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Abstract 
 

Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches 

including Support Vector Machine (SVM) techniques have been proposed for spam filter training and 

classification. However, SVM training is a computationally intensive process. This paper presents a 

MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and 

optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM 

reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy 

degradation when distributing the training data among a number of SVM classifiers. Experimental results 

show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original 

sequential counterpart.  
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1. Introduction 

 
The overall email ecosystem has become the most ubiquitous modern day communication tool. 

Its popularity as well as widespread availability have also created an opportunity for a lucrative 

business model based on unsolicited bulk email, or rather spam. The proliferation of spam has 

reached widespread proportions. Spam damages enabling communication infrastructures as well as 

lumbers consumers and service providers in its trail. Such impact and subsequently the importance 

to identify better ways to control and mitigate its consequences are reflected in the attention that 

spam continuously gets from various perspectives.  

Machine learning techniques such as Support Vector Machines (SVMs) have been applied in 

spam filtering [1][2][3][4][5]. SVM training is a computationally intensive process primarily due to 

its convex quadratic programming challenges associated with the dense Hessian Matrix involved 

during optimization. Numerous SVM formulations, solvers and architectures for improving SVM 

performance have been explored and proposed [6][7] including the Message Passing Interface 

(MPI) based parallel approaches [8][9][10]. SVM decomposition is another technique for 

improving SVM training performance [11][12][13]. Less conventional approaches include the 

utilization of specialized processing hardware such as Graphics Processing Units (GPUs) [14][15]. 

A widespread practice is to split the training data and use a number of SVMs to process the 

individual data chunks. This approach typically splits the training data set into a number of smaller 

fragments. This in turn reduces the individual training set and the overall training time. Most forms 

of decomposition which are based on a data splitting strategy approach tend to suffer from issues 

including convergence and accuracy. Challenges related to chunk aliasing, outlier accumulation 

and data imbalance/distribution tend to intensify problems in a parallel SVM context. This in turn 

impacts generalization, accuracy and convergence. Techniques such as random sampling have also 

been shown to exhibit similar accuracy challenges because of the induced probability distribution 
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variance [16]. On the other hand, selective sampling techniques applied to SVMs try to sample the 

training data intelligently to maximize the performance of SVMs. However these normally require 

many scans of the entire data set which incurs high overhead in computation. 

Consequently, the scalability of SVM in dealing with large data sets still remains a challenge. 

Our motivation in this work is to research an efficient parallel SVM algorithm based on the highly 

scalable MapReduce framework [17] for large scale SVM training. SVM training is a global 

optimization problem which typically relies on the entire dataset to infer the final objective 

function. Training an SVM by splitting the input data set and working on the individual sub-sets 

separately may thus reduce the overall accuracy [18]. To this extent, this work also extends our 

previous effort [19][20] by introducing an ontology based feedback scheme to improve overall 

accuracy.  

The parallel SVM is built on the Sequential Minimal Optimization (SMO) algorithm [11] and 

implemented using MapReduce. Compared with MPI, the MapReduce framework is highly 

scalable in processing large data sets and it can handle node failures which are critical for long 

running jobs. In contrast with the sequential SMO algorithm, the parallelized version employs a 

number of separate SVMs using specific file splits which potentially degrades accuracy in 

classification. To minimize performance degradation of the parallel SVM, we augment the base 

training data sets with additional intelligence through an ontology based approach. Ontologies 

enable the re-use of domain knowledge by ensuring formal and unambiguous concept 

representation. We transform the SVM testing sets to a Resource Description Framework (RDF) 

graph representation and identify the misclassified instances using SPARQL [21]. We employ 

Protégé [22] for our prototype and experiments in this context. We re-deploy the augmented 

intelligence to the original training data sets and re-compute the SVM model. Experimental results 

indicate that the ontology based approach improves the overall accuracy of the parallel SVM in 

classification by an average of 4.6 %.  

 The rest of the paper is organized as follows. In Section 2 we briefly discuss some approaches to 

optimizing SVM in spam filtering. We present a short discussion on the application of semantic and 

ontology based concepts for tackling spam.  In Section 3 we describe the design of the MapReduce 

based parallel SMO algorithm. We then employ this baseline for accuracy improvement through 

the application of ontology semantics which is presented in Section 4. Section 5 evaluates the 

performance of the parallel SMO and compares its efficiency with that of an MPI based approach. 

We also evaluate the effect of conventional bagging and boosting techniques on the performance of 

the parallel SVM.  Section 6 concludes the paper and points out some future work. 

 

2. Related Work 

 
Spam filtering takes many shapes and forms, and is continuously evolving [23]. MapReduce is 

employed in a variety of areas ranging from large scale data analysis, search optimization, machine 

learning, forecasting and social media [24]. The application of MapReduce in spam filtering is also 

common within the industry by the likes of Microsoft, Yahoo, Google [25]. To date, MapReduce 

primary application is focused towards data intensive tasks rather than for computation in general. 

