
Automatic Text Categorisation of Racist
Webpages

Edel Greevy, B. Sc

A thesis submitted to Dublin City University,
for the degree of

Master of Science

August 2004

Declaration
1 hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Master of Science in Computing
is entirely my own work and has not been taken from the work of others save
and to the extent that such work has been cited and acknowledged within
the text of my work.

Student No.: 96533340

Date: 20th May 2004

i

Acknowledgements
I would like to express sincere gratitude to my supervisor Prof. Alan Smeaton
for his invaluable advice and support throughout this thesis.

I would like to thank my colleagues on the PRINCIP project, in particular
Dr. Maggie Gibbon, Dr. Heinz Lechleiter and Dr. Patrick Martin. It’s been
a fun and enlightening experience to work with such talented people.

Thanks also Neil O’llare whom I plagued on a few occasions with SVM
questions.

I would also like to thank the organisers of JADT-04, the 7th International
Conference on the Statistical Analysis of Textual Data for supporting travel
to the conference.

Special thanks to my family and friends and to Declan for reading draft
after draft after draft of this thesis.

ii

Contents

1 Introduction 2
1.1 M otivation... 2
1.2 Our O bjective... 4
1.3 Thesis L a y o u t... 4

2 Autom atic Text Categorisation 6
2.1 Defining Text Categorisation.. 6
2.2 Brief History of Text Categorisation... 7
2.3 Applications of Text Categorisation... 9
2.4 Text Categorisation and Information R etrieval.......................... 13
2.5 The Indexing P ro c e d u re .. 14

2.5.1 Indexing... 15
2.5.2 Other O perations... 27

2.6 Summary ... 36

3 M achine Learning 37
3.1 What is Machine L e a rn in g ? ..37
3.2 Training and Test S e t s ... 39

iii

3.3 Methods for Classifier C onstruction.. 41
3.3.1 Probabilistic Classifiers.. 41
3.3.2 Decision T rees.. 42
3.3.3 Decision Rules.. 43
3.3.4 R o c ch io ..43
3.3.5 Neural N e tw o rk s.. 44
3.3.6 Example-based C lassifiers.. 44
3.3.7 Regression Classifiers..44
3.3.8 Inductive Rule L e a rn in g ... 45
3.3.9 On-line L e a rn in g .. 46
3.3.10 Support Vector Machine Versus Other Methods 46

3.4 Support Vector Machines..48
3.4.1 About S V M s ...48
3.4.2 Generalisation T h e o ry ...49
3.4.3 Linear SVM for the Separable C a s e 54
3.4.4 SVM for the Non-Separable C a s e 62
3.4.5 SVM for the Non-Linear C a s e .. 68

3.5 S u m m a ry ... 72

4 Text Categorisation for Racism on the W W W 73
4.1 Detecting R ac ism ...73
4.2 About the approach... 76

4.2.1 PRINCIP F ind ings... 77
4.3 About the D a ta s e t ... 81

4.3.1 Collecting the D a ta s e t ...81
4.3.2 Dataset S ta tis tics.. 82

CONTENTS iv

CONTENTS v

4.4 Building the Classification System ..83
4.4.1 Building Training and Test D a t a 83
4.4.2 Learning..88
4.4.3 Classifying.. 90

4.5 Evaluation... 90
4.6 S u m m a ry 92

5 Results 94
5.1 Bag of W o rd s ...95
5.2 B ig ra m s.. 97
5.3 Part-of-speech T a g s ... 100
5.4 Comparing BOW, Bigrams and P O S ..100

5.4.1 Analysis of Performance in terms of the Fl-measure . . 101
5.4.2 Analysis of Performance in terms of P re c is io n101
5.4.3 Analysis of Performance in terms of R e ca ll....................103

5.5 Tuning SVM Param eters..104
5.5.1 Polynomial as a Kernel Function104
5.5.2 Sigmoid tanh as a Kernel F u n c tio n109
5.5.3 Radial Basis Function as a Kernel F u n c t io n113

5.6 Summary . ..117

6 Conclusion 119
6.1 Overview...119
6.2 Which Representation?...122
6.3 Which Classification T o o l? ...123
6.4 Which Kernel? ..124

6.5 Future Work, Criticisms and Conclusions

CONTENTS

List of Tables

2.1 Light, Moderate and Heavy Pruning Thresholds used in Fiirnkranz
[1998] ...24

2.2 Contingency Table for C hi-square.. 33

4.1 Distribution of the parts of speech80
4.2 Size of the individual d a ta se ts .. 82

5.1 Evaluation of different term weighting measures for BOW . . . 95
5.2 BOW perform ance... 96
5.3 Comparison of a term weighting measure on BOW and bi-

grams on Set 1 ...97
5.4 Bigrams perform ance.. 98
5.5 POS perform ance............................. ...100
5.6 BOW performance using the polynomial kernel104
5.7 Bigram performance using the polynomial kernel.......................105
5.8 POS performance using the polynomial k e rn e l..........................106
5.9 BOW performance using the sigmoid tanh kernel109
5.10 Bigram performance using the sigmoid tanh kernel110
5.11 POS performance using the sigmoid tanh k e rn e l110

5.12 BOW performance using the radial basis function as a kernel . 113
5.13 Bigram performance using the radial basis function as a kernel 114
5.14 POS performance using the radial basis function as a kernel . 115

LIST OF TABLES viii

List of Figures

2.1 An example of a POS tagging e r r o r ..18

3.1 All possible labellings of 3 points in R ? 52
3.2 4 points that cannot be shattered in R 2 53
3.3 The linear, separable c a s e ..55
3.4 Support Vectors are positioned on Hi and H2 57
3.5 Linear separating hyperplanes for the non-separable case . . . 62

4.1 A racist t e x t ...75
4.2 A non-racist t e x t ... 75
4.3 A document tagged by Xelda in XML format87

5.1 BOW: Precision and Recall figures for each d a ta s e t 96
5.2 BOW: Fl-measure scores...97
5.3 Bigrams: Fl-measure s c o re s 99
5.4 Comparing FI scores for BOW and B ig ram s............................ 99
5.5 Comparison of Fl-measure for BOW, Bigrams and POS . . . 101
5.6 Comparison of Precision for BOW, Bigrams and P O S 102
5.7 Comparison of Recall for BOW, Bigrams and POS103

ix

5.8 Comparison of Fl-measure for BOW, Bigrams and POS using
Polynomial Kernel F u n c tio n ...107

5.9 Comparison of Precision for BOW, Bigrams and POS using
Polynomial Kernel F u n c tio n ...107

5.10 Comparison of Recall for BOW, Bigrams and POS using Poly­
nomial Kernel Function.. 108

5.11 Comparison of FI for BOW, Bigrams and POS using Sigmoid
tanh Kernel Function..I l l

5.12 Comparison of Precision for BOW, Bigrams and POS using
Sigmoid tanh Kernel F unction ..112

5.13 Comparison of Recall for BOW, Bigrams and POS using Sig­
moid tanh Kernel Function.. 113

5.14 Comparison of FI for BOW, Bigrams and POS using Radial
Basis Function as a K ernel.. 116

5.15 Comparison of Precision for BOW, Bigrams and POS using
Radial Basis Function as a K ernel... 116

5.16 Comparison of Recall for BOW, Bigrams and POS using Ra­
dial Basis Function as a K e r n e l .. 117

LIST OF FIGURES x

Abstract
Automatic Text Categorisation (TC) involves the assignment of one or more
predefined categories to text documents in order that they can be effectively
managed. In this thesis we examine the possibility of applying automatic
text categorisation to the problem of categorising texts (web pages) based
on whether or not they are racist.

TC has proven successful for topic-based problems such as news story
categorisation. However, the problem of detecting racism is dissimilar to
topic-based problems in that lexical items present in racist documents can
also appear in anti-racist documents or indeed potentially any document.
The mere presence of a potentially racist term does not necessarily mean the
document is racist. The difficulty is finding what discerns racist documents
from non-racist.

We use a machine learning method called Support Vector Machines (SVM)
to automatically learn features of racism in order to be capable of making
a decision about the target class of unseen documents. We examine various
representations within an SVM so as to identify the most effective method
for handling this problem. Our work shows that it is possible to develop
automatic categorisation of web pages, based on these approaches.

1

Chapter 1
Introduction

1.1 M otivation
Automatic text categorisation is concerned with the assignment of documents
to predefined categories and has been successfully applied in many areas that
involve the organisation, filing, filtering or routing of documents. These tasks
are part of our everyday lives and can be applied to many contexts such as,
assigning patents, advertisements or library books into categories, assigning
webpages to YAHOO!-style directories or filtering spam. Text categorisation
has proven successful for such problems, with results comparable to human
evaluation and performance. Such methods can lead to vast improvements
in terms of time, manpower and productivity - the same human effort is no
longer required as the machine takes over the classification task.

Existing methods for the detection and removal of hate online include the
setting up of regulatory authorities. For example the Netherlands has set up
the Complaints Bureau for Discrimination; and hotlines exist in EU coun­

2

CHAPTER 1. INTRODUCTION 3

tries which allow for potential breaches of legislation to be reported. Sites
are investigated and if found to be illegal, axe eventually removed. Such
solutions are found to be weak because of the fluidity and size of the Inter­
net. Documents originating in the USA, where legislation is most liberal, can
be accessed across the globe but belong to another jurisdiction. Technical
approaches thus far implemented include Internet Content Filters or Label
Bureaus, which simply label sites and filter offensive ones (Internet Content
Rating Association1). Email is typically filtered using regular expressions
containing offensive keywords but this approach is unreliable, as it will only
filter those emails containing the known keywords and not newer ones. The
Safer Internet Action Plan, sponsored by the European Commission, is cur­
rently funding various filtering and rating projects including:

• ICRAsafe project will create a system to allow responsible adults to
restrict children’s access to Internet content that may harm them or
which is otherwise considered undesirable by the adult;

• NETPROTECTII is a European tool for Internet access filtering to
provide textual filtering in eight European languages;

• PRINCIP aims at the development of a multilingual system for the
detection of racism on the Internet.

All project descriptions can be viewed on the Safer Internet Action Plan
website.2

Current methods of filtering racism rely heavily on either keywords or the
labelling of offensive material. In order to implement successful systems, a

1http://ww w.icra.org/
2http: / / www.saferinternet.org/

http://www.icra.org/
http://www.saferinternet.org/

CHAPTER 1. INTRODUCTION 4

considerable human effort is required, not only in the initial stages of filter
construction but also on an ongoing basis as the targets of racism change,
the language evolves, existing websites are edited or new websites are added.
Given the fluidity of the web, this is one area that may benefit from the
application of automatic techniques to text categorisation.

1.2 Our O bjective
Our objective is to apply automatic text categorisation techniques to the
problem of detecting racism online. We will use Support Vector Machines3,
a machine learning method, to build a classifier that will classify texts based
on whether or not they are racist. We will talk briefly about the PRINCIP
project4 and how it helped in our approach to solving this problem using text
categorisation techniques. We analyse the problem of detecting racism and
highlight the difficulty of this task comparing it to similar problems in the
literature. We will investigate different representations of the training data
within the Support Vector Machine in order to evaluate the most effective
method for detecting racism online.

1.3 Thesis Layout
Chapter 2: A utom atic Text Categorisation serves as an introduction

to the area of automatic text catgorisation (TC). We provide a brief
history of the area and list some of the applications of TC. The vari-

3http: / /svm light .joachirns .org/
4http://www.princip.net

http://www.princip.net

CHAPTER 1. INTRODUCTION 5

ous steps and methods involved in building an appropriate document
representation interpretable by the classifier is core to this chapter. In­
dexing, stemming, stop-word removal and dimensionality reduction are
examined.

Chapter 3: Machine Learning introduces various methods to classifier
construction that have been described in the literature. We focus on
Support Vector Machines (SVM), as this is the approach we will be
using for this thesis.

Chapter 4: Text Categorisation for Racism on the W W W takes a closer
look at the problem of detecting racism online. We introduce research
that influenced our approach to the problem and the various method­
ologies used for data collection. We also discuss the processes the data
must undergo for the building of the training and test data and explain
how the Support Vector Machine is trained and used for classification.

Chapter 5: R esults presents the findings of the text categorisation sys­
tem. We introduce and define each of the representations that will
be experimented within this thesis. We compare and contrast bag-of-
words (BOW), n-gram and part-of-speech (POS) representations and
analyse the effectiveness of the TC system on each representation.

Chapter 6: Conclusion summarises the previous chapters which show that
text categorisation is possible for the problem of detecting racism on­
line. We discuss the results of our experiments, highlighting the vari­
ous advantages and disadvantages of each approach. We discuss future
work and experiments to be considered in this area.

Chapter 2

Autom atic Text Categorisation
This chapter serves as an introduction to the area of automatic text cat-
gorisation (TC). It provides an overview of the subject area giving a brief
history of the field and will touch on the various steps involved in building
an appropriate document representation which can be fed into a classifier.
Indexing, stemming, stop-word removal and dimensionality reduction will be
examined in this chapter. This chapter serves as an introduction to the fol­
lowing chapter, which will deal more extensively with machine learning and
the building of an inductive classifier and will focus in particular on Support
Vector Machines (SVMs).

2.1 Defining Text Categorisation
“Text Categorisation (TC) is the task of assigning predefined categories to
free text documents” Yang and Liu [1999]. Texts are assigned to categories
based on a likelihood or confidence score that is suggested by a training set of

6

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 7

labelled documents to correspond to each category in the assignment. This
confidence ranges between either {0,1} or { — 1,1} and in order to arrive at
a yes/no decision or a plus/minus figure for the inclusion/exclusion of a doc­
ument in a category, the confidence score must be mapped onto one of the
Boolean values {0,1} or one of {—1,1} using thresholds. Text categorisation
is formally described by Sebastiani [2002] as the task of determining an as­
signment of a value from {0,1} to each entry of the decision matrix where
{C = c i , . . . , Cm} is a set of pre-defined categories, and {D = d i , . . . , dn} is
a set of documents to be classified. A value of 1 for indicates a decision
to assign document dj the category q , while a value of 0 indicates a decision
not to assign dj the category Cj. The problem of assigning a category to a
document is made more complex by the fact that sometimes a document may
belong to more than one category. This is generally application-dependent
and certain constraints must be enforced on the categorisation system in or­
der for it to cope with multi-labelling. However in the work described in this
project we will be dealing with single-labelled documents as in this instance
a document will be either racist or not racist and therefore the categories do
not overlap.

2.2 Brief H istory of Text Categorisation
Automatic text categorisation has a history dating back to the 1960s. Up
until the mid 1980s the problem of text categorisation was solved by man­
ually building automatic classifiers. Knowledge engineering techniques were
used which involved the employment of knowledge engineers and domain ex­

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 8

perts to manually define a set of logical rules which encoded the membership
rules for each category. These rules were then encoded into a system and
used to automatically classify documents into a given set of categories. Rules
typically took the form of if (D NFBooleanf oi'mula) then (assigncategory),
meaning that if the document satisfied the condition (D N F Booleanformula)
then the document was classified under the category (category). The down­
side to this approach is the major human effort that is required in order to
build and maintain such a system. Knowledge experts must work alongside
domain experts with the aim of formally defining a set of rules. If the domain
changes then another domain expert must be employed as a new set of rules
is required since no two sets of categories are the same. If the set of categories
requires updating then both professionals are once again employed in order
to add new rules to the system.

A common and successful example of a rule-based expert system which
does document categorisation is CONSTRUE, built by the Carnegie Group
(Hayes et al. [1990]) for use at the Reuters news agency. Rules were manually
constructed to automatically assign subject categories to news stories and
Hayes et al. [1990] reports the system to have done so with a precision and
recall of over 90%. However, Sebastiani [2002] pointed out that no other
classifier has been tested on the same dataset and that it is unclear whether
the dataset selected by Reuters was a random or favourable subset of the
whole collection. Apte et al. [1994] agreed that the results of the CONSTRUE
system were exceptional but criticised the test set for being relatively sparse
compared to the number of possible topics, while Yang [1999] pointed out
that adapting the CONSTRUE system to other application domains would

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 9

be costly and labour-intensive, a reason which has probably discouraged a
lot of people from testing CONSTRUE on other domains.

The 1990s saw a renewed interest in the field of automatic text categori­
sation for various reasons. The availability of more powerful hardware led
to a surge in efficiency and productivity. The explosion of documents avail­
able in electronic format and the advent of machine learning approaches to
automatic classifier construction also contributed towards reigniting interest
in the field. These new approaches of automatically constructing classifiers
to perform automatic text classification superseded the earlier and costlier
knowledge engineering techniques and provided us with results comparable
to human evaluation and performance and savings in terms of manpower,
as knowledge experts were no longer necessary. The promise of a future of
machines capable of reading, examining and making decisions on the cate­
gorisation of free text has also led to a growth in interest in the area and
subsequently TC has become a major field of research.

2.3 Applications of Text Categorisation
Text categorisation - the organisation, filing, filtering or routing of docu­
ments - is something that is part of our everyday lives and it can be applied
to many contexts. The assigning of documents to predefined categories is
a task that is required in many domains on an everyday basis, such as the
labelling of library books or the assignment of patents into associated cat­
egories. Until the introduction of automatic solutions, such work has been

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 10

carried out manually. PubMed1, a service of the National Library of Medicine
providing access to over 12 million MEDLINE citations and additional life
science journals, spends huge amounts of money each year on human index­
ers. There is, therefore, a strong justification for automatic or semi-automatic
text categorisation. The following examples outline some of the more salient
applications of TC.

One of the first uses of automatic text categorisation was automatic docu­
ment indexing for use in information retrieval systems relying on a controlled
dictionary. In such a system, each document is assigned one or more key­
words or key phrases. These words are used to describe the content of the
document and belong to a finite set of words referred to as a controlled
dictionary which is often composed of a hierarchical thesaurus, such as the
MeSH thesaurus which covers the medical field. Trained human indexers
assign keywords or key phrases to a document, thereby making it a costly
procedure. By viewing entries in the dictionary/thesaurus as categories, doc­
ument indexing then becomes a categorisation problem and can therefore be
addressed by the more sophisticated automatic techniques. The issue is also
closely related to the task of automatic metadata generation of documents
in digital libraries. To ease retrieval of books they are tagged according
to information (metadata) that describe them under headings such as title,
author, creation date, document format and so on. Through the use of a
controlled dictionary the task of automatically generating metadata may be
dealt with in a similar manner to document indexing and may thus be solved
using automatic text categorisation methods.

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 11

Classified advertisements for newspapers can be organised into their as­
sociated predefined category using TC. This procedure is referred to as docu­
ment organisation. In a printed newspaper, classified advertisements appear
under certain categories such as Home, Property, Auto, Travel, etc., which
means that prior to publication incoming advertisements must be filed ac­
cording to the newspaper’s list of classified categories. Automatic techniques
may be employed to relieve the pressure and time-consuming activity of man­
ual classification.

TC may also be employed to filter or route SPAM on an email server, i.e.
document routing or document filtering. The abundance of SPAM being sent
via email servers is a major disadvantage of the information age. According
to a report by ePrivacy Group [2003], AOL claims to block 2.4 billion spam
emails per day . Since such information is unlikely to be of interest to the
average email recipient, normal practice is to delete or filter such emails from
the inbox. However, email filters are not very effective unless looking for a
specific string or strings but not all SPAM can be detected by simply looking
for candidate strings. Using automatic techniques, a system can be trained
on a dataset of typical examples of SPAM, which is then used to identify
patterns that will detect and filter future SPAM entering the email server or
a person’s inbox.

TC techniques have been successfully used to automatically populate
YAHOO!-like hierarchical directories. YAHOOl-like hierarchical catalogues
allow users to refine their search to the particular area of the subject hierar­
chy of interest to them. Such catalogues guarantee that the user is exposed
to documents relating only to a particular category. These catalogues or

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 12

directories may be populated using TC, namely by classifying web pages or
web sites into one of the several categories that make up the directory.

Some recent applications of TC reported by Dumais et al. [2002] in the
2002 Workshop on Operational Text Classification include:

• Multimedia Categorisation by Thomson Multimedia2 and Singingfish3
who categorise multimedia streams based on the metadata associated
with each file; spam detection by Elron Software4;

• The use of text categorisation to support question-answering systems
by the Electronics and Telecommunications Research Institute5 in Ko­
rea;

• The use of text categorisation to support Northern Light Technology’s6
search engine where “category assignments are used to group the docu­
ments returned by free text search, and to improve the quality of their
ranking” Dumais et al. [2002].

