identified lexical items that appeared equally consistently in each dataset. 
We were able to identify those lexical items that occurred 30% more often 
in racist texts. Modals, adverbs and tru th  claims were among this list, e.g. 
must, never, once, ever, same, very, course, fact, white, race, nation. The 
use of modals, representing the taking of absolute positions, and the use 
of argumentation structures such as truth claims like fact or of course are 
characteristic of racist discourse. For instance:

Least of all should we place an alien cult of anti-Aryanism ahead 
of the survival of Our Race.

We must understand that when he follows the Semite pied piper 
he endangers himself and all that which encompasses his race 
from the beginning of time.

For the Jews, as foreigners, certainly should have nothing from 
us; and what they have certainly must be ours.

Our people must realize the dangers of amalgamation and arise 
to condemn all the individuals and organizations, white, black 
and mixed, who are devoting time and effort to bring about a 
mongrelized America.

Colored people are different from Caucasian people. This is an 
obvious fact and the differences between these races often, in 
fact go beyond skin color.
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The greatest Race to ever walk the earth, dying a slow death.

The fact that the color line is being broken down, mongreliza- 
tion is taking place and has taken place, is an abomination against 
Nature.

Such linguistic features are indicative of the discourse of racist language 
(see Gibbon and Greevy [2003], Lechleiter and Greevy [2003]). These results 
confirmed for us that, although the same lexical items may appear in both 
racist and non-racist texts, differences in frequencies of such items exist. We 
found certain non-content words which are part of everyday language use 
appearing significantly more often in racist discourse and their over-use can 
in itself be an indication of the nature of the text and of the stance taken by 
the author.

Collocation Level
Our studies revealed that words which appear in racist discourse can also 
appear in many other discourses. For instance over-breeding, a word en­
countered frequently in racist discourse, also appears in texts about breeding 
horses. For this reason, we looked beyond keywords and started to look at 
word sequences and context. This study revealed to us many collocations 
which are consistently prevalent in racist texts, e.g. our own kind, white 
civilisation, white survival, only Jews, our country were encountered sig­
nificantly more often in the racist corpus (see Gibbon and Greevy [2003], 
Lechleiter and Greevy [2003], Martin [2003a,b]).

The results of our linguistic studies showed that it may be possible to
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separate texts based on context and that is one of the reasons we train the 
Support Vector Machine on 2- and 3-word sequences.

Syntactic Level
The corpus was tagged using XeLDA2, a suite of linguistic tools made avail­
able to us by Xerox. The distribution of different POS categories was inves­
tigated.

Table 4.1: Distribution of the parts of speech
Racist Non-racist

ADJ 8.89 8.14
ADV 4.61 3.49
NOUN 21.14’ 22.40
VERB 14.79 12.18
OTHER 50.57 53.78

The results (in Table 4.1) show there to be differences of between 1-3% 
across the board. These differences may seem insignificant and rather small, 
but in order to put these figures into context, the size of the samples must 
also be taken into consideration. It is interesting to note that the racist 
corpus contains more adjectives and fewer nouns making the adjective-noun 
ratio .42 for the racist and only .36 for the non-racist. This tells us that 
racist discourse contains more qualifiers and that the larger number of nouns 
in the anti-racist corpus may be indicative of a difference in register.

We trained a Support Vector Machine on the POS information to see 
what effect this representation has on the categorisation system.

2Xerox Linguistic Development Architecture: http://www.xrce.xerox.com /competencies/ past- 
projects/platforms/xelda.html

http://www.xrce.xerox.com/competencies/past-
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To conduct experiments in the PRINCIP project, a dataset of over 2 million 
English words and about 1000 documents was collected. This same dataset 
was used to train the Support Vector Machine which will allow for the iden­
tification of racist documents. The dataset consists of an equal number of 
racist and non-racist documents which were downloaded from the WWW.

4.3.1 Collecting the Dataset
When building the dataset during the PRINCIP project a combination of 
approaches was used to avoid circularity, to target a diverse collection of 
documents from different domains, different countries and also to target dif­
ferent groups.

Yahoo!3 and Google directories were browsed under categories containing 
social and cultural texts. A list of potentially racist keywords and phrases 
was constructed with the help of the League of Human Rights in Belgium.4 

Current affairs provided useful clues for the building of the list, as did study­
ing research on racist discourse by Dijk [1987] and Wodak and Reisigl [2001]. 
The list of candidate keywords and phrases was submitted to search engines 
such as Google5 and AlltheWeb6 and the results of the search query were 
classified into one of either racist or non-racist.

Given the topology of the web, we assumed that like attracts like which 
meant that by following hyperlinks within webpages we would discover more

3http://www.yahoo.com
4h ttp ://  www.liguedh.org
5http://www.google.com
6http: /  /  www.allthe web. com

http://www.yahoo.com
http://www.liguedh.org
http://www.google.com
http://www.allthe
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documents of a similar nature. It followed that downloading hyperlinks 
proved a particularly useful method in building the datasets. We refer the 
reader to work by the Princip Partners [2002] for further information.

4.3.2 Dataset Statistics
The dataset contains 1000 documents with 500 racist and- 500 non-racist 
documents. These documents were collected using the methods described 
in 4.3.1. For further information on these methods see work by the Princip 
Partners [2002].

Table 4.2: Size of the ndividual datasetsSet 1 Set 2 Set 3 Set 4
Training set size 2 0 0 400 600 800
Test set size 60 1 0 0 150 2 0 0

The 1000 documents were split into training and test sets. No criteria 
were defined for this task. Instead, the documents for the training and test 
sets were chosen at random thereby minimising bias. Each training and test 
set contains an equal number of racist and non-racist documents.

In order to analyse the impact of differing sized datasets on the system, 
we split the dataset accordingly as in Table 4.2. In the following chapter we 
will refer to set 1, set 2, set 3 and set 4.



4.4 Building the Classification System
In this thesis we used Support Vector Machines as the machine learning 
method to build a text categorisation system. We are using S V M u°ht,7 which 
is an implementation of Vapnik’s Support Vector Machine (Vapnik [1995]). 
This package is freely available for scientific use and can be downloaded 
online.

When downloaded and installed, the S V M lt9ht package contains two ex­
ecutables:
svm Jearn is the learning module. The training data is passed to the learn­

ing module; the SVM learns the training data and outputs a model 
which is used to help classify new unseen data.

svm_classify is the classification module. This uses the model output dur­
ing learning to help classify new unseen data.

4.4.1 Building Training and Test Data
In section 2.5 we examined indexing procedures and processes and the build­
ing of representations interpretable by the classifier. We have already spoken 
about the need for training and test data in section 3.2. In this section we 
examine the role of training and test data, including the building of these 
datasets and their transformation into appropriate representations in the 
context of this thesis.