However, various efforts to this extent exist as well, including the work presented in [26][17][27].  

SVM based techniques have continuously received increasing attention from the research 

community [2][3][28][29]. The qualities of SVM based classification have been proven remarkable 

[3][30][10][11][15][28]. The accuracy of SVM can be further improved with numerous methods 

such as outlier removal, scaling and parameter optimization selection [30]. A SVM kernel typically 

involves an algorithmic complexity of O (m
2
n), where n is the dimension of the input and m 

represents the number of training elements. Thus, SVM approaches are inclined to be 

computationally intensive. Scalability of SVM approaches in data training remains an open 

question due to the involvement of constrained convex quadratic programming challenges. 

Considerable research has been carried out to this extent to identify ways for performance 
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improvement using varying techniques. Such techniques include optimized SVM kernels, 

decomposition techniques as well as via the application of distributed computing techniques. SVM 

approaches rely on the number of support vectors for classification. Lun et al. [3] try to decrease 

overall training complexity and classifier categorization by reducing the number of support vectors. 

Poulet presents an adapted LSVM formulation for SVM training intended to reduce overall 

complexity [8]. Data chunking, or rather splitting the training data is also applied. This aspect is 

similar in part to the approach adopted in our work. However, reliance on specialized coding 

techniques and supporting libraries, rather than adopting widely available and commodity 

approaches is considered to be a disadvantage. Zanghirati and Zanni [31] propose a decomposition 

technique for increasing performance and scalability. This takes the form of splitting the overall 

SVM quadratic programming challenge into a number of smaller sub-problems. Individual results 

of each separate computation are then subsequently combined. However, the caching strategy of 

the approach heavily influences the levels of re-computation required for SVM convergence. Cao 

et al. [32] present another parallel SVM approach using MPI. A comparable approach is adopted by 

Woodsend and Gondzio [33]. Here optimization is achieved by removing the dense Hessian matrix 

and matrix partitioning for better data locality. Whilst performance improvement can be achieved 

by MPI based parallelization, these approaches tend to suffer from poor scalability when 

heterogeneous computing environments are employed [34][35]. Do et al. [15] present an innovative 

variation by offloading core processing elements to a GPU (graphics processing unit). The 

experimental results show remarkable speed improvement when compared with traditional CPU 

based computation. The application of the GPU is also discussed and featured in the work 

presented in [14]. Here the authors consider a MapReduce based approach exploiting the 

multi-threading capabilities of graphics processors. The results show a decrease in processing time 

requirements in the order of 9 to 35 times. A key challenge with such approaches lies in the 

specialized environments and configuration requirements. Capitalizing natively on the multi-core 

capabilities of modern day processors, Chu et al. [36] evaluate the performance of a number of 

algorithms including a MapReduce based SVM. Dual-core processor design removes most of the 

communication overhead incurred in distributed processing scenarios. The authors argue that this 

approach is more pragmatic for real world applications when compared with specialized 

implementations such as the one presented in [6]in which a cascaded SVM scheme is presented. 

Each training data set is used as input for each SVM instance and an iterative re-training 

(cascading) process is applied. The effectiveness of such an approach relies primarily on the 

number of cascade iterations performed. Where substantial iterations are required, the overall 

effectiveness can be reduced because the time required to combine the respective support vector 

sets cannot be discounted. This issue is also highlighted in [35].  

 The application of ontology and semantics in the context of spam filtering facilitates the 

definition and understanding of spam in a better and more formal way. The ability to exchange 

intelligence and subsequently the potential for machines to process it in a formal and interoperable 

fashion provides numerous opportunities. Annotating email messages with metadata brings 

numerous benefits including augmented intelligence, context richness and formalization. The 

incorporation of domain knowledge can facilitate automated filtering processes as well as increase 

classification accuracy. Kim et al. [37] propose an adaptive ontology for email filtering using a J48 

decision tree based approach. This approach is built on a pre-trained Weka [38] model which is 

subsequently translated into an RDF based ontology representation. Jena is employed for 

generation of the actual ontology from the Weka decision tree model. The ontology representation 

generated by Jena subsequently provides a number of assertions which are employed to classify 

email as spam or ham. Ontological knowledge can also be built by identifying and formalizing the 

relationship between user’s choices as well as how spam is reacted to (i.e. replied to). This 

approach forms the basis behind the work presented in [39] where the authors classify ‘reaction’ to 

email into four broad categories, namely ‘Reply’, ‘Delete’, ‘Store’ and ‘Spam’. On this basis, 

association mining is applied to an initial reference data set using Weka. This approach influences 
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the classification by differentiating by the action performed as well. Balakumar and Vaidehi [40] 

also consider the challenge of spam from a personal dimension – an email which is spam to 

someone may be considered and treated as legitimate by someone else. Here, a combination of 

