
Parallelisation of greedy algorithms
for compressive sensing reconstruction

David William Turner

Department of Computer Science and Technology
University of Cambridge

Selwyn College

September 2018

This dissertation is submitted for the degree of Doctor of Philosophy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226941251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the Preface and specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently
submitted for a degree or diploma or other qualification at the University of Cambridge or any
other University or similar institution except as declared in the Preface and specified in the text.
I further state that no substantial part of my dissertation has already been submitted, or, is being
concurrently submitted for any such degree, diploma or other qualification at the University of
Cambridge or any other University or similar institution except as declared in the Preface and
specified in the text.

This dissertation does not exceed the regulation length of 60,000 words, including tables
and footnotes.

David Turner
September 2018

Parallelisation of greedy algorithms
for compressive sensing reconstruction

David William Turner

Summary

Compressive Sensing (CS) is a technique which allows a signal to be compressed at the same
time as it is captured. The process of capturing and simultaneously compressing the signal is
represented as linear sampling, which can encompass a variety of physical processes or signal
processing. Instead of explicitly identifying redundancies in the source signal, CS relies on the
property of sparsity in order to reconstruct the compressed signal. While linear sampling is
much less burdensome than conventional compression, this is more than made up for by the high
computational cost of reconstructing a signal which has been captured using CS. Even when
using some of the fastest reconstruction techniques, known as greedy pursuits, reconstruction
of large problems can pose a significant burden, consuming a great deal of memory as well as
compute time.

Parallel computing is the foundation of the field of High Performance Computing (HPC).
Modern supercomputers are generally composed of large clusters of standard servers, with a
dedicated low-latency high-bandwidth interconnect network. On such a cluster, an appropriately
written program can harness vast quantities of memory and computational power. However, in
order to exploit a parallel compute resource, an algorithm usually has to be redesigned from
the ground up. In this thesis I describe the development of parallel variants of two algorithms
commonly used in CS reconstruction, Matching Pursuit (MP) and Orthogonal Matching Pursuit
(OMP), resulting in the new distributed compute algorithms DistMP and DistOMP. I present
the results from experiments showing how DistMP and DistOMP can utilise a compute cluster
to solve CS problems much more quickly than a single computer could alone. Speed-up of as
much as a factor of 76 is observed with DistMP when utilising 210 workers across 14 servers,
compared to a single worker. Finally, I demonstrate how DistOMP can solve a problem with a
429GB equivalent sampling matrix in as little as 62 minutes using a 16-node compute cluster.

Acknowledgements

This work was funded under an ICASE award from the Engineering and Physical Sciences
Research Council, with sponsorship provided by Thales Research and Technology (TRT).

First, I would like to express my gratitude to my supervisor, Ian Wassell, for giving me the
opportunity to undertake this PhD, for allowing me the freedom to find a topic I could call my
own (and develop many skills along the way), for bearing with me as my PhD has taken rather
longer than expected, and for all his hard work in helping me write and edit this thesis. My
thanks also go to Richard Egan, Mike Newman, and Chris Firth at TRT for hosting my internship
as well as for support, encouragement, and engaging discussions.

I would like to thank my research group, the Digital Technology Group, for being such a
great place to work for four years. In particular, thanks to Tom for the friendship and countless
caffeinated beverages which have so helped this thesis along. I am very grateful to everybody at
my employer, ArgonDesign, who have been so understanding, accommodating, and sympathetic
during the finishing of this thesis. Thanks also to Adam, for years of putting up with sharing a
house with me, for teaching me so much that I have used in this PhD and beyond, and for the
afternoon hacking which eventually lead to the research in this thesis.

I am indebted to my family for the unwavering support, encouragement, and confidence in
my abilities. And finally, also to Katie, for too much to enumerate.

Contents

Contents i

List of figures iv

List of algorithms v

List of acronyms vi

List of symbols viii

Notation ix

1 Introduction 1
1.1 Sparsity and Compressive Sensing . 1
1.2 CS reconstruction of large signals . 3

1.2.1 Applications involving large signals 3
1.2.2 Reconstruction techniques for large signals 4

1.3 Parallelism and High Performance Computing 6
1.4 Motivation and research questions . 7
1.5 Original contributions . 8
1.6 Thesis outline . 8

2 Review of CS and parallel computing literature 11
2.1 Information and sparsity . 11
2.2 Compressive Sensing . 14

2.2.1 Sampling . 14
2.2.2 Reconstruction . 15

2.2.2.1 Reconstruction by combinatorial optimisation 15
2.2.2.2 Reconstruction by convex optimisation 16
2.2.2.3 Reconstruction using greedy algorithms 17
2.2.2.4 Sparse regression . 19

2.2.3 Review of CS literature . 20

i

2.2.4 Sparse transforms . 22
2.2.5 Fast transforms and implicit dictionaries 24
2.2.6 Applications . 25

2.3 High performance parallel computing . 26
2.3.1 Types of parallel computer . 26

2.3.1.1 SISD: Instruction-level parallelism 27
2.3.1.2 SIMD: Data parallelism . 28
2.3.1.3 MIMD: Task parallelism 28

2.3.2 Interconnect architecture . 30
2.3.3 Terminology . 31
2.3.4 History . 31

2.4 Parallelisation . 32
2.4.1 Performance metrics . 33
2.4.2 Theory . 33

2.4.2.1 Task-based parallelisation 38
2.4.2.2 Data-based parallelisation 39

2.4.3 Message Passing Interface . 40
2.4.3.1 MPI Primitives . 41

2.4.4 Hybrid-memory parallelisation . 42
2.4.5 Automatic Parallelisation . 43

2.5 Accelerated CS reconstruction . 44
2.5.1 GPU-accelerated reconstruction . 44
2.5.2 FPGAs and ASICs . 46
2.5.3 Distributed reconstruction for DCS 47
2.5.4 Distributing convex algorithms using ADMM 48

2.6 Chapter summary . 49

3 Parallelised greedy pursuits 51
3.1 Matching Pursuit . 51
3.2 Distributed Matching Pursuit . 54
3.3 Orthogonal Matching Pursuit . 57

3.3.1 Implementing the LLSQ solver . 59
3.3.2 OMP with MGS updates and BS . 62

3.4 Distributed Orthogonal Matching Pursuit . 65
3.4.1 Storage and organisation . 65
3.4.2 Distribution of computation . 67
3.4.3 QA-worker algorithm . 67
3.4.4 R-worker algorithm . 70

3.5 Chapter summary . 74

ii

4 Experimental results and analysis 75
4.1 The Darwin cluster . 75
4.2 Implementing the algorithms . 76
4.3 Methodology . 78
4.4 Interpretation of results . 80
4.5 Results . 82

4.5.1 Multithreaded MP . 82
4.5.2 DistMP . 84
4.5.3 Multithreaded OMP . 90
4.5.4 DistOMP . 90
4.5.5 Large demonstration problem . 97

4.6 Comparison with Amdahl’s Law . 99
4.6.1 DistMP . 99
4.6.2 DistOMP . 102

4.7 Chapter summary . 102

5 Conclusions 105
5.1 Research questions . 105
5.2 Future work . 106

5.2.1 Hybrid parallelisation . 106
5.2.2 Implicit matrices . 107
5.2.3 Parallelisation of further greedy algorithms 107
5.2.4 Multiple R-workers . 108
5.2.5 Distributed reconstruction with compute accelerators 109

5.3 Final remarks . 110

Bibliography 111

iii

List of figures

2.1 An example of wavelet-based compression . 13
2.2 Relative shapes of vectors and matrices in CS sampling 15
2.3 Illustration of Fourier and wavelet dictionary atoms 23
2.4 A simple example of instruction pipelining . 28
2.5 Structure of a two-level NUMA architecture 29
2.6 Speed-up predicted by Amdahl’s Law . 34
2.7 Scaled-speedup predicted by Gustafson-Barsis’ Law. 35
2.8 Foster’s methodology for parallelisation . 38
2.9 A task-dependency graph for a very simple algorithm 38

3.1 Column distribution over workers in DistMP 54
3.2 Inter-worker communications in DistMP . 56
3.3 Matrix storage in DistOMP . 66
3.4 Inter-worker communications in DistOMP . 73

4.1 Scatter plots demonstrating variability in results 81
4.2 Multithreaded Matching Pursuit . 83
4.3 Wall-time against number of workers for DistMP 87
4.4 Speed-up against number of workers for DistMP 88
4.5 Efficiency against number of workers for DistMP 89
4.6 Multithreaded Orthogonal Matching Pursuit 91
4.7 Wall-time against number of workers for DistOMP 94
4.8 Speed-up against number of workers for DistOMP 95
4.9 Efficiency against number of workers for DistOMP 96
4.10 Time taken to solve a large problem with DistOMP 98
4.11 Comparison between DistMP and Amdahl’s Law predictions 101
4.12 Comparison between DistOMP and Amdahl’s Law predictions 103

iv

List of algorithms

3.1 Matching Pursuit . 53
3.2 Distributed Matching Pursuit . 57
3.3 Orthogonal Matching Pursuit: Concise form 59
3.4 A single iteration of column-wise Modified Gram-Schmidt QR decomposition . 61
3.5 An implementation of Back Substitution for solving LLSQ problems 62
3.6 Orthogonal Matching Pursuit: using MGS updates 64
3.7 Distributed Orthogonal Matching Pursuit: QA Worker 69
3.8 Distributed Orthogonal Matching Pursuit: R-worker 72

v

List of acronyms

• ADMM: Alternating Direction Method of Multipliers

• BP: Basis Pursuit

• BPDN: Basis Pursuit De-Noise

• BS: Back Substitution

• CG: Conjugate Gradients

• CPU: Central Processing Unit

• CS: Compressive Sensing

• DCT: Discrete Cosine Transform

• DFT: Discrete Fourier Transform

• DCS: Distributed Compressive Sensing

• DistMP: Distributed Matching Pursuit

• DistOMP: Distributed Orthogonal Matching Pursuit

• DWT: Discrete Wavelet Transform

• FFT: Fast Fourier Transform

• FLOPS: Floating Point Operations per Second

• FWT: Fast Wavelet Transform

• GPU: Graphics Processing Unit

• HPC: High Performance Computing

• IID: Independent and Identically Distributed

• LASSO: Least Absolute Shrinkage and Selection Operator

vi

• LLSQ: Linear Least Squares

• MGS: Modified Gram-Schmidt

• MIMD: Multiple Instruction Multiple Data

• MISD: Multiple Instruction Single Data

• MP: Matching Pursuit

• MPI: Message Passing Interface

• MRI: Magnetic Resonance Imaging

• MSE: Mean Squared Error

• NSP: Null-space Property

• NUMA: Non-uniform Memory Access

• OMP: Orthogonal Matching Pursuit

• PRNG: Pseudo-Random Number Generator

• RIP: Restricted Isometry Property

• SIMD: Single Instruction Multiple Data

• SISD: Single Instruction Single Data

• UMA: Uniform Memory Access

vii

List of symbols

Below I identify a number of symbols commonly used in this thesis. Some symbols may have
multiple meanings depending on context.

• f : A signal we wish to capture

• x: Sparse representation of f

• S: Sparsity (S = ‖x‖0)

• Ψ: Sparse basis (x = Ψ−1f)

• b: Linear samples (b = Ax)

• Φ: Linear sampling ensemble (b = Φf)

• A: Equivalent sampling matrix (A = ΨΦ)

• r: Residual (r = b−Ax)

• N : Number of columns in the equivalent sampling matrix

• n: Number of rows in the equivalent sampling matrix

• i: Current iteration number in an iterative algorithm

• k: Index of the dictionary column selected in each iteration of MP and similar algorithms

• g: Selected dictionary atom (g = Ak)

• w: Index of a compute worker undertaking a parallel algorithm

• W : Number of compute workers undertaking a parallel algorithm

• L: Local portion of A in DistMP and DistOMP

• Q: Orthogonal portion of the result of a QR decomposition

• R: Coefficients resulting from a QR decomposition

• P: Local portion of Q in DistOMP

viii

Notation

• x: A scalar

• x: A column vector

• x̂: An estimate of x

• X: A matrix

• A: A set

• |A|: The cardinality (size) of a set

• xi: The ith scalar element of x

• Xi: The ith column of the matrix X

• Xi,j: The scalar element at the ith row and jth column of X

• xA: The elements of the vector x selected by the set A

• XA: The columns of the matrix X selected by the set A

• XA,i: The elements selected by the set A in the ith column of A.

• XT : The transpose of the matrix X

• X†: The Moore-Penrose pseudo-inverse of the matrix X

• 0m: A column-vector of zeros of lengthm

• Om×n: A matrix of zeros withm rows and n columns

• I: The square identity matrix, consisting of 1 in every element of the leading diagonal,
and 0 otherwise

• R: The set of real numbers

• Rm: A column vector consisting ofm real numbers

• Rm×n: A matrix withm rows and n columns consisting of real numbers

ix

• {a . . . b}: The set of integers from a to b inclusive

• [X x]: The matrix resulting from appending a new column x to the right hand side of the
matrix X

• bxc: The floor operator; the result of rounding x down to the nearest integer

• dxe: The ceiling operator; the result of rounding x up to the nearest integer

• a mod b: The modulo operator; the remainder after dividing a by b

Throughout the text, italic characters (e.g. n, N) are used for scalar variables. Lowercase
bold characters (e.g. f , x) are used for column vectors. Uppercase bold characters (e.g. Ψ,
Φ, A) are used for matrices. Matrices and vector multiplication is indicated by matrices and
vectors written sequentially, for exampleΦΨ indicates thematrix-matrixmultiplication, or inner
product, between the matrices Φ and Ψ, and Ax indicates the matrix-vector product between
the matrix A and the column vector x.

Subscripts are used to indicate a single column or element taken from a vector or matrix.
A bold character with a subscript indicates a single column taken from a matrix, for example
Xi indicates the ith column of the matrix X. An italic character with a subscript indicates a
scalar element of a matrix or vector, for example xi indicates the ith element of the vector x, or
Xij indicates the element at the ith row and jth column of the matrix X. Subscript indices are
numbered starting from 1 as the first element.

Optimisation problems use the notation

minimise
x

f(x) s.t. g(x) = h.

Here, x is the optimisation variable, f(x) is the function to minimise, and g(x) = h is a
constraint equation. A hat is commonly used for optimisation variables which approximate or
converge to a value, for example x̂ is an approximation to x.

We will commonly use the `0, `1 and `2 norms, denoted ‖.‖0, ‖.‖1, and ‖.‖2 respectively.
These are defined as

‖x‖0
def
= Σ

i

[
x0i
]
,

‖x‖1
def
= Σ

i
|xi| , and

‖x‖2
def
= Σ

i

[
x2i
]
.

Indices, whether indicating a worker number, iteration number, or a row or column of a
matrix, all start from 1.

x

Chapter 1

Introduction

In the modern world we capture, communicate, and store a vast and ever increasing quantity of
data. However, much of this data is actually very redundant, as evidenced by the prevalence
of data compression which can often reduce the quantity of data by an order of magnitude or
more without any noticeable loss. For example, audio and video compression do such a good
job that they have become ubiquitous: digital audio and video are rarely stored or transmitted
uncompressed. However, conventional compression relies on having perfectly captured every
detail of a signal and then locating and exploiting patterns, repetitions, and redundancies in the
captured data. What if we could skip the step of explicit compression and capture a signal in
its pre-compressed form? Could we, at the same time, reduce the effort expended in capturing
the signal or increase the detail captured for the same effort spent capturing it? Within certain
constraints, Compressive Sensing (CS) enables us to do precisely this.

1.1 Sparsity and Compressive Sensing

Compressive Sensing (CS) achieves its remarkable results by relying on sparsity. The concept
of sparsity can be seen as a development of Shannon’s information theory [1] which describes
how a discrete signal may contain much less information than the length of the signal. By
distilling a signal down to its useful information we can transmit far less data and reconstruct
the original signal at the receiver. Sparsity gives us a particular set of tools to do this. A sparse
signal is a signal where most of its elements are zero or close to zero, meaning that the majority
of the energy is concentrated in a small number of elements. Signals which are not naturally
sparse might become sparse when represented in a particular basis, referred to as a sparse basis.
Sparse representation can be written as x = Ψ−1f where f is the signal, Ψ is the sparse basis,
and x is the sparse representation of the signal. A simple example is that any signal which is
highly periodic and relatively smooth is likely to be sparse in the Fourier domain, that is, after
carrying out a Fourier transform on the signal. Through the use of more specialised or even
custom-created basis transforms, we can come up with sparse representations of a wide variety

1

CHAPTER 1. INTRODUCTION

of classes of signals.

Sparsity was originally used in statistics to enhance signal modelling: For a model with a
large number of parameters, allowing all parameters to vary freely is likely to result in over-fitting
to training signals, but constraining themodel so that only a few parameters may be non-zero (but
not specifying which parameters) may produce much better results. A widely used algorithm
is Least Absolute Shrinkage and Selection Operator (LASSO), popularised by Tibshirani [2].
A related topic in signal processing is sparse decomposition of signals, where observed signals
are described using a small number of of atoms taken from an over-complete dictionary (one
with fewer rows than columns). The use of over-complete bases makes decomposition more
difficult but can lead to improved results [3]. Research seeking guaranteed recovery of sparse
representations from known signals laid the groundwork for CS [4][5][6].

Exact reconstruction of incompletely sampled signals by exploiting a sparse representation
was first demonstrated by Candès, Romberg, and Tao [7]. In CS, a signal is captured and
compressed by applying linear sampling, for example the matrix-vector multiplication b = Φf

where Φ is the sampling matrix and b is the vector of samples taken. In order to achieve
compression, Φ must have fewer rows than columns. In some applications linear sampling
occurs naturally, for example Magnetic Resonance Imaging (MRI) [7], and in others it can be
applied to a fully captured signal, for example by multiplying the signal vector by a random
Independent and Identically Distributed (IID) Gaussian matrix which has fewer rows than
columns. Linear sampling can also be applied by incompletely capturing a signal, represented
by a sampling matrix consisting of a subset of the rows of the identity matrix. By changing the
shape and properties of the sampling matrix we can take as few samples as possible while still
being able to recover the original signal.

When attempting reconstruction we encounter an ambiguity because we have deliberately
under-sampled: There are an infinite number of signals we could have observed which would
produce the samples we captured. We narrow this down by finding a signal which is sparse in
a particular basis and fits with our observed samples. Combining the sampling process with
sparse representation, we write b = Ax, where the matrix A = ΦΨ is called the equivalent
sampling matrix. We reconstruct the signal by calculating f̂ = Ψx̂, where x̂ is found by solving
the optimisation problem

minimise
x̂

‖x̂‖1 s.t. Ax̂ = b. (1.1)

Equation 1.1 is called Basis Pursuit (BP). Previously used for sparse decomposition [8], BP
was utilised for CS reconstruction by Candès, Romberg, and Tao [7]. Using BP, the authors de-
rive conditions on the sampling matrix necessary for reconstruction. This result was generalised
by Candès and Tao [9] to handle noisy signals with inexact sparsity, in the process introducing
the Restricted Isometry Property (RIP) which determines whether sufficiently sparse signals can
be exactly recovered with high probability following sampling by a particular sampling matrix.

2

CHAPTER 1. INTRODUCTION

While BP can be solved using modern linear and convex programming techniques, this is
generally infeasible for very large problems. Furthermore, while BP is simple to state, imple-
menting an efficient solver is far from easy. Greedy algorithms are an alternative which are
simple to implement and may converge on a solution much faster than convex algorithms. They
are not a new invention: The simplest greedy pursuit, namely Matching Pursuit (MP), was
introduced for signal decomposition in 1993 [3]. Tropp [6] showed criteria for guaranteed con-
vergence when using Orthogonal Matching Pursuit (OMP), another greedy algorithm, for sparse
approximation and later applied the same algorithm to CS reconstruction showing promising
theoretical and practical results [10].

Numerous potential applications for CS have been demonstrated. The original application
of MRI [7] is particularly attractive due to Fourier sampling occurring naturally along with
inherent limits on the number of samples which can be taken. Another well-known application
is the single pixel camera [11], where a camera uses a micro-mirror array to sub-sample an input
image which is then focused onto a single pixel sensor.

1.2 CS reconstruction of large signals

Relatively efficient algorithms have been developed for CS reconstruction but handling large
signals remains problematic: Candès and Romberg [12] comment how solving large problems
with unstructured sampling systems is numerically intractable due to the huge quantity of data
involved, in particular explicit representation of the sampling matrix. A key issue is sampling
matrix size. If we take n samples of a signal of length N then our sampling matrix will contain
Nn elements. If the number of samples taken is proportional to the signal size then the sample
matrix size is proportional to the square of the signal length. This is compounded when the
signal concerned is an image: With a fixed sub-sampling ratio bothN and n are proportional to
the number of pixels in the image, so Nn is proportional to the fourth power of the side-length
of the image. A typical 1000 × 1000 pixel image sub-sampled at 1% would therefore produce
a sampling matrix with 1010 elements. If each element were stored as a 64-bit double precision
floating point value then this corresponds to a sampling matrix size of 75 gigabytes. In addition
to the quantity of memory required, each application of such a large matrix in the reconstruction
algorithm would require a large number of operations leading to long reconstruction times.

1.2.1 Applications involving large signals

A number of proposed and demonstrated applications for CS involve reconstruction of such
large problems. In Transmission Electron Microscopy (TEM), a beam of electrons is projected
through a target onto a sensor in order to form images of the sample. Some targets degrade
under bombardment with a large number of electrons, so it is desirable to be able to derive a high
quality image using a limited dose of electrons. The application of CS to TEM is proposed by

3

CHAPTER 1. INTRODUCTION

Binev et al. [13] who demonstrate reconstruction of 128× 128-pixel images, and Stevens et al.
[14] show how in-painting techniques based on CS can be used to reconstruct megapixel images
from sub-sampled TEM. Stevens et al. [15] also propose the use of CS to reduce the quantity
of data involved in implementing video-rate TEM. Each 1024× 1024-pixel frame would form a
signal sizedN = 106 and considering the whole sequence of 900 frames as a single signal would
increase this to N = 9 × 108. Each frame could be sampled and reconstructed independently
but this prevents exploitation of temporal redundancy between frames: considering a number of
frames together will lead to the best compression and reconstruction quality.

Electron holography operates similarly to TEM except that the structure of a 3-dimensional
object is inferred from 2-dimensional images captured on a sensor. Multiple 2D images are
collected by modulating the electron beam before it enters the object. Compressive holography,
proposed by Brady et al. [16], uses sparse techniques to enhance the reconstruction, modelling
the interaction with the beam and object as linear sampling and the shape of the object as
a sparse signal. The size of the reconstruction problem can become very large because the
reconstructed signal is 3-dimensional, for example Brady et al. use 10 depth-planes resulting
in a single reconstruction having N = 5 × 106 and n = 5 × 105. Endo et al. [17] simulate a
higher resolution 1024× 1024-pixel sensor resulting in N = 107 and n = 106. Hahn et al. [18]
extend compressive holography further, proposing compressive holographic video rather than
just static images. Each 3-dimensional capture has a size of 1024× 1024× 35, with 109 frames
captured in a short sequence. Considering the full sequence as a single signal would lead to a
size of N = 4× 109.

Radio interferometry, used for astronomical imaging, involves the use of a number of
spatially distributed radio receivers to simulate one large receiver. Signals observed by pairs of
receivers are compared in order to build up a picture of the sky. This setup can be modelled
as linear sub-Fourier sampling and so the use of CS is attractive as a means of reconstruction.
Belle, Armstrong, and Gain [19] propose the use of sparse techniques for deconvolution of
astronomical images. This is demonstrated using synthetic images up to 64 megapixels (N =

6 × 107) generated by simulating a radio-interferometer. The authors explain how existing
radio interferometers produce images of less than 16 megapixels but that the upcoming Square
Kilometre Array will produce much larger 10-gigapixel images. Another application of CS
involves conventionally captured optical signals. Astronomical images captured from ground-
level are subject to blurring from atmospheric effects. The use of CS for de-blurring these
images is proposed by Fiandrotti et al. [20]. The example of de-blurring a mega-pixel image
results in a problem size of N = 106 and n = 5× 105.

1.2.2 Reconstruction techniques for large signals

Several techniques may be used to assist with CS reconstruction of large signals. For many
reconstruction algorithms the majority of the computational load takes the form of matrix

4

CHAPTER 1. INTRODUCTION

multiplication by the equivalent sampling matrix. If the sampling matrix is structured then
it may be possible for the multiplication to be replaced by a fast transform operator. For
example, if the sampling process involves a Fourier transform then application of the sample
matrix in a reconstruction algorithm could be implemented using a Fast Fourier Transform
(FFT), which is significantly faster than a general matrix-vector multiplication. Furthermore,
with a structured sampling matrix it is not necessary to explicitly store the whole matrix in
memory so the memory capacity required for reconstruction can be greatly reduced. In some
applications (for example holography [16][17], radio interferometry [19], and MRI [7]) Fourier
sampling occurs naturally and so the use of the FFT in reconstruction algorithms is an obvious
choice. A structured sample matrix may also be chosen for ease of reconstruction, for example
Fiandrotti et al. [20] use circulant matrices in order to reduce memory capacity requirements
and accelerate reconstruction. However, enforcing the use of structured matrices to improve
reconstruction speed may harm compression ratio or reconstruction quality: In general, an
unstructured over-complete sparsity basis can produce a more sparse result for a given class of
signal than a structured matrix. In particular, dictionary learning [21] may be used to generate
an unstructured sparsity basis tailor-made to a specific class of signals.

Another common technique used for solving large CS problems is partitioning or blocking
[22][23][24] where the original signal is split into multiple segments before sampling which
allows each smaller segment to be independently reconstructed. In addition to reducing re-
construction time and memory requirements, if a signal is segmented in the time domain then
overall latency between capture and reconstruction may be reduced. Partitioning is often carried
out implicitly, for example if each frame in a video sequence is independently sampled and
reconstructed, as was done by Hahn et al. [18]. Partitioning is also used explicitly in some
applications, for example Stevens et al. [14] apply an in-painting algorithm to 8×8-pixel patches,
and in their work on video-rate TEM [15] the image is sampled and reconstructed in patches
with each patch using the same sample matrix. The main downside to partitioning is reduction
of compression ratio or reconstruction quality: the larger the number of partitions a signal is
split into, the greater the total number of samples required for exact recovery [24]. Furthermore,
if an image is reconstructed in independent spatial partitions then the reconstruction is likely to
contain visible blocking artefacts along boundaries.

Various researchers have demonstrated accelerated CS reconstruction using parallel compute
or compute accelerator hardware. Graphics Processing Unit (GPU) compute is commonly
used due to the prevalence of GPU hardware and the relative ease of programming using
toolkits such as cuBLAS [25]. Many implementations [17][19][26][27][28] rely on structured
sampling matrices where the FFT can be used instead of explicit storage and computation.
A few implementations [26][29][30][31] use unstructured dictionaries but these are limited
to problems of up to N = 2 × 104. Another area of research is the use of FPGA (Field
Programmable Gate Array) and ASIC (Application-Specific Integrated Circuit) accelerators
[32][33][34][35]. However, this research tends to focus on very low latency reconstruction and

5

CHAPTER 1. INTRODUCTION

is limited to very small problems (typicallyN < 1024). Researchers have demonstrated solution
of much larger problems using algorithms based on Alternating DirectionMethod of Multipliers
(ADMM) [36][37] but these algorithms have differing reconstruction performance compared to
well-known algorithms such as BP and OMP and the results of reconstruction depend on the
size and connectedness of the compute resource used.

In this section I have shown several applications which require reconstruction of large CS
problems. Megapixel-sized images are not unusual, but sampling one with CS can easily result
in a sample matrix larger than can be held in memory on most computers. I then looked at the
use of partitioning and implicit sampling matrices, two common strategies used for processing
large CS reconstructions, and showed how each has downsides including reduced compression or
reconstruction quality. High performance parallel computing, where thememory and processing
power of many computers can be combined to tackle a single problem, provides an alternative
strategy for solution of large CS problems.

1.3 Parallelism and High Performance Computing

Computers have exploited parallelism to increase performance for over five decades [38][39]
and this has not changed in recent years. Since 2000, increases in processor clock speed have
slowed and attention has turned to multi-core architectures to deliver continuing performance
improvements [40]. Limits on attainable clock speed restrict the performance achievable on
an individual processor core, but for problems which are amenable to parallelisation a large
number of processor cores can work together to tackle a problem much more quickly than
a single processor could alone. Another aspect to parallelisation is memory capacity: It is
desirable to be able to hold the whole problem being tackled in memory because this is much
faster (both lower latency and higher bandwidth) than resorting to disk storage. However, a
limited quantity of memory can be attached to a single processor. This is limited by memory
density and by the memory all needing to be physically close to the processor to meet latency
requirements. A parallel computer can possess much more memory than could feasibly be
attached to a single-processor computer.

