
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

12-13-2003

Fully Scalable Video Coding Using Redundant-Wavelet Fully Scalable Video Coding Using Redundant-Wavelet

Multihypothesis and Motion-Compensated Temporal Filtering Multihypothesis and Motion-Compensated Temporal Filtering

Yonghui Wang

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Wang, Yonghui, "Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-
Compensated Temporal Filtering" (2003). Theses and Dissertations. 2342.
https://scholarsjunction.msstate.edu/td/2342

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/2342?utm_source=scholarsjunction.msstate.edu%2Ftd%2F2342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

FULLY SCALABLE VIDEO CODING USING REDUNDANT-WAVELET

MULTIHYPOTHESIS AND MOTION-COMPENSATED

TEMPORAL FILTERING

By

Yonghui Wang

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Engineering
in the Department of Electrical and Computer Engineering

Mississippi State, Mississippi

December 2003

Copyright c©2003

by

Yonghui Wang

FULLY SCALABLE VIDEO CODING USING REDUNDANT-WAVELET

MULTIHYPOTHESIS AND MOTION-COMPENSATED

TEMPORAL FILTERING

By

Yonghui Wang

Approved:

James E. Fowler Robert J. Moorhead, II
Associate Professor of Electrical and Professor of Electrical and

Computer Engineering Computer Engineering
(Major Professor and Dissertation (Committee Member)
Director)

Nicholas H. Younan Jörg Meyer
Professor of Electrical and Adjunct Assistant Professor of

Computer Engineering Computer Science and Engineering
Graduate Coordinator of Electrical and (Committee Member)

Computer Engineering
(Committee Member)

A. Wayne Bennett
Dean of the College of Engineering

Name: Yonghui Wang

Date of Degree: December 13, 2003

Institution: Mississippi State University

Major Field: Computer Engineering

Major Professor: Dr. James E. Fowler

Title of Study: FULLY SCALABLE VIDEO CODING USING REDUNDANT-
WAVELET MULTIHYPOTHESIS AND MOTION-COMPENSATED
TEMPORAL FILTERING

Pages in Study: 122

Candidate for Degree of Doctor of Philosophy

In this dissertation, a fully scalable video coding system is proposed. This system

achieves full temporal, resolution, and fidelity scalability by combining mesh-based

motion-compensated temporal filtering, multihypothesis motion compensation, and an

embedded 3D wavelet-coefficient coder. The first major contribution of this work

is the introduction of the redundant-wavelet multihypothesis paradigm into motion-

compensated temporal filtering, which is achieved by deploying temporal filtering

in the domain of a spatially redundant wavelet transform. A regular triangle mesh

is used to track motion between frames, and an affine transform between mesh

triangles implements motion compensation within a lifting-based temporal transform.

Experimental results reveal that the incorporation of redundant-wavelet multihypothesis

into mesh-based motion-compensated temporal filtering significantly improves the rate-

distortion performance of the scalable coder. The second major contribution is the

introduction of a sliding-window implementation of motion-compensated temporal

filtering such that video sequences of arbitrary length may be temporally filtered

using a finite-length frame buffer without suffering from severe degradation at buffer

boundaries. Finally, as a third major contribution, a novel 3D coder is designed

for the coding of the 3D volume of coefficients resulting from the redundant-wavelet

based temporal filtering. This coder employs an explicit estimate of the probability of

coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple

software implementation. Additionally, the coder offers the possibility of a high degree

of vectorization particularly well suited to the data-parallel capabilities of modern

general-purpose processors or customized hardware. Results show that the proposed

coder yields nearly the same rate-distortion performance as a more complicated state-

of-the-art coefficient coder.

DEDICATION

To my parents, Yunde and Guihua, my wife, Suxia, and my son, Steven.

ii

ACKNOWLEDGMENTS

This dissertation could not have been completed without the contributions and

encouragement from many people. I am gratefully indebted to my advisor Dr. James E.

Fowler, who was gracious to work with me through some difficult times and was

definitely the first person I consulted whenever I was stuck. His attitude toward scientific

research made him an excellent role model. I thank also all those who served on my

dissertation committee, Dr. Robert J. Moorhead, Dr. Nicolas H. Younan, and Dr. Jörg

Meyer, for their encouragement and support. Thanks also go to my fellow students,

Dr. Li Hua and Justin T. Rucker, for their selfless help. I am grateful for financial support

from the National Science Foundation (NSF), as well as the research facilities provided

by the Engineering Research Center at Mississippi State University. Finally, I would

like to thank all the members of my family, especially my wife, Suxia, for her love and

support as well as those fruitful discussions toward the completion of this dissertation.

I thank my son, Steven, for all the happy time he gives.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

I. INTRODUCTION . 1

II. MOTION-COMPENSATED TEMPORAL FILTERING 8

2.1 Block-Displacement Methods . 9
2.2 Lifting Implementation of Temporal Transforms 13
2.3 Lifting MCTF with Meshes . 16

2.3.1 Mesh-based MC/ME and Affine Transforms 16
2.3.2 Motion Fields for Mesh-based MCTF 20

2.4 Motion Estimation with Subpixel Accuracy 22

III. THE REDUNDANT DISCRETE WAVELET TRANSFORM AND ITS
USE IN VIDEO CODING . 24

3.1 The Redundant Discrete Wavelet Transform (RDWT) 25
3.2 Motion-Estimation/Motion-Compensation (ME/MC)

Using The RDWT . 28
3.3 Multihypothesis Motion Compensation (MHMC) and the

RDWT . 35

IV. THE 3D-RWMH SYSTEM . 43

4.1 System Overview . 43
4.1.1 Motion Estimation and Compensation 44
4.1.2 Half-pixel Accuracy . 50
4.1.3 Experimental Results . 51

iv

CHAPTER Page

4.2 Scalability of 3D-RWMH . 58
4.2.1 Spatial Scalability . 63
4.2.2 Temporal Scalability . 71

V. BOUNDARY EFFECTS IN 3D-RWMH . 77

5.1 Sliding Window . 78
5.2 Eliminating Boundary Effects in MCTF . 78
5.3 Experimental Results . 84

VI. 3D CODING WITH THE TARP ALGORITHM 93

6.1 Estimation of Probability of Significance via Parzen
Windows . 94

6.2 Tarp Filtering . 96
6.2.1 2D Tarp Filtering . 97
6.2.2 3D Tarp Filtering . 98

6.3 The 3D-Tarp Coder . 100
6.4 Experimental Results . 102
6.5 Vectorized Implementation of 3D-Tarp . 107

VII. CONCLUSION . 114

REFERENCES . 117

v

LIST OF TABLES

TABLE Page

3.1 Comparison of RWMH to other systems . 41

4.1 Comparison of 3D-RWMH to single hypothesis system 53

4.2 Comparison of 3D-RWMH-53 to RWMH . 54

4.3 Comparison of 3D-RWMH to MC-EZBC . 59

5.1 Comparison of 3D-RWMH to SW-3D-RWMH . 87

vi

LIST OF FIGURES

FIGURE Page

1.1 First 8 frames of the “Susie” sequence . 2

1.2 First 8 frames of the “Football” sequence . 2

1.3 First 8 frames of the “Mother & Daughter” sequence 3

1.4 First 8 frames of the “Coastguard” sequence . 3

2.1 “Unconnected pixels” problem . 10

2.2 Block-displacement MCTF based on the Haar filter 11

2.3 A simple mesh ME strategy . 17

2.4 Affine transformation . 19

2.5 Motion fields for lifting MCTF with meshes . 21

3.1 Tree representation of a two-scale RDWT of a 1D-signal 27

3.2 Spatially coherent representation of a two-scale 1D RDWT 27

3.3 Spatially coherent representation of a two-scale 2D RDWT 29

3.4 An example of an RDWT applied to an image . 30

3.5 The RDWT-based video coder of [28] . 32

3.6 The ME procedure of [28] . 33

3.7 The RWTM coder of [24, 25, 36] . 34

3.8 Block diagram of the RWMH video-coding system [18, 19, 36] 38

3.9 The ME procedure of [18, 19, 36] . 39

3.10 Frame-by-frame PSNR for “Football” at 0.5 bpp [18, 19, 36] 41

vii

FIGURE Page

3.11 Frame-by-frame PSNR for “Susie” at 0.25 bpp [18, 19, 36] 42

4.1 Block diagram of the 3D-RWMH video-coding system 45

4.2 The evolution of the regular triangle mesh . 47

4.3 Motion fields for MCTF in the 3D-RWMH coder 49

4.4 Comparison of 5-3 to Haar temporal filtering for “Susie” 53

4.5 Comparison of 5-3 to Haar temporal filtering for “Football” 54

4.6 Comparison of 3D-RWMH-53 to RWMH for “Susie” 55

4.7 Comparison of 3D-RWMH-53 to RWMH for “Football” 56

4.8 Comparison of 8-tap filter to bilinear interpolation 57

4.9 Comparison of 3D-RWMH to MC-EZBC for “Susie” 59

4.10 Comparison of 3D-RWMH to MC-EZBC for “Football” 60

4.11 Comparison of 3D-RWMH to MC-EZBC for “Mother &
Daughter” . 61

4.12 Comparison of 3D-RWMH to MC-EZBC for “Coastguard” 62

4.13 Resolution scalability for “Susie” . 64

4.14 Resolution scalability for “Football” . 65

4.15 Resolution scalability for “Mother & Daughter” . 66

4.16 Resolution scalability for “Coastguard” . 67

4.17 Images for frame 5 of “Football” (SIF) . 68

4.18 Images for frame 5 of “Football” (QSIF) . 69

4.19 Images for frame 5 of “Football” (Q-QSIF) . 70

4.20 Temporal scalability for “Susie” . 72

4.21 Temporal scalability for “Football” . 73

4.22 Temporal scalability for “Mother & Daughter” . 74

4.23 Temporal scalability for “Coastguard” . 75
viii

FIGURE Page

4.24 Images for frame 5 of “Football” (7.5 frames/second) 76

5.1 Schematic representation of one-scale 5-3 lifting 80

5.2 Sliding-window: an even numbered frame is pushed in 80

5.3 Sliding-window: an odd numbered frame is pushed in 81

5.4 Motion fields for MCTF with finite-length GOFs 83

5.5 Motion fields for MCTF with a sliding window . 85

5.6 SW-3D-RWMH-53 vs. 3D-RWMH-53 for “Susie” 87

5.7 SW-3D-RWMH-53 vs. 3D-RWMH-53 for “Football” 88

5.8 Rate-distortion performance of SW-3D-RWMH-53 for “Susie” 89

5.9 Rate-distortion performance of SW-3D-RWMH-53 for “Football” 90

5.10 Rate-distortion performance of SW-3D-RWMH-53 for “Mother &
Daughter” . 91

5.11 Rate-distortion performance of SW-3D-RWMH-53 for
“Coastguard” . 92

6.1 Pseudocode for the 2D tarp filter of [47] . 99

6.2 The 3D Laplacian window for α = 0.5 . 99

6.3 Pseudocode for the 3D tarp filter . 101

6.4 3D-Tarp vs. 3D-SPIHT for “Susie” . 103

6.5 3D-Tarp vs. 3D-SPIHT for “Football” . 104

6.6 3D-Tarp vs. 3D-SPIHT for “Mother & Daughter” 105

6.7 3D-Tarp vs. 3D-SPIHT for “Coastguard” . 106

6.8 Pseudocode for 3D-Tarp encoder filter for SIMD architectures 108

6.9 Pseudocode for 3D-Tarp decoder filter for SIMD architectures 109

6.10 Degree of acceleration for 3D-Tarp encoder . 112

6.11 Degree of acceleration for 3D-Tarp decoder . 113

ix

CHAPTER I

INTRODUCTION

Video is one of the most powerful forms of multimedia because of the extensive

information it delivers. Each video sequence contains substantial visual information,

thereby requiring vast resources for storage and communication. Therefore, the

compression of video sequences has been the focus of work by many researchers for

several decades. Video sequences are highly correlated both temporally and spatially, a

fact which makes the compression of video possible. Regarding temporal correlation,

because the temporal interval between every two consecutive video frames is very small,

the two frames exhibit high similarity. This fact can be seen in Figs. 1.1-1.4. Figs. 1.1

and 1.3 depict slow-motion sequences in which every frame is almost identical to its

predecessor. However, even in fast- or complex-motion sequences, such as “Football” in

Fig. 1.2 and “Coastguard” in Fig. 1.4, there are large regions which are nearly identical

from frame to frame.

To decorrelate a video sequence temporally, modern video-coding systems use

motion estimation and motion compensation (ME/MC). Traditional video coding

systems, such as H.263 [1, 2] and MPEG-2 [3], use a feedback loop for ME/MC. That

is, the system predicts the current frame from a frame that is already encoded, the

residual image is transformed and coded, and a set of motion vectors that describe the

temporal prediction are delivered to the decoder. Usually, the residual image contains

much less energy than the original image, so that the residual image can be coded with

significantly fewer bits. However, there is a well known problem with this kind of

system structure. Since a closed feedback loop is used, the decoder must assemble its

1

2

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.1: First 8 frames of the “Susie” sequence.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.2: First 8 frames of the “Football” sequence.

3

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.3: First 8 frames of the “Mother & Daughter” sequence.

(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 1.4: First 8 frames of the “Coastguard” sequence.

4

prediction using the same previously encoded frame, or reference frame, as was used

by the encoder. If this reference frame is not available, or only partially available, to

the decoder, as may be the case in the event that some communication failure occurred,

then the decoder will not be able to correctly decode the current frame. Since the current

frame may be subsequently used as a reference for later frames, the decoder may become

missynchronized from the encoder, suffering what is known as decoder “drift.” Drift

often results in seriously degraded video being reconstructed by the decoder and poses

an issue of prime importance in many applications, such as the real-time delivery of

video over wireless channels which are inherently prone to communication failures.

Drift in predictive-loop coders can also occur in other settings. Of particular current

interest is the delivery of video over heterogeneous networks consisting of many users

connected to the network via links of varying bandwidth and transmission-error rate.

Rather than producing a separate encoding of the video sequence for the specific

capabilities of each user’s communication link, it is desired to support all possible link

capabilities with one single encoding. Fully scalable video coding is thus demanded

in this case. Scalable video refers to any method that allows partial decoding of the

bitstream. According to network conditions, the decoder can receive a scalable bitstream

and reconstruct video at a variety of quality levels, spatial resolutions, or temporal

resolutions. The degree of scalability offered by the system can vary. Systems that

offer a large number of possible qualities or resolutions are said to be highly scalable.

A fully scalable video-coding system provides a high degree of fidelity, spatial, and

temporal scalability and offers the most flexibility for accommodating diverse network

capabilities.

It has been generally recognized that the goal of highly scalable video representation

is fundamentally at odds with the traditional ME/MC feedback loop which hinders the

achieving of a high degree of resolution, temporal, and fidelity scalability. This is due to

5

the fact that scalable coding introduces drift into predictive-loop coders. For example,

if a decoder is producing video at a reduced spatial resolution, say, at 1/4 of the original

frame size, then the reference frames used in the ME/MC feedback loop are available

at only this reduced resolution, rather than at the full resolution that was used by the

encoder when initially producing the compressed bitstream. Thus, drift is inherent to

any predictive-loop decoder when producing a scaled video representation.

Consequently, the use of 3D transforms, which break the ME/MC feedback loop,

are becoming the preferred approach to full scalability, and a number of modern 2D

still-image algorithms have been straightforwardly extended to the third dimension

(e.g., 3D-SPIHT [4]) by employing separable 3D wavelet transforms. This approach

usually involves a wavelet-packet subband decomposition wherein a group of frames is

processed with a temporal transform followed by spatial decomposition of each frame.

However, without MC, temporal transforms produce low-quality temporal subbands

with significant “ghosting” artifacts [5] and decreased coding efficiency. Consequently,

there has been significant interest in motion-compensated temporal filtering (MCTF) [5–

17] in which it is attempted to have the temporal transform follow motion trajectories.

The work described in this dissertation consists of three major contributions. The

first of these is the development of a novel approach to performing MCTF such

that temporal filtering takes place within frames that have been already decomposed

with a spatial wavelet transform. Experimental results reveal that there is some

advantage towards increased scalability over the usual approach in which temporal

filtering precedes the spatial transform. However, the salient aspect of this approach

to MCTF lies in that we employ multihypothesis motion compensation (MHMC)

within the MCTF to combat the uncertainty inherent in estimating motion trajectories

for MCTF, thereby achieving rate-distortion performance significantly superior to the

usual single-hypothesis MCTF approach. Although multihypothesis has been used

6

in conjunction with MCTF before (e.g., [12] and [13] propose both spatially and

temporally diverse multihypothesis MCTF predictions), in our proposed system, we

employ a new class of MHMC—phase-diversity multihypothesis [18, 19]. Specifically,

phase-diversity MHMC is implemented by deploying MCTF in the domain of a spatially

redundant wavelet transform such that multiple hypothesis temporal filterings are

combined implicitly in the form of an inverse transform. While the overwhelming

majority of previous MCTF techniques have deployed MCTF in the spatial domain,

a few approaches (e.g., [12, 13]) have used the shift invariance of spatially redundant

transforms to enable wavelet-domain MCTF. In contrast to these techniques, our

redundant-wavelet-multihypothesis (RWMH) approach to MCTF exploits the transform

redundancy not only for its shift invariance, but for, more importantly, its potential for

superior motion prediction via phase-diversity multihypothesis.