Bayesian and ontology approach is considered for email classification. The key advantage of the 

proposed approach is the inherent simplicity to integrate with current approaches. The challenge 

however lies where different personalized filters exist for a large user base. Scalability has become 

a challenging prospect where the complexity and size of individual personalized filtering increases 

significantly. Also, concept drift is an acknowledged challenge in model learning tasks [41]. Han et 

al. [42] consider the notion of concept drift in spam filtering for adaptive learning. They argue that 

users may change their opinion with respect to interest and subsequently classification of certain 

mail types. To increase accuracy, the authors analyze end user’s intent with respect to actions 

undertaken. Other approaches for tackling specific types of spam such as that based on images 

which use ontology as an enhancing technique also exist [43][44][45][46][47].  

 

3. Parallelizing SVM with MapReduce 

 
MapReduce is a parallel and distributed programming model in support of data intensive 

applications. Programmatically inspired from functional programming, at its core there are two 

primary features, namely a map and a reduce operation. From a logical perspective, all data is 

treated as a Key (K), Value (V) pair. Multiple mappers and reducers can be employed. At an 

atomic level however a map operation takes a {K1, V1} pair and emits an intermediate list of {K2, 

V2} pairs. A reduce operation takes all values represented by the same key in the intermediate list 

and generates a final list. Whilst the execution of reduce operations cannot start before the 

respective map counterparts are finished, all map and reduce operations run independently in 

parallel. Each map function executes in parallel emitting respective values from associated input. 

Similarly, each reducer processes different keys independently and concurrently. An abstract 

representation of a typical MapReduce framework is illustrated in Fig.1. 

 
 

  
 

Fig.1 : MapReduce framework. 
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 As indicated earlier, SVM training is a computationally intensive machine learning dimension 

for spam classification. In the sequential SMO implementation, most of the computation stems 

from the iterative kernel evaluations to update the optimality condition vector [35] (Eq. 1).  
 

iij

l

j

jj yXXKya -),(∑
1=

 

 

(1) 

 

A typical approach to parallelizing this operation is presented in [14] based on which we 

parallelized SVM with MapReduce. Similar to the work presented in [32], the computation of the 

objective function (Eq.1) in our work is performed as a Map operation in the context of 

MapReduce. However, the parallelization of bias computation in [32] is performed in such a way 

that each optimization iteration requires a Map operation as well as a Reduce operation. This 

approach introduces a substantial network communication overhead due to the large number of 

iterations to be performed. In our approach, a single MapReduce step is employed for each data 

fragment (partition) which reduces the overall computation and network communication overhead 

significantly. 

The implementations of MapReduce include Mars [48], Phoenix [49], Hadoop [50] and Google’s 

implementation [51]. Hadoop’s high performance (for example, during 2008, a 900+ Hadoop 

cluster sorted 1 Terabyte of data in approximately 200 seconds [52][53]), user base and support 

community, flexibility and open source nature were the primary reasons for its adoption within this 

research work. From a MapReduce perspective and in the context of Hadoop, the data splitting 

strategy can be done according to the number of MapReduce tasks that will be employed. Each 

Map task (MAP1…MAPn) will process the associated data chunk (DataChunk1…DataChunkn) and 

generate a respective set of Support Vectors (SV
set

1 … SV
set

n). In this particular scenario, these are 

then forwarded to a single Reducer (REDUCE1) which will contribute the respectively aggregated 

Support Vector Set (SV), weight (w) and bias (b) elements of the global SVM to a final learned 

model. Given that this is a linear SVM model [54], in our prototype, the aggregation of the weight 

(w) and bias (b) elements are performed using a sum and average strategy respectively. In a linear 

SVM, an optimal hyperplane is the one with the maximum margin of separation between the two 

classes, where the margin is the sum of the distances from the hyperplane to the closest data points 

of each of the two classes.  

SVMs have been shown to be adaptable to the Kearns statistical query model and associated 

summation form, and thus fit well into the MapReduce framework [36][55]. Adopting a 

sum/average strategy for establishing the global weight vector and bias is both computationally 

light from an algorithmic perspective and recognized accurate [36]. From a MapReduce 

perspective, this strategy also allows us to perform aggregation via a single Reducer, decreasing 

MapReduce framework overhead. The final output will be used as the final classification model 

including the necessary information for the objective function to be able to classify unseen data. A 

high level pictorial representation of this approach is shown in Fig.2. 
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Fig.2: Aggregation of SVM process. 

 

 Algorithm 1 presents the parallel SMO based on the sequential one described in [11]. The map 

segment of the algorithm is basically the same as the original SMO algorithm except that it is 

applied for each participating mapper. The primary difference lies in the ways that the global b 

threshold (bglobal) and weight vector (wglobal) are computed via the reducer, using an average and 

sum strategy respectively as described in the pseudo code.   
 