Two common types of parallel processor, as categorised by Flynn’s Taxonomy [41][42],
are Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD).
SIMD processors carry out a single operation on a large quantity of data, for example vector
processor super-computers [43] andGPU computing. Vector processing can givemassive speed-
up while being simple to program but is only applicable to certain problems, generally involving
mathematical operations on large datasets. Also, the scale of vector processors is limited
by the synchronisation and communication required. MIMD parallelism includes the use of
multiple processor cores and multiple discrete processors. MIMD parallelism can be divided
into Uniform Memory Access (UMA) and Non-uniform Memory Access (NUMA) depending
whether the memory structure is uniform or heterogeneous. UMA parallel computing includes

6

CHAPTER 1. INTRODUCTION

the ubiquitous multi-core processors found in modern computers while NUMA architectures are
found in servers with multiple discrete processors and in distributed memory super-computers.
Efficiently programming a NUMA parallel computer requires care to ensure that data is stored
locally to the processors which will be operating on it. Communication generally takes the
form of explicit messages between processors, for example using the Message Passing Interface
(MPI) protocol [44].

Modern High Performance Computing (HPC) generally uses distributed-memory clusters
composed of a large number of standard servers with a high performance interconnect network
[43][45]. Each server, referred to as a node, runs its own operating system and may have its
own hard-disk storage. Each node separately runs a program, and the programs communicate
over a network to coordinate solving a problem. The interconnect network often uses high
bandwidth and low latency fibre-optic links structured as a redundantly-connected topology
allowing simultaneous fast communications across multiple parts of the network. To effectively
exploit a distributedmemorymassively parallel computer, softwaremust bemodified or specially
written for this purpose [46][47]. Separation must be introduced in either tasks or data so that
the problem to be solved can be split up and spread over the compute cluster. A commonly used
technique is described by Foster’s Methodology [48].

1.4 Motivation and research questions

In Section 1.2.1 I described several applications which motivate the use of CS with large signals.
This leads to two issues: the dataset may be too large to fit in memory, and carrying out recon-
struction on such a large signal could take a very long time. The latency between availability
of samples and completion of reconstruction could be prohibitive in some scenarios or limit the
quantity or rate of data which can be collected. In Section 1.2.2 I described how implicit diction-
aries and partitioning can be used to enable solution of very large problems but how both come
with downsides including reduced compression or reduced reconstruction performance. I then
describe various research which has investigated hardware accelerated CS reconstruction and ex-
plain how no existing techniques enable the reconstruction of large problems using unstructured
sampling matrices while giving the same results as standard reconstruction algorithms.

The goal of this thesis is to investigate whether high performance parallel computing can be
applied to reconstruct very large CS problems and to solve them quickly. In particular, I will
focus on CS problems using large unstructured dictionaries, where the use of implicit matrices
and fast transforms is not applicable. I also aim to maintain the properties and results of standard
reconstruction algorithms, in particularMatching Pursuit (MP) andOrthogonalMatching Pursuit
(OMP), and to design algorithms such that the reconstruction is identical regardless of the size
of structure of the computing resource. For parallelisation I will target large, homogeneous,
compute clusters using message passing for communication between compute workers. By
making available parallelised implementations of MP and OMP I hope to enable CS researchers

7

CHAPTER 1. INTRODUCTION

to carry out numerical experiments on larger unstructured problems thanwere previously feasible
to reconstruct, and to create interest in high performance parallel implementations of other CS
reconstruction algorithms. I will base my work around the following five questions and put
forward specific answers to them in my conclusions in Chapter 5.

1. How can MP and OMP be parallelised using Message Passing Interface (MPI) on a
compute cluster?

2. Can the parallel algorithms be used to solve much larger problems than would ordinarily
fit in main memory?

3. Can the parallel algorithms solve problems faster than a single compute worker could
alone?

4. How efficient are these parallel algorithms?

5. How do the properties of the algorithms vary with number of workers and differing CS
problems?

1.5 Original contributions

The original contributions of this thesis are the development and testing of two novel al-
gorithms, Distributed Matching Pursuit (DistMP) and Distributed Orthogonal Matching Pursuit
(DistOMP), which allow the use of a HPC resource to reconstruct very large signals captured
using CS while giving the same results as MP and OMP respectively. These algorithms are
motivated by the occurrence of large signals in various CS applications, in particular those
involving imaging, and by the reduction in compression caused by the use of partitioning and
structured sample matrices, two techniques commonly used to allow reconstruction of large
signals. The design and implementation of both algorithms are detailed, followed by testing to
quantify the level of speed-up achieved for various sizes and sparsity of CS problem and varying
numbers of compute workers.

1.6 Thesis outline

In this chapter I have given a brief introduction to the fields of CS and HPC. After an overview
of CS I showed how reconstruction can involve intensive computation on very large quantities
of data which may take prohibitively long to process and reviewed various applications of CS
which require the use of very large signals. I also explained how modern high performance
computing focuses on parallelism, culminating in large-scale clusters of standard servers. I
described the intersection between these fields, suggesting how the parallelism techniques from
HPC may be able to accelerate processing of CS reconstruction problems. Finally, I enumerated

8

CHAPTER 1. INTRODUCTION

five specific research questions I will attempt to answer in this thesis. The remainder of this
thesis is structured as follows:

In Chapter 2 I give a detailed introduction into the material involved in the original work
in this thesis. I begin with the work of Shannon on how information may be quantified and
how it differs from data. I draw parallels between information theory and the mathematical
concept of sparsity, and give an example of how this may be used to achieve data compression.
I introduce CS as an application of sparsity to sampling theory, giving particular attention to the
reconstruction process which will form the focus of later chapters. Next, I give an introduction
to high performance parallel computing, discussing the types of parallel computer and their
history. Finally, I discuss parallelisation, the process of modifying algorithms and programs
to exploit parallel computers. I cover the theory and several performance metrics relevant to
parallelisation and explain two common strategies: task parallelism and data parallelism. I also
give details of MPI, the communication mechanism I use in later chapters.

In Chapter 3 I introduce the algorithms DistMP and DistOMP, both of which are my original
contributions to the field. I begin with a detailed breakdown of the algorithm for MP and then
show how DistMP uses data parallelism in order to distribute the sampling matrix over a large
number of compute workers. Next, I give a detailed breakdown of the OMP algorithm, showing
how the use of a progressive Modified Gram-Schmidt (MGS) decomposition gives a particularly
efficient implementation. Finally, I present DistOMP, a parallelised alternative to OMP based
on data parallelism.

In Chapter 4 I describe my evaluation and characterisation of the algorithms described in
the previous chapter. I begin by describing the Darwin Cluster, upon which my experiments
will be carried out, and also describe various details of the implementations I produced of the
algorithms. I then present results and discussion comparing and characterising the algorithms
using different numbers of compute workers and solving different shapes and sizes of problems.
Finally, I show the scale of problems which can be handled by my new algorithms by using
DistOMP to solve a particularly large problem.

In Chapter 5 I summarise the contributions made in this thesis and respond to the questions
posed earlier in this chapter. I briefly compare my work to existing alternatives. I then detail
various paths for extending my work which could be carried out in future.

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Review of CS and parallel computing
literature

In this chapter I will review the literature concerning the topics of CS, HPC, and accelerated
CS reconstruction. I begin with an introduction to Shannon’s Information Theory and his
demonstration of the decoupling between data and information. I then give a brief overview of
the concept of sparsity and show how it is related to Information Theory and how sparsity can
be used for compression. Next, I will give an introduction into CS, including descriptions of its
history, the underpinning theory, and some reconstruction techniques. Aside from CS, the other
key component of my work concerns HPC clusters and parallel computing. I will introduce
the history and terminology of high performance parallel computing and overview some of the
common architectures used. I then cover techniques used for parallelisation, the conversion of
algorithms and software to exploit parallel compute resources. I will explain the underlying
theory, cover some of the common techniques used for parallelisation, and introduce the metrics
used to evaluate parallel compute performance which I will later apply to my own algorithms. In
the final section I review related work on the topics of accelerated, parallelised, and distributed
CS reconstruction techniques.

2.1 Information and sparsity

In his 1948 article, A Mathematical Theory of Communication [1], Claude Shannon founded
the field of information theory by defining the information content of a message. The length of
a message may be defined in bits as follows: Consider the message constructed from symbols,
each of which may take one of a number of values (i.e., characters which can be any upper-case
letter). Take the base-two logarithm of the number of values per symbol, and multiply it by
the number of characters in the message. For example, using upper-case letters and spaces,
the word PARIS has a size of log2 (275) = 24 bits (rounding up). Shannon’s innovation was
considering the quantity of information (also referred to as information entropy) present, distinct

11

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

from the message size. For example, for English text, if we randomly choose a string of letters
and punctuation, we are exceedingly unlikely to end up with a valid message. The information
content of a message depends not on the length of the message, but on the number of valid
messages we could have chosen to transmit. If there are n possibilities, the information content
is defined as being log2 n bits. Shannon showed that English text (upper-case letters and spaces)
has an average information quantity of 2.14 bits per letter, much less than the 4.75 bits per
letter needed to represent totally random characters. This implies we might be able to take a
message of English text and, by exploiting information theory and prior knowledge about the
English language, represent it in under half the amount of space. This process is conventional
data compression (or source coding), where we take some data and try to represent it in as small
a space as possible by removing any redundancy or exploiting prior knowledge. In comparison
to compression, CS is more like taking a message where many of the characters are missing or
obscured and attempting to reconstruct the original message.

CS is closely related to the theory of sparsity. A signal is referred to as sparse if it has
relatively few non-zero elements compared to its size. In particular, sparsity is often not a fixed
proportion of a signal’s size, but depends instead on the source of the signal or how it was
generated. Sparsity may be measured using the `0 norm

S = ‖x‖0
def
=
∑
i

x0i .

Relatively few signals are sparse in their natural form, however a surprising number of
signals appear sparse after an appropriate transform. Referring to the original signal as f and its
sparse representation as x, we can write f = Ψx, where Ψ is our sparse basis. Natural signals
may not be perfectly sparse however transformed, that is, the majority of elements are unlikely
to be precisely zero. However, it is common to find a small number of elements dominate the
energy in an approximately sparse signal, while the vast majority of the elements are close to
zero and have negligible energy. A compressible signal is one which is well-approximated by a
small number of its largest coefficients or which has coefficients which decay with a power-law
trend. It is also the case that, using an appropriate transform, the significant elements of a sparse
representation of a signal often represent the important or useful parts of the signal, where the
majority of small elements correspond to noise. As an example, we would expect a periodic
signal to appear sparse after application of a Fourier transform (for example a Discrete Fourier
Transform (DFT) or Discrete Cosine Transform (DCT)). A signal which appears periodic has
the bulk of its energy in the Fourier domain at components corresponding to the frequency of
periodicity and its harmonics. Any noise in the signal would, after a Fourier Transform, appear
as a small magnitude spread across all frequencies. More exotic transforms than the Fourier
Transform can turn surprisingly complicated (and realistic) signal structures into relatively few
sparse components.

It is easy to see the structure in a highly periodic signal and therefore imagine how it is

12

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

Photograph removed
for copyright reasons.
Copyright holder is
IEEE.

(a) The original photograph
with 1024× 1024 pixels

Chart removed for copyright
reasons. Copyright holder is
IEEE.

(b) Wavelet coefficients of the
photograph

Photograph removed
for copyright reasons.
Copyright holder is
IEEE.

(c) A reconstruction from only
the 25,000 largest coefficients

Figure 2.1: An example of wavelet-based compression from Candès and Wakin [49]

probably sparse in the Fourier domain, but many less obviously structured signals are similarly
amenable to sparse representation. For example, photographs are generally full of detail,
containing innumerable shapes, colours and textures. It is hard to imagine that an attempt
to extract the structure of the photograph and then reconstruct the original could result in a
convincing replica. However, the Discrete Wavelet Transform (DWT) can do just this. As an
example, Figure 2.1a shows a photograph with 1024 × 1024 pixels, each of which can take
256 greyscale levels. Figure 2.1b shows the value of the wavelet coefficients resulting from
performing the DWT on the photograph. The wavelet coefficients are approximately sparse: the
energy of the post-transform signal is concentrated in a small subset of the elements, representing
the dominant structure in the image. We can further emphasize this result by forcing smaller
elements in the DWT domain signal to zero so that only the 25,000 with greatest magnitude
(2.4% of the elements) contain any information, then performing the inverse wavelet transform
after this threshold operation. Figure 2.1c shows the result: the difference between this and the
original photograph is imperceptible.

Earlier we said that regardless of its size, a message (or signal) may contain a more limited
quantity of information, and showed how to calculate the information content of a message from
the level of uncertainty. Conventional compression gives us tools to distil the information out
of a message and transmit this as concisely as possible, followed by later expanding out the
complete, original, message. The mathematics of sparsity gives us a very different tool for
analysing signals, but one with a similar meaning and some parallels with information theory.
Signals, or messages, rarely contain as much information as their size might imply, and the
right techniques can separate the two. CS relies on signals having a sparse representation as a
way to reconstruct the signals from incomplete data. However, unlike compression, we do not
need to observe and process the full signal before producing the concise form: Under the right
conditions, we can start with incomplete observations of a signal and perfectly reconstruct that
same signal, sight unseen, even given the presence of noise in the signal or our observations of
it.

13

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

2.2 Compressive Sensing

CS is a research area based on the idea of combining compression into the action of sensing, and
the techniques which can be used to reconstruct an incompletely sampled signal. Essentially,
in some signals the information we wish to capture is broadly spread over the whole length
of the signal. This means we can capture incomplete samples from the signal without loss
of information. In many cases it doesn’t even matter which parts of the signal we sample:
random sampling is not only possible, but has beneficial statistical properties. CS relies on the
idea of mathematical sparsity to describe the quantity and form of information in a signal or
piece of data, as well as using sparse techniques to reconstruct the captured signals. CS can
bring advantages in a variety of scenarios. When we want to retrieve a signal from an energy-
constrained sensor over a low-bandwidth channel, CS can be used to apply compression with
only trivial computation needed on the sensing end (in exchange for more intensive computation
required for reconstruction than conventional decompression). In some situations there are
inherent limits on how many samples we may take from the signal we are trying to observe, and
CS may be used to reconstruct the best possible estimate of what the original signal looked like
from incomplete observations.

2.2.1 Sampling

CS relies on linear sampling to capture signals. Considering the original signal to be captured as
a finite dimensioned vector, the sampling process is equivalent to a matrix-vector multiplication.
Naming the original signal f , our sampling matrix (also known as sampling ensemble) Φ, and
our captured samples as b, sampling is written as

b = Φf .

Φ is defined as having n rows by N columns, where N is the size of our original signal f and
n is the number of samples taken in b. The sampling ratio, or compression ratio, is n/N . The
sampling process is represented in Figure 2.2 which shows the relative shapes of the vectors and
matrices.

In order to achieve useful compression we desire that the sample vector has significantly
fewer elements than the original signal. This is equivalent to a sampling matrix which is wide,
that is, it has significantly more columns than rows. In some applications we can implement a
physical sampling process which can be represented as linear sampling in this manner. In other
cases we fully sample the signal over the desired period and then apply the sampling matrix
multiplication numerically in software before storing or transmitting the samples.

Not every conceivable sampling matrix leaves the possibility of reconstruction (for example
Φ = O is a particularly degenerate case which obviously cannot be reconstructed). In the
next section I will describe the several properties which allow us to predict and analyse which

14

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

Φ

f

b=

N N

nn ×

Figure 2.2: The relative shapes of the vectors and matrices involved in CS sampling.

sampling matrices and signals are likely to result in successful reconstruction.
Examples of sampling matrices are useful in demonstrating their forms and properties.

Using the identity matrix as a sampling matrix (Φ = I) is a trivial example which achieves
no compression but is particularly easy to reconstruct (f = I−1b = b). However, by taking
the identity matrix and removing some of its rows we can achieve a useful sampling matrix
with particular real-life significance: The sub-sampled identity matrix, produced by randomly
removing rows from theN×N identitymatrix until we are left with onlyn columns, is equivalent
to the sampling process randomly selecting n of N elements of the original signal to capture.

Another class of sampling matrix is uniform dense sampling matrices. The most common
is a dense n-by-N matrix of IID Gaussian random numbers. While this may be less practical
to realise than the sub-sampled identity matrix, it has desirable statistical properties meaning
reconstruction is possible for a wider class of target signals. A Bernoulli matrix of IID random
variables taking the values ±1 can also be used, giving similar results [50].

2.2.2 Reconstruction

2.2.2.1 Reconstruction by combinatorial optimisation

The reconstruction problem can be stated simply as solving

b = Φf̂ (2.1)

for f̂ , an estimate of the original signal. However, this equation has an infinite number of
solutions. Equivalently, we cannot invert Φ because it has more columns than rows. We need
more information to narrow down which of the infinite number of solutions is the correct one.

In CS, our prior knowledge is that a signal is sparse, or has a sparse representation. In general
our signal f might not be sparse, butwe assert that in the caseswe consider, a sparse representation
x exists such that f = Ψx. We can rewrite the reconstruction problem, Equation 2.1, as

15

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

b = ΨΦx̂ = Ax̂, (2.2)

where A = ΨΦ is the equivalent sampling matrix, or equivalent sensing matrix. For
simplicity, I will use the equivalent sampling matrix where possible, and consider x as the signal
we wish to reconstruct (knowing that the actual original signal f can be easily recovered by the
matrix-vector product Ψx).

Using the `0-norm as a measure of sparsity, we can exploit our knowledge of the sparsity
of x by choosing the solution to Equation 2.2 which is most sparse. This is the optimisation
problem

minimise
x̂

‖x̂‖0 s.t. Ax̂ = b. (2.3)

Unfortunately, Equation 2.3 represents a combinatorial optimisation problem which is gen-
erally intractable to solve.

2.2.2.2 Reconstruction by convex optimisation

If we replace the sparsity measure in Equation 2.3 with the `1-norm then, with overwhelming
probability, the solution is identical.

minimise
x̂

‖x̂‖1 s.t. Ax̂ = b. (2.4)

Equation 2.4 is known as BP. This problem is no longer combinatorial. So long as the signal,
sampling matrix, and sparse basis are real-valued, we can recast the optimisation as a linear
problem [8]:

minimise
x̂,u

∑
i

ui s.t. x̂i − ui ≤ 0 ∀i

−x̂i − ui ≤ 0 ∀i
Ax̂ = b.

.

We may extend Equation 2.4 by considering that our sampling process may have been
contaminated with noise. Because the concepts leading to a sparse representation are tied to the
underlying signal rather than our noisy samples, in addition to CS letting us reconstruct from
incomplete samples, it can even help to remove noise from the observations! We model our
noisy sampling process (or noisy signal) as

b = Φf + n,

where n is a vector of IID Gaussian random numbers, representing noise present in either the
signal, our sampling process, or the storage or transmission of the samples. With the addition
of noise, the optimisation in Equation 2.4 is unlikely to converge to the desired solution. We
may extend BP to allow noisy measurements by replacing the strict equality constraint with an

16

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

inequality, where ε is an estimate of noise magnitude,

minimise
x̂

‖x̂‖1 s.t. ‖b−Ax̂‖2 < ε. (2.5)

Equation 2.5 is known as Basis Pursuit De-Noise (BPDN). As with BP, assuming real-valued
variables this optimisation may also be recast as

minimise
x̂,u

∑
i

ui subject to x̂i − ui ≤ 0 ∀i

−x̂i − ui ≤ 0 ∀i
‖Ax̂− b‖2 < ε.

This optimisation takes the form of a quadratic cone problem, for which there are efficient
numerical solvers available.

For the remainder of this thesis, I will use f to refer to both the original signal and an
estimate of it produced by reconstruction, as well as using x to refer to the sparse coefficients of
the original signal as well as estimates produced by reconstruction.

2.2.2.3 Reconstruction using greedy algorithms

The optimisation techniques discussed so far, which all fall under the banner of convex op-
timisation, are guaranteed to find the correct global solution to the BP or BPDN optimisation
problems, and as we show in the next section we can ensure that the solution to the optimisation
problem will be the signal we are trying to reconstruct so long as certain requirements are met.
However, while modern convex optimisation solvers are efficient compared to older techniques,
a significantly faster class of solvers exists: the greedy pursuits.

A greedy algorithm is a class of iterative solver which, at each iteration, takes the most
immediately obvious step towards the solution. A greedy algorithm is effective for local op-
timisation, where a simple gradient descent leads to the local optimum, but may never find a
preferable global optimum. For this reason greedy algorithms are well-suited to linear or convex
optimisation problems where only one optimum point exists. A simple example is Newton’s
method for numerical equation solution. The advantage of greedy algorithms is their simplicity,
which usually makes them both easy to implement and very fast to run, as each iteration involves
relatively few calculations.

The greedy pursuits are a class of algorithms for CS reconstruction (or, equivalently, sparse
approximation), loosely based on Matching Pursuit (MP). As would be expected for a greedy
algorithm, they are much simpler to implement than a convex optimisation solver and are also
much faster.

MP [3] is an iterative solver, introduced in 1993 for signal decomposition. In the ith iteration,
MP decomposes the signal into the sum of at most i columns of the equivalent sampling matrix,
each multiplied by a coefficient, and a residual. At each iteration MP finds the column with

17

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

the highest absolute correlation with the residual and adds that column to the sum, with its
correlation as the coefficient. The algorithm is initialised by setting the residual to the signal
to be approximated, in this case b. The result of the algorithm is the vector of coefficients,
x. MP is exceedingly simple to implement, but both its performance and run-time are lacking:
because the columns may in general have non-zero correlation, MP may (and often does) revisit
a column: If at iteration i we select the column gi then at the end of that iteration the residual r

is orthogonal to gi. In a future iteration j we subtract some multiple of the column gj from r.
However, if gj has non-zero correlation to gi then the residual is no longer orthogonal to gi at
the end of iteration j and we may select gi again in future. Most other greedy algorithms take
the same form as MP (iterative improvement of sparse approximation, each iteration correlating
the residual with the dictionary) but with improvements to performance and reduced run-time.

Iterative Hard Thresholding (IHT) [51] improves on MP by allowing multiple dictionary
columns to be selected in each iteration. In each iteration the correlation between the residual
and dictionary is added to the current sparse approximation. A hard threshold is then applied,
selecting the S coefficients with greatest magnitude and setting all others to zero. IHT has a
computational cost comparable to MP in each iteration while improving on the performance of
MP. Implementation requires sorting the coefficients in each iteration but is otherwise straight-
forward, however, reconstruction performance of IHT still falls short of many other greedy
algorithms.

OMP [10], another greedy algorithm based onMP, solves the issue ofMP revisiting columns.
Its operation is largely similar to MP, but after selecting the column with the highest correlation
to the residual the sparse estimate x is recalculated such that the residual is orthogonal to every
column selected so far (referred to as the working set). This ensures we never select the same
column twice, and so OMP often completes in far fewer iterations than MP (although each
iteration requires more computation than MP). In general OMP completes in S iterations, the
number of non-zero elements in the sparse approximation. This means that for very sparse
signals it executes quickly, but for less sparse signals it can take a large number of iterations with
each requiring an expensive orthogonalisation step. The reconstruction performance of OMP
is still worse than convex optimisation but it has become widely used in CS research due to its
relative simplicity and ease of implementation. The operation of MP and OMP will be explored
in greater detail in Chapter 3.

Stagewise Orthogonal Matching Pursuit (StOMP) [52] improves upon the computational
complexity of OMP by allowing multiple columns to be selected in each iteration. Where OMP
only selects the single dictionary column with the highest magnitude correlation to the residual,
StOMP selects all columns with correlation magnitude exceeding a threshold. As in OMP, the
sparse estimate is then updated such that the residual is orthogonal to all selected columns.
StOMP is much faster to execute than MP or OMP due to requiring fewer iterations than the
level of sparsity. However, its performance still falls short of convex optimisation.

Regularized Orthogonal Matching Pursuit (ROMP) [53] also extends OMP by selecting

18

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

multiple columns in each iteration. However, instead of selecting the columns with the largest
magnitude of correlation, ROMP selects columns with a similar size in order to improve recon-
struction performance. It achieves this using a regularisation step where columns are grouped
together with columns of similar magnitude and the group with the largest overall magnitude is
selected. Exact reconstruction can be guaranteed for ROMP if the equivalent sampling matrix
satisfies the RIP [54], though a greater number of samples are required compared to convex
optimisation. ROMP requires the same sorting of coefficients as IHT in addition to the reg-
ularisation grouping. While these do not add significantly to the algorithm’s run-time, they
complicate implementation compared to a simpler algorithm such as OMP.

MP, OMP, StOMP, and ROMP all share a limitation which reduces their performance:
columns added to the working set cannot be removed in a later iteration. This means that a
poor choice of dictionary column selected in an early iteration will adversely effect the eventual
solution. Two similar algorithms were introduced which allow columns to be removed from
the working set with the aim of improving reconstruction performance. Compressive Sampling
Matching Pursuit (CoSaMP) [55] initially follows the approach of StOMP: The dictionary
columns with the largest correlation magnitudes are selected and added to the working set, after
which the sparse estimate is updated by least squares approximation. CoSaMP then performs a
pruning step at the end of each iteration where only the largest entries in the sparse estimate are
retained and the remainder are set to zero (and the corresponding columns are removed from
the working set). This improves reconstruction performance by allowing dictionary columns
which perform poorly (by contributing little to the residual estimate) in later iterations to be
removed. The pruning step adds minimal complexity and implementation difficulty over StOMP
but allows improved reconstruction guarantees, comparable to those of convex optimisation.
Subspace Pursuit (SP) [56] is very similar to CoSaMP. Themain differences are that SP performs
the orthogonalisation step a second time after pruning and has slightly weaker reconstruction
guarantees than CoSaMP. One downside to both CoSaMP and SP is that they require an estimate
of the sparsity of the signal to be reconstructed and an inaccurate estimate will adversely affect
reconstruction performance.

2.2.2.4 Sparse regression

The problem of CS reconstruction is equivalent to a problem in statistics known as sparse
regression. Regression is the process of varying a model’s parameters to fit data, the best known
example of which is least-squares fitting. Sparse regression introduces the constraint that most
of the model’s parameters must be zero or that the summed magnitude of the parameters must
be limited, while still attempting to fit the data. In some cases this can give better results or
prevent over-fitting compared to a simple least-squares fit. Another way of thinking of sparse
regression is that we have a signal and we wish to find a sparse representation of it in some basis.

While sparse regression is mathematically equivalent to CS reconstruction, different ter-
minology is used. In CS we try to reconstruct our signal x from the samples b taken using

19

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

the equivalent sampling matrix A. In sparse regression, b is our signal and x is the sparse
representation of the signal. A is the dictionary, where we refer to each column as an atom. We
attempt to use a linear combination of a small number of the atoms to approximate the signal.

One particular technique used for sparse regression is the LASSO, introduced by Tibshirani
in 1996 [2]. It turns out that LASSO is equivalent to OMPwhen the latter is stopped after a fixed
number of iterations (and hence producing a result with a predetermined number of non-zero
coefficients). LASSO can be stated as

minimise
x̂

‖Ax̂− b‖2 subject to ‖x̂‖1 < t,

where t is known as the regularisation parameter.

The viewpoint of sparse regression is well suited to greedy algorithms because they clearly
work to approximate b using linear combinations of the columns of A. I will, therefore, often
use the terminology of sparse regression when describing greedy reconstruction algorithms. My
algorithms and results are equally applicable to both CS and sparse regression.

2.2.3 Review of CS literature

The precursor for CS was sparse approximation using over-complete dictionaries, motivated by
decomposition of fully-sampled signals rather than recovery of partially sampled signals. Mallat
and Zhang [3] introduced the MP algorithm for sparse approximation with examples such as
feature extraction from noisy signals. Although MP was observed to often work well, there
was no general proof of its convergence on a sparse solution. Chen, Donoho, and Saunders [8]
introduced the BP algorithm, using convex optimisation which could solve problems where MP
did not converge on a sparse solution. This is demonstrated empirically but without any formal
proof or constraints for convergence. In the absence of noise BP can be solved using linear
programming, however in the much more common scenario of signals contaminated by noise
the related BPDN algorithmmust be used which requires more intensive quadratic programming
to solve.

Using the BP algorithm of [8], Donoho and Huo [4] showed guaranteed recovery of a
sparse solution when using a dictionary composed from a concatenated pair of bases (for
example sinusoids and spikes). They prove that a signal may only have one highly sparse
representation in such a pair of bases and that this representation may be calculated using
convex `1 optimisation. This work is limited to the very specific scenario of signals composed
from a basis pair but the theoretical framework formed the groundwork of future CS research.
In particular they use the generalised uncertainty principle, which states that a signal cannot
possess a sparse representation in two different bases if the bases have limited mutual coherence.
Mutual coherence is defined as

20

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

µ(Φ,Ψ) =
√
n max

1≤k≤n
1≤j≤n

∣∣〈ΦT
k , Ψj

〉∣∣ ,
and takes values between 1 and

√
n where µ = 1 indicates maximally incoherent bases and

µ =
√
n indicates maximum coherence.