The training data is used by the learning module to identify features of 
each class. In classification mode these features are then used to assign a

7http: /  /  svmlight.joachirns.org/
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document to a class. The test data consists of those documents yet to be 
classified by the system. The classification module assigns a class to each 
document.

All documents in both training and test data to be classified by the sys­
tem must be indexed, i.e. transformed into a representation that can be 
understood by the Support Vector Machine. All training/test data are rep­
resented in one file where each line represents a document and takes the form

< target > < feature >:< value > . . .  < feature >:< value > 
where
< target >  =  + 1  | — 1

< feature > = int
< value > = boolean | in t \ float

White space separates TARGET and the FEATURE: VALUE pairs. TARGET 
represents the target class of the document where + 1  is assigned to docu­
ments which belong to the class (i.e. documents that are racist) and — 1 is 
assigned to documents which do not belong to the class (i.e. documents that 
are non-racist). In our case each FEATURE is a number representing either 
a word, bigram or POS tag in the dataset. FEATURE: VALUE pairs must be 
ordered by increasing value of feature number. VALUE represents the degree 
to which the feature is present in the document, which could be a boolean 
value i.e. 0 representing absence or 1 representing presence. Alternatively, 
it could be an integer value representing the number of occurrences in the 
document or a floating number which is essentially a value representing the
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weight of the feature in the document. We refer the reader to section 2.5.1 
for further information on term or feature weighting.

A document might therefore be represented as follows:

- 1  1 : 0.59 4 : 0.7 1 2 :0 .5 .. .

where — 1 specifies a negative example for which feature number 1 has the 
value 0.59, feature number 4 has the value 0.7, feature number 12 has the 
value 0.5 and so on.

BOW
In this representation, each word is treated as a feature. We did not use stop 
lists or perform stemming or lemmatisation. Two separate experiments were 
conducted to evaluate the performance of the classifier, where the value is 
taken to be

1 . the number of occurrences of the feature in the document

2 . the frequency of the feature in the document

Frequency is calculated by dividing the number of occurrences of the 
feature in the document by the document length.

Bigrams
We also look at bigrams at word level. For instance, for the following sentence
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“Our race is our nation”

the bigrams would be:

‘Our race’ /  ‘race is’ /  ‘is our’ /  ‘our nation’

Since frequency produced better results for the BOW approach than the 
number of occurrences, we used frequency as a means of weighting terms in 
the documents, i.e. value represented the frequency of the bigram in the 
document.

We wrote a Java program to create the appropriate input for the building 
of the training data.

Parts of Speech
The dataset was tagged using XeLDA -  Xerox Linguistic Development Ar­
chitecture. Xelda outputs the tagged document in XML format (see Figure 
4.3 for sample output). It is therefore necessary for the document to un­
dergo some pre-processing to extract the tags so that the documents can be 
transformed into a representation interpretable by the classifier. We wrote a 
Java program to parse the XML document and extract the POS tags from 
the tagged text.

The Xelda disambiguation tagset contains 70 tags so the number of fea­
tures is small in comparison to BOWs and bigrams. In this representation 
each tag is treated as a feature.
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«lexeme id="705" start="4214" length="7’’> 
«surface-form>healing«/surface-form>
<sense-list disambiguated-'yes">

«sense id="1 " >

«part-of-speech>NOUNING'</part-of-speech>
«base-form>healing«/base-form>

</sense>
«/sense-list>

«/lexeme^
«lexeme id="706" start="4222" length="3"> 

«surface-form»and«/surface-form>
«sense-list disambiguated="yes">

«sense id="1 ">
«part-of-speech>COORD=/part-of-speech>
<base-form>and<^base-form>

«/senses
«/sense-list>

<rtexeme>
«lexeme id="707" start="4227" length="7"> 

<surface-form>harmony</surface-form>
«sense-list disambiguated="yes">

«sense id="1
«part-of-speech>NOUN«yjoart-of-speech>
«base-form>harmony«foase-form>

«/sense>
</sense-list>

«dexeme>

Figure 4.3: A document tagged by Xelda in XML format



4.4.2 Learning
The svmJLeam module is used to train the machine and is run at the com­
mand line by typing:

svm_leam [options] train_file model_file

T h e  train_f ile is t h e  in p u t  file w h ic h  w as d e s c r ib e d  in  s e c tio n  4 .4 .1 . T o  
r e c a p , th i s  file r e p r e s e n ts  a l l  d o c u m e n ts  in  th e  t r a in in g  d a t a  w h e re  e a c h  lin e  
r e p r e s e n ts  a  d o c u m e n t  a n d  e a c h  lin e  c o n s is ts  o f  FEATURE: VALUE p a irs .  T h e  
f e a tu re s  r e p re s e n t  o n e  o f  BOW, b ig r a m s  o r  POS ta g s ,  d e p e n d in g  o n  w h ic h  
r e p r e s e n ta t io n  is  b e in g  u s e d  a t  t h e  t im e .

Default training for the SVM is to use no option. However, various pa­
rameters of the SVM can easily be tuned and tweaked during learning and 
this allows for straight forward cross-validation. Joachims [1998b] points out 
that “SVMs do not require any parameter tuning, since they can find good 
parameter settings automatically” . Previous studies have shown the default 
settings have proven to be the most effective. Despite this, we will alter some 
of the settings during training to see if this impacts on the effectiveness of 
the classifier. The parameter settings that can be altered include:
learning options: various learning parameters can be altered. Some of the 

options include:
• —c changing c results in the SVM trading-off between training 

errors and the margin that separates the data.
• —j  increasing or decreasing j  changes the cost-factor, i.e. adjusts 

the amount by which training errors of positive examples outweigh 
negative ones.
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•  — b the use of an unbiased hyperplane instead of the default biased 
one.

performance estimation: to do with estimating the performance of the 
classifier.

transduction options: relating to the fraction of unlabeled examples to be 
classified into the positive class.

kernel options: the type of kernel function —t can be altered. The internal 
parameters of the kernel functions themselves can also be changed.

•  linear is the default kernel,
• polynomial - < x ,z  >d,
•  radial basis function - K ( x ,z ) =  exp ~1M1 s,
• sigmoid tanh - tanh kx ■ y  — 8 .

optim isation options: allows various parameters to be changed in order 
to optimise kernel evaluations, iterations, or training criteria.

First of all we train the SVM using the default options. Then we examine 
the effect of tuning the SVM and, in particular, examine the effect of changing 
the kernel function. We report on the most effective kernel function for each 
of the BOW, bigrams and POS representations.

When learning is complete on the t r a in _ f i le ,  the result is the learned 
model which is written to the model-f i le .