There are many more applications of TC, both existing and potential. Text
categorisation, either automatic or semi-automatic, can lead to vast improve­
ments in productivity as well as savings in terms of time and human effort.

2 http://ww w.thom son.net/EN /hom e
3http://www.singingfish.com/
4http://www.zixcorp.com /
5http://www.etri.re.kr
6http://www.northernU ght.com/

http://www.thomson.net/EN/home
http://www.singingfish.com/
http://www.zixcorp.com/
http://www.etri.re.kr
http://www.northernU

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 13

2.4 Text Categorisation and Information Re­
trieval

So what do TC and Information Retrieval (IR) have in common? IR is
concerned with the matching of a user’s information need, expressed as a
query, against a corpus of documents in order to rank documents in the corpus
in order of their estimated relevance to the information need. TC on the other
hand is concerned with assigning documents to predefined categories. Both
are content-based management tasks and for this reason TC relies heavily
on the basic machinery of IR, borrowing many of the techniques that are
traditionally and primarily associated with IR. There are three main steps
involved in the building of a text categorisation system. IR techniques are
borrowed and applied to each stage.
Indexing: Indexing is the first step in the building of a text categorisation

system. The TC system cannot understand documents in plain text
format so they must be transformed into a format amenable to the
TC system. Indexing is performed on the initial training corpus and
on those documents to be categorised by the classifier when it is in
operation. We will discuss indexing in the next section 2.5.

Classifier Construction: Classifiers take the training data as input and
learn features of that data so that when presented with unseen data,
those learned features will be used to make a decision about the cate­
gory in which the document is assigned. Some techniques traditionally
associated with IR are employed during the inductive construction of
classifiers. We will introduce some of the approaches to classifier con-

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 14

truction in chapter 3 and talk about Support Vector Machines in more
detail.

Evaluation: An evaluation procedure is used to measure the effectiveness of
the classifier. Having being trained on the training data, the classifier
is presented with test data and the performance of the classifier is
evaluated. TR-style evaluative measures are commonly employed, such
as precision and recall. The evaluative methods used in this thesis will
be discussed in section 4.5 of chapter 4.

2.5 The Indexing Procedure
The first stage in the building of a text categorisation system is the index­
ing procedure. As text documents are not interpretable by a classifier, an
indexing procedure must be applied to the text so as to convert or map it
onto an appropriate representation that can be fed into the classification sys­
tem. Indexing is an important step in text classification as the way in which
a document is indexed can have a dramatic effect on the performance of a
classifier. Term generation and weighting methods that have been tried and
tested in the literature will be discussed in greater detail in section 2.5.1.

A number of other operations can be performed on documents before,
during and after indexing, the idea being to reduce the number of index
terms in the term space and thereby enhance the overall efficiency of the
classifier without any loss in effectiveness. We discuss these operations in
section 2.5.2.

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 15

2.5.1 Indexing
In IR each document is usually represented by a vector of n weighted index
term,s. TC has adopted this approach but differences between the various
indexing approaches axe reflected by different interpretations regarding what
constitutes a term and how weights are measured in a document.

Term Generation
Term generation varies in the amount of linguistic and statistical sophistica­
tion that is applied. To form the simplest indexing language, each word can
be treated as a feature. This is a common approach and is referred to as the
bag of words (BOW) approach. However, relationships such as polysemy and
synonymy which exist between words, do not make this approach an ideal
one and for this reason more complex methods are investigated for the cre­
ation of an effective set of terms or features. For instance, many experiments
have been carried out using phrases as indexing terms Lewis [1992], Cohen
and Singer [1996], Kelledy and Smeaton [1997], Chandrasekar and Srinivas
[1997], Fiirnkranz [1998], Mladenic and Globelnik [1998], Tan et al. [2002].
In such cases a phrase is either defined using linguistic information (i.e. the
phrase is identified as such according to the grammar of the language of the
document) or by using statistical methods (i.e. the phrase is identified as
such according to the recurring frequency of a set of words).

There is conflicting evidence regarding the effectiveness and usefulness of
the employment of linguistic methods in TC. Lewis [1992] and Smeaton [1997]
have found that experiments using more sophisticated linguistic methods do
not perform as well as individual words. On the other hand, Furnkranz [1998]

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 16

claims that a richer, more fine-grained representation of the document can
provide a learner with valuable information about a document and lead to
improvements in performance. The application of linguistic procedures does
allow us to express language in a clearer structure in terms of the roles words
play in a text and the relationships between words, and this in turn provides
a classifier with richer information about a document. Unfortunately much
of the research that has employed linguistic methods has not been as effective
as hoped. But, despite this, many are still investigating the impact of such
methods and Lewis [1992] believes that a combined linguistic and statistical
approach may be one solution to the problems of text categorisation. In the
following section we will introduce some of the literature that uses linguistic
methods and those that use statisical methods for term generation and in­
dexing.

Using Linguistic Information in Term Generation
Various linguistic approaches to generating index terms, a process that can
also be part of indexing for TC, have been tried and tested in the literature
and some of the approaches will be discussed in greater detail in this section.

Chandrasekar and Srinivas [1997] illustrated how syntactic information
can be effective in filtering out irrelevant documents after documents have
been retrieved by a search engine. They reported on the performance of
two different methods of syntactic labelling, namely Part of Speech (POS)
Tagging and Supertagging. POS was performed using an n-gram tagger
which used a tagset from the Penn Treebank7 and a trigram model to assign

7http://w w w .cis.upenn.edu/ treebank/home.html

http://www.cis.upenn.edu/

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 17

supertags to each word. The difference between the two approaches is that
Supertagging contains richer more fine-grained information including sub­
categorisation and agreement information about words. Chandrasekar and
Srinivas claim that syntactic filtering works; however both training and test
sets were very small and so larger datasets may produce conflicting results.
Since taggers were used to tag the training and test sets, presumably this
system would work best on data similar to that on which the taggers were
trained; different data might not be tagged as accurately thereby, increasing
the error rate of the taggers. POS taggers are prone to mistakes and do
not tag correctly 100% of the time. This can in turn lead to erroneous
patterns being created, which could be responsible for the miscategorisation
of some documents. Figure 2.1 is taken from a POS-tagged document in the
non-racist dataset and illustrates a tagging error. In the sentence Wear or
display the flag, the VERB wear is falsely fagged as a NOUN.

Fiirnkranz [1998] illustrated how the use of linguistic phrases as input
features can improve precision at the expense of recall. Linguistic phrases
were constructed using a system called AUTOSLOG which is an automatic
method for extracting patterns from a POS-tagged text. The system is fed
noun phrases which are used in the construction of linguistic patterns which
are in turn used by the classifier during the categorisation of documents.
Fiirnkranz et al. tested two classifiers using words as features, phrases as
features and words and phrases as features. Inconsistencies were noted in
how the data was prepared in the pre-processing stages of the learning stage;
this may have had an effect on the differences in performance between the
two classifiers. Phrases were shown to be more precise at classifying docu-

2. AUTOMATIC T E X T CATEGORISATION

<Aexeme>
«lexeme n 59' CCC2 4 :

j ß M läce-fot'm-Waar -.'surface-form---
/ < s e n s e - l i s t disambiguated-'yes">

<sense id="1 ">
<part-of-speech:=NOUN=4Dart-of-speech>
<base-form>wear</base-form>

ll</sense></sense-iiötJa.
*/lexeme>
«lexeme id="598" start="3697" length="2">

<surface-form>or</surface-form>
<sense-list disambiguated="yes">

<sense id="1 ">
<part-of-speech>COORD</part-of-speech>
<base-form^or=:/base-forms-

</sense>
</sense-list>

<rtexeme>
«lexeme id="599" start=,,3700" length="7">

<surface-form>display=:/surface-form>
<sense-list disambiguated="yes">

<sense ld="1 ">
<part-of-speech>VI</part-of-speech>
<base-form>display</base-form>

</sense>
</sense-list>

<^exeme>
«lexeme id="600" start="3708" length="3">

<surface-form>the</surface-form>
<sense-list disambiguated="yes">

ásen se id="1 ">
<part-of-speech>DET</part-of-speech>
<base-form>the</base-form>

</sense>
</sense-list>

«flexeme>
Figure 2.1: An example of a POS tagging error

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 19

ments but at the expense of recall. It was noted that phrases were chosen as
rules by the classifier less frequently and that a word-based rule was deemed
to be the most productive. In fact it was found that few of the phrasal
rules featured as the top rules which may be explained by the fact that their
classifier sacrifices precision for recall. One of the major drawbacks with the
use of syntactic information in indexing and in classification is the compu­
tational cost of POS-tagging a document. In general many more extensive
tests must be carried out before it can be said that linguistic phrases improve
the classification.

Lewis [1992] performed tests on the use of syntactic indexing phrases, clus­
tering of these phrases and clustering of words and found these approaches to
be less effective than frequency of occurrence, and in order to be productive,
many more phrases were needed by the classifier. Lewis showed word-based
features to be more effective. This type of representation outweighs the use
of the phrases for now, especially since a greater effort is required to build
a feature set of phrases (i.e. POS-tagging, feature extraction). Many pre­
processing decisions or tunings (which can have a considerable impact on
the performance of the classifier) must be made before the classifier can be
tested and evaluated. For example in this experiment, Lewis [1992] uses a
statistical model for probabilistic text, retrieval. In order to work for text
categorisation, the probabilities are converted into a binary output using a
threshold. However, such a formula assumes that these estimates are equally
weighted or equally consistent across categories and also across documents
where in reality, this may be far from the truth. The criteria used to select
features, estimate probabilities, cluster terms each contribute towards the

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 20

performance of a classifier and so perhaps it is a case of finding the right
combination or blend of criteria or methods when employing syntactic infor­
mation. Lewis believes syntactic information adds valuable information and
combined with statistical measures is a potentially promising approach to
text categorisation.

Freitag [1997] uses grammatical inference methods together with machine
learning methods for the extraction of essential information - such as seminar
location, starting time, ending time, speaker - from a collection of seminar
annoucements taken from online bulletin boards. Freitag treats this problem
as a classification problem by training the machine to classify fragments of
text into, for instance, one of location or non-location. For this type of
problem the bag of words approach does not suffice. Freitag points out that
“it can be effective at identifying the approximate location of the relevant
text fragments” but it can have “difficulty identifying the location of the
correct field boundaries”. So grammatical inferences are used to add syntac­
tic information about the structure of the type of information that is being
sought. For instance, if we want to find the start time of the conference or
seminar we would be looking for something of the form (number, colon,
number, number). Prior to training, the data must be transferred into a
format amenable to automatic methods - the training samples are tokenised,
tokens are translated into abstract symbols and a grammar is inferred over
the abstract sequences. This information is then used in training. Freitag
found that this method resulted in improved precision and believes that such
a method could prove fruitful for information extraction systems.

Musuyama and Nakagawa [2004] recognise that recent research has re­

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 21

ported lower performance of SVM-based text categorisation methods when
parts of speech are used as input words and large datasets are used. To im­
prove performance, Musuyama and Nakagawa use a two-step categorisation
method with a variable cascaded feature selection to predict a pair of the
best number of words and the best POS combination for each category. Dif­
ferent POS combinations and number of words (100,200,300,..., 1000) are
tested so as to identify the best POS combination and the optimal number
of features for each category. Mutual information is performed on the ex­
tracted words to identify the potential keywords of a category. In this paper,
for a category C, categorisation involves two steps - step one extracts words
from the POS combination for C and categorises texts into positive or nega­
tive. Further classification is performed on the texts in the positive category
- this time words from all POS types are extracted, mutual information is
performed and the documents are classified a second time. Musuyama and
Nakagawa reported higher precision than other practitioners such as Fuku-
moto and Suzuki [2002] who have conducted similar experiments using POS.
Although both experiments were conducted on Reuters corpora, Musuyama
and Nakagawa used a different dataset to Fukumoto and Suzuki [2002] - and
this may well have influenced performance.

Using Statistics in Term Generation
The following illustrates the kinds of statistics-oriented approaches to the
generation of indexing terms that have been explored in the literature.

Mladenic and Globelnik [1998] propose an interesting approach, combin­
ing feature generation with feature selection through the use of statistical

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 22

methods. What is interesting about this method is the fact that the bag-of-
words vector space is enriched with phrasal information (word sequences),
meaning the classifier is not relying on the performance of phrases alone.
N-gram (2 > n > 5) sequences of words were tested, with n = 3 proving to
be the most effective. Two training corpora were used consisting of 5406 and
1995 web documents. The training corpus was represented as a word-vector,
stop words were removed and the vector was pruned, removing all words
with a term frequency less than 3. The vector was then enriched by adding
all n-gram (where 2 > n > 5) word sequences with a frequency greater than
3. Feature selection techniques (cf. section 2.5.2) were then applied to the
feature set, assigning a score to each feature so as to allow a subset of the
highly scoring features to be chosen as the final feature set. Mladenic and
Globelnik [1998] did not report on how many features (k) were most effective;
it would be interesting to compare different values of k so as to identify the
most effective k features. It would also be interesting to investigate whether
words or word sequences scored highly. This information is not provided in
the published paper and may provide some further insight into the value of
n-gram word sequences in text classification. The addition of n-gram word
sequences improved the performance of the classifier by 7-8%. The size of the
training (5406 and 1995) and test sets (300) were rather small and it would
be interesting to test this approach on a more widely used dataset such as
Reuters and also by using various other classifiers to see if they outperform
the Naïve Bayesian Classifier used in this experiment.

Typically, linear classifiers (based on algorithms such as Bayes and Roc-
chio (cf. chapter 3) assume that the context of a word w has no impact

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 23

on the meaning of w, which is of course not true. For this reason Cohen
and Singer [1996] aimed to construct a classifier that allows the context of a
word w to affect whether the presence or absence of w will contribute to a
classification. In this paper, Cohen and Singer investigated two algorithms
each of which have different notions as to what constitutes context. For
the RIPPER algorithm, a context of a word w is interpreted as a number
of other words that must co-occur with w but their order and location in
the document is irrelevant. So the presence of a word w will only influence
the prediction of document D into class C if w co-occurs with w2, . . . , wk.
The Sleeping-Experts system, on the other hand, interprets the context of
a word w as consisting of words that occur near w and in a fixed order.
So the presence of a word w will influence the prediction of document D
into class C if certain words occur in a certain order and near w. Cohen
and Singer reported impressive results on numerous datasets (Reuters-22173
corpus, AP titles corpus, TREC-AP titles and the Reuters-21578 corpus).
Both algorithms achieved lower error rates than the Rocchio classifier and
reportedly performed better on the Reuters corpus than any comparable al­
gorithms that were previously applied to this corpus. It is difficult to directly
compare the performance of these classifiers with other similar experiments,
but since both RIPPER and Sleeping-Experts were thoroughly tested on sev­
eral datasets and outperformed the Rocchio algorithm each time, it can be
deduced that contextual information is useful in text classification.

Firrnkranz [1998] employed a simple but efficient algorithm, very similar
to that used by Mladenic and Globelnik [1998], for the generation of n-grams
for use in classification. He investigated the use of n-grams as features on two

datasets (Reuters and Ken Lang’s 20 newsgroup dataset) using the RIPPER
classifier. Stop words were removed from the corpora, sentence boundaries
were ignored, numbers were converted to the letter D and all characters
were converted to lower case. An algorithm was used to generate n-grams.
Each document represented m set-valued features, one for each n-gram size
1 < m < M axNG ram Size, i.e., when m = 3, for example all 3-grams,
2-grams and 1-grams are included in the feature set. The feature set under­
went pruning experiments (light, moderate and heavy pruning) in order to
find the most effective feature set size. Pruning was based on a user-specified

Table 2.1: Light, Moderate and Heavy Pruning Thresholds used in Fiirnkranz
[1998] ___

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 24

M inTermFrequency MinDocFrequency
Light 3 5
Moderate 5 10
Heavy 10 20

term and document frequency thresholds, where all sequences that occurred
at least MinTermFrequency and MinDocFrequency in the documents were
included. Table 2.1 outlines the thresholds that were used during light, mod­
erate and heaving pruning. Like Mladenic and Globelnik [1998] who used
a similar method for the generation of features, Fiirnkranz also found that
word trigrams actually improved the precision of the classifier. The top ten
most frequent features for the Ken Lang dataset interestingly enough con­
sisted of unigrams only, most of which were not indicative of any class. All in
all Fiirnkranz showed promising results for the use of word sequences in text
classification - it was shown that after heavy pruning unigrams seem to be

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 25

as effective performance-wise as bigrams generated after moderate pruning.
Another similar reported piece of work investigating the use of bigrams

to enhance text classification is that of Tan et al. [2002], who used bigrams in
addition to unigrams. Those unigrams that appeared in a significant number
of documents were selected and used as seeds for the generation of bigrams.
Bigrams were generated and chosen on the basis that at least one of the
elements of the bigrams had to be a seed. Further feature selection tech­
niques, namely information gain, term frequency and document frequency,
were applied to the feature set to find the best discriminators and reduce the
dimensionality of the term space. Tan et al. reported improvements in the
performance of the system when unigrams and bigrams were used instead
of just unigrams. The classifier was tested on two datasets (Reuters and
YAHOO!-Science), each of which reported improvements. For the YAHOO!-
Science collection 35.2 of the top 100 features in terms of information gain
were bigrams while for the Reuters collection 44.6 were bigrams. Considering
there were 1426 bigrams and over 160,000 unigrams in the YAHOOl-Science
feature set and only 531 bigrams and about 40,000 unigrams in the Reuters
features set, these figures are pretty impressive. Although Tan et al. showed
that the use of bigrams enhanced the overall performance of the classifier,
some of the categories seemed to benefit from the addition of bigrams much
more than others. One reason for this was that some categories were best
categorised by unigrams meaning bigrams were not necessary for the cate­
gorisation task. Another reason suggested that there was an over-emphasis
on some concepts for some classes, thereby leading to a misclassification.

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 26

Term W eighting
As previously mentioned, each document in a text categorisation task is
usually represented by a vector of n weighted index terms. One of the things
that differs among methods of term generation is the way in which a term
is weighted. The simplest term weighting technique is the binary approach
where 1 denotes presence and 0 denotes absence. Alternatively, the number
of occurrences or the frequency can be used to weight a term. Frequency is
calculated by dividing the number of occurrences of the term in the document
by the total number of words in the document. More complex term weighting
methods exist, with weights usually ranging between 0 and 1. The term
weighting function (see 2.1) by Salton and Buckley [1988] is a commonly
used method.

T F * IDF(t„, dj) = #((*, dj) • log
(2.1)

where #(ifc, dj) refers to the number of times the term tk occurs in document
dj and #T r(tk) refers to the number of documents in the dataset T r in which
the term tk occurs. This is also known as the document frequency of the term.
TF*IDF measures the relevance of a term to a document, i.e. the more a
term occurs in a document, the more important it is and therefore more
representative it is of the content of a document. This function also takes
into consideration the fact that a term is less discriminating if it occurs in
many documents. For example function words such at, the, a, of, at, in, etc.

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 27

occur many times in many documents and are not good content indicators.
In order to make weights fall between 0 and 1, they are normalised using
cosine normalisation.

2.5.2 Other Operations
Removal of Stop Words
Before a document is indexed, the normal procedure in information retrieval
and in text classification is to remove stop words. Stop words comprise
those words which are neutral to the topic of the document (or query in
information retrieval) and would therefore generally contribute very little
to the classification of a document. They are often defined by a stoplist
and include articles, prepositions, conjunctions, pronouns and some high-
frequency occurring words. This technique is always performed in IR so as to
reduce the number of index terms in a document, to enhance computational
efficiency and to minimise the amount of superfluous information in the term
space — prepositions, conjunctions etc. do not provide information about a
document or help in discerning to which category a document belongs.

Many systems use the same generic stoplist consisting of between 300 and
400 words for English. However, research has been conducted into the gener­
ation of domain-specific stoplists by Yang and Wilbur [1996]. Such stoplists
are typically much larger than the average domain-independent stoplist so
as to make the scaling of categorisation systems more tractable when ap­
plied to large amounts of data. In a 1996 JASIS paper, Yang and Wilbur
[1996] apply the Wilbur-Sirotkin stop word identification method (Wilbur

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 28

and Sirotkin [1995]) to text classification in order to reduce the computa­
tional cost without having to trade-off on categorisation effectiveness. The
Wilbur-Siroktin approach aggressively removes words by estimating the im­
portance of a word using relevance information between texts instead of tra­
ditional word weighting methods which are only based on word frequencies
in a text collection. Yang reported that automated word removal based on
corpus statistics resulted in considerable savings in time and memory and
improvements in retrieval with respect to precision.