Donoho and Elad [5] broadened the scope from dictionaries consisting of two concatenated
bases to all over-complete dictionaries. Reconstruction is based on the null-space property:
suppose a signal y possessed two distinct sparse decompositions x and x′ in a dictionary A then
the difference x− x′ must lie in the null-space of A. If we can guarantee that any S-sparse
x− x′ is orthogonal to the null-space of A then we know that any solution x must be unique.
The authors introduce a new measurement spark(A), defined as the cardinality of the smallest
linearly dependent set of columns drawn fromA. If and only if spark(A) > 2S then no S-sparse
x andx′ could produce the same samplesy. There are three important shortcomings to this work:
It requires signals to be exactly sparse, it is not robust against noise, and evaluating spark(A) for
an arbitrary matrix is computationally infeasible so guarantees are limited to dictionaries where
spark can be estimated statistically.

Tropp [6] derives an exact recovery criterion which is sufficient to guarantee convergence
on the optimal sparse representation with generic dictionaries when using BP or OMP. The
guarantee is based on the incoherence of the equivalent sampling matrix, defined

M(A) = max
1≤k≤n
1≤j≤n
k 6=j

|〈Ak, Aj〉| .

Extending recovery guarantees to greedy pursuits was a significant achievement, but this
work relies on exactly sparse signals and the absence of noise which significantly limits the
application of recovery guarantees to real-world scenarios rather than synthetic test signals.

The use of sparse approximation to recover signals from incomplete measurements was
introduced by Candès, Romberg, and Tao [7], motivated by the application of MRI where
incomplete Fourier sampling occurs naturally. A lower bound necessary for recovery is derived
but the analysis is only applicable to a limited set of bases, is not robust against noise, and
requires exact sparsity. Candès and Tao [57] generalise this result: Two newproperties named the
UniformUncertainty Principle (UUP) and Exact Reconstruction Principle (ERP) are introduced,
shown to be sufficient for exact recovery with overwhelming probability, and demonstrated to
hold for both Gaussian and sub-Fourier measurement matrices. Furthermore, the analysis
holds for compressible signals where, rather than being exactly sparse, the magnitude of sparse
coefficients decays with a power-law curve. This extends applicability to signals which are
smooth or have bounded variation. Candès and Tao [9] extend the analysis further by showing
that exact reconstruction is possible with any general measurement ensemble which satisfies
the UUP. The authors introduce the concept of a restricted isometry, where the operation of

21

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

multiplying a matrix by a sufficiently sparse vector is reversible. The RIP quantifies whether
a matrix approximately preserves the magnitude of sparse vectors, and therefore whether it
preserves the distance between sparse vectors. The Restricted Isometry Constant for a matrix A

is defined as the smallest δS such that

(1− δS)‖x‖2`2 ≤ ‖Ax‖2`2 ≤ (1 + δS)‖x‖2`2
holds for all S-sparse vectors x. The matrix A is said to posses the RIP of order S if δS < 1.

The RIP is a strictly stronger property than the Null-space Property (NSP). Candès, Romberg,
and Tao [58] extend the analysis to include signals contaminated by noise. By using BPDN
stable signal recovery can be achieved for sparse and approximately sparse signals, meaning
that small perturbations in the recorded samples cause only small changes to the reconstructed
signal.

The RIP can be used to guarantee reconstruction when noise is present and for signals
which are not exactly sparse. One shortcoming of the RIP is that it is generally computationally
intractable to calculate for an arbitrary matrix (demonstrated by Tillmann and Pfetsch [59])
which can complicate sensing matrix design and analysis. Donoho, Elad, and Temlyakov [60]
derive guarantees for reconstruction of noisy signals with asymptotic sparsity using BPDN and
OMP but with guarantees based on the incoherence of the equivalent sampling matrix rather
than the RIP. The guarantees are pessimistic in that they are weaker than those based on the RIP,
but the incoherence of a sampling matrix is much easier to evaluate in practice than the restricted
isometry constant. Therefore, incoherence may provide a useful tool to predict reconstruction
performance when it is impossible to directly evaluate whether an equivalent sampling matrix
satisfies the RIP.

2.2.4 Sparse transforms

Previously I mentioned the Discrete Fourier Transform (DFT) and Discrete Cosine Transform
(DCT) as transforms which can give a sparse representation of a signal composed from relatively
few sinusoidal components. These transforms can be thought of as decomposing a signal in
terms of a set of atoms: finding the correct combination and proportion of these atoms to
reproduce the original signal. In the case of the DFT and DCT, the atoms are sinusoids with
different frequencies and phases. Thus, the DFT and DCT operate by identifying the frequency
components present in a signal. The signal’s representation in the Fourier domain is effectively
a list of the amplitude, frequency, and phase of each sinusoid which makes up the original signal.
While the DFT and DCT are effective at sparsifying signals composed from sinusoids, there are
many other types of structure which may be present and which could be exploited for sparsity.
The atoms of the DFT and DCT are sinusoids which exist over all of time, which makes the DFT
and DCT suitable for sparsifying periodic signals. However, they have poor ability to handle
local periodicity or structure in signals. The Discrete Wavelet Transform (DWT) has atoms

22

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

(a) An atom from a Fourier dictionary (b) An atom from a wavelet dictionary

Figure 2.3: An illustration of the difference between atoms in a Fourier dictionary and a wavelet
dictionary

which are short, localised packets of sinusoids. Therefore the DWT is better suited to handling
local periodicity in signals, and representation in the DWT domain indicates phase, frequency,
and location of structures. Figure 2.3 illustrates the difference between atoms in Fourier and
wavelet dictionaries.

The DFT, DCT and DWT are all isometries: the forward and reverse transforms can be
applied to a signal at will without ambiguity or loss of information. Often we can achieve a
more sparse representation of a signal by using an over-complete basis, a matrix with more
columns than rows, so that its columns are linearly dependant. It is intuitive that over-complete
dictionaries may be able to provide more sparse results: as we add more atoms to a dictionary,
it is likely that signals will tend to require the composition of fewer of the dictionary atoms to
be represented.

One group of overcomplete dictionaries comes from extending thewavelet concept. Wavelets
are good at representing structure lying along the orthogonal axes, but poor at representation
of other angles. In other words, in two dimensions wavelets compactly represent lines or
edges parallel to the axes, but lines at other arbitrary angles require many more components
in the wavelet domain. Several wavelet derivatives solve this problem, including curvelets and
shearlets. By changing the nature of the transform and increasing the number of atoms in the
dictionary, they may give a more sparse representation of certain signals (in particular images
and photographs).

Dictionary learning [21] provides a technique for creating dictionaries tailor-made to com-
pactly representing a certain class of signal, based on a set of training data (a number of
representative signals). The number of atoms in the dictionary, and therefore the level of
overcompleteness, may be chosen at the time of training. While dictionary learning is very
compute-intensive and requires careful selection of the training data, it can produce the most
sparse representations of a class of signals due to its targeted nature.

A downside to overcomplete dictionaries is that the transforms are no longer isometries.

23

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

While a signal only has one valid representation in the Fourier domain, for example, it has
infinitely many representations in the curvelet or shearlet domain. This means more care is
needed (and generally more computation required) when decomposing a signal in order to find
a sparse representation.

2.2.5 Fast transforms and implicit dictionaries

There are several ways to represent a dictionary or basis, and correspondingly different ways
in which reconstruction algorithms are implemented around them. The most intuitive is to
store the dictionary as an explicit matrix in memory, having either generated it, loaded it
from disk, or received it over a network. We then use the dictionary in our algorithm by
performingmathematical operations on it, for example performingmatrix-vector multiplications
using it, calculating its norm, or calculating various decompositions. This is the most flexible
implementation, as we have no limitation on choice of dictionary or on the mathematical
operations we can carry out on the dictionary. The first major downside is that if the dictionary
is very large, it requires that we have a large amount of main memory to store it: our quantity of
mainmemory limits themaximum size of dictionarywe can deal with. The othermajor downside
is that this implementation may be the slowest compared to the other options. Nonetheless, this
approach is the most generic and flexible, and is the only one suitable for the unpredictable and
unstructured dictionaries produced by dictionary learning.

Another option is to store the dictionary implicitly. This can be applied to any matrix which
is predictably and procedurally generated from an appropriate function or algorithm. With an
explicit matrix we would have generated it ahead of time, stored it in memory, and accessed
each element from memory when required. With an implicit matrix, we calculate each element
when required instead of fetching it frommemory. Since we are no longer holding the dictionary
in memory, we remove the memory constraint. This technique may also be faster than using
an explicit dictionary: if the generating function for each element is simple, it may be faster
to calculate the element than fetch it from memory. In a distributed-memory environment,
generating the matrix implicitly would save communication between nodes when they require
access to part of the dictionary stored on another node. While implicit storage limits our
choice of dictionary, we can still perform any desired mathematical operation on the dictionary,
although operations with memory requirements proportional to dictionary size may be limited.

The final option is fast transforms. For certain structured matrices there are fast algorithms
for performing matrix-vector multiplications which are asymptotically faster than performing
the multiplication explicitly. Examples include the FFT (based on the DFT), the Fast Wavelet
Transform (FWT) (based on the DWT), and the Fast Hadamard Transform, based on the Hadam-
ard Transform. When appropriate, this approach will usually be the fastest to execute as well
as eliminating the memory requirement of storing the dictionary explicitly. However, we are
very limited in our choice of dictionary as only certain structured dictionaries have associated

24

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

fast transforms. We are also very limited in what mathematical operations we can carry out on
the dictionary: usually fast transforms only allow matrix-vector multiplication by the dictionary
and its transpose, i.e., calculating Ax and ATb. However, many reconstruction algorithms can
be implemented using just these two operations on the dictionary.

2.2.6 Applications

A classic application of CS is MRI. The motivation is to capture the clearest image possible
from a limited number of samples. The number of samples is limited because carrying out each
sample takes a non-trivial amount of time, and the patient can only stay still for a small amount
of time, so taking too many samples results in a blurry image. The hope is that CS can give
a better reconstruction from the samples than a more naive reconstruction strategy. Another
convenient property of MRI is that linear sub-sampling is inherent to the process. The physics
of MRI mean that each sample taken is a set of points along a line in the Fourier transform of
the image. Multiple samples are taken by changing the angle of the line. The final piece of
the puzzle is a sparsifying basis. As with most real-world images, MRI images are sparse in
the wavelet domain. Candès, Romberg and Tao [7] showed how CS can be used to give perfect
reconstruction in a simulated MRI problem.

Another widely reported application is the single pixel camera, described by Wakin et al.
[11]. A standard digital camera focuses the image onto a sensor. The sensor is comprised of
many pixels arranged in a grid, each sensitive to the intensity of light. The grid of pixels on
the sensor corresponds to the pixels we see in the resulting digital image. With the single pixel
camera, there is only a single sensor pixel. A micro-mirror array or liquid crystal filter is used to
selectively allow light through certain pixels onto the sensor. The image could be fully sampled
by opening one pixel at a time and collecting all the readings. Alternatively, the pixels can be
opened in combinations and the image linearly sub-sampled, and reconstructed using CS. This
technique is appealing where the sensor pixels need to be large or are expensive, for example an
infrared camera.

In the applications considered so far, we aim to capture and reconstruct a single signal with
a sparse representation. In cases where we wish to capture several related signals, Distributed
Compressive Sensing (DCS) can be used to exploit the similarities between the signals and enable
further sub-sampling than if the signals were captured and reconstructed in isolation. DCS is
similar to the theory of Distributed Source Coding which is concerned with the transmission
rate required for joint decoding of independently coded correlated sources, for example Slepian
and Wolf [61] describe noiseless decoding of two correlated sources but do not account for
correlation or redundancy within each source. DCS, introduced by Duarte et al. [62], gives
a new mechanism to achieve joint decoding for any number of signals while exploiting both
the correlation between signals and within each signal. Two Joint Sparsity Models (JSMs) are
defined which each describe a model of the structure of intra-correlation within each signal

25

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

and inter-correlation between the signals. With JSM-1, all signals possess a sparse common
component and individual sparse innovation. Equivalently, every signal is sparse and the
difference between any pair of signals is also sparse. Under JSM-1, reconstruction of all signals
is simultaneously carried out using the modified BP described by Baron et al. [63]. A significant
downside to this approach is that all signals must be reconstructed simultaneously: If the cost
of reconstruction grows super-linearly with the size of signal, then DCS reconstruction may be
much more costly than separately reconstructing each signal. One situation in which JSM-1 may
apply is a number of sensors spaced over an area collect correlated readings. JSM-2 models the
situation where the sparse representation of every signal shares the same support but the signals
differ in their coefficients. Reconstruction in this case is carried out using the DCS-SOMP
algorithm described by Duarte et al. [62]. An example of when JSM-2 may apply is when the
same signal is captured by sensors in different locations so that the observed signals vary only
in time delay and phase. In addition to reconstructing the captured signal, this setup could be
used to localise the signal source.

DCS is of particular interest inWireless Sensor Networks (WSNs) for several reasons. WSNs
often seek to capture related signals or the same signal from spatially diverse locations, so the
observed signals are likely to be correlated. The radio bandwidth between nodes is often limited
so compression is desirable, as is independent sampling The sensor nodes usually have limited
battery capacity and compute power, so simple CS sampling is desirable in comparison to the
more power-hungry traditional compression encoding.

2.3 High performance parallel computing

In this section I will give an overview of high performance parallel computing in order to give
crucial context, as well as motivation, to my work. I will describe the types of modern parallel
computer and parallel computing architectures, including a definition of relevant terminology
which will be used through the rest of this thesis. Finally, I will show how parallelism has
been entwined with computing throughout its history and how this influences modern parallel
computing paradigms.

2.3.1 Types of parallel computer

There is a wide variety of parallelism found in computing, varying in the underlying mech-
anism, how the parallelism is handled by the programmer or end user, and the performance
improvements one might expect to gain. In order to impose order on this variety, a system
of categorisation is needed. One of the earliest systems for categorising computer parallelism
architectures is Flynn’s Taxonomy, introduced by Michael Flynn in 1966 [41][42]. Flynn’s
Taxonomy groups architectures by the number of instruction streams and the number of data
streams. The four original groups are: Single Instruction Single Data (SISD), Single Instruc-

26

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

Single data Multiple data
Single instruction Single Instruction Single Data

(SISD): Sequential processors
with no parallelism

SIMD: Vector processors,
GPUs

Multiple instruction Multiple Instruction Single
Data (MISD): Fault-tolerant
processors

MIMD: Multi-core, multi-
processor, and cluster com-
puting

Table 2.1: Flynn’s Taxonomy

tion Multiple Data (SIMD), Multiple Instruction Single Data (MISD), and Multiple Instruction
Multiple Data (MIMD). A summary of Flynn’s Taxonomy is shown in Table 2.1.

A traditional, fully sequential, computer is SISD: it processes a single sequential stream
of instructions, with each instruction operating on a single piece of data. SIMD computers
maintain the single sequential instruction stream but each instruction may act on a large number
of pieces of data in parallel, carrying out the same operation on each piece of data. MISD
computers are rarely encountered but are occasionally used for fault-tolerance, where multiple
instructions are used redundantly and the results compared; we will not discuss this type of
computer henceforth. MIMD computers process a number of independent instruction streams,
each with its own associated data.

2.3.1.1 SISD: Instruction-level parallelism

Although SISD describes a type of computer generally considered as purely sequential, some
parallelism is often still present. The main distinction is that the computer appears sequential to
the programmer’s and user’s point of view; any parallelism is hidden internally and manifests as
improved sequential performance (higher clock speed or more instructions per clock).

One near-universal form of SISD parallelism is pipelining, where each instruction is split into
several stages (e.g. fetch, decode, execute, memory, and write back); Figure 2.4 shows a simple
example of this. Pipelining allows the instruction clock frequency to be increased by splitting
up the latency of a complete instruction. Instructions begin executing prior to the completion of
earlier instructions which may include branches, so the processor must predict which path will
be taken by a branch; a misprediction will cause a gap in processing while the pipeline is flushed
and restarted. A great deal of effort (and silicon area) in modern high-performance processors
goes into effective branch prediction in order to avoid misprediction and keep the pipeline full.

Another form of SISD parallelism (which may be combined with pipelining) is superscalar
architectures: the processor is designedwith duplicates of some functional units, and instructions
from a single instruction stream are issued to multiple processing elements in parallel in order to
improve throughput. The most common form of superscalar architecture is dynamic multiple-
issue where the processor decides at run-time how to parallelise the instructions; no intervention
is needed by the compiler. A less common form of SISD parallelism is static multiple-issue,

27

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

Fetch Decode Execute Memory Write back

(a) Breaking down an instruction into 5 stages

Fetch Decode Execute Memory
Fetch Decode Execute

Fetch Decode Execute
Fetch Decode Execute

1 2 3 64 5
Instruction 1
Instruction 2
Instruction 3
Instruction 4

Clock cycle
Write back
Memory Write back

Memory

Instruction 5 Fetch Decode

(b) The flow of 5 instructions through this 5-stage pipeline

Figure 2.4: A simple example of instruction pipelining

where the compiler determines which instructions may be executed in parallel and statically
encodes this information in the compiled program. One example of this is the Intel Itanium
IA-64 architecture which uses Explicitly Parallel Instruction Computing (EPIC), an evolution
of Very Long Instruction Word (VLIW) architecture [64][65].

2.3.1.2 SIMD: Data parallelism

This architecture is relatively easy to implement, but more difficult to program for, and signi-
ficant speed-up is limited to certain amenable applications: A high number of general purpose
programs cannot benefit significantly from SIMD parallelisation.

Some of the earliest supercomputers, known as Vector Processors, implemented SIMD
parallelism. Memory access had quite a high latency, so fetching instructions and fetching and
storing data severely limited the instruction rate which could be achieved. Throughput could be
improved by having each instruction able to operate on a large amount of data. When this suited
the program being written, high throughput (measured in Floating Point Operations per Second
(FLOPS)) could be achieved.

SIMD parallelism also appeared in personal computers in the form of processor extensions,
including Intel’s MMX, SSE, and AVX families and AMD’s 3DNow. While these provide
limited benefit to many programs they are widely used for multimedia processing.

Finally, modern GPU accelerators have a large number of simple processing cores which all
perform the same operation on a large quantity of data, thus implementing SIMD parallelism.

2.3.1.3 MIMD: Task parallelism

Finally, the most powerful and most flexible form of parallelism is MIMD, or task parallelism.
Multiple independent processors each execute their own separate instruction stream, generally
operating on different pieces of data. There are a broad range of types of MIMD parallel

28

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

computer. These can be most easily categorised by considering the way they interact with
memory.

Shared memory parallel computers all access the same coherent memory and share a unified
memory address space. Separate tasks often operate on separate areas of memory, however
any communication required between the tasks will be done by accessing the same memory.
Multiple simultaneous tasks accessing the samememory requires a great deal of care to maintain
consistency, especially when considering the addition of multiple caches. For this reason, shared
memory multiprocessors are limited in scale. Shared memory parallelism is commonly used
within a single computer and is no longer used to build large super-computers.

Sharedmemory task parallelism can be further divided intoUniformMemoryAccess (UMA)
and Non-uniform Memory Access (NUMA). In UMA computers every processor (or processor
core) has equal access to the whole of main memory, in terms of both bandwidth and latency.
Cache collisions may cause issues if two processors try to work in the same area of memory, but
otherwise the program running on each processor may be unaware of the parallelism. Multi-core
processors are an example of UMA shared-memory task parallelism.

In NUMA computers, processor cores and blocks of memory are grouped (for example, per
processor socket). Within each group, every core has full access to that group’s memory. Cores
may freely access memory in another group, but bandwidth will be more limited and latencymay
be higher. Thus naive programs can run in a NUMAenvironment, but performancewill benefit if
programs more intelligently utilise the NUMA domains. NUMA computers are generally those
with multiple discrete processors in separate sockets, where each socket is generally associated
with a portion of memory. Access to another socket’s memory imposes a performance penalty.
Each socket may include multiple cores, so a UMA domain exists nested within the overall
NUMA system. Figure 2.5 shows a two-level NUMA architecture: the 4 compute cores in
each processor socket share a NUMA domain, as do the two sockets in a compute node. The
greatest bandwidth and lowest latency exists between cores in a processor socket followed by
the communication link between two sockets in a node, followed by the network linking the two
compute nodes.

The vast majority of modern supercomputers are distributed memory systems. Each node
has fast access to its own main memory and much slower access to other nodes’ memories.
Communication between nodes occurs by message passing (For example MPI, discussed in

Socket Socket

Node

Socket Socket

Node

Figure 2.5: A two-level NUMA architecture resulting from two compute nodes each containing
two separate processor sockets. Each socket is shown with 4 cores.

29

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

detail later), or by explicit remote memory access. Because communication between nodes is
so much slower than memory access within a node, it is important that programs intelligently
utilise the platform to achieve acceptable performance. Since the program must be explicitly
written for the parallel platform, it utilises explicit parallel operations.

By accepting that links between nodes will be much slower than memory access, distributed
memory computers unlock massive scalability. They may possess vast quantities of memory
and computational power which would be impossible to implement in a shared memory system.

One may simulate a shared memory computer running on a distributed memory platform,
by creating a virtual uniform address space and channelling remote memory accesses over
message passing (effectively a form of automatic parallelisation). While this greatly eases the
burden on the programmer, it is likely to result in much poorer performance than a program
specifically written for the distributedmemory environment, which canmore intelligently ensure
data locality and reduce communication over the slower inter-node interconnects.

2.3.2 Interconnect architecture

Most parallel computation will require communication between the individual processors
throughout the computation. This communication may be over short, high quality links in
a single data-centre in the scenario of cluster computing, or may utilise slow, unreliable links
over the internet in the case of grid or distributed computing.

Often, the computation cannot proceed until communication completes, so communication
time could become a significant barrier to high performance. An individual interconnect link
has two fundamental properties: latency and bandwidth. Latency is the time taken to transfer
a small message, which includes the propagation time of the medium (limited by the speed
of light) and overheads in the network hardware and software. Bandwidth is the rate at which
informationmay be transferred. The overall communication time is the latency, plus the message
size divided by the bandwidth. Latency is more important for small messages, while bandwidth
makes a bigger difference for large messages.

A variety of interconnection topologies may be used in cluster computing. A few important
properties of the topology are:

• Number of links: The total number of links present in the topology, which determines the
cost of constructing this interconnect topology.

• Bisection width: The typical communication bandwidth available for half of the nodes to
simultaneously communicate with the other half. It is calculated by counting theminimum
number of links which would have to be cut to divide the network into two halves, and
multiplying this by the bandwidth of a single link.

• Diameter: The maximum number of links which must be traversed to communicate
between two nodes, which determines the maximum latency of a communication on the

30

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

topology.

In some topologies the bandwidth and latency may differ between different pairs of nodes, so
parallel programs may have to exploit knowledge of the topology and node locations to minimise
communication time.

2.3.3 Terminology

• Cluster: A group of compute nodes in a single location with high performance intercon-
nect, often connected to a large quantity of bulk storage.

• Node: A single computer in the cluster. It usually combines a number of compute cores
with a quantity of main memory, and may have some local disk storage.

• Core: A single processor core within a compute node. Each core can run a single process
or thread.

• Socket: A single processor. It contains one or more processor cores. A node may contain
one or more processor sockets. Multi-socket systems are usually NUMA, with each socket
tightly-coupled to a section of main memory.

• Worker: A single MPI process, usually running on a single processor core. Algorithm
design is usually concerned with the workers involved, without regard for the physical
nodes, processors, and cores which execute the workers.

• Storage: Clusters usually include a large quantity of storage for holding data input to, and
output from, the programs running. Whilst of high specification and usually connected to
the high performance interconnects, disk storage is still relatively slow compared to main
memory access.

• Interconnect: The network used to connect compute nodes together.

2.3.4 History

Parallel computing may feel like a modern trend, but parallel computers have existed since the
early expansion of digital computing in the 1960s: The Burroughs B5000 included asymmetric
multi-processing capacity [38] and the Burroughs D825 has been called the first true symmetric
multi-processing system [39].

The next step in large scale parallelism was the introduction of large-scale SIMD super-
computers. Instead of fast or parallel execution of a generic instruction stream, these computers
focussed on quickly performing the same operation on large arrays of data. Notable early vector
processors included the TI ASC [66], CDC STAR-100 [67] and ILLIAC IV [68], operational in
1966 and 1975 respectively. The first commercially successful vector supercomputer was the

31

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

Cray-1 [67], created in 1976, and Cray Research continued to develop vector supercomputers
through the late 1970s and the 1980s.

In the 1990s, large scale cluster computers were introduced by Fujitsu [69], Intel [70], and
Cray [71]. Where the previous vector machines were programmed as a single computer with
large memory and fast execution of instructions, cluster computers were programmed from the
point of view of individual processors, with explicit communication (and high bandwidth low
latency interconnects) required to exploit parallelism. This strategy for parallel computing is
typified by the MPI [44], first introduced in 1992 and still in wide use today (including by my
own work).

Up until the 2000s, the increase of speed in personal computers was enabled by an increase
in clock speeds [47], permitted by the shrinking of transistors on integrated circuits, and the
inclusion of exponentially more transistors on each die (as described by Moore’s Law). By
the 2000s personal computer clock speeds had passed 1GHz and were beginning to level
off. Aside from further increasing clock speed, the only remaining strategies to increase
performance were increasing the number of instructions executed per clock cycle (through
improved caches, pipelining, hyperthreading, and branch prediction), or introducing parallelism
into personal computer processors. For many years these processors had included SIMD
parallelism (for example the MMX, SSE, 3dnow, and AVX extensions to x86 [67]), but true
MIMD multiprocessing was first introduced on the desktop in 2005 by the AMD Athlon 64 X2
and the Intel Pentium D.

Today, parallel computers are ubiquitous. The most basic personal computers have at least
two processor cores, and high-powered desktops often include 16 processor cores or more. Even
smart-phones generally have at least two processor cores, and sometimes as many as 8.

Modern supercomputing is entirely based on parallelism. Supercomputers are usually
clusters, utilising vast numbers of commodity servers with a high-speed interconnect network.

2.4 Parallelisation

Most computer programs, when implemented in the obvious manner, are sequential: they are
executed one part after another, with each section depending on results from the previous section.
Parallel compute resources can be used to run several sequential programs at the same time, but
significant work is normally needed before a sequential program can usefully exploit a parallel
computer.

I begin by giving a summary of common metrics used in parallelisation. I will refer back
to these when discussing the merits of various parallelisation techniques. I will then explain
the theory and strategies used for effective parallelisation and finish by giving an introduction
to MPI, which is used in my algorithms in the following chapter.

32

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

2.4.1 Performance metrics

• Wall-time is the time taken for a program to execute, hence also known as execution time.
It is named because it is the time elapsed as would be measured by a simple wall-clock.
Wall-time is an ideal metric to minimise if we are parallelising an algorithm to reduce how
long a user has to wait for results, or if we wish to reduce the latency in a process. Wall-
time is denoted as T . When comparing parallel and serial algorithms, their wall-times are
denoted Tp and Ts respectively.

• Total time is the wall-time of a parallel algorithm multiplied by the number of workersW
executing the algorithm. Total time is defined as WTp. This measures the total amount
of computation put into solving the problem and is related to the energy consumption of
running the algorithm.

• Overhead is the difference in total time between a serial algorithm and a parallelised
version, WTp − Ts. Overhead is a measure of the inefficiency introduced in a parallel
algorithm in exchange for a reduction in wall-time. It may be caused by communic-
ation latency, or by parallelisation necessitating a less efficient algorithm than a serial
implementation.

• Speed-up is a dimensionless measure of the reduction in wall-time due to parallelisation,
defined S = Ts/Tp.

• Efficiency is defined as speed-up divided byW . Efficiency is a useful measure of the level
of overhead in a parallel algorithm.

If computation is evenly divided overW workers with no overhead then the speed-up would
beW , and onemight expect this to be the ideal case and hence themaximum speed-up. However,
it is possible to observe super-linear speed-up greater than W (which would correspond to a
negative overhead and efficiency greater than 1). This can occur for a variety of reasons (many of
which are discussed by Ristov et al. [72]) but the simplest explanation is if the parallel computer
has increased memory along with its compute and so allows holding the whole problem in main
memory, while the corresponding serial computer would have to access the problem from disk
resulting in significant slow-downs.