During classification, the model jf ile produced during SVM learning is used 
to predict the output class of unseen documents. svnLclassify is used to 
classify unseen documents and this is done as follows:

svm_classify [options] unseen_file model_file 
output_file

The unseen J  ile contains the documents yet to be classified. These 
documents are represented in the same way that was described in section
4.4.1 and again briefly in section 4.4.2.

The model_file is the model which is learned from the training data 
train Jile during learning in 4.4.2. The SVM reads this file during classi­
fication to make predictions on the output class of each of the documents in 
unseenJile to be classified.

Each line in the output J  ile represents one document in the set of docu­
ments to be classified (i.e. unseenJrile). This line contains the value of the 
decision function (see sections 3.4.2 and 3.4.3 for further information) on a 
document in unseen_f ile. The sign of this value determines classification, 
i.e. a positive value indicates the document is racist while a negative value 
means the document is not racist.

4.5 Evaluation
In chapter 2 we discussed indexing, the first step involved in building the 
text categorisation sytem. The second step, classifier construction, was dealt
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with in chapter 3. These two steps are the only ones required in order to 
build the classification system, but as with any system we cannot know how 
effective it is until we evaluate it. Evaluation, the last step, is very important 
for text categorisation and we need empirical evidence to see how good the 
system is.

As already explained earlier in this chapter, we have split the dataset into 
a training and test set (see Table 4.2). We will use each test set to evaluate 
the performance of the classifier.

We use Precision and Recall measures to evaluate the system. “Recall 
and precision are ubiquitous in information retrieval, where they measure the 
proportion of relevant documents retrieved and the proportion of retrieved 
documents which are relevant” Lewis [1991]. Precision is the number of cate­
gories correctly assigned, divided by the total number of categories assigned, 
ft is a conditional probability defined as P(ca,ix = l |a ;x =  1) Sebastiani
[2002], i.e. the probability that if a random document dx is classified under 
q , this decision is correct. Recall is the number of categories correctly as­
signed, divided by the total number of categories that should be assigned. 
It is essentially a measure of the degree of coverage for a specific category 
and is defined as the conditional probability P(aix = 11caix =  1) (Sebas­
tiani [2002]), i.e. the probability that, if a random document dx ought to be 
classified under q , this decision is taken.

Accuracy will also be used to evaluate the system. This is calculated on 
the test set by checking that the suggested tag is the same as the actual tag.
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It is simply calculated as in equation 4.1:

N u m ber—o J —documc nt&—a asigned—to — th e—correct—ca legotij 
N um ber—o f — docum ents—to —be-categoi'ised

(4.1)

We will also be using the Fl-measure to evaluate the performance of the 
classifier. The Fl-measure is obtained by first computing precision and recall 
and then using them to calculate the Fl-measure. It “combines precision and 
recall with equal importance into a single parameter for optimization” (Pierre 
[2000]). This is a useful measure by which to evaluate the overall performance 
of the classifier assuming it is of value to treat precision and recall with equal 
importance. The Fl-measure is defined in equation 4.2 as:

__ 2P rec is io n X Recall
Precision-]- Recall

(4.2)

4.6 Summary
In this chapter we took a closer look at the problem of detecting racism on­
line and highlighted how this problem differs from traditional categorisation 
problems. We described work that has been carried out in University College
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Dublin by Finn and Kushmerick [2002], Finn et al. [2002] and identified the 
similarities between that research and our own. We presented some of the 
findings of the PRINCIP project carried out at DCU (see Gibbon and Greevy
[2003], Lechleiter and Greevy [2003], Martin [2003a,b]) and explained how 
this has helped us in forming our methodology for this thesis.

We introduced the methodologies that were used for data collection and 
presented the statistics on the datasets that were during training and testing 
of the text categorisation system.

We discussed building the training and test data, as well as the various 
processes the data must undergo so that the both the training and test data 
(and indeed any future data to be classified by the machine) are interpretable 
by the Support Vector Machine. We also discussed the pre-processing stages 
which the data must undergo in order for it to be turned into the appropriate 
representations, namely BOW, bigrams or POS tags.

Finally we explained how to train and test the SVM given the data and 
we introduced the measures used to evaluate the effectiveness of the system.

In the next chapter we will look at the results of the text categorisation 
system for the identification of racist documents online.



Chapter 5
Results
We took a Support Vector Machine, S V M lt9ht, trained it on three representa­
tions of the data - BOW, n-grams and POS - and evaluated the effectiveness 
of each classifier in terms of precision, recall accuracy and Fl-measure, as 
discussed in section 4.5. We looked at the impact on datasets of varying 
sizes. The effect of tweaking and tuning certain paramters of the SVM is 
analysed.

Some of the results presented in this chapter were presented in 2004 a 
paper at the 7th International Conference on the Statistical Analysis of Tex­
tual Data in Leuven-la-Neuve, Belgium (Greevy and Smeaton [2004b]) and 
in a poster at the 2004 27th Annual International ACM SIGIR Conference 
in Sheffield, UK (Greevy and Smeaton [2004a]).

94



5.1 Bag of Words
The first experiments we conducted used the BOW representation. In section
4.4.1 we discussed the various processes involved in preparing the data for 
training.

For these initial experiments we trained the classifier using the default 
SVM parameter settings. Learning, performance, kernel and optimisation 
settings remained unchanged. The default kernel is linear. Unless otherwise 
stated, all results reported are on the linear kernel function. We refer the 
reader to section 4.4.2 for further information on the SVM parameter settings.

We compared two term weighting measures to analyse the most effective 
method for weighting terms. We compare the number of occurrences of a 
term in a document with the frequency of a term in a document (see equation 
2.1). In Table 5.1 we see the results of this preliminary experiment. We
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Table 5.1: Evaluation of different term weighting measures for BOW
Dataset Term Weight Precision Recall Accuracy Fl-measure
Set 1 No. occurrences 87.50% 23.33% 60.00% 36.84
Set 1 Frequency 92.31% 80.00% 86.67% 85.72

observe that frequency is a more effective measure for term weighting with 
a Fl-mcasure of 85.72 compared with 36.84 for the number of occurrences 
as term weight. Since frequency as term weight is most effective, we will be 
using it as means for measuring term weight in the next experiments. Table
5.2 outlines the results of the classifier when BOW is used as a representation. 
We have tested this representation on datasets of varying sizes. From Table
5.2 and Figure 5.1 we see that, as the the size of the training Set increases, so
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Table 5.2: BOW per orman ce
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 84.00% 84.00% 84.00% 84.00
Set 3 87.84% 86.67% 87.33% 87.25
Set 4 92.55% 87.00% 90.00% 89.69

does recall. High precision is reported for Set 1 and thereafter it takes a slight 
dip but the best precision and overall result is seen in Set 4. The accuracy 
and F I scores behave similarly -  dipping after Set 1 and then improving from 
Set 2 to Set 4. In Figure 5.2 the results are more transparent: the classifier 
performs best on the largest dataset -  Set 4, with a notable improvement in 
performance from Set 2 to Set 4. Figure 5.2 gives a clearer indication of the
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Figure 5.1: BOW: Precision and Recall figures for each dataset

performance of the classifier on the BOW representation for each dataset. 
Remember that FI treats precision and recall with equal importance. The 
results in Figure 5.2 are similar to Figure 5.1; the classifier performs best on 
the largest datasets -  Sets 3 and 4.
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F1-measure scores for BOW
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Figure 5.2: BOW: Fl-measure scores

5.2 Bigrams
In section 4.4.1 we discussed the steps that must be taken in order to trans­
form the data into an appropriate format for training.