 
Algorithm 1: MapReduce based parallel SMO. 

 

 

Alg orithm  2 .  MapReduce SMO Algorithm (linear SVM)   
1.   MAP j   j     {1…data chunk }   
2.   i nput : set of training data x i , corresponding labels y i ,  i     {1… l   }   
3.   o utput : weight vector  w j ,  a j  a rray,  b j  and SV   
4.   i nitialize :  a i   ← 0 

 0 
,  f i   ←   - y i   i     {1… l   }   

5.   c ompute   b high ,  I high ,  b low ,  I low   
6.   u pdate   

a 
I high  and  a I low   

7.   r epeat   
8.     u pdate   f i ,  i     {1… l   }   
9.     c ompute  b high , I high , b low , I low   
10.     u pdate   

a 
I high  and  a I low   

11.   until   b low ≤ b high , + 2 Г   
12.   update   b j   bias term   
13.   store  updated  a j1   and   a j2   
14.   update   w j   
15.   REDUCE   
16.   i nput : set of  Map j   weight vectors  w j 

  
j     {1…  data chunk } , set of  Map j 

  
bias b j 

  
j     {1… data chunk }   

17.   o utput : global weight vector  w , average b and SV   
    
18 .   

      Map j     
c ompute   b global     =   ∑ b   

data 
chunk 

  / Map j   

    
j=1 

      
  
19.   

      Map j   
c ompute   w global     =   ∑ w   

data 
chunk 

  

    
j=1 
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where: 

Mapj = MapReduce Map  

Datachunk = training data associated with Mapj 

x = training elements, y = class labels for x 

wj = local (Mapj) weight vector  

bj = local (Mapj) b threshold 

I = training data index set 

αj = Lagrange multiplier(s) 

bglobal = global b threshold 

wglobal = global weight vector 

 

In Algorithm 1, for each Datachunk we associate a Map (Mapj) operation. In this context, line 4 

initializes the necessary structures, primarily the α multipliers and the objective function. Lines 5 – 

10 portray the SMO optimization process. Iterations are based on the selection and optimization of 

two Lagrange multipliers, subsequently the objective function. Line 11 checks for the respective 

exit conditions, whilst line 12 updates the bias threshold accordingly. For actual implementations, 

multiplier selection is frequently based on approaches such as heuristics, albeit strategies vary with 

specific implementations. Lines 13 and 14 store the Lagrange multipliers and update the local 

weight vector for the specific map (Mapj).  

 

In contrast with the sequential SMO algorithm presented in [11], we perform two additional steps 

using the reduce phase of the MapReduce prototype. Basically, the reducer takes the following 

steps: 

 

 Performs an average computation on all respective b outputs emitted by the individual Map 

(Mapj) operations => bglobal (Line 18) 

 Performs a sum operation on the weight vectors emitted by the respective Map (Mapj) 

operations => wglobal (Line 19) 

 Performs the above two steps to generate the global b and weight vector for subsequent 

classification. 
 

We employed Weka’s SMO [56] implementation as a baseline solver. For this work we focused 

on linear SVMs, although the approach can be easily extended and applied to non-linear variants as 

well. The base SMO algorithm is decomposed and re-structured to benefit from MapReduce. Each 

MapReduce map processes an associated data chunk in its entirety. The output of each map process 

is the localized (per data chunk) SVM weight vector (Algorithm 1: wj) and the bias (Algorithm 1: 

bj) threshold. The primary role of the associated reduce phase is to compute the global weight 

vector (Algorithm 1: wglobal) by summing the individual maps weight vectors. The bias thresholds 

from each map output are averaged by the respective reduce phase (Algorithm 1: bglobal). More 

formally, each individual Mapj is the partial weight vector and the value of b for the respective 

Datachunk partition (Eq. 2): 
 

 

 

 

(2) 

 

The global weight vector is computed via the reducer by summing all partial weight vectors from 

each respective mapper (Eq. 3) as well as averaging all b values for all Datachunk (Eq. 4). The value 

of b is also handled by the reducer which averages the value of b across the partitions/mappers. To 

calculate the SVM output, the global weight vector and the value b are required (Eq. 5) 
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For a non-linear SVM  [57], each mapper’s output would be the alpha array for the respective 

local partition and the value of b. The reducer would join the partial alpha arrays to produce the 

global alpha array. As with the linear SVM approach, the reducer deals with the value of b 

averaging its value of across partitions. 