2.4.2 Theory

There are several reasons we might want to utilise a parallel computer. The most obvious is
that we want to run the program faster, that is, we want to reduce the wall-time of a program.
Another motivation is if we want our program to work on a dataset larger than we can hold in
main memory of any one computer. A cluster can easily have a massive sum quantity of main

33

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

0 50 100
Number of nodes

5

10

15

Sp
ee

d-
up

p=0.80
p=0.85

p=0.90

p=0.95

Figure 2.6: Speed-up predicted by Amdahl’s Law for 1 to 128 parallel processors and four
different values of parallel proportion p.

memory, and each cluster node can access its main memory much faster than if we tried to store
the dataset on bulk storage (i.e., hard disk drives).

When parallelising with a goal of reducing execution time, Amdahl’s Law, introduced by
Gene Amdahl in 1967 [73], is a useful concept to bear in mind. It considers a hypothetical
situation where an improvement in compute resources causes speed-up in a portion of a program,
but no speed-up in the remainder of the program. The overall speed-up depends greatly on what
proportion of the program is affected by the speed-up, in addition to the level of speed-up.
Amdahl’s Law is defined as

S =
1

1− p+ p
s

, (2.6)

where S is the overall speed-up of the whole program, s is the speed-up of the portion of
the program affected by our improvement in compute resource, and p is the proportion of the
program benefiting from our improvement in compute resource.

Consider a hypothetical program where part of the work is perfectly parallelisable, and the
other part is fully sequential or serial. When more parallel processors are tasked with executing
this program the parallel portion gets faster in proportion, but the sequential portion takes the
same amount of time. Thus, the speed-up from parallelisation depends not only on the number
of processors used, but also on the proportion of the program which may be parallelised.

Amdahl’s Law gives particularly discouraging results formassively parallel computers where
speed-up is very sensitive to the proportion of the program which is parallelisable. Figure 2.6
shows a chart of predicted speed-up against number of parallel processors for problems with
four different parallel proportions. With a large number of workers, small changes to the parallel
proportion of the programmake amassive difference to the speed-up achieved, and themaximum

34

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

0 50 100
Number of nodes

0

25

50

75

100

125

Sc
al

ed
sp

ee
d-

up

p=0.80
p=0.85
p=0.90
p=0.95

Figure 2.7: Scaled speed-up predicted by Gustafson-Barsis’ Law for 1 to 128 parallel processors
and four different values of parallel proportion p.

speed-up is asymptotically limited for a given program with a fixed parallel proportion.

A contrasting view is given by Gustafson [74], who observes that the size of problem
submitted by users tends to grow with the number of parallel processors in a computer. In
many cases a user has a choice over the size of problem they input to a program, for instance
the resolution of an image to process or the grid density in finite element analysis. If the user
cares more about the program’s execution time than the size of problem solved, they may adjust
the problem size to achieve a tolerable execution time. Furthermore, if a parallel program has
overheads of fixed cost with respect to problem size, then the fraction of a program which is
parallelisable grows directly with problem size. In the ideal case where program execution
time is fixed and parallel fraction is proportional to number of parallel processors, this leads to
predictions very different to those of Amdahl’s law.

The Gustafson-Barsis Law introduces a metric called scaled speed-up. For the scenario of a
parallel computer solving a problem the size of which is proportional to the number of parallel
processors available, we can calculate how much longer a serial computer would have taken to
solve the larger problem. If a serial computer would have taken 50 times longer for this larger
problem, we say the scaled speed-up is 50. Using the same definitions of s and p as Equation 2.6,
scaled speed-up can be calculated as

scaled speed-up = 1 + (s− 1)p.

Figure 2.7 shows a chart of scaled speed-up for the same 1 to 128 parallel processors and four
parallel proportions as Figure 2.6. When many parallel processors are available, the difference
between speed-up and scaled speed-up can be very large. Under Gustafson’s assumptions about
the use of parallel computers, scaled speed-up is much less sensitive to the parallel proportion

35

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

of a program than Amdahl’s Law.
Amdahl’s Law could be described as pessimistic about the utility of parallel computing,

while Gustafson’s theory is correspondingly optimistic. Problem size increasing with the level
of parallelism available is a best-case scenario and end users may desire decreased execution
time in addition to the processing of larger problems. While superficially similar to speed-up,
scaled speed-up has a very different meaning and the two are not directly comparable: Speed-up
describes reduced execution time as number of parallel processors increases and other variables
are kept constant. Scaled speed-up is effectively describing an increase in data throughput
rather than a true reduction in execution time. Furthermore, Gustafson’s assumption that non-
parallelisable overheads remain fixed regardless of problem size is also very optimistic: In many
cases one would expect the communications overhead to also grow with increased problem
sizes. Realistic results are likely to lie between the predictions of Amdahl’s Law and Gustafson-
Barsis’ Law: massively parallel computers are likely used to solve larger problems than serial
computers but problem size is not directly proportional to the number of parallel processors and
serial overheads also grow with problem size.

When analysing a parallel program, we can think of overheads due to communication and
coordination latency as adding to the serial part of the program which cannot be parallelised.
The amount of serial overhead will limit the speed-up we can achieve by addingmore processors.
Therefore, reducing overhead (and therefore minimising communication) and avoiding serial
bottlenecks are key to developing a parallel program which can achieve good speed-up with
many processors.

The simplest programs to parallelise are known as embarrassingly parallel problems. A
problem is embarrassingly parallel if it can be easily split up into pieces which can be processed
in parallel. Each piece may be processed without communication or coordination between the
elements of the parallel computer. Generally only some minimal communication is required at
the start, to distribute the problem across the parallel computer, and at the end, to collect the
results. A simple example would be graphics rendering, where each frame (or even small pieces
of a frame) can be rendered in parallel without requiring the results from previous renderings.

In practice, most algorithms we want to parallelise are not embarrassingly parallel, so more
work is needed. Various strategies exist to develop parallel implementations of an algorithm.
The most effective strategy will usually depend on the specifics of the algorithm. For some
algorithms it may be the case that there is no effective strategy for parallelisation.

As mentioned previously, Amdahl’s Law tells us that to achieve maximum speed-up from
parallelisation we need to minimise the serial portion of the program, which includes minim-
ising the number of communications required during parallel processing. This may lead to a
trade-off, where the overall most efficient algorithm is unsuitable for parallelisation, but a less
efficient algorithmmay be more amenable to parallelisation, which could lead to a faster parallel
implementation at the expense of efficiency. Another way to minimise the impact of communic-
ation overheads is to overlap communication with processing. If the environment and algorithm

36

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

allow, the program may be able to carry out useful processing while waiting for communica-
tions to complete, effectively reducing the communication overhead. However, this may not be
possible if dependencies between communication and processing give inadequate flexibility for
re-ordering, or if the communication mechanism cannot be carried out asynchronously.

Another important consideration is the distribution of load between parallel workers. As-
suming that parallel workers work in lock-step (no worker can proceed until all workers complete
a task), effort must be made to evenly distribute work. If there is a significant disparity between
the quantity of processing carried out on different workers, some workers will stall while wait-
ing for others to complete, effectively introducing added overhead and reducing speed-up and
efficiency.

Factors to consider from a potential parallelisation strategy include granularity and degree
of concurrency. Granularity describes how many pieces the problem can be broken into. A
problem exhibiting fine granularity can be broken down into many small pieces, whereas a
problem with coarse granularity has less potential for being broken down. Granularity will
influence how many parallel processors we can exploit: a problem with course granularity may
have a restrictive limit on the number of parallel processors which can be usefully utilised. The
degree of concurrency describes more precisely how many parallel processors can be utilised:
it is the number of parallel activities which can be carried out in part of a program. Over the
course of a program, one can quantify the maximum and average degree of concurrency, which
give a good indication of how many parallel processors may usefully be exploited.

Foster’s Methodology [48] is a generic technique for parallelising a program. A simple
example is illustrated in Figure 2.8. The steps of Foster’s Methodology are as follows:

1. Partitioning: Identify how the problem can be broken down into smaller pieces, each
involving largely independent computation.

2. Communication: Identify the communication required by each of the small tasks resulting
from partitioning. This includes distribution of inputs to tasks, collection of outputs from
tasks, and communication required between tasks.

3. Agglomeration: To simplify the problem, combine tasks where no utility is gained by
keeping them separate. For example, if one task must always follow another and has no
other dependency, the two can probably be combined with no loss of flexibility.

4. Mapping: Consider how the remaining concurrent tasks can be mapped onto the parallel
processors available. If the duration of each task is known beforehand then mapping can
be carried out in advance. If the duration of tasks is uncertain, mapping can be carried
out at run-time.

Problems are commonly partitioned using two categories of technique: task partitioning
and data partitioning. The division shows some semblance to the difference between SIMD

37

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

|| Ax + By ||

1 23

4

(a) Partitioning

1 2

3

4

(b) Communication

3, 4

1 2

(c) Agglomeration

1 2

3, 4

Worker 1 Worker 2

(d) Mapping

Figure 2.8: A simple example of Foster’s methodology for parallelisation. The calculation is
partitioned into two matrix-vector products, an addition, and a norm. The addition and norm
are combined then the result is scheduled for two workers.

and MIMD parallel computers, and indeed some of techniques used are quite similar. Other
partitioning and parallelisation techniques exist, including recursive, speculative, and explor-
atory decomposition. Furthermore, techniques may be combined when decomposing a single
problem, referred to as hybrid decomposition.

2.4.2.1 Task-based parallelisation

Task-based parallelisation involves breaking up the algorithm into distinct tasks which can be
carried out at the same time. For example, if we were trying to calculate Ax + By with large
matrices and vectors, we could have one worker calculate the product Ax and another calculate
the other product, By. One of the intermediate vectors would then have to be communicated so
the addition can be carried out.

To plan a task-based parallelisation strategy it is useful to draw a task dependency graph.
The algorithm is broken up into distinct tasks, with each task represented by a graph node,
and an edge is drawn for each dependency where one task must be completed before another.
Figure 2.9 shows a simple task-dependency graph for the example of calculating Ax + By. A
task-dependency graph may contain cycles, where part of the algorithm is executed repeatedly
with its output being returned to the input. This is the essence of iterative algorithms. If the task
dependency graph is overall mostly linear, then a pipelining strategy may be appropriate: In the

Ax

By
Ax + By

A
x
B
y

Ax

By

Ax + By

Figure 2.9: A task-dependency graph for a very simple algorithm

38

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

same way as instruction pipelining in processors, each distinct task is carried out in parallel.
Each entry traversing through the algorithm takes the same amount of time, but the overall
throughput can be increased. If the algorithm is broken up into more tasks, then more parallel
processors can be exploited to increase throughput. However, if the time taken to complete each
task becomes comparable to the time taken for communication then the overheads will begin
to limit the speed-up and efficiency achievable. If the task dependency graph contains cycles
(i.e., an iterative algorithm) then pipelining cannot be used, because the data needed to begin a
traversal of the graph is not available until the previous traversal has completed.

If the task dependency graph has a more dense structure then it can be considered as a tree,
with computation beginning at the leaves and moving towards the root node of the tree, which is
the overall result of the algorithm. Adjacent items in the tree can be computed at the same time,
reducing the wall-time of the overall algorithm. The level of parallelisation possible depends on
the width of the tree.

It may be appropriate to decouple the different tasks from the parallel workers available,
particularly if there are many more parallel tasks than processors available. In this case, a worker
pool is a useful architecture. The parallel processors are dynamically assigned tasks as they
occur. This means a worker can either process a single long task or a number of shorter tasks
without stalling.

2.4.2.2 Data-based parallelisation

The other common parallelisation strategy is data-based parallelism. This is generally appropri-
ate where large quantities of data are being processed, and particularly where computation done
on the data is generally localised, that is, intensive processing is done on specific areas of data
with minimal interaction needed from the processing of other areas of data. The size of data and
level of processing locality determines how amenable an algorithm will be to data parallelism.
Poor locality will introduce the need for excessive communication which introduces overheads
and reduces efficiency. Larger quantities of data tend to increase the cost of processing, thus re-
ducing the relative burden of overheads and increasing efficiency. Unlike task-based parallelism,
data parallelism can be applicable to iterative algorithms.

To implement data-based parallelisation, the developer must decide whether to break down
the problembased on its input data, its output data, or intermediate data. For example, developing
an algorithm to search for a short string or pattern in a large set of data, input-based parallelisation
would be suitable: split the large set of data over a number of workers, each of which can perform
the search over its own domain and halt the algorithm if the pattern is found. For a program
designed to generate a high resolution image of the Mandelbrot set, output-based parallelisation
would be appropriate: break the output image into sections and assign each section to a worker,
whose job it is to populate that segment with the appropriate pixel colours.

In some cases the same parallelisation structure may be apparent from more than one of
the input, output, or intermediate data, if they are highly related. For example, if performing a

39

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

colour correction on an image, the colour of an output pixel depends primarily on the colour of
the corresponding input pixel. Once the problem’s datasets have been partitioned, compute can
also be partitioned such that compute tasks are localised to the data they interact with.

2.4.3 Message Passing Interface

The Message Passing Interface (MPI) is a communication standard widely used in distributed
memory compute clusters. MPI was introduced by a group of researchers in 1991–1993 in
an attempt to develop a standardised communication protocol for distributed-memory cluster
computing. MPI was intended not only to provide a standard interface to programmers, but also
to manufacturers of interconnect networking hardware. This would allow programmers to create
software which could run on any compute cluster, regardless of the underlying communication
technology.

MPI provides a relatively low level interface to programmers, with the intention of providing
a high performance base upon which software can be developed directly, or higher level abstrac-
tions created if needed. The lack of abstraction means the programming interface closely reflects
the underlying hardware concepts, helping the programmer design the program around efficient
use of communication, where a higher level abstraction might encourage more gratuitous use of
communication leading to worse performance.

From the programmer’s point of view,MPI’s primary interface is language bindings provided
in C and Fortran, both commonly used scientific computing languages. Bindings exist for a vast
number of other languages, developed by third parties and based on the C or Fortran bindings. On
the hardware side, MPI supports a wide array of communication and interconnect technologies
including TCP/IP sockets (which are available on any standard network) and Infinniband (a
group of dedicated high performance fibre interconnect standards).

MPI models the parallel computer as a number of workers. Generally each worker will
correspond to a single process, and each node in a cluster will run as many workers as it has
processor cores. Sets of workers are combined into communicators, which allow any worker
in the communicator to communicate with any other worker in that communicator (or with the
entire communicator). Multiple communicators may exist simultaneously, and each worker may
simultaneously be a member of multiple communicators. Within each communicator workers
are numbered, referred to as that worker’s rank. The same worker may have a different rank
in each different communicator it belongs to. To begin with, workers have access to a single
communicator called world, which contains every worker taking part in this parallel program.
Further communicators are made by creating groups, which can be created by duplicating or
splitting a communicator. Groupsmay be used for organising point-to-point communications but
are particularly useful for collective communications, in which everymember of a communicator
takes part. A worker specifies which communicator to use when executing a communication
primitive.

40

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

I will now give a brief summary of the communication primitivesMPI provides, in particular
those which I later use in my own algorithms.

2.4.3.1 MPI Primitives

Most MPI operations involve the transfer of data. MPI standardises a number of data types (for
example integer and double) in order to allow interoperability between the different programming
languages and platforms, which may use differing and incompatible native types. MPI also
provides for the creation of derived data types, including arrays and structures composed from
the primitive data types.

Many operations are available in asynchronous or synchronous variants, as well as providing
buffered or unbuffered options. Asynchronous operations allow a worker to carry out other
tasks while waiting for communication to complete. Synchronous operations stall program
flow until communication is complete. Asynchronous operations allow for potentially increased
efficiency compared to synchronous operations by negating the communication overhead, how-
ever, asynchronous operations require more care to maintain consistency. Buffered operations
immediately copy data to be transmitted by an asynchronous operation. The advantage of this is
that a worker may then modify the data structure before waiting for communication to complete.
The disadvantage is that the data must be copied, imposing a time and memory penalty which
may be significant for large pieces of data.

In addition to being confined to a communicator, MPI messages can include a tag, used by
the programmer to identify or categorise a message. Operations which send a message include
a tag value to attach. Operations which receive a message may specify the tag they expect: any
messages with different tags are ignored.

MPI primitives can be simply divided into three categories. Point-to-point messages involve
sending a message from one worker to another. Collective operations involve any number
of workers communicating. Synchronisation primitives are used to control program flow and
ensure multiple workers stay synchronised where necessary.

Point-to-point operations include:

• send: Send a message to another worker

• recv: Receive a message from another worker

• sendrecv: Simultaneously send a message and receive a message

Collective operations include:

• bcast: Broadcast a message to all workers within the communicator

• scatter: One worker simultaneously sends a different message to every worker in the
communicator

41

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

• gather: One worker receives a different message from every worker in the communicator,
collecting up the received data.

• allgather: Every worker sends a different message. Every worker receives the message
sent by every other worker.

• reduce: Every worker in the communicator presents a piece of data. All the data is
combined in an operation (for example finding the maximum, finding the minimum, or
calculating the sum) and one worker ends up with the result.

Synchronisation operations include:

• barrier: Each worker reaching the barrier halts until all workers in the communicator
have reached the barrier. Then, all workers proceed simultaneously.

2.4.4 Hybrid-memory parallelisation

A modern supercomputer is rarely a purely shared-memory or distributed-memory parallel
architecture. In reality, the vast majority are clusters of servers, with each server containing one
or more multicore processors. Each processor socket is usually a pure UMA shared memory
environment, with every core of that socket having equal access to that socket’s memory. Within
a multi-socket server, the server is overall a NUMA shared memory environment, with an overall
shared address space and where cores in one socket may access memory attached to another
socket, but with increased latency and reduced bandwidth between sockets. Finally, the cluster
overall forms a distributed memory environment, where processes have no implicit access to
memory on another server and must communicate via an explicit message passing interface.
This overall structure is known as a hybrid architecture, where the communication properties
are different depending what scale is looked at.

A hybrid-architecture parallel computer may be programmed as though it were a purely
distributed-memory computer: anMPIworker is run for every processor core on every server and
message passing is used for all communications, ignoring the added communication capability
available between someworkers. This is the simplest scheme, alternatively, hybrid parallelisation
may be used: By utilising shared memory communication where available, it may be possible
to improve performance, at the expense of added complexity and programmer effort.

Oneway to implement hybrid parallelisation is to run fewer processes than cores are available
and use multithreading to exploit the extra cores. For example, one could run as many MPI
workers as there are NUMA domains (i.e., processor sockets) and have each process spawn
as many threads as there are cores per socket, using shared memory to communicate between
the threads. As an alternative, newer versions of MPI support shared memory communication,
either explicitly by letting two workers in a shared memory domain share a block of memory, or
implicitly by using shared memory as the transmission medium for normal MPI messages.

42

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

What benefits may be gained from hybrid techniques depends on the nature of the algorithm
being implemented. If two workers need to read a large dataset stored on one worker, sharing the
memory is likely to be a great deal faster than explicitly transmitting the memory contents using
messages. However, if workers only exchange occasional short messages, exploiting shared
memory is less likely to give significant benefit, especially if the communication overhead is
already minimal compared to actual computation time.

2.4.5 Automatic Parallelisation

Automatic parallelisation, where a program is automatically analysed to identify and implement
potential parallelisation optimisations with the goal of reducing runtime, is an open research
topic. It is often applied as a source code transformation: given the source code of a sequential
program, the parallelisation tool outputs the source code for a new program which exploits
a parallel compute resource. First, the parts of the program which consume significant time
must be identified so that parallelisation effort can be targeted appropriately. Then, dependency
analysis is used to determine ordering and which code can be run in parallel.

Automatic parallelisation can be simple and effective when targeting shared-memory par-
allel computers, and many such tools exist to use OpenMP for multi-threading. Targeting a
distributed memory parallel computer is a much more difficult problem; In addition to depend-
ency analysis, decisions must be made about how problem data is distributed across NUMA
domains such as cluster nodes. Poor data distribution can cause large communication overheads
to significantly reduce speed-up. A few tools exist for automated or assisted parallelisation over
distributed-memory computers. PETSc [75] provides a high-performance framework including
parallelisation over hybrid systems including GPUs for solution of systems modelled by partial
differential equations, for example finite element analysis. CAPTools [76], and the related Para-
Wise, allow guided and automatic parallelisation based on OpenMP andMPI aimed at problems
based on structured mesh computational mechanics. Neither of these tools would be suitable
for parallelising the greedy algorithms used for CS reconstruction, which has a very different
structure.

OMP2MPI [77] is not specific to a certain class of problems; it simply takes OpenMP
parallelised loops and distributes the iterations to MPI workers using a master-slave architecture.
High performance scientific codewould usually use amaths library (such asBLASor higher-level
libraries) for vector andmatrix operations rather thanwriting explicit loops over the elements and
so loop vectorisation approaches to parallelisation would be ineffective. Explicit loops could
be used instead of maths library operations in order to take advantage of loop vectorisation
parallelisation but this would come at the cost of losing optimisation built-in to the maths
library: Maths libraries such as BLAS reduce redundancy in operations, use SIMD processor
instructions, and optimise memory access to use cache efficiently. Manual parallelisation allows
the best of both worlds: after a data decomposition, optimised maths library optimisations can

43

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

be used on the portions of data. Furthermore, manual parallelisation reveals the structure present
in a problem and provides information about whether a modified or different algorithm might
be amenable to parallelisation where it might be more difficult to extract this information from
the results of an automatic parallelisation tool.

2.5 Accelerated CS reconstruction

In this section, I will discuss the issues involved in accelerating, parallelising, and distributing CS
reconstruction and evaluate existing works related to these topics. I will pay particular attention
to the size of problems solved, whether the algorithms execute in a shared or distributed memory
environment, and any decomposition of the problem used for parallelism. Most of these works
focus on reducing reconstruction latency for problems which are practical, if slow, to reconstruct
using a single CPU. A few pieces of work address reconstruction of problems which would be
too large to be tractable without parallelisation or reconstruction. Finally, some work addresses
distributed reconstruction, where distributed sensors collect and reconstruct signals with limited
communication.

2.5.1 GPU-accelerated reconstruction

A number of works use GPUs for accelerating CS reconstruction. This is attractive because
GPUs are relatively inexpensive and commonplace, and the shader architecture is well-suited
to carrying out arithmetic using large vectors and matrices. Development of mathematical
algorithms for GPUs is also significantly aided by libraries based on CUDA, for example
cuBLAS [25], which provides GPU-accelerated implementations of common BLAS operations,
and CUFFT, which provides GPU-accelerated FFT functions. GPUs also implement floating-
point maths operations, simplifying implementation and potentially improving reconstruction
quality. One downside of using GPU accelerators is the limited memory capacity available in
comparison to a system’s main memory, so very large problemsmay be limited by the bandwidth
available for copying data between main memory and GPU memory.

A well-known GPU-accelerated CS reconstruction toolkit is GAGA (GPU Accelerated
Greedy Algorithms), an implementation of several greedy algorithms based on hard threshold-
ing presented by Blanchard and Tanner [26]. They report speed-up of up to 70x over a CPU
MATLAB implementation (using automatic multithreading). Written in CUDA-C, GAGA is
used to solve problems of up to N = 1, 048, 576, but only with a dictionary composed of a
subset of a DCT matrix where it is not required to store the dictionary explicitly and fast trans-
forms can be used to greatly reduce the computation required to perform matrix-vector products
using the dictionary. When using a generic dictionary composed from IID random Gaussian
values, they only solved up to N = 16, 384. Several other papers report similar results using
structured sub-Fourier dictionaries: Smith et al. [27] use a GPU maths library for MATLAB to

44

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

implement a split-Bregman solver, showing speed-up of 27x when reconstructing MRI images
up to N = 67, 108, 864 (8192 × 8192 pixels) with a partial-Fourier dictionary; Borghi et al.
[28] use CUDA and CUFFT to solve problems up to N = 1, 048, 576 with partial-DCT dic-
tionaries; Belle, Armstrong, and Gain [19] use cuBLAS and CUFFT to achieve 23x speed-up
reconstructing radio interferometry images up to N = 64, 000, 000 (8000 × 8000 pixels); and
Endo et al. [17] use CUFFT to achieve 20x speed-up reconstructing holographic images up
to N = 10, 485, 760 (1024 × 1024 pixels with 10 depth levels). No explicit decomposition
of the problem is described in any of these works: The whole problem is transferred to GPU
memory, vector operations or custom kernels are applied relying on the shared-memory archi-
tecture within a GPU, then the results are transferred back from the GPU. All these works rely
on the use of fast transforms for structured dictionaries: none can be used on the unstructured
dictionaries produced by dictionary learning, for example.

In contrast, some works consider the use of GPUs to solve problems with random or
unstructured dictionaries. Here, the dictionary must be stored explicitly and fast transform
operators cannot be used to speed multiplication so the problems solved are much smaller than
those using sub-Fourier dictionaries. With 10% sub-sampling and double-precision floating
point storage, a problem with N = 105 has a 7.5GB dictionary, similar to the memory capacity
of the latest high-end GPUs. Using a dictionary too large to fit in GPU memory adds significant
implementation complexity and the potential forCPU-GPU transfer bandwidth to be a bottleneck.
Andrecut [29] uses cuBLAS to implement MP and achieve a 31x speed-up over CBLAS with
signals up toN = 15, 000, again with no explicit decomposition of the problem: CBLAS maths
operations are simply replaced with their cuBLAS equivalents. Reliance on shared-memory
computing limits the size of problem which can be solved and the lack of explicit decomposition
means no real insight is gained into how the problem is partitioned for parallelisation.

Two papers describe an explicit decomposition of problemswith generic randomdictionaries.
Fang et al. [30] use cuBLAS and CUDA to implement OMP with a 40x speed-up over a CPU
implementation for signals ofN = 104. The only decomposition used is a simple partitioning of
matrix-vectormultiplications; the overall algorithm still assumes a shared-memory environment.
Kulkarni et al. [31] describe implementations ofOMP for bothGPU and a domain-specificmany-
core platform, claiming reconstruction of images up to 1024 × 1024 pixels, speed-up of up to
16x, and power reduction of up to 15x compared to a CPU implementation. However, they
take the unusual approach of sampling and reconstructing each column of the image totally
independently in addition to breaking larger images down into blocks. While this drastically
reduces the size of problems to be solved and allows image columns to be processed in parallel,
it also greatly reduces the compression performance and harms reconstructed image quality.
For comparison with other works, this implementation is in reality equivalent to only solving
relatively small problems with N = 512.

45

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

2.5.2 FPGAs and ASICs

Another topic of interest is the use of FPGAs (Field Programmable Gate Arrays) and ASICs
(Application Specific IntegratedCircuits) for solvingCSproblems. The goal is generally solution
of small problems with very low latency or solving problems in a power-efficient manner
compared to a CPU or GPU. The first ASIC or FPGA implementation of CS reconstruction
appears to be that of Septimus and Steinberg [32], who implement a variation on OMP avoiding
full calculation of the sparse estimate at every iteration. MGS updates to QR decomposition
are used at each iteration to efficiently solve the Linear Least Squares (LLSQ) problem and
the design is demonstrated through synthesis and simulation for an FPGA for a fixed problem
size of N = 128. Yu et al. [78] use a similar approach but with some optimisations to reduce
the number of square-root calculations, simulating the solution of fixed N = 128 problems on
an FPGA platform. Stanislaus and Mohsenin [79] target fixed N = 256 problems, though the
algorithm they describe as OMP appears to be MP so it is unclear which algorithm was actually
implemented. For both of these algorithms an implicit column-wise data decomposition is used
for the matrix-vector multiplication at the correlation step, but the algorithms are otherwise
designed for a shared-memory environment. Quan et al. [80] implement a modified OMP
algorithm named IOMP, specifically taking advantage of sub-Fourier dictionaries and using
MGS updates to a QR decomposition. The efficiency of the FFT algorithm allows them to solve
a larger problem of N = 2048.

Rather than updating a QR decomposition, Rabah et al. [33] solve problems of N = 1024

using a modified Cholesky decomposition in each iteration to form the Moore-Penrose pseudo-
inverse and solve the LLSQproblem. A parallel inner product unit operates on 64-element blocks
of data and is used in several parts of the algorithm. Calculating the full Cholesky decomposition,
even with an efficient parallel implementation, seems very wasteful compared to the per-iteration
MGS updates used in many other implementations of OMP and it is unclear why this decision
was taken. In contrast, Polat and Kayhan [34] use an Alternate Cholesky Decomposition for
LLSQ solution but only calculate an update to the decomposition in each iteration. The solver is
described as “adaptable to different compression ratios” however it is only reconfigurable at the
time of synthesis, after which the design is constrained to a single fixed problem size (N = 1024

is described in the paper). Kulkarni and Mohsenin [35] present hardware architectures for OMP
and two reduced-complexity variants, reconfigurable at synthesis-time to signals fromN = 128

to N = 1024. A full LU decomposition is used for the LLSQ solution in each iteration. Huang
and Wang [81] introduce another OMP-variation where the Moore-Penrose pseudo-inverse is
updated in each iteration. Their technique allows some task-parallelism in each iteration which
is otherwise not possible due to the iterative nature of OMP. The solver is synthesized separately
for both N = 256 and N = 512, but only Bernoulli dictionaries (taking values 0 or 1) are
supported, which greatly reduces the complexity of the algorithm and the space required to
store the dictionary at the expense of flexibility and relevance to all applications. In contrast

46

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

to the hardware reconstruction implementations mentioned so far, Chen and Zhang [82] do not
implement a greedy pursuit but rather use an algorithm based on a simplified split-Bregman
approach to solve the `1 problem. Their implementation can solve a single fixed problem size of
N = 16, 384 (128× 128) however, as with most solvers supporting large problems, they require
the use of sub-Fourier dictionaries to avoid storing the dictionary explicitly and allow the use of
fast transform operations.