Table 5.3: Comparison of a term weighting measure on BOW and bigrams
on Set 1_______ ________________ _________ ________ ________________Representation Term Weight Precision Recall Accuracy FI

BOW No. occurrences 87.50% 23.33% 60.00% 36.84
Bigram No. occurrences 66.67% 40.00% 60.00% 50.00

In a preliminary experiment (see Table 5.3) using the number of occur­
rences as term weight, we compared the BOW and bigram representations 
on the smallest dataset, Set 1. From this initial experiment we see that the 
BOW gives highest precision while the bigrams gives highest recall. The
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accuracy on the test set works out the same for each representation but the 
Fl-measure figures differ greatly with the bigrams outperforming the BOW. 
We will compare and constrast the representations more thoroughly after we 
look at the performance of the classifier using the bigram represenation on 
the larger datasets.

Table 5.4 reports on the performance of the classifier on each of the 
datasets. Bigrams are used as a representation in this experiement. From 
Table 5.4 we see that as the training Set increases precision decreases from

rnable 5.4: Bigrams performance
Dataset Precision Recall Accuracy FI
Set 1 100.00% 48.39% 73.77% 65.22
Set 2 95.00% 74.51% 83.00% 83.52
Set 3 93.44% 75.00% 84.77% 83.21
Set 4 94.12% 80.81% 87.94% 86.96

100% in Set 1 to 94.12% in Set 4, rising slightly between Set 3 and Set 4. 
Recall on the other hand, increases from as low as 48.39% in Set 1 to as 
high as 80.81% in Set 4. As the training Set increases, accuracy increases 
steadily from 73.77% to 87.94%. The Fl-measure follows a similar pattern 
to precision, dipping after Set 2 and rising again between Set 3 and Set 4. 
This pattern is more obvious in Figure 5.3.

If we compare Figures 5.2 and 5.3, representing the F I scores for the BOW 
and bigram representations, we notice that the F I scores are higher across 
each dataset for BOW than for bigrams. This is more clearly represented in 
Figure 5.4.
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F1 -measure scores for Bigrams
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Figure 5.3: Bigrams: Fl-measure scores

Figure 5.4: Comparing FI scores for BOW and Bigrams



5.3 Part-of-speech Tags
In section 4.4.1, we discussed the steps that must be taken in order to trans­
form the data into an appropriate format for training.

We trained the classifier using POS as a representation with frequency 
as term weight. Table 5.5 reports on the performance of the classifier when 
POS is used as a representation. We see that as the training set size increases 
precision decreases steadily from 87.10% to 72.58% -  i.e. precision is lower

_________ Table 5.5: POS performance_________
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Dataset Precision Recall Accuracy FI
Set 1 87.10% 90.00% 88.33% 88.53
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 76.67% 92.00% 82.00% 83.64
Set 4 72.58% 90.00% 78.00% 80.36

than what was reported for the BOW and bigram representations. Recall 
peaked to 94% on Set 2 and then decreases to 90% for Set 4, outperforming 
both the BOW and bigram representations. Both the accuracy and FI scores 
consistently decrease as the training Set increases, meaning overall, POS 
performs well when the training and test data are small.

5.4 Comparing BOW , Bigram s and POS
In this section we digest and analyse the results which we obtained in our 
experiments in sections 5.1, 5.2 and 5.3.



5.4.1 Analysis of Performance in terms of the Fl-m easure
Figure 5.5 illustrates the performance of each of the representations in terms 
of the Fl-measure, an evaluative measure which treats both precision and 
recall equally. From Figure 5.5 we see that, overall, the BOW representation 
outperforms the other two. POS performs better than any other representa­
tion for Set 1 but we must remember that this is the smallest dataset and so 
the data on which the classifier is tested is much smaller than the test data 
in Set 4, the largest of the training data.
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Comparison of F1 for BOW, Bigrams and POS

Datasets

Figure 5.5: Comparison of Fl-measure for BOW, Bigrams and POS

5.4.2 Analysis of Performance in terms of Precision
So far we have been using the Fl-measure to evaluate the performance of the 
classifier for each of the representations. Since this measure assumes precision
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and recall should be treated equally, the merits of each of the representation 
are not altogether clear. We want a classifier that assigns documents to cor­
rect categories (precision) as well as a classifier with a high degree of coverage 
(recall). In IR, there is usually some degree of trade-off between precision 
and recall -  low recall is usually sacrified for high precision. However, the 
best classification system will have both high recall and high precision and 
for this reason we will analyse each representation separately in terms of pre­
cision and recall. This will allow us to see more clearly the advantages and 
disadvanatages of each of the representations.

Comparison of Precision for BOW, Bigram and 
POS

BOW  

Bigram 

POS

Datasete

Figure 5.6: Comparison of Precision for BOW, Bigrams and POS

Figure 5.6 illustrates the precision scores for each of BOW, bigrams and 
POS. Although the bigram representation decreases as the training set in­
creases, it outperforms BOW and POS. BOW precision takes a slight dip for 
Set 2 but then steadily increases to 92.55%, slightly below bigram precision
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at 94.12%.

5.4.3 Analysis o f Performance in term s of Recall
Figure 5.7 allows us to easily identify that the POS representation gives 
highest recall overall. Though recall dips slightly from Set 2 to Set 4 for the

Comparison of Recall for BOW, Bigrams and POS
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Figure 5.7: Comparison of Recall for BOW, Bigrams and POS

POS representation, it still outperforms the BOW and higrams. BOW, on 
the other hand, improves steadily aa the training set increases reaching 87%, 
3% less than that achieved for the POS representation on Set 4.
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5.5 Tuning SVM  Param eters
Parameter settings have been experimented with within the SVM and studies 
have shown that the default settings are the most effective. Joachims [1998b] 
points out that “SVMs do not require any parameter tuning, since they can 
find good parameter settings automatically” .