In any practical implementation of temporal filtering, one must be able to process

arbitrarily long sequences of frames. The usual approach involves blocking some

finite number of frames together into a group of frames (GOF) and restricting

temporal filtering to within each GOF. Unfortunately, this approach leads to undesired

performance degradation in frames near the GOF boundaries. As the second

contribution of this dissertation, we adapt a known solution [15, 20] to this “boundary-

effect” problem to the situation in which the temporal filtering is motion compensated.

The method for transforming a video sequence into wavelet coefficients via MCTF

is only the first stage in a 3D video-coding system, as the 3D volume of wavelet

coefficients must be fed to a 3D coder which will encode the coefficients into a bitstream.

It is desired that a 3D coder provide not only efficient rate-distortion performance, but

be easily implemented in both software and hardware. As the third major contribution of

this dissertation, a novel 3D coder, 3D-Tarp, is proposed. The 3D-Tarp coder explicitly

estimates the probability that wavelet coefficients have magnitude greater than a given

7

threshold, or are “significant” with respect to the threshold, and uses this estimated

probability to drive a nonadaptive arithmetic coder. By exploiting the well known

Laplacian distribution nature of wavelet-coefficient magnitudes, the 3D-Tarp coder

achieves an exceedingly precise estimate of the probability of significance, resulting

in efficient coding of the significance information. The 3D-Tarp algorithm is also quite

simple, and therefore, easily implemented. Moreover, it can be highly vectorized for

implementation in single-instruction-multiple-data (SIMD) architectures.

In the remainder of this dissertation, we describe, in detail, our approach to fully

scalable video coding. The discussion is organized as follows. In Chap. II, the

relevant literature concerning MCTF is reviewed. Subsequently, redundant wavelet

transforms and how they have been used previously for video coding are described

in Chap. III. In Chap. IV, we present the first major contribution of the dissertation,

our RWMH approach to MCTF which deploys temporal filtering within a redundant

wavelet transform. We improve practical performance of this RWMH MCTF approach

in Chap. V by eliminating poor performance characteristic to MCTF when deployed in

buffers holding a finite number of frames. This sliding-window approach to MCTF is the

second major contribution of this dissertation. In Chap. VI, the third major contribution

of this dissertation, the 3D-Tarp coder, is presented. Then, finally, in Chap. VII, some

concluding remarks are made.

CHAPTER II

MOTION-COMPENSATED TEMPORAL FILTERING

The concept of coding video by grouping several frames together into a 3D

volume and employing transforms in the spatial and temporal directions has been

explored on and off in the literature for the past several decades. However, temporal

transforms for video pose a unique problem that causes 3D video coding to be different

from the coding of other 3D data types, such as volumetric medical imagery or

multispectral/hyperspectral remotely-sensed imagery. Specifically, motion of an object

in time can produce high-frequency coefficients in the temporal transform, even if

the object does not vary in shape or gray-level intensity over the temporal interval.

Consequently, researchers have, in recent times, sought temporal transforms that track

object trajectories so that these transforms successfully temporally decorrelate object

pixels regardless of the motion they undergo. Such temporal transforms are called

motion-compensated temporal filtering (MCTF).

Two families of approaches to MCTF have arisen thus far. The first family of

algorithms combines traditional block-based MC with temporal filtering [8–11, 16, 17];

we refer to these as block-displacement methods. The second family of algorithms

uses a lifting realization of the temporal DWT with MC applied along the lifting steps,

as proposed by Secker and Taubman in [5, 6]. In this chapter, we describe these two

approaches in detail.

8

9

2.1 Block-Displacement Methods

First proposed by Ohm [8, 16], then further developed by Woods et al. [9, 10], the

block-displacement methods have a long history in the area of 3D subband video coding,

naturally providing the spatial-resolution as well as frame-rate scalability which are

increasingly expected of modern multimedia applications. Although a popular approach

to MCTF, block-displacement techniques have traditionally encountered a number of

drawbacks. First, the rigid block-motion model fails to capture all aspects of the

motion field, leaving significant numbers of pixels “unconnected” between frames; these

unconnected pixels are coded separately to the detriment of coding efficiency. Second,

it is difficult to achieve sub-pixel accuracy in the MCTF while maintaining invertibility

of the temporal transform. Finally, implementation of temporal filters, other than the

simple Haar filter, is hindered by the numerous unconnected pixels.

In block-displacement methods, the process of temporal filtering uses block

matching. That is, video frames are divided into blocks, and motion vectors of the

blocks in the current frame point to the closest matching blocks in the reference frame.

If there is no motion, or only pure translational motion, the motion vectors provide a one-

to-one mapping between pixels in the reference frame and pixels in the current frame.

This one-to-one mapping between frames then provides the trajectory for filtering in

the temporal direction for MCTF. However, in more realistic video sequences, motion

is usually much more complex, yielding one-to-many mappings for some pixels in the

reference frame and no mapping for others, as illustrated in Fig. 2.1. These latter pixels

are thus “unconnected.” Unconnected pixels can detrimentally affect both overall coding

efficiency and subjective video quality since they cannot be directly included in MCTF.

In fact, an essential component of any block-displacement method is some solution to

the temporal filtering of unconnected pixels.

10

Current Frame Reference Frame

unconnected pixels

Figure 2.1: In motion estimation of block-displacement methods, blocks in the reference
frame corresponding to those in the current frame typically overlap. Thus,
some pixels in the reference frame are mapped several times into the
current frame while other pixels have no mapping. These latter pixels are
“unconnected”.

11

nn
tt

mm

x 2− x 1 / 2

x 2− x 1 / 2

x 2+ x 1 / 2

2x 1/ 2

: connected pixel
: unconnected pixel

x1 m,n x2 m,n l m,n h m,n

Figure 2.2: MCTF based on the Haar filter. x1(m,n), x2(m,n), l(m,n), and h(m,n)
are reference, current, lowpass, and highpass frames, respectively. 2D
frames are illustrated as 1D signals to facilitate visualization. Integer-pixel
accurate MC is assumed. Adapted from [9].

12

Additionally, since filters with long impulse responses must contend with many

consecutive frames, unconnected pixels make temporal filters other than Haar difficult to

implement. Therefore, attention is usually focused exclusively on the Haar filter in these

methods. In one scale of Haar decomposition, two frames (reference and current) are

decomposed into one lowpass frame and one highpass frame. In [9], for an unconnected

pixel in the reference frame, the original value is inserted into the same location of the

temporal lowpass frame as illustrated in Fig. 2.2. This procedure can be summarized as

follows. For connected pixels, MCTF with the Haar filter is employed as:

l(m− d̄m, n− d̄n) =
1√
2
x̃2(m− d̄m + dm, n− d̄n + dn) +

1√
2
x1(m− d̄m, n− d̄n),

(2.1)

h(m,n) =
1√
2
x2(m,n)− 1√

2
x̃1(m− dm, n− dn). (2.2)

For unconnected pixels, an ad hoc approximation to Haar filtering is used:

l(m,n) =
2x1(m,n)√

2
, (2.3)

h(m,n) =
1√
2
x2(m,n)− 1√

2
x̃1(m− dm, n− dn), (2.4)

where l(m,n) and h(m,n) are temporal lowpass and highpass frames, respectively;

x1(m,n) is the reference frame, x2(m,n) is the current frame, and (dm, dn) is the motion

vector. d̄m and d̄n are nearest integers to dm and dn, respectively, while x̃1 and x̃2 are

interpolated values if motion vectors are sub-pixel accurate; otherwise, integer-pixel

accuracy is assumed and d̄m = dm, d̄n = dn, x̃1 = x1, and x̃2 = x2.

13

The synthesis procedure can be derived from the above analysis equations. For

connected pixels we have:

x1(m− dm, n− dn) =
1√
2
l(m− dm, n− dn)− 1√

2
h(m,n), (2.5)

x2(m,n) =
1√
2
l(m− dm, n− dn) +

1√
2
h(m,n), (2.6)

while for unconnected pixels we have:

x1(m,n) =
1√
2
l(m,n), (2.7)

x2(m,n) =
1√
2
l(m− dm, n− dn) +

1√
2
h(m,n). (2.8)

Since the temporal transform is invertible, the original frames can be perfectly

reconstructed, only for integer-pixel-accurate MC wherein x̃1 = x1, x̃2 = x2, dm = d̄m,

and dn = d̄n. However, for sub-pixel-accurate MC, because of the imperfect spatial

interpolation (e.g. x̃1 6= x1, x̃2 6= x2), only lossy reconstruction can be achieved. Thus,

the block-displacement methods suffer from a lack of temporal-transform invertibility

when sub-pixel accuracy is employed.

Although recent advances have alleviated some of the ill effects of unconnected

pixels in block-displacement techniques (i.e., resorting to a lifting implementation

of the temporal transform greatly facilitates sub-pixel accuracy [6, 10, 11, 17], while

bidirectional prediction improves the coding efficiency of unconnected pixels [10]), the

block-based model remains limited in its ability to adequately capture motion for MCTF.

2.2 Lifting Implementation of Temporal Transforms

It has been recognized that a lifting implementation of the temporal transform

permits MC schemes more general than block displacement to be implemented in an

14

easily inverted fashion [6]. For example, let x1(m,n) and x2(m,n) be two consecutive

frames of a video sequence, and let Wi,j denote the operator that maps frame i onto the

coordinate system of frame j through the particular MC scheme of choice. Ideally,

we would want W1,2 [x1] (m,n) ≈ x2(m,n). Haar-based MCTF would then be

implemented via lifting as:

h(m,n) =
1

2
(x2(m,n)−W1,2 [x1] (m,n)) , (2.9)

l(m,n) = x1(m,n) +W2,1 [h] (m,n), (2.10)

where l(m,n) and h(m,n) are the lowpass and highpass frames, respectively, of the

temporal transform [6]. This formulation, which can be easily extended to more

complicated filters, permits any motion model to be used since the lifting decomposition

is easily inverted as:

x1(m,n) = l(m,n)−W2,1 [h] (m,n), (2.11)

x2(m,n) = 2h(m,n) +W1,2 [x1] (m,n). (2.12)

For one scale of lifting-based Haar MCTF, we have two motion fields, the forward field

W2,1 and the backward field W1,2 for every pair of frames, or one field per frame. It can

be shown that, for multiple scales of temporal transformation, we have approximately

two fields per frame [5].

The lifting-based MCTF process can be easily extended to longer wavelet filters,

such as the biorthogonal 5-3 filter (i.e., linear lifting). Let x2k(m,n) and x2k+1(m,n)

denote even- and odd-frame subsequences of the original video sequence, respectively.

15

The 5-3 lifting steps can be summarized as follows [6],

hk(m,n) = x2k+1(m,n)− 1

2
(W2k,2k+1[x2k](m,n) +W2k+2,2k+1[x2k+2](m,n)) ,

(2.13)

lk(m,n) = x2k(m,n) +
1

4
(W2k−1,2k[hk−1](m,n) +W2k+1,2k[hk](m,n)) , (2.14)

while the inverse transform is

x2k(m,n) = lk(m,n)− 1

4
(W2k−1,2k[hk−1](m,n) +W2k+1,2k[hk](m,n)) , (2.15)

x2k+1(m,n) = hk(m,n) +
1

2
(W2k,2k+1[x2k](m,n) +W2k+2,2k+1[x2k+2](m,n)) .

(2.16)

Each highpass frame is actually the residual from a bi-directional motion-compensated

prediction of the two neighboring original video frames along the motion trajectories. It

is important to note that the number of motion-mapping operators grows by a factor of

two compared to that of the Haar filter.

The use of traditional block matching to provide the motion fields Wi,j for lifting-

based MCTF is problematic. Although block-based ME can produce motion mappings

Wi,j and Wj,i (e.g., [10]), unconnected pixels are not accounted for in the MCTF in this

case, and, thus, the backward Wi,j and forward Wj,i motion mappings are not inverses

of one another. Consequently, the unconnected pixels must be processed separately

from the MCTF, and either both motion mappings must be transmitted to the decoder,

or one mapping must be approximately estimated from the other. If it is desired that

the MCTF must be invertible, then the encoder must code more than one motion field

per frame. Specifically, for the Haar transform, two fields per frame are required; for

the 5-3 transform, four fields per frame are needed. In order not to overly burden the

16

bitstream with motion-vector overhead, one would prefer to not increase this overhead

beyond that for traditional hybrid coders like H.263 and MPEG-2, namely, one motion

field per frame. In order to provide the requisite invertibility of the motion fields, it has

been proposed that mesh-based MC be used [5, 6].

2.3 Lifting MCTF with Meshes

In recent years, mesh-based ME/MC (e.g., [21–25]) has been proposed to exploit

geometries more general than traditional rectangular blocks, in order to provide more

accurate modeling of object motion in video. The simplest mesh structure, the triangle

mesh, has been applied using both regular (e.g., [21]), as well as irregular (e.g. [22–

25]), geometry; in the latter case, irregular triangle meshes are typically explicitly

adapted to image content, while regular triangle meshes are typically constructed by

subdividing traditional block geometries irrespective of image content. In either case,

the ME process involves the tracking of triangle vertices, or “control points,” from one

frame to another, while MC involves the mapping of the contents of each triangle from

one frame to another using an affine transform.

2.3.1 Mesh-based MC/ME and Affine Transforms

Although it is possible to iteratively optimize control-point motion to globally adapt

the mesh from one frame to the other [21], a simpler ME strategy, which is illustrated in

Fig. 2.3, involves centering a small block about each control point and estimating motion

of the block from one frame to the next in a process akin to traditional block-based ME

[23–25]. In either case, after control-point motion is determined, an affine transform is

constructed for each triangle based on the positions of its three control points in both

frames. The transform is then applied to map each pixel in the triangle into the other

17

Figure 2.3: A simple mesh ME strategy. A small block centered about each control point is used to estimate motion of the
control point from one frame to the next.

18

frame, while some form of interpolation, often bilinear interpolation, is used to resolve

the subpixel positions inevitably produced by the mapping [23–25].

Affine transforms are widely used in computer graphics. In homogeneous

coordinates, affine transforms can represent translation, rotation, and scaling.

Consequently, an affine transform can map a point inside one triangle to point inside

another triangle. The affine transform is a vector-matrix equation,

x′

y′

1

=

a1 a2 a3

b1 b2 b3

0 0 1

x

y

1

, (2.17)

where x and y are the coordinates of a coefficient in a triangle in the current frame, x′ and

y′ are the corresponding coordinates in the reference-frame triangle, and a1, a2, a3, b1,

b2, and b3 are the six parameters of an affine transform that is determined for each pair of

current- and reference-frame triangles independently [22]. To determine the transform

parameters, we evaluate (2.17) for each of the three vertices of the triangle in the current

frame using the known relation between the current- and reference-frame vertices,

x
′

y′

 =

x

y

−

∆x

∆y

 , (2.18)

to yield six equations in six unknowns. This procedure is illustrated in Fig. 2.4. Once

the parameters of the transform are determined, it is applied to a coefficient location in

the current frame to determine the corresponding location in the reference frame, from

which a prediction of the coefficient is determined. Bilinear interpolation is employed to

calculate predictions for locations that lie off the RDWT-coefficient grid in the reference

frame.

19

((x’11, y’11))

((xx33, y33))((xx22, y22))

((x’33, y’33))

((xx11, y11))

((x’22, y’22))

vv11

vv22

vv33

AA

BB

Figure 2.4: Affine transformation. 4A is a triangle in reference frame. 4B is a triangle
in current frame. Motion vector vi = (∆xi ,∆yi). The affine transformation
parameters a1, a2, a3, b1, b2, and b3 between these two triangles can be
calculated using all the known values.

20

2.3.2 Motion Fields for Mesh-based MCTF

In [5, 7], it is proposed to use triangular mesh-based MC in lifting MCTF in order

to circumvent the limitations of the block-displacement motion model. Since mesh-

based geometries can account for local expansions and contractions in the motion field,

unconnected pixels do not occur. Consequently, the forward motion field, Wj,i, and

the backward motion field, Wi,j , are inverses of each other and only one field need

be encoded. In [5], this fact is used to significantly reduce the number of encoded

motion fields, and further reduction comes from the observation that, in a multiple-

scale temporal transform, the motion fields at each transform scale closely resemble one

another. Specifically, in [5], a regular triangular mesh is formed in one frame by dividing

square blocks along their diagonals, and motion vectors are estimated for each vertex of

the mesh. By combining this mesh-based MCTF with embedded spatial coding of the

temporally transformed frames, the system of [5] achieves full temporal, resolution, and

fidelity scalability with motion overhead on the order of one motion field per frame.