Stop words are not removed in experiments using syntactic information
to represent the text, for example Lewis [1992], Chandrasekar and Srinivas
[1997]. Such experiments require the presence of all of the original words
in a sentence or document in order to assign the correct POS tag. Term
or feature extraction techniques are used to identify the most discriminating
and effective patterns. Term extraction techniques will be dealt with later
on in the chapter under the heading dimensionality reduction.

Stemming
Stemming is another step performed in IR in order to normalise indexing
terms. Stemming involves collapsing words that share the same stem by re­
moving the inflectional ending of the word e.g. race, racism, racist, racially
all become rac which in turn leads to a considerable reduction in the di­
mensionality of the term space. However, this step is not always included in
TC pre-indexing steps, as some have found it to be beneficial and improve
performance, while others have not.

A variation of stemming, but an approach that employs linguistic rather

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 29

than statistical methods, is lemmatisation. Lemmatisation is a linguistic
rather than a statistical task because it is closely related to the identification
of the part-of-speech of a word. It involves the reduction of words in a
document or corpus to their respective lexemes, thereby allowing a researcher
to extract all variants of a lexeme. For the text categorisation task, it is more
important to know the root (lexeme) of a word than to know the word stem.
A lemmatiser automatically disambiguates which root applies to each word
in a document or corpus. The main difference between a lemmatiser and
stemmer can be illustrated in the following example:

be (lexeme/root) — » is, am, was, were, are, be
be (stem) — * be

A stemmer on the other hand is incapable of making this sort of summarisa­
tion. Lemmatisation is therefore more sophisticated and a potentially useful
pre-indexing step for text categorisation.

In the UPLIFT8 project Kraaij and Pohlmann [1996] have shown that
linguistic stemming, also known as lemmatising, can “yield a significant im­
provement in recall over non-linguistic stemming, without causing a signifi­
cant deterioration in precision”. In contrast, Krovetz [1993] found that his
stemming technique does not result in improvements in performance. There
are pros and cons to stemming and lemmatisation and as we have seen these
pre-processing steps do not always result in an improvement in performance.
Performance improvements may be related to the type of categorisation prob­
lem at hand. For instance stemming/lemmatisation may lead to improvments
in the performance of a classifer for categorisation tasks that can be described

8Utrecht Project: Linguistic Information for Free Text Retrieval

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 30

as crispy bounded discourse domains, i.e. a category that is clearly defined
by a representative set of keywords which are not used to decribe other cate­
gories. The classifier does not suffer as a result of the lack of specificity of the
terms, i.e. rac instead of racially, race, races, racist, as the discourse domain
is well defined and crisply bound. As a result, the reduced number of terms
leads to a reduction in dimensionality, thereby making the classifier more
efficient. For discourse domains that are not crisply bound, for example the
detection of racism, my expectation would be that stemming/lemmatisation
would not lead to an improvement in performance. Slight inflectional varia­
tions of words can influence the orienation of a text. For instance, racially is
predominantly found in racist texts while racial is more likely to be found in
anti-racist texts. Stemming would reduce both forms to rac, thereby making
us unable to make a distinction between the two variations - for that reason
stemming/lemmatisation could have a negative impact on the performance
of the classifier.

Dimensionality Reduction
In TC, since the number of terms occurring just once in a corpus can be
extremely high, efforts are made to try and reduce the dimensionality of the
term or vector space from r to rf < r. A larger number of term spaces
can prove to be quite problematic in TC, as such systems do not always
scale well to term spaces with high values. Also, vector spaces with high
dimensionality can lead to a problem referred to as overfitting, whereby a
classifier is also trained to recognise characteristics of the training data that
are not necessary.

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 31

A good example of overfitting as provided by Sebastiani [2002] is that of
a classifier trained on three examples for the category CARS FOR SALE. Two
of the advertisements were concerned with the sale of blue cars and as a
result a classifier would consider the colour of the car (i.e. blue) to be a char­
acteristic of the category. Therefore classifiers affected by overfitting tend
to be exceedingly good at classifying training data but not so effective at
classifying unseen data. For these reasons efforts have been made to reduce
the dimensionality of a vector space from r terms to rl < r. Dimensionality
reduction (DR) can be applied either locally or globally. Local DR aims to
reduce the number of terms chosen for each category while global DR aims
to reduce the number of terms that are chosen across the set of all categories.
There are two main approaches to doing DR, namely term selection and term
extraction. Both will be discussed in further detail in the next section.

Term Selection
The rf terms are chosen by selecting a subset of the original r terms. The
idea is to choose a term set that would yield the least reduction in effective­
ness but at the same time result in a reduction in the number of terms in
the term space. There are many methods of reducing the dimensionality of
a term space; the following briefly introduces some of those methods:
Docum ent Frequency #Tr(£fc) is one of the more simple methods of di­

mensionality reduction and refers to the number of documents in the
set T r in which the term tk occurs. Using this technique it is possible
to reduce a term space by a factor of 10.

Information Gain measures the number of bits of information obtained

for category prediction by knowing the presence or absence of a term
in a document. Joachims [1998b] used the information gain criterion
to avoid overfitting and to reduce the number of irrelevant features.

M utual Information of a term t, i.e. M I(t, c) is the amount of information
gained about t when c is learned. This information can be represented
in a two-way contingency table where t is a term and c is the category.
X is the number of times t and c co-occur, Y is the number of times
that t occurs without c, Z is the number of times c occurs without t
and N is the total number of documents. See equation 2.2 (below) for
how mutual information is measured.

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 32

log

(2.2)

X x N
(X + Z)x (X + Y)

M I(t, c) = 0 if and only if t and c are independent. Lewis [1992] used mutual
information to assess and rank features for each category

Chi-Square measures the lack of independence between t and c. It is a
rough measure of confidence, testing whether or not a difference in fre­
quency reflects a real difference between two texts/categories or just an
accident. The null hypothesis i.e. where there is no difference between
the two texts/categories, is taken as the expected frequency and the
observed frequencies are estimated. A 2 x 2 contingency table is used

where t is a term and c is the category. A is the number of times t
and c co-occur, B is the number of times t occurs without c, C is the
number of times c occurs without t , D is the number of times neither
c nor t occurs and N is the total number of documents (see Table 2.2
for calculation of chi-square).

Table 2.2: Contingency Table for Chi-square

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 33

t not t
c A C
not c B D

If the chi-square value is greater than 3.84 then there is less than a 5%
probability that there is no difference between two texts. Unfortunately
chi-square is said to be not very reliable for low-frequency terms, as the
chi-square distribution can no longer be accurately compared if cells in
the contingency table are lightly populated.

Term Strength used a confidence score to measure the strength of a term.
Term strength indicates how important a word is and measures how
informative a word is in identifying related documents. As discussed
earlier in the chapter, this method was investigated by Yang and Wilbur
[1996] in order to remove redundant (non-informative) words and thereby
enhance text categorisation. The cosine co-efficiency is used in order to
identify document pairs that are similar. Using this information, term
strength then measures the likelihood of a term appearing in a related
document by estimating the conditional probability of a term occur­
ring in the second half of a pair of related documents given it occurs

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 34

in the first half. Scores fall between 0 and 1 with 0 being the lowest
strength (i.e. words occurring only in non-related documents) and 1
being the highest value, therefore implying that shared words among
related documents are more informative than others. This method is
more similar to document frequency than to any of the other methods
discussed.

Case Study: Yang and Pedersen [1997]
Yang and Pedersen [1997] tested each of the above term selection meth­
ods on two corpora (Reuters and a subset of the MEDLINE corpus)
using two learning algorithms - the k nearest neighbour (kNN) and
Least Linear Squares Fit (LLSF) algorithms. The effectiveness of the
feature selection technique was evaluated by accessing the performance
of the classifier on the dataset using precision and recall. They showed
that document frequency performed nearly as well as information gain.
Since document frequency has a lower computational cost, this ap­
proach is favoured over the more computationally expensive informa­
tion gain. Mutual information was found to perform poorly.

Term Extraction
The rf terms are not chosen by selecting a subset of the original r terms
and may not at all resemble the original r terms. Rather the rf terms are
obtained through a series of alterations, combinations and transformations
of the original r terms.

Term Clustering is a cluster analysis method that involves the grouping
of terms which are similar. In some cases similarity between terms is

CHAPTER 2. AUTOMATIC TE X T CATEGORISATION 35

measured by the degree to which two terms occur in the same docu­
ment. Term clustering can be used for example to group redundant
terms, thereby reducing noise and the dimensionality of the term space
and increasing the frequency of assignment of a term. It is also used
to cluster terms which are similar, based on a similarity measure such
as Cosine. Since phrases have a low frequency of occurrence in docu­
ments, it is desirable to apply clustering to phrases so as to reduce the
r terms to rf < r and to increase their frequency of assignment. Lewis
and Croft [1990] conducted experiments on combining syntactic phrase
indexing and term clustering techniques to generate phrase clusters.
They felt that this was a complementary approach. Syntactic phrase
indexing compensates for the loss in semantics, while clustering aids in
remedying the poor statistical qualities of syntactic phrases. Despite
this seemingly logical approach, Lewis and Croft showed this method to
degrade performance and claimed that the results were poor due to the
small size of the corpus he used (110,000 words approximately). The
statistical inferiority of phrases (the high number of phrases occurring
just once or twice) indicates that a much larger corpus is required for
phrasal indexing to be able to prove its worth.

Latent Semantic Indexing (LSI) - Deerwester et al. [1990] tries to over­
come the problems associated with word-based methods, as the use
of polysemy or synonymous words and phrases in a document can be
problematic; Schütze et al. [1995] observe that “if there is a great num­
ber of terms which all contribute a small amount of critical information,
then the combination of evidence is a major problem for a term-based

CHAPTER 2. AUTOMATIC T E X T CATEGORISATION 36

classifier” . LSI tries to overcome this by organising information into
a semantic structure. Instead of characterising documents according
to terms in the document, they are characterised accoriding to the do­
mains within which the terms occur. LSI is typically based on Singular
Value Decomposition which is a statistical technique. Sorensen et al.
[1997] used a semantic network to represent user profiles and articles
in the INFOrmer system so as to overcome the problem of polysemy
and the negative effect it has on precision.

2.6 Summary
In this chapter we dealt with indexing in depth. Indexing is the first task
involved in building a text categorisation system. It transforms documents,
which are typically strings of characters, into a representation interpretable
by the classifier. We discussed the various ways in which documents can be
indexed, highlighting the different interpretations of what constitutes a term
and also the different ways in which terms are weighted. We also presented
the various steps that can be taken before, during and after indexing to
further reduce the size of the term/feature space so as to make the classifier
more efficient without loss in effectiveness.

The next chapter will deal with the role of machine learning in text cate­
gorisation, and we will introduce the state of the art and various approaches
to classifier construction, focussing on our chosen method, Support Vector
Machines.

Chapter 3

Machine Learning
Machine learning techniques are used in text categorisation to build a sys­
tem that will make a decision about whether a document D belongs to a
category C. We call this system a classifier. This chapter will introduce the
various methods to classifier construction that have been described in the
literature. It will focus mostly on Support Vector Machines (SVM), as this
is the approach we will be using in this thesis.

3.1 W hat is M achine Learning?
There is no conventional algorithm for the task of assigning any as yet unseen
documents to a predefined category, as no mathematical model of the solution
can exist and therefore all we are left to work with in building a classifier
are examples. Given a set of examples, we might be able to define input and
output values for each given example in the dataset, but we cannot do so for
every possible example that exists. It is difficult to generalise from examples

37

CHAPTER 3. MACHINE LEARNING 38

to a set of rules or a fixed algorithm for this process. The relationship between
the input documents and the desired output category is often too complex
to be captured as an algorithm, and so we turn to the technique of machine
learning. A machine is said to learn whenever it changes its structure so as
to improve expected future performance.

A classic example of an application of machine learning is the speech
recogniser. There exists no algorithm to automatically recognise speech from
unknown speakers, i.e. no mathematical model can be implemented in order
to recognise a person saying, for example, the word learn. For English,
for example, we have (or have the potential to obtain) many examples of
speech spoken by many different people of different nationalities (English,
Irish, American, Australian, Canadian etc). In order to solve the problem
of speech recognition we can take a number of examples of different people
with different accents saying a particular word and present these examples
to the learning machine. The machine can then learn to recognise the word
learn by examining a number of examples, some of which may be spoken by
British men, some by Irish children, some by American women etc. When the
performance of a speech recognition machine improves after hearing many
examples of people’s speech, we can say the machine has learned.

Machine learning can be broadly split into two main areas: supervised
learning and unsuper-vised learning. In supervised learning the training data
used to train the learning algorithm consists of many pairs of input/output
training patterns - in other words the machine is given the class or output
of an input pattern and tries to learn patterns that would arrive at the
expected output. In unsupervised learning the training set consists of input

CHAPTER 3. MACHINE LEARNING 39

training patterns only and so the machine is trained without having any prior
knowledge of the output classes. The machine learns to adapt based on the
experiences of the previous training pattern. In machine learning the output
can be binary, multi-class or regression. Binary classifiers have a binary
output, i.e. (0 , 1) meaning a document either belongs to a class or it does
not. Multiclass classifiers allow a document to be categorised into one of a
finite number of categories - such classifiers are typically built using multiple
binary classifiers. In regression models the output is a real numbered output
where a document is given a membership value for each class. In this thesis
we will be concerned with supervised learning and binary classifiers only.

3.2 Training and Test Sets
Since any classifier relies heavily on the existence of examples, one of the
first things required for us to build a classifier, is a dataset or corpus of
test and training examples. The training set should already be classified
into the correct categories as the system will learn from this set and make
classification decisions based on the training corpus. The training set is
usually denoted by equation 3.1.

(3.1)
'S' {(-^1) 2/l)i • • ■) Vn)}

CHAPTER 3. MACHINE LEARNING 40

where n is the number of examples. We refer to x t as examples or instances
and yi as their labels - Cristianini and Shawe-Taylor |2000]. The test is to
test the effectiveness of the classifier. In evaluation, each document is fed
to the classifier and the classifier’s decision is compared with an expert’s
decision so as to evaluate the performance of the classifier. We refer the
reader to section 4.5 in chapter 4 for more on evaluation measures.

Data is crucial to automatic text categorisation as the machine draws on
examples to build a classification system. For that reason, a representative
dataset is of the utmost importance for the classification of unseen docu­
ments. In recent years there has been a surge in the availability of documents
available in electronic format. Therefore, appropriate datasets are sometimes
already available. For instance, many corpora are freely available and might
prove useful for a particular TC problem. TREC, the Text REtrieval Con­
ference1, encourages information retrieval research on large quantities of text
and provides datasets to researchers so that methods can be evaluated on the
same data. These datasets are large enough so as to model real problems.
Because all researchers work with the same data, the results are not affected
by variations in the data but are due only to the effectiveness of the methods
and techniques being applied. TREC datasets eventually become available
in the public domain so it is not just those involved in TREC experiments
that benefit from these large datasets.

In some cases the effort required to collect appropriate documents might
not be substantial - as in the case of news story categorisation where docu­
ments must simply be saved over a period of time. However, an appropriate

1http://trec.nist.gov/

http://trec.nist.gov/

dataset is not always at hand and, as in our case, must be manually collected
before work on the text categorisation system can proceed. In section 4.3.1
we give further information on the methodologies used in data collection for
TC of racism online.

In chapter 4 we describe the dataset used in our experiments and the
criteria that were used to select that dataset. We also explain the processes
the training and test sets must undergo so that the classifier is capable of
interpreting the information contained within them.

3.3 M ethods for Classifier Construction
Classifier construction is the second stage in the building of a text cate­
gorisation system. Many methods, approaches and algorithms exist for the
construction of a text classification system. This section will briefly introduce
the different approaches that have been investigated in the literature.

3.3.1 Probabilistic Classifiers
Probabilistic classifiers view the classification problem in terms of a proba­
bility that a document D of binary or weighted terms belongs to a category
C. The probability is calculated by applying Bayes Theorem in equation 3.2.

CHAPTER 3. MACHINE LEARNING 41

(3.2)
n a ld j) =

CHAPTER 3. MACHINE LEARNING 42

P(dj) is the probability that a randomly picked document has vector dj
as its representation and P(ci) represents the probability that a randomly
selected document belongs to category q . The Naïve Bayes approach is more
commonly used and makes the classifier more efficient and effective. The
naïve part assumes that words are statistically independent of each other
and so word combinations are not used as predictors of a class.

Naïve Bayes is one of the more popular methods for classifier construction
and many practioners have experimented with it in the literature — Lewis
and Ringuette [1994], Yang and Liu [1999], Chai et al. [2002], Mladenic and
Globelnik [1998], Joachims [1998b], Freitag [1997].

3.3.2 Decision Trees
A decision tree classifier consists of a tree generated as a result of processing a
set of training examples where leaf nodes correspond to classes, each non-leaf
or internal node is labelled by terms which are used to test an attribute, each
branch corresponds to an attribute value representing the weight that a term
has in a test document and each leaf node is labelled by a category which
is used to assign a classification. A document d is categorised by recursively
testing for the weights that the terms have in the representation of d. This
step is repeated until a leaf node is reached; the label of this leaf node is then
assigned to d (see Lewis and Ringuette [1994], Goller et al. [2000], Joachims
[1998b] for experiments using this method).

3.3.3 Decision Rules
The first step involved in the construction of a decision rule classifier is the
creation of a dictionary containing the features or attributes that represent
individual documents in a collection or domain. A representation maps each
individual document in a training set using the dictionary. Each document is
assigned a label that denotes which category it belongs to and the objective
is to find sets of decision rules or patterns that distinguish one category from
the others (see Apte et al. [1994]).

3.3.4 Rocchio
The Rocchio technique is a commonly used method in text categorisation. It
is a vector-space method which is also very often used in information retrieval
for relevance feedback and document filtering and routing. A prototype vec­
tor is created for each category using a training corpus. The prototype vector
is also known as the centroid, which is in effect the average of all positive
examples for each category. Document vectors belonging to a category are
weighted positively and other documents are weighted negatively. The Roc­
chio classifier rewards the closeness of a test document to the centroid of the
positive training examples and its distance from the centroid of the negative
training examples (see Goller et al. [2000), Drucker et al. [2001], de Kroon
et al. [1996] and Joachims [1998b]).

CHAPTER 3. MACHINE LEARNING 43

CHAPTER 3. MACHINE LEARNING 44

3.3.5 Neural Networks
A neural network classifier consists of a network of units. Input units rep­
resent terms and output terms represent categories. Input and output units
are connected by edges that have weights. The weight represents the condi­
tional dependence relations between input and output units. A document d
is classified by taking its term weights and assigning them to the input units;
the units are then propagated through the network and the value that the
output unit takes up determines the categorisation decision (see Yang and
Liu [1999]).

3.3.6 Example-based Classifiers
The most widely known case of an example-based classifier is kNN (k nearest
neighbour). In a kNN classifier, a document d is categorised under a category
c by looking at how the k documents most similar or nearest to d have been
classified. The similarity score of each neighbouring document to d is used to
determine the category of the neighbouring documents. If a large proportion
of them have been classified under c, d is classified under c, otherwise d is
not classified under category c (see Yang and Pedersen [1997], Yang and Liu
[1999], Goller et al. [2000], Yang [2001] and Joachims [1998b]).

3.3.7 Regression Classifiers
One of the most popular examples of a regression classifier is the Linear Least
Squares Fit (LLSF) model introduced by Yang and Chute [1994]. In LLSF,
each document d has an input vector consisting of words with weights and an

CHAPTER 3. MACHINE LEARNING 45

output vector consisting of the categories of the corresponding document. In
order to classify a document, the output vector must be determined. LLSF
is computed on the training pair of vectors (input and output) to produce
a matrrx of word-category coefficients. This matrix measures how likely it
is that a word is related to a category. These weights are dependent on the
information in the training corpus but LLSF assigns weights in such a way
as to minimize error. The matrix aids in the classification of a document as
it defines a mapping from a document to a vector of weighted categories. A
ranked list of categories is obtained for the input document by sorting these
category weights (see Yang and Chute [1994], Yang and Liu [1999], Yang and
Pedersen [1997], Yang [1995]).

3.3.8 Inductive Rule Learning
RIPPER (Cohen and Singer [1996], Cohen [1995]) is a rule-learning algorithm
based on reduced error rate pruning. Rules are learned by greedily adding
one condition at a time using information gain until no incorrect predictions
are made on the growing set. The growing set is a randomly chosen collection
of training documents and it is used to grow or generate rules. The pruning
set is used to refine and simplify rules without decreasing the performance
of the rule. Those examples in the training set that are covered by a rule are
removed so that new rules can be generated for the remaining examples. In
this way at least one rule covers each example in the training set.

