308 research outputs found

    Implementing the 2-D Wavelet Transform on SIMD-Enhanced General-Purpose Processors

    Full text link

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    PC-grade parallel processing and hardware acceleration for large-scale data analysis

    Get PDF
    Arguably, modern graphics processing units (GPU) are the first commodity, and desktop parallel processor. Although GPU programming was originated from the interactive rendering in graphical applications such as computer games, researchers in the field of general purpose computation on GPU (GPGPU) are showing that the power, ubiquity and low cost of GPUs makes them an ideal alternative platform for high-performance computing. This has resulted in the extensive exploration in using the GPU to accelerate general-purpose computations in many engineering and mathematical domains outside of graphics. However, limited to the development complexity caused by the graphics-oriented concepts and development tools for GPU-programming, GPGPU has mainly been discussed in the academic domain so far and has not yet fully fulfilled its promises in the real world. This thesis aims at exploiting GPGPU in the practical engineering domain and presented a novel contribution to GPGPU-driven linear time invariant (LTI) systems that are employed by the signal processing techniques in stylus-based or optical-based surface metrology and data processing. The core contributions that have been achieved in this project can be summarized as follow. Firstly, a thorough survey of the state-of-the-art of GPGPU applications and their development approaches has been carried out in this thesis. In addition, the category of parallel architecture pattern that the GPGPU belongs to has been specified, which formed the foundation of the GPGPU programming framework design in the thesis. Following this specification, a GPGPU programming framework is deduced as a general guideline to the various GPGPU programming models that are applied to a large diversity of algorithms in scientific computing and engineering applications. Considering the evolution of GPU’s hardware architecture, the proposed frameworks cover through the transition of graphics-originated concepts for GPGPU programming based on legacy GPUs and the abstraction of stream processing pattern represented by the compute unified device architecture (CUDA) in which GPU is considered as not only a graphics device but a streaming coprocessor of CPU. Secondly, the proposed GPGPU programming framework are applied to the practical engineering applications, namely, the surface metrological data processing and image processing, to generate the programming models that aim to carry out parallel computing for the corresponding algorithms. The acceleration performance of these models are evaluated in terms of the speed-up factor and the data accuracy, which enabled the generation of quantifiable benchmarks for evaluating consumer-grade parallel processors. It shows that the GPGPU applications outperform the CPU solutions by up to 20 times without significant loss of data accuracy and any noticeable increase in source code complexity, which further validates the effectiveness of the proposed GPGPU general programming framework. Thirdly, this thesis devised methods for carrying out result visualization directly on GPU by storing processed data in local GPU memory through making use of GPU’s rendering device features to achieve realtime interactions. The algorithms employed in this thesis included various filtering techniques, discrete wavelet transform, and the fast Fourier Transform which cover the common operations implemented in most LTI systems in spatial and frequency domains. Considering the employed GPUs’ hardware designs, especially the structure of the rendering pipelines, and the characteristics of the algorithms, the series of proposed GPGPU programming models have proven its feasibility, practicality, and robustness in real engineering applications. The developed GPGPU programming framework as well as the programming models are anticipated to be adaptable for future consumer-level computing devices and other computational demanding applications. In addition, it is envisaged that the devised principles and methods in the framework design are likely to have significant benefits outside the sphere of surface metrology.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Reconfigurable Computing for Space

    Get PDF

    Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering

    Get PDF
    In this dissertation, a fully scalable video coding system is proposed. This system achieves full temporal, resolution, and fidelity scalability by combining mesh-based motion-compensated temporal filtering, multihypothesis motion compensation, and an embedded 3D wavelet-coefficient coder. The first major contribution of this work is the introduction of the redundant-wavelet multihypothesis paradigm into motion-compensated temporal filtering, which is achieved by deploying temporal filtering in the domain of a spatially redundant wavelet transform. A regular triangle mesh is used to track motion between frames, and an affine transform between mesh triangles implements motion compensation within a lifting-based temporal transform. Experimental results reveal that the incorporation of redundant-wavelet multihypothesis into mesh-based motion-compensated temporal filtering significantly improves the rate-distortion performance of the scalable coder. The second major contribution is the introduction of a sliding-window implementation of motion-compensated temporal filtering such that video sequences of arbitrarily length may be temporally filtered using a finite-length frame buffer without suffering from severe degradation at buffer boundaries. Finally, as a third major contribution, a novel 3D coder is designed for the coding of the 3D volume of coefficients resulting from the redundant-wavelet based temporal filtering. This coder employs an explicit estimate of the probability of coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple software implementation. Additionally, the coder offers the possibility of a high degree of vectorization particularly well suited to the data-parallel capabilities of modern general-purpose processors or customized hardware. Results show that the proposed coder yields nearly the same rate-distortion performance as a more complicated coefficient coder considered to be state of the art

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF

    Universal Indexes for Highly Repetitive Document Collections

    Get PDF
    Indexing highly repetitive collections has become a relevant problem with the emergence of large repositories of versioned documents, among other applications. These collections may reach huge sizes, but are formed mostly of documents that are near-copies of others. Traditional techniques for indexing these collections fail to properly exploit their regularities in order to reduce space. We introduce new techniques for compressing inverted indexes that exploit this near-copy regularity. They are based on run-length, Lempel-Ziv, or grammar compression of the differential inverted lists, instead of the usual practice of gap-encoding them. We show that, in this highly repetitive setting, our compression methods significantly reduce the space obtained with classical techniques, at the price of moderate slowdowns. Moreover, our best methods are universal, that is, they do not need to know the versioning structure of the collection, nor that a clear versioning structure even exists. We also introduce compressed self-indexes in the comparison. These are designed for general strings (not only natural language texts) and represent the text collection plus the index structure (not an inverted index) in integrated form. We show that these techniques can compress much further, using a small fraction of the space required by our new inverted indexes. Yet, they are orders of magnitude slower.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    Local Binary Patterns in Focal-Plane Processing. Analysis and Applications

    Get PDF
    Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presentedSiirretty Doriast
    • …
    corecore