10 research outputs found

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    A study on flexible flow shop and job shop scheduling using meta-heuristic approaches

    Get PDF
    Scheduling aims at allocation of resources to perform a group of tasks over a period of time in such a manner that some performance goals such as flow time, tardiness, lateness, and makespan can be minimized. Today, manufacturers face the challenges in terms of shorter product life cycles, customized products and changing demand pattern of customers. Due to intense competition in the market place, effective scheduling has now become an important issue for the growth and survival of manufacturing firms. To sustain in the current competitive environment, it is essential for the manufacturing firms to improve the schedule based on simultaneous optimization of performance measures such as makespan, flow time and tardiness. Since all the scheduling criteria are important from business operation point of view, it is vital to optimize all the objectives simultaneously instead of a single objective. It is also essentially important for the manufacturing firms to improve the performance of production scheduling systems that can address internal uncertainties such as machine breakdown, tool failure and change in processing times. The schedules must meet the deadline committed to customers because failure to do so may result in a significant loss of goodwill. Often, it is necessary to reschedule an existing plan due to uncertainty event like machine breakdowns. The problem of finding robust schedules (schedule performance does not deteriorate in disruption situation) or flexible schedules (schedules expected to perform well after some degree of modification when uncertain condition is encountered) is of utmost importance for real world applications as they operate in dynamic environments

    Artificial intelligence effectiveness in job shop environments

    Get PDF
    The aim of this paper is to define a new methodology that allows the comparison of the effectiveness among some of the major artificial intelligence techniques (random technique, taboo search, data mining, evolutionary algorithms). This methodology is applied in the sequencing production process in job shop environments, in a problem with N orders, and M machines, where each of the orders must pass through every machine regardless of its turn. These techniques are measured by the variables of total makespan time, total idle time, and machine utilization percentage. Initially, a theoretical review was conducted and showed the usefulness and effectiveness of artificial intelligence in the sequencing production processes. Subsequently and based on the experiments presented, the obtained results showed that these techniques have an effectiveness higher than 95%, with a confidence interval of 99.5% measured by the variables under study

    Menu Planning Model for Malaysian Boarding School Using Self-Adaptive Hybrid Genetic Algorithms

    Get PDF
    Malnutrition problem is the gravest single threat to the world's public health today. Statistics have showed that the number of under-nourished and over-nourished children and adolescents is increasing day by day. Thus, proper menu planning process among menu planners or caterers is important to avoid some diet-related diseases in the hture. Manual calculation of menu planning is unable to consider macronutrients and micronutrients simultaneously due to complexities of data and length of time. In this study, self-adaptive hybrid genetic algorithm (SHGA) approach has been proposed to solve the menu planning problem for Malaysian boarding school students aged 13 to 18 years old. The objectives of our menu planning model are to optimize the budget allocation for each student, to take into consideration the caterer's ability, to llfill the standard recommended nutrient intake (RNI) and maximize the variety of daily meals. New local search was adopted in this study, the insertion search with delete-and-create (ISDC) method, which combined the insertion search (IS) and delete-and-create (DC) local search method. The implementation of IS itself could not guarantee the production of feasible solutions as it only explores a small neighborhood area. Thus, the ISDC was utilized to enhance the search towards a large neighborhood area and the results indicated that the proposed algorithm is able to produce 100% feasible solutions with the best fitness value. Besides that, implementation of self-adaptive probability for mutation has significantly minimized computational time taken to generate the good solutions in just few minutes. Hybridization technique of local search method and self-adaptive strategy have improved the performance of traditional genetic algorithm through balanced exploitation and exploration scheme. Finally, the present study has developed a menu planning prototype for caterers to provide healthy and nutritious daily meals using simple and fhendly user interface