 In this respect, from a time complexity perspective the original single sequential 

representation, i.e. O(m
2
n) can now be contextualized in a MapReduce environment and expressed 

as (Eq. 6): 
 

O ( ( m2n / S )+n log ( S ) ) (6) 

 

where: 

n = the dimension of the input 

m = the training samples 

S = the number of MapReduce nodes 

 

 

4. Ontology Augmentation 

 
In order to improve the overall classification accuracy of the parallel SMO algorithm, we extend 

it with an ontology based enhancement process. We have designed SPONTO, a spam ontology 

which acts as a feedback loop base for the training and classification processes. This is in contrast 

with the work presented in [39] where the ontology itself is employed for classification. The 

feedback loop is then employed to re-train the parallel SMO with added intelligence to improve 

overall accuracy. This is performed to mitigate the accuracy degradation challenge introduced due 

to the training data file splitting strategy and respective separate SMO computation. SPONTO 

reflects all the basic elements presented in the SpamBase [58] dataset as well as additional attribute 

assertions. SpamBase is a multivariate dataset containing 4601 mail instances and formulated as a 

series of 58 attributes or feature representations. These are mostly derived from character or word 

frequencies that describe the original mail message content. Around 40% of the dataset is spam. 

The last identifier of the dataset is the nominal class label which designates whether the email 

represents ham or otherwise. SPONTO is employed to provide users with additional intelligence in 

terms of mail class (Ham or Spam), the classification result of the parallel SMO as well as support 

for instance weights. From a very high level perspective the core basic SPONTO structure can be 

described as follows: 
 

 A base root class designated EMAIL 

 Two key classes, SPAM and HAM, sub-classes of EMAIL 

 SpamBase instance attributes, represented as data property assertions within SPONTO 

∑
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 Supplementary instance attributes reflected as additional property assertions indicating 

whether instances have been misclassified via the SVM classifier, instance weights and mail 

class types. 

 

The intelligence conveyed through the supplementary instance attributes via end user 

contribution is employed for correcting and influencing training data. The end user contributed 

ontology intelligence augmented training sets are employed for the regeneration of the classifier by 

the parallel SVM as shown in Fig.3.  

 

 
Fig.3: Ontology assisted classification process. 

 

 

The key steps of the ontology enhanced parallel SVM process are as follows:  

 

 Employ split data training sets with the parallel SVM to compute and output the SVM 

classifier. 

 Use the SVM classifier to classify Ham/Spam testing set and create respective SPONTO 

instances.   

 Using ontology (SPONTO), user corrects ontology instances (SPONTO-I).  

 Merge user modified instances (SPONTO-I) as well as corrected classifications and update 

the training data for the parallel SVM for further processing.  
 

 More specifically, a base RDF graph from the SpamBase ARFF file is generated based on the 

SPONTO ontology structure. We transform the Weka ARFF format to an equivalent RDF 

representation as portrayed in the simple example presented in Table 1. We then apply the learned 

model from the parallel SVM on the instances which require classification. For each testing 

instance, we generate a new ontology instance based on SPONTO. Ontology generation can take 

two different paths:  

 

 The first is via the extraction of instance data and generation of a respective SPARQL query. 

This query is applied on the base RDF graph to identify respective misclassified elements.  

 The other approach is performed by applying an intermediary J48 classifier. In this approach, 

fact rules generated by the C4.5 decision tree algorithm are transformed into respective 
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SPARQL queries. Once again, the respective queries are executed on the base RDF graph to 

identify misclassified elements.  
 

Table 1: Weka to RDF conversion. 
WEKA 

@relation spambase 
@attribute word_freq_make      numeric 
. . . . . . 
@attribute class {1,0} 
@data 
0,0,0,0,1.82,0.36,0.36,0.72,0.36,0.36,0,0,0,0,0,0,0,0.36,2.91,0,2.18,0,0.72,0,0,. . . . . . . . . . . . . . . . . . . . 
.,0.297,0.059,0.178,0,0,2.446,11,115,1 
. . . . . . 

RDF 

<?xml version="1.0"?> 
<rdf:RDF xmlns:mail="http://localhost/sponto/mail#" xmlns:owl="http://www.w3.org/2002/07/owl#" 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema3"> 
 <rdf:Description rdf:about="http://localhost/sponto/mail#word_freq_make"> 
  <rdf:type>   <rdf:Description rdf:about="http://www.w3.org/2002/07/owl#DatatypeProperty"/> 
  </rdf:type> 
  <rdfs:domain> 
   <rdf:Description rdf:about="http://localhost/sponto/mail#Email"/> 
  </rdfs:domain> 
  <rdfs:range> 
   <rdf:Description rdf:about="http://www.w3.org/2001/XMLSchema#string"/> 
  </rdfs:range> 
 </rdf:Description> 
. . . . . . 

 

In either approach, misclassified nodes are identified as a set of final ontology instances. The 

misclassified instances from the ontology based representation are automatically correlated, 

through SPARQL [21], with the original training instances and the latter presented to the end-user. 

Users can subsequently contribute preference and intelligence by increasing individual training 

instance weights, removing instances or modifying instance classification outcomes. For this work, 

the actual influencing step is therefore performed manually, but we intend to change this for future 

work as indicated in Section 6. For the proposed prototype, we employ Protégé, the Ontology 

Editor and Knowledge Acquisition System [22] for Ontology interaction and end user contribution. 