All of these works use fixed point arithmetic, which could potentially limit compression
performance and solution accuracy. They also all target very small problems and can generally
only tackle one fixed problem size determined at the time of synthesis. Various vector operations
are carried out in parallel, but all still rely on the entire problem being held and processed on
a single device. This is a useful strategy for low-latency reconstruction of small problems but
does not scale to larger problem sizes or a distributed memory environment.

2.5.3 Distributed reconstruction for DCS

In the topic of DCS there is interest in distributed reconstruction algorithms. The standard DCS
strategy is to return all samples to a central fusion centre where reconstruction can utilise full
knowledge of the samples from all sensors. However, in some applications returning all samples
to a fusion centre might require prohibitive amounts of communication bandwidth. Also, with a
large number of sensors, reconstructing using all samples from all sensors may be a prohibitively
large problem. With distributed reconstruction, each sensor primarily reconstructs the signal
from the samples it recorded itself, but also conducts a limited amount of communication with
some other sensors (possibly only its neighbours or nearby sensors) so as to exploit the signal
correlation to improve reconstruction quality. Generally, distributed reconstruction will result
in better compression performance than each sensor reconstructing from its own samples in
isolation but worse performance than reconstruction at a fusion centre with full knowledge of
all samples. The level of communication between sensors can be tuned to trade-off between
reconstruction performance and level of communication required.

Several works demonstrate distributed reconstruction for DCS focusing on the application
of distributed spectrum estimation for cognitive radios, where a number of distributed radio
transceivers share bandwidth and intelligently estimate which frequencies are in use by each
other (and other spectrum users) instead of following a predefined allocation or multiple access
strategy. Sundman et al. [83] introduce a distributed variation of Subspace Pursuit named
Distributed Predictive Subspace Pursuit (DPrSP), where in each iteration each node receives
coefficient estimates from other nodes and then refines its own estimate of the coefficients.
This strategy is limited to the DCS JSM-2 model which is only applicable in a limited number
of situations. Sundman, Chatterjee, and Skoglund [84][85] extend this approach to other
greedy pursuits and introduce a more general mixed support-set JSM. Their distributed greedy
algorithms follow a similar strategy to DPrSP: In each iteration the sparse estimate is locally

47

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

refined then coefficients are exchanged with other nodes. Experiments are carried out with
relatively small signals (N = 500). Wimalajeewa and Varshney [86] present a similar approach
applied to OMP for problems of size N = 256. Ravazzi, Fosson, and Magli [87] describe
distributed optimisation of non-linear problems, which may give applicability to a greater set of
real-world problems but is also relevant for the linear DCS problems we are concerned with. The
authors introduce various distributed algorithms based on Iterative Hard Thresholding which
follow the same pattern of local refinement alternating with exchange of sparse estimates. As
with the other investigations into distributed optimisation forDCS, only relatively small problems
are solved (up to N = 2560). All of these algorithms focus on maximising compression and
reconstruction quality while minimising communication between sensors rather than exploiting
a distributed compute resource to reduce reconstruction time.

2.5.4 Distributing convex algorithms using ADMM

Most of the accelerated CS research discussed so far uses greedy pursuits. However, similar
techniques are applicable to convex algorithms. One strategy to achieve this is the ADMM.
ADMM is a general technique for distributed optimisation, applied to convex problems such
as basis pursuit and LASSO by Boyd et al. [36]. It describes a mathematical strategy for
decomposing optimisation problems for parallel solution, rather than a particular implementation
of a distributed solver. Because solvers based on ADMM implement convex algorithms they
may give better compression performance than techniques based on greedy algorithms. Boyd
et al. also describe implementation of ADMM in a distributed computing environment using
MPI, where each node stores a portion of the sparse estimate and dictionary and solves a
small convex problem locally. Communications consist of global averaging of variables and
synchronisation. In addition to a number of smaller problems solved on a single workstation,
the authors describe the use of a distributed memory compute cluster to solve an unstructured
problem with N = 400, 000 and n = 8, 000 utilising 80 workers spread equally over 10

machines. Utilising double precision floating point values the full dataset took over 30GB to
store, apparently one of the largest LASSO problems ever solved at the time of publication in
2010. MPI was used for communication between nodes and the full solution took 6 minutes.
Deng et al. [37] follow a similar approach, using two variations on ADMMcalled Jacobi ADMM
and Jacobi-Proximal ADMM to develop a CS solver targeting distributed memory clusters using
MPI communication. Problems of up toN = 300, 000 and n = 150, 000 are solved (requiring a
total of 337GB of RAM using double-precision elements) using 80 workers spread equally over
10 machines. 43.5 minutes elapsed to solve a problem with S/N = 0.05 to an error of 10−3 and
48.5 minutes with a sparsity of S/N = 0.15 with the same error. This appears to be the largest
solution of a CS problem reported in the literature.

Mota et al. [88] use an algorithm called D-ADMM, a decentralised BP solver, to enable
distributed reconstruction in a DCS scenario. Two decompositions are described, splitting the

48

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

dictionary either based on rows or columns depending on the nature of the DCS problem.
Experiments are carried out with dense unstructured dictionaries up to N = 2560 using row-
based partitioning over up to 64 nodes and column-based partitioning over up to 10 nodes. The
number of communication steps for solution of these relatively small problems is found to be
lower than for similar algorithms but the elapsed time for solution is not presented. Bernabe et al.
[89] use ADMM to adopt a domain-specific algorithm called HYCA to run on a GPU, where the
use of cuBLASandCUFFTallow speed-ups of up to 19 times overCentral ProcessingUnit (CPU)
for a structured problem. Fiandrotti et al. [20] also use ADMM to transform LASSO to utilise
GPU compute, solving CS problems for astronomical image de-blurring. Signal sizes up toN =

32, 768 are reconstructed, but the requirement of the use of circulant sampling matrices allows
a significant reduction in memory and compute required over the use of generic unstructured
matrices. Finally, Yang et al. [90] fuse an ADMM-based CS solver with deep learning resulting
in ADMM-CSNet. Instead of being manually specified, the sparse transform is automatically
learned from training data. Both speed-up and improved reconstruction performance over
traditional CS methods are reported, using the inherently distributed nature of deep learning to
exploit GPU acceleration. Although the algorithm is described as using a general sparse basis, it
actually relies on a structured measurement matrix such as a partial-Fourier matrix or Toeplitz-
structuredmatrix. All of the techniques based onADMMeffectively involve development of new
algorithms, the properties of which will differ from standard, well understood, reconstruction
algorithms. Furthermore, the exact reconstruction results will depend on the number of workers
used.

2.6 Chapter summary

In this chapter, I have introduced and reviewed the literature relating to CS, HPC, parallelisation,
and accelerated CS reconstruction. I have shown howCS fits in to the wider topics of information
theory and sparsity, the variety of techniques which can be used to solve CS problems, and a
number of applications of CS. Next, I showed how parallelism is an essential component
of modern HPC and therefore why parallelisation is required to solve larger CS problems in a
reasonable amount of time. I have reviewed common techniques applied to parallelise computing
problems, looking in particular at distributed memory techniques and MPI which is used by the
largest compute clusters.

In the final section of this chapter, I reviewed other work on the topic of accelerating,
parallelising, and distributing CS reconstruction. I showed how many approaches to accelerated
CS reconstruction rely on the use of structured dictionaries with fast transforms, and how work
using unstructured dictionaries tends to focus on solving very small problems with low latency.
Finally, I looked at novel algorithms developed using ADMM which have demonstrated ability
to solve large unstructured problems in a distributed memory environment but deviate from the
standard well-understood reconstruction algorithms and may produce results dependent on the

49

CHAPTER 2. REVIEW OF CS AND PARALLEL COMPUTING LITERATURE

number of workers involved. No existing work allows reconstruction of very large CS problems
using unstructured dictionaries in a distributed memory environment (such as an HPC cluster)
while giving identical results to a standard algorithm such as OMP. This forms the motivation
for my work in the following chapters.

50

Chapter 3

Parallelised greedy pursuits

In this chapter I describe my contributions to the field, specifically the development of the
DistMP and DistOMP algorithms. I begin with a detailed description of MP, including both
its strategy and various implementation details. This forms the foundation for the remainder
of my work. I then introduce the DistMP algorithm, beginning with its motivation and overall
structure. I then give a detailed description of DistMP including an algorithm listing. Next, I
describe OMP. After introducing and motivating the algorithm, I give a high-level description
of the steps involved. I cover in more detail how MGS decomposition updates may be used in
an efficient implementation and then present a detailed algorithm for OMP using MGS updates.
In the final section, I introduce DistOMP, a parallel successor to OMP. As with MP, I give
a motivation and overview of the algorithm structure, including the different types of parallel
worker used in the algorithm. I then give a detailed description of the tasks carried out by the
two types of worker and present the algorithm listings for both workers.

3.1 Matching Pursuit

Matching Pursuit (MP) was introduced in 1993 byMallat and Zhang [3]. It is the simplest greedy
algorithm for CS reconstruction and also forms the basis for the other Greedy Algorithms used
for this purpose. MP was introduced in order to allow the analysis of signals using redundant
dictionaries (a matrix with more columns than rows), as opposed to linear isometries (a square
matrix). Mallet and Zhang show how decomposing audio signals into a dictionary composed
of Gabor time-frequency atoms can give a more useful result than decomposing into a wavelet
dictionary. MP’s ability to decompose a signal using a redundant dictionary is also essential
for CS reconstruction, where the level of redundancy in the dictionary is a product of both
redundancy in the sparse basis, desirable to increase the level of sparsity observed, and the level
of sub-sampling carried out.

MP works by considering a residual, which is the portion of the starting signal not yet
decomposed. The residual is initially the whole signal and is reduced at each iteration until it

51

CHAPTER 3. PARALLELISED GREEDY PURSUITS

has a magnitude of zero (or at least less than a small value). MP is the quintessential greedy
pursuit: At each iteration it takes the simplest, most obvious, step in the direction of the goal.
This is done by finding the atom of the dictionary which most correlates with the residual and
removing its contribution to the residual. The sparse estimate is also updated, knowing how
much of this atom is needed to reconstruct the signal. In the case of MP, our overall goal is find
the most sparse solution x to the equation b = Ax. Internally, MP replaces this with the task
of reducing the magnitude of the residual to zero (or near zero). For a well formed problem
this leads to the same solution, however for some problems (for example where the number of
samples taken is insufficient given the sparsity level) the residual may be eliminated while the
sparse estimate is not actually a solution to the problem.

The algorithm forMP is shown inAlgorithm 3.1. Cross-references to algorithm line numbers
are made throughout this description to aid identification. Before execution, the dictionary and
samples to approximate are loaded from disk (Lines 1–2). At initialisation the residual’s starting
value is the signal we are trying to decompose (Line 4) and the sparse estimate is set to zero
(Line 3). The algorithm is terminated when the magnitude of the residual falls below a pre-
defined threshold: Before each iteration begins the `2-norm of the residual is evaluated (‖r‖2)
and compared to the defined threshold ε (Line 5). The threshold is chosen based on the numerical
precision of the implementation and the required precision in its output (but is not dependant on
the magnitude of error present in the samples taken). The result of the algorithm is the sparse
estimate x which satisfies the equation Ax = b (Line 10). A limit on the number of iterations
may be applied but is only necessary in case of numerical instability in the implementation: In
theory, so long as the signal to be decomposed falls in the space bounded by the dictionary, the
algorithm should always converge on a solution (however, not necessarily the correct solution).

The first step in each iteration is finding the correlation between each dictionary atom
(column) and the residual. This is done by taking the inner product c ← AT r, after which c

is a vector of correlations (Line 6). If the dictionary atoms are not already normalised to unit
magnitude then each correlation must be divided by the magnitude of the corresponding atom
so that atoms with a comparatively large magnitude do not appear to have a higher correlation
than those with a smaller magnitude. For simplicity, for the remainder of my description of this
algorithm I will assume the dictionary columns are normalised to unit magnitude. Only minor
modifications are required to the algorithm if this is not the case. Following correlation, the
selection step finds which of the correlations has the greatest absolute magnitude (Line 7). This
selected atom which will be used for the rest of this iteration.

Having selected which dictionary atom to use for this iteration, the next step is to update our
sparse estimate (Line 8). We can think of the sparse estimate as a recipe, describing how much
of each dictionary atom to combine to produce the signal we are decomposing. The correlation
of the chosen column, ck, tells us how much of this column to add to the estimate. The update
is incorporated into the sparse estimate as xk ← xk + ck.

The final step in the iteration is to update the residual (Line 9). We have selected the

52

CHAPTER 3. PARALLELISED GREEDY PURSUITS

dictionary atom to be used and its correlation with the residual tells us how much of it is being
incorporated in the sparse estimate. We can update the residual in two ways. One option is to
subtract an appropriate amount of this atom from the residual: r← r− ckAk. Another option
is to use our sparse estimate to reproduce our signal estimate, and subtract this from the actual
signal to calculate the residual: r← b−Ax. The former is generally faster as it only requires
scaling and subtracting a known vector, whereas the latter requires a matrix-vector product by
the (potentially very large) dictionary.

MP benefits from being both very simple to understand and implement, and efficient im-
plementations are very fast to execute each iteration. The complexity is dominated by the
correlation step at each iteration. MP tends to require more iterations than other algorithms to
solve the same problem. In the case of a dictionary with no redundancy (all atoms are ortho-
gonal and the dictionary matrix is square) MP takes only as many iterations as the signal has
sparse components and so executes very quickly. However, we generally use MP with highly
redundant dictionaries, where it can take many more iterations to converge. A particularly bad
case occurs when two atoms are highly correlated: With some signals MP has a tendency to
oscillate between choosing the two atoms on alternate iterations while making little progress
towards approximating the signal.

MP has a particularly efficient implementation when the dictionary is represented by fast
transform operations. The complexity of MP is dominated by the matrix-vector product used
to correlate the dictionary and the residual. This matrix-vector product, AT r is one of the
fast operators generally available. For example, with an explicit dictionary the correlation step
requires on the order of Nn operations, where the FFT operator has a complexity on the order
of n log(n), a significant reduction for large problems.

Algorithm 3.1 Matching Pursuit
1: Input: b ∈ Rn . Samples (loaded from disk)
2: Input: A ∈ Rn×N . Dictionary (loaded from disk)
3: Initialise: x← 0N . Initialise sparse estimate
4: Initialise: r← b . Initialise residual
5: while ‖r‖2 ≤ ε do . Stopping criterion
6: c← AT r . Correlation
7: k ← argmaxk|ck| . Selection
8: xk ← xk + ck/‖Ak‖2 . Sparse estimate update
9: r← r− ckAk . Residual update

10: Output: x . Sparse estimate saved to disk

53

CHAPTER 3. PARALLELISED GREEDY PURSUITS

3.2 Distributed Matching Pursuit

Distributed Matching Pursuit (DistMP) was developed with two objectives in mind: To solve
very large (larger than will fit in main memory) CS reconstruction problems without having to
use disk storage as working memory, and to solve the problems faster than could be done using
a single computer. For the first objective we need a cluster whose summed main memory is
sufficient to hold the whole problem in memory. We then break the problem into small enough
pieces such that each piece can fit in the main memory of a single node. To achieve the second
objective we need to exploit the processing power ofmany computers in parallel, at the same time
as minimising overheads. Both of these objectives can be achieved by using data parallelism;
by considering the body of data worked on by the algorithm and finding an appropriate way to
break it up. The challenge is finding an efficient way to break up the problem and develop the
algorithm so as to minimise communication overheads.

The largest single piece of data held in memory is the dictionary, so this is the clear target for
breaking into pieces distributed over the compute nodes. The other data we hold in memory (the
current sparse estimate and residual) are significantly smaller than the dictionary, and so need not
be broken up: Theymay even be duplicated over all the compute nodes if required. An important
decision is whether we break up the dictionary in terms of rows or columns. Computation time
is dominated by the correlation step, which involves carrying out the matrix-vector productAT r.
Splitting column-wise gives a more efficient implementation of the correlation step and so is the
obvious choice.

We then have to decide whether to distribute the columns of the dictionary in a round-robin
fashion or in contiguous blocks. As there is no significance to the ordering of columns in
the dictionary, there is no difference in computation time whether distributing the columns to
workers in contiguous blocks, in a round-robin fashion, or randomly. Therefore we distribute
the columns in order, in contiguous blocks, as this leads to the simplest implementation. This
distribution of the dictionary between compute workers, illustrated in Figure 3.1, forms the core
of the DistMP algorithm, as well as the DistOMP algorithm introduced later.

Let W be the total number of workers we are tasking to solve the problem, and w be our

Worker 1 Worker 2 Worker 3

C
ol

um
n

1

C
ol

um
n

2

C
ol

um
n

3

C
ol

um
n

4

C
ol

um
n

5

C
ol

um
n

6

C
ol

um
n

7

C
ol

um
n

8

C
ol

um
n

9

C
ol

um
n

10

Figure 3.1: An example distribution of 10 dictionary columns to 3 compute workers in DistMP

54

CHAPTER 3. PARALLELISED GREEDY PURSUITS

worker index such that 1 ≤ w ≤ W 1. The columns held on the wth worker are selected by
the setWw, so that the worker’s local dictionary matrix L ← AWw . The setsWw contain the
contiguous integers

Ww ←

1 + (w − 1)
⌈
N
W

⌉
. . . w

⌈
N
W

⌉
w ≤ N mod W

1 + (w − 1)
⌊
N
W

⌋
+N mod W . . . w

⌊
N
W

⌋
+N mod W w > N mod W

.

The sets Ww are all disjoint, so that the same column is never present on more than one
worker

Wi ∩Wj = ∅ ∀i 6= j ,

and together they cover the whole matrix A

W1 ∪W2 ∪ . . . ∪WW = {1 . . . N} .

Each worker will access dictionary columns by their index in L, but will need to be able to
determine that column’s index in A. Referring to the column index in L as k and the column
index in A asK, we can use the definition ofW to derive the relationship given in Equation 3.1
for a particular worker w, total number of workersW , and total number of columns N .

K =

(w − 1)
⌈
N
W

⌉
+ k w ≤ N mod W

(w − 1)
⌊
N
W

⌋
+N mod W + k w > N mod W

(3.1)

DistMP is designed so that all workers execute the same program and work in lock-step.
At start-up every worker reads its configuration along with the problem data (the signal to be
decomposed, and that worker’s portion of the dictionary) from disk. Because every worker
maintains an up-to-date copy of the residual, at the beginning of each iteration every worker can
independently evaluate the stopping criterion by comparing the magnitude of the residual to the
stopping threshold. This means no extra communication or coordination is required to terminate
workers when the stopping criterion is met. Every worker also maintains an up-to-date copy
of the current sparse approximation. This means upon meeting the stopping criterion, only the
root node needs to save the output of the algorithm and all other workers can terminate with no
need to store their working data.

The algorithm for DistMP is shown in Algorithm 3.2. The inputs to the algorithm are b, the
signal to be approximated (Line 1), and L, this worker’s portion of the dictionary A (Line 2).
The MPI environment provides us with W , the number of workers in the cluster (Line 3), and
w, this worker’s index (starting from 1, Line 4). Figure 3.2 shows the communications structure

1MPI actually numbersworkers starting from 0, but for consistency I follow the convention of 1-based numbering
for all algorithms in this thesis.

55

CHAPTER 3. PARALLELISED GREEDY PURSUITS

Worker 1 Worker 2 Worker 3

Correlation

Reduce: global selection

Broadcast global index, correlation, column

Residual update Residual update Residual update

Evaluate stopping
criterion

Evaluate stopping
criterion

Evaluate stopping
criterion

Update sparse
estimate

Step

1

2

3

4

5

6

7

Local selection

Correlation

Local selection

Correlation

Local selection

Update sparse
estimate

Update sparse
estimate

Figure 3.2: The communications between workers in a DistMP setup with 3 workers. In this
iteration the second worker holds the column with the highest magnitude correlation to the
residual.

of the algorithm.

The first step in each iteration is correlation (Line 8), where each worker carries out a matrix-
vector product between its portion of the dictionary and the current residual in order to calculate
how well each dictionary atom correlates with the residual. Since each worker holds effectively
the same sized portion of the dictionary (a difference of one column would be negligible for
large-scale problems) and has an up-to-date copy of the residual, this distributed inner product
parallelises perfectly with no need for communication or overhead. This step is implemented
identically to the correlation step in conventional MP, except the matrix represents only a portion
of the dictionary instead of the entire dictionary.

The next task is to findwhich atom, across all theworkers, has the highest absolute correlation
with the residual. First, each worker evaluates amongst its own atoms which has the highest
absolute correlation (Line 9). This is also implemented in the same way as conventional MP.
Next, the workers convene to determine which worker holds the atom with the highest absolute
correlation to the residual (Line 10). The worker which holds the column with the largest
absolute correlation converts its local column index to a global column index using Equation 3.1
(Line 12), and stores the correlation and column itself in γ and g respectively (Lines 16–17).
It then broadcasts K, γ and g to all the other workers (sent on Lines 18–20, received on
Lines 22–24), which will need to know these to carry out the rest of the iteration.

56

CHAPTER 3. PARALLELISED GREEDY PURSUITS

Every worker individually keeps track of the current sparse estimate, and so performs the
same update. The sparse estimate update (Line 25) is the same as with classic MP, but uses the
index of the globally best dictionary atom (across all workers) and correlation. Residual update
(Line 26) also proceeds in the same way as classic MP, multiplying the globally best correlation
by the selected dictionary atom and subtracting this from the residual.

Each worker evaluates the stopping criterion (Line 7) independently by calculating the
magnitude of the residual. Every worker has a record of the sparse estimate x, but only one (for
example the root node) need save it to disk (Line 27).

Algorithm 3.2 Distributed Matching Pursuit
1: Input: b ∈ Rn . Samples (loaded from disk)
2: Input: L = AWw . Local dictionary (loaded from disk)
3: Input: W ∈ Z,W ≥ 1 . Number of workers (from MPI)
4: Input: w ∈ Z, 1 ≤ w ≤ W . This worker’s index (from MPI)
5: Initialise: r← b . Initialise residual
6: Initialise: x← 0N . Initialise sparse estimate
7: while ‖r‖2 ≥ ε do . Stopping criterion
8: c← LT r . Correlation
9: k ← argmax

k

|ck| . Local selection

10: Reduce v ← argmax
w
|ck| . Find which worker holds the highest correlation

11: if v = w then . If we hold the selected column:
12: if w ≤ N mod W then . Convert local index to global
13: K ← (w − 1)

⌈
N
W

⌉
+ k

14: else
15: K ← (w − 1)

⌊
N
W

⌋
+N mod W + k

16: γ ← ck . Store correlation
17: g← LK . Store the selected column
18: Broadcast K . Broadcast global index
19: Broadcast γ . Broadcast correlation
20: Broadcast g . Broadcast selected column
21: else . Otherwise:
22: Receive Broadcast K . Receive global index
23: Receive Broadcast γ . Receive correlation
24: Receive Broadcast g . Receive selected column
25: xK ← xK + γ/‖g‖2 . Update sparse estimate
26: r← r− γg . Residual update
27: Output: x . Sparse estimate saved to disk

3.3 Orthogonal Matching Pursuit

MP’s main weakness is non-orthogonal dictionaries. Upon encountering a residual composed
of two highly correlated dictionary elements, Matching Pursuit will tend to oscillate between

57

CHAPTER 3. PARALLELISED GREEDY PURSUITS

choosing each dictionary element and converge slowly. Thus, despite each iteration being very
fast, MPmay be slower thanmore complicated algorithms. OrthogonalMatching Pursuit (OMP)
was created to avoid precisely this problem. It ensures that each dictionary atom is only ever
selected in one iteration, so the number of iterations is equal to the number of dictionary atoms
required to approximate the signal. As well as requiring fewer iterations, OMP delivers better
performance: it will tend to give a more sparse approximation of a signal than MP, falling closer
to the results from Basis Pursuit and the optimum decomposition given by combinatorial `0
optimisation. OMP was described independently by Davis et al and Pati et al in 1994, based on
the then-recently published MP algorithm.

In summary, OMP is a close variant on MP, which differs fromMP by the introduction of an
orthogonalisation step. Initialisation, correlation, and selection proceed as with MP. However,
instead of updating the sparse approximation by simply adding the current correlation to the
element corresponding to the current dictionary atom, we calculate a new sparse approximation
from scratch. By doing this we can calculate an optimal sparse approximation, which best
approximates the signal using the currently selected dictionary atoms. Having done this we also
update the residual, which will now be orthogonal to the space spanned by the currently selected
dictionary atoms.

Algorithm 3.3 shows a simplified rendition of OMP. Data is loaded from disk (Lines 1–2)
in the same way as MP. Also as with MP, at start-up we initialise the residual to the samples
(Line 4), and set the sparse estimate to zero (Line 7). OMP introduces two new state variables:
the index set matrix (consisting of all the dictionary atoms selected so far as its columns,
initialised at Line 6 as an empty matrix) and the working set matrix (a list of the indices of
atoms selected so far, represented as a row vector, initialised to an empty row-vector at Line 5).
OMP may be terminated in the same way as MP, by comparing the magnitude of the residual
to a threshold based on our numerical precision – in this case we set the iteration limit p ← n

as this is the maximum number of iterations we may require. However, we may wish to limit
the number of dictionary atoms used in composing the sparse approximation instead of trying
to produce the most exact approximation. With OMP we can do this by decreasing the iteration
limit: OMP will always use the same number of sparse atoms as it carries out iterations, and
will always produce the best approximation possible, at every iteration, using the atoms selected
so far. In this algorithm we use the former method (Line 8).

The differences fromMP begin after correlation (Line 9) and selection (Line 10) operations.
The first new step is to store the index of the selected column in the index set (Line 11) and store
the column itself in the working set (Line 12). Rather than simply updating the sparse estimate
as in MP, we now calculate the optimal sparse estimate (that which gives the smallest residual)
possible using the dictionary atoms selected so far. Finding the optimal sparse estimate at each
iteration can be written as a LLSQ problem (Line 13). Instead of giving our sparse estimate in
the form of coefficients of A, here we use coefficients of Φ to simplify the algorithm. We call
this new variable a. Since Φ is simply a subset of the columns in A, a is just a re-ordering of

58

CHAPTER 3. PARALLELISED GREEDY PURSUITS

the elements of x. Equivalently, Φa = Ax.
We now use a to calculate a residual update by multiplying it by Φ to produce an estimate

of the samples and subtracting this from the actual samples (Line 14). Since we want the output
of the algorithm in terms of x rather than a, we need to do a conversion step at the end of the
algorithm (Line 17). This is where we use λ, since each element of λ tells us which column of
A the corresponding element of a refers to.

Algorithm 3.3 Orthogonal Matching Pursuit: Concise form
1: Input: b ∈ Rn . Samples (loaded from disk)
2: Input: A ∈ Rn×N . Dictionary (loaded from disk
3: Initialise: i← 0 . Initialise iteration counter
4: Initialise: r← b . Initialise residual
5: Initialise: Φ← On×0 . Initialise working set
6: Initialise: λ← O1×0 . Initialise index set
7: Initialise: x← 0N . Initialise sparse estimate
8: while ‖r‖2 ≤ ε do . Stopping criterion
9: c← AT r . Correlation
10: k ← argmaxkck . Selection
11: λ← [λ k] . Store index of selected atom
12: Φ← [ΦAk] . Add atom to working set
13: a← argmin

a
‖Φa− b‖2 . Orthogonalisation

14: r← b−Φa . Residual update
15: i← i+ 1 . Increment iteration counter
16: for j ← 1 to i do
17: xλj ← aj . Calculate sparse estimate

18: Output: x . Sparse estimate saved to disk

3.3.1 Implementing the LLSQ solver

The majority of compute time in OMP is taken by the LLSQ step,

a = argmin
a
‖Φa− b‖2 ,

where we calculate the optimal sparse decomposition using the dictionary atoms selected
so far in order to minimise the remaining residual. One option to compute the solution to
this problem is using Conjugate Gradients (CG) to iteratively approximate the Moore-Penrose
pseudo-inverse of the working set, denoted Φ†. The solution is then easily calculated from
a = Φ†b. Ordinarily, calculating the pseudo-inverse would be an inefficient way to solve this
problem, however, we only need an approximate solution and so can terminate the CG process

59

CHAPTER 3. PARALLELISED GREEDY PURSUITS

after only a few iterations. This appears an efficient technique in isolation, however it ignores
the fact that we are solving a very similar LLSQ problem in every iteration, differing only by the
addition of a column to Φ each time. The strategy I will use is that given by Tropp and Gilbert
[10]: maintaining a QR decomposition between each iteration, and using an MGS update in
each iteration to update the QR decomposition.