For example, motion fields for two temporal transform scales with the 5-3 filter are

illustrated in Fig. 2.5. If the ME model were block-based, the discontinuous motion

fields would make F11 different from the inverse of B11. However, unlike block-

based ME, mesh-based ME can track more complex motion to yield continuous motion

fields without the unconnected-pixel problem, thereby producing motion fields that are

perfectly invertible. Thus, as indicated in Fig. 2.5, only two motion fields, F12 and

B21, need be coded. The forward mapping F21 is recovered by inverting of B21, while

concatenating F12 and B21 produces B11. Finally, B12 and F11 are the inverses of F12

and B11, respectively. Consequently, only F12 and B21 need to be coded in order to

recover all six motion fields, given that the motion fields are continuous and invertible.

As originally proposed, the system of [5, 7] uses a uniform, regular triangle mesh

resulting from the dividing of the frame into square blocks and the splitting of each

21

Frame 0 Frame 1 Frame 2

lowpass 0 lowpass 1

BB11 BB12

FF11
FF12

BB21

FF21

Figure 2.5: Motion fields for two scales of temporal transform with the 5-3 filter. Fij
denotes the jth forward mapping in the ith transform scale and Bij is the
corresponding backward mapping. Adapted from [5].

22

block along its diagonal. The control points of this uniform mesh are tracked from one

frame to the next via the iterative hexagonal-refinement optimization of [21]. In our

investigations to follow in Chap. IV, we also use this regular triangle-mesh structure;

however, we opt for the simpler block-based ME strategy of [23] to determine control-

point motion.

2.4 Motion Estimation with Subpixel Accuracy

In video sequences, all pixels are assumed to lie at integer positions; however,

objects do not necessarily move in integer-pixel displacements. Consequently, modern

ME/MC algorithms often employ motion vectors with resolution increased to subpixel

accuracy. This increased accuracy typically yields a better prediction of motion at the

cost of a higher motion-vector rate overhead. In many cases, however, a net gain in

rate-distortion performance is achieved.

In subpixel-accurate ME/MC, motion vectors often point to positions in between

integer pixels, thereby requiring some form of interpolation to resolve subpixel values.

The simplest approach is perhaps bilinear interpolation, and extensive literature has

shown that a simple bilinear interpolation achieves good performance for half-pixel

accuracy in traditional block-based ME/MC systems. However, to further increase

accuracy beyond half-pixel in these systems, bilinear interpolation does not typically

improve performance since the additional motion-vector overhead usually outweighs

the potential reduction in distortion [26]. As a result, more sophisticated interpolation

filters replace bilinear interpolation in many modern systems; for example, quarter-pixel

accuracy is achieved in the block-based ME/MC procedure of MPEG-4 using an 8-tap

filter [26].

In block-based ME/MC, increasing the resolution of a motion vector affects the

accuracy with which every pixel in the block is predicted. However, for triangle-

23

mesh ME/MC, rate-distortion gain due to subpixel-accuracy is difficult to foresee, since

increased resolution of control-point motion may have only a modest effect on the

affine transform itself. Additionally, the affine transform already interpolates to subpixel

accuracy in the interior of the triangle even when the control points move with integer

displacement. However, we will see later that using half-pixel accuracy does offer rate-

distortion benefits in the triangle-mesh ME/MC which we use in the 3D video coder we

propose in Chap. IV. This coder combines the concept of MCTF as described above with

a form of multihypothesis ME/MC that employs diversity of phase in redundant wavelet

expansions to improve MC performance. We overview the general ways redundant

wavelet transforms have been used previously in video coding, as well as detail the

specifics of the phase-diversity approach to MC, in the next chapter before proposing

our 3D redundant-wavelet-multihypothesis (3D-RWMH) coder in Chap. IV.

CHAPTER III

THE REDUNDANT DISCRETE WAVELET TRANSFORM AND ITS USE IN

VIDEO CODING

With the rise of wavelet transforms in still-image coding, there has been great

interest in exploiting the proven coding efficiency of these transforms for video.

However, the interaction between motion estimation/motion compensation (ME/MC)

and the discrete wavelet transform (DWT) has posed some difficulties. The most

straightforward approach to incorporating wavelet transforms into video is to replace

the discrete cosine transform (DCT) widely employed in video-compression systems

with the DWT, such that ME/MC takes place in the spatial domain, and the DWT is

applied to the resulting residual image. However, this simple approach suffers from

blocking artifacts which are exacerbated if the DWT is applied, as is usual, on the whole

video frame rather than block-by-block. The alternative is to have ME/MC take place

in the wavelet domain. Wavelet-domain ME/MC eliminates the inefficiency associated

with blocking artifacts; moreover, resolution-scalable coding, such that a single coded

bitstream can be decoded at multiple frame sizes, becomes possible. However, the

fact that the usual critically sampled DWT, used ubiquitously in image-processing

applications, is shift variant greatly hinders the ME/MC in the wavelet domain. Recent

efforts for wavelet-domain ME/MC have consequently focused on using the redundant

discrete wavelet transform (RDWT). The RDWT is a redundant, or overcomplete,

transform which, in essence, eliminates the downsampling associated with the DWT

to provide shift invariance.

24

25

In this chapter, we review the RDWT and how it has been incorporated into video

coders in recent literature. While most techniques use the RDWT to provide shift

invariance, our own work in this area [18, 19] additionally makes use of the multiple

phases of the RDWT to improve ME/MC prediction. We review this redundant-wavelet

approach to multihypothesis ME/MC in Sec. 3.3.

3.1 The Redundant Discrete Wavelet Transform (RDWT)

The RDWT can be considered to be an approximation to the continuous wavelet

transform that removes the downsampling operation from the traditional critically

sampled DWT to produce an overcomplete representation. The shift-variance

characteristic of the DWT arises from its use of downsampling, while the RDWT is shift

invariant since the spatial sampling rate is fixed across scale. The RDWT has also been

called the “undecimated DWT,” the “overcomplete DWT,” and the algorithme à trous.

The reader is referred to [27] for greater detail on the RDWT, its implementations, and

its relation to the critically sampled DWT.

There are several ways to implement the RDWT, and several ways to represent

the resulting overcomplete set of coefficients. As we will see in the next section,

the most popular coefficient-representation scheme employed in RDWT-based video

coders is that of a “coefficient tree,” as illustrated in Fig. 3.1 for a 1D signal. This tree

representation is easily created by employing filtering and downsampling as in the usual

critically sampled DWT; however, all sets, or “phases,” of downsampled coefficients are

retained and arranged as “children” of the signal that was decomposed. The process is

repeated on the lowpass bands of all nodes to achieve multiple decomposition scales. It

is straightforward to see that each path from root to leaf in the RDWT tree constitutes

a distinct critically sampled DWT, and there are 2J such critically sampled DWTs in a

J-scale decomposition. An alternative, and equivalent, implementation of the RDWT

26

tree representation comes from employing consistent subsampling phase and shifting

the lowpass bands by one sample to generate children in the tree. Indeed, this “low-

band-shift” [28] method has been a popular implementation for the RDWT-based video

coders we consider in the next section.

The tree representation of RDWT coefficients makes for convenient identification

of critically sampled DWTs within the overcomplete coefficient set. However,

the algorithme à trous implementation yields perhaps the most natural coefficient

representation. In this implementation, decimation following wavelet filtering is

eliminated, and, for each successive scale of decomposition, the filter sequences

themselves are upsampled, creating “holes” of zeros between nonzero filter taps. As

a result, the size of each subband resulting from an RDWT decomposition is exactly

the same as that of the input signal, as is illustrated for a 1D signal in Fig. 3.2. The

advantage of this “spatially coherent” representation is that each RDWT coefficient is

located within its subband in its spatially correct position. As illustrated in Fig. 3.2, by

appropriately subsampling each subband of an RDWT, one can produce exactly the same

coefficients as does a critically sampled DWT applied to the same input signal. In fact,

in a J-scale 1D RDWT, there exist 2J distinct critically sampled DWTs corresponding

to the choice between even- and odd-phase subsampling at each scale of decomposition.

Additionally, the coefficients at a given scale in the tree representation of the RDWT

can be appropriately “interleaved” to produce the subbands of the spatially coherent

representation; i.e., the two representations consist of exactly the same coefficient

values.

The situation is similar for 2D decompositions implemented with separable 1D

transforms. In this case, each node in the tree representation would have four children

corresponding to the choice of even and odd subsampling in both the horizontal and

27

{
LEE

2 ; HEE
2

} {
LEO

2 ; HEO
2

}
����
HHHH

{
LE

1 ; HE
1

}

{
LOE

2 ; HOE
2

} {
LOO

2 ; HOO
2

}
!!!!
HHHH

{
LO

1 ; HO
1

}

XXXXXXX
x

Figure 3.1: Tree representation of a two-scale RDWT of 1D-signal x. Approximation
and detail coefficients at scale j are Lj and Hj , respectively. E indicates
even-phase subsampling; O indicates odd-phase subsampling. A path from
root to leaf indicates a distinct critically sampled DWT; a J-scale RDWT
consists of 2J such DWTs.

Original Signal

1 scale RDWT

2 scale RDWT

2 scale DWT

E O E O E O E O

E O E O E O E O

EE OE EO OO EE OE EO OO

EE OE EO OO EE OE EO OO

E O E O E O E O

LL11

HH11

LL22

HH22

HH11

EE EE EE EE E E E E

LL22
HH22 HH11

Figure 3.2: Spatially coherent representation of a two-scale RDWT. Coefficients retain
their correct spatial location within each subband. Gray coefficients indicate
the subsampling pattern necessary to recover one of the 2J critically sampled
DWTs.

28

vertical directions, and a J-scale 2D RDWT consists of 4J distinct critically sampled

DWTs. A 2D RDWT is illustrated in Figs. 3.3 and 3.4.

The RDWT is a perfectly reconstructing transform. To invert the RDWT, one

can simply independently invert each of the constituent critically sampled DWTs and

average the resulting reconstructions together. However, this implementation of the

inverse RDWT incurs unnecessary duplicate synthesis filterings of the highpass bands;

thus, one usually alternates between synthesis filtering and reconstruction averaging on

a scale-by-scale basis in practical implementations (see [29]). The final reconstruction

of this latter implementation, however, is identical to that produced by the conceptually

simpler former approach.

3.2 Motion-Estimation/Motion-Compensation (ME/MC) Using The RDWT

In recent literature, the RDWT has been used extensively within the traditional

hybrid video-coding architecture that features a motion compensated-prediction (MCP)

feedback loop. Later, in Chap. IV, we introduce a system that employs the RDWT in

the alternative 3D MCTF architecture. However, first we review those systems proposed

with the traditional MCP loop.

The majority of prior work concerning RDWT-based video coding originates in the

work of Park and Kim [28], in which the system shown in Fig. 3.5 was proposed. In

essence, the system of Fig. 3.5 works as follows. An input frame is decomposed with

a critically sampled DWT, and the resulting wavelet-domain coefficients are partitioned

into blocks. Each block consists of all the coefficients in the DWT that correspond to a

particular spatial-domain block in the original image, and thus includes coefficients from

all subbands at all scales. A full-search block-matching algorithm then computes motion

vectors for each wavelet-domain block; the system uses as the reference for this search

an RDWT decomposition of the previous reconstructed frame. Since these reconstructed

29

BB22

DD22

VV22

HH22 VV11

0 1 2 3
4 5 6 7

8 9 10 11
12 13 14 15

DD11HH11

0 1
2 3

RDWT

Subsampled DWT

BB22
VV22

HH22
DD22

VV11

HH11
DD11

Figure 3.3: Spatially coherent representation of a two-scale 2D RDWT. Coefficients
retain their correct spatial location within each subband, and each subband is
the same size as the original image. Bj ,Hj , Vj , andDj denote the baseband,
horizontal, vertical, and diagonal subbands, respectively, at scale j. This
figure shows that subsampling recovers one of the 4J critically sampled
DWTs.

30

Figure 3.4: An example of an RDWT applied to an image. Bj , Hj , Vj , and Dj denote
the baseband, horizontal, vertical, and diagonal subbands, respectively, at
scale j.

31

RDWT coefficients are arranged in the tree representation as described above, the ME

procedure of this system, which is shown in Fig. 3.6, amounts to identifying, for each

block of the current frame, a particular critically sampled DWT in the reference-frame

tree (a root-to-leaf path), and a displacement within that DWT. Transmission of a

single motion vector per block suffices to convey all of this motion information to the

decoder. A suitable cross-scale distortion metric that averages distortions incurred in

each subband is used to drive the ME search. In summary, a single critically sampled

DWT of the current frame is predicted in a block-by-block manner from a wavelet-

domain reference frame wherein all phases are retained. By using such an overcomplete

expansion of the reference frame, the best-matching block from all possible phases is

obtained, and the shift-variant nature of the critically sampled DWT is overcome.

Subsequent work has further refined the system depicted in Fig. 3.5. In particular,

in [30–32], multiple motion vectors are transmitted for each current-frame block by

estimating motion in each subband independently, while the system of [33] employs

interpolation between the coefficients in distinct root-to-leaf paths of the RDWT tree

to enable motion compensation to be performed with sub-pixel accuracy. Additionally,

resolution-scalable video coders [31, 32, 34, 35] have been devised that constrain the

ME/MC procedure to process each scale of the wavelet decomposition independently.

Our own prior work [24, 25, 36] in this area departs significantly from the RDWT-

based video-coding architecture originating in [28] and shown in Fig. 3.5. Specifically,

we have designed a system which adapts the triangle-mesh ME/MC technique described

in Sec. 2.3 to the wavelet domain by replacing the block-based ME/MC of [28] with

triangle-mesh ME/MC. This modification to the system of [28] necessitates that we

employ all phases of an RDWT of the current input frame to estimate motion rather than

a single critically sampled DWT of the current frame. The encoder of our redundant-

wavelet-triangle-mesh (RWTM) video-coding system [24, 25, 36] is depicted in Fig. 3.7.

32

++

−−

++

++

Input Image
Sequence Output Bitstream

CODEC

CODEC−1

DWT−1

Motion
Compensation

DWT

Motion
Estimation zz−1RDWT

Motion Vectors

Figure 3.5: The RDWT-based video coder of [28]. z−1 = frame delay, CODEC is any
still-image coder operating in the critically-sampled-DWT domain.

33

Figure 3.6: The ME procedure of [28], spatially coherent representation. B is the block
size for block-matching ME.

34

++

−−

++

++

Input Image
Sequence

Output Bitstream

Control Points

CODEC

CODEC−1

DWT−1

RDWT

Points
Selection

Affine
Transform

RDWT

Motion
Estimation

Motion
Compensation

zz−1

Triangulation

Motion Vectors

Figure 3.7: The RWTM coder of [24, 25, 36].

35

The input image is first transformed using an RDWT, and control points, located on

most salient image edges, are identified in the previous reference frame. The motion

of these control points from the reference frame to the current frame is estimated

in the RDWT domain, and motion vectors are transmitted to the decoder to allow

it to track control-point motion. MC is accomplished by first using a triangulation

algorithm to generate a triangle mesh on the control points in the reference frame

and then using affine transformations to predict, subband by subband, triangles in the

current frame from triangles in the reference frame. Residing in the RDWT domain,

the motion-compensated residual is itself redundant; consequently, it is downsampled

before coding. The final encoding step consists of a wavelet-domain still-image coder—

we have used SPIHT [37], but any wavelet-domain still-image coder would suffice.

The identification of image edges in this system is accomplished through use of a

“correlation mask” calculated across RDWT subbands.

The above systems exploit the redundancy of the RDWT solely to provide shift

invariance, thereby permitted ME/MC to take place in the wavelet domain. The only

exception is the system of [24, 25, 36], which additionally uses the RDWT to aid

tracking the ME/MC mesh in time. In the next section, we present an additional use

of RDWT redundancy—multihypothesis prediction.

3.3 Multihypothesis Motion Compensation (MHMC) and the RDWT

Multihypothesis motion compensation (MHMC) [38] forms a prediction of pixel

s(x, y) in the current frame as a combination of multiple predictions in an effort to

combat the uncertainty inherent in the motion-estimation process. Assuming that the

combination of these hypothesis predictions is linear, we have that the prediction of

s(x, y) is

s̃(x, y) =
∑

i

wi(x, y)s̃i(x, y), (3.1)

36

where the multiple predictions s̃i(x, y) are combined according to some weights

wi(x, y). A number of multihypothesis techniques for MC have been proposed over

the last decade. One approach to MHMC is to implement multihypothesis prediction

in the spatial domain; i.e., the predictions s̃i(x, y) are culled from spatially distinct

locations in the reference frame. This class of MHMC includes fractional-pixel MC [39]

and overlapped block motion compensation (OBMC) [40, 41]. Another approach is to

deploy MHMC in the temporal domain by choosing predictions s̃i(x, y) from multiple

reference frames. Examples of this class of MHMC are bidirectional prediction (B-

frames) as used in MPEG-2 and H.263 and long-term-memory motion compensation

(LTMMC) [42]. Of course, it is possible to combine these two classes by choosing

multiple predictions that are diverse both spatially and temporally [43]. Note that the

calculation of (3.1) in the decoder must be identical to that in the encoder; consequently,

it will be necessary to transmit the weights wi(x, y) to the decoder as side information

in the case that the weights are not fixed or not determinable from information already

possessed by the decoder. Although implementation dependent, B-frames and LTMMC

typically incur this additional side-information burden while fractional-pixel MC and

OBMC do not.