3.3.9 On-line Learning
In on-line learning the learner receives one example at a time and gives
their estimate of the output before receiving the correct value. The current
hypothesis is updated in response to each new example and the quality of
learning is assessed by the total number of mistakes made during learning
(see Cristianini and Shawe-Taylor [2000]).

3.3.10 Support Vector Machine Versus Other Methods
The methods discussed here have their own pros and cons. For this thesis
we will be using Support Vector Machines (SVMs), a method introduced by
Vapnik [1995] and implemented by Joachims in S V M Ught.2 We have chosen
SVMs over other more simplistic methods (Naïve Bayes, Rocchio) for the
reasons outlined below.

SVMs are capable of overcoming many of the problems associated with
efficiency of training, such as overfitting. The aforementioned methods re­
quire that measures such as term selection and term extraction be carried out
in order to avoid the problems of overfitting. These measures, also known as
dimensionality reduction, discussed in section 2.5.2, must be carried out in
order to avoid the curse of dimensionality (cf. section 2) which can lead to
a classifier being exceedingly good at classifying documents in the training
data but not so good at classifying unseen documents. Therefore, SVMs
are capable of generalising well in high dimensional spaces, so SVMs should
work well in our domain of application where there is a rich representation
of words, bigrams etc. What this essentially means that solutions can always

2http://svm light.joachims.org/

CHAPTER 3. MACHINE LEARNING 46

http://svmlight.joachims.org/

CHAPTER 3. MACHINE LEARNING 47

be found efficiently, even for training sets with not only many thousands of
examples but also high feature spaces. In other methods, high dimensional­
ity can again lead to overfitting, so that measures must be taken in order to
control and restrict the number of features and the number of examples in
the training set.

SVMs produce a compact representation of the training data which re­
sults in evaluation on unseen input being very fast, thereby making it effi­
cient when it comes to testing. Parameter settings of the SVM can be tuned,
which allows for inexpensive cross-validation, for instance, comparing one
kernel function against another (cf. section 3.4.5 for more information on
kernel functions). Joachims [1998b] points out that “SVMs do not require
any parameter tuning, since they can find good parameter settings automat­
ically”. The default settings have proven to be the most effective. According
to Joachims [1998b], another advantage of SVMs is their robustness where
they have shown “good performance in all experiments, avoiding catastrophic
failure, as observed with conventional methods on some tasks”.

Initially, a drawback of the SVM was the complexity of the learning theory
and the efficiency of the classifier but this has been rectified and in Dumais
et al. [1998] we see training speeds that are comparable to simple learning
methods such as Rocchio. Finally, according to Cristianini and Shawe-Taylor
[2000], SVMs are a very powerful learning method that “since its introduction
has already outperformed most other systems in a wide variety of applica­
tions” .

3.4 Support Vector M achines
CHAPTER 3. MACHINE LEARNING 48

3.4.1 About SVMs
Support Vector Machines are one of the newer learning approaches to au­
tomatic classification, introduced by Vapnik in 1992. SVMs are universal
learning machines and are based on statistical methods to minimise the risk
of error. The actual decision function, which in this context categorises a
document, is implemented from a subset of the overall training points and
these points are referred to as support vectors. SVMs can be used to directly
implement the Structural Risk Minimisation principle, the aim of which, for
a given learning task, with a finite amount of training data, is to find the best
generalisation performance i.e. minimise the risk of error. This is achieved
by finding the right balance between accuracy and capacity.

Generalisation Performance
In SVMs, the performance of a machine is measured by its ability to generalise
data where generalisation performance refers to the error rates on test sets or
the ability of a hypothesis/function to correctly classify documents not in the
training set. As Burges [1998] observes, the best generalisation performance
will be achieved if the right balance is struck between the accuracy attained
on that particular training set and the capacity of the machine.

Capacity
The capacity of a machine is the ability of the machine to learn any training
set without error. A machine with infinite capacity is said to be capable of

CHAPTER 3. MACHINE LEARNING 49

learning I points regardless of how large I is. Despite this, a machine can
have either too much or too little capacity and this affects generalisation
performance. A machine with too much capacity causes overfitting (as dis­
cussed in chapter 2). Burges [1998] gives a good analogy of what happens
when a machine has too much or too little capacity: “A machine with too
much capacity is like a botanist with a photographic memory who, when
presented with a new tree, concludes that it is not a tree because it has a
different number of leaves from anything she has seen before; a machine with
too little capacity is like the botanist’s lazy brother, who declares that if i t ’s
green, it’s a tree.”

Overfitting and Underfitting
A classifier that is not sufficiently complex can fail to classify a document
correctly. This is referred to as underfitting and usually occurs when the
training set is not large enough to recognise all features. Overfitting is when
a classifier is too complex or has too much capacity so that it no longer fits
the data. Classifiers that overfit the data may recognise noise but cannot
make proper classification decisions. Overfitting generally occurs when the
training set is too specific so that the machine has learned features that are
too specific.

3.4.2 Generalisation Theory
As previously mentioned, text categorisation is formally described by Sebas-
tiani [2 0 0 2] as the task of determining an assignment of a value from (0 , 1)
to each entry of the decision matrix where C = {c\ , . . . , c™} is a set of

CHAPTER 3. MACHINE LEARNING 50

pre-defined categories, and D = {d \,. . . ,dn} is a set of documents to be
classified. Input/output pairings (Xi,yi) represent the relationship between
a document (input) and a class (output). The task of the machine is to learn
the relationship between the pairs - this is known as the target function -
so that when presented with an unseen document the machine can make a
decision about the target class of that document. The decision function esti­
mates the target function and this function is chosen from a set of candidate
functions referred to as hypotheses.

N input/output pairings are represented by a vector XiSRn, i = 1, . . . ,n
and the associated tru th or class yi, where iji is 1 if a document d belongs
to category c and —1 otherwise. The task of the machine is to learn the
mapping Xi — * yi where the idea is to find the best target function of all
hypotheses presented. The machine is defined by a set of possible mappings
x — *■ f(x ,a) . The functions f (x ,a) themselves are labelled by the ad­
justable parameters a where a represents a weight or bias associated with
each training point. For a given input x and choice of a, the machine will
always arrive at the same output f(x , a). The target function chosen from
all the possible choices is the one that minimises risk and leads to the best
generalisation performance. This choice of a generates the trained machine.

Risks of Error
R(a) is referred to as the actual risk. This cannot be computed as it depends
on the unknown probability distribution P (x ,y) from which the data are
drawn. R emp{a) is the empirical risk and is measured by the mean rate of
error on the training set for a fixed and finite number of observations or

CHAPTER 3. MACHINE LEARNING 51

training sets (Xi,yi) - in short, it is a measure of the number of training
points learned incorrectly. R emp(a) is not a probability distribution but a
fixed number for a particular choice of a and for a particular training set

Risk Bound
If I is the number of documents, the following bound holds in equation 3.3
with probability 1 — 77, giving an upper bound on the actual risk of error,

(3.3)

h is a non-negative integer called the Vapnik Chervonenkis (VC) dimension
and is a direct measure of the capacity of the learning machine. 77 is an
arbitrary constant 0 < rj < 1 that guarantees with probability 1 — 77 that the
equation holds. The right hand side of the equation is called the risk bound
or the VC confidence. It is possible to compute the right hand side of the
equation if h is known, but it is not possible to compute the left hand side.
The lowest upper bound on the actual risk is achieved by minimising the VC
confidence and by minimising the empirical risk Remp(a). A balance must
be struck between the right hand side and left hand side of the equation in
order to generate a machine with the best generalisation performance. Since
the right hand side of the equation is partly expressed in terms of h, i.e. the

CHAPTER 3. MACHINE LEARNING 52

VC dimension, minimising h bounds the actual risk of error.

The VC Dimension
VC Dimension (h) is a property of a set of functions /(«) . For the case of a
two-class classification problem, if a given set of I documents can be labelled
in all possible 2l ways, and for each labelling a member of the set of functions
f(a) can be found which correctly assigns those labels, we can say that set
of documents is shattered (or correctly classified) by that set of functions.
The VC dimension for the set of functions f (a) is defined as the maximum
number of training documents that can be shattered by function f(ct). If
the VC dimension is h then there exists at least one set of h documents that
can be shattered, but it in general it will not be true that every set of h
documents can be shattered (see Burges [1998]).

#■

■ A * • V • ■
m\ * \ • ■

/• • // .■<

Figure 3.1: All possible labellings of 3 points in R 2

Figure 3.1 illustrates all possible binary labellings (i.e. 23 = 8) of 3 points

in R 2 (two classes). The task of the set of functions f (a) in R 2 is to place
points in one of two classes (1, —1), positive or negative. In Figure 3.1, we
show how we can shatter three points in R 2 using oriented lines as the / (a)
functions. In the hyperplane in Figure 3.1, points on the side in which the
arrow is pointing, are labelled 1 (positive). The VC dimension of oriented
lines is 3 as the maximum number of points that can be arbitrarily labelled
in R 2 is 3.

Consider the labelling of 4 points in R2. Figure 3.2 illustrates that ori­
ented lines will not suffice for 4 points in R 2. Instead hyperplanes must be

CHAPTER 3. MACHINE LEARNING 53

Figure 3.2: 4 points that cannot be shattered in R 2

used for f(a) and the 4 points in R 2 are instead transferred to R 3. In general,
the VC dimension of any set of m points in RJ1 is n -\-1 (refer to Burges [1998]
for theorem proof), therefore the VC dimension of hyperplanes in R s is 4.

A learning machine with infinite VC dimension is capable of shattering
(classifying) I points, regardless of how large I is. The VC dimension is
therefore an indicator of the capacity of a learning machine. Given a selection
of learning machines whose empirical risk ReTnp(a) is zero (i.e. all training
points are correctly classified — the linear, separable case), the aim is to
choose that learning machine whose associated set of functions has minimal
VC dimension as this will lead to a better upper bound on the actual error.

CHAPTER 3. MACHINE LEARNING 54

For empirical risk greater than zero that learning machine which minimises
the right hand side of equation 3.3 should be chosen.

The Structural R isk M inimisation Principle
The aim of the Structural Risk Minimisation (SRM) principle is to find that
subset of the chosen set of functions such that the bound on the actual risk is
minimised and an appropriate VC-dimension is chosen. Both the R(a) and
Rempi®) depend on a particular function chosen by the training procedure,
whereas the VC-confidence depends on a chosen class of functions; these
values are used to calculate the risk bound. In order to find the best subset
of functions, either h or a bound on h must be computed. This can be done
by training a series of machines. The entire set of functions is divided into
nested subsets with decreasing capacity - for each subset either h or a bound
on h is computed. This can be done by training a series of machines, i.e. one
for each subset. The goal of the training is to minimise the empirical risk
Remp{ct) for a given subset. The subset of functions whose sum of empirical
risk and VC confidence is minimal is chosen as the trained machine - this is
the machine that gives the best trade-off between the risk of error and the
capacity of the machine.

3.4.3 Linear SVM for the Separable Case
The simplest case for the operation of an SVM classifier is that of linear
support vector machines trained on separable data. The training data is
completely separable - all training samples are learned correctly and the
data can be separated by a straight line. Figure 3.3 illustrates what we mean

CHAPTER 3. MACHINE LEARNING

by both linear and separable.

55

Figure 3.3: The linear, separable case

The training data is labelled as follows for (#;,yi), where i = 1
yi£{ 1 ,-1 } , xieRd. A hyperplane separates the positive examples from the
negative examples; this is also known as the separating hyperplane. The
points x which lie on the separating hyperplane (Ho) satisfy equation 3.4.

w ■ x + b = 0

(3.4)

where w is normal to the hyperplane and is a vector which defines a direction
perpendicular to the hyperplane, b is a bias and varying this value moves
the hyperplane parallel to itself. These two parameters, w and b, control the
function and must be learned from the data, is the perpendicular distance
from the hyperplane to the origin and ||iw|| is the Euclidean norm of w.
The shortest distance from the separating hyperplane to the closest positive
or negative point is d + (d—). The margin of the separating hyperplane
is therefore the distance of the closest negative point from the separating

CHAPTER 3. MACHINE LEARNING 56

hyperplane (d—) plus the distance of the closest positive point from the
separating hyperplane (¿+) or (see Burges Burges [1998]).

Hx : Xi • vj + b > 1 for yt = 1

(3.5)

H2 : X i-w + b < - 1 iov yi = -1
(3.6)

For the linear separable case the support vector algorithm looks for the sep­
arating hyperplane with the largest margin: a large margin minimises the
risk of error. The set of labelled training points are said to be linearly sep­
arable if there exists a vector w and a scalar b such that the inequalities in
equations 3.5 and 3.6 are valid for all elements of the training set (see Cortes
and Vapnik [1995]).

yi(xi • uH- b) — 1 > 0 V ?
(3.7)

Equations 3.5 and 3.6 can be combined into the inequality in 3.7. For any

CHAPTER 3. MACHINE LEARNING 57

point actually lying on Hi or H% the equality yi(xi • w + b) — 1 = 0 holds.
These points are termed support vectors (see Figure 3.4).

Figure 3.4: Support Vectors are positioned on Hi and H2

M aximising the Margin
The optimal hyperplane is the one that maximises the distance between Hi
and H2 (see Figure 3.4). This is done using a standard optimisation technique
referred to as a Lagrangian formulation. The objective function | | |w | | 2 is to
be optimised subject to the set of constraints in equation 3.7. For constraints
of the form q > 0, the constraints are multiplied by positive Lagrange multi­
pliers and subtracted from the objective function. The Lagrange multipliers
are unconstrained for constraints of the form c, - 0. This gives the primal
Lagrangian formulation in equation 3.8.

l p = I I M I 2 - E l , “ I f>) - 1 }
(3.8)

CHAPTER 3. MACHINE LEARNING 58

where a-L are positive Lagrange multipliers, (i = 1 , . . . , Z) and one exists for
each of the inequality constraints Xi in 3.7. L P is maximised subject to the
constraint that the gradient of Lp with respect to w and b vanish and also
subject to the constraints a* > 0 (see Burges [1998]). Prom that, the follow­
ing conditions in equations 3.9 and 3.10 apply to that the vector w which
determines the optimal hyperplane can be written as a linear combination of
the training vectors (see Cortes and Vapnik [1995].

w = Yji OiiViXi
(3.9)

o
(3.10)

Equation 3.9 is the result of requiring that the gradient of Lp with respect
to w and b vanish. The vector w that determines the optimal hyperplane
can be written as a linear combination of training vectors as in equation 3.9.
These values can be substituted into the primal equation to give the dual
formulation in equation 3.11.

fJD &i 2 (XiOtjyiVjXi • Xj

CHAPTER 3. MACHINE LEARNING 59

(3.11)

Lp and Ld arise from the same objective function but with different con­
straints. The optimal solution for support vector training for the separable,
linear case is found by maximising L d or minimising Lp with respect to ct*,
subject to the constraints in equation 3.10 and the positivity of ct* with the
solution given by 3.9. In this formulation of the problem in equation 3.11, the
training data will only appear in the form of dot products between the vec­
tors; this feature allows us to generalise the training procedure to the more
complex non-linear case. There are Lagrange multipliers for every training
point, and in the solution any training points for which the Lagrange multi­
plier, cxi, is greater than zero are called support vectors (see Burges [1998]).
These points lie on one of the hyperplanes Hi or H? and are closest to or
actually on the decision boundary. All other training points lie on either side
of Hi or Hz and have cti = 0 (meaning the equality in 3.7 holds). These
points are of great importance to the training set as they are used to obtain
the final solution — and therefore their removal would affect the solution.
This gives a sparse solution, as only a subset of the original training points
are used to calculate the final solution.

The Karush-Kuhn-Tucker Conditions
The Karush-Kuhn-Tucker (KKT) conditions play a central role in both the
theory and practice of constrained optimisation. The KKT conditions are
satisfied at the solution of any constrained optimisation problem. These
conditions hold for all support vector machines, since the constraints are

CHAPTER 3. MACHINE LEARNING 60

always linear and because the problem for SVM is convex. Therefore the
KKT conditions are necessary and sufficient proof that a proposed solution
is correct. This means that solving the SVM problem is equivalent to finding
a solution to the KTT conditions, i.e. equivalent to finding values for w , b
and a which satisfy these conditions.

The KKT conditions for the primal problem for the linear, separable case
as outlined above can be stated in 3.12 as:

= w - E i OiiViXi = 0

= - E i<XiVi = o
yi(xi ■ w + b) - 1 > 0

O i> 0
oii(yi(xi ■ w + b) - 1) = 0

(3.12)

To reiterate, if all of the above conditions hold, this implies we have a nec­
essary and sufficient proof that w, b and a are the solution, or in other words,
we have a classifier. The last of this set of conditions is called the Karush-
Kuhn-Tucker complementary condition. The general form is expressed as
equation 3.13:

CiiQiix) = 0

CHAPTER 3. MACHINE LEARNING 61

(3.13)

where gi(x) is the set of inequality constraints. Once equation 3.9 is calcu­
lated, this value can be substituted into the complementary condition. Any of
the support vectors can be used for Xi in this equation. By using appropriate
values for and ?/;, b can be calculated.

Testing Phase
In the test phase of the development of a classifier, the task is to determine on
which side of the decision boundary a given test pattern lies. The decision
boundary is the hyperplane lying halfway between Hi or H% - in the test
phase test points are pulled either side of the decision boundary - in either
a positive or negative direction. This is determined by equation 3.14:

f (x) = sign(w • x -\- b)
(3.14)

or by substituting equation 3.9 we get:

(3.15)
f (x) = sign(J2i OiViXt ■ x + b)

CHAPTER 3. MACHINE LEARNING 62

In the equation 3.15, the decision surface appears as a dot product between
the training points. The dot product can be seen as a similarity measure
and is important when it comes to adapting the SVM model to the non­
linear case. The decision function essentially measures each of the test points
against each of the support vectors (that chosen subset of the training set
lying on one of Hi or H2). Positively labelled support vectors drag the result
in a positive direction depending on the similarity and the weight a attached
to each of the support vectors. If a test point is most similar to the positive
support vectors, then it will be classified positively. The same holds for the
opposite case.

3.4.4 SVM for the Non-Separable Case

Figure 3.5: Linear separating hyperplanes for the non-separable case

The problem of finding the linear separation of non-separable data with
the smallest number of misclassifications is NP-complete. Such data cannot
be separated by the above algorithm, as it assumes that a separating hyper-
plane exists such that w • x + b = 0. This equality cannot be satisfied when

CHAPTER 3. MACHINE LEARNING 63

t he data is not separable. To cater for the more common non-separable case,
the constraints in equations 3.5 and 3.6 must be relaxed. The “algorithm
works by adding misclassified positive training examples or subtracting nega­
tive ones to an initial arbitrary weight vector” (Cristianini and Shawe-Taylor
[2000]). Positive slack variables & = 1 , . . . , I are introduced in the constraints
giving:

Xi • w + b > + 1 — ¿u for y¡ = + 1

(3.16)

Xi • w + b < - 1 + & for yi = - 1

(3.17)

& > 0 V*
(3.18)

Then, equations 3.16, 3.17 are combined to give the inequality in equation
3.19:

Vi(w ■ x + b) > I —&

CHAPTER 3. MACHINE LEARNING 64

(3.19)

The slack variable is a measure of how much the constraints are broken. An
error occurs if £ > 1 , meaning all points for which £ > L will be misclassified.
Points with a value between 0 and 1 will be classified correctly. Points with
such values fall inside the margin. All other points that are classified correctly
will have a £¿ of zero. The total error therefore equates to E and can be
seen as an upper bound on the number of training points classified incorrectly.
See Figure 3.5 for a graphical explanation. This value will feature in the
primal objective function. In the linear separable case the objective function
to be minimised was | | |w | | 2 whereas for the non-separable case it becomes:

^ + C (E , fd ‘
(3.20)

C is a parameter defined by the user and a larger C implies a higher penalty
for training errors. The first term in 3.20 is the same as for the linear separa­
ble case - it acts as a bound on the VC dimension. The second term acts as a
penalty for the number of training errors or a measure of the empirical risk.
Note: in the linear separable case we did not have this term, as the empirical
risk was equal to zero. In order to find the solution a balance between the
VC dimension and the empirical risk must be found and this is the task of
the Structural Risk Minimisation principle.