QR decomposition decomposes a matrix (for example Φ) into two matrices, Q and R. The
decomposition identifies the orthogonal components of the matrix and stores them in Q, which
has all orthonormal (orthogonal and normalised to unit magnitude) columns. R is an upper
triangular matrix containing the coefficients such that QR = Φ. MGS is a particular technique
for calculating the QR decomposition of a matrix in a numerically stable manner [91]. The
following algorithm is given by Björck [91] for applying MGS in a column-wise order:

The first column of Q is simply the first column of Φ after normalisation, with its magnitude
before normalisation stored in the first element of the first column of R. The next column of Q

is the second column of Φ after subtracting any portion of it parallel with the first column of Φ.
For each new column of Q we take the corresponding column of Φ and iterate over the existing
columns of Q, subtracting any portion of the former parallel with the latter.

Each column Qi is calculated from the corresponding column Φi as

Qi =
Φi −

∑i−1
j=1(ΦiQj)Qj∥∥∥Φi −

∑i−1
j=1(ΦiQj)Qj

∥∥∥
2

.

At the same time, the corresponding column Ri is calculated as QTΦi with the addition of
the element

Ri,i =

∥∥∥∥∥Φi −
i−1∑
j=1

(ΦiQj)Qj

∥∥∥∥∥
2

.

Since this algorithm considers each column of Φ in order, appending a column each to Q

and R, it is very well suited to use for solving the LLSQ problem in our OMP algorithm. At
each iteration, after adding the new column to Φ we can update Q and R by carrying out a
single iteration of MGS, avoiding any duplicate computation.

The algorithm for a single columnMGS update is shown in Algorithm 3.4, adapted from the
algorithm for MGS update after addition of a single column as given by Björck [91].

60

CHAPTER 3. PARALLELISED GREEDY PURSUITS

Algorithm 3.4 A single iteration of column-wise Modified Gram-Schmidt QR decomposition
1: Input: g ∈ Rn . Column added to Φ

2: Input: Q ∈ Rn×i . Orthogonalisation to update
3: r← QTg . Find correlations of new column with orthogonal matrix
4: h← g −Qr . Find portion of g orthogonal to Q

5: ri ← ‖h‖2 . Append normalisation factor to coefficients
6: q← ‖h‖−12 h . Normalised orthogonal vector
7: Output: q . Update vector appended to Q

8: Output: r . Update vector appended to R

The column-wise MGS update algorithm takes as inputs g = Ak (the new column added to
Φ, Line 1), andQ (the existing orthogonalisation ofΦ, Line 2). The algorithm begins by finding
the correlation between the new column and each existing column of Q (Line 3). This is done
by carrying out a matrix-vector product between the two, resulting in a vector of correlations,
denoted r. This vector will be appended to R as a new column. Next, we remove any portion
of g which correlates with a column of Q (Line 4). The vector r already holds the correlation
between g and each vector in Q. Calculating the inner product Qr multiplies each column of Q

by its correlation with g and then sums the vectors, resulting in a vector which is the projection
of g onto the basis Q. By subtracting this from g we are left with the remainder of g which
is perpendicular to the basis Q (and therefore orthogonal to every column already in Q) which
we call h. The `2 magnitude of h is calculated and stored in the final element of r (Line 5).
Finally, we normalise h to unit magnitude and call this new unit vector q (Line 6). The result
of the MGS update algorithm is the vectors q (Line 7) and r (Line 8), which are appended as
new columns to Q and R respectively. The new column we wish to append to R has one more
row than R, so we must first increase the height of R by one row (filling the new elements with
zero) before adding the new column.

Having used MGS to compute the QR decomposition of Φ, we return to solving the LLSQ
problem. Rewriting Φ using the QR decomposition, the optimisation objective becomes

‖QRa− b‖2 .

Left-multiplying the objective by QT gives

∥∥QTQRa−QTb
∥∥
2
.

The term QTQ has no effect on the position of the minimum of the objective function, so
we can find the solution to the LLSQ problem by solving the equation

Ra = QTb

for a. We first calculate the right hand side of the equation by carrying out the matrix-

61

CHAPTER 3. PARALLELISED GREEDY PURSUITS

vector product y = QTb. The properties of the QR decomposition tell us that R will be an
upper-triangular matrix. This means we can easily solve Ra = y for a using Back Substitution
(BS).

I will illustrate the algorithm for BS by working through an example with i = 3. Writing
out the vectors and matrices, the equation Ra = y becomesR1,1 R1,2 R1,3

0 R2,2 R2,3

0 0 R3,3


a1a2
a3

 =

y1y2
y3

 . (3.2)

This describes a set of simultaneous equations, however the structure of R makes solution
trivial. For this case the solution is given by:

a3 = y3R
−1
3,3,

a2 = (y2 −R2,3a3)R
−1
2,2,

a1 = (y1 −R1,2a2 −R1,3a3)R
−1
1,1.

For larger problems we add more steps, each taking into account the result of previous steps.
Algorithm 3.5 shows the BS algorithm we will use.

Algorithm 3.5 An implementation of Back Substitution for solving LLSQ problems
1: Input: R ∈ Ri×i . Upper-triangular matrix
2: Input: y ∈ Ri . Input vector
3: Initialise: a← 0i . Initialise result vector
4: for i← i to 1 do
5: ai ← (yi −Ria)R−1i,i . Calculate next element of result vector

6: Output: a

3.3.2 OMP with MGS updates and BS

Algorithm 3.6 shows the completed OMP algorithm, with the LLSQ step replaced by an MGS
update to the QR decomposition, followed by using BS to calculate the new sparse estimate.

Comparing the algorithm to the simplified implementation presented in Algorithm 3.3, the
same inputs are loaded from disk (Lines 1–2) and we still initialise the iteration counter, sparse
estimate, residual vector, and index set (Lines 3–6). The first difference is that we no longer
explicitly store a Φ matrix: Φ is implicitly stored in the form of Q and R, which we hold as
state, update in each iteration, and use to calculate the sparse estimate update. Q is initialised
(Line 7) as an empty matrix with n rows and 0 columns: in each iteration we increase its size

62

CHAPTER 3. PARALLELISED GREEDY PURSUITS

by 1 column, filling the new column with q. R is initialised (Line 8) to an empty matrix, with
no rows or columns.

Each iteration of the algorithm is broken into sections for clarity. The first section, Correlation
(Line 10), is the same as Lines 9–12 of Algorithm 3.3. Then, instead of updating the working
set Φ and solving the LLSQ problem, Section MGS Update (Line 15) contains the contents of
Algorithm 3.4 and Section Back Substitution (Line 24) contains the contents of Algorithm 3.5.

The final section is Residual Update (Line 30). Since we no longer store Φ explicitly,
we move the conversion from a to x from the end of the algorithm into the iteration, now
Lines 31–33. We also change the residual update step (Line 34) from using the product Φa to
Ax.

Several trade-off decisions were made when producing my implementation of OMP. The
algorithm calls for the matrices Q and R and the vector λ to each grow at every iteration. Q

grows by one column per iteration, R grows by a row and a column per iteration (padded with
0), and λ grows by one element each iteration. Actually changing the shape and size of these at
runtime is quite inefficient, often requiring reallocation of memory and copying large quantities
of data. To give a faster implementation, I use fixed size matrices for each of these, pre-allocated
at the beginning of the algorithm. Each time the matrices are used in the algorithm, we use
the subset of columns actually in use, creating a virtual matrix smaller than the actual matrix
existing in memory.

To pre-allocate these matrices we need to decide what size to allocate, or, equivalently, an
iteration limit for the algorithm. We know that OMP cannot take more iterations than n, the
number of rows in the dictionary (because Φ grows by one column in each iteration and the
largest possible Φ we could construct which has an unambiguous orthogonalisation is n × n).
In the absence of other information, we could set the iteration limit to n and know that this will
never be exceeded. However, if we know the sparsity level (the number of non-zero elements)
in the sparse signal, x, we can estimate a lower bound on the number of iterations. OMP
fills as many non-zero elements into x as it carries out iterations. Therefore, in the case of a
perfect reconstruction, our number of iterations equals the sparsity level S = ‖x‖0. If we can
estimate the sparsity level of our captured signal, we can use this to estimate an iteration limit
by including a safety factor, for example an iteration limit of 1.5S. The number of rows, n,
will always be greater than the sparsity level S, generally significantly so. Therefore, using the
estimated sparsity level to set an iteration limit will usually give a much lower limit than simply
using n. The trade-off in pre-allocating these matrices instead of letting them grow dynamically
is that memory requirements are greater: For a given size of main memory we can not solve as
big a problem as if we were sizing matrices dynamically. If the ability to grow the matrices is
retained despite pre-allocating a size, then the safety factor can be made considerably smaller
or removed entirely and the iteration limit exceeded if necessary. However, to simplify my
implementation I maintain a hard iteration limit with no capability to grow these matrices.

63

CHAPTER 3. PARALLELISED GREEDY PURSUITS

Algorithm 3.6 Orthogonal Matching Pursuit: using MGS updates
1: Input: b ∈ Rn . Sample vector (loaded from disk)
2: Input: A ∈ Rn×N . Dictionary (loaded from disk)
3: Initialise: i← 1 . Initialise iteration counter
4: Initialise: x← 0N . Initialise sparse estimate
5: Initialise: r← b . Initialise residual vector
6: Initialise: λ← O1×0 . Initialise index set
7: Initialise: Q← On×0 . Initialise orthogonalisation matrix
8: Initialise: R← O0×0 . Initialise orthogonalisation coefficients
9: while ‖r‖2 ≤ ε do . Stopping criterion
10: Section Correlation:
11: c← ATr . Correlation
12: k ← argmaxkck . Selection
13: λ← [λ k] . Add selection to index set
14:
15: SectionMGS update:
16: g← Ak . Column being added to Φ
17: r← QTg . Find correlations of new column with orthogonal matrix
18: h← g −Qr . Find portion of g orthogonal to Q
19: ri ← ‖h‖2 . Add normalisation factor to coefficients
20: q← ‖h‖−12 h . Normalise orthogonal vector
21: Q← [Q q] . Update orthogonal matrix
22: R← [R r] . Update orthogonalisation coefficients
23:
24: Section Back substitution:
25: y← QTb . Calculate input vector for back substitution
26: a← 0i . Initialise result vector for back substitution
27: for j ← i to 1 do
28: aj ← (yj −Rja)R−1j,j . Calculate next element of result vector
29:
30: Section Residual update:
31: x← 0N . Initialise sparse estimate
32: for j ← 1 to i do
33: xλj ← aj . Calculate each element of sparse estimate
34: r← b−Ax . Residual update
35:
36: i← i+ 1 . Increment iteration counter
37: Output: x . Sparse estimate saved to disk

64

CHAPTER 3. PARALLELISED GREEDY PURSUITS

3.4 Distributed Orthogonal Matching Pursuit

The objectives of DistOMP are to enable the user of a compute cluster to apply OMP to solve
large problems, and solve them quickly. DistOMP uses the techniques introduced by the OMP
algorithm detailed in the previous section, specifically, we use the MGS process to update a QR
decomposition at each iteration and then use BS to solve the LLSQ problem. DistOMP is based
on DistMP, with significant additions to handle the LLSQ solution and residual update of OMP.

The distributed algorithm is designed by first considering data storage. The three largest data
structures in DistOMP are A, Q, and R. The dictionary A will be distributed across workers
in the same manner as in DistMP. In the next section I describe how the matrices Q and R are
stored. This determines the structure of workers in DistOMP, which influences the distribution
of computation between the workers. Finally, I will present the algorithms for DistOMP along
with a line-by-line explanation.

3.4.1 Storage and organisation

This algorithm is split into two types of workers; the QA-worker and the R-worker, which store
different data and carry out different computation. They are named for the data they store (as
this also largely determines the computation they carry out): QA-workers together store Q and
A, and the R-worker stores R. Figure 3.3 shows the portions of A, Q, and R which are stored
on each worker in a simple problem example. In this section I will explain the reasoning behind
the use of this structure.

The motivation of DistMP was that to be able to solve large problems efficiently we need to
splitA acrossmultiple workers, both to gain access tomore storage and to distribute computation
across many processors. Q grows by one column at each iteration and so has a size of n rows
by i columns at the ith iteration. So that computation involving Q remains well-distributed
over workers even as it grows, we assign the columns of Q to workers in a round-robin fashion:
With W workers, at the ith iteration we assign the new column of Q, Qi, to worker w =

1 + (i − 1) mod W (referred to as the Q-holder for this iteration). This keeps the columns as
well-distributed as possible as Q grows. I shall show later how this distribution of Q’s columns
leads to simple and efficient parallelisation of the MGS and LLSQ processes.

In a similar manner to how we use the setWw to denote the set of columns of A held on the
worker w, we use the set Qw,i to indicate which columns of Q are held on each QA-worker w
at iteration i. Each Qw,i contains

Qw,i ←
{
w, w +W, w + 2W, . . . ,

⌊
i− w
W

⌋
W + w

}
,

The final matrix to store is R, the coefficients of the orthogonal QR decomposition. At each
iteration i, R has a size of i rows by i columns. OMP, and therefore DistOMP, never takes more
than n iterations to complete, so the size of R is bounded by n×n. In practical CS problems, n

65

CHAPTER 3. PARALLELISED GREEDY PURSUITS

is generally much smaller thanN , so R will generally be much smaller than A. For this reason,
in DistOMP R is not split up and is stored on a single worker. I will show later how this is also
a sensible choice from the point-of-view of distributing computation.

In DistMP, communications take place across the world communicator, which includes
all workers. Because DistOMP has two different types of worker, it now becomes desirable
to introduce some further organisation. The QA-workers are all added to an MPI group, a
type of communicator. QA-workers are numbered within this group, excluding the R-worker.
This means that group communication primitives (such as Broadcast and Reduce) can be run
across the group of QA-workers without including the R-worker. Communications between
QA-workers and the R-worker take place over the world communicator, which still includes all
workers. In the following algorithms I use W to mean the number of QA-workers and refer
to the QA-workers by their group numbering, i.e., 1 ≤ w ≤ W . There are actually W + 1

MPI workers in total including the R-worker, but for clarity the R-worker is referred to by name
instead of by number.

QA-worker 1 QA-worker 2 QA-worker 3

C
ol

um
n

1
of

 A
C

ol
um

n
2

of
 A

C
ol

um
n

3
of

 A
C

ol
um

n
4

of
 A

L (portion of A) L (portion of A) L (portion of A)

C
ol

um
n

3
of

 Q
C

ol
um

n
6

of
 Q

P (portion of Q) P (portion of Q) P (portion of Q)

C
ol

um
n

1
of

 Q
C

ol
um

n
4

of
 Q

C
ol

um
n

7
of

 Q

R-worker

R

C
ol

um
n

6
of

 R
C

ol
um

n
7

of
 R

C
ol

um
n

5
of

 R
C

ol
um

n
4

of
 R

C
ol

um
n

3
of

 R
C

ol
um

n
2

of
 R

C
ol

um
n

1
of

 R

C
ol

um
n

2
of

 Q
C

ol
um

n
5

of
 Q

C
ol

um
n

5
of

 A
C

ol
um

n
6

of
 A

C
ol

um
n

7
of

 A

C
ol

um
n

9
of

 A
C

ol
um

n
10

 o
f
A

C
ol

um
n

8
of

 A

Figure 3.3: The large matrices stored on the different workers in a DistOMP setup with 3 QA-
workers. The state shown is after the 7th iteration, so Q and R each have 7 columns. N = 10
and n is not shown on this diagram.

66

CHAPTER 3. PARALLELISED GREEDY PURSUITS

3.4.2 Distribution of computation

Each QA-worker stores L (a portion of the dictionary A) and P (a portion of the orthogonal
decomposition Q). The computation carried out by the QA-workers is correlation, selection,
MGS update, and residual update. Correlation and selection naturally distribute along with the
columns of A in the same manner as in DistMP. The majority of the computation in the MGS
update depends on the columns ofQ and this computation naturally distributes with the columns
of Q and so is distributed over the QA-workers. Finally, the residual update strategy used in
DistOMP depends on the columns of A and so is distributed along with these columns, over the
QA-workers. In order to allow for the use of a large dictionary (and therefore to allow Q to also
grow large) there may be a large number of QA-workers. I will also show in the next chapter that,
up to a point (which depends on problem size), increasing the number of QA-workers reduces
the time taken for the algorithm to complete.

The primary compute task of the R-worker is to carry out back-substitution in each iteration.
Unlike MGS, the algorithm for BS is not amenable to parallelisation: Calculating each step in
BS depends on knowledge of every element of a found so far. Since each step relies on the result
of the previous steps, BS is inherently sequential and the steps cannot easily be carried out in
parallel, or indeed with any overlap. Therefore, the fastest way to carry out BS is for the entirety
of R to reside on a single worker node which carries out BS by itself, with no parallelism.

In the next two sections I give the full algorithms for the QA-workers and R-worker, followed
by Figure 3.4 which shows the communications between the workers in a single iteration and a
summary of the computation carried out by each worker. I give a detailed explanation of the
algorithms cross-referenced to each line in the algorithms (e.g. Line 1) and the numbered steps
in Figure 3.4 (e.g. Step 1).

3.4.3 QA-worker algorithm

In this section I describe the QA-worker, which carries out a distributed MGS decomposition
in order to solve a LLSQ problem, as well as other processes including the residual update
calculation. The full algorithm for this worker is given in Algorithm 3.7.

The inputs to the QA-worker are the target signal b, and this worker’s portion of the
dictionary, L, both of which are loaded from disk before the algorithm begins (Lines 1–2). The
MPI environment supplies variables indicating the number of QA-workers in the cluster (W),
and w, the index of this worker (Lines 3–4).

Several variables are initialised for later use in the algorithm. r holds the current residual,
which is initialised to b (Line 5). Indices of selected columns will be held in λ, which starts
as an empty row-vector (Line 6). This worker’s portion of Q (one output of the MGS QR
decomposition) is held in the matrix P, which is initially an empty matrix (specifically, n rows
by no columns, Line 7)). Finally, i, the iteration counter, starts at 1 (Line 8).

The distributed correlation and selection algorithms of DistOMP are identical to those of

67

CHAPTER 3. PARALLELISED GREEDY PURSUITS

DistMP up to and including the broadcast of g (Lines 10–21, Steps 1–2), so I will not repeat my
explanation of those lines. The first difference is that we do not store or broadcast the selected
column’s correlation (known as γ in DistMP), as this is not used in DistOMP. The next difference
is that DistOMP requires us to remember the indices of the selected columns. Every QA-worker
holds a copy of the row-vector λ and after receiving the broadcast ofK (the result of the global
argmax operation, Line 23) they append K to λ (Line 25).

The next step is to begin the distributed MGS decomposition update, taking into account
the addition of g to the working set. The first step in the MGS decomposition update is to take
g and make it perpendicular to the basis Q. This is done by taking each column Qj in Q and
subtracting from g any portion correlating with Qj by doing h← g −QT

j g Qj.
Calculating the correlations QT

j g can be done in parallel. This operation is especially suited
to parallelisation because the columns of Q are spread over all of our workers, so every QA-
worker w can calculate the correlation of P = QWw , its subset of Q, with g at the same time
(Line 28). Next, rather than individually subtracting each PT

j g Pj from g one at a time, we
can find the sum of all of these vectors in a distributed manner and perform the subtraction
in one operation. The matrix-vector product t ← Ph (Line 29, Step 3) computes the sum
of contributions on a particular node. Since only one worker (On Line 30 we check if we are
the Q-holder for this iteration) needs to know the end result, each worker w sends its t to the
Q-holder (Line 40, Step 4), which receives t (Line 34) and performs the subtraction (Line 35).

The QA-holder for this iteration then carries out a few more steps to update its portion
of Q: It normalises g (Line 37) and sends the normalisation factor to the R-worker (Step 5,
sent on Line 36, received at Algorithm 3.8 Line 5), then appends the remaining vector to P

(Line 38). The final step in the MGS update, every QA-worker sends its correlations vector h

to the R-worker (Step 6, sent on Line 42, received at Algorithm 3.8 Line 9), where these will be
combined and put in the latest column of R.

After the MGS update, we need to calculate the inner product y ← QTb in preparation for
BS. Since every worker holds a copy of b as well as a subset of columns of Q, we can do this
as a distributed dot product. Each QA-worker w calculates the dot product z ← Pb (Line 45,
Step 7) and sends the result to the R-worker (Step 8, sent on Line 46, received at Algorithm 3.8
Line 16), which collects the results into y and then carries out back substitution (Step 9, I will
detail the R-worker’s algorithm later).

After the R-worker has carried out BS onR and y it sends the result, a, back to all of the QA-
workers (Step 10, Algorithm 3.8 Line 25). Each QA-worker receives a (Line 47) and converts
a to x, that is, it converts the vector of coefficients from being indexed in terms of Φ to being
indexed in terms of A. This is done using λ, in the same way as with the single-threaded OMP
algorithm: Each element of λ tells us to which element of x we should move the corresponding
element of a (Lines 51–52).

The QA-workers carry out the residual update step by means of a distributed dot product.
Overall the aim is to carry out r ← b − Ax. Every worker holds a copy of b and x, but A

68

CHAPTER 3. PARALLELISED GREEDY PURSUITS

Algorithm 3.7 Distributed Orthogonal Matching Pursuit: QA Worker
1: Input: b ∈ Rn . Samples (loaded from disk)
2: Input: L = AWw . Local dictionary (loaded from disk)
3: Input: W ∈ Z,W ≥ 1 . Number of QA-workers (from MPI)
4: Input: w ∈ Z, 1 ≤ w ≤ W . This QA-worker’s index (from MPI)
5: Initialise: r← b . Initialise residual
6: Initialise: λ← O1×0 . Initialise index set
7: Initialise: P← On×0 . Initialise local component of orthogonalised matrix
8: Initialise: i← 1 . Initialise iteration counter
9: while ‖r‖2 ≥ ε do . Stopping criterion
10: Section Correlation and selection:
11: c← LT r . Correlation
12: k ← argmaxk|ck| . Local selection
13: Reduce v ← argmax

w
|ck| . Find which worker holds the highest correlation

14: if v = w then . If we hold the selected worker:
15: if w ≤ N mod W then . Convert local index to global
16: K ← (w − 1)

⌈
N
W

⌉
+ k

17: else
18: K ← (w − 1)

⌊
N
W

⌋
+N mod W + k

19: g← LK . Store the selected column
20: Broadcast K . Broadcast global index
21: Broadcast g . Broadcast selected column
22: else . Otherwise:
23: Receive Broadcast K . Receive global index
24: Receive Broadcast g . Receive selected column
25: λ← [λK] . Update index set
26:
27: SectionModified Gram-Schmidt decomposition:
28: h← PTg . Correlate new column with local orthogonal matrix
29: t← Ph . Sum contributions of local orthogonal matrix
30: if w = 1 + (i− 1) mod W then . If we are the Q-holder
31: g← g − t . Subtract our P’s contributions
32: for v ← 1 toW do
33: if v 6= w then . For every other worker:
34: Receive t from QA-worker v . Receive its contributions to G
35: g← g − t . And subtract them from g

36: Send ‖g‖2 to R-worker . Send the normalisation factor to the R-worker
37: g← ‖g‖−12 g . Normalise orthogonal vector
38: P← [P g] . Update orthogonal matrix
39: else . If we aren’t the Q-holder
40: Send t to QA-worker 1 + (i− 1) mod W
41: . Send our contributions vector to the Q-holder
42: Send h to R-worker . Send our correlations vector to the R-worker
43:

69

CHAPTER 3. PARALLELISED GREEDY PURSUITS

44: Section Preparation for back substitution:
45: z← PTb . Calculate input vector for back substitution
46: Send z to R-worker . Send input vector to R-worker
47: Receive a from R-worker . Receive result from back-substitution
48:
49: Section Residual update:
50: for j ← 1 to i do
51: α← λj . Convert Φ index to A index
52: xα ← aj . Calculate sparse estimate
53: d← LxW .Multiply sparse estimate by local portion of dictionary
54: Reduce bi ←

∑
d . Sum result over all nodes

55: r← b− bi . Residual update
56:
57: if w = 1 then . If we are the root Q-worker:
58: Send ‖r‖2 to R-worker . Send the residual’s magnitude to the R-worker
59: i← i+ 1 . Increment iteration counter
60: Output: x . Sparse estimate saved to disk

is distributed over them. Each worker w calculates d ← LxW (Line 53, Step 11), where xW

is the elements of x which correspond to the columns of A held by a particular worker. To
calculate our current signal estimate, we can then sum d over all the QA-workers. Since all
workers will need the updated residual, we perform a global reduce operation of

∑
d with all

workers receiving the result (Line 54, Step 12). Finally, each worker can subtract the result from
b yielding the updated residual vector r (Step 13, Line 55).

To exit cleanly everyworkermust terminate, which is why the residualmagnitude is evaluated
on every worker. Since the R-worker does not know the residual it is unable to calculate its
magnitude, so the root QA-worker sends the magnitude of the residual to the R-worker (Step 14,
sent on Line 58, received at Algorithm 3.8 Line 5) so the R-worker can evaluate the stopping
criterion. Then, every worker determines when to terminate the algorithm by comparing the
magnitude of the residual, ‖r‖2, to the target precision ε (Step 15, Line 9). An iteration limit
may also be imposed in order to limit the number of non-zero elements in the sparse estimate
output, or in order to ensure the algorithm still terminates in the case of significant numerical
inaccuracy or ill-posed problem. If any of the stopping criteria are met, the sparse estimate is
saved to disk as output by the root worker (Line 60). Otherwise, the final step in the algorithm
is to increment the iteration counter (Line 59).

3.4.4 R-worker algorithm

The algorithm for the R-worker is shown in Algorithm 3.8. In summary, it receives from QA-
workers the data needed to construct the R matrix, stores the matrix in memory, and carries out
the back-substitution algorithm before sending the result back to the QA-workers.

All problem-specific data is received from the QA-workers: the R-worker does not load any

70

CHAPTER 3. PARALLELISED GREEDY PURSUITS

inputs from disk. It does, however, know the total number of workers in the problem (from the
MPI environment, Line 1), because it needs to know how many QA-workers to communicate
with. Before beginning, the iteration counter is initialised to 1 (Line 2) and R is initialised to
an empty matrix with no rows or columns (Line 3).

During the MGS update step, the first contribution towards R sent from the QA-workers
to the R-worker is the magnitude of the new column of Q, prior to normalisation (Step 5,
received on Line 5, sent at Algorithm 3.7 Line 36). The R-worker puts the magnitude into
the bottom-right element, Ri,i (Line 7). Next, the R-worker receives from each QA-worker the
correlations between the new column being added and that QA-worker’s columns of Q (Step 6,
received on Line 9, sent at Algorithm 3.7 Line 42). As the columns of Q are striped across the
QA-workers, the coefficients received from each QA-worker need to be re-ordered and inserted
into the appropriate parts of the new column of R. The set Qw,i, defined earlier, indicates the
column indices of Q which are held on the QA-worker w at iteration i, thus, it tells us where to
insert the received coefficients. We iterate over each element of the set and store the element of
h in the appropriate element of R as indicated by Qw,i (Line 12).

After MGS and updatingR, the next step is to prepare for back substitution. The input vector
for back substitution is received in pieces from all the QA-workers, and the R-worker collates the
portions into a single vector. This vector is first initialised to zeros (Line 14). Then, the vector
portion is received from each QA-worker (Step 8, received on Line 16, sent at Algorithm 3.7
Line 46) and element-by-element stored in the appropriate location in y (Line 19).

With R updated and this iteration’s y pieced together, the R-worker can carry out BS in the
same way as the single-threaded OMP algorithm given previously (Step 9). The result of BS
will be the vector of coefficients, a. This is initialised to zeros (Line 21) and then each element is
calculated in order (Line 23). Upon completion, the result is sent to every QA-worker (Step 10,
Line 25, received at Algorithm 3.7 Line 47) so they can use it to calculate x and then carry out
the residual update.

As with the QA-workers, in order to terminate the program cleanly, every worker must
terminate individually. The stopping criterion is when the magnitude of the residual, ‖r‖2,
becomes less than the desired precision ε. After finishing the distributed residual update
algorithm, the first QA worker (w = 1) sends the magnitude of the residual (‖r‖2) back to the
R-worker (Step 14, received on Line 5, sent at Algorithm 3.8 Line 58). The R-worker compares
this to the stopping criterion epsilon to determine whether to terminate the worker after this
iteration finishes (Line 29, Step 15).