In these next experiments we analyse the effect of changing the kernel 
options on classification performance. Experiments prior to this section used 
the linear kernel function. Here, we look at polynomial, sigmoid tanh and 
the radial basis function as kernel functions.

5.5.1 Polynomial as a Kernel Function 
BOW
Table 5.6 reports on the performance of the classifier on the BOW representa­
tion when the polynomial kernel function is used. The results follow a similar 
pattern to those reported in the previous section in Table 5.2 where the linear 
kernel function is used. However, the performance improved slightly for the 
polynomial kernel -  though the results achieved on Set 1 are the same for

Tab e 5.6: BOW performance using the polynomial kernel
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 85.71% 84.00% 85.00% 84.85
Set 3 87.84% 86.67% 87.33% 87.25
Set 4 92.78% 90.00% 91.50% 91.37

both the polynomial and linear kernel functions, improved precision, recall,
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accuracy and FI scores were recorded for Sets 2, 3 and 4.

Bigrams
Table 5.7 presents the performance scores for the bigram representation using 
polynomial as a kernel function. When we compare this table to Table 5.4, 
where the linear kernel function is used, we see that precision deteriorates 
significantly for Set 1. We see an increase for Sets 2 and 3 to the same as was 
reported for the linear kernel function in Table 5.4, with a slight improvement

Tab: e 5.7: Bigram performance usin ; the polynomial kernel
Dataset Precision Recall Accuracy F I
Set 1 50.82% 100.00% 50.82% 67.39
Set 2 95.00% 74.51% 85.15% 83.52
Set 3 93.44% 75.00% 84.77% 83.21
Set 4 94.20% 65.66% 80.90% 77.38

in precision for Set 4. Recall improves significantly for Set 1. Again exactly 
the same figures are reported for Sets 2 and 3 as were reported in Table 5.4. 
Recall dipped again for Set 4. This dramatic difference between precision 
and recall for Set 1 when the linear and polynomial kernels are used may be 
due to the small size of the dataset. Overall, these figures lead to a higher 
FI score for Set 4, lower for Set 1 and the same for Sets 2 and 3. Overall, 
the polynomial function does not improve the performance of the classifier 
for the bigram representation.



CHAPTERS. RESULTS 106

POS
Table 5.8 shows the results of the polynomial kernel function on the POS 
representation. We compare these results with those obtained for the linear 
function in Table 5.5 and note an improvement in precision for all datasets.

Table 5.8: POS performance using the polynomial kernel
Dataset Precision Recall Accuracy FI
Set 1 93.10% 90.00% 91.67% 91.52
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 77.53% 92.00% 82.67% 84.15
Set 4 73.17% 90.00% 78.50% 80.72

Recall remains the same. Both accuracy and the Fl-measure improve because 
of the improved precision. Therefore, we conclude that the polynomial kernel 
function outperforms the linear for the POS representation.

Comparing BOW , Bigrams, POS
In Figure 5.8 we see a similar pattern to that in Figure 5.5. Although POS 
performs best for Set 1 (as we also saw in Figure 5.5), BOW outperforms 
both bigrams and POS for Sets 2 to 4. The Fl-measure treats precision 
and recall with equal importance and so this evaluative measure tells us that 
overall the POS representation performs better than both the bigrams and 
POS.

In Figure 5.9 we see a pattern not dissimilar to that in Figure 5.6 -  
however Set 1 suffers greatly, with a significant drop in precision. This could 
however be due to the rather small number of documents in the dataset. 
Precision quickly increases thereafter and outperforms the BOW and POS
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F1 for BOW, Bigrams, POS using Polynomial as 
Kernel
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Figure 5.8: Comparison of Fl-measure for BOW, Bigrams and POS using 
Polynomial Kernel Function

Precision for BOW, Bigrams, POS using 
Polynomial as a Kernel
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Figure 5.9: Comparison of Precision for BOW, Bigrams and POS using Poly­
nomial Kernel Function
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representation for Sets 2 to 4. Precision remains the same as the linear for 
Sets 2 and 3 and slightly rises for Set 4. We conclude again that of the three 
representations, bigrams leads to the best precision, though the figures were 
more consistent for the linear function.

Figure 5.10: Comparison of Recall for BOW, Bigrarns and POS using Poly­
nomial Kernel Function

In Figure 5.10, again we see a pattern not unlike that in Figure 5.7. 
Bigrams perform best for Set 1 but POS then outperforms BOW and bigrams 
for Sets 2, 3 and 4. The recall figures for POS remain the same for the 
polynomial as those reported for the linear kernel function in Figure 5.7.
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5.5.2 Sigmoid tanh as a Kernel Function 
BOW
Table 5.9 represents the results of the BOW representation when sigmoid 
tanh is used as a kernel function. The results follow a similar trend to those 
obtained for both the linear and polynomial kernel functions. However, the 
scores diminish slightly compared to those obtained for the linear kernel 
function -  precision drops by between about .33% and 1% for Sets 2 and 4 
and recall drops by 2% for Set 2. The other scores remain the same. The 
polynomial kernel function outperforms sigmoid tanh as well. Therefore, we

Table 5.9: BOW performance using the sigmoic
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 83.67% 82.00% 83.00% 82.83
Set 3 87.84% 86.67% 87.33% 87.25
Set 4 91.58% 87.00% 89.50% 89.23

tanh kernel

conclude that the sigmoid tanh kernel function does not result in improved 
performance.

Bigrams
Table 5.10 displays the results of the bigram representation when sigmoid 
tanh is used as a kernel function. When we compare the results with the 
linear kernel, we see that the sigmoid tanh kernel function improves precision 
for Set 4 and improves recall for Sets 1 and 4. Compared to the polynomial, 
sigmoid tanh results in improved precision for Sets 1 and 4, while recall takes
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a dip for Set 1, it improves signifiantly for Set 4. As already mentioned, the 
dramatic difference in performance for Set 1 may be due to size. Overall, we

Dataset Precision Recall Accuracy FI
Set 1 100.00% 67.74% 83.61% 80.77
Set 2 95.00% 74.51% 85.15% 83.52
Set 3 93.44% 75.00% 84.77% 83.21
Set 4 94.32% 83.84% 89.45% 88.77

see improved accuracy and Fl-measures and can therefore conclude that the 
sigmoid tanh kernel function performs better than both the polynomial and 
linear kernel functions.