CHAPTERS. MACHINE LEARNING 65

The dual formulation of the problem appears as in 3.21. Neither the
nor the Lagrange multipliers appear in the dual formulation.

l d e E j a < - \ £ aiajViVjxi ■
(3.21)

The only difference is that the a* now have an upper bound of C (3.22).
Note that C is a parameter that is chosen by the user. The higher C the
less tolerance there is for error. We wish to maximise L q subject to two
constraints in equations 3.22 and 3.23:

0 < on < C
(3.22)

E a iVi = o
(3.23)

The solution for w is given by equation 3.24 where Ns is the number of

CHAPTER 3. MACHINE LEARNING

support, vectors.

66

w = E S a*y¡x i
(3.24)

As with the case for separable data, Karush-Kuhn Tucker conditions in equa­
tion 3.25 are required in order to solve the primal Lagrangian function for
the non-scparable case.

LP = ¿IMI2 - E¿ oci(yi(xi ■ w + 6)1+ £*) + CYa & ~ E; /**€*
(3.25)

where f.t¡, are the Lagrange multipliers. Lagrange multipliers are introduced
to keep the slack variables positive. Lp is maximised by differentiating
with respect to w, b and £. The KKT conditions for the primal problem are
therefore:

dLp/dwv — wv) 1 ^ ¡ / / ■ 0
(3.26)

dLp/db = - E aiVi = 0

CHAPTER 3. MACHINE LEARNING 67

(3.27)

dLp/d^i — C OLx / /-j 0
(3.28)

yi(xi •w + 6) - l + £ i > 0

(3.29)

6 > 0

(3.30)

cti > 0

(3.31)

(3.32)
> 0

CHAPTER 3. MACHINE LEARNING 68

a.,{yi(xi ■ w + b) - 1 + &} = 0

(3.33)

(¿i î — 0

(3.34)

Equations 3.33 and 3.34 are the Karush-Kuhn-Tucker complementary
conditions and these can be used to determine the value of b. Equations
3.28 and 3.34 can be combined to show that = 0 if < C. By taking any
training point for which 0 < oti < C, b can be computed using equation 3.33
(though it is best to take the average over all training points).

3.4.5 SVM for the Non-Linear Case
The methods we use for the classification of linear, separable data and non-
separable data cannot be applied to the classification of non-linear data.
By mapping the data from the input space to a higher dimensional feature
space, linear separation becomes much easier, thereby allowing the same
linear techniques previously discussed to be applied to the data. The term
features represents the quantities introduced to describe the data, while the
task of choosing the most suitable representation is referred to as feature

CHAPTER 3. MACHINE LEARNING 69

selection, and the space onto which the data is mapped is called the feature
space. A number of different techniques for selecting the best representation
of data exist.

Typically it is best to use the smallest possible set of features that still
convey the essential information contained in the data. This is known as
dimensionality reduction. As the number of features grows it can become
computationally expensive and consequently infeasible to solve the classifi­
cation task. Also, generalisation performance can diminish when faced with
too many features, so that the learning machine is prone to overfitting. This
phenomenon is sometimes referred to as the curse of dimensionality (refer to
Cristianini and Shawe-Taylor [2000]).

Mapping the data to a higher dimensional space makes it easier to sep­
arate the data with a linear decision function if the target function is a
quadratic polynomial. In the training problem the data appears in the form
of dot products, Xi ■ Xj and, if we map the data to a higher dimensional
space then the training algorithm would only depend on the data through
dot products in H, i.e. on functions of the form <&(a;i) • <&(xj). The set of
hypotheses to be considered will be functions of the type:

f{x) = J 2 wi®i(x) + b
(3.35)

where $: X —* F is a non-linear map from the input space to some feature

CHAPTER 3. MACHINE LEARNING 70

space. To recap, w is the vector that determines the optimal hyperplane.
Recall that the solution for w is given by w = E j aiVixi- In the test phase,
the decision rule can be evaluated using inner products between the test
point and the training points. This can be done by computing the following:

f(x) = sign(J2i Oiiy^^Xi) ■ $(x) + b)
(3.36)

where x± are the support vectors. Working in a higher dimensional space
is not always a feasible solution to the problem, due to the curse of dimen­
sionality and because it can be computationally expensive. To overcome this,
a function referred to as a kernel function is used to map the data to a high
dimensional space without having to actually create that feature space, i.e.
K (xi ■ Xj) = <l>(.Ti) ■ this avoids the computational problems associ­
ated with high dimensional spaces and also makes it possible to use infinite
dimensions efficiently. In other words, we would only need to use K in the
training algorithm and would never need to explicitly even know what $ is
(see Burges [1998]). By working in a feature space where $ defines the map­
ping, we replace X{ ■ Xj with K{xi ■ xf) everywhere in the training algorithm
such that we do not explicitly have to create the mapping &(xi) ■ 4>(x_,). In
doing so, we allow the data to be dealt with in the same way as the pre­
viously mentioned linear, separable case in section 3.4.3. The only extra
computational expense involved is that of computing the kernel function.

CHAPTER 3. MACHINE LEARNING 71

Kernel Functions
The kernel function provides a shortcut to the above problem. Instead of
creating the feature space from the original input space, computing the inner
product in that feature space and then finding a way of computing that
value in terms of the original inputs, the kernel function computes the inner
product in the input space without having to explicitly define the feature
space.

The choice of kernel function determines whether the resulting SVM is
a polynomial classifier, a two-layer neural network, a radial basis function
machine or some other learning machine (see Burges [1998]). Given a function
K , using Mercer’s Theorem, it is possible to verify that it is a kernel (see
Cristianini and Shawe-Taylor [2000] for proof). The set of kernels is closed
under some operations. If K and K ' are kernels then:

• K + K ' is a kernel,

• cK is a kernel, c > 0,

• aK + bK is a kernel for a, b > 0,

• Complex kernels can be made by combining simpler kernels according
to specific rules,

• Kernels can be made from features, e.g. the polynomial kernel and the
string kernel,

• They can be made from probabilistic generative models by transforming
them into similarity functions.

CHAPTER 3. MACHINE LEARNING 72

Gaussian RBF (radial based function), polynomial, sigmoidal and inverse
multiquadric kernel functions are the most commonly used kernels (see Muller
et al. [2 0 0 1]) and can be defined as follows:

Gaussian RBF: K (x, z) = exp ~IMI s

Polynomial: < x ,z >d

Sigmoidal: tanh kx ■ y — 8

Inverse multiquadric: , 1 ■V(l \x y \V + < ?)

3.5 Summary
In this chapter we introduced and discussed machine learning and the role it
plays in text categorisation. We introduced various approaches to classifier
construction, highlighting the advantages and disadvantages of each. Support
Vector Machines were dealt with in greatest detail as this is the method which
we will be using to deal with the text categorisation of racist documents on
the Internet.

In the next chapter we will discuss the issues related to text categorisation
for identifying racism online.

Chapter 4
Text Categorisation for Racism
on the W W W
In this chapter we introduce the issues related to detecting racism online.
We describe the dataset that is used in our experiments, and the methods
used to collect the dataset. We describe our approach to text categorisation
for racism and evaluation measures that will be applied in assessing the
effectiveness of the TC system.

4.1 D etecting Racism
Automatic text categorisation has proven to be successful for topic-based
problems such as news story categorisation. This is based on the classification
of articles into categories where there are little or no similarities between the
content words of each class. Typically, such problems are clear cut and there
is little doubt as to which class a document belongs. For instance, for news

73

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW!A

story classification, news items are put into categories such as sport, politics,
finance, etc. Topic-based documents are identified on the presence/absence
or frequency of certain strings that are more characteristic of one class than
another. For example strings such as ISEQ, investment fund, interest rate
are likely to be found in financial articles but not in sporting ones.

The problem of detecting racism is quite different to topic-based prob­
lems. Racist documents target potentially any race or group of people - Jews,
Arabs, Muslims, African-Americans, Africans, Aborigines, asylum seekers,
refugees, Hispanics, Asians, Protestants, Catholics, Turks etc. Thus detect­
ing racism could be considered partially a topic-based problem - for instance,
find all documents containing the word Jew and those documents that are
racist towards Jews are a subset of all the documents thai, are about Jews.
The difficult task is in finding what diserns racist documents apart from the
rest. In Figures 4.1 and 4.2 a number of words (white, black, non-white,
African American, Jewish, Asian) have been highlighted which could indi­
cate that both texts are about race. Of course, they may also be racist but
we cannot decipher this based on these keywords alone as other factors come
into play.

In a recent paper Grilheres et al. [2004] describe experiments carried out
during the European Research Project NetProtect II 1, a project similar to
PRINCIP, in that it also aims to filter harmful webpages in order to pro­
tect children. However, the NetProtect project attempts to filter documents
promoting drug consumption, documents containing recipes for home-made
bombs or explosives and documents promoting violence and pornography.

1http://www.net-protect.org/

http://www.net-protect.org/

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW75

M» riM i-an-m rvJn____ ____~ ___ ____
now dare we white foVfcsrhave any story That highlights extrene whiteness as ^
cornet hi no to be proud of? so. they place_a Fon-wHite qfFTl in the role of snow
white and put it on the 3cwnsh Michael eisnorT̂ a b c national television
network, to be carried oh March 17, 2002.
The routine insertion of Inon-Whi tesl into all television programming grows
continually more frequent. Asianr and ;Biacki girls are mixed in with white
girlsas best friends. Mixed groups of males naturally are shown hanging around the
mixed groups of girls* The coupling that comes out of such groups often is racially confused, in an attempt to numb the natural instincts of self-preservation of the Whites who make up the vast majority of the watching
audience. This is not news to anyone who has watched a single television show
in the last few years,
However, Snow White is a quantum leap up on the scale of racial outrage. It
is ̂ . . rabsurd, but promoted as if it were not. The promotional material for the
movie A 'doesn't mention the fact that race was intended as its primary focus, however
the picture of a fnon-Wnfte] woman playing " snow white " is statement enough.
There is no part ot white heritage, culture, or history that is safe from
these degenerates. It is time that we defend ourselves, or there will be
nothing left to defend.
Snow white is a children's story, and that is just who this perverted movie
i saimed at. The children can now think that old Europe, where this story iss®*»was filled with people who were half-Asian, in other fantasy movies, like The 10th Kingdom , and Robin Hood r they have placed Blacks into the land where
Blacks were not to be found in real life. It is pure and simple lying.
Dishonesty created especially for our children, and the white parents sit ,j

Figure 4.1: A racist text

EMEi i Bmai an— a s -n- (#-------- ---3
In Maine, the Portland Press Herald last year reported that the city's
minority residents feel the pressure of police bias- In a front-page article,
the newspaper told the story of Michael Stoval1t a 35-year-oldt1 awyer who passed a police officer going in the opposite direction on acity street and watched as the patrolman did a U-turn and pulled up behind him. Stovall vvas
¡followed for several blocks while the officer spoke into his radio. Finally,
the newspaper said, the patrolman left, leaving Stovall to wonder.
Another ¡African American!, Judith Hyman, said she was stopped by a Portland
police officer whiledriving on a city street with her son, who is (black.I and
his girlfriend, who is WNi'te1;. -'The officer pulled us over to see it we had
our (seat belts on," Hyman said, "we all were wearing seat belts and I wasn't
speeding, so, really, why were we stopped?" -1
The newspaper also told the story of Hutima Peter, an iranigrant from Congo
andgastor of the |African) international Church, who said he was once questioned
anofficer after parking his car. "When I got out, an officer asked me for my
driving license and asked me who is the person I know in Portland," Mutima
said. 'I told him I know [Police chief Michael] Chitwood and he said ‘OK’ and
left. People said I should speak out, but this is a general thing for many
people.” Source: The Portland Press Herald
"I was like, 'Why aretyou guys handcuffing me about some tickets?' They had
me standing outside with all these people passing by. It was so humiliating,
i figured if I said anything, if I moved, that would just give them
?ernussion to beat me. And I did not want that to happen because I have a
ittle boy."

- Karen, early thirties, licensed social worker 1̂
Figure 4.2: A non-racist text

CHAPTER 4. TE X T CATEGORISATION FOR RA CISM ON THE W W W 6

Using a search engine such as Google to find documents about the history of
bombs or explosives erroneously retrieves documents containing recipes for
home-made bombs. This classification problem is, in a way, similar to the
PRINCIP problem in that keywords and phrases which may appear to be
racist are also found in non-racist discourse, meaning keywords alone are not
reliable indicators of whether or not a document is racist. Grilheres et al.
[2004] combined classifiers using images, URLs and the most pertinent n
keywords. They did not rely on keywords alone for classification and found
the combined classifier approach led to better filtering performances than
single classifiers. The main difference between the NetProtect problem and
the PRINCIP problem is that NetProtect is primarily a topic-based problem
whereas detecting racism goes beyond the topic. Detecting racism is more
similar to the problem of subjectivity classification as described by Finn et al.
[2002] and Finn and Kushmerick [2002]. These researchers perform classifi­
cations based on the subjectivity of a text by trying to identify whether a
document reports facts or the opinions of the author. Like us, they are not
really concerned with topic and are trying to make a classification based on
something which is orthogonal to the topic. Detecting texts on the basis of
whether they are racist or not is really about discerning the author’s opinion
or attitude in relation to the topic.

4.2 A bout the approach
In this thesis we build several text categorisation systems based on differ­
ent representations of the data. We will analyse the performance of three

CHAPTER 4. TE X T CATEGORISATION FOR RA CISM ON THE WWW77

representations - the bag-of-words (BOW), bigrams and part-of-speech tags
(POS). Support Vector Machines will be used to build the classification sys­
tems using each of the representations. We will compare and constrast these
representations in the system for the purpose of identifying the most effective
method for the detection of racism on the WWW.

All three representations have already been tried and tested, both in IR
and in text categorisation - Finn et al. [2002], Chandrasekar and Srinivas
[1997], Tan et al. [2002], Finn and Kushmerick [2002], Furnkranz [1998],
Kelledy and Smeaton [1997], Lewis [1992], Mladenic and Globelnik [1998].
Although they have been examined extensively in the context of other do­
mains and different classification problems (i.e. problems related to topic and
content as opposed to attitude or opinion), limited experiments related to at­
titude or opinion have been conducted and to our knowledge no experiments
have been carried out on the detection of racism online.

Finn et al. [2002] and Finn and Kushmerick [2002], whose work on sub­
jectivity classification is closely related to our own work, found the BOW
approach to outperform POS tags. Also, the results of the research con­
ducted during the PRINCIP project provided further justification for our
approach in building a text categorisation system.

4.2.1 PRINCIP Findings
Our own experiments in the PRINCIP project (see Gibbon and Greevy
[2003], Lechleiter and Greevy [2003], Martin [2003a,b]) revealed there to be
significant differences at lexical, collocational and syntactic level between
racist and non-racist texts.

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW78

Lexical Level
We identified lexical items that appeared equally consistently in each dataset.
We were able to identify those lexical items that occurred 30% more often
in racist texts. Modals, adverbs and tru th claims were among this list, e.g.
must, never, once, ever, same, very, course, fact, white, race, nation. The
use of modals, representing the taking of absolute positions, and the use
of argumentation structures such as truth claims like fact or of course are
characteristic of racist discourse. For instance:

Least of all should we place an alien cult of anti-Aryanism ahead
of the survival of Our Race.

We must understand that when he follows the Semite pied piper
he endangers himself and all that which encompasses his race
from the beginning of time.

For the Jews, as foreigners, certainly should have nothing from
us; and what they have certainly must be ours.

Our people must realize the dangers of amalgamation and arise
to condemn all the individuals and organizations, white, black
and mixed, who are devoting time and effort to bring about a
mongrelized America.

Colored people are different from Caucasian people. This is an
obvious fact and the differences between these races often, in
fact go beyond skin color.

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW79

The greatest Race to ever walk the earth, dying a slow death.

The fact that the color line is being broken down, mongreliza-
tion is taking place and has taken place, is an abomination against
Nature.

Such linguistic features are indicative of the discourse of racist language
(see Gibbon and Greevy [2003], Lechleiter and Greevy [2003]). These results
confirmed for us that, although the same lexical items may appear in both
racist and non-racist texts, differences in frequencies of such items exist. We
found certain non-content words which are part of everyday language use
appearing significantly more often in racist discourse and their over-use can
in itself be an indication of the nature of the text and of the stance taken by
the author.

Collocation Level
Our studies revealed that words which appear in racist discourse can also
appear in many other discourses. For instance over-breeding, a word en­
countered frequently in racist discourse, also appears in texts about breeding
horses. For this reason, we looked beyond keywords and started to look at
word sequences and context. This study revealed to us many collocations
which are consistently prevalent in racist texts, e.g. our own kind, white
civilisation, white survival, only Jews, our country were encountered sig­
nificantly more often in the racist corpus (see Gibbon and Greevy [2003],
Lechleiter and Greevy [2003], Martin [2003a,b]).

The results of our linguistic studies showed that it may be possible to

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW80

separate texts based on context and that is one of the reasons we train the
Support Vector Machine on 2- and 3-word sequences.

Syntactic Level
The corpus was tagged using XeLDA2, a suite of linguistic tools made avail­
able to us by Xerox. The distribution of different POS categories was inves­
tigated.

Table 4.1: Distribution of the parts of speech
Racist Non-racist

ADJ 8.89 8.14
ADV 4.61 3.49
NOUN 21.14’ 22.40
VERB 14.79 12.18
OTHER 50.57 53.78

The results (in Table 4.1) show there to be differences of between 1-3%
across the board. These differences may seem insignificant and rather small,
but in order to put these figures into context, the size of the samples must
also be taken into consideration. It is interesting to note that the racist
corpus contains more adjectives and fewer nouns making the adjective-noun
ratio .42 for the racist and only .36 for the non-racist. This tells us that
racist discourse contains more qualifiers and that the larger number of nouns
in the anti-racist corpus may be indicative of a difference in register.

We trained a Support Vector Machine on the POS information to see
what effect this representation has on the categorisation system.

2Xerox Linguistic Development Architecture: http://www.xrce.xerox.com /competencies/ past-
projects/platforms/xelda.html

http://www.xrce.xerox.com/competencies/past-

4.3 A bout the D ataset
CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWWS1

To conduct experiments in the PRINCIP project, a dataset of over 2 million
English words and about 1000 documents was collected. This same dataset
was used to train the Support Vector Machine which will allow for the iden­
tification of racist documents. The dataset consists of an equal number of
racist and non-racist documents which were downloaded from the WWW.

4.3.1 Collecting the Dataset
When building the dataset during the PRINCIP project a combination of
approaches was used to avoid circularity, to target a diverse collection of
documents from different domains, different countries and also to target dif­
ferent groups.

Yahoo!3 and Google directories were browsed under categories containing
social and cultural texts. A list of potentially racist keywords and phrases
was constructed with the help of the League of Human Rights in Belgium.4

Current affairs provided useful clues for the building of the list, as did study­
ing research on racist discourse by Dijk [1987] and Wodak and Reisigl [2001].
The list of candidate keywords and phrases was submitted to search engines
such as Google5 and AlltheWeb6 and the results of the search query were
classified into one of either racist or non-racist.

Given the topology of the web, we assumed that like attracts like which
meant that by following hyperlinks within webpages we would discover more

3http://www.yahoo.com
4h ttp :// www.liguedh.org
5http://www.google.com
6http: / / www.allthe web. com

http://www.yahoo.com
http://www.liguedh.org
http://www.google.com
http://www.allthe

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW82

documents of a similar nature. It followed that downloading hyperlinks
proved a particularly useful method in building the datasets. We refer the
reader to work by the Princip Partners [2002] for further information.

4.3.2 Dataset Statistics
The dataset contains 1000 documents with 500 racist and- 500 non-racist
documents. These documents were collected using the methods described
in 4.3.1. For further information on these methods see work by the Princip
Partners [2002].

Table 4.2: Size of the ndividual datasetsSet 1 Set 2 Set 3 Set 4
Training set size 2 0 0 400 600 800
Test set size 60 1 0 0 150 2 0 0

The 1000 documents were split into training and test sets. No criteria
were defined for this task. Instead, the documents for the training and test
sets were chosen at random thereby minimising bias. Each training and test
set contains an equal number of racist and non-racist documents.

In order to analyse the impact of differing sized datasets on the system,
we split the dataset accordingly as in Table 4.2. In the following chapter we
will refer to set 1, set 2, set 3 and set 4.

4.4 Building the Classification System
In this thesis we used Support Vector Machines as the machine learning
method to build a text categorisation system. We are using S V M u°ht,7 which
is an implementation of Vapnik’s Support Vector Machine (Vapnik [1995]).
This package is freely available for scientific use and can be downloaded
online.