71

CHAPTER 3. PARALLELISED GREEDY PURSUITS

Algorithm 3.8 Distributed Orthogonal Matching Pursuit: R-worker
1: Input: W ∈ Z,W ≥ 1 . Number of QA-workers (from MPI)
2: Initialise: i← 1 . Initialise iteration counter
3: Initialise: R← O0×0 . Initialise orthogonalisation coefficients
4: repeat
5: Receive ‖g‖2 from QA-worker 1 + (i− 1) mod W
6: . Receive normalisation factor from Q-holder
7: Ri,i ← ‖g‖2 . Store normalisation factor in R
8: for v ← 1 toW do . For each QA-worker:
9: Receive h from QA-worker v . Receive its contributions vector
10: j ← 1
11: for β in Qv,i do
12: Rβ,i ← hj . Store each element in R
13: j ← j + 1

14: y← 0n . Initialise back substitution input vector
15: for v ← 1 toW do . For each QA-worker:
16: Receive z from QA-worker v . Receive partial input vector for back-substitution
17: j ← 1
18: for β in Qv,i do
19: yβ ← zj . Integrate it into input vector for back-substitution
20: j ← j + 1

21: a← 0i . Initialise result vector for back-substitution
22: for j ← i to 1 do
23: aj ← yj −Rja . Calculate next element of result vector
24: for v ← 1 toW do
25: Send a to QA-worker v . Send result vector to every QA-worker
26: Receive ‖r‖2 from QA-worker 1
27: . Receive residual’s magnitude from root QA-worker
28: i← i+ 1 . Increment iteration counter
29: until ‖r‖2 ≤ ε . Stopping criterion

72

CHAPTER 3. PARALLELISED GREEDY PURSUITS

QA worker 1
(root QA-worker)

QA worker 2
(Q-holder) QA worker 3 R worker

Correlation and
local selection

Reduce: global selection

Sum local
contributions

Sum local
contributions

Sum local
contributions

Send contributions to Q-holder

Send normalisation factor to R-worker

Send correlations to R-worker

Calculate BS
input vector

Calculate BS
input vector

Calculate BS
input vector

Send BS input vector to R-worker

Back
substitutionSend results of BS to QA-workers

Calculate portion
of residual update

Reduce: sum residual update

Residual update Residual update Residual update

Send residual magnitude to R-worker

Correlation and
local selection

Correlation and
local selection

Evaluate stopping
criterion

Evaluate stopping
criterion

Evaluate stopping
criterion

Evaluate stopping
criterion

Calculate portion
of residual update

Calculate portion
of residual update

Step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 3.4: The communications between workers in a DistOMP setup with 3 QA-workers. In
this iteration the second QA-worker is the Q-holder.

73

CHAPTER 3. PARALLELISED GREEDY PURSUITS

3.5 Chapter summary

In this chapter I introduced two novel algorithms I have developed, DistMP and DistOMP. In
each case I first gave a detailed description of the pre-existing single threaded algorithm, MP and
OMP respectively. With DistMP I showed how a data-parallel approach would allow solution
of much larger problems than were previously possible, as well as allowing compute parallelism
giving the possibility for speed-up asmoreworkers are added to the problem. For DistOMP I first
detailed a particular strategy for implementing OMP usingMGS updates to a QR decomposition.
I then used a data-parallel structure similar to DistMP but also including distribution of the QR
decomposition and associated computation. Finally, I detailed the algorithms for the two types
of workers, QA-workers and R-workers, and the communications involved between the workers.

Having explained the design and structure of DistMP and DistOMP and detailed the al-
gorithms, the next step is to present an implementation of the algorithms which may be used to
evaluate their performance. In the next chapter I will show how I developed implementations
of all of these algorithms and used a large compute cluster to characterise their performance,
comparing DistMP and DistOMP against MP and OMP respectively, and investigating how the
time taken to solve problems depends on the number of workers assigned to each algorithm.

74

Chapter 4

Experimental results and analysis

In this chapter I present experimental results evaluating my parallel algorithms against a single-
threaded implementation and a basic multithreaded implementation. I first describe the Darwin
compute cluster which was used to run these experiments. I give details of the implementations,
the language, libraries, and tools used. I then describe some decisions made when implementing
the algorithms, in particular with respect to the parallel architecture. I explain how I will
interpret the results and give an example of the raw data collected. Presenting the results, I
first compare MP with DistMP and characterise the performance of each, looking at time taken
to solve problems of various shapes and sizes using different numbers of threads with MP
and different numbers of workers with DistMP. After discussing these results, I present the
same characterisation and comparison between OMP and DistOMP. Finally, I demonstrate how
DistOMP can be used to solve a problem with a 429GB equivalent sampling matrix by utilising
a large number of workers.

4.1 The Darwin cluster

The experiments described in this chapter were executed on the Darwin cluster, a general
purpose compute cluster run by the University of Cambridge’s High Performance Computing
Service (HPCS). At the time when these experiments were run (this cluster has since been
decommissioned and replaced), Darwin consisted of 600 nodes, each with 16 Intel “Sandy
Bridge” cores and 64GB of RAM, for a total of 9600 cores and 38.4TB of RAM. Within each
node the cores were split over two processor sockets, so that each socket had 8 cores and 32GB
of RAM. Each socket could access the RAM attached to the other socket but with increased
latency and reduced bandwidth. This means each node was overall a NUMA architecture, with
each socket and its directly attached RAM being a UMA domain. All nodes were connected to a
full bisectional bandwidth interconnect network, with dual Infinniband links giving a bandwidth
of 40Gb/s to each node. 433TB of storage was provided by several Lustre distributed filesystems
connected to the Infinniband network.

75

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

4.2 Implementing the algorithms

In this section I give the details of my implementation of the algorithms described in the previous
chapter and the environment in which experiments were run. I include details of the languages
and libraries used as well as decisions taken when implementing the algorithms. By using the
guidance in this section to implement the algorithms and running experiments in a comparable
environment, readers should be able to reproduce the results presented.

Implementations of MP, OMP, DistMP, and DistOMP were developed using the Rust Lan-
guage [92]. Rust was used because it should give an execution speed similar to C while provid-
ing a more modern and user-friendly environment and enhanced compile-time error checking,
which accelerates development due to reduced debugging. OpenBLAS [93] is used via the
Stainless Steel bindings [94] for basic linear algebra operations in all four algorithms. For
the multithreaded baseline, the MP and OMP algorithms use OpenBLAS’s built-in support for
multithreading, which is based on OpenMP [95]. OpenBLAS multithreading uses a worker
pool architecture: when the library is initialised worker threads are started for each processor
core available and remain idle until jobs are submitted by a BLAS operation. Each BLAS
operation uses a heuristic based on vector and matrix size to estimate whether parallelisation
is worthwhile or whether overheads will dominate speed-up. If parallelisation is used then the
matrices and vectors are partitioned using data decomposition and tasks are assigned to the
worker pool. After all tasks finish a gather operation may be used to combine the output from
each worker. The parallel algorithms, DistMP and DistOMP, use OpenMPI via the rsmpi [96]
bindings for message passing communications between compute workers. rsmpi simply maps
types and function calls between Rust and C and so should perform identically to the OpenMPI
C API.

The heterogeneous structure of a high-performance compute cluster can be viewed in a
simplified manner where each processor core is considered an UMA domain along with an
area of memory dedicated to it. An MPI worker is run on each core. Message passing is used
for communications between any two workers, whether they reside within the same processor
socket or on a different node entirely. In theory, this should be less efficient than an algorithm
architected for the NUMA structure of the cluster, however a flat organisation is much simpler
to design and implement. This is the strategy used for the algorithms shown previously and the
implementations discussed in this chapter.

In theory, OMP can be run without any iteration limit or guidance as to how many iterations
it may expect to run for. The only stopping criterion is the remaining magnitude of the residual.
The index set and working set (or, in the QR decomposition implementation, the index set,
Q, and R) start off with zero size and grow in each iteration. This was implicitly the case
in the algorithms given in the previous chapter. However, this sort of implementation poses
some challenges: Having these variables grow necessitates dynamic memory allocation within
the course of the algorithm. This introduces the possibility for slow-downs due to memory

76

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

reallocation, or even crashes if memory allocation fails. The algorithm can be much simpler
and faster if these matrices are pre-allocated with a fixed size: The algorithm keeps track of the
effective size of variables and ignores the unused portion. Instead of reallocating matrices to
increase their size, the algorithm simply increases the variable describing the effective size of
the matrix. The BLAS API is defined assuming all vectors and matrices are allocated within a
larger buffer: For each operation, BLAS accepts parameters describing the start position of the
vector or matrix, its shape, and the gap between elements or rows (referred to as stride). Since
all vector and matrix operations in our implementations are carried out using BLAS, the use
of pre-allocated oversized buffers and dynamic resizing of the contained matrices and vectors
incurs no performance overhead or increase in complexity.

In order to pre-allocate buffers for these matrices we need to know the maximum size they
could grow to, otherwise the algorithm may be forced to terminate prematurely if the matrix
turns out to not have been allocated large enough for the problem being solved. In OMP,
knowing the maximum number of iterations determines the maximum size that the index set,
working set, Q, and R can grow to. In addition to allowing pre-allocation of the matrices,
imposing an iteration limit also ensures the algorithm will always terminate even in the event of
numerical error or instability causing the algorithm to not converge. Conveniently, we can place
an upper bound on the iteration limit because we know that OMP, with a dictionary of n rows
by N columns, will find a solution in n iterations or less. If we have more information about
the problem, in particular the expected sparsity level of the solution, we may be able to reduce
this bound in order to reduce the surplus memory requirements of the algorithm and reduce
the algorithm’s execution time in the case of non-convergence. In our case, since the problems
are synthetic, we know precisely the sparsity level of the solution and can set an iteration limit
based on this. In realistic applications we are likely to be able to estimate the sparsity level in
the solution and set an iteration limit based on this. In some scenarios we may be able to fully
sample the signal once or occasionally, calculate its sparsity, and assume its sparsity level is
unlikely to change significantly over time. Alternatively, if online reconstruction and feedback
between reconstructor and sampler are possible, a closed-loop adaptive system as described
by Chen and Wassell [97] could be used. Lopes [98][99] describes techniques where various
proxies for sparsity can be estimated from a small number of linear samples and used to derive
the number of measurements needed for guaranteed reconstruction.

Next, we turn our attention to the matrix of orthogonal coefficients, R. Due to the properties
of the QR decomposition, we know that R will always be upper triangular. For simplicity, my
implementation stores the full square matrix. Since we know that just under half of the matrix
will always be zero, the memory used for storingR could be reduced by just under half by using a
more sophisticated storage schemewhich took into account the structure of the matrix. However,
such storage schemes are more complicated and may be slower. In the example problems solved
in this chapter, the memory space taken by R is not a significant limitation, and for simplicity
the R-worker was allocated a full node anyway, meaning there would be no benefit to reducing

77

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

its memory usage. The memory usage of R would be more significant in a problem requiring
many iterations to solve, or when using a very large number of workers (so that L and P are
smaller in comparison to R).

4.3 Methodology

We wish to discover how the time taken for DistMP and DistOMP to solve problems depends on
the number of workers. We also wish to determine how this dependence varies with problem size
(specifically, the number of dictionary columns) and sparsity (the number of non-zero elements in
the sparse vector). As a baseline, wewill compare against simplemultithreaded implementations
of MP and OMP using different numbers of threads. In summary, the independent variables
are algorithm (MP, OMP, DistMP, DistOMP), number of workers or threads, problem size, and
problem sparsity. In all cases our dependant variable is wall-time elapsed in solving the problem.

Comparing all possible combinations of these independent variables would require an im-
practical number of experiments and produce a volume of results which would be difficult to
interpret. Furthermore, we wish to trial DistMP and DistOMP with a large numbers of workers
spread over multiple compute nodes, but the multithreaded MP and OMP algorithms are limited
to the 16 threads available on a single node. To resolve this I selected a subset of independent
variable combinations to give a reasonable number of experiments, explore the problem space
and demonstrate the relationships between the variables.

I define three sizes of problem: large, medium, and small, corresponding to N = 524288,
N = 327680, and N = 131072 respectively. I also define two sparsity levels: sparse and
dense, corresponding to S = 164 and S = 328 respectively. I established in Section 2.2.3
that spark(A) > 2S is a necessary condition for guaranteed reconstruction, which requires that
n > 2S. This condition is not sufficient for reconstruction, partly because perfect incoherence
is not guaranteed with IID random matrices, and partly because reconstruction algorithms are
non-ideal. Generally n ≥ CS log(N) samples are required where C is a constant depending
on the reconstruction algorithm and type of sample matrix [100]. Empirical results presented
by Tropp and Gilbert [10] demonstrate reconstruction with high probability using OMP when
n ≥ 1.5S log(N) which was used to set the number of samples taken as n = 20S, or n = 3277

and n = 6554 respectively for the sparse and dense problems.
To establish a baseline, I trial the multithreaded implementations of MP and OMP with a

large, sparse, problem and every number of threads between 1 and 15 inclusive. Although 16
threads are available, one is left idle for system processes in order to reduce the variability in
results, hence the maximum of 15 threads.

To explore the effect that number of workers has on the solution time of DistMP andDistOMP
I ran trials with 1, 15, 30, 60, 90, 120, 150, 180, 210 and 240 workers running on 1, 1, 2, 4,
6, 8, 10, 12, 14, and 16 nodes respectively. For each number of workers I ran trials with every
combination of algorithm (DistMP or DistOMP), size (large, medium or small) and sparsity

78

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

Section 4.5.1: Multithreaded MP
Threads Algorithm N n S Repetitions
1–15 MP 524,288 3,277 164 10
Section 4.5.2: DistMP
Workers Algorithm N n S Repetitions
1–240 DistMP 131,072 3,277 164 10
1–240 DistMP 131,072 6,554 328 10
1–240 DistMP 327,680 3,277 164 10
1–240 DistMP 327,680 6,554 328 10
1–240 DistMP 524,288 3,277 164 10
1–240 DistMP 524,288 6,554 328 10
Section 4.5.3: Multithreaded OMP
Threads Algorithm N n S Repetitions
1–15 OMP 524,288 3,277 164 10
Section 4.5.4: DistOMP
Workers Algorithm N n S Repetitions
1–240 DistOMP 131,072 3,277 164 10
1–240 DistOMP 131,072 6,554 328 10
1–240 DistOMP 327,680 3,277 164 10
1–240 DistOMP 327,680 6,554 328 10
1–240 DistOMP 524,288 3,277 164 10
1–240 DistOMP 524,288 6,554 328 10
Section 4.5.5: Large demonstration problem
Workers Algorithm N n S Repetitions
240 DistOMP 2,400,000 24,000 2,400 10

Table 4.1: Summary of experiments

(sparse or dense).
Significant variability was observed in the result between runs of the same trial, as illustrated

in the next section. To mitigate the variability and uncover the underlying trends, 10 trials were
run for every scenario described previously.

For ease of comparison, all trials with the same size and sparsity, regardless of algorithm,
solve exactly the same problem. For repeatability, the problems are generated using a Pseudo-
Random Number Generator (PRNG) initialised with a fixed seed. After seeding the PRNG,
the sparse signal is generated: A vector of N zeroes is created. S of its elements are selected
pseudo-randomly and set to a value of 1. Next, the dictionary is generated, by filling an n-row
byN -column matrix with pseudo-random Gaussian-distributed IID values. Finally, the samples
vector is generated by multiplying the sparse vector by the dictionary. The dictionary, sparse
vector, and samples vector are then saved to disk. This process is repeated for each distinct
combination of N , n and S.

For each trial, the appropriate problem data is loaded from disk, the specified algorithm is
used to solve the problem, and the result is compared to the sparse vector used to generate the
problem. Two times are recorded: the total time, which includes the time taken to load the

79

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

problem from disk and compare the solution, and the solution time, which only includes the
time taken running the solver algorithm. The details of the trial along with these two times is
then saved to disk for later collation and processing. A summary of experiments is shown in
Table 4.1

4.4 Interpretation of results

Since a computer (in the absence of a true random number generator) is a deterministic system,
in an ideal world a program might always take the same amount of time to execute if performing
the same operations on the same data. Indeed, for code running on a simple microcontroller with
no operating system or interruptions this is the case; one can count the number of cycles required
and divide by the clock frequency to find the execution time. However, this is not the case on
the complicated multi-user operating systems generally used on high performance clusters (e.g.,
GNU/Linux in our case). Even though a cluster node may be nominally dedicated to running
a particular program, system and house-keeping processes continue to run in the background.
These awaken at apparently random times and cause a brief interruption, increasing the execution
time of our program. A similar effect occurs from the fact that our experiments using MPI
communicate over a network shared with many other users running other experiments. Load on
the interconnect network will cause a slow-down in a similar way to the unexpected awakening
of background processes.

All of these unexpected events are of no interest when attempting to compare the performance
of algorithms. Ideally, all trials would be run on systems with no background or housekeeping
processes and using an interconnect network devoid of other users or traffic. While this is not
an option due to its impracticality, we can attempt to determine this ideal run-time by running
multiple experiments. Consider the execution time in a particular trial as consisting of a constant
(the ideal run-time without interruptions) plus a random variable representing time spent dealing
with interruptions or waitingwhile the network is busy. The random variable takes values greater
than or equal to zero. We observe that the minimum value of the random variable will approach
zero as we increase the number of trials. Equivalently, if we take the minimum execution time
over a number of trials this will approach the actual execution time of our program.

As an example of the distribution of execution time, Figure 4.1 shows the solution times
for a range of trials using DistOMP to solve a large, sparse problem using various numbers of
workers. In every case the results are clustered around a minimum execution time with a few
outliers taking significantly longer. This data shows how using the minimum execution time
over 10 runs minimises the effect of unexpected slowdowns and gives consistent results. In
other words, if another 10 trials of each scenario were run, it appears unlikely that the minimum
execution time of each scenario would be significantly affected.

Wall-time, in addition to being the actual result we record, is a useful metric because of
its real-world implications: The execution wall-time tells us how long we have to wait for

80

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

1 2 3 4 5 6 7 8 9 10

20

25

30

35

W
al

l-
tim

e
/s

ec
on

ds

(a) w = 59

1 2 3 4 5 6 7 8 9 10

15.0

15.5

(b) w = 89

1 2 3 4 5 6 7 8 9 10
12.5

15.0

17.5

20.0

W
al

l-
tim

e
/s

ec
on

ds

(c) w = 119

1 2 3 4 5 6 7 8 9 10
12

13

14

(d) w = 149

1 2 3 4 5 6 7 8 9 10
Run number

12.5

13.0

13.5

W
al

l-
tim

e
/s

ec
on

ds

(e) w = 179

1 2 3 4 5 6 7 8 9 10
Run number

14

16

(f) w = 209

Figure 4.1: A set of scatter plots demonstrating variability and distribution of execution time.
A different number of workers was used for the trials in each plot. Within each plot, the same
number of workers solved the same problem 10 times, yielding different execution times. In
each case the runs are sorted by ascending solution time.

81

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

results after inputting data, or whether the solver could keep up with real-time data being fed
to it. However, while more abstract, the metrics of speed-up and efficiency (introduced in
Section 2.4.1) are useful for judging the performance of a parallel algorithm and comparing it to
others. Therefore, I will present results for all three metrics: wall-time, to show the performance
improvement in real-world terms; speed-up, to show more precisely how much performance has
improved; and efficiency, to show how well the parallel algorithm utilises the available hardware
and the impact of overheads and sequential sections.

In general, most parallel algorithms (apart from embarrassingly parallel problems) can only
utilise a certain number of parallel workers to gain additional speed-up. Beyond a point the
wall-time stops decreasing and starts to increase again, and speed-up reduces from its peak at
the optimal number of workers. This is because the time spent in parallelisable portions of the
algorithm decreases with additional workers and so total elapsed time comes to be dominated
by the serial portions which do not execute faster with the addition of workers. Furthermore,
increasing numbers of compute workers tends to increase the overhead due to communication,
which is why too many compute workers can actually harm performance compared to an optimal
number. Knowing the maximum number of compute workers which can be harnessed without
negatively affecting wall-time is a useful metric for characterising a parallel algorithm. It
depends on the level of parallelisability of the problem along with the level of communication
and coordination overheads.

4.5 Results

4.5.1 Multithreaded MP

To establish an initial baseline, my first experiments tested the simpleMP algorithm using BLAS
and OpenMP for multithreading. The implementation was tested using different numbers of
threads on a single worker node. The nodes have 16 cores available, but a maximum of only 15

threads were used for testing in order to leave one core spare for background and housekeeping
tasks. The results of these experiments are shown in Figure 4.2.

As previously motivated, each point on these charts represents the minimum wall-time over
10 experiments in order tominimise the effect of latency caused by background and housekeeping
tasks. The plot of wall-time shows how introducing multithreading on a 16-core machine can
reduce wall-time from 782 seconds to 188 seconds with very little effort on the part of the
programmer. Extra speed-up is modest when introducing more than 6 threads, with the speed-
up improving from 3.1 to a peak of 4.1 when moving from 6 threads to 13. The efficiency plot
backs up the previous plots, showing how overheads come to dominate the compute resources as
more threads are added. With 2 threads the efficiency is 91%, but at 15 threads the efficiency is
only 23%, meaning almost 5 times more compute resource is being expended compared to using
only a single thread. In summary, the addition of more threads is a trade-off between speed-up

82

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

2 4 6 8 10 12 14
Number of threads

2×102

3×102

4×102

6×102

W
al

l-
tim

e
/s

ec
on

ds

(a) Wall-time against number of threads

2 4 6 8 10 12 14
Number of threads

1

2

3

4

Sp
ee

d-
up

(b) Speed-up against number of threads

2 4 6 8 10 12 14
Number of threads

0.00

0.25

0.50

0.75

E
ffi

ci
en

cy

(c) Efficiency against number of threads

Figure 4.2: Matching Pursuit with multi-threading (N = 524288, n = 3277, S = 164)

83

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

and efficiency, up to the point of maximum speed-up. Where efficiency is an important factor,
for example in energy constrained portable computing, it may be desirable to use fewer threads
at the expense of speed-up.

Up to 11 threads the wall-time and speed-up plots look as one might expect, with overheads
and inefficiency causing speed-up to reach a peak and then begin to decline, with wall-time
reaching a minimum and then slowly increasing after this point. The actual results show an
unexpected sharp wall-time minimum at 13 threads, with 14 and 15 threads also unexpectedly
improving upon the earlier minimum at 9 threads. The reason for this deviation is unknown,
but could plausibly be caused by changes in the level of background activity taking place on
the compute node used for experiments. Because of this unexpected trend in the results, it is
difficult to say with certainty what the optimal number of threads is in this scenario. Since these
results exist as a base-line comparison point and are not central to my experimental work, the
cause was not further investigated.

4.5.2 DistMP

In order to characterise the performance of DistMP, I ran a number of experiments solving
problems of different shapes and sizes using different numbers of workers, each time recording
the elapsed wall-time in solving the problem. To investigate the effect of problem size and
sparsity, I used three different problem sizes and two different sparsity levels. To compare the
utilisation of multiple compute cores on a single node against MP, I carried out experiments
with DistMP using a single worker and also using 15 workers on a single compute node. To
explore the scaling effect of additional workers (and in order to find the optimum number of
workers giving the greatest speed-up) I ran experiments using 15 workers-per-node on 2, 4, 6,
8, 10, 12, 14, and 16 nodes.

Figure 4.3 shows the wall-time elapsed across every combination of problem size, sparsity,
and number of workers, allowing the effect of each independent variable to be compared. In
the same manner, Figures 4.4 and 4.5 show the speed-up and efficiency respectively for the
same variables. The speed-up and efficiency plots exclude the data-points with only one worker
because speed-up and efficiency are calculated using this point as a baseline so its inclusion in
a plot of the calculated value would be meaningless. We first consider the relationship between
number of workers and wall-time. The clear trend from the plot of wall-time is that increasing
the number of workers generally reduces wall-time. Looking closely, we see that this trend only
holds up to some optimal number of workers for each scenario, beyond which the wall-time
increases. This effect is more clear on the speed-up plots where every scenario has a clear peak
in speed-up at the optimum number of workers, beyond which the speed-up reduces again. Next,
we observe that in every case, increasing the problem size causes an increase in wall-time, as
would be expected due to the extra time taken by every operation on larger vectors and matrices.
Finally, by comparing Figures 4.3a and 4.3b we can see that the more dense problems have

84

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

a longer wall-time than sparse problems. This is as we would predict, because the increased
number of rows in the dictionary means many operations in the algorithm involve larger vectors
and so will take longer, and also because the decreased level of sparsity will generally cause the
algorithm to require more iterations to converge.

We have considered how each of the independent variables (number of workers, problem
size, and problem density) impact the wall-time elapsed in solving problems using DistMP.
Next, we consider the interaction between the effects of the independent variables, which gives
further insight into the performance characteristics of the algorithm. We first focus on the
combined effect of number of workers and problem size. Recall how for each value of problem
size and density, there is an optimal number of workers beyond which wall-time is no longer
decreased with the addition of further workers. We might predict that with increased problem
size the optimal number of workers increases: This is because many of the overheads are fixed
or depend on the number of workers, but the proportion of the problem which is susceptible to
parallelisation scales with the size of the problem. This means for larger problems overheads
are less significant and so there is more scope for speed-up due to parallelisation. This effect is
just about visible in Figure 4.3 but the troughs in wall-time are slight and so difficult to compare.
Figure 4.4, however, makes this result very clear: For the sparse experiments, the small, medium
and large scenarios have optimum numbers of workers of 90, 150, and 180, giving speed-up
values of 24, 36, and 50 respectively. The effect is less pronounced for the more dense problems,
but the same trend is still visible. This all supports the prediction that larger problems are
more susceptible to parallelisation than smaller problems, allowing the exploitation of a greater
number of compute workers to achieve a greater maximum speed-up.

In the same manner, we can consider the combined effect of number of workers and problem
density on solution wall-time and speed-up. The trend is not particularly clear in Figure 4.3, but
once again Figure 4.4 shows the trend clearly: denser problems allow the useful exploitation of
a larger number of compute workers than sparse problems, and while denser problems require
a higher elapsed wall-time to solve, they benefit more from parallelisation and deliver a higher
speed-up than sparse problems. For example, while the largest sparse problem had its greatest
speed-up when using 180 workers, the dense problem had greatest speed-up when using 210

workers. The greatest speed-up observed on a sparse problem was a factor of 50 when using
180 workers on the large problem, while the equivalent dense problem delivered a speed-up of
76 using 210 workers. The same effect applies to the smaller problems tested.

Finally, we look at Figure 4.5, a plot of the efficiency calculated for each experiment. In a
sense, efficiency is a direct measure of the overhead due to parallelisation: An efficiency of 1.0

would represent a perfect parallelisation with no overheads, and (1−efficiency) is the proportion
of total compute effort expended on overheads. The plots show a different aspect to the same
picture described so far. The first data-point is with 15 workers on a single node, by which point
the efficiency has already dropped to around 30-40% in all cases. The efficiency then decreases
further with the addition of more workers. Larger problems show higher efficiencies than smaller

85

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

problems, and dense problems show higher efficiencies than the sparse problems, reinforcing
the explanation that overheads are proportionately less significant when the problems involve
greater quantities of data. Another clear property is that the efficiency of smaller problems drops
off faster with increasing numbers of workers than that of larger problems: larger problems are
more amenable to greater levels of parallelisation than smaller problems.

Having established the performance characteristics of DistMP from the results presented,
we can now compare it against the multithreaded implementation of MP which we characterised
previously. First, we compare the wall-time elapsed by both algorithms when using only a single
worker or thread: MP takes 782 seconds for the large, sparse, problem (Figure 4.2a), while
DistMP took 769 seconds (Figure 4.3a). This indicates that the algorithms are comparable when
operating on the same problem and before any parallelism is introduced. The next point we can
directly compare is when 15workers or threads are applied to the same problem: this comparison
represents howwell the two algorithms can harness the compute power of a single compute node.
Our initial expectation might be that the multithreaded algorithm should more efficiently utilise
the resources of a single compute node, since threads have the ability to share data with very
little communication overhead and the complexity of message passing is avoided. Indeed, with
an algorithm carefully crafted to efficiently solve this problem in a multithreaded manner, this
might be the case, but in my experiments DistMP was actually faster when utilising 15 workers
than MP with 15 threads: DistMP took 134 seconds to solve the large sparse problem, while MP
took 231 seconds (MP’s fastest time was 188 seconds with 13 threads). Looking next at the plots
of speed-up (Figures 4.2b and 4.4a) we see that the multithreaded MP implementation reached
a peak speed-up of 4.1 utilising 13 threads. On the same problem, DistMP delivered a speed-up
of 11 when utilising 15 workers, and did not reach its peak speed-up until utilising 180 workers.
Considering efficiency, Figures 4.2c and 4.5 show how for both multithreaded MP and DistMP,
adding large numbers of workers poses a trade-off between speed-up and efficiency. However,
when solving large problems with DistMP, the speed-up can be as much as a factor of 50 to 80
with an efficiency of 20% to 40%, while the multithreaded MP implementation only delivered
a speed-up of 4 with a similar loss of efficiency to DistMP.