POS
Prom Table 5.11 we see the results of the sigmoid tanh kernel function on 
the POS representation. Performance diminishes compared to the results 
obtained for both the linear and polynomial kernel functions. Precision on 
Sets 3 and 4 drop and recall on Set 4 drops compared to those achieved using 
the linear kernel. When compared to the polynomial we also see a drop in

Table 5.11: POS performance using the sigmoid tanh kernel
Dataset Precision Recall Accuracy FI
Set 1 87.10% 90.00% 88.33% 88.53
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 77.53% 92.00% 82.67% 84.15
Set 4 72.36% 89.00% 77.50% 79.82

precision for Sets 1 and 4 and in recall for Set 4. This in turn leads to a
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decline in accuracy and FI-measures. The sigmoid tanh kernel function does 
not improve the performance of the classifier for the POS representation.

Comparing BOW , Bigrams, POS
From Figure 5.11 we see that overall the BOW outperforms the other repre­
sentations. Similar findings were reported in Figures 5.5 and 5.8 where it was

F1 for BOW, Bigrams and POS using Sigmoid 
tanh as Kernel

-♦— BOW  

Bigram 

POS

Datasete

Figure 5.11: Comparison of F I for BOW, Bigrams and POS using Sigmoid 
tanh Kernel Function

found that POS performed best for Set 1, all three representations performed 
equally well for Set 2 and from there the BOW improved, outperforming the 
bigrams and POS by between 5 — 10%.

Figure 5.12 shows the precision figures for each of BOW, bigram and POS 
representations, using the sigmoid tanh as a kernel function. In Figure 5.12 
we see that bigrams give the highest precision, and BOW and POS gives the
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lowest. The same pattern is reported when the linear and polynomial kernel 
functions are used. For bigrams, precision declines from Set 1 to 3 and then 
rises for Set 4 for both the linear and sigmoid tanh kernels with sigmoid tanh

Precision for BOW, Bigram and POS using 
Sigmoid tanh as Kernel

BOW

Bigram
POS

Dataseb

Figure 5.12: Comparison of Precision for BOW, Bigrams and POS using 
Sigmoid tanh Kernel Function

giving slightly higher precision for Set 4. Our findings thus far show that 
bigrams give the highest precision.

Figure 5.13 shows the recall figures for each of BOW, bigram and POS 
representation using the sigmoid tanh as a kernel function. In Figure 5.13 
we see that the POS representation gives a higher recall than both the BOW 
and POS representations, outperforming both by between about 5 — 23% for 
Sets 1 to 3. BOW recall improves greatly for Set 4 reaching 87% but does 
not outperform POS at 89%.
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Recall for BOW, Bigrams, POW
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Figure 5.13: Comparison of Recall for BOW, Bigrarns and POS using Sigmoid 
tanh Kernel Function

5.5.3 Radial Basis Function as a Kernel Function 
BOW
Table 5.12 displays the results of using the radial basis function (RBF) as a 
kernel function on the BOW representation. By comparing Table 5.12 with 
Tables 5.2, 5.6 and 5.9 we see that although the RBF kernel gives better

Table 5.12: BOW performance using the radial basis unction as a kernel
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 85.71% 84.00% 85.00% 84.85
Set 3 86.67% 86.67% 86.67% 86.67
Set 4 92.78% 90.00% 91.50% 91.37
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results for precision than the linear and sigmoid tanh kernels, it does not 
perform as well as the polynomial. The recall scores for RBF are on a par 
with the polynomial figures. Therefore, we conclude that polynomial gives 
the best performance for the BOW representation.

Bigrams
Table 5.13 displays the results of the RBF on the bigram represenatation. By 
comparing Table 5.13 with Tables 5.4, 5.7 and 5.10 we see that the precision 
scores are the same as sigmoid tanh and linear for Sets 1 and 2, and less for 
Sets 3 and 4. Recall is the same as linear, polynomial and sigmoid tanh for

Table 5.13: Bigram performance using the radial basis function as a kernel
Dataset Precision Recall Accuracy FI
Set 1 100.00% 67.74% 83.61% 80.77
Set 2 95.00% 74.51% 85.15% 83.52
Set 3 91.94% 75.00% 84.11% 82.61
Set 4 93.10% 81.82% 87.94% 87.10

Sets 2 and 3. Although it is better than the linear and polynomial for Set 4, 
it does not reach the performance of sigmoid tanh -  83.84% on Set 4. Overall 
the sigmoid tanh produces the best FI scores for the bigram representation.

POS
Table 5.14 represents the results of using the RBF as a kernel function on 
the POS representation. When we compare Table 5.14 to Tables 5.5, 5.8 and
5.11, we see that the precision scores on Sets 1 to 3 for RBF are equal to 
those obtained using the polynomial kernel function. Precision on Set 4 drops
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Table 5.14: POS per ormance using the radial basis function as a kernel
Dataset Precision Recall Accuracy FI
Set 1 93.10% 90.00% 91.67% 91.52
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 77.53% 92.00% 82.67% 84.15
Set 4 72.58% 90.00% 78.00% 80.36

to 72.58% with the polynomial producing the best precision (73.17%). The 
recall for Sets 1-4 are the same for the linear, polynomial and RBF kernel 
functions. Overall, the polynomial kernel function gives the best performance 
for the POS representation.

Comparing BOW , Bigrams and POS
Figure 5.14 illustrates a comparison of the F I scores for the BOW, bigram 
and POS representations on each dataset when the RBF is used as a kernel 
function. We see a similar pattern to Figures 5.5, 5.8 and 5.11 in that overall 
the BOW proves to the most effective representation for the classification of 
racist texts.

The next two figures take a closer look at the strong points of each of 
the representations by examining which give the highest precision and recall. 
Figure 5.15 represents the precision scores of each representation on each 
dataset using the RBF as a kernel function. Again, as in Figures 5.6, 5.9 and
5.12, we see the bigram representation gives the highest precision, though for 
Set 4 the BOW is just .33% behind the bigrams.

Figure 5.16 represents the recall scores of the each representations for each 
dataset using the RBF as a kernel function. As in Figures 5.7, 5.10 and 5.13,
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F1 for BOW, Bigram and POS using Radial Basis 
Function as a Kernel
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Figure 5.14: Comparison of F I for BOW, Bigrams and POS using Radial 
Basis Function as a Kernel

Figure 5.15: Comparison of Precision for BOW, Bigrams and POS using 
Radial Basis Function as a Kernel
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we see that the POS representation gives the highest recall overall, though for 
Set 4 the BOW and bigrams are level with a recall of 90%. POS performance 
declines from Set 2 to Set 4 whereas BOW recall increases consistently from 
Set 1 to 4.