When downloaded and installed, the S V M lt9ht package contains two ex­
ecutables:
svm Jearn is the learning module. The training data is passed to the learn­

ing module; the SVM learns the training data and outputs a model
which is used to help classify new unseen data.

svm_classify is the classification module. This uses the model output dur­
ing learning to help classify new unseen data.

4.4.1 Building Training and Test Data
In section 2.5 we examined indexing procedures and processes and the build­
ing of representations interpretable by the classifier. We have already spoken
about the need for training and test data in section 3.2. In this section we
examine the role of training and test data, including the building of these
datasets and their transformation into appropriate representations in the
context of this thesis.

The training data is used by the learning module to identify features of
each class. In classification mode these features are then used to assign a

7http: / / svmlight.joachirns.org/

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW83

document to a class. The test data consists of those documents yet to be
classified by the system. The classification module assigns a class to each
document.

All documents in both training and test data to be classified by the sys­
tem must be indexed, i.e. transformed into a representation that can be
understood by the Support Vector Machine. All training/test data are rep­
resented in one file where each line represents a document and takes the form

< target > < feature >:< value > . . . < feature >:< value >
where
< target > = + 1 | — 1

< feature > = int
< value > = boolean | in t \ float

White space separates TARGET and the FEATURE: VALUE pairs. TARGET
represents the target class of the document where + 1 is assigned to docu­
ments which belong to the class (i.e. documents that are racist) and — 1 is
assigned to documents which do not belong to the class (i.e. documents that
are non-racist). In our case each FEATURE is a number representing either
a word, bigram or POS tag in the dataset. FEATURE: VALUE pairs must be
ordered by increasing value of feature number. VALUE represents the degree
to which the feature is present in the document, which could be a boolean
value i.e. 0 representing absence or 1 representing presence. Alternatively,
it could be an integer value representing the number of occurrences in the
document or a floating number which is essentially a value representing the

CHAPTER 4. T E X T CATEGORISATION FOR RACISM ON THE WWW84

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW85

weight of the feature in the document. We refer the reader to section 2.5.1
for further information on term or feature weighting.

A document might therefore be represented as follows:

- 1 1 : 0.59 4 : 0.7 1 2 :0 .5 .. .

where — 1 specifies a negative example for which feature number 1 has the
value 0.59, feature number 4 has the value 0.7, feature number 12 has the
value 0.5 and so on.

BOW
In this representation, each word is treated as a feature. We did not use stop
lists or perform stemming or lemmatisation. Two separate experiments were
conducted to evaluate the performance of the classifier, where the value is
taken to be

1 . the number of occurrences of the feature in the document

2 . the frequency of the feature in the document

Frequency is calculated by dividing the number of occurrences of the
feature in the document by the document length.

Bigrams
We also look at bigrams at word level. For instance, for the following sentence

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW86

“Our race is our nation”

the bigrams would be:

‘Our race’ / ‘race is’ / ‘is our’ / ‘our nation’

Since frequency produced better results for the BOW approach than the
number of occurrences, we used frequency as a means of weighting terms in
the documents, i.e. value represented the frequency of the bigram in the
document.

We wrote a Java program to create the appropriate input for the building
of the training data.

Parts of Speech
The dataset was tagged using XeLDA - Xerox Linguistic Development Ar­
chitecture. Xelda outputs the tagged document in XML format (see Figure
4.3 for sample output). It is therefore necessary for the document to un­
dergo some pre-processing to extract the tags so that the documents can be
transformed into a representation interpretable by the classifier. We wrote a
Java program to parse the XML document and extract the POS tags from
the tagged text.

The Xelda disambiguation tagset contains 70 tags so the number of fea­
tures is small in comparison to BOWs and bigrams. In this representation
each tag is treated as a feature.

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW87

«lexeme id="705" start="4214" length="7’’>
«surface-form>healing«/surface-form>
<sense-list disambiguated-'yes">

«sense id="1 " >

«part-of-speech>NOUNING'</part-of-speech>
«base-form>healing«/base-form>

</sense>
«/sense-list>

«/lexeme^
«lexeme id="706" start="4222" length="3">

«surface-form»and«/surface-form>
«sense-list disambiguated="yes">

«sense id="1 ">
«part-of-speech>COORD=/part-of-speech>
<base-form>and<^base-form>

«/senses
«/sense-list>

<rtexeme>
«lexeme id="707" start="4227" length="7">

<surface-form>harmony</surface-form>
«sense-list disambiguated="yes">

«sense id="1
«part-of-speech>NOUN«yjoart-of-speech>
«base-form>harmony«foase-form>

«/sense>
</sense-list>

«dexeme>

Figure 4.3: A document tagged by Xelda in XML format

4.4.2 Learning
The svmJLeam module is used to train the machine and is run at the com­
mand line by typing:

svm_leam [options] train_file model_file

T h e train_f ile is t h e in p u t file w h ic h w as d e s c r ib e d in s e c tio n 4 .4 .1 . T o
r e c a p , th i s file r e p r e s e n ts a l l d o c u m e n ts in th e t r a in in g d a t a w h e re e a c h lin e
r e p r e s e n ts a d o c u m e n t a n d e a c h lin e c o n s is ts o f FEATURE: VALUE p a irs . T h e
f e a tu re s r e p re s e n t o n e o f BOW, b ig r a m s o r POS ta g s , d e p e n d in g o n w h ic h
r e p r e s e n ta t io n is b e in g u s e d a t t h e t im e .

Default training for the SVM is to use no option. However, various pa­
rameters of the SVM can easily be tuned and tweaked during learning and
this allows for straight forward cross-validation. Joachims [1998b] points out
that “SVMs do not require any parameter tuning, since they can find good
parameter settings automatically” . Previous studies have shown the default
settings have proven to be the most effective. Despite this, we will alter some
of the settings during training to see if this impacts on the effectiveness of
the classifier. The parameter settings that can be altered include:
learning options: various learning parameters can be altered. Some of the

options include:
• —c changing c results in the SVM trading-off between training

errors and the margin that separates the data.
• —j increasing or decreasing j changes the cost-factor, i.e. adjusts

the amount by which training errors of positive examples outweigh
negative ones.

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW88

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW89

• — b the use of an unbiased hyperplane instead of the default biased
one.

performance estimation: to do with estimating the performance of the
classifier.

transduction options: relating to the fraction of unlabeled examples to be
classified into the positive class.

kernel options: the type of kernel function —t can be altered. The internal
parameters of the kernel functions themselves can also be changed.

• linear is the default kernel,
• polynomial - < x ,z >d,
• radial basis function - K (x ,z) = exp ~1M1 s,
• sigmoid tanh - tanh kx ■ y — 8 .

optim isation options: allows various parameters to be changed in order
to optimise kernel evaluations, iterations, or training criteria.

First of all we train the SVM using the default options. Then we examine
the effect of tuning the SVM and, in particular, examine the effect of changing
the kernel function. We report on the most effective kernel function for each
of the BOW, bigrams and POS representations.

When learning is complete on the t r a in _ f i le , the result is the learned
model which is written to the model-f i le .

During classification, the model jf ile produced during SVM learning is used
to predict the output class of unseen documents. svnLclassify is used to
classify unseen documents and this is done as follows:

svm_classify [options] unseen_file model_file
output_file

The unseen J ile contains the documents yet to be classified. These
documents are represented in the same way that was described in section
4.4.1 and again briefly in section 4.4.2.

The model_file is the model which is learned from the training data
train Jile during learning in 4.4.2. The SVM reads this file during classi­
fication to make predictions on the output class of each of the documents in
unseenJile to be classified.

Each line in the output J ile represents one document in the set of docu­
ments to be classified (i.e. unseenJrile). This line contains the value of the
decision function (see sections 3.4.2 and 3.4.3 for further information) on a
document in unseen_f ile. The sign of this value determines classification,
i.e. a positive value indicates the document is racist while a negative value
means the document is not racist.

4.5 Evaluation
In chapter 2 we discussed indexing, the first step involved in building the
text categorisation sytem. The second step, classifier construction, was dealt

CHAPTER 4. TEXT CATEGORISATION FOR RACISM ON THE WWW90

4.4.3 Classifying

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE W W W 91

with in chapter 3. These two steps are the only ones required in order to
build the classification system, but as with any system we cannot know how
effective it is until we evaluate it. Evaluation, the last step, is very important
for text categorisation and we need empirical evidence to see how good the
system is.

As already explained earlier in this chapter, we have split the dataset into
a training and test set (see Table 4.2). We will use each test set to evaluate
the performance of the classifier.

We use Precision and Recall measures to evaluate the system. “Recall
and precision are ubiquitous in information retrieval, where they measure the
proportion of relevant documents retrieved and the proportion of retrieved
documents which are relevant” Lewis [1991]. Precision is the number of cate­
gories correctly assigned, divided by the total number of categories assigned,
ft is a conditional probability defined as P(ca,ix = l |a ;x = 1) Sebastiani
[2002], i.e. the probability that if a random document dx is classified under
q , this decision is correct. Recall is the number of categories correctly as­
signed, divided by the total number of categories that should be assigned.
It is essentially a measure of the degree of coverage for a specific category
and is defined as the conditional probability P(aix = 11caix = 1) (Sebas­
tiani [2002]), i.e. the probability that, if a random document dx ought to be
classified under q , this decision is taken.

Accuracy will also be used to evaluate the system. This is calculated on
the test set by checking that the suggested tag is the same as the actual tag.

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW92

It is simply calculated as in equation 4.1:

N u m ber—o J —documc nt&—a asigned—to — th e—correct—ca legotij
N um ber—o f — docum ents—to —be-categoi'ised

(4.1)

We will also be using the Fl-measure to evaluate the performance of the
classifier. The Fl-measure is obtained by first computing precision and recall
and then using them to calculate the Fl-measure. It “combines precision and
recall with equal importance into a single parameter for optimization” (Pierre
[2000]). This is a useful measure by which to evaluate the overall performance
of the classifier assuming it is of value to treat precision and recall with equal
importance. The Fl-measure is defined in equation 4.2 as:

__ 2P rec is io n X Recall
Precision-]- Recall

(4.2)

4.6 Summary
In this chapter we took a closer look at the problem of detecting racism on­
line and highlighted how this problem differs from traditional categorisation
problems. We described work that has been carried out in University College

CHAPTER 4. TE X T CATEGORISATION FOR RACISM ON THE WWW93

Dublin by Finn and Kushmerick [2002], Finn et al. [2002] and identified the
similarities between that research and our own. We presented some of the
findings of the PRINCIP project carried out at DCU (see Gibbon and Greevy
[2003], Lechleiter and Greevy [2003], Martin [2003a,b]) and explained how
this has helped us in forming our methodology for this thesis.

We introduced the methodologies that were used for data collection and
presented the statistics on the datasets that were during training and testing
of the text categorisation system.

We discussed building the training and test data, as well as the various
processes the data must undergo so that the both the training and test data
(and indeed any future data to be classified by the machine) are interpretable
by the Support Vector Machine. We also discussed the pre-processing stages
which the data must undergo in order for it to be turned into the appropriate
representations, namely BOW, bigrams or POS tags.

Finally we explained how to train and test the SVM given the data and
we introduced the measures used to evaluate the effectiveness of the system.

In the next chapter we will look at the results of the text categorisation
system for the identification of racist documents online.

Chapter 5
Results
We took a Support Vector Machine, S V M lt9ht, trained it on three representa­
tions of the data - BOW, n-grams and POS - and evaluated the effectiveness
of each classifier in terms of precision, recall accuracy and Fl-measure, as
discussed in section 4.5. We looked at the impact on datasets of varying
sizes. The effect of tweaking and tuning certain paramters of the SVM is
analysed.

Some of the results presented in this chapter were presented in 2004 a
paper at the 7th International Conference on the Statistical Analysis of Tex­
tual Data in Leuven-la-Neuve, Belgium (Greevy and Smeaton [2004b]) and
in a poster at the 2004 27th Annual International ACM SIGIR Conference
in Sheffield, UK (Greevy and Smeaton [2004a]).

94

5.1 Bag of Words
The first experiments we conducted used the BOW representation. In section
4.4.1 we discussed the various processes involved in preparing the data for
training.

For these initial experiments we trained the classifier using the default
SVM parameter settings. Learning, performance, kernel and optimisation
settings remained unchanged. The default kernel is linear. Unless otherwise
stated, all results reported are on the linear kernel function. We refer the
reader to section 4.4.2 for further information on the SVM parameter settings.

We compared two term weighting measures to analyse the most effective
method for weighting terms. We compare the number of occurrences of a
term in a document with the frequency of a term in a document (see equation
2.1). In Table 5.1 we see the results of this preliminary experiment. We

CHAPTER 5. RESULTS 95

Table 5.1: Evaluation of different term weighting measures for BOW
Dataset Term Weight Precision Recall Accuracy Fl-measure
Set 1 No. occurrences 87.50% 23.33% 60.00% 36.84
Set 1 Frequency 92.31% 80.00% 86.67% 85.72

observe that frequency is a more effective measure for term weighting with
a Fl-mcasure of 85.72 compared with 36.84 for the number of occurrences
as term weight. Since frequency as term weight is most effective, we will be
using it as means for measuring term weight in the next experiments. Table
5.2 outlines the results of the classifier when BOW is used as a representation.
We have tested this representation on datasets of varying sizes. From Table
5.2 and Figure 5.1 we see that, as the the size of the training Set increases, so

CHAPTER 5. RESULTS 96

Table 5.2: BOW per orman ce
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 84.00% 84.00% 84.00% 84.00
Set 3 87.84% 86.67% 87.33% 87.25
Set 4 92.55% 87.00% 90.00% 89.69

does recall. High precision is reported for Set 1 and thereafter it takes a slight
dip but the best precision and overall result is seen in Set 4. The accuracy
and F I scores behave similarly - dipping after Set 1 and then improving from
Set 2 to Set 4. In Figure 5.2 the results are more transparent: the classifier
performs best on the largest dataset - Set 4, with a notable improvement in
performance from Set 2 to Set 4. Figure 5.2 gives a clearer indication of the

94.00 i
QO fin _

BOW Precision/Recall

* Sat 4
*
c

yz.uu
on nn - Set 1 \ ^yu.uu
aft nno oo.uu

nn - . - ' - S e t 3H oo.uu
o/i nn - D r

4> OH.UU ■
oo nn - Set 2

o. on nn _oU.UU
7 0 nn -/O.UU 1 1 1 1

80 00 84 00 R ecaJ|% 86.67 87.00

Figure 5.1: BOW: Precision and Recall figures for each dataset

performance of the classifier on the BOW representation for each dataset.
Remember that FI treats precision and recall with equal importance. The
results in Figure 5.2 are similar to Figure 5.1; the classifier performs best on
the largest datasets - Sets 3 and 4.

CHAPTER 5. RESULTS 97

F1-measure scores for BOW

100.00 -r
95.00 -■
90.00 -■

_ 8 5 .0 0 --
g 80.00 --
g 75.00
r 70.00 -■

65.00 --
60.00 -■
55.00 -■
50.00 - ■

Set 1 Set 2 Set 3 Set 4

Datasete

♦ — F1 -measure

Figure 5.2: BOW: Fl-measure scores

5.2 Bigrams
In section 4.4.1 we discussed the steps that must be taken in order to trans­
form the data into an appropriate format for training.

Table 5.3: Comparison of a term weighting measure on BOW and bigrams
on Set 1_______ ________________ _________ ________ ________________Representation Term Weight Precision Recall Accuracy FI

BOW No. occurrences 87.50% 23.33% 60.00% 36.84
Bigram No. occurrences 66.67% 40.00% 60.00% 50.00

In a preliminary experiment (see Table 5.3) using the number of occur­
rences as term weight, we compared the BOW and bigram representations
on the smallest dataset, Set 1. From this initial experiment we see that the
BOW gives highest precision while the bigrams gives highest recall. The

CHAPTER 5. RESULTS 98

accuracy on the test set works out the same for each representation but the
Fl-measure figures differ greatly with the bigrams outperforming the BOW.
We will compare and constrast the representations more thoroughly after we
look at the performance of the classifier using the bigram represenation on
the larger datasets.

Table 5.4 reports on the performance of the classifier on each of the
datasets. Bigrams are used as a representation in this experiement. From
Table 5.4 we see that as the training Set increases precision decreases from

rnable 5.4: Bigrams performance
Dataset Precision Recall Accuracy FI
Set 1 100.00% 48.39% 73.77% 65.22
Set 2 95.00% 74.51% 83.00% 83.52
Set 3 93.44% 75.00% 84.77% 83.21
Set 4 94.12% 80.81% 87.94% 86.96

100% in Set 1 to 94.12% in Set 4, rising slightly between Set 3 and Set 4.
Recall on the other hand, increases from as low as 48.39% in Set 1 to as
high as 80.81% in Set 4. As the training Set increases, accuracy increases
steadily from 73.77% to 87.94%. The Fl-measure follows a similar pattern
to precision, dipping after Set 2 and rising again between Set 3 and Set 4.
This pattern is more obvious in Figure 5.3.

If we compare Figures 5.2 and 5.3, representing the F I scores for the BOW
and bigram representations, we notice that the F I scores are higher across
each dataset for BOW than for bigrams. This is more clearly represented in
Figure 5.4.

CHAPTER 5. RESULTS

F1 -measure scores for Bigrams

100.00
95.00
90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00

—

Set 1 Set 2 Set 3 Set 4

■F1-measure

Datasete

Figure 5.3: Bigrams: Fl-measure scores

Figure 5.4: Comparing FI scores for BOW and Bigrams

5.3 Part-of-speech Tags
In section 4.4.1, we discussed the steps that must be taken in order to trans­
form the data into an appropriate format for training.

We trained the classifier using POS as a representation with frequency
as term weight. Table 5.5 reports on the performance of the classifier when
POS is used as a representation. We see that as the training set size increases
precision decreases steadily from 87.10% to 72.58% - i.e. precision is lower

_________ Table 5.5: POS performance_________

CHAPTER 5. RESULTS 100

Dataset Precision Recall Accuracy FI
Set 1 87.10% 90.00% 88.33% 88.53
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 76.67% 92.00% 82.00% 83.64
Set 4 72.58% 90.00% 78.00% 80.36

than what was reported for the BOW and bigram representations. Recall
peaked to 94% on Set 2 and then decreases to 90% for Set 4, outperforming
both the BOW and bigram representations. Both the accuracy and FI scores
consistently decrease as the training Set increases, meaning overall, POS
performs well when the training and test data are small.

5.4 Comparing BOW , Bigram s and POS
In this section we digest and analyse the results which we obtained in our
experiments in sections 5.1, 5.2 and 5.3.

5.4.1 Analysis of Performance in terms of the Fl-m easure
Figure 5.5 illustrates the performance of each of the representations in terms
of the Fl-measure, an evaluative measure which treats both precision and
recall equally. From Figure 5.5 we see that, overall, the BOW representation
outperforms the other two. POS performs better than any other representa­
tion for Set 1 but we must remember that this is the smallest dataset and so
the data on which the classifier is tested is much smaller than the test data
in Set 4, the largest of the training data.

CHAPTER 5. RESULTS 101

Comparison of F1 for BOW, Bigrams and POS

Datasets

Figure 5.5: Comparison of Fl-measure for BOW, Bigrams and POS

5.4.2 Analysis of Performance in terms of Precision
So far we have been using the Fl-measure to evaluate the performance of the
classifier for each of the representations. Since this measure assumes precision

CHAPTER 5. RESULTS 102

and recall should be treated equally, the merits of each of the representation
are not altogether clear. We want a classifier that assigns documents to cor­
rect categories (precision) as well as a classifier with a high degree of coverage
(recall). In IR, there is usually some degree of trade-off between precision
and recall - low recall is usually sacrified for high precision. However, the
best classification system will have both high recall and high precision and
for this reason we will analyse each representation separately in terms of pre­
cision and recall. This will allow us to see more clearly the advantages and
disadvanatages of each of the representations.

Comparison of Precision for BOW, Bigram and
POS

BOW

Bigram

POS

Datasete

Figure 5.6: Comparison of Precision for BOW, Bigrams and POS

Figure 5.6 illustrates the precision scores for each of BOW, bigrams and
POS. Although the bigram representation decreases as the training set in­
creases, it outperforms BOW and POS. BOW precision takes a slight dip for
Set 2 but then steadily increases to 92.55%, slightly below bigram precision

CHAPTER 5. RESULTS 103

at 94.12%.