In [18, 19, 36], we proposed a new class of MHMC by extending the

multihypothesis-prediction concept into the transform domain. Specifically, we perform

ME/MC in the RDWT domain, and use multiple predictions that are diverse in transform

phase. An interesting aspect of our approach is that low-resolution information is

inherently predicted with a greater number of hypotheses, which corresponds to the

greater difficulty inherent in estimating motion in signals with spatially low resolution.

Additionally, since the weighting of the individual predictions is carried out implicitly

in the form of an inverse transform, no side information need be sent to the decoder.

37

Our redundant-wavelet multihypothesis (RWMH) technique works as follows. In

all prior RDWT-based coders [24, 25, 28, 30–35], the coefficients of a critically sampled

DWT of the current frame are motion compensated using an RDWT of the reference

frame. However, if an RDWT of the current frame were to be used instead, there would

be 4J distinct critically sampled DWTs for the current frame. Using Fig. 3.3 as an

example, in existing techniques, only the gray coefficients are motion compensated,

i.e., only one critically sampled DWT of the current frame is involved in ME/MC

procedure. These techniques are thus single-hypothesis methods. We could have

used the coefficients of any other critically sampled DWT in the ME/MC process to

have obtained another version of the motion fields and residual coefficients. In fact,

each of the critically sampled DWTs within the RDWT of the current frame will view

motion from a different perspective, and can be independently motion-compensated.

Consequently, if motion is predicted in the RDWT domain and all DWTs participate in

ME/MC, the inverse RDWT can construct a multihypothesis prediction in the form of

(3.1). Specifically, for a J-scale RDWT, the reconstruction from DWT i of the RDWT

is s̃i(x, y), 0 ≤ i < 4J , while wi(x, y) = 4−J , ∀i. Below, we describe our RWMH

video-coding system [18, 19, 36] that performs MHMC in precisely this fashion.

The encoder of our RWMH video-coding system is depicted in Fig. 3.8. The current

and reference frames are transformed into RDWT coefficients, and both ME and MC

take place in this redundant-wavelet domain. In a J-scale RDWT decomposition, each

B×B block in the original spatial domain corresponds to 3J+1 blocks of the same size,

one in each subband. The collection of these co-located blocks is called a set. In the ME

procedure, which is shown in Fig. 3.9, block matching is used to determine the motion

of each set as a whole. Specifically, a block-matching procedure uses a cross-subband

distortion measure that sums absolute differences for each block of the set similar to the

cross-subband ME procedure of [28].

38

Input Image
Sequence ++

−−

++

++

Output Bitstream

CODEC

CODEC−1

Motion
Compensation

RDWT

Motion
Estimation zz−1

 Motion Vectors

RDWT−1

RDWT

Figure 3.8: Block diagram of the RWMH video-coding system [18, 19, 36]. CODEC is
any still-image coder.

39

Figure 3.9: The ME procedure of [18, 19, 36].

40

After the ME search has determined motion vectors for each set, a motion-

compensated frame is created in the RDWT domain using the same motion vector

for each block of the set. The inverse RDWT is performed on this RDWT-domain

motion-compensated frame, combining the multiple phases into a spatial-domain

multihypothesis prediction. This spatial-domain prediction is subtracted from the

current frame, and the residual is coded. This final encoding step consists of a still-

image coder; for the experiments below, we use SPIHT [37], but any still-image coder,

wavelet-based or otherwise, would suffice.

We demonstrate that our RWMH system yields significant performance

improvement over the system of [28], which is a single-phase equivalent to our RWMH

system. In the system of [28], ME is executed within the RDWT domain; however,

only a single critically sampled DWT is predicted, and the ME is optimized to that

single phase. Average PSNR figures for fixed bit rate are tabulated in Table 3.1, and

frame-by-frame PSNR profiles for two sequences are shown in Figs. 3.10 and 3.11. In

these results, “RDWT Block” refers to the system of [28]. In addition, “Spatial Block”

refers to block-based ME/MC in the spatial domain, the traditional method employed in

video-coding standards, followed by an entire-image DWT and then SPIHT coding of

the DWT coefficients. In these results, we code grayscale sequences with the first frame

intra-coded (I-frame), while all subsequent frames use ME/MC (P-frames). All wavelet

transforms (DWT and RDWT) use the popular 9-7 biorthogonal filter with symmetric

extension, and all ME/MC methods use integer-pixel accuracy.

These results illustrate that multihypothesis prediction in the form of our RWMH

system achieves at least a 0.4-dB gain over single-phase prediction. For sequences

with complex motion, our RWMH system achieves even larger performance gains. For

example, RWMH exhibits a gain of nearly 1 dB over the system of [28] and a gain of

over 2 dB over the spatial-domain system for the “Football” sequence.

41

Table 3.1: Distortion averaged over all frames of the sequences, from [18, 19, 36].
PSNR (dB)

Spatial RDWT
Block Block RWMH

Football† 26.3 27.9 28.6
Susie 36.0 37.4 37.8
Mother & daughter 40.2 40.8 41.2
Coastguard 28.1 28.9 29.5

Rate is 0.25 bpp except †, which is 0.5 bpp.

0 10 20 30 40 50 60 70 80 90 100
25

26

27

28

29

30

31

Frame Number

P
S

N
R

 (d
B

)

Spatial Block
RDWT Block
RWMH

Figure 3.10: Frame-by-frame PSNR for “Football” at 0.5 bpp (1.3 Mbps), from [18, 19,
36].

42

0 10 20 30 40 50 60 70
32

33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

 (d
B

)

Spatial Block
RDWT Block
RWMH

Figure 3.11: Frame-by-frame PSNR for “Susie” at 0.25 bpp (644 kbps), from [18, 19,
36].

CHAPTER IV

THE 3D-RWMH SYSTEM

As described in Sec. 3.3, a number of multihypothesis techniques for MC

have been proposed in the past, including fractional-pixel-accurate MC, B-frames,

OBMC, and multiple reference frames. These techniques employ multiple predictions

that are diverse spatially or temporally to improve the overall predictive ability of

the system. In [18, 19, 36], we introduced a new class of MHMC in which the

multihypothesis-prediction concept is extended into the RDWT-transform domain, and

uses multiple predictions that were diverse in transform phase. This redundant-wavelet-

multihypothesis (RWMH) approach was outlined in Sec. 3.3. In the RWMH paradigm,

each one of the critically sampled DWTs of an RDWT “views” motion from a different

perspective and thus forms an independent hypothesis of the true motion of the video

sequence, while the inverse RDWT combines these multiple hypotheses into a single

prediction. In the system of Fig. 3.8, this prediction is incorporated into the MC

feedback loop of a hybrid video-coding architecture employing block-based ME/MC. In

this chapter, we introduce the RWMH concept into the MCTF framework to eliminate

the MC feedback loop and produce a fully scalable 3D video coder. The discussion in

this chapter elaborates on our previous publications [44, 45] in which the 3D-RWMH

system was first developed.

4.1 System Overview

The encoder of our 3D-RWMH video-coding system, depicted in Fig. 4.1, first

performs a spatial RDWT on each frame and then performs MCTF in the redundant-

43

44

wavelet domain. This is in contrast to many prior MCTF techniques [5–11] in

which MCTF takes place in the spatial domain. Since MCTF is performed in the

RDWT subbands, it is overcomplete spatially; consequently, before coding the temporal

subbands, we remove this spatial redundancy by performing an inverse spatial RDWT

on each frame. In essence, each RDWT phase in each frame can be considered to

have viewed the MCTF from a different perspective and thus forms an independent

hypothesis about the temporal filtering taking place. The inverse spatial RDWT

implicitly combines these hypotheses into a multihypothesis estimate of what the

true temporal filtering should be. After the inverse spatial transform, the temporally

transformed frames are coded by a suitable 3D coder. In our experiments, we use 3D-

SPIHT [4], but other coders are possible.1 In our 3D-RWMH system, motion is tracked

using a triangular mesh deployed in each of the subbands of the RDWT decomposition

of each frame. Since all RDWT subbands are the same size, the same triangle mesh is

used for all subbands of a frame, as described below.

4.1.1 Motion Estimation and Compensation

We first describe the ME/MC procedure of the 3D-RWMH system assuming integer-

pixel accuracy; we consider the case of subpixel-accurate ME/MC below. The ME

procedure for the 3D-RWMH system starts by identifying a uniform, regular triangular

mesh in the first frame of the sequence by dividing the frame into square blocks and

splitting each block along its diagonal. Motion into the next frame is estimated by

centering a small block at each vertex in the first frame and finding the best matching

block in the second frame, following the method outlined in Sec. 2.3.1. Motion of the

control points from the second frame to the third frame is tracked in this same manner,

1For many 3D coders, such as 3D-SPIHT, a spatial forward DWT (not shown in Fig. 4.1) is applied to
each frame following the spatial inverse RDWT of the 3D-RWMH system, since the coefficients resulting
from 3D-RWMH are in the DWT domain in only one dimension (the temporal dimension).

45

Spatial
RDWT

Temporal
DWT

Spatial
RDWT−1 3D SPIHT

Vertex
Selection

Triangulation Affine
Transform

Motion
Estimation

Input Image
Sequence

Motion Vectors

Output
Bitstream

Figure 4.1: Block diagram of the 3D-RWMH video-coding system.

46

and so on to subsequent frames. If the motion vectors have integer-pixel accuracy, the

control points in every frame reside on the integer-pixel grid.

We search for the motion of the control points of the mesh by minimizing a distortion

metric that spans across all subbands of the RDWT decomposition, as we did in [24, 25].

Specifically, the motion vector, (∆x,∆y), for control point (x, y) in the reference frame

is the vector in the search window about (x, y) in the current frame that minimizes the

mean absolute error (MAE),

MAE(x, y,∆x,∆y) =
1

B2

bB/2c∑

m=−bB/2c

bB/2c∑

n=−bB/2c
AE(x+m, y + n,∆x,∆y). (4.1)

The absolute error (AE) is

AE(x, y,∆x,∆y) = 2−J/2
∣∣∣Bcur

J (x+ ∆x, y + ∆y)−Bref
J (x, y)

∣∣∣+

J∑

j=1

2−j/2
{∣∣∣V cur

j (x+ ∆x, y + ∆y)− V ref
j (x, y)

∣∣∣+

∣∣∣Hcur
j (x+ ∆x, y + ∆y)−H ref

j (x, y)
∣∣∣+

∣∣∣Dcur
j (x+ ∆x, y + ∆y)−Dref

j (x, y)
∣∣∣
}
, (4.2)

where cur and ref denote subbands from the current and reference frames, respectively,

and Bj , Hj , Vj , and Dj are the baseband, horizontal, vertical, and diagonal subbands,

respectively, at scale j. We assume block size B is odd. In the search, motion vectors

are chosen from a window of sizeW > 0 such that−W ≤ ∆x,∆y ≤ W . The evolution

of a regular triangle mesh over frames is illustrated in Fig. 4.2.

For an N -frame video sequence, this ME process results in N − 1 motion fields

regardless of the temporal filter used, as illustrated in Fig. 4.3. We note that this is the

same number of motion fields produced by a traditional coder with a MC feedback

47

Frame 0

Frame 2 Frame 3

Frame 1

Figure 4.2: The regular triangle mesh in the first frame and its evolution over subsequent
frames. Only the basebands of the frames are shown.

48

loop. Since each of the N − 1 motion fields are mesh-based and thus completely

invertible, forward and backward motion fields between each pair of frames can be

calculated from these N − 1 fields. Using these forward and backward motion fields,

affine transforms between the triangles of each pair of frames are used to implement

a motion-compensated lifting-based filtering in the temporal direction. This temporal

filtering proceeds by mapping each triangle in a reference frame into the current frame

using an affine transform as described in Sec. 2.3.1; this affine mapping is performed for

each triangle in each subband separately. Bilinear interpolation between the surrounding

four integer-pixel locations is used to resolve subpixel positions produced by the affine

mapping.

We can construct affine transforms between any two frames by concatenating motion

fields from the set of N − 1 motion fields produced by the above ME process. Multiple-

scale temporal transforms are thereby supported since these concatenated motion fields

can be used for affine transforms at the higher temporal decomposition scales, as is

illustrated in Fig. 4.3.

We have found it beneficial to periodically “reset” the triangle mesh rather than

allow the ME of the control points to continue indefinitely. Using this periodic “reset”

operation, we can avoid ME inaccuracies accumulation. Specifically, we track control-

point motion for N ′ frames and then reset the triangle mesh to the initial uniform mesh

(again by diagonally splitting square blocks). We repeat this procedure for the next

N ′ frames. Fig. 4.3 illustrates the motion-tracking and mesh-resetting procedure for

N ′ = 4 and N = 8. A single triangle mesh is used for all subbands of the RDWT;

this is possible since each RDWT subband has the same size. MC proceeds by mapping

each triangle in the reference frame into the current frame using an affine six-parameter

model as described in Sec. 2.3.1; this affine mapping is performed for each triangle in

each subband separately.

49

Input Image
Sequence

ff00 ff44 ff55 ff66ff33ff22ff11 ff77

1 scale
temporal DWT

ll00 ll11 ll22 ll33 hh00 hh11 hh22 hh33

VV0,1 VV1,2 VV2,3 VV3,4 VV4,5 VV5,6 VV6,7

VV0,2 VV2,4 VV4,6

Figure 4.3: Motion fields for MCTF in the 3D-RWMH system for N = 8 and N ′ = 4.
A small triangle in a frame indicates where the triangle mesh is reset to the
uniform mesh. Field Vi,j maps frame i to frame j; concatenated fields are
V0,2 = V0,1 + V1,2, V2,4 = V2,3 + V3,4, and V4,6 = V4,5 + V5,6.

50

4.1.2 Half-pixel Accuracy

The above ME procedure assumes integer-valued motion vectors, while MC in

the form of the affine transform employs interpolation between integer-pixel values

to resolve subpixel positions arising in the mapping. In this section, we describe

modifications to the above ME/MC approach in order to accommodate half-pixel

accuracy.

When the motion-vector resolution is increased to half-pixel accuracy, the motion-

vector search is first carried out as described above for integer-pixel accuracy. Then, the

eight neighboring locations at a distance of
(
±1

2
,±1

2

)
from the best match location are

searched to refine the motion vector to half-pixel resolution. We note that, in the case

that a motion vector points to a location on the half-pixel grid in one frame, the initial

integer-valued search for the motion of the control point into the next frame involves

half-pixel locations. In this case, x and y in (4.1) and (4.2) will refer to half-pixel

locations while ∆x and ∆y will be integer-valued. The subsequent refinement search

will involve both integer- and half-pixel locations.

Recall that, for ME/MC involving triangle meshes, subpixel accuracy is invoked in

the affine-transform mapping of the MC process. In the half-pixel 3D-RWMH system,

we use values on the half-pixel grid as the basis of the interpolation of the affine

mapping. Specifically, the affine-transform mapping from one triangle to another uses

bilinear interpolation applied to the four nearest locations on the half-pixel grid. In

practice, we achieve subpixel accuracy for both ME and MC by interpolating the entire

RDWT subband by factor 2 both horizontally and vertically. Afterward, ME of the

control points and MC with the affine transform are carried out as if on the integer-pixel

grid, and the resulting residual subbands are downsampled to their original size.

We have investigated two methods for producing values on the half-pixel grid—

simple bilinear interpolation and more sophisticated filter-based interpolation. For

51

the latter approach, the interpolation filter we use is the 8-tap filter from [10] with

coefficients {-0.0105, 0.0465, -0.1525, 0.6165, 0.6165, -0.1525, 0.0465, -0.0105}.

Specifically, this 1D FIR filter is applied both horizontally and vertically on the integer-

pixel values to generate values on the half-pixel grid. Recall that, in our 3D-RWMH

system, the ME and MC processes are carried out on each RDWT subband individually;

thus each RDWT subband is interpolated independently.

Motion-vector information for the motion fields resulting from the ME process is

transmitted to the decoder. In our system, the H.261 variable-length-code (VLC) table

for motion-vector data (MVD) is used for coding the integer part of the motion vectors,

while the fractional part of the vectors is sent by appending a single-bit code to each

Huffman codeword.

4.1.3 Experimental Results

We use the “Susie” (64 frames), “Football” (96 frames), “Mother & Daughter” (96

frames), and “Coast Guard” (96 frames) sequences in our experiments. The first two

sequences have a spatial resolution of 352× 240 pixels while the last two sequences are

352× 288. All sequences are grayscale and have a temporal sampling of 30 frames/sec.

(noninterlaced).