Recall for BOW, Bigrams and POS using Radial 
Basis Function as a Kernel

■BOW 

■ Bigram 

POS

Datasete

Figure 5.16: Comparison of Recall for BOW, Bigrams and POS using Radial 
Basis Function as a Kernel

5.6 Summary
In this chapter we looked at three representations of the data within the SVM
-  bag-of-words, bigrams and part-of-speech. We have analysed each of these 
representations in terms of precision, recall, accuracy and Fl-measure, identi­
fying the pros and cons of each approach and the most effective representation 
overall. We also analysed the effect of using different kernel functions within



the SVM -  lineai-, polynomial, sigmoid tanh and radial basis function. Each 
kernel was tested on each representation, thereby enabling us to identify the 
most effective kernel for each representation. The results obtained in this 
chapter will be scrutinised and analysed in more detail in the next chapter.
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Chapter 6
Conclusion

6.1 Overview
Since the advent of the Internet in the early 90s and the consequent intro­
duction of HTML, there has been a surge in the availability of documents 
in electronic format. Information which was previously published in news­
papers, magazines, billboards, journals, newsletters, flyers or as graffiti on 
walls is now easily distributed on the Internet. HTML is a language used for 
publishing documents on the Internet and the relative ease with which it can 
be learned and used makes it accessible to people from all spheres of life and 
all technical competencies. The nature of the Internet means that documents 
can be posted anonymously, allowing authors with politically incorrect views 
or opinions largely unfavourable to the general public to remain, to a large 
extent, unknown to the general user of the Internet. In the past, such people, 
being largely a minority, would have found it difficult to express their views 
publicly and freely and would also have had difficulty in meeting others with

119
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similar viewpoints. The Internet now presents them with a means of inter­
action, and has enabled such people to congregate and form communities 
online and to organise themselves to a greater extent. The nature of the 
Internet as a relatively anonymous and globally available medium, makes it 
a very attractive means of distributing information. For these reasons, it is a 
valuable asset to groups whose activities have remained largely underground 
until now.

In this thesis we have looked at the application of automatic text cate­
gorisation for the problem of racism on the Internet. Racism on the Internet 
is widespread, but especially prominent in the USA due to the First Amend­
ment - the right to freedom of speech. Common targets of racism include 
Jewish people, people of African descent, refugees and immigrants. How­
ever, since September 11th we have seen more racism towards Muslims and 
Arabs in Western countries and a growth in racism towards white people 
from countries like the UK and USA. World events, politics, war and current 
affairs, all influence the targets of racism, which in turn influence content on 
the Internet. The Internet is growing all the time with websites being edited 
or added every day The dataset used in this thesis was collected between 
February and September 2002 and recent investigations have shown it to be 
already out of date. Automatic techniques have proven successful for a wide 
range of classification problems such as news story categorisation, categori­
sation of documents into Yahoo!-like directory structures or categorisation 
of classified adverts. Automatic methods make it possible for classifiers to 
be updated with relative ease in comparison to the manual approach to clas­
sification. Given the demands in consistently protecting the younger, more
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impressionable users of a constantly changing Internet, it is a classification 
problem that would benefit from automatic categorisation techniques.

Detecting racism is unlike other topic-based problems (e.g. news story 
categorisation) that have been successfully dealt with using automatic tech­
niques. If we were to filter news stories into catgories such as sport, pol­
itics or finance, we might imagine that words such as football, score, 
aggregate, foul and off-side would be typical of sports while ISEQ, 
trading, merger and index, on the other hand, would be associated with 
finance. Detecting racism is not solely dependent on the presence or ab­
sence of key words or terms, as such words can appear in potentially any 
text type -  racist, anti-racist, political, or otherwise. We again refer the 
reader to Figures 4.1 and 4.2 for an example of a racist and a non-racist text 
which contain the same words. In our search for racist documents during the 
corpus collection phase of the PRINCIP project, we encountered documents 
about breeding horses through the search terms overbreeding + race and 
the webpage of a limousine service using the search terms white knight1

-  so collocations or co-occurrences of what seem to be racist terms do not 
always yield racist webpages.

To date, the problem of detecting racism has not been dealt with using 
automatic text categorisation methods. With the exception of the PRINCIP 
project,2 classification has been mostly manual, with offensive pages being 
labelled as such and then being added to a block list for use in filtering 
software. In this thesis we have used Support Vector Machines for the con­
struction of a classifier to handle the categorisation of racism on the net.

1Note: white knights is a term used to refer to the Ku Klux Klan in the USA
2http: /  /  www.princip.net

http://www.princip.net
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In section 4.3.1 we reported on how we gathered the racist and non-racist 
datasets. Any kind of automatic classifier needs a training set, which in our 
case is used to train the machine to identify racism. We are faced with a 
choice of how to represent each page to be classified. In this concluding chap­
ter, we look at each representation used within the Support Vector Machine. 
We summarise and analyse the results obtained using these representations 
(cf. ?? for further information on building the representations), and we high­
light the advantages and disadvantages of each representation. We look at 
the machine learning method used and explain why we used this method 
above others. We also identify future experiments that should be considered 
in this area.

6.2 W hich Representation?
Prom the experiments conducted and reported in the last chapter we see 
that the bigram representation gives the highest precision and POS gives 
the highest recall. Using the Fl-measure to evaluate the system, it is clear 
from Tables 5.5, 5.8, 5.11 and 5.14 that the BOW representation is the most 
effective of the three.

For each of the kernel functions tested, we noticed a similar pattern be­
tween the performance of the BOW and bigram representations -  precision 
dropped between Sets 1 and 2 for BOW and Sets 1 to 3 for bigrams and then 
rose again from Set 2 to 4 for BOW and Sets 3 to 4 for bigrams. A larger 
dataset might actually see the BOW outperforming the bigram representa­
tion.
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When we used the polynomial as a kernel function, the same recall was 
reported for the BOW and POS representations on Set 4, the largest dataset. 
In our experiments, we found that as the dataset increased, recall consistently 
reduced for the POS representation, whereas it increased consistently for 
the BOW representation (see Tables 5.7, 5.10, 5.13 and 5.16). It would be 
interesting to see how each representation would perform on a larger dataset 
and if the BOW would in fact outperform the POS.

From these experiments, we learned that the BOW is the most effective 
representation, giving us precision and recall scores almost on a par with the 
high scores that the bigrams achieved for precision and the POS achieved for 
recall.

6.3 W hich Classification Tool?
There are many machine learning methods that can be used to build a clas­
sifier -  Neural Networks, Naïve Bayes, Decision Trees, Rocchio, etc. These 
methods were introduced in chapter 3. For reasons outlined in section 3.3.10, 
we decided to use Support Vector Machines, a machine learning method intro­
duced by Vapnik Vapnik [1995] and implemented by Joachims in S V M hght. 
SVMs are a newer learning method that “since its introduction has already 
outperformed most other systems in a wide variety of applications” Cristian- 
ini and Shawe-Taylor [2000]. SVMs are capable of overcoming many issues 
which pose problems for other machine learning methods -  they are efficient 
even when dealing with very large datasets with many thousands of fea­
tures. Therefore, feature selection and extraction do not have to be applied,
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as SVMs are capable of finding good solutions in high dimensional spaces. 
Evaluation is also efficient, making the classifier fast at classifying unseen 
input.