    Modelling and Optimizing Supply Chain Integrated Production Scheduling Problems

    Full text link
    Globalization and advanced information technologies (e.g., Internet of Things) have considerably impacted supply chains (SCs) by persistently forcing original equipment manufacturers (OEMs) to switch production strategies from make-to-stock (MTS) to make-to-order (MTO) to survive in competition. Generally, an OEM follows the MTS strategy for products with steady demand. In contrast, the MTO strategy exists under a pull system with irregular demand in which the received customer orders are scheduled and launched into production. In comparison to MTS, MTO has the primary challenges of ensuring timely delivery at the lowest possible cost, satisfying the demands of high customization and guaranteeing the accessibility of raw materials throughout the production process. These challenges are increasing substantially since industrial productions are becoming more flexible, diversified, and customized. Besides, independently making the production scheduling decisions from other stages of these SCs often find sub-optimal results, creating substantial challenges to fulfilling demands timely and cost-effectively. Since adequately managing these challenges asynchronously are difficult, constructing optimization models by integrating SC decisions, such as customer requirements, supply portfolio (supplier selection and order allocation), delivery batching decisions, and inventory portfolio (inventory replenishment, consumption, and availability), with shop floor scheduling under a deterministic and dynamic environment is essential to fulfilling customer expectations at the least possible cost. These optimization models are computationally intractable. Consequently, designing algorithms to schedule or reschedule promptly is also highly challenging for these time-sensitive, operationally integrated optimization models. Thus, this thesis focuses on modelling and optimizing SC-integrated production scheduling problems, named SC scheduling problems (SCSPs). The objective of optimizing job shop scheduling problems (JSSPs) is to ensure that the requisite resources are accessible when required and that their utilization is maximally efficient. Although numerous algorithms have been devised, they can sometimes become computationally exorbitant and yield sub-optimal outcomes, rendering production systems inefficient. These could be due to a variety of causes, such as an imbalance in population quality over generations, recurrent generation and evaluation of identical schedules, and permitting an under-performing method to conduct the evolutionary process. Consequently, this study designs two methods, a sequential approach (Chapter 2) and a multi-method approach (Chapter 3), to address the aforementioned issues and to acquire competitive results in finding optimal or near-optimal solutions for JSSPs in a single objective setting. The devised algorithms for JSSPs optimize workflows for each job by accurate mapping between/among related resources, generating more optimal results than existing algorithms. Production scheduling can not be accomplished precisely without considering supply and delivery decisions and customer requirements simultaneously. Thus, a few recent studies have operationally integrated SCs to accurately predict process insights for executing, monitoring, and controlling the planned production. However, these studies are limited to simple shop-floor configurations and can provide the least flexibility to address the MTO-based SC challenges. Thus, this study formulates a bi-objective optimization model that integrates the supply portfolio into a flexible job shop scheduling environment with a customer-imposed delivery window to cost-effectively meet customized and on-time delivery requirements (Chapter 4). Compared to the job shop that is limited to sequence flexibility only, the flexible job shop has been deemed advantageous due to its capacity to provide increased scheduling flexibility (both process and sequence flexibility). To optimize the model, the performance of the multi-objective particle swarm optimization algorithm has been enhanced, with the results providing decision-makers with an increased degree of flexibility, offering a larger number of Pareto solutions, more varied and consistent frontiers, and a reasonable time for MTO-based SCs. Environmental sustainability is spotlighted for increasing environmental awareness and follow-up regulations. Consequently, the related factors strongly regulate the supply portfolio for sustainable development, which remained unexplored in the SCSP as those criteria are primarily qualitative (e.g., green production, green product design, corporate social responsibility, and waste disposal system). These absences may lead to an unacceptable supply portfolio. Thus, this study overcomes the problem by integrating VIKORSORT into the proposed solution methodology of the extended SCSP. In addition, forming delivery batches of heterogeneous customer orders is challenging, as one order can lead to another being delayed. Therefore, the previous optimization model is extended by integrating supply, manufacturing, and delivery batching decisions and concurrently optimizing them in response to heterogeneous customer requirements with time window constraints, considering both economic and environmental sustainability for the supply portfolio (Chapter 5). Since the proposed optimization model is an extension of the flexible job shop, it can be classified as a non-deterministic polynomial-time (NP)-hard problem, which cannot be solved by conventional optimization techniques, particularly in the case of larger instances. Therefore, a reinforcement learning-based hyper-heuristic (HH) has been designed, where four solution-updating heuristics are intelligently guided to deliver the best possible results compared to existing algorithms. The optimization model furnishes a set of comprehensive schedules that integrate the supply portfolio, production portfolio (work-center/machine assignment and customer orders sequencing), and batching decisions. This provides numerous meaningful managerial insights and operational flexibility prior to the execution phase. Recently, SCs have been experiencing unprecedented and massive disruptions caused by an abrupt outbreak, resulting in difficulties for OEMs to recover from disruptive demand-supply equilibrium. Hence, this study proposes a multi-portfolio (supply, production, and inventory portfolios) approach for a proactive-reactive scheme, which concerns the SCSP with complex multi-level products, simultaneously including unpredictably dynamic supply, demand, and shop floor disruptions (Chapter 6). This study considers fabrication and assembly in a multi-level product structure. To effectively address this time-sensitive model based on real-time data, a Q-learning-based multi-operator differential evolution algorithm in a HH has been designed to address disruptive events and generate a timely rescheduling plan. The numerical results and analyses demonstrate the proposed model's capability to effectively address single and multiple disruptions, thus providing significant managerial insights and ensuring SC resilience

    Simulation and optimisation of a specific flexible manufacturing system.

    Get PDF
    As current market competition evolves, most companies intend to increase their options for product customisation and accelerate their product upgrading. Correspondingly, manufacturers have to face the increasing size of product family, shortened product life cycle or rapid product/process change. Therefore, Flexible Manufacturing Systems (FMS) have been introduced that uses advanced machines and efficient transport systems to produce multiple products at the same time. However, an FMS can be complicated to manage because of the increased variability in products and processes. The research aims to develop manufacturing simulation and optimisation techniques for a FMS. This research will integrate Discrete Event Simulation (DES) and multi-objective optimisation approach to address the complexity and flexibility within an agile manufacturing environment. Due to the complexity of FMS, most current FMS optimisation research has engaged with FMS production problems separately without considering other inter-related problems in the same system such as dealing with operation sequence problem without considering Level of Flexibility (LoF), thus it is hard for the solution to provide a prospective impact for the whole system. There are very few real-world FMS implementations that are available to literatures, making it difficult to build and verify the models within a complete ecosystem. Consequently, most of the models in the research are oversimplified. Therefore, this research aims to develop a method to optimise FMS production considering the overall system, by having access to an FMS industrial implementation. This research contributes to knowledge in four main areas, namely, (1) the interactions of FMS production problems have been investigated, (2) a framework has been developed to integrate the simulation and optimisation for FMS to enable optimisation algorithms working with DES models effectively, (3) a comprehensive FMS simulation model has been built and validated on the industrial shop floor and (4) multi-objective optimisation has been applied to the FMS scheduling problem, considering interactions with other problems. Based on the results and limitations of this research, real-time simulation, mock-up FMS and improve computational efficiency are suggested for future work.PhD in Manufacturin

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    The International Conference on Industrial Engineeering and Business Management (ICIEBM)

    Get PDF
    corecore