Ontology reasoners can also be employed to explore and validate the generated ontology base - 

available as respective Protégé Plug-ins in this particular case and which include HERMIT, 

PELLET and FACT amongst others. This provides the ability to perform inference and assertion 

operations, identify inconsistent concepts and equivalency on the ontology. Additional interaction 

with the ontology, including extensive querying such as via Manchester Syntax [59] based 

DL-Query language can also be performed to fine tune ontology instance quality.  The final process 

involves the re-generation of the Weka ARFF input files for subsequent processing by the parallel 

SVM from the final ontology. We increase correctly classified instance weights, correspondingly 

decrease the instance weights of incorrectly classified ones and merge these instances with the 

original input source. Training instance weighting also allows us to perform a degree of noise 

mitigation in a simple yet effective way. In fact, instance weighting has a number of advantages 

when compared to discarding [60]. The overall classification process is portrayed in Fig.4.  
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Fig.4: Ontology assisted classification process. 
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5. Experimental Results 

 
A number of initial experiments were carried out to identify the accuracy and efficiency of the 

parallel SMO when compared with the sequential counterpart. For all classification experiments 

carried out, the SpamBase [58] dataset was employed. There are 4601 instances in the original 

SpamBase dataset. A baseline experiment intended to identify typical sequential SMO performance 

using the SpamBase dataset on a typical desktop machine was performed. The configuration of the 

desktop machine is shown in Table 2. 

 
Table 2: Configuration for SMO analysis. 

Hardware Environment 

Processors Intel 2.33 GHz Dual Core 

Ram 2 GB 

Software Environment 

SVM Weka 3.6.0 

O/S Ubuntu 9.10 

 

Weka’s default SMO parameters were employed, namely c (complexity) set to 1.0, epsilon 

(round-off error epsilon) set to 1.0E-12, Polynomial Kernel. The original dataset was split into a 

number of smaller sub-sets and concatenated to create larger input data sets where required. 

Weka’s SMO classification scheme was employed [56], using a number of unlabeled instances and 

varying the number of training instances. Fig.5 shows the processing times of the sequential SMO 

algorithm during training. From Fig.5 we can observe that the number of training instances varied 

from 204 and 128,000 with the training time ranging from 1 second to 563 seconds. It is worth 

noting that the sequential test failed when a training attempt with 327,750 elements was performed. 

Based on the 4601 instances of the SpamBase dataset, using the Weka random re-sampling filter 

feature, a varying training input size ranging from 204 and 128,000 training instances was 

employed. The sequential test failed when an attempt with 327,750 elements was performed. 

Respective accuracy ranged from a minimum of 81.04% correct to a maximum of 94.03% correct 

as shown in Fig.6. 

 

  

Fig.5: The training time of the sequential SMO. 



 

13 

 

 

  
 

 

 

5.1 The Efficiency of the Parallel SMO  

 

In a second experiment, the approach taken for the sequential SMO was re-modeled for testing 

on a MapReduce Hadoop cluster. The SMO algorithm provided in Weka was extended, configured 

and packaged as a basic MapReduce job. The Hadoop cluster was configured with the resources as 

shown in Table 3. 
 

Table 3: Hadoop cluster configuration. 
Hardware Environment 

 CPU Ram 

Node 1 & 2 Intel Core Duo 2 GB 

Node 3 Intel Quad Core 4 GB 

Node 4 Virtual Machine on Node 3 512 MB 

Software Environment 

SVM Weka 3.6.0 (SMO) 

O/S Ubuntu 9.10 

Hadoop Hadoop 0.20 

Java JDK 1.6 

 

The time required to train the SMO sequentially using 128,000 instances on a single computer 

node was ≈ 563 seconds whilst the parallel SMO consumed ≈ 134 seconds using the Hadoop cluster 

with 4 computer nodes. The sequential SMO for testing 327,750 instances failed because of the 

large number of instances. Fig.7 compares the efficiency of the sequential SMO in training with 

that of the parallel SMO using a varying number of nodes.  

 

5.2 A Comparison with an MPI based SMO 

 

To further assess the performance of the MapReduce based SVM, we compared it with an MPI 

based parallel SMO algorithm presented in [32]. The maximum speedup recorded via the MPI 

approach is 21 times using a 32 processor configuration. We evaluated the MapReduce SVM using 

the same Adult dataset [61] adopted in the MPI work. This specific data set, containing 48,000 

instances, predicts whether income exceeds $50,000 per year based on census data. Two sets of 

tests, namely using a standard Polynomial kernel and a subsequent Gaussian kernel were carried 

out. The proposition of the experiments was primarily intended to compare the performance of the 

Fig.6: The accuracy of the sequential SMO. 