In training, parameters inside the SVM are easily accessible, meaning the 
internal structure of the SVM and how the SVM learns can be tweaked to 
find the optimal solution for the problem at hand. In our work, we analysed 
the impact of changing the kernel function (we refer the reader to section 
3.4.5 for further information on kernel functions) -  see section 6.4 below for 
a summary of the impact of experimenting with kernels.

6.4 W hich Kernel?
We evaluated each of the kernel functions in the SVM and of the linear, 
polynomial, sigmoid tanh and radial basis function, we found the polynomial 
to give the best scores for the BOW representation, the sigmoid tanh proved 
most effective for the bigram representation while the polynomial resulted in 
the best performance for the POS representation.

Using the polynomial as a kernel function resulted in the same recall being 
achieved on Set 4 for the BOW and POS representations.

We learned that the default linear kernel did not prove to be the most 
effective for this classification problem. Polynomial performed best for BOW 
and POS and sigmoid tanh proved best for bigrams.
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6.5 Future Work, Criticism s and Conclusions
We have shown that it is possible to construct an automatic text categori­
sation system capable of detecting racism on the web. We have shown that, 
the BOW representation has proven to be the most effective representation 
and the best performance is achieved when the polynomial kernel function 
is used. The BOW approach has similarly proven to be the most effective 
and efficient representation for many classification problems (Smeaton [1997] 
and Lewis [1992]). Until now, TC techniques have been applied largely to 
topic-based problems such as news story categorisation -  problems which are 
typically reliant on keywords to separate classes. So it is surprising to see 
that the same representation which works well for topic-based problems also 
appears to work best for the detection of racism, a classification problem 
which is largely related to attitude or opinion detection, something which is 
orthogonal to the topic. Finn et al. [2002] and Finn and Kushmerick [2002] 
reported similar findings for subjectivity classification -  a problem also re­
lated to opinion. Like us, they found the BOWs approach to perform best. 
Our results seem a little unusual, as we have shown that racist words and 
phrases can appear in racist and non-racist texts and, from the outset, we 
envisaged that an approach based on keywords alone would not be enough 
to discriminate between racist and non-racist texts. However, our results 
suggest otherwise. While the BOW performed best overall, the bigram rep­
resentation resulted in the best precision. This is to be expected, as the 
bigram representation conveys context and some notion of sense. Though 
the same words very often appear in both racist and non-racist texts, the 
company they keep, or the context in which they are appear has to be radi­
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cally different for a text to be considered racist. For instance, our search using 
overbreeding + race retrieved texts on breeding horses as well as texts on 
African-Americans overbreeding in the suburbs of big cities in the USA -  
a typical bigram in the former document might be overbreeding horses, 
while in the latter we might expect to find overbreeding niggers. Both 
bigrams are very discriminating and would be far more accurate than just 
overbreeding and niggers. Though the bigram representation resulted in 
the best precision, recall suffered and overall the BOW proved most effective.

There is a lot of scope for future work in this area. We have used just 
one machine learning method -  Support Vector Machines -  to build the 
classifier because it “has already outperformed most other systems in a wide 
variety of applications” Cristianini and Shawe-Taylor [2000]. However, many 
of the other methods that we talked about in chapter 3 could be tried for 
this problem. The Naïve Bayes probabilistic method, which is renowned for 
its ease of implementation and surprising effectiveness would certainly be 
one to try, in spite of its simplicity. However, as with the other machine 
learning methods, the Naïve Bayes requires some element of dimensionality 
reduction in order to reduce the size of the feature set, otherwise overfitting 
would cause problems. SVMs on the other hand are capable of coping with 
high dimensional feature spaces and therefore overfitting does not impose 
on learning effectiveness, thereby making it the most appropriate choice of 
classifier.

In building any classification system, evaluation is of the utmost impor­
tance. The system must be tested thoroughly and extensively. Unfortu­
nately, we were restricted to a limited dataset that was constructed between
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February and September 2002. The targets of racism have already changed 
since that time due to world events -  for instance the war in Iraq. Further 
experiments on the current web would tell us more about the classification 
system.

This system was built without performing stop-word removal or stem­
ming. These are typically performed in order to remove redundant informa­
tion, reduce variance among features (for instance to have rac in place of 
race, races, racist, racism, racial, racists), to reduce the size of 
the feature set so as to avoid overfitting and make the classifier computation­
ally inexpensive and more efficient. Large feature sets can lead to overfitting 
which impacts on the performance of the classifier. However, SVMs are ca­
pable of dealing with many features and capable of generalising well in high 
dimensional spaces -  so it is not necessary to perform stop-word removal or 
stemming . Also, because of the nature of racism and the use of features of 
language that are present in potentially any discourse, we avoided such pre­
processing tasks in these experiments. Nonetheless, interesting future work 
would be to see if such pre-processing steps would have an impact on the 
classification system. Lemmatisation has also proven to “yield a significant 
improvement in recall” in some experiments Kraaij and Pohlmann [1996] -  
since the bigram representation proved to give the highest recall overall, it 
would be interesting to see if the use of lemmas in this representation would 
influence recall.

In our experiments we compared the number of occurrences and frequency 
as term weights and found frequency to perform best. Further experiments 
could be conducted using more sophisticated term weighting measures, such
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as TF*IDF.
During the PRINCIP project we identified what we call ‘rules’, which are 

essentially features that characterise web-based racist discourse. These rules 
were collected through manual linguistic investigations of the datasets and 
are fed to the PRINCIP system to allow for the detection of racist webpages. 
Another interesting study would be to use these rules as features in the SVM 
in place of the BOW, bigrams or POS representations, thereby allowing us 
to analyse a combinatory approach -  the use of handmade linguistic rules 
with a machine learning method.

There are many ways that POS tags can be used in categorisation. One 
relevant paper in the literature was that of Musuyama and Nakagawa [2004] 
who tried to improve the performance of classifiers using POS tags by ex­
tracting combinations of POS tags -  for instance all nouns, verbs, adjectives 
and adverbs were extracted and these words were used to train the classifier. 
Since these parts-of-speech are largely content words and contain most of 
the information, they may prove useful in discriminating between racist and 
non-racist texts.

From chapter 5 we learned that POS achieved the best recall and bigrams 
achieved the best precision. One obvious experiment would be to combine 
POS and bigrams to see if we can achieve both high recall and high precision. 
As previously mentioned BOW achieved the same recall on Set 4 as bigrams 
when the polynomial kernel function was used -  so it would also be interesting 
to combine POS and BOW.
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