In the 3D-RWMH system, the spatial RDWT uses the popular 9-7 biorthogonal filter,

while the temporal filtering uses either the lifting 5-3 biorthogonal filter of (2.13), (2.14),

(2.15), and (2.16), or the lifting Haar filter of (2.9), (2.10), (2.11), and (2.12). The

spatial transform uses symmetric extension at the image boundaries, while the temporal

transform uses symmetric extension at each end of the video sequence. Both the spatial

and temporal transforms use a decomposition of J = 3 levels. For control-point ME,

a block size of B = 17 is used, and motion vectors are searched in a window of size

W = 15. The triangle mesh is reset to the uniform mesh every N ′ = 4 frames; this

52

uniform mesh is the result of diagonal subdividing of 16× 16 blocks. Since 3D-SPIHT

[4]—the core compression engine in the 3D-RWMH system—produces an embedded

coding, the sequence is coded at exactly the specified target rate.

Initially, we assume ME/MC with integer-pixel accuracy. We compare the rate-

distortion performance of the 3D-RWMH system to an equivalent spatial-domain MCTF

system. Specifically, we compare 3D-RWMH using the 5-3 temporal filter (denoted

“3D-RWMH-53”), 3D-RWMH using the Haar temporal filter (denoted “3D-RWMH-

Haar”), and a spatial-domain technique (denoted “SD-MCTF-53”). The spatial-domain

system performs MCTF in the spatial domain and then subsequently employs a critically

sampled spatial transform and embedded coding. In this system, a triangle-mesh ME

procedure identical to that of the 3D-RWMH-53 coder is employed, and, like the 3D-

RWMH-53 system, temporal decomposition takes place with 5-3 biorthogonal lifting

with symmetric extension. This SD-MCTF-53 system is essentially a single-hypothesis

version of the 3D-RWMH-53 coder and corresponds roughly to the system of [5], except

that the ME process is somewhat different, and 3D-SPIHT, rather than JPEG-2000, is

used to code the wavelet coefficients. From the results of Figs. 4.4-4.5 and Table 4.1, we

see that the incorporation of multihypothesis into MCTF yields significant improvement

in rate-distortion performance in comparison to single-hypothesis MCTF. Additionally,

the longer 5-3 temporal filter outperforms the Haar filter in the 3D-RWMH system.

We compare the 3D-RWMH-53 system to the RWMH system described in Sec. 3.3.

From Figs. 4.6-4.7 and Table 4.2, we see that 3D-RWMH-53, which features MCTF and

is fully scalable, outperforms RWMH, which features an ME/MC feedback loop and its

associated difficulties concerning scalability.

Using the 5-3 temporal filter in 3D-RWMH, we compare half-pixel accuracy using

interpolation with the 8-tap filter from [10] to bilinear interpolation in Fig. 4.8. We

see that the 8-tap filter significantly outperforms bilinear interpolation for half-pixel

53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
34

36

38

40

42

44

46

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, integer−pixel
SD−MCTF−53, integer−pixel
3D−RWMH−Haar, integer−pixel

Figure 4.4: Rate-distortion performance for “Susie.”

Table 4.1: Distortion averaged over all frames of the sequences.
PSNR (dB)

3D-RWMH-Haar SD-MCTF-53 3D-RWMH-53
integer-pixel integer-pixel integer-pixel

Football† 28.3 29.3 29.7
Susie 38.8 40.0 40.3
Mother & daughter 42.6 44.3 44.8
Coastguard 29.7 32.0 32.1
Rate is 0.3 bpp except †, which is 0.5 bpp.

54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22

24

26

28

30

32

34

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, integer−pixel
SD−MCTF−53, integer−pixel
3D−RWMH−Haar, integer−pixel

Figure 4.5: Rate-distortion performance for “Football.”

Table 4.2: Distortion averaged over all frames of the sequences.
PSNR (dB)

3D-RWMH-53, integer-pixel RWMH
Football† 29.7 28.6
Susie 40.3 38.5
Mother & daughter 44.8 41.9
Coastguard 32.1 29.5
Rate is 0.3 bpp except †, which is 0.5 bpp.

55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
32

34

36

38

40

42

44

46

bit rate (bpp)

A
V

G
 P

S
N

R
 (d

B
)

3D−RWMH−53, integer−pixel
RWMH

Figure 4.6: Rate-distortion performance for “Susie.”

56

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

22

24

26

28

30

32

34

bit rate (bpp)

A
V

G
 P

S
N

R
 (d

B
)

3D−RWMH−53, integer−pixel
RWMH

Figure 4.7: Rate-distortion performance for “Football.”

57

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
36

38

40

42

44

46

48

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
3D−RWMH−53, 1/2−pixel (Bilinear)

Figure 4.8: Rate-distortion performance for “Susie” for 3D-RWMH with bilinear and
filter-based interpolation.

58

accuracy; subsequently, we use the 8-tap filter exclusively to produce half-pixel values.

As a final body of results, we compare the 3D-RWMH-53 system with half-pixel

accuracy to the bidirectional MC-EZBC system from [10]. Bidirectional MC-EZBC is

a 3D video coder employing traditional block-based MCTF in the spatial domain and

represents perhaps the state-of-the-art of such coders. Temporal filtering is essentially

a bidirectional version of the Haar filter, with a lifting implementation providing 1
8
-

pixel accuracy for ME/MC and appropriate measures to compensate for “unconnected”

pixels. Experimental results are presented in Figs. 4.9-4.12 and in Table 4.3. From these

results, we see that 3D-RWMH-53 with half-pixel accuracy outperforms MC-EZBC. In

particular, a gain on the order of 0.3 to 0.5 dB over MC-EZBC is seen for all sequences

considered.

4.2 Scalability of 3D-RWMH

As stated in Chap. I, a fully scalable video-coding system should provide a high

degree of fidelity, spatial, and temporal scalability. In this chapter, we demonstrate

that the 3D-RWMH-53 system is a fully scalable video-coding system. Additionally,

we present some experimental results comparing the scalability of 3D-RWMH-53 to

that of other systems. A 3D embedded, wavelet-based coder, such as 3D-SPIHT or

the 3D-Tarp coder to be presented in Chap. VI, is used in 3D-RWMH systems to

code the 3D transformed coefficients. 3D-SPIHT, 3D-Tarp, and similar coders give

high compression performance, allow fully progressive transmission, and provide an

embedded bitstream. These qualities make for a video-coding system with a high degree

of fidelity scalability. Consequently, in the remainder of this section, we consider only

spatial and temporal scalabilities of 3D-RWMH systems.

59

Table 4.3: Distortion averaged over all frames of the sequences.
PSNR (dB)

3D-RWMH-53 MC-EZBC 3D-RWMH-53
integer-pixel 1/8-pixel 1/2-pixel

Football† 29.7 29.6 30.1
Susie 40.3 40.9 41.2
Mother & daughter 44.8 45.2 45.5
Coastguard 32.1 32.1 32.4
Rate is 0.3 bpp except †, which is 0.5 bpp.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
36

38

40

42

44

46

48

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.9: Rate-distortion performance for “Susie.”

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22

24

26

28

30

32

34

36

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.10: Rate-distortion performance for “Football.”

61

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
38

40

42

44

46

48

50

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.11: Rate-distortion performance for “Mother & Daughter.”

62

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
26

28

30

32

34

36

38

40

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.12: Rate-distortion performance for “Coastguard.”

63

4.2.1 Spatial Scalability

We use the sequences “Susie”, “Football”, “Mother & Daughter”, and “Coastguard”

for our experiments. We compare the spatial scalability of 3D-RWMH-53 to that of

MC-EZBC. In the experiments, to get a low spatial-resolution video sequence, only

the bits necessary for reconstruction at that particular spatial resolution are decoded

from the encoded bitstream; that is, only some subsets of the spatial subbands are

reconstructed. Then, the inverse MCTF is performed on only the available subbands.

Figs. 4.13-4.16 show the experimental results. In these figures, frames of only a quarter

of the original size of video images are reconstructed. From the figures, we can see

that 3D-RWMH-53 outperforms MC-EZBC for spatial scalability. Individual frames

are shown in Figs. 4.17-4.19, from which we can also see that the 3D-RWMH-53 gives

better subjective performance.

The issue of determining quality of video reconstructed at reduced spatial resolution

is currently a matter of debate within the video-coding community. Unlike the case

of full spatial-resolution reconstruction, we do not have “original” frames at reduced

spatial resolution to which we can compare our reconstructed frames. Consequently, we

must, somewhat arbitrarily, produce a reduced-spatial-resolution version of the original

video sequence in order to permit PSNR calculations. In our experiments, we perform a

J-scale 2D DWT spatially on each of the original images of a sequence, then retain

only the basebands to make a video sequence with size 1/4J of the original size.

Alternatively, we could have simply subsampled the original video images. However,

this approach does not necessarily represent the most appropriate information for low

spatial resolution, particularly in the presence of noise [7].

64

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
38

39

40

41

42

43

44

45

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.13: Rate-distortion performance of 3D-RWMH-53 for “Susie” decoded at
QSIF (176× 120). The bit rate is encoding rate.

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

26

27

28

29

30

31

32

33

34

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.14: Rate-distortion performance of 3D-RWMH-53 for “Football” decoded at
QSIF (176× 120). The bit rate is encoding rate.

66

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
41

42

43

44

45

46

47

48

49

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.15: Rate-distortion performance of 3D-RWMH-53 for “Mother & Daughter”
decoded at QCIF (176× 144). The bit rate is encoding rate.

67

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
30

31

32

33

34

35

36

37

38

39

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel (8−tap FIR)
MC−EZBC, 1/8−pixel (8−tap FIR)

Figure 4.16: Rate-distortion performance of 3D-RWMH-53 for “Coastguard” decoded
at QCIF (176× 144). The bit rate is encoding rate.

68

(a)

(b)

(c)

Figure 4.17: Original and reconstructed images for frame 5 of “Football” encoded at 0.5
bpp (1.3 Mbps). The images are in SIF size (352 × 240). (a) Original, (b)
MC-EZBC, and (c) 3D-RWMH-53.

69

(a)

(b)

(c)

Figure 4.18: Original and reconstructed images for frame 5 of “Football” encoded at 0.5
bpp (1.3 Mbps). The images are in QSIF size (176 × 120). (a) Original,
(b) MC-EZBC, and (c) 3D-RWMH-53.

70

(a)

(b)

(c)

Figure 4.19: Original and reconstructed images for frame 5 of “Football” encoded at 0.5
bpp (1.3 Mbps). The images are in Q-QSIF size (88 × 60). (a) Original,
(b) MC-EZBC, and (c) 3D-RWMH-53.

71

4.2.2 Temporal Scalability

Again, we use the sequences “Susie”, “Football”, “Mother & Daughter”, and

“Coastguard” for our experiments. These sequences have a frame rate of 30

frames/second. We compare the temporal scalability of 3D-RWMH-53 to that of 3D-

RWMH-Haar by decoding only the bits necessary to reconstruct the sequence at a

particular reduced temporal resolution; that is, we decode only a subset of the temporal

subband frames. Figs. 4.20-4.23 show experimental results for a decoded sequence at

15 frames/second. From the figures, we can see that 3D-RWMH-53 outperforms 3D-

RWMH-Haar for temporal scalability due to the fact that 5-3 biorthogonal temporal

filtering is essentially a bi-directional motion-compensated prediction, while Haar

temporal filtering is single-directional prediction. Some reconstructed images are shown

in Fig. 4.24. We can see that 3D-RWMH-53 outperforms 3D-RWMH-Haar in perceptual

quality. In Fig. 4.24(b), we can observe significant “ghost” artifacts around the fast

moving players, while in Fig. 4.24(c), the “ghost” artifacts are eliminated by the bi-

directional 5-3 biorthogonal temporal filtering. The longer temporal filter produces

higher quality frames at reduced temporal resolution since the bi-directional prediction

is inherently more capable of compensating for rapid motion.

Like the situation previously encountered when evaluating performance at reduced

spatial resolution, the method for quantitatively evaluating quality at reduced temporal

resolution is an open issue, since the original video sequences exist at only 30

frames/second. However, video sequences are viewed using a “sample-and-hold”

approach for each frame; i.e., each frame is displayed for some fixed amount of time.

Consequently, it is reasonable to consider the “original” sequence at reduced resolution

to be a temporal downsampling of the full-temporal-resolution sequence.

72

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
32

34

36

38

40

42

44

46

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel, 15 frames/sec.
3D−RWMH−Haar, 1/2−pixel, 15 frames/sec.

Figure 4.20: Rate-distortion performance of 3D-RWMH-53 for “Susie” decoded at 15
frames/sec. The bit rate is encoding rate.

73

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

22

24

26

28

30

32

34

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel, 15 frames/sec.
3D−RWMH−Haar, 1/2−pixel, 15 frames/sec.

Figure 4.21: Rate-distortion performance of 3D-RWMH-53 for “Football” decoded at
15 frames/sec. The bit rate is encoding rate.

74

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
36

38

40

42

44

46

48

50

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel, 15 frames/sec.
3D−RWMH−Haar, 1/2−pixel, 15 frames/sec.

Figure 4.22: Rate-distortion performance of 3D-RWMH-53 for “Mother & Daughter”
decoded at 15 frames/sec. The bit rate is encoding rate.

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
25

30

35

40

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, 1/2−pixel, 15 frames/sec.
3D−RWMH−Haar, 1/2−pixel, 15 frames/sec.

Figure 4.23: Rate-distortion performance of 3D-RWMH-53 for “Coastguard” decoded
at 15 frames/sec. The bit rate is encoding rate.

76

(a)

(b)

(c)

Figure 4.24: Original and reconstructed images for frame 5 of “Football” encoded at 0.5
bpp (1.3 Mbps), decoded at 7.5 frames/sec. (a) Original, (b) 3D-RWMH-
Haar, (c) 3D-RWMH-53.

CHAPTER V

BOUNDARY EFFECTS IN 3D-RWMH

In generating the results of the previous chapter, all frames of a given video sequence

were processed in one large segment. That is to say, all the input frames were collected

as a single group of frames (GOF), MCTF was performed on this single GOF, and the

entire GOF was coded by the 3D codec (3D-SPIHT). This approach is reasonable for

algorithm simulation but not for real-world applications. Since video sequences may

be arbitrarily long, using a single GOF has a potentially long delay and impractically

large memory usage, which are major impediments to real-world video applications.

Consequently, for a practical system, a limited GOF length could be used, with the

video sequence “blocked” into multiple GOFs of some finite size. However, a serious

problem, “boundary effects,” is associated with finite GOF length and biorthogonal

temporal filtering [15, 20].

In temporal filtering, when temporal-transform filters longer than the simple Haar

filter are used with a finite GOF length, symmetric extension is commonly used at each

temporal boundary of each GOF to accommodate the overlap of the filter’s response

beyond the extent of the GOF. Consequently, GOF boundary effects arise in such

systems due to a significant decrease in PSNR near the GOF boundaries as the temporal

filters begin to extend beyond the GOF boundaries. This is a well-known problem

which was investigated and resolved in [15, 20] by extending the temporal filtering

indefinitely in time. Specifically, the authors of [20] remove the symmetric extension by

introducing a sliding window into the temporal transform. That is, a finite frame buffer

holds all frames necessary for calculating the next temporal subbands; as frames are no

77

78

longer needed, they are replaced in the buffer in a first-in-first-out fashion by succeeding

frames. Thus, from the perspective of temporal filtering, the GOFs no longer exist, and

symmetric extension will not be necessary, except at the very ends of the video sequence.

In this chapter, we first present a detailed review of the sliding-window approach to

temporal filtering as proposed in [20]. Then, since [20] considers only a simple form of

temporal filtering in which no motion is involved, we extend the sliding-window concept

to MCTF in Sec. 5.2. We note that, although [46] proposes a similar sliding-window

MCTF approach, our technique was developed independently, and Sec. 5.2 provides a

more detailed description of the approach than that available in [46].

5.1 Sliding Window

The sliding window of [20] is implemented by buffering frames when performing

the temporal transform. Specifically, for a one-scale temporal wavelet decomposition,

n frames need to be buffered for one output frame, where n depends on the wavelet

filters used. For the biorthogonal 9-7 filter, n is 5; for the 5-3 filter, n is 3. Each time a

frame is input, the frames in the buffers are updated, and one frame is output as either

a highpass frame or a lowpass frame according to the lifting scheme. For an L-scale

decomposition, where L > 1, a larger frame buffer is needed. With the sliding window,

the input video frames are treated essentially as one GOF, and the boundary effects will

only exist at the ends of the entire sequence. Thus, in essence, the temporal filtering of

this sliding-window method is equivalent to that of the system described in Sec. 4.1.

5.2 Eliminating Boundary Effects in MCTF

As discussed before, boundary effects come from the symmetric extension of

temporal wavelet filters at the boundary of a finite-length GOF. By buffering only

several frames, sliding window [15, 20] eliminates boundary effects and does not require

79

buffering the entire video sequence. However, MC was not considered in the original

formulation [20]. In our SW-3D-RWMH-53 (sliding-window 3D-RWMH-53) system,

we consider MC with triangle-based affine transforms. Below, we will describe the

sliding-window technique in RDWT-domain MCTF in detail.