 

14 

 

 

parallel approaches. Following the definitions presented in [32], speedup and efficiency in the 

context of MapReduce can be defined as follows: 
 

Speedup = 
 Sequential SMO time 

   Parallel SMO time 

 

Efficiency = 
              Speedup 

Number of Processor Cores 

 

 
 

 

The configuration of the MapReduce Hadoop cluster employed for this particular set of 

experiments is shown in Table 4. Hadoop’s default cluster configuration and scheduling is 

employed. A single TaskTracker is employed on each node. The micro-cluster for this experiment 

set was made up of 3 physical nodes with a total of 8 CPU cores and 3 virtual nodes each making 

use of one of the physical cores as summarized below. 
 

Table 4: Hadoop configuration. 
Hardware Environment 

 CPU Cores RAM 

Node 1 & 2 Intel Core Duo 2 2 GB 

Node 3 Intel Quad Core 4 4 GB 

Node 4, 5 & 6 Virtual Machine on Node 
1, 2 & respectively 

1 512 MB 

Software Environment 

SVM WEKA 3.6.0 (SMO) 

OS, Hadoop and Java Ubuntu 10.04 - Hadoop 0.20.2 - JDK 1.6 

 

Fig.8 and Fig.9 present the respective speedup results of the MapReduce SVM using the 2 kernels.  
 

Fig.7: The efficiency of the parallel SMO. 
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Fig.8: The speedup of the MapReduce SVM using Polynomial kernel. 

 

 

 
Fig.9: The speedup of the MapReduce SVM using Gaussian kernel. 

 

 

Fig.10 and Fig.11 present the efficiencies of the MapReduce SVM using the two kernels 

respectively. 
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Fig.10: The efficiency of the MapReduce SVM using Polynomial kernel. 

 

 
Fig.11: The efficiency of the MapReduce SVM using Gaussian kernel. 
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For these experiments, we varied the number of MapReduce nodes from 1 to 6 in conjunction 

with the number of input files, which were adjusted between 4, 8 and 16, for a total of 48000 

instances. Each individual file split is processed by a MapReduce map task. Therefore, for 4 splits, 

a total of 4 files containing 48,000/4 training instances each using 4 map tasks were processed. For 

16 splits, a total of 16 files containing 48,000/16 training instances each using 16 map tasks were 

processed. The average speedup and efficiency of the MapReduce based SMO algorithm using the 

Polynomial kernel were about 20 times and 4 times respectively compared with the sequential 

SMO. The corresponding results from the MapReduce SMO algorithm using Gaussian kernel were 

about 28 times and 5 times.  From these results we can conclude that the MapReduce based SMO is 

more efficient than the MPI based approach which has an efficiency of 21/32. The primary reason 

for this is that the MapReduce based SMO fully distributes the dataset onto a number of computing 

nodes reducing the overhead in training significantly. In the MPI based approach, only the update 

computation to the farray, bup, blow, iup and ilow are performed in parallel. The rest of the SMO 

algorithm is performed sequentially on a single CPU. Furthermore, the MPI approach also has to 

deal with the overhead associated with retrieving and converging the global bup, blow, iup and ilow 

respectively.  
 

5.3 The Accuracy of the Parallel SMO 

 

Fig.12 shows that the accuracy of the parallel SMO using 4 MapReduce nodes is comparable to 

that of the sequential one. Using the global b and weight vectors obtained through a MapReduce 

classifier training run which employed ≈ 4600 instances, the average accuracy of the parallel SMO 

was ≈ 88% correct in classification. For the case of 327,750 instances, the accuracy was ≈ 92% 

correct in classification. .  

 

 
 

 

Table 5 provides an overall performance comparison between the sequential SMO running on 1 

computer and the parallel SMO running in a cluster of 4 MapReduce computers. 

Fig.12: The accuracy of the parallel SMO. 
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Table 5: The performance of the parallel SVM using 4 MapReduce nodes. 

 
 Sequential MapReduce Average 

(based on 8 mappers) 

Correctly Classified ≈ 94.03 % ≈ 92.04 % 

Incorrectly Classified ≈ 5.97 % ≈ 7.96 % 

128,000 instances (training 
time in seconds) 

≈ 563 s ≈ 134 s 

 

Hadoop MapReduce has shown near linear scalability for batch type jobs [62] [63]. Given an 

appropriate number of processing nodes and map tasks, training SVM using the proposed 

MapReduce approach reduces time considerably. The accuracy of the parallel SMO is comparable 

to that of the sequential approach. The prototype processes and optimizes each data fragment in 

parallel using respective map operations. The output of each map operation reflects the partial 

weight vector for the localized data fragment. The single reducer sums up the respective partial 

weight vectors to compute the final global equivalent.  
 