5.4.3 Analysis o f Performance in term s of Recall
Figure 5.7 allows us to easily identify that the POS representation gives
highest recall overall. Though recall dips slightly from Set 2 to Set 4 for the

Comparison of Recall for BOW, Bigrams and POS

95.00

85.00

S. 65.00

45.00

/

BOW

Bigram

POS

Set 1 Set 2 Set 3

Datasets

Set 4

Figure 5.7: Comparison of Recall for BOW, Bigrams and POS

POS representation, it still outperforms the BOW and higrams. BOW, on
the other hand, improves steadily aa the training set increases reaching 87%,
3% less than that achieved for the POS representation on Set 4.

CHAPTER 5. RESULTS 104

5.5 Tuning SVM Param eters
Parameter settings have been experimented with within the SVM and studies
have shown that the default settings are the most effective. Joachims [1998b]
points out that “SVMs do not require any parameter tuning, since they can
find good parameter settings automatically” .

In these next experiments we analyse the effect of changing the kernel
options on classification performance. Experiments prior to this section used
the linear kernel function. Here, we look at polynomial, sigmoid tanh and
the radial basis function as kernel functions.

5.5.1 Polynomial as a Kernel Function
BOW
Table 5.6 reports on the performance of the classifier on the BOW representa­
tion when the polynomial kernel function is used. The results follow a similar
pattern to those reported in the previous section in Table 5.2 where the linear
kernel function is used. However, the performance improved slightly for the
polynomial kernel - though the results achieved on Set 1 are the same for

Tab e 5.6: BOW performance using the polynomial kernel
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 85.71% 84.00% 85.00% 84.85
Set 3 87.84% 86.67% 87.33% 87.25
Set 4 92.78% 90.00% 91.50% 91.37

both the polynomial and linear kernel functions, improved precision, recall,

CHAPTER 5. RESULTS 105

accuracy and FI scores were recorded for Sets 2, 3 and 4.

Bigrams
Table 5.7 presents the performance scores for the bigram representation using
polynomial as a kernel function. When we compare this table to Table 5.4,
where the linear kernel function is used, we see that precision deteriorates
significantly for Set 1. We see an increase for Sets 2 and 3 to the same as was
reported for the linear kernel function in Table 5.4, with a slight improvement

Tab: e 5.7: Bigram performance usin ; the polynomial kernel
Dataset Precision Recall Accuracy F I
Set 1 50.82% 100.00% 50.82% 67.39
Set 2 95.00% 74.51% 85.15% 83.52
Set 3 93.44% 75.00% 84.77% 83.21
Set 4 94.20% 65.66% 80.90% 77.38

in precision for Set 4. Recall improves significantly for Set 1. Again exactly
the same figures are reported for Sets 2 and 3 as were reported in Table 5.4.
Recall dipped again for Set 4. This dramatic difference between precision
and recall for Set 1 when the linear and polynomial kernels are used may be
due to the small size of the dataset. Overall, these figures lead to a higher
FI score for Set 4, lower for Set 1 and the same for Sets 2 and 3. Overall,
the polynomial function does not improve the performance of the classifier
for the bigram representation.

CHAPTERS. RESULTS 106

POS
Table 5.8 shows the results of the polynomial kernel function on the POS
representation. We compare these results with those obtained for the linear
function in Table 5.5 and note an improvement in precision for all datasets.

Table 5.8: POS performance using the polynomial kernel
Dataset Precision Recall Accuracy FI
Set 1 93.10% 90.00% 91.67% 91.52
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 77.53% 92.00% 82.67% 84.15
Set 4 73.17% 90.00% 78.50% 80.72

Recall remains the same. Both accuracy and the Fl-measure improve because
of the improved precision. Therefore, we conclude that the polynomial kernel
function outperforms the linear for the POS representation.

Comparing BOW , Bigrams, POS
In Figure 5.8 we see a similar pattern to that in Figure 5.5. Although POS
performs best for Set 1 (as we also saw in Figure 5.5), BOW outperforms
both bigrams and POS for Sets 2 to 4. The Fl-measure treats precision
and recall with equal importance and so this evaluative measure tells us that
overall the POS representation performs better than both the bigrams and
POS.

In Figure 5.9 we see a pattern not dissimilar to that in Figure 5.6 -
however Set 1 suffers greatly, with a significant drop in precision. This could
however be due to the rather small number of documents in the dataset.
Precision quickly increases thereafter and outperforms the BOW and POS

CHAPTER 5. RESULTS 107

F1 for BOW, Bigrams, POS using Polynomial as
Kernel

BOW

Bigram
POS

Datasete

Figure 5.8: Comparison of Fl-measure for BOW, Bigrams and POS using
Polynomial Kernel Function

Precision for BOW, Bigrams, POS using
Polynomial as a Kernel

•BOW

Bigram

POS

Datasefc

Figure 5.9: Comparison of Precision for BOW, Bigrams and POS using Poly­
nomial Kernel Function

CHAPTER 5. RESULTS 108

representation for Sets 2 to 4. Precision remains the same as the linear for
Sets 2 and 3 and slightly rises for Set 4. We conclude again that of the three
representations, bigrams leads to the best precision, though the figures were
more consistent for the linear function.

Figure 5.10: Comparison of Recall for BOW, Bigrarns and POS using Poly­
nomial Kernel Function

In Figure 5.10, again we see a pattern not unlike that in Figure 5.7.
Bigrams perform best for Set 1 but POS then outperforms BOW and bigrams
for Sets 2, 3 and 4. The recall figures for POS remain the same for the
polynomial as those reported for the linear kernel function in Figure 5.7.

CHAPTER 5. RESULTS 109

5.5.2 Sigmoid tanh as a Kernel Function
BOW
Table 5.9 represents the results of the BOW representation when sigmoid
tanh is used as a kernel function. The results follow a similar trend to those
obtained for both the linear and polynomial kernel functions. However, the
scores diminish slightly compared to those obtained for the linear kernel
function - precision drops by between about .33% and 1% for Sets 2 and 4
and recall drops by 2% for Set 2. The other scores remain the same. The
polynomial kernel function outperforms sigmoid tanh as well. Therefore, we

Table 5.9: BOW performance using the sigmoic
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 83.67% 82.00% 83.00% 82.83
Set 3 87.84% 86.67% 87.33% 87.25
Set 4 91.58% 87.00% 89.50% 89.23

tanh kernel

conclude that the sigmoid tanh kernel function does not result in improved
performance.

Bigrams
Table 5.10 displays the results of the bigram representation when sigmoid
tanh is used as a kernel function. When we compare the results with the
linear kernel, we see that the sigmoid tanh kernel function improves precision
for Set 4 and improves recall for Sets 1 and 4. Compared to the polynomial,
sigmoid tanh results in improved precision for Sets 1 and 4, while recall takes

CHAPTER 5. RESULTS 110

a dip for Set 1, it improves signifiantly for Set 4. As already mentioned, the
dramatic difference in performance for Set 1 may be due to size. Overall, we

Dataset Precision Recall Accuracy FI
Set 1 100.00% 67.74% 83.61% 80.77
Set 2 95.00% 74.51% 85.15% 83.52
Set 3 93.44% 75.00% 84.77% 83.21
Set 4 94.32% 83.84% 89.45% 88.77

see improved accuracy and Fl-measures and can therefore conclude that the
sigmoid tanh kernel function performs better than both the polynomial and
linear kernel functions.

POS
Prom Table 5.11 we see the results of the sigmoid tanh kernel function on
the POS representation. Performance diminishes compared to the results
obtained for both the linear and polynomial kernel functions. Precision on
Sets 3 and 4 drop and recall on Set 4 drops compared to those achieved using
the linear kernel. When compared to the polynomial we also see a drop in

Table 5.11: POS performance using the sigmoid tanh kernel
Dataset Precision Recall Accuracy FI
Set 1 87.10% 90.00% 88.33% 88.53
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 77.53% 92.00% 82.67% 84.15
Set 4 72.36% 89.00% 77.50% 79.82

precision for Sets 1 and 4 and in recall for Set 4. This in turn leads to a

CHAPTER 5. RESULTS 111

decline in accuracy and FI-measures. The sigmoid tanh kernel function does
not improve the performance of the classifier for the POS representation.

Comparing BOW , Bigrams, POS
From Figure 5.11 we see that overall the BOW outperforms the other repre­
sentations. Similar findings were reported in Figures 5.5 and 5.8 where it was

F1 for BOW, Bigrams and POS using Sigmoid
tanh as Kernel

-♦— BOW

Bigram

POS

Datasete

Figure 5.11: Comparison of F I for BOW, Bigrams and POS using Sigmoid
tanh Kernel Function

found that POS performed best for Set 1, all three representations performed
equally well for Set 2 and from there the BOW improved, outperforming the
bigrams and POS by between 5 — 10%.

Figure 5.12 shows the precision figures for each of BOW, bigram and POS
representations, using the sigmoid tanh as a kernel function. In Figure 5.12
we see that bigrams give the highest precision, and BOW and POS gives the

CHAPTER 5. RESULTS 112

lowest. The same pattern is reported when the linear and polynomial kernel
functions are used. For bigrams, precision declines from Set 1 to 3 and then
rises for Set 4 for both the linear and sigmoid tanh kernels with sigmoid tanh

Precision for BOW, Bigram and POS using
Sigmoid tanh as Kernel

BOW

Bigram
POS

Dataseb

Figure 5.12: Comparison of Precision for BOW, Bigrams and POS using
Sigmoid tanh Kernel Function

giving slightly higher precision for Set 4. Our findings thus far show that
bigrams give the highest precision.

Figure 5.13 shows the recall figures for each of BOW, bigram and POS
representation using the sigmoid tanh as a kernel function. In Figure 5.13
we see that the POS representation gives a higher recall than both the BOW
and POS representations, outperforming both by between about 5 — 23% for
Sets 1 to 3. BOW recall improves greatly for Set 4 reaching 87% but does
not outperform POS at 89%.

CHAPTER 5. RESULTS 113

Recall for BOW, Bigrams, POW

Da tásete

♦ -B O W

Bigram
POS

Figure 5.13: Comparison of Recall for BOW, Bigrarns and POS using Sigmoid
tanh Kernel Function

5.5.3 Radial Basis Function as a Kernel Function
BOW
Table 5.12 displays the results of using the radial basis function (RBF) as a
kernel function on the BOW representation. By comparing Table 5.12 with
Tables 5.2, 5.6 and 5.9 we see that although the RBF kernel gives better

Table 5.12: BOW performance using the radial basis unction as a kernel
Dataset Precision Recall Accuracy FI
Set 1 92.31% 80.00% 86.67% 85.72
Set 2 85.71% 84.00% 85.00% 84.85
Set 3 86.67% 86.67% 86.67% 86.67
Set 4 92.78% 90.00% 91.50% 91.37

CHAPTER 5. RESULTS 114

results for precision than the linear and sigmoid tanh kernels, it does not
perform as well as the polynomial. The recall scores for RBF are on a par
with the polynomial figures. Therefore, we conclude that polynomial gives
the best performance for the BOW representation.

Bigrams
Table 5.13 displays the results of the RBF on the bigram represenatation. By
comparing Table 5.13 with Tables 5.4, 5.7 and 5.10 we see that the precision
scores are the same as sigmoid tanh and linear for Sets 1 and 2, and less for
Sets 3 and 4. Recall is the same as linear, polynomial and sigmoid tanh for

Table 5.13: Bigram performance using the radial basis function as a kernel
Dataset Precision Recall Accuracy FI
Set 1 100.00% 67.74% 83.61% 80.77
Set 2 95.00% 74.51% 85.15% 83.52
Set 3 91.94% 75.00% 84.11% 82.61
Set 4 93.10% 81.82% 87.94% 87.10

Sets 2 and 3. Although it is better than the linear and polynomial for Set 4,
it does not reach the performance of sigmoid tanh - 83.84% on Set 4. Overall
the sigmoid tanh produces the best FI scores for the bigram representation.

POS
Table 5.14 represents the results of using the RBF as a kernel function on
the POS representation. When we compare Table 5.14 to Tables 5.5, 5.8 and
5.11, we see that the precision scores on Sets 1 to 3 for RBF are equal to
those obtained using the polynomial kernel function. Precision on Set 4 drops

CHAPTER 5. RESULTS 115

Table 5.14: POS per ormance using the radial basis function as a kernel
Dataset Precision Recall Accuracy FI
Set 1 93.10% 90.00% 91.67% 91.52
Set 2 75.81% 94.00% 82.00% 83.93
Set 3 77.53% 92.00% 82.67% 84.15
Set 4 72.58% 90.00% 78.00% 80.36

to 72.58% with the polynomial producing the best precision (73.17%). The
recall for Sets 1-4 are the same for the linear, polynomial and RBF kernel
functions. Overall, the polynomial kernel function gives the best performance
for the POS representation.

Comparing BOW , Bigrams and POS
Figure 5.14 illustrates a comparison of the F I scores for the BOW, bigram
and POS representations on each dataset when the RBF is used as a kernel
function. We see a similar pattern to Figures 5.5, 5.8 and 5.11 in that overall
the BOW proves to the most effective representation for the classification of
racist texts.

The next two figures take a closer look at the strong points of each of
the representations by examining which give the highest precision and recall.
Figure 5.15 represents the precision scores of each representation on each
dataset using the RBF as a kernel function. Again, as in Figures 5.6, 5.9 and
5.12, we see the bigram representation gives the highest precision, though for
Set 4 the BOW is just .33% behind the bigrams.

Figure 5.16 represents the recall scores of the each representations for each
dataset using the RBF as a kernel function. As in Figures 5.7, 5.10 and 5.13,

CHAPTERS. RESULTS 116

F1 for BOW, Bigram and POS using Radial Basis
Function as a Kernel

■BOW

Bigram

POS

Datasete

Figure 5.14: Comparison of F I for BOW, Bigrams and POS using Radial
Basis Function as a Kernel

Figure 5.15: Comparison of Precision for BOW, Bigrams and POS using
Radial Basis Function as a Kernel

CHAPTER 5. RESULTS 117

we see that the POS representation gives the highest recall overall, though for
Set 4 the BOW and bigrams are level with a recall of 90%. POS performance
declines from Set 2 to Set 4 whereas BOW recall increases consistently from
Set 1 to 4.

Recall for BOW, Bigrams and POS using Radial
Basis Function as a Kernel

■BOW

■ Bigram

POS

Datasete

Figure 5.16: Comparison of Recall for BOW, Bigrams and POS using Radial
Basis Function as a Kernel

5.6 Summary
In this chapter we looked at three representations of the data within the SVM
- bag-of-words, bigrams and part-of-speech. We have analysed each of these
representations in terms of precision, recall, accuracy and Fl-measure, identi­
fying the pros and cons of each approach and the most effective representation
overall. We also analysed the effect of using different kernel functions within

the SVM - lineai-, polynomial, sigmoid tanh and radial basis function. Each
kernel was tested on each representation, thereby enabling us to identify the
most effective kernel for each representation. The results obtained in this
chapter will be scrutinised and analysed in more detail in the next chapter.

CHAPTERS. RESULTS 118

Chapter 6
Conclusion

6.1 Overview
Since the advent of the Internet in the early 90s and the consequent intro­
duction of HTML, there has been a surge in the availability of documents
in electronic format. Information which was previously published in news­
papers, magazines, billboards, journals, newsletters, flyers or as graffiti on
walls is now easily distributed on the Internet. HTML is a language used for
publishing documents on the Internet and the relative ease with which it can
be learned and used makes it accessible to people from all spheres of life and
all technical competencies. The nature of the Internet means that documents
can be posted anonymously, allowing authors with politically incorrect views
or opinions largely unfavourable to the general public to remain, to a large
extent, unknown to the general user of the Internet. In the past, such people,
being largely a minority, would have found it difficult to express their views
publicly and freely and would also have had difficulty in meeting others with

119

CHAPTER 6. CONCLUSION 120

similar viewpoints. The Internet now presents them with a means of inter­
action, and has enabled such people to congregate and form communities
online and to organise themselves to a greater extent. The nature of the
Internet as a relatively anonymous and globally available medium, makes it
a very attractive means of distributing information. For these reasons, it is a
valuable asset to groups whose activities have remained largely underground
until now.

In this thesis we have looked at the application of automatic text cate­
gorisation for the problem of racism on the Internet. Racism on the Internet
is widespread, but especially prominent in the USA due to the First Amend­
ment - the right to freedom of speech. Common targets of racism include
Jewish people, people of African descent, refugees and immigrants. How­
ever, since September 11th we have seen more racism towards Muslims and
Arabs in Western countries and a growth in racism towards white people
from countries like the UK and USA. World events, politics, war and current
affairs, all influence the targets of racism, which in turn influence content on
the Internet. The Internet is growing all the time with websites being edited
or added every day The dataset used in this thesis was collected between
February and September 2002 and recent investigations have shown it to be
already out of date. Automatic techniques have proven successful for a wide
range of classification problems such as news story categorisation, categori­
sation of documents into Yahoo!-like directory structures or categorisation
of classified adverts. Automatic methods make it possible for classifiers to
be updated with relative ease in comparison to the manual approach to clas­
sification. Given the demands in consistently protecting the younger, more

CHAPTER 6. CONCLUSION 121

impressionable users of a constantly changing Internet, it is a classification
problem that would benefit from automatic categorisation techniques.

Detecting racism is unlike other topic-based problems (e.g. news story
categorisation) that have been successfully dealt with using automatic tech­
niques. If we were to filter news stories into catgories such as sport, pol­
itics or finance, we might imagine that words such as football, score,
aggregate, foul and off-side would be typical of sports while ISEQ,
trading, merger and index, on the other hand, would be associated with
finance. Detecting racism is not solely dependent on the presence or ab­
sence of key words or terms, as such words can appear in potentially any
text type - racist, anti-racist, political, or otherwise. We again refer the
reader to Figures 4.1 and 4.2 for an example of a racist and a non-racist text
which contain the same words. In our search for racist documents during the
corpus collection phase of the PRINCIP project, we encountered documents
about breeding horses through the search terms overbreeding + race and
the webpage of a limousine service using the search terms white knight1

- so collocations or co-occurrences of what seem to be racist terms do not
always yield racist webpages.

To date, the problem of detecting racism has not been dealt with using
automatic text categorisation methods. With the exception of the PRINCIP
project,2 classification has been mostly manual, with offensive pages being
labelled as such and then being added to a block list for use in filtering
software. In this thesis we have used Support Vector Machines for the con­
struction of a classifier to handle the categorisation of racism on the net.

1Note: white knights is a term used to refer to the Ku Klux Klan in the USA
2http: / / www.princip.net

http://www.princip.net

CHAPTER 6. CONCLUSION 122

In section 4.3.1 we reported on how we gathered the racist and non-racist
datasets. Any kind of automatic classifier needs a training set, which in our
case is used to train the machine to identify racism. We are faced with a
choice of how to represent each page to be classified. In this concluding chap­
ter, we look at each representation used within the Support Vector Machine.
We summarise and analyse the results obtained using these representations
(cf. ?? for further information on building the representations), and we high­
light the advantages and disadvantages of each representation. We look at
the machine learning method used and explain why we used this method
above others. We also identify future experiments that should be considered
in this area.

6.2 W hich Representation?
Prom the experiments conducted and reported in the last chapter we see
that the bigram representation gives the highest precision and POS gives
the highest recall. Using the Fl-measure to evaluate the system, it is clear
from Tables 5.5, 5.8, 5.11 and 5.14 that the BOW representation is the most
effective of the three.

For each of the kernel functions tested, we noticed a similar pattern be­
tween the performance of the BOW and bigram representations - precision
dropped between Sets 1 and 2 for BOW and Sets 1 to 3 for bigrams and then
rose again from Set 2 to 4 for BOW and Sets 3 to 4 for bigrams. A larger
dataset might actually see the BOW outperforming the bigram representa­
tion.

CHAPTER 6. CONCLUSION 123

When we used the polynomial as a kernel function, the same recall was
reported for the BOW and POS representations on Set 4, the largest dataset.
In our experiments, we found that as the dataset increased, recall consistently
reduced for the POS representation, whereas it increased consistently for
the BOW representation (see Tables 5.7, 5.10, 5.13 and 5.16). It would be
interesting to see how each representation would perform on a larger dataset
and if the BOW would in fact outperform the POS.

From these experiments, we learned that the BOW is the most effective
representation, giving us precision and recall scores almost on a par with the
high scores that the bigrams achieved for precision and the POS achieved for
recall.