In our SW-3D-RWMH-53 system, the 5-3 biorthogonal filter is used for the temporal

wavelet transform. Fig. 5.1 illustrates a single-scale wavelet transform on a sequence

of frames using the 5-3 biorthogonal filter via lifting steps with symmetric extension

at each end of the signal. Figs. 5.2 and 5.3 illustrate how the transform of Fig. 5.1 is

modified to become the sliding-window implementation of the 5-3 temporal transform,

which we describe below. First, however, let us note that, in the SW-3D-RWMH-

53 system, ME/MC is performed in the RDWT domain; i.e., motion compensation is

performed between corresponding RDWT subbands. Thus, each frame buffer in the

SW-3D-RWMH-53 system contains N RDWT subbands. In the following, we use the

notation, Si(j), to denote frame buffer j for subband S at temporal transform level i,

S ∈ {B,H, V,D}. Since the sliding window procedure is identical for all the RDWT

subbands in each temporal level, we present the sliding-window operation for only one

subband.

Figs. 5.2 and 5.3 illustrate the sliding-window pipeline operations via 5-3 lifting

steps in the SW-3D-RWMH-53 system. Specifically, for a 1-level temporal transform,

when a subband of a frame is pushed into buffer S1(2), S1(0) is output as a highpass

or lowpass frame, S1(0) and S1(1) are updated, and the input subband is pushed into

S1(2). If the input frame is even numbered, as in Fig. 5.2, S1(0) and S1(1) are updated

80

Input
Signal

Highpass
Output

Lowpass
Output

ll11(0)

11

11

11 11 11

11 11 11−−½½ −1

½½

−−½½ −−½½ −−½½ −−½½ −−½½

¼¼ ¼¼ ¼¼ ¼¼ ¼¼ ¼¼

− 1
2

2 222
− 1

2
− 1

2
− 1

2

xx(7)

hh00(3)

xx(6)

ll00(3)

xx(5)

hh00(2)

xx(4)

ll00(2)

xx(3)

hh00(1)

xx(2)

ll00(1)

xx(1)

hh00(0)

xx(0)

ll00(0)

hh11(0) ll11(1) hh11(1) ll11(2) hh11(2) ll11(3) hh11(3)

xx11 xx22 xx33

aa bb cc

dd
yy’’

yy

y’= a x1+ b x2+ c x3

y= d y’

Figure 5.1: Schematic representation of one-scale 5-3 lifting on a sequence of frames.
White circles indicate lowpass frames and black circles indicate highpass
frames.

Figure 5.2: The updating operations on the buffer after a subband of an even numbered
frame is pushed into S1(2). Si(j) is the buffer j for subband S at transform
level i. Wi,j is the operator that maps frame in buffer i onto the coordinate
system of frame in buffer j through the particular MC scheme of choice.

81

Figure 5.3: The updating operations on the buffer after a subband of an odd numbered
frame is pushed into S1(2). Si(j) is the buffer j for subband S at transform
level i. Wi,j is the operator that maps frame in buffer i onto the coordinate
system of frame in buffer j through the particular MC scheme of choice.

82

as

S1(1)← S1(1)− 1

2
W2,1[S1(2)], (5.1)

S1(0)← S1(0) +
1

4
W1,0[S1(1)], (5.2)

where Wi,j denotes the operator that maps frame i onto the coordinate system of frame

j through the particular MC scheme of choice. If the input frame is odd numbered, as

in Fig. 5.3, S1(2) and S1(1) are updated as

S1(2)← S1(2)− 1

2
W1,2[S1(1)], (5.3)

S1(1)← S1(1) +
1

4
W0,1[S1(0)]. (5.4)

Inevitably, at the very ends of the video sequence, symmetric extension is still needed.

This procedure can be used for higher levels of temporal transform in which the lowpass

frames of one level are passed as the input frames for the next level of the temporal

wavelet transform.

Now let us consider the motion fields required for MCTF. For MCTF techniques

implemented with multiple finite-length GOFs, the input video sequence is divided into

GOFs, and each GOF is coded independently of other GOFs. Assuming that a GOF

contains G frames, this ME process results in G − 1 motion fields, each mapping the

first frame of the GOF into one of the other G − 1 frames, as illustrated in Fig. 5.4,

which is the same number of motion fields as that of a traditional MCP coder, even

if longer wavelet filters are used. With these G − 1 motion fields, we can construct

affine transforms between any two frames within one GOF by concatenating motion

fields from this set. Multiple-scale temporal transforms are also supported since some

83

Figure 5.4: Motion fields for MCTF implemented with multiple finite-length GOFs for
G = 4 and N ′ = 4. A small triangle in a frame indicates where the triangle
mesh is reset to the uniform mesh. Field Vi,j maps frame i to frame j;
concatenated fields are V0,2 = V0,1 + V1,2 and V4,6 = V4,5 + V5,6.

84

of these motion fields can be directly used for affine transforms in the higher scales, as

is illustrated in Fig. 5.4.

On the other hand, if we eliminate boundary effects by using the sliding-window

technique for the temporal transform, the temporal filtering is no longer bound to finite-

length GOFs. However, we still must use a 3D coder (such as 3D-SPIHT) to produce

a bitstream, so we must group temporal subbands into finite-sized groups for purposes

of coding. Consequently, an extra motion field is needed to track motion from GOF

to GOF, as illustrated in Fig. 5.5. resulting in G motion fields for each GOF (except

the very last GOF) of the video sequence. The affine transforms are exactly the same

as described in Sec. 2.3.1, and motion-vector information for the G motion fields is

transmitted to the decoder. Specifically, for each GOF, all the motion-field information

is coded first, followed by an embedded coding of 3D subband coefficients.

5.3 Experimental Results

We set the GOF size to 16 for the following experiments. From Figs. 5.6 and 5.7,

we can see that 3D-RWMH-53 with finite-length GOF exhibits significant boundary

effects at GOF boundaries, with the PSNR decreasing sharply around frames 16, 32,

48, 64, etc. We see from Figs. 5.6 and 5.7 that using a sliding window for the temporal

transform eliminates the boundary effects. Additionally, the sliding window yields a

higher average PSNR. The rate-distortion curves for “Susie”, “Football”, “Mother &

Daughter”, and “Coastguard” are shown in Figs. 5.8-5.11, and PSNR values averaged

over all frames of the sequences are tabulated in Table 5.1 for a fixed bit rate. For all the

sequences, SW-3D-RWMH-53 achieves on the order of a 0.4-dB gain over 3D-RWMH-

53 with a finite-length GOF. Additionally, SW-3D-RWMH-53 gives almost the same

rate-distortion performance as 3D-RWMH-53 using a single GOF. That is, incorporating

85

Figure 5.5: Motion fields for MCTF implemented with a sliding window for G = 4 and
N ′ = 4. A small triangle in a frame indicates where the triangle mesh is
reset to the uniform mesh. Field Vi,j maps frame i to frame j; concatenated
fields are V0,2 = V0,1 +V1,2, V2,4 = V2,3 +V3,4, and V4,6 = V4,5 +V5,6. GOFs
are used only for coding of coefficients (e.g. with 3D-SPIHT).

86

the sliding window as needed for practical use results in negligible performance loss

compared to the single-GOF coding.

In the past several chapters, we have focused on MCTF, exploring the use of

redundant wavelet expansions in the temporal-filtering process. However, regardless

of the mechanisms employed for temporal filtering, ultimately a bitstream must be

produced by some 3D coefficient coder. In the previous chapters, results have been

carried out using 3D-SPIHT, which is a prominent 3D coder considered by many to

be state of the art. In the next chapter, we develop an alternative 3D coder with rate-

distortion performance similar to that of 3D-SPIHT but which is more amenable to

hardware implementation.

87

Table 5.1: Distortion averaged over all frames of the sequences.
PSNR (dB)

3D-RWMH-53 3D-RWMH-53 SW-3D-
single GOF GOF size 16 RWMH-53

Football† 30.1 29.7 30.0
Susie 41.2 40.8 41.2
Mother & daughter 45.5 44.9 45.4
Coastguard 32.4 31.9 32.4
All systems use 1/2-pixel ME with 8-tap filter interpolation.
Rate is 0.3 bpp except †, which is 0.5 bpp.

0 10 20 30 40 50 60
36

37

38

39

40

41

42

43

44

45

No. of frames

P
S

N
R

 (d
B

)

SW−3D−RWMH−53, avg. PSNR: 41.2 dB
3D−RWMH−53, GOF size 16, avg. PSNR: 40.8 dB

Figure 5.6: Frame-by-Frame PSNR for “Susie” at 0.3 bpp (760 kbps) comparing 3D-
RWMH-53 with sliding window and 3D-RWMH-53 with small GOF (16
frames).

88

0 10 20 30 40 50 60 70 80 90
26

27

28

29

30

31

32

33

34

No. of frames

P
S

N
R

 (d
B

)

SW−3D−RWMH−53, avg. PSNR: 30.0 dB
3D−RWMH−53, GOF size 16, avg. PSNR: 29.7 dB

Figure 5.7: Frame-by-Frame PSNR for “Football” at 0.5 bpp (1.3 Mbps) comparing 3D-
RWMH-53 with sliding window and 3D-RWMH-53 with small GOF (16
frames).

89

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
36

38

40

42

44

46

48

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, single GOF, 1/2−pixel (8−tap FIR)
SW−3D−RWMH−53, 1/2−pixel (8−tap FIR)
3D−RWMH−53, GOF size 16, 1/2−pixel (8−tap FIR)

Figure 5.8: Rate-distortion performance of SW-3D-RWMH-53 for “Susie.”

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22

24

26

28

30

32

34

36

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, single GOF, 1/2−pixel (8−tap FIR)
SW−3D−RWMH−53, 1/2−pixel (8−tap FIR)
3D−RWMH−53, GOF size 16, 1/2−pixel (8−tap FIR)

Figure 5.9: Rate-distortion performance of SW-3D-RWMH-53 for “Football.”

91

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
38

40

42

44

46

48

50

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, single GOF, 1/2−pixel (8−tap FIR)
SW−3D−RWMH−53, 1/2−pixel (8−tap FIR)
3D−RWMH−53, GOF size 16, 1/2−pixel (8−tap FIR)

Figure 5.10: Rate-distortion performance of SW-3D-RWMH-53 for “Mother &
Daughter.”

92

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
26

28

30

32

34

36

38

40

bit rate (bpp)

A
vg

. P
S

N
R

 (d
B

)

3D−RWMH−53, single GOF, 1/2−pixel (8−tap FIR)
SW−3D−RWMH−53, 1/2−pixel (8−tap FIR)
3D−RWMH−53, GOF size 16, 1/2−pixel (8−tap FIR)

Figure 5.11: Rate-distortion performance of SW-3D-RWMH-53 for “Coastguard.”

CHAPTER VI

3D CODING WITH THE TARP ALGORITHM

Currently there are no standards—or even commonly accepted coding algorithms—

for 3D video-coding systems. Several embedded wavelet-based 3D codecs have

been used by different researchers, such as JPEG-2000 [5, 6], 3D-SPIHT [4], and

3D-EZBC [10, 14]. However, many such embedded wavelet-based coding schemes

utilize sophisticated processes such as context conditioning (JPEG-2000), rate-distortion

optimization (JPEG-2000), or significance lists (3D-SPIHT and 3D-EZBC) which

present significant difficulty for on-board implementations in hardware, particularly

when parallel processing is considered.

In the following this chapter, we extend the recently proposed tarp coder [47], a 2D

embedded wavelet-based coder with an exceedingly simple implementation, to 3D for

the coding of 3D video volumes. The tarp technique employs an explicit estimate of

the probability of wavelet-coefficient significance and a simple nonadaptive arithmetic

coder, resulting in a still-image coder that is easily scaled to higher-dimensional datasets.

While the probability estimate takes the form of Parzen windows, a well known

nonparametric probability-estimation technique, the tarp coder implements this Parzen-

window probability estimate as a novel sequence of 1D filtering operations coined tarp

filtering. Experimental results show that our 3D version of tarp (3D-Tarp) can achieve

almost the same rate-distortion performance as the 3D version of SPIHT (3D-SPIHT)

[4] used in experimental results in the preceding chapters.

As pertaining to hardware implementation, we show at the end of this chapter

that the most time-consuming operation of our tarp coder, the tarp filtering, can

93

94

be highly vectorized for implementation on single-instruction-multiple-data (SIMD)

architectures. Thus, the proposed tarp coder can exploit the data-parallel capabilities of

modern general-purpose processors, or, for greater concurrency, customized hardware

with longer vectors could be used. In any event, the tarp coder benefits from the

simplicity, elegance, and implicit synchronization of SIMD implementation, whereas

other algorithms, such as 3D-SPIHT and JPEG-2000, typically require a more

complicated multiprocessor implementation to achieve a smaller amount of parallelism.

Below, we describe the philosophy behind tarp coding, our implementation of the

proposed 3D-Tarp coder, and the possibilities for vectorized operation. We note that

our initial development [48, 49] of the 3D-Tarp coder was for the purpose of coding

3D hyperspectral imagery; however, like other volumetric coders, 3D-Tarp is equally

applicable to the 3D video-coding problem.

6.1 Estimation of Probability of Significance via Parzen Windows

Consider an N -dimensional field of real-valued coefficients, c[x] ∈ R, where x ∈

ZN , R is the set of real numbers, and Z is the set of integers. Given a threshold t ∈ R,

the coefficient at location x is defined to be significant with respect to t if |c[x]| ≥ t, and

is insignificant otherwise. Define the significance state with respect to t of c[x] to be

v[x] =

1, |c[x]| ≥ t,

0, otherwise.
(6.1)

Suppose we know that coefficients at locations x1,x2, . . . ,xm are significant with

respect to some given threshold, and we would like to estimate the probability that the

coefficient at location x is also significant. Parzen windows [50] is one approach to

performing this probability estimate. Specifically, we estimate the probability that c[x]

95

is significant as

p[x] =
m∑

i=1

φ[x− xi], (6.2)

where φ[x] is an N -dimensional window sequence. A possible window sequence

which is suited to the well known Laplacian distribution nature of wavelet-coefficient

magnitudes in images is the Laplacian window,

φ[x] = βα||x||, x ∈ R, (6.3)

where α is a parameter controlling the spread of the window,

||x|| =
N∑

i=1

|xi| (6.4)

is the l1 norm of x = [x1, x2, , . . . , xN], and β is chosen so that

∑

x∈R
φ[x] = 1, (6.5)

whereR ⊆ ZN is the region of support of the window. As a result, it can be shown [50]

that p[x] is guaranteed to be a valid probability mass function; i.e.,

p[x] ≥ 0, ∀x ∈ ZN , (6.6)

and
∑

x∈ZN
p[x] = 1. (6.7)

The density estimation of (6.2) can be considered to be the convolution of an N -

dimensional filter of impulse response φ[x] with a field of Kronecker impulses situated

at x1, x2, . . . , xm. If the region of support R of window φ[x] is causal, then this

96

convolution can be calculated via a single raster scan through the coefficients. Below,

we will define the causal region of support so as to not include x = 0. By not including

x = 0 inR, both an encoder and its corresponding decoder in a compression system can

make the same estimate of p[x] by single raster scan since (6.2) depends on only values

encountered strictly before the current location in the raster scan.

6.2 Tarp Filtering

In [47], Simard et al. propose using the density estimate of (6.2) to code the

significance of wavelet coefficients for still-image coding. Specifically, the significance

state of a set of coefficients for a given threshold is coded via a raster scan through the

coefficients. For coding efficiency, an entropy coder codes v[x] for each coefficient,

using the probability that v[x] = 1 for the current coefficient as determined by

the density-estimation procedure. The coder of [47] implements the N -dimensional

convolution of (6.2) as a sequence of 1D filtering operations coined tarp filtering.1 This

1D-filtering approach is more efficient than a direct implementation of (6.2) in that only

a limited number of probability estimates need be buffered, and that, because probability

estimates are propagated from coefficient to coefficient, fewer arithmetic operations are

performed.

Once the probability of significance of the coefficients is estimated for a given

threshold, the tarp coder of [47] proceeds in the usual bitplane-coding paradigm

common to modern embedded coders—significance and refinement passes are applied

successively, and the significance threshold decreases after pass. In [47], the significance

pass uses the tarp filter to drive a nonadaptive binary arithmetic coder to code v[x]

1The name tarp filtering comes from the shape of the Laplacian window of (6.3) which resembles a
tarp draped over a pole.

97

in each subband, while coefficient-sign and refinement information is coded using a

nonadaptive binary arithmetic coder on a uniform distribution.

Below, we describe the tarp-filtering procedure in greater detail, first concentrating

on the N = 2 case, which was the only dimensionality considered in the original

development [47]. However, since our focus is the coding of 3D data, we extend the

tarp algorithm to the N = 3 case in Sec. 6.2.2. We consider use of the 3D tarp-filtering

operation in the coding of 3D video wavelet coefficients subsequently in Sec. 6.3.