5.4 Evaluating the Parallel SMO with Ensemble Approaches 

 

In machine learning, ensemble schemes provide an opportunity for improving prediction 

accuracy [64] [65]. Bagging and boosting approaches for example are statistically known to 

improve accuracy in general. However, the degree of actual accuracy improvement (or 

degradation) depends on the context [66]. Context influencers include classification algorithms, 

parameterization as well as dataset properties. To explore initial possibilities in this regard, we 

applied an extension to the prototype and performed a simple experiment to identify any immediate 

improvements using the proposed MapReduce approach and the SpamBase dataset. Any overall 

accuracy improvement would have to be considered in the context of any increased computational 

complexity introduced by the respective processes. We performed two sets of tests. One was based 

on Weka’s bagging (sampling with replacement) method and the other on SMOTE (Synthetic 

Minority Over Sampling Technique). Bagging [67] involves the random generation of training sets 

and combining subsequent classifications using the same base classifier. SMOTE [68] focuses on 

the over-sampling of both minority and majority class. For these tests, 8 input splits (files) were 

employed using the entire 4600 instances of the SpamBase data set.  

Fig.13 portrays the outcome of the basic evaluation of the application of SMOTE and Bagging. 

In this exploratory experiment, the MapReduce SMO classifier was seeded with a 100%, 120% and 

160% training set over-sample spread across the 8 input splits to evaluate the influence on accuracy 

using both techniques. The results indicate that in this particular context the recorded accuracy 

diminished slightly. Using bootstrap aggregation, the parallel SMO classifier achieved a maximum 

accuracy of 85.7%, reduced to 52.45% when the sampling with replacement target was set to 160%. 

The corresponding figures for the SMOTE based approach where 85.96 and 80.87 % respectively. 

Accuracy degradation could be partly influenced by the number of instances evaluated, data and 

ensemble sizes. These factors have the potential to negatively impact SVM learning when using 

ad-hoc ensemble techniques. Accuracy in this context is also influenced by the current bias and 

weight aggregation approach in the respective Reducer phase of MapReduce. 
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Fig.13: The effect of Bagging and SMOTE. 

 

5.5 Ontology Augmentation 

 

As described in Section 4, to further improve the accuracy of the MapReduce based parallel 

SMO, we augment the base training sets with additional intelligence through ontology based 

semantics. This is performed by influencing individual misclassified elements as well as attributing 

increased weighting to user identified and selected instances. Fig.14 shows the percentage of 

accuracy improvement across the number of file splits by employing the ontology based approach. 

There is an average of ≈ 5 % accuracy improvement, ranging from a minimum of 1.7 % when the 

file splits are 4 to a maximum of 7.5 % when the number of input files is 48.  

 

 
Fig.14: The impact of file splits on accuracy improvement. 

 

Fig.15 presents a comparative analysis of the rate of accuracy degradation between the ontology 

augmented approach (X-SpamBase) and the original (SpamBase) – the former rate is significantly 

slower when increasing the number of training input file splits. 
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Fig.15: The impact of ontology augmentation on accuracy degradation. 

 

Based on an average accuracy improvement of 4.6% over the baseline parallel SMO, Fig.16 

shows that using the ontology augmented approach, the MapReduce based parallel SMO achieves a 

maximum accuracy of ≈ 99% and an average of 96%, which performs better than the original 

sequential SMO in classification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 
 

We have also converted a large TREC data set [69] to a format similar to SpamBase for further 

evaluation of the ontology augmented approach. The TREC corpus is constituted of about 75,000 

Fig.16: The accuracy of the ontology augmented MapReduce SMO. 
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messages out of which 50,000 messages are spam. An initial experimental assessment shows 

similar accuracy improvement over the MapReduce based parallel SMO as portrayed in Fig.17 and 

Fig.18 respectively, where ‘Trec’ represents the classification accuracy of the parallel SMO on the 

TREC data set and ‘X-Trec’ represents the accuracy of the corresponding ontology augmented 

approach.  

 

 
Fig.17: The impact of ontology augmentation on classification accuracy on the TREC data set. 

 

 
Fig.18: The impact of TREC data splits on classification accuracy improvement. 
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6. Conclusions and Future Work 
 

In this paper we have presented a MapReduce based parallel SVM algorithm for fast spam filter 

training. By distributing the data set into a number of computing nodes, the parallel SVM reduces 

the training time considerably. To mitigate accuracy degradation in classification, the parallel SVM 

is augmented with ontology semantics. 

There is ample room for further improvement to the parallel SVM. We intend to research 

appropriate schemes on how to automatically extract additional intelligence from annotated 

instances and employ this with the feedback loop to the machine learning process within the 

parallel SVM. Currently, the ontology based feedback loop approach is mostly based and 

capitalizes on human expertise to identify hidden context which mitigates the problem of concept 

drift. We intend to research relevant techniques to automatically identify concept drift in 

classification similar to the work presented in [42]. 
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