6.3 W hich Classification Tool?
There are many machine learning methods that can be used to build a clas­
sifier - Neural Networks, Naïve Bayes, Decision Trees, Rocchio, etc. These
methods were introduced in chapter 3. For reasons outlined in section 3.3.10,
we decided to use Support Vector Machines, a machine learning method intro­
duced by Vapnik Vapnik [1995] and implemented by Joachims in S V M hght.
SVMs are a newer learning method that “since its introduction has already
outperformed most other systems in a wide variety of applications” Cristian-
ini and Shawe-Taylor [2000]. SVMs are capable of overcoming many issues
which pose problems for other machine learning methods - they are efficient
even when dealing with very large datasets with many thousands of fea­
tures. Therefore, feature selection and extraction do not have to be applied,

CHAPTER 6. CONCLUSION 124

as SVMs are capable of finding good solutions in high dimensional spaces.
Evaluation is also efficient, making the classifier fast at classifying unseen
input.

In training, parameters inside the SVM are easily accessible, meaning the
internal structure of the SVM and how the SVM learns can be tweaked to
find the optimal solution for the problem at hand. In our work, we analysed
the impact of changing the kernel function (we refer the reader to section
3.4.5 for further information on kernel functions) - see section 6.4 below for
a summary of the impact of experimenting with kernels.

6.4 W hich Kernel?
We evaluated each of the kernel functions in the SVM and of the linear,
polynomial, sigmoid tanh and radial basis function, we found the polynomial
to give the best scores for the BOW representation, the sigmoid tanh proved
most effective for the bigram representation while the polynomial resulted in
the best performance for the POS representation.

Using the polynomial as a kernel function resulted in the same recall being
achieved on Set 4 for the BOW and POS representations.

We learned that the default linear kernel did not prove to be the most
effective for this classification problem. Polynomial performed best for BOW
and POS and sigmoid tanh proved best for bigrams.

CHAPTER 6 . CONCLUSION 125

6.5 Future Work, Criticism s and Conclusions
We have shown that it is possible to construct an automatic text categori­
sation system capable of detecting racism on the web. We have shown that,
the BOW representation has proven to be the most effective representation
and the best performance is achieved when the polynomial kernel function
is used. The BOW approach has similarly proven to be the most effective
and efficient representation for many classification problems (Smeaton [1997]
and Lewis [1992]). Until now, TC techniques have been applied largely to
topic-based problems such as news story categorisation - problems which are
typically reliant on keywords to separate classes. So it is surprising to see
that the same representation which works well for topic-based problems also
appears to work best for the detection of racism, a classification problem
which is largely related to attitude or opinion detection, something which is
orthogonal to the topic. Finn et al. [2002] and Finn and Kushmerick [2002]
reported similar findings for subjectivity classification - a problem also re­
lated to opinion. Like us, they found the BOWs approach to perform best.
Our results seem a little unusual, as we have shown that racist words and
phrases can appear in racist and non-racist texts and, from the outset, we
envisaged that an approach based on keywords alone would not be enough
to discriminate between racist and non-racist texts. However, our results
suggest otherwise. While the BOW performed best overall, the bigram rep­
resentation resulted in the best precision. This is to be expected, as the
bigram representation conveys context and some notion of sense. Though
the same words very often appear in both racist and non-racist texts, the
company they keep, or the context in which they are appear has to be radi­

CHAPTER 6. CONCLUSION 126

cally different for a text to be considered racist. For instance, our search using
overbreeding + race retrieved texts on breeding horses as well as texts on
African-Americans overbreeding in the suburbs of big cities in the USA -
a typical bigram in the former document might be overbreeding horses,
while in the latter we might expect to find overbreeding niggers. Both
bigrams are very discriminating and would be far more accurate than just
overbreeding and niggers. Though the bigram representation resulted in
the best precision, recall suffered and overall the BOW proved most effective.

There is a lot of scope for future work in this area. We have used just
one machine learning method - Support Vector Machines - to build the
classifier because it “has already outperformed most other systems in a wide
variety of applications” Cristianini and Shawe-Taylor [2000]. However, many
of the other methods that we talked about in chapter 3 could be tried for
this problem. The Naïve Bayes probabilistic method, which is renowned for
its ease of implementation and surprising effectiveness would certainly be
one to try, in spite of its simplicity. However, as with the other machine
learning methods, the Naïve Bayes requires some element of dimensionality
reduction in order to reduce the size of the feature set, otherwise overfitting
would cause problems. SVMs on the other hand are capable of coping with
high dimensional feature spaces and therefore overfitting does not impose
on learning effectiveness, thereby making it the most appropriate choice of
classifier.

In building any classification system, evaluation is of the utmost impor­
tance. The system must be tested thoroughly and extensively. Unfortu­
nately, we were restricted to a limited dataset that was constructed between

CHAPTER 6. CONCLUSION 127

February and September 2002. The targets of racism have already changed
since that time due to world events - for instance the war in Iraq. Further
experiments on the current web would tell us more about the classification
system.

This system was built without performing stop-word removal or stem­
ming. These are typically performed in order to remove redundant informa­
tion, reduce variance among features (for instance to have rac in place of
race, races, racist, racism, racial, racists), to reduce the size of
the feature set so as to avoid overfitting and make the classifier computation­
ally inexpensive and more efficient. Large feature sets can lead to overfitting
which impacts on the performance of the classifier. However, SVMs are ca­
pable of dealing with many features and capable of generalising well in high
dimensional spaces - so it is not necessary to perform stop-word removal or
stemming . Also, because of the nature of racism and the use of features of
language that are present in potentially any discourse, we avoided such pre­
processing tasks in these experiments. Nonetheless, interesting future work
would be to see if such pre-processing steps would have an impact on the
classification system. Lemmatisation has also proven to “yield a significant
improvement in recall” in some experiments Kraaij and Pohlmann [1996] -
since the bigram representation proved to give the highest recall overall, it
would be interesting to see if the use of lemmas in this representation would
influence recall.

In our experiments we compared the number of occurrences and frequency
as term weights and found frequency to perform best. Further experiments
could be conducted using more sophisticated term weighting measures, such

CHAPTER 6. CONCLUSION 128

as TF*IDF.
During the PRINCIP project we identified what we call ‘rules’, which are

essentially features that characterise web-based racist discourse. These rules
were collected through manual linguistic investigations of the datasets and
are fed to the PRINCIP system to allow for the detection of racist webpages.
Another interesting study would be to use these rules as features in the SVM
in place of the BOW, bigrams or POS representations, thereby allowing us
to analyse a combinatory approach - the use of handmade linguistic rules
with a machine learning method.

There are many ways that POS tags can be used in categorisation. One
relevant paper in the literature was that of Musuyama and Nakagawa [2004]
who tried to improve the performance of classifiers using POS tags by ex­
tracting combinations of POS tags - for instance all nouns, verbs, adjectives
and adverbs were extracted and these words were used to train the classifier.
Since these parts-of-speech are largely content words and contain most of
the information, they may prove useful in discriminating between racist and
non-racist texts.

From chapter 5 we learned that POS achieved the best recall and bigrams
achieved the best precision. One obvious experiment would be to combine
POS and bigrams to see if we can achieve both high recall and high precision.
As previously mentioned BOW achieved the same recall on Set 4 as bigrams
when the polynomial kernel function was used - so it would also be interesting
to combine POS and BOW.

Bibliography
C. Apte, F. Damerau, and S.M. Weiss. Automated learning of decision rules

for text categorization. Information Systems, 12(3):233-251, 1994.

C.J.C. Burges. Simplified support vector decisions, in the Proceedings of the
13th International Conference on Machine Learning, pages 71-77, Bari,
Italy, 1996.

C.J.C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121—167, 1998.

K.M.A. Chai, H.T. Ng, and H.L. Chieu. Bayesian online classifiers for text
classification and filtering. In the Proceedings of the 25th Annual Interna­
tional ACM SIGIR Conference on Research and Development in Informa­
tion Retrieval, pages 97-104, Tampere, Finland, 2002.

R. Chandrasekar and B. Srinivas. Using syntactic information in document
filtering: A comparative study of part-of-speech tagging and supertagging.
In the Proceedings of the 5th RIAO Conference on Computer-Assisted In­
formation Searching on the Internet, Montreal, Canada, 1997.

W.W. Cohen. Fast effective rule induction. In the Proceedings of the 12th In-

129

BIBLIOGRAPHY 130

temational Conference on Machine Learning, pages 115-123, Tahoe City,
California, USA, 1995.

W.W. Cohen and Y. Singer. Context-sensitive learning methods for text
categorization. In the Proceedings of the 19th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
307-315, Zürich, Switzerland, 1996.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 1995.

N. Cristianini and J. Shawe-Taylor. Support Vector Machines and other
kernel-based learning methods. Cambridge University Press, 2000.

H. de Kroon, T. Mitchell, and E. Kerckhoffs. Improving learning accuracy in
information filtering. In the Proceedings of the 13th International Confer­
ence on Machine Learning, Workshop on Machine Learning Meets HCI,
Bari, Italy, 1996.

S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A.
Harshman. Indexing by latent semantic analysis. Journal of the American
Society of Information Science, 41(6):391-407, 1990.

T. Van Dijk. Communicating Racism. Ethnic Prejudice in Thought and Talk.
Newbury Park, CA Sage, 1987.

H. Drucker, B. Shaharary, and D.C. Gibbon. Relevance feedback using sup­
port vector machines. In the Proceedings of the 18th International Confer­
ence on Machine Learning, The Berkshires, Massachusetts, USA, 2001.

BIBLIOGRAPHY 131

S.T. Dumais, D.D. Lewis, and F. Sebastiani. Report on the workshop on
operational text classification systems. In the Proceedings of the 25th An­
nual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Tampere, Finland, 2002.

S.T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning
algorithms and representations for text categorization. In the Proceedings
of the 7th ACM International Conference on Information and Knowledge
Management, pages 148-155, Washington, USA, 1998.

J. Allan (Editor), J.Aslam, N.Belkin, C. Buckley, J. Callan, B. Croft (Ed­
itor), S. Dumais, N. Fuhr, D.J. Harper, D. Hiemstra, W.Kraaij, D. Har­
man, E. Hovy, D. Lewis, T. Hofmann, J. Lafferty, V. Lavrenko, L. Liddy,
A. McCallum, R. Manmatha, J. Ponte, J. Prager, D. Radev, P. Resnik,
S. Robertson, R. Rosenfeld, S. Roukos, M. Sanderson, R. Schwartz,
A. Singhal, A. Smeaton, H. Turtle, R. Weischedel, E. Voorhees, J. Xu,
and C. Zhai. Challenges in information retrieval and language modelling.
In Report of a Workshop held at the Center for Intelligent Information
Retrieval, University of Massachusetts Amherst, USA, 2002.

ePrivacy Group. http://www.eprivacygroup.com/
pdfs/spambythenumbers.pdf, 2003. Last visited 30th April 2004.

A. Finn and N. Kushmerick. Learning to classify documents according to
genre. In IJCAI-2003 Workshop on Computational Approaches to Text
Style and Synthesis, Acapulco, Mexico, 2002.

A. Finn, N. Kushmerick, and B. Smyth. Genre classification and domain

http://www.eprivacygroup.com/

BIBLIOGRAPHY 132

transfer for information filtering. In the Proceedings of the European Col-
loqium on Information Retrieval Research, Glasgow, Scotland, 2002.

D. Freitag. Using grammatical inference to improve precision in information
extraction. In Workshop on Grammatical Inference, Automata Induction,
and Language Acquisition, in the Proceedings of the 1 4 th International
Conference on Machine Learning, Nashville, Tennessee, USA, 1997.

F. Fukumoto and Y. Suzuki. Manipulating large corpora for text catego­
rization. In the Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 196-203, University of Pennsylvania,
Philadelphia, USA, 2002.

J. Furnkranz. A study using n-gram features for text categorization. Techni­
cal Report OEFAI-TR-9830, Austrian Institute for Artificial Intelligence,
1998.

J. Fiirnkranz, T. Mitchell, and E. Riloff. A case study in using linguistic
phrases for text categorization on the www, 1998. Working Notes of the
AAAI/ICML Workshop on Learning for Text Categorization.

R. Ghani, S. Slattery, and Y. Yang. Hypertext categorization using hyper­
link patterns and meta data. In the Proceedings of the 18th International
Conference on Machine Learning, The Berkshires, Massachusetts, USA,
2001.

M. Gibbon and E. Greevy. The truth about racism. SALIS Seminar Series,
2003.

BIBLIOGRAPHY 133

C. Goller, J. Lôning, T. Will, and W. Wolff. Automatic document classifica­
tion: A thorough evaluation of various methods. IEEE Intelligent Systems,
14(l):75-77, 2000.

E. Greevy and A. F Smeaton. Classifying racist texts using a support vector
machine (poster). In the Proceedings of the 27th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, Sheffield, UK, 2004a.

E. Greevy and A.F. Smeaton. Text categorisation of racist texts using a sup­
port vector machine. In the Proceedings of the 7th International Conference
on the Statistical Analysis of Textual Data / Actes des 7es Journées In­
ternationales d ’Analyse Statisque des Données Textuelles, pages 533-544,
Louvain-la-Neuve, Belgium, 2004b.

B. Grilheres, S. Brunessaux, and P. Leray. Combining classifiers for harmful
document filtering. In Proceedings of the R IA O ’2004 on Coupling Ap­
proaches, Coupling Media and Coupling Languages for Information Re­
trieval, Avignon, France, 2004.

P.J. Hayes, P.M. Andersen, I.B. Nirenburg, and L.M. Schmandt. A shell for
content-based text categorization. In the Proceedings of the 6 th IEEE Con­
ference on Artificial Intelligence for Applications, pages 320-326, Santa
Barbara, California, USA, 1990.

J. Hu, R. Kashi, and G. Wilfong. Comparison and classification of documents
based on layout similarity, 2000.

BIBLIOGRAPHY 134

T. Joachims. Making large-scale support vector machine learning practical.
In Advances in Kernel Methods: Support Vector Machines. MIT Press,
Cambridge, MA, 1998a.

T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In the Proceedings of the 10th European
Conference on Machine Learning, pages 137-142, Chemnitz, Germany,
1998b. Springer Verlag, Heidelberg, Germany.

J.Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. Anthony. A frame­
work for structural risk minimisation. Computational Learing Theory,
pages 68-76, 1996.

F. Kelledy and A.F. Smeaton. Automatic phrase recognition and extraction
from text. In the Proceedings of the 19th Annual BCS-IRSG Colloquium
on Information Retrieval Research, Aberdeen, Scotland, 1997. Furner and
D.J. Harper (Eds.), Springer Electronic Workshops in Computing.

W. Kraaij and R. Pohlmann. Using linguistic knowledge in information re­
trieval, 1996.

R. Krovetz. Viewing morphology as an inference process,. In the Proceedings
of the Sixteenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 191-203, Pennsylvania,
USA, 1993.

H. Lechleiter and E. Greevy. The language of open racism: A corpus linguistic
analysis. In Societas Linguistica Europea Conference, Lyon, France, 2003.

BIBLIOGRAPHY 135

D. D. Lewis. Evaluating text categorization. In the Proceedings of Speech
and Natural Language Workshop, pages 312-318, Pacific Grove, California,
USA, 1991. Morgan Kaufmann.

D. D. Lewis. Evaluating and optimizing autonomous text classification sys­
tems. In the Proceedings of the 18th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages
246-254, Seattle, Washington, USA, 1995.

D.D. Lewis. Feature selection and feature extraction for text categorization.
In the Proceedings of Speech and Natural Language Workshop, pages 212
217, San Mateo, California, USA, 1992. Morgan Kaufmann.

D.D. Lewis and B.W. Croft. Term clustering of syntactic phrases. In the
Proceedings of the 13th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 385-404, Brus­
sels, Belgium, 1990.

D.D. Lewis and M. Ringuette. A comparison of two learning algorithms for
text categorization. In the Proceedings of the 3rd Annual Symposium on
Document Analysis and Information Retrieval, pages 81-93, Las Vegas,
US, 1994.

C. Liao, S. Alpha, and P. Dixon. Feature preparation in text categorization.
In In Proceedings of the Australian Data Mining Workshop, Canberra,
Australia, 2003.

P. Martin. Absolute relatives—the language of online racial identity. In the

Proceedings of the 30th Annual Symposium of the Royal Irish Academy,
Dublin, Ireland, 2003a.

P. Martin. So or also: Racist use of adverbial phrases. In Societas Linguistica
Europea Conference, Lyon, France, 2003b.

D. Mladenic and M. Globelnik. Word sequences as features in text learn­
ing. In the Proceedings of the 17th Electrotechnical and Computer Science
Conference, Ljubljana, Slovenia, 1998.

K.J. Mock and V.R. Vemuri. Information filtering via hill climbing, wordnet
and index patterns. Information Processing and Management, pages 633
644, 1997.

K. Morik, P. Brockhausen, and T. Joachims. Combining statistical learning
with a knowledge-based approach - a case study in intensive care monitor­
ing. In the Proceedings of the 16th International Conference on Machine
Learning, pages 268-277. Morgan Kaufmann, San Francisco, CA, 1999.

K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduc­
tion to kernel-based learning algorithms. IEEE Transactions on Neural
Networks, 12(2):181-201, 2001.

T. Musuyama and H. Nakagawa. Two step pos for svrn based text catego­
rization. Information Processing Technology for Web Utilization, IEICE
Transactions on Information and Systems, pages 15-22, 2004.

PRINCIP Partners. Methodology for constituting suitable corpora, 2002.
URL h ttp ://w w w .p rin c ip .n e t.

BIBLIOGRAPHY 136

http://www.princip.net

BIBLIOGRAPHY 137

J. Pierre. Practical issues for automated categorization of web pages, 2000.

G. Salton and C. Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5):513-523, 1988.

H. Schütze. Automatic word sense discrimination. Computational Linguis­
tics, 24(1):97-124, 1998.

H. Schütze, D. Hull, and J.O. Pedersen. Comparison of classifiers and doc­
ument representations for the routing problem. In the Proceedings of the
15th Annual International ACM SIGIR International Conference on Re­
search and Development in Information Retrieval, pages 229-237, Seattle,
Washington, USA, 1995.

F. Sebastiani. A tutorial on automated text categorisation. In Analia Amandi
and Ricardo Zunino, editors, the Proceedings of the 1st Argentinian Sym­
posium on Artificial Intelligence, pages 7-35, Buenos Aires, Argentina,
1999.

F. Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(l):l-47, 2002. ISSN 0360-0300.

A.F. Smeaton. Information retrieval: Still butting heads with natural lan­
guage processing? In Summer School on Information Extraction, Lecture
Notes in Computer Science, pages 115-138, Berlin, Germany, 1997.

S. Soderland. Learning information extraction rules for semi-structured and
free text. Machine Learning, 34(l-3):233-272, 1999.

BIBLIOGRAPHY 138

H. Sorensen, A. O’Riordan, and C. O’Riordan. Profiling with the INFOrmer
text filtering agent. J.UCS: Journal of Universal Computer Science, 3(8):
988-999, 1997.

C.M. Tan, Y.F. Wang, and C.D. Lee. The use of bigrams to enhance text
categorization. Information Processing Management, 38(4):529-546, 2002.
ISSN 0306-4573.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

J. Wilbur and K. Sirotkin. The automatic identification of stop words. Jour­
nal of Information Science, 18:45- 55, 1995.

R. Wodak and M. Reisigl. Discourse and Discrimination. Rhetorics of racism
and anti-Semitism. Routledge: London and New York, 2001.

Y. Yang. Expert network: Effective and efficient learning from human de­
cisions in text categorization and retrieval, in the Proceedings of the 17th
Annual International ACM SIGIR Conference Research and Development
in Information Retrieval, pages 13-22, Dublin, Ireland, 1994.

Y. Yang. Noise reduction in a statistical approach to text categorization. In
the Proceedings of the 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 256-263,
Seattle, Washington, USA, 1995.

Y. Yang. An evaluation of statistical approaches to text categorization. In­
formation Retrieval, l(l-2):69-90, 1999. ISSN 1386-4564.

BIBLIOGRAPHY 139

Y. Yang. A study on thresholding strategies for text categorization. In the
Proceedings of the 2 4 th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 137-145, New
Orleans, Louisiana, USA, 2001.

Y. Yang and C.G. Chute. An example-based mapping method for text cate­
gorization and retrival. ACM Transactions on Information Systems, pages
252-277, 1994.

Y. Yang and X. Liu. A re-examination of text categorization methods. In the
Proceedings of the 22nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 42-49, Berkley,
California, USA, 1999.

Y. Yang and J.O. Pedersen. A comparative study on feature selection in text
categorisation. In the Proceedings of the 1 4 th International Conference on
Machine Learning, pages 412-420, Nashville, Tennessee, USA, 1997.

Y. Yang and J. Wilbur. Using corpus statistics to remove redundant words in
text categorization. Journal of the American Society Information Science,
1996.