6.2.1 2D Tarp Filtering

For N = 2, x = [x1, x2], where x1 and x2 are the row and column indices,

respectively. The Laplacian window (6.3) in this case is

φ[x] = βα|x1|+|x2|, x = [x1, x2] ∈ R, (6.8)

where the causal region of support isR = R1 ∪R2,

R1 = {x = [x1, x2] : x1 = 0, x2 > 0} ,

R2 = {x = [x1, x2] : x1 > 0, x2 ∈ Z} .
(6.9)

In order for (6.5) to hold for this φ[x] andR, it can be derived that

β =
(1− α)2

2α
. (6.10)

In essence, the tarp coder of [47] uses three 1D filters to implement the density

estimate of (6.2)—one filter processes each row from left to right, another filter

processes each row from right to left, and a third filter processes each column from

top to bottom. Pseudocode for this filtering operation is given in Fig. 6.1. In Fig. 6.1,

98

p1 forms the left-to-right row filter, the updating of p3 corresponds to the right-to-left

row filter, and the updating of p2 implements the top-to-bottom filter carried out on each

column. We note that the memory overhead of these filtering operations is one row of

p2 values. For more detail on how tarp filtering is combined with bitplane coding to

produce an embedded image coder, see [47, 51] and the tarp-coder implementation in

QccPack [52].

6.2.2 3D Tarp Filtering

In this section, we extend to 3D volumes the 2D tarp filter described above. For

N = 3, x = [x1, x2, x3], where x1, x2, and x3 are the spatial-row, spatial-column, and

temporal-frame indices, respectively. The Laplacian window (6.3) in this case is

φ[x] = βα|x1|+|x2|+|x3|, x = [x1, x2, x3] ∈ R, (6.11)

where the causal region of support isR = R1 ∪R2 ∪R3,

R1 = {x = [x1, x2, x3] : x1, x3 = 0, x2 > 0, } ,

R2 = {x = [x1, x2, x3] : x1 > 0, x2 ∈ Z, x3 = 0} ,

R3 = {x = [x1, x2, x3] : x1, x2 ∈ Z, x3 > 0} .

(6.12)

In order for (6.5) to hold for this φ[x] andR, it can be derived that

β =
(1− α)3

3α + α3
. (6.13)

Fig. 6.2 shows a typical Laplacian window in 3D.

To estimate the probability of significance in 3D, we propagate information from

three neighboring values, one at the left, one above, and one in the same spatial position

99

for x1 = 0, . . . , N1 − 1
p1 = 0
for x2 = 0, . . . , N2 − 1
p[x1, x2] = αp1 + αp2[x2]
p1 = αp1 + βv[x1, x2]
p2[x2] = p1 + αp2[x2]

endfor
p3 = 0
for x2 = N2 − 1, . . . , 0
p2[x2] = p2[x2] + αp3

p3 = αp3 + βv[x1, x2]
endfor

endfor

Figure 6.1: Pseudocode for the 2D tarp filter of [47]. The image is of size N1 ×N2.

x3 = 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.0385 0.0192

0.0096 0.0192 0.0385 0.0192 0.0096
0.0048 0.0096 0.0192 0.0096 0.0048

x3 = 1
0.0024 0.0048 0.0096 0.0048 0.0024
0.0048 0.0096 0.0192 0.0096 0.0048
0.0096 0.0192 0.0385 0.0192 0.0096
0.0048 0.0096 0.0192 0.0096 0.0048
0.0024 0.0048 0.0096 0.0048 0.0024

x3 = 2
0.0012 0.0024 0.0048 0.0024 0.0012
0.0024 0.0048 0.0096 0.0048 0.0024
0.0048 0.0096 0.0192 0.0096 0.0048
0.0024 0.0048 0.0096 0.0048 0.0024
0.0012 0.0024 0.0048 0.0024 0.0012

Figure 6.2: The 3D Laplacian window for α = 0.5. The boxed value indicates the
window origin (x1, x2, x3 = 0).

100

in the previous temporal frame. Raster scanning proceeds in the order column, row,

and then frame, and we use 1D filters to propagate probability estimates. Specifically,

five 1D filtering steps are used. Three filters (p1, p2, and p4) essentially operate at the

current frame in a fashion similar to the 2D tarp filter. That is, in the current frame, one

filter processes each row from left to right, another filter processes each row from right

to left, and a third filter processes each column from top to bottom. Next we propagate

information in the temporal direction. To do so, we use buffers that hold probabilities for

the entire previous frame, and after each frame is coded, the probabilities in the frame

buffer are updated. Consequently, after a full frame is coded with the first three filters,

another two 1D filtering steps (p3 and p5) update the probabilities for the current frame.

Pseudocode for the 3D tarp filter is shown in Fig. 6.3.

The 3D tarp filtering operation requires somewhat greater buffer storage than its

2D counterpart. Specifically, single rows are stored for p2 and p5, while entire frames

are stored for p1, p3, and p4. Below, we describe how 3D tarp filter is combined with

bitplane coding to create an embedded coder for 3D volumes.

6.3 The 3D-Tarp Coder

The tarp coder is built upon the embedded bitplane-coding architecture common

to modern wavelet-based image coders. Specifically, a significance pass describes

the significance state of coefficients, while a refinement pass produces a successive

approximation to the values of the coefficients.

In the significance pass, the significance state v[x] of each coefficient is encoded,

and, when a coefficient transitions from insignificant to significant, the sign of the

coefficient is also encoded. In the refinement pass, all the coefficients known to

be significant (except those that became significant in the immediately preceding

significance pass) are refined by coding the value of the bit in the current bitplane.

101

for x1 = 0, . . . , N1 − 1
for x2 = 0, . . . , N2 − 1
p3[x1, x2] = 0

endfor
endfor
for x3 = 0, . . . , N3 − 1

for x2 = 0, . . . , N2 − 1
p2[x2] = 0

endfor
for x1 = 0, . . . , N1 − 1

for x2 = 0, . . . , N2 − 1
p[x1, x2, x3] = αp1[x1, x2 − 1] + αp2[x2] + αp3[x1, x2]
p1[x1, x2] = αp1[x1, x2 − 1] + βv[x1, x2, x3]
p2[x2] = p1[x1, x2] + αp2[x2]

endfor
for x2 = N2 − 1, . . . , 0
p2[x2] = p2[x2] + αp4[x1, x2 + 1]
p3[x1, x2] = p2[x2] + αp3[x1, x2]
p4[x1, x2] = αp4[x1, x2 + 1] + βv[x1, x2, x3]

endfor
endfor
for x2 = 0, . . . , N2 − 1
p5[x2] = 0

endfor
for x1 = N1 − 1, . . . , 0

for x2 = 0, . . . , N2 − 1
p3[x1, x2] = p3[x1, x2] + αp5[x2]
p5[x2] = p1[x1, x2] + αp5[x2] + αp4[x1, x2 + 1]

endfor
endfor

endfor

Figure 6.3: Pseudocode for the 3D tarp filter. The volume is of size N1 ×N2 ×N3.

102

Contrary to most wavelet-based embedded coders, which use multiple-context

adaptive arithmetic coding which is responsible for a significant portion of their rate-

distortion performance, the tarp coder uses a relatively simple nonadaptive binary

arithmetic coder. The tarp-filtering operation produces the estimate p[x] of the

probability of significance of the current coefficient, and this probability estimate drives

the arithmetic coder when coding the significance state v[x] in the significance pass.

For the coding of sign bits in the significance pass, and for the coding of refinement

bits in the refinement pass, we use a constant probability of 0.5 in the nonadaptive

arithmetic coder. Although it is possible to use more sophisticated codings of these

sign and refinement bits [53], in practice, a nonuniform probability distribution would

result in minimal rate-distortion improvement, while the use of the uniform distribution

greatly simplifies the implementation and reduces computational complexity.

6.4 Experimental Results

In our experiments, we compare the performance of 3D-Tarp coder to that of 3D-

SPIHT coder. Specifically, in the 3D-RWMH-53 system presented in Chap. IV, a 3D-

Tarp coder replaces the 3D-SPIHT coder. For our proposed 3D-Tarp coder, α is fixed

at 0.3, and the filters p1, . . . , p5 are initialized to 0 beyond the boundaries of the 3D

subbands.

Rate-distortion performance for 3D-RWMH-53 with 3D-Tarp, 3D-RWMH-53 with

3D-SPIHT, and MC-EZBC are shown in Figs. 6.4 through 6.7. In these results, we see

that 3D-RWMH-53 with 3D-Tarp and MC-EZBC provide largely similar rate-distortion

performance for the sequences considered, with 3D-RWMH-53 with 3D-SPIHT usually

slightly outperforming the other two. Especially at low bit rates (less than 0.5 bpp),

3D-RWMH-53 with 3D-Tarp gives better performance than MC-EZBC does.

103

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
36

38

40

42

44

46

48

bit rate (bpp)

A
V

G
 P

S
N

R
 (d

B
)

3D−RWMH−53 with 3D−SPIHT, half−pel
3D−RWMH−53 with 3D−Tarp, half−pel
MC−EZBC, eighth−pel

Figure 6.4: Rate-distortion performance for “Susie.”

104

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
22

24

26

28

30

32

34

36

bit rate (bpp)

A
V

G
 P

S
N

R
 (d

B
)

3D−RWMH−53 with 3D−SPIHT, half−pel
3D−RWMH−53 with 3D−Tarp, half−pel
MC−EZBC, eighth−pel

Figure 6.5: Rate-distortion performance for “Football.”

105

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
38

40

42

44

46

48

50

bit rate (bpp)

A
V

G
 P

S
N

R
 (d

B
)

3D−RWMH−53 with 3D−SPIHT, half−pel
3D−RWMH−53 with 3D−Tarp, half−pel
MC−EZBC, eighth−pel

Figure 6.6: Rate-distortion performance for “Mother & Daughter.”

106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
26

28

30

32

34

36

38

40

bit rate (bpp)

A
V

G
 P

S
N

R
 (d

B
)

3D−RWMH−53 with 3D−SPIHT, half−pel
3D−RWMH−53 with 3D−Tarp, half−pel
MC−EZBC, eighth−pel

Figure 6.7: Rate-distortion performance for “Coastguard.”

107

6.5 Vectorized Implementation of 3D-Tarp

The tarp-filtering operation is responsible for an overwhelmingly large portion of

the execution time of the software tarp coder used in the experimental results of the

previous section. However, the tarp filter permits a significant amount of vectorization

resulting in potentially substantial acceleration of the tarp coder when implemented

in SIMD hardware. In the tarp-filtering operation, a large number of the filters are

confined within one temporal frame, thereby allowing vectorization in the temporal

direction; i.e., the filtering of multiple frames in parallel. Specifically, the p1, p2, p4,

and p5 filters support vectorization in the temporal direction, although the ordering

of the computations must be rearranged somewhat from that originally presented in

Fig. 6.3. Additionally, the temporal-direction filter, p3, can be vectorized in the column

direction. Finally, the calculation of the final probability p can be vectorized in either

the row, column, or temporal direction. Fig. 6.8 gives the resulting parallelized version

of the 3D-Tarp encoder filter. We note that the cost of the reordering of the algorithm

from that of Fig. 6.3 is increased memory usage since one must maintain entire buffer

volumes for p1, . . . , p5 rather than the single frames needed for p1, p3, and p4 originally.

However, recall that the tarp coder employs tarp filtering on a subband-by-subband

basis; consequently, buffer volumes need be only as big as the largest subband to be

processed, specifically, N1N2N3/8. Additionally, we note that, since the decoder needs

p for the current coefficient in order to decode v, the reordering of the tarp filter shown

in Fig. 6.8 is suitable for only the encoder of a tarp-coder system. As shown in Fig. 6.9

for the decoder, p1 and p4 have to be calculated one by one, while p2, p3, and p5 can be

vectorized.

The degree of acceleration achieved by the vectorized tarp coder will depend on the

amount of data-parallelism supported by the underlying SIMD architecture. To increase

parallelization and reduce computational complexity, the tarp-filtering operations can

108

for x1 = 0, . . . , N1 − 1
for x2 = 0, . . . , N2 − 1
p1[x1, x2, :] = αp1[x1, x2 − 1, :] + βv[x1, x2, :]
p2[x1, x2, :] = p1[x1, x2, :] + αp2[x1 − 1, x2, :]

endfor
for x2 = N2 − 1, . . . , 0
p2[x1, x2, :] = p2[x1, x2, :] + αp4[x1, x2 + 1, :]
p4[x1, x2, :] = αp4[x1, x2 + 1, :] + βv[x1, x2, :]

endfor
endfor
for x1 = N1 − 1, . . . , 0

for x2 = 0, . . . , N2 − 1
p5[x1, x2, :] = p1[x1, x2, :] + αp5[x1 + 1, x2, :] + αp4[x1, x2 + 1, :]

endfor
endfor
for x3 = 0, . . . , N3 − 1

for x1 = 0, . . . , N1 − 1
p3[x1, :, x3] = p2[x1, :, x3] + αp3[x1, :, x3 − 1] + αp5[x1 + 1, :, x3]

endfor
endfor
for x3 = 0, . . . , N3 − 1

for x1 = 0, . . . , N1 − 1
p[x1, :, x3] = αp′1[x1, :, x3] + αp2[x1 − 1, :, x3] + αp3[x1, :, x3 − 1]

endfor
endfor

Figure 6.8: Pseudocode for the vectorized 3D-Tarp encoder filter for SIMD
architectures. All buffer volumes initialized to zero at algorithm start. The
“:” indicates vectorization along the corresponding dimension. p′1 is p1 offset
by a one-column shift to the right; i.e., p′1[x1, x2, x3] = p1[x1, x2 − 1, x3].
This shift is accomplished during loading of the vector.

109

for x3 = 0, . . . , N3 − 1
for x1 = 0, . . . , N1 − 1

for x2 = 0, . . . , N2 − 1
p[x1, x2, x3] = αp1[x1, x2 − 1, x3] + αp2[x1 − 1, x2, x3] + αp3[x1, x2, x3 − 1]
decode v[x1, x2, x3]
p1[x1, x2, x3] = αp1[x1, x2 − 1, x3] + βv[x1, x2, x3]

endfor
for x2 = N2 − 1, . . . , 0
p4[x1, x2, x3] = αp4[x1, x2 + 1, x3] + βv[x1, x2, x3]

endfor
p2[x1, :, x3] = p1[x1, :, x3] + αp2[x1 − 1, :, x3] + αp′4[x1, :, x3]

endfor
for x1 = N1 − 1, . . . , 0
p5[x1, :, x3] = p1[x1, :, x3] + αp5[x1 + 1, :, x3] + αp′4[x1, :, x3]

endfor
for x1 = 0, . . . , N1 − 1
p3[x1, :, x3] = p2[x1, :, x3] + αp3[x1, :, x3 − 1] + αp5[x1 + 1, :, x3]

endfor
endfor

Figure 6.9: Pseudocode for the vectorized 3D-Tarp decoder filter for SIMD
architectures. All buffer volumes initialized to zero at algorithm start. The
“:” indicates vectorization along the corresponding dimension. p′4 is p4 offset
by a one-column shift to the left; i.e., p′4[x1, x2, x3] = p4[x1, x2 +1, x3]. This
shift is accomplished during loading of the vector.

110

be easily performed with fixed-point, rather than floating-point, arithmetic. Modern

general-purpose processors typically support some integer-based SIMD processing. For

example, assuming that 16-bit fixed-point representations are used, Motorola’s AltiVec

[54] SIMD implementation would support eight parallel operations, while Intel’s MMX

[55] would support four. Custom hardware implementation could conceivably employ

longer vectors such that the acceleration obtainable would be limited by primarily the

subband size. Let us assume N arithmetic operations can be performed simultaneously

in one CPU cycle, where N is the vector length of SIMD CPU, and an “arithmetic

operation” is an add, subtract, multiply, or divide. And let us assume the size of a

subband is G frames, R rows, and C columns. From Fig. 6.3, for original 3D-Tarp

implementation, we derive that the number of the total CPU cycles need to perform the

tarp filter on this subband for either encoder or decoder as

CYCorig = 23×R× C ×G. (6.14)

Note that this figure is for the tarp-filtering process only and does not include cycles

needed for the wavelet transform or arithmetic coding. We see that the number of the

total cycles is not related to the vector length N . From Fig. 6.8, we get the number of

the total CPU cycles need for the encoder of SIMD 3D-Tarp implementation as

CYCsimd,encoder = 14×R× C × dG/Ne+ 9× C ×G× dR/Ne, (6.15)

and from Fig. 6.9, the number of the total CPU cycles for the decoder is

CYCsimd,decoder = 11×R× C ×G+ 12× C ×G× dR/Ne. (6.16)

Using (6.14)-(6.16), we plot two graphs, Figs. 6.10 and 6.11, to illustrate that the degree

of acceleration increases with increasing vector length N . From Figs. 6.10 and 6.11,

111

we notice that 3D-Tarp encoder can be accelerated much more than the decoder can

because the vectorization of the encoder is more complete. When N = 16, the number

of the total CPU cycles of the SIMD version encoder is only 1/16 of that of the original

encoder, while the number of the CPU cycles of the SIMD implementation decoder is

about 1/2 of that of the original decoder.

Finally, we note that both SPIHT and JPEG-2000 support parallelization to a certain

extent; for example, see [56, 57] and Chap. 17 of [58]. However, these algorithms

are highly sequential by nature and are difficult to make parallel. Additionally, the

amount of parallelization is limited and typically relies on pipelining and multiprocessor,

i.e., multiple-instruction-multiple-data (MIMD), architectures. Consequently, such

implementations lack the simple and implicitly synchronized architecture of SIMD-

based tarp filtering.

112

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

D
eg

re
e

of
 a

cc
el

er
at

io
n

Figure 6.10: The degree of acceleration for encoder, CYCsimd,encoder

CYCorig
, for tarp filtering on

a subband with 16 frames, 288 rows, and 352 columns. N is the vector
length of SIMD CPU.

113

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

D
eg

re
e

of
 a

cc
el

er
at

io
n

Figure 6.11: The degree of acceleration for decoder, CYCsimd,decoder

CYCorig
, for a subband with

16 frames, 288 rows, and 352 columns. N is the vector length of SIMD
CPU.

CHAPTER VII

CONCLUSION

The overall goal of this dissertation was the design of a fully scalable 3D video-

coding system. Such a system contains two major parts: a procedure for temporal

filtering with MC and a 3D coefficient coder. The work presented here is focused on

these two components.

The initial contribution of this dissertation work is the 3D-RWMH approach

which introduces multihypothesis into motion-compensated temporal filtering (MCTF)

to achieve a significant improvement in rate-distortion performance in a 3D video

coder. Specifically, we deploy MCTF in the domain of a redundant wavelet transform,

exploiting the transform redundancy to provide multiple hypothesis temporal filterings

that are diverse in transform phase. Additionally, we depart from the block-based motion

models commonly employed in MCTF by implementing temporal filtering with mesh-

based lifting. In essence, the proposed 3D-RWMH system combines the flexibility and

scalability of the mesh-based lifting MCTF of [5, 7] with the demonstrated performance

gains associated with the RWMH introduced in [18, 19]. Additionally, performance

is enhanced using half-pixel accuracy for both describing the motion of the mesh as

well as within the affine transforms implementing the MCTF. Our 3D-RWMH system

demonstrates superior performance by combining three types of multihypothesis—

spatial diversity (subpixel accuracy), temporal diversity (5-3 biorthogonal temporal

filtering), and phase diversity (RWMH). We note that our proposed system is apparently

the first to combine all these concepts in the context of a 3D MCTF video coder.

114

115

As a second contribution of this dissertation, a sliding-window approach to

MCTF was investigated in order to eliminate performance degradation characteristic

to temporal filtering deployed in finite-length groups of frames (GOFs). Experimental

results show that our sliding-window system (SW-3D-RWMH-53) yields nearly the

same rate-distortion performance as the 3D-RWMH-53 applied to a video sequence

with a single GOF. However, the sliding-window approach has a small frame delay and

can be implemented in practical settings with a finite frame buffer even for arbitrarily

long video sequences.

Finally, as the third contribution of this dissertation, an efficient 3D coder, 3D-

Tarp, was designed based on the tarp-filtering algorithm originally proposed in 2D

in [47]. Our experimental observations indicate that 3D-RWMH-53 with 3D-Tarp

provides rate-distortion performance largely similar to that of 3D-EZBC [10, 14], a

recent MCTF-based coder that is currently considered state of the art for 3D video

coding. The 3D-RWMH-53 coder with 3D tarp also performed close to the 3D-RWMH-

53 system using the sophisticated 3D-SPIHT coefficient coder. However, given its

simplicity of implementation and its ability to exploit a high degree of vectorization,

3D tarp is perhaps the coder of the three that is best suited to on-board implementation,

particularly when customized data-parallel (i.e., SIMD) hardware with long vector

lengths is possible.

Recent activity within the video-standards community (e.g. [31, 59]) indicate there

is increasing interest in wavelet-based video. The fact that much of this work is focused

on providing increased scalability suggests that next-generation video-coding standards

may adopt the MCTF approach to 3D coding so as to eliminate the scalability issues with

traditional predictive-loop coders. In this case, the topics considered in this dissertation

will play a central role in the development of future video coders. In particular, the

concept of deploying MCTF in the domain of a redundant transform as well as that of

116

combining multiple forms of multihypothesis with spatial, temporal, and phase diversity

will be central issues. Consequently, we hope that the work presented in this dissertation

will contribute in no small way to the ongoing development of video technology.

REFERENCES

[1] ITU-T, Video Coding for Low Bitrate Communication, November 1995, ITU-T
Recommendation H.263, Version 1.

[2] ITU-T, Video Coding for Low Bitrate Communication, January 1998, ITU-T
Recommendation H.263, Version 2.

[3] ISO/IEC 13818-2, Information Technology—Generic Coding of Moving Pictures
and Associated Audio Information: Video, 1995, MPEG-2 Video Coding Standard.

[4] B.-J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding
with 3-D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 10, no. 8, pp. 1374–1387,
December 2000.

[5] A. Secker and D. Taubman, “Highly scalable video compression using a lifting-
based 3D wavelet transform with deformable mesh motion compensation,” in
Proceedings of the International Conference on Image Processing, Rochester, NY,
September 2002, vol. 3, pp. 749–752.

[6] A. Secker and D. Taubman, “Motion-compensated highly scalable video
compression using an adaptive 3D wavelet transform based on lifting,” in
Proceedings of the International Conference on Image Processing, Thessaloniki,
Greece, October 2001, vol. 2, pp. 1029–1032.

[7] A. Secker and D. Taubman, “Lifting-based invertible motion adaptive transform
(LIMAT) framework for highly scalable video compression,” IEEE Transactions
on Image Processing, December 2003, to appear.

[8] J.-R. Ohm, “Three-dimensional subband coding with motion compensation,” IEEE
Transactions on Image Processing, vol. 3, no. 5, pp. 559–571, September 1994.

[9] S.-J. Choi and J. W. Woods, “Motion-compensated 3-D subband coding of video,”
IEEE Transactions on Image Processing, vol. 8, no. 2, pp. 155–167, February
1999.

[10] P. Chen and J. W. Woods, “Bidirectional MC-EZBC with lifting implementation,”
IEEE Transactions on Circuits and Systems for Video Technology, 2003, to appear.

117

118

[11] B. Pesquet-Popescu and V. Bottreau, “Three-dimensional lifting schemes for
motion compensated video compression,” in Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May
2001, vol. 3, pp. 1793–1796.

[12] D. S. Turaga and M. van der Schaar, “Wavelet coding for video streaming
using new unconstrained motion compensated temporal filtering,” in Proceedings
of the 2002 Tyrrhenian International Workshop on Digital Communications
(IWDC 2002): Advanced Methods for Multimedia Signal Processing, Capri, Italy,
September 2002.

[13] M. van der Schaar and D. S. Turaga, “Unconstrained motion compensated
temporal filtering (UMCTF) framework for wavelet video coding,” in Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing,
Hong Kong, April 2003, vol. 3, pp. 81–84.

[14] J. C. Ye and M. van der Schaar, “Fully scalable 3-D overcomplete wavelet
video coding using adaptive motion compensated temporal filtering,” in Visual
Communications and Image Processing, Lugano, Switzerland, July 2003, to
appear.

[15] C. Parisot, M. Antonini, and M. Barlaud, “3D scan based wavelet transform
for video coding,” in Proceedings of the IEEE Workshop on Multimedia Signal
Processing, Cannes, France, October 2001, pp. 403–408.

[16] J.-R. Ohm, “Advanced packet-video coding based on layered VQ and SBC
techniques,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 3, no. 3, pp. 208–221, June 1993.

[17] V. Bottreau, M. Bénetière, B. Felts, and B. Pesquet-Popescu, “A fully scalable 3D
subband video codec,” in Proceedings of the International Conference on Image
Processing, Thessaloniki, Greece, October 2001, vol. 2, pp. 1017–1020.

[18] S. Cui, Y. Wang, and J. E. Fowler, “Multihypothesis motion compensation in the
redundant wavelet domain,” in Proceedings of the International Conference on
Image Processing, Barcelona, Spain, 2003, vol. 2, pp. 53–56.

[19] S. Cui, Y. Wang, and J. E. Fowler, “Motion compensation via redundant-
wavelet multihypothesis,” IEEE Transactions on Circuits and Systems for Video
Technology, February 2003, submitted.

[20] J. Xu, Z. Xiong, S. Li, and Y.-Q. Zhang, “Memory constrained 3-D wavelet
transform for video coding without boundary effects,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 12, no. 9, pp. 812–818, September
2002.

119

[21] Y. Nakaya and H. Harashima, “Motion compensation based on spatial
transformation,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 4, no. 3, pp. 339–366, June 1994.

[22] Y. Altunbasak, A. M. Tekalp, and G. Bozdagi, “Two-dimensional object-based
coding using a content-based mesh and affine motion parameterization,” in
Proceedings of the International Conference on Image Processing, Washington,
DC, October 1995, vol. 2, pp. 394–397.

[23] M. Eckert, D. Ruiz, J. I. Ronda, and N. Garcia, “Evaluation of DWT and DCT for
irregular mesh-based motion compensation in predictive video coding,” in Visual
Communications and Image Processing, K. N. Ngan, T. Sikora, and M.-T. Sun,
Eds. Proc. SPIE 4067, June 2000, pp. 447–456.

[24] S. Cui, Y. Wang, and J. E. Fowler, “Mesh-based motion estimation and
compensation in the wavelet domain using a redundant transform,” in Proceedings
of the International Conference on Image Processing, Rochester, NY, September
2002, vol. 1, pp. 693–696.

[25] S. Cui, Y. Wang, and J. E. Fowler, “Motion estimation and compensation in the
redundant-wavelet domain using triangle meshes,” IEEE Transactions on Circuits
and Systems for Video Technology, October 2002, submitted.

[26] M. Wollborn, I. Moccagatta, and U. Benzler, “Natural video coding,” in The
MPEG-4 Book, F. Pereira and T. Ebrahimi, Eds., chapter 8, pp. 293–382. Prentice-
Hall, Upper Saddle River, NJ, 2002.

[27] M. J. Shensa, “The discrete wavelet transform: Wedding the à trous and Mallat
algorithms,” IEEE Transactions on Signal Processing, vol. 40, no. 10, pp. 2464–
2482, October 1992.

[28] H.-W. Park and H.-S. Kim, “Motion estimation using low-band-shift method for
wavelet-based moving-picture coding,” IEEE Transactions on Image Processing,
vol. 9, no. 4, pp. 577–587, April 2000.

[29] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA,
1998.

[30] H. S. Kim and H. W. Park, “Wavelet-based moving-picture coding using shift-
invariant motion estimation in wavelet domain,” Signal Processing: Image
Communication, vol. 16, no. 7, pp. 669–679, April 2001.

[31] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, J. Barbarien, P. Schelkens,
and J. Cornelius, “Wavelet-based fine granularity scalable video coding with in-
band prediction,” ISO/IEC JTC1/SC29/WG11, MPEG2002/M7906, Jeju Island,
South Korea, March 2002.

120

[32] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, P. Schelkens, and
J. Cornelius, “Wavelet-based fully-scalable video coding with in-band prediction,”
in Proceedings of the 3rd IEEE Benelux Signal Processing Symposium, Leuven,
Belgium, March 2002, pp. 217–220.

[33] X. Li, L. Kerofsky, and S. Lei, “All-phase motion compensated prediction in
the wavelet domain for high performance video coding,” in Proceedings of the
International Conference on Image Processing, Thessaloniki, Greece, October
2001, vol. 2, pp. 538–541.

[34] X. Li and L. Kerofsky, “High-performance resolution-scalable video coding
via all-phase motion-compensated prediction of wavelet coefficients,” in Visual
Communications and Image Processing, C.-C. J. Kuo, Ed. Proc. SPIE 4671,
January 2002, pp. 1080–1090.

[35] Y. Andreopoulos, A. Munteanu, G. Van der Auwera, P. Schelkens, and
J. Cornelius, “Scalable wavelet video-coding with in-band prediction—
Implementation and experimental results,” in Proceedings of the International
Conference on Image Processing, Rochester, NY, 2002, vol. 3, pp. 729–732.

[36] S. Cui, Motion Estimation and Compensation in the Redundant Wavelet Domain,
Ph.D. dissertation, Mississippi State University, August 2003.

[37] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set
partitioning in hierarchical trees,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, no. 3, pp. 243–250, June 1996.

[38] G. J. Sullivan, “Multi-hypothesis motion compensation for low bit-rate video
coding,” in Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, Minneapolis, MN, April 1993, vol. 5, pp. 437–440.

[39] B. Girod, “Motion-compensating prediction with fractional-pel accuracy,” IEEE
Transactions on Communications, vol. 41, no. 4, pp. 604–612, April 1993.

[40] S. Nogaki and M. Ohta, “An overlapped block motion compensation for high
quality motion picture coding,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, San Diego, CA, May 1992, vol. 1, pp. 184–
187.

[41] M. T. Orchard and G. J. Sullivan, “Overlapped block motion compensation: An
estimation-theoretic approach,” IEEE Transactions on Image Processing, vol. 3,
no. 5, pp. 693–699, September 1994.

[42] T. Wiegand, X. Zhang, and B. Girod, “Long-term memory motion-compensated
prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol.
9, no. 1, pp. 70–84, February 1999.

121

[43] M. Flierl, T. Wiegand, and B. Girod, “Rate-constrained multihypothesis prediction
for motion compensated video compression,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 12, no. 11, pp. 957–969, November 2002.

[44] Y. Wang, S. Cui, and J. E. Fowler, “3D video coding using redundant-wavelet
multihypothesis and motion-compensated temporal filtering,” in Proceedings of
the International Conference on Image Processing, Barcelona, Spain, 2003, vol. 2,
pp. 755–758.

[45] Y. Wang, S. Cui, and J. E. Fowler, “3D video coding with redundant-
wavelet multihypothesis,” IEEE Transactions on Circuits and Systems for Video
Technology, July 2003, submitted.

[46] C. Parisot, M. Antonini, and M. Barlaud, “3D scan-based wavelet transform and
quality control for video coding,” EURASIP Journal on Applied Signal Processing,
vol. 2003, no. 1, pp. 56–65, January 2003.

[47] P. Simard, D. Steinkraus, and H. Malvar, “On-line adaptation in image coding with
a 2-D tarp filter,” in Proceedings of the IEEE Data Compression Conference, J. A.
Storer and M. Cohn, Eds., Snowbird, UT, April 2002, pp. 23–32.

[48] Y. Wang, J. T. Rucker, and J. E. Fowler, “Embedded wavelet-based compression
of hyperspectral imagery using tarp coding,” in Proceedings of the International
Geoscience and Remote Sensing Symposium, Toulouse, France, July 2003, vol. 3,
pp. 2027–2029.

[49] Y. Wang, J. T. Rucker, and J. E. Fowler, “3D tarp coding for the compression of
hyperspectral images,” IEEE Transactions on Geoscience and Remote Sensing,
July 2003, submitted.

[50] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley &
Sons, Inc., New York, 2nd edition, 2001.

[51] J. E. Fowler, “Shape-adaptive tarp coding,” in Proceedings of the International
Conference on Image Processing, Barcelona, Spain, September 2003, vol. 1, pp.
621–624.

[52] J. E. Fowler, “QccPack: An open-source software library for quantization,
compression, and coding,” in Applications of Digital Image Processing XXIII,
A. G. Tescher, Ed., San Diego, CA, August 2000, Proc. SPIE 4115, pp. 294–301.

[53] A. T. Deever and S. S. Hemami, “Efficient sign coding and estimation of zero-
quantized coefficients in embedded wavelet image codecs,” IEEE Transactions on
Image Processing, vol. 12, no. 4, pp. 420–430, April 2003.

122

[54] J. Tyler, J. Lent, A. Mather, and H. Nguyen, “AltiVecTM: Bringing vector
technology to the PowerPCTM processor,” in Proceedings of the IEEE International
Conference on Performance Computing and Communications, Scottsdale, AZ,
February 1999, pp. 437–444.

[55] A. Peleg and U. Weiser, “MMX technology extension to the Intel architecture,”
IEEE Micro, vol. 16, no. 4, pp. 42–50, August 1996.

[56] F. W. Wheeler and W. A. Pearlman, “Low-memory packetized SPIHT image
compression,” in Proceedings of the 33rd Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, October 1999, vol. 2, pp. 1193–1197.

[57] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-parallel architecture for
EBCOT in JPEG-2000,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, Scottsdale, AZ, May 2002, vol. 1, pp. 773–776.

[58] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression
Fundamentals, Standards and Practice, Kluwer Academic Publishers, Boston,
MA, 2002.

[59] P. Chen and J. W. Woods, “Comparison of MC-EZBC and H.26L TML 8 on
digital cinema test sequences,” ISO/IEC JTC1/SC29/WG11, MPEG2002/M8130,
Jeju Island, South Korea, March 2002.

	Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering
	Recommended Citation

	tmp.1625165283.pdf.OnOJA