This comparison is not meant to imply that a careful multithreaded implementation could
not beat DistMP when both are utilising 15 threads on a single node, but shows how much better
DistMP performs than an effortless multithreaded implementation. The reason for this is that
even on a single compute node, DistMP treats each core totally separately and so ensures data
locality. This means cores are relatively free to work on their own portion of the data without
having to share the same areas of memory and incur the performance penalties of repeated cache
invalidation.

86

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

0 50 100 150 200 250
Number of workers

100

101

102

W
al

l-
tim

e
/s

ec
on

ds

N = 524288
N = 327680
N = 131072

(a) Sparse problem (n = 3277, S = 164)

0 50 100 150 200 250
Number of workers

100

101

102

103

W
al

l-
tim

e
/s

ec
on

ds

N = 524288
N = 327680
N = 131072

(b) Dense problem (n = 6554, S = 328)

Figure 4.3: Wall-time against number of workers for DistMP

87

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

50 100 150 200 250
Number of workers

0

10

20

30

40

50

Sp
ee

d-
up

N = 524288
N = 327680
N = 131072

(a) Sparse problem (n = 3277, S = 164)

50 100 150 200 250
Number of workers

0

10

20

30

40

50

60

70

80

Sp
ee

d-
up

N = 524288
N = 327680
N = 131072

(b) Dense problem (n = 6554, S = 328)

Figure 4.4: Speed-up against number of workers for DistMP

88

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

50 100 150 200 250
Number of workers

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
ffi

ci
en

cy

N = 524288
N = 327680
N = 131072

(a) Sparse problem (n = 3277, S = 164)

50 100 150 200 250
Number of workers

0.15

0.20

0.25

0.30

0.35

0.40

0.45

E
ffi

ci
en

cy

N = 524288
N = 327680
N = 131072

(b) Dense problem (n = 6554, S = 328)

Figure 4.5: Efficiency against number of workers for DistMP

89

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

4.5.3 Multithreaded OMP

The next algorithm we turn our attention to is OMP. As with MP, a simple multithreaded OMP
implementation was created to use as a baseline, utilising the OpenMP-based multithreading
built-in to OpenBLAS. Once again, experiments were conducted using 1 to 15 threads on a
single node. For each test scenario, the minimum recorded time was used out of 10 trials. The
results are presented in Figure 4.6 including wall-time and the derived speed-up and efficiency
metrics.

Compared to MP, the results show significant variation even after the filtering effect of
taking the minimum time for each scenario. Despite this, the same overall trend is visible, where
adding threads to the solver generally reduces wall-time, but with decreasing benefit as more
threads are added. The majority of the benefit is realised with 6 threads providing a decrease in
wall-time from 373 seconds to 129 seconds, a speed-up of a factor of 2.9 with no effort spent on
parallelising the implementation. The maximum speed-up observed with this algorithm was 4.0

when utilising 13 threads, corresponding to a reduction of wall-time to 94 seconds. Figure 4.6c
shows how the algorithm demonstrates reasonable efficiency with a few threads, dropping below
50%with the usage of 5 threads. The lowest efficiency observed was 21%when using 15 threads
out of the 16 available.

Despite the low efficiency when using 15 threads, it appears as though the underlying reduc-
tion in wall-time (increase in speed-up) had not reached its trough (peak) in these experiments,
although it is difficult to say for sure given the somewhat erratic results. Further experiments to
find this inflection point were not possible because only 16 threads were available on the worker
nodes used for these experiments.

4.5.4 DistOMP

I ran experiments to determine the performance characteristics of DistOMP in a similar manner
to the earlier DistMP experiments: problem size, problem density, and number of workers were
all varied while recording the wall-time taken to solve problems. The same three problem sizes
and two problem densities were used as previously. There was a slight difference in the number
of workers applied to the problem due to DistOMP requiring a dedicated R-worker separate to
the QA-workers. As with previous experiments, it was desirable to not usemore than 15 of the 16
compute cores available on each node in order to minimise the effect of background processing.
Using a single node, two scenarios were investigated: one QA-worker and one R-worker (two
threads total), and 14 QA-workers with one R-worker (15 threads total). Then, using 2, 4, 6,
8, 10, 12, 14, and 16 nodes respectively, experiments were carried out using 29, 59, 89, 119,
149, 179, 209, and 239 QA-workers respectively. Thus, in each case the total number of threads
utilised was the same as the equivalent DistMP experiment, but the number of QA-workers was
one fewer than the number of threads. For the plots and derived calculations presented through
the rest of this section, I refer to the number of QA-workers, as this is the variable I was directly

90

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

2 4 6 8 10 12 14
Number of threads

102

2×102

3×102

4×102

W
al

l-
tim

e
/s

ec
on

ds

(a) Wall-time against number of threads

2 4 6 8 10 12 14
Number of threads

1

2

3

4

Sp
ee

d-
up

(b) Speed-up against number of threads

2 4 6 8 10 12 14
Number of threads

0.00

0.25

0.50

0.75

E
ffi

ci
en

cy

(c) Efficiency against number of threads

Figure 4.6: Orthogonal Matching Pursuit with multi-threading (N = 524288, n = 3277,
S = 164)

91

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

altering. This means there is an additional overhead of one thread associated with DistOMP
which is not reflected in these charts and calculations. Nevertheless, this does not invalidate the
trends and conclusions derived from the data, not least because the extra thread is negligible
when hundreds of threads are in use in total. Furthermore, for most problemswhere theRmatrix
is not particularly large, it would be possible for the R-worker to share resources with a QA-
worker with minimal performance impact. For the sake of simplicity this was not investigated
in these experiments, but would be worthwhile if applying DistOMP across a relatively small
number of workers where a one thread overhead would cause significant detriment.

For each scenario (combination of problem size, problem density, and number of workers)
10 trials were carried out and the minimum wall-time in each case is presented in Figure 4.7.
From this data, the speed-up and efficiency at each scenario were derived and are shown in
Figures 4.8 and 4.9. I will first discuss the effect of each independent variable alone on the three
metrics presented, after which I will consider the interactions between the three independent
variables.

First, we consider the effect of the number of workers on the wall-time elapsed in solving
a problem, as shown in Figure 4.7. For every combination of problem size and sparsity the
trend is the same: wall-time reduces steeply at first, with the effect levelling off and eventually
reaching a trough with a large number of workers. Eventually, after adding enough workers to
the problem, the wall-time begins to increase slightly. This is exactly as we would predict: At
first, with a small number of workers, a large proportion of the computation time is ripe for
parallelisation. After significant gains are made by the introduction of a moderate number of
workers, the time spent in parallelisable portions of the program has been greatly reduced, so
further accelerating these portions of the problem provides minimal reduction in total wall-time.
Eventually these gains are entirely counteracted by the additional overhead of a large number of
workers, so the curve reverses and wall-time begins to increase.

Figure 4.8 clearly shows the same trend: For small numbers of workers, speed-up increases
quickly with additional workers. As further workers are added, speed-up reaches a peak and
finally decreases gradually past the peak. Figure 4.8a in particular shows a linear reduction
in speed-up as further workers are added. The exception is the case of N = 524, 288 and
n = 6, 554, where the peak speed-up is not reached with the maximum 240 workers, however
it is likely that the same trend would be observed if more workers were available to be added
to the problem. By looking at the peak speed-up for each problem we can find out the optimal
number of workers in order to minimise wall-time. The optimal number of workers is higher for
problems which are more dense and also for problems which are larger.

Finally, we look at Figure 4.9, the plot of calculated efficiency. The overall trend is that
efficiency falls with increasing numbers of workers, quickly at first but with decreasing rate. In
all the scenarios, the efficiency has dropped to around 40% with the move from 1 QA-worker to
14. After this, there is generally around a further 5% fall moving from 14 to 89 QA-workers,
with more significant falls in efficiency thereafter.

92

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

I will now briefly consider the isolated effects of each of problem size and problem sparsity
on the results. In all cases, increased problem size causes an increase in wall-time, due to the
increased cost associated with each vector or matrix operation. However, increased problem
size also came with significant increases in speed-up. For the same reasons as with DistMP,
this will be because increased problem size increases the amount of time spent in parallelisable
portions of the program and reduces the relative effect of many overheads. For the same reasons,
increasing problem size causes an increase in efficiency in all cases. Changing problem density
has similar effects to problem size, and for similar reasons: an increase in problem density
causes increased wall-time in all cases, along with a significant improvement in speed-up and
efficiency.

Next, I consider the interactions between the variables: How do problem size and problem
density affect the shape of the curves in Figure 4.7? The effect is most clearly seen on the plots
of speed-up shown in Figure 4.8, in particular by focusing on the point where speed-up peaks.
The trend is clear: increasing either problem size or problem density shifts this peak to the right,
allowing more workers to be added to the problem in exchange for greater speed-up. In other
words, the larger and denser a problem is, the greater the optimal number of workers to task
with solving it in order to achieve the greatest speed-up, and the larger this maximum speed-up
will be. This is not to imply that increasing problem size or density will result in it being solved
faster (Figure 4.7 shows this is not the case), but that larger or more dense problems have greater
potential for benefit from parallelisation, and allow more workers to be effectively used. Of
course, this consideration only applies in the case where more workers are available than the
optimal number, which is by no means a given.

We can compare DistOMP to the simple multithreaded OMP implementation by directly
looking at wall-time for equivalent scenarios. We will only consider the large, sparse problem
(N = 524288, n = 3277) since this is the only one OMP was tested with. OMP using a
single thread solved the problem in a minimum of 373 seconds (Figure 4.6a). DistOMP using a
single QA-worker (and single R-worker on the same node) solved the problem in a minimum of
370 seconds (Figure 4.7a). These results are very similar, confirming that the algorithms work
similarly before parallelisation is introduced. The lowest wall-time observed with OMP was 94

seconds, when 13 threads were used. DistOMP, when using 14 QA-workers plus one R-worker,
solved the same problem in just 58 seconds. These figures correspond to a maximum speed-up
of 4.0 for Multithreaded OMP (Figure 4.6b) or 6.4 for DistOMP (Figure 4.8a) when utilising up
to 15 threads in total. This comparison shows how DistOMP is able to more effectively utilise
the threads on a single worker node than a simple multithreaded implementation, in addition to
continuing to reduce wall-time significantly with the addition of as many as hundreds of threads
across a number of nodes.

We can also briefly compare the characteristics of MP and DistMP to those of OMP and
DistOMP respectively. At first glance, we can see that OMP generally has a lower elapsed wall-
time thanMP (Figures 4.2a and 4.6a) for the same problem: this is because the orthogonalisation

93

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

0 50 100 150 200 250
Number of workers

100

101

102

W
al

l-
tim

e
/s

ec
on

ds

N = 524288
N = 327680
N = 131072

(a) Sparse problem (n = 3277, S = 164)

0 50 100 150 200 250
Number of workers

100

101

102

103

W
al

l-
tim

e
/s

ec
on

ds

N = 524288
N = 327680
N = 131072

(b) Dense problem (n = 6554, S = 328)

Figure 4.7: Wall-time against number of workers for DistOMP

94

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

50 100 150 200 250
Number of workers

0

5

10

15

20

25

30

Sp
ee

d-
up

N = 524288
N = 327680
N = 131072

(a) Sparse problem (n = 3277, S = 164)

50 100 150 200 250
Number of workers

0

5

10

15

20

25

30

Sp
ee

d-
up

N = 524288
N = 327680
N = 131072

(b) Dense problem (n = 6554, S = 328)

Figure 4.8: Speed-up against number of workers for DistOMP

95

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

50 100 150 200 250
Number of workers

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

E
ffi

ci
en

cy

N = 524288
N = 327680
N = 131072

(a) Sparse problem (n = 3277, S = 164)

50 100 150 200 250
Number of workers

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
ffi

ci
en

cy

N = 524288
N = 327680
N = 131072

(b) Dense problem (n = 6554, S = 328)

Figure 4.9: Efficiency against number of workers for DistOMP

96

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

at each iteration means that fewer iterations are required. They also appear to offer similar speed-
up frommultithreading, with both reaching a peak speed-up of a factor of around 4when utilising
13 threads (Figures 4.2b and 4.6b). Efficiency plots are also similar (Figures 4.2c and 4.6c).
Differences between DistMP and DistOMP are, however, more pronounced. On the sparse
problems, DistOMP ran with a slightly smaller elapsed wall-time than DistMP (Figures 4.3a
and 4.7a). With a small number of workers, DistOMP was also faster for dense problems, but
DistMP overtakes when it comes to solving dense problems with a large number of workers
(Figures 4.3b and 4.7b). The reason for this is apparent from the plots of speed-up (Figures 4.4
and 4.8): DistMP shows much higher speed-ups than DistOMP for large numbers of workers.
For dense problems, the peak speed-up of DistMP is over double that of DistOMP. This means
that while OMP is generally faster than MP, with large numbers of workers DistMP may give a
solution faster than DistOMP. DistMP probably shows greater speed-up than DistOMP because
the latter requires more communication (leading to greater overheads) and has a significant serial
portion (back-substitution carried out by the R-worker).

4.5.5 Large demonstration problem

In order to show the scale of problem which can be quickly solved using my techniques, a single
large problem was chosen as a demonstration. The scenario was based on a hypothetical image
compressively sensed using an unstructured dictionary obtained using dictionary learning. A
reasonable size image for experimentation might have a resolution of 500 × 480, or about
240, 000 pixels. A dictionary which was over-complete by a factor of 10 would have 2, 400, 000

atoms. At a 1% sparsity level, this image would have 2, 400 sparse coefficients. Using a 10%
sampling ratio when sampling the image would give us 24, 000 samples. From this, we have
our parameters for this scenario: N = 2, 400, 000, n = 24, 000, S = 2, 400. Using 8-byte
doubles to store each element, the effective sampling matrix consumes 429GB of memory. A
maximum of 256 threads across 16 compute nodes were available for this experiment, though
only 240 threads were allocated to workers in order to leave spare capacity for background or
housekeeping processes.

To simplify the experiment, synthetic data was used within the above parameters, as was
done for the previous, smaller, experiments. The sparse signal was generated by producing a
vector of zeros except for 2, 400 pseudo-randomly selected elements. The dictionary was then
created pre-segmented for the 240 workers by generating each segment as a 24, 000× 10, 000-
element dictionary of IID normally distributed random numbers. Finally, the samples were
calculated by multiplying each segment of the dictionary by the sparse vector and accumulating
the summation of the result. The sparse vector, dictionary portions, and samples, were all saved
to a scratch storage network share accessible by the worker nodes.

The problem was solved using DistOMP, using 240 QA-workers along with the single R-
worker (Since the QA-worker and R-worker do not carry out computation at the same time, this

97

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

should equate to not more than 240 threads of computation). The elapsed time of solution was
recorded for 10 trials, and the results are shown in Figure 4.10. For broader context, this chart
shows the time spent directly computing the solution (Solution time) along with the total time,
which includes initialisation, loading the problem data from disk, and verifying the solution.
The time for each trial is shown so that the variability can be seen.

The minimum time taken for just the solution was 62 minutes, an impressive result for
solving a problem of a scale previously considered intractable (Candès and Romberg [12]
describe solution of a problem with N = 1, 000, 000 and n = 25, 000 as impractical with an
unstructured measurement matrix). Even the process of loading the problems and verifying the
result only added an extra of 2 minutes on average. There was some variability in the results,
but the slowest trial of the 10 took 72 minutes for the solution, or 74 minutes in total.

1 2 3 4 5 6 7 8 9 10
Run number

62

64

66

68

70

72

74

W
al

l-
tim

e
/m

in
ut

es

Total time
Solution time

Figure 4.10: Time taken to solve a large problem with DistOMP (N = 2, 400, 000, n = 24, 000,
S = 2, 400).

98

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

4.6 Comparison with Amdahl’s Law

In this section, I will draw comparisons between the results presented and predictions made
by Amdahl’s Law [73] which I introduced in Section 2.4.2. Amdahl’s Law is derived directly
from the core concept of parallelisation, where part of a program experiences speed-up in
proportion with the number of workers and the remainder runs serially and experiences no
speed-up. Because of this, it can be a useful comparison point for a parallel algorithm to
judge the performance of the algorithm and make predictions about the effectiveness of further
parallelisation effort or the use of a greater number of workers.

4.6.1 DistMP

Figure 4.11 compares the results recorded for DistMP against predictions made using Amdahl’s
Law. Predictions are plotted for a range of different parallel proportions p in order to illustrate
how the shape of the curve evolves. Values of p were chosen empirically to match the speed-
up ratios observed in experimental results. Charts are plotted for speed-up and efficiency; no
scaling or estimation of the specific costs involved is required because both of these metrics
are normalised against the single-worker result. The predictions using Amdahl’s law assume
that the parallelisable proportion of the program experiences perfect speed-up with any number
of workers. This assumption is justified by DistMP’s theoretically ideal parallelisation of the
correlation step which dominates the cost of each iteration. The limitations to this assumption
will be discussed in more detail below.

First, we compare the speed-up results and predictions in Figure 4.11a. Speed-up predictions
made using Amdahl’s Law can be separated into several regimes: In the first, with small numbers
of workers, speed-up is close to the number of workers and so increases linearly with increased
numbers of workers. With larger numbers of workers the time spent in the serial portion of the
program becomes more significant and we enter the second regime, where speed-up increases
sub-linearly with addition of workers. As we add further workers we eventually enter the third
regime where the speed-up curve approaches a horizontal line and addition of further workers
has negligible effect.

Both the DistMP results and Amdahl prediction show an initial linear increase in speed-up.
This is the region of operation where the serial portion of the program takes a negligible amount
of time. Amdahl’s Law predicts a linear speed-up increase with a gradient of 1, however the
linear speed-up increase of DistMP shows around half this gradient. This implies that each
additional worker is only adding half of the benefit we would predict. This effect is apparent
in Figure 4.11b: Where Amdahl’s Law would predict high efficiency when the serial fraction
of a program is negligible, DistMP shows efficiency below 40% for small numbers of workers.
The initial linear shape of the speed-up curve suggests that inefficiency is not due to fixed
overheads or the algorithm’s serial fraction. One possible cause of this effect would be if the
implementation was bottlenecked by memory bandwidth rather than processor capacity. To find

99

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

out whether this is likely, we can estimate the memory bandwidth required by the algorithm and
the bandwidth available on each node.

DistMP with N = 524288 and n = 3277 with 15 workers completed 637 iterations in 134

seconds, or 4.75 iterations per second. In each iteration, the memory access will be dominated
by reading the whole of A with a size of 8Nn = 1.37 × 1010 bytes (each dictionary element
is stored as an 8-byte double-precision value). This results in a total memory bandwidth usage
of 65.3 GB/s. The nodes used for these experiments had 8 channels of DDR3 memory running
at 1600 MT/s; with 64 bits per transfer this results in a total theoretical bandwidth of 102.4

GB/s. It is plausible that memory throughput of 65.3 GB/s bottlenecked further performance
increase since the theoretical bandwidth may only be achieved under ideal circumstances and
the estimated throughput includes time spent outside of memory-intensive sections. If, on a
single node, execution of workers on more than about half of the cores resulted in a memory
bandwidth bottleneck then this would limit efficiency as only around half of the workers per
node would be fully utilised. This hypothesis could be verified by only allocating workers to half
of the processor cores on every node and testing whether efficiency significantly improves with
small numbers of workers. Experiments could also be carried out with fewer than 15 workers
on a single node to confirm whether a memory bottleneck appears and with what number of
workers.

The second clear difference between the DistMP results and Amdahl’s prediction is when
large numbers of workers are used. The speed-up of DistMP actually decreases, which Amdahl’s
Law does not predict. For very large numbers of workers where the parallelisable fraction of
a program is negligible, Amdahl’s Law assumes the serial fraction will simply run on one
worker while the other workers remain idle. Under this assumption adding further workers
will never be detrimental. In contrast, DistMP distributes the problem over every available
worker and incurs communication costs associated with this. For large numbers of workers, the
rising communication costs begin to dominate the parallel fraction of the program resulting in
decreasing speed-up and efficiency. In the speed-up plots shown in Figure 4.11a this manifests
as a linearly reducing speed-up when large numbers of workers are used, suggesting the presence
of a cost per worker proportional to the total number number of workers. The origin of this cost
is likely to depend on the implementation details of the various MPI communication operations
used.

In summary, DistMP with the number of workers tested does not seem to be primarily
limited by the serial fraction of the program as predicted by Amdahl’s Law. It is possible that
the increase in speed-up per worker added could be as much as doubled by using a platform
with more memory channels or greater memory speed. With large numbers of workers speed-up
appears to be limited by rising communication costs, suggesting that a modified communication
strategy or a change in underlying MPI library could be necessary to achieve higher speed-ups.

100

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

0 50 100 150 200 250
Number of workers

0

5

10

15

20

25

30

35

40

45

50

Sp
ee

d-
up

p = 0.92

p = 0.94

p = 0.96

p = 0.98

N = 524288
N = 327680
N = 131072
Amdahl’s Law

(a) Speed-up of DistMP versus Amdahl’s Law

0 50 100 150 200
Number of workers

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
ffi

ci
en

cy p = 0.92

p = 0.94

p = 0.96

p = 0.98
N = 524288
N = 327680
N = 131072
Amdahl’s Law

(b) Efficiency of DistMP versus Amdahl’s Law

Figure 4.11: Comparison between DistMP and Amdahl’s Law predictions. DistMP used
n = 3277 and a range of problem sizes. Amdahl’s Law predictions use a range of parallel
proportions between p = 0.92 and p = 0.98.

101

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

4.6.2 DistOMP

Figure 4.12 shows speed-up and efficiency results for DistOMP with n = 3277 and a range of
problem sizes compared against predictions made using Amdahl’s Law with a range of parallel
proportions. The overall trends are similar to those seen for DistMP but with some significant
differences.

DistOMP shows an initial efficiency of only around 0.4 with small numbers of workers, a
similar value to that of DistMP. This implies that DistOMP may also be limited by available
memory bandwidth rather than processor capacity, which would limit the speed-up increase with
each added 15-worker node and explain the relatively poor efficiency with small numbers of
workers. As with DistMP, this possibility could be investigated with experiments to identify the
presence of a memory bottleneck on a single node. If such a bottleneck is limiting performance
per node then allocating fewer workers per node could significantly increase calculated efficiency
per worker, although this would not improve actual utilisation of the hardware available.

Beyond the optimum number of workers, the speed-up of DistOMP decreases approximately
linearly as workers are added. This is similar to the effect seen for DistMP but DistOMP
exhibits this effect with fewer workers so that a decrease in efficiency is observed when in
excess of approximately 60 workers are used. This is to be expected since DistOMP involves
many more communication steps than DistMP, each of which increases the additional cost for
each worker added. Furthermore, for relatively dense problems DistOMP involves a significant
serial fraction at the back substitution step. Beyond the initial linear speed-up, it appears
that significant changes to the communications strategy of the algorithm would be required
to increase the level of parallelism and the speed-up benefit from large numbers of workers.
These results demonstrate how Amdahl’s Law can be easily used to create predictions for the
speed-up and efficiency of a parallel algorithm but that its simplistic nature limits the accuracy
of these predictions, especially when adding workers significantly increases the total cost of the
algorithm due to rising communication overheads.

4.7 Chapter summary

In this chapter I have described how my parallelisation ideas were taken from high-level al-
gorithms to concrete implementations, giving details of the language, libraries and techniques
used for the implementations. I also gave details of the Darwin cluster, the parallel compute
cluster upon which experiments were run. I then described my methodologies for conducting
experiments and for interpreting the results, including how I mitigate variability in observed
elapsed time between trials. The bulk of this chapter consisted of my experimental results,
characterising the performance of MP, DistMP, OMP, and DistOMP. I showed how DistMP and
DistOMP can give significant speed-up over simple multithreaded implementations of MP and
OMP when a large number of compute cores are available. I characterised how the performance

102

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

0 50 100 150 200 250
Number of workers

0

5

10

15

20

25

30

35

40

Sp
ee

d-
up

p = 0.92

p = 0.94

p = 0.96

p = 0.98
N = 524288
N = 327680
N = 131072
Amdahl’s Law

(a) Speed-up of DistOMP versus Amdahl’s Law

0 50 100 150 200
Number of workers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
ffi

ci
en

cy

p = 0.92

p = 0.94

p = 0.96

p = 0.98
N = 524288
N = 327680
N = 131072
Amdahl’s Law

(b) Efficiency of DistOMP versus Amdahl’s Law

Figure 4.12: Comparison between DistOMP and Amdahl’s Law predictions. DistOMP used
n = 3277 and a range of problem sizes. Amdahl’s Law predictions use a range of parallel
proportions between p = 0.92 and p = 0.98.

103

CHAPTER 4. EXPERIMENTAL RESULTS AND ANALYSIS

of my algorithms varies as different problem parameters are altered. Finally, I showed how
my techniques can scale to very large problems by demonstrating solution of a problem with a
429GB equivalent sampling matrix in just over an hour by utilising 240 cores across 16 compute
nodes. In the next chapter I will draw conclusions based on these results and discuss their
context and possible improvements and new directions for the techniques.

104

Chapter 5

Conclusions

In Chapter 1 I briefly introduced the fields of CS and high performance parallel computing. I
explained the motivation for attempting to apply HPC parallelisation techniques to CS recon-
struction and outlined the structure of the remainder of the thesis. In Chapter 2 I discussed CS,
HPC, and parallelisation in more detail, covering the concepts which provide a basis for my
original developments. In Chapter 3 I presented my novel contributions to the field, the DistMP
and DistOMP algorithms. Starting from a detailed analysis of MP and OMP, I showed how
partitioning by data parallelism can be used to enable the reconstruction of large CS problems.
I presented detailed algorithms for DistMP and DistOMP in terms of the MPI communication
primitives used. Then, in Chapter 4 I presented experiments comparing and characterising the
performance of MP, OMP, DistMP, and DistOMP when reconstructing problems of various
shapes and sizes using varying numbers of compute workers. I also demonstrated solution of a
particularly large CS problem to demonstrate how far my techniques can scale.

5.1 Research questions

In Chapter 1 I posed five questions which I would attempt to answer with the research presented
in this thesis. I put forward the answers as follows:

1. How can MP and OMP be parallelised using Message Passing Interface (MPI) on a
compute cluster?

I presented a comparison of various common parallelisation strategies in Section 2.4.2. I then
showed the specific strategies used for DistMP andDistOMP in Sections 3.2 and 3.4 respectively.
In both cases the structure is based around data parallelism: the largest matrices are identified
and split across the available compute workers in a manner which minimises communications
between workers. A more detailed answer to this question is provided by Algorithms 3.2, 3.7,
and 3.8.

2. Can the parallel algorithms be used to solve much larger problems than would ordinarily
fit in main memory?

105

CHAPTER 5. CONCLUSIONS

In Section 4.5.5 I presented results demonstrating reconstruction of a problem utilising a
429GB effective sampling matrix. This matrix alone is much larger than the main memory
available on almost all workstations. Furthermore, this problem was solved in as little as 62
minutes.

3. Can the parallel algorithms solve problems faster than a single compute worker could
alone?

The results presented in Section 4.5 demonstrate significant speed-up resulting from in-
creased numbers of compute workers. A speed-up of as much as a factor of 76 was observed
when using DistMP with 210 workers (spread across 14 cluster nodes).

4. How efficient are these parallel algorithms?

In Section 4.5 I also present plots of efficiency for the parallel algorithms, indicating the
level of overheads present in various scenarios. Efficiency varies from around 5% to 45% for
DistMP and DistOMP depending on the number of workers and problem dimensions.

5. How do the properties of the algorithms vary with number of workers and differing CS
problems?

In general, the parallel algorithms demonstrate increasing speed-up with addition of compute
workers up to some maximum speed-up, beyond which wall-time increases again. For both
algorithms, speed-up and efficiency benefit from increased problem size and density. I answer
this question in more detail in the discussion throughout Section 4.5.

5.2 Future work

5.2.1 Hybrid parallelisation

The Darwin cluster, described in Section 4.1, has heterogeneous memory access bandwidth and
latency both at the socket level and at the node level. In theory, to exploit this environment
with maximum efficiency, a hybrid approach should be taken to parallelisation, taking advantage
of the increased communications capabilities between cores in a socket, and between the two
sockets in a single node. This could be done by running one MPI worker process on each
UMA domain (socket) and utilising multithreading to exploit the multiple cores available, for
example using OpenMP. Another option would be to run one MPI worker per core and use
shared memory communication rather than message passing to communicate between workers
on the same socket, or on the same node. The latest version of MPI, MPI3, includes support
for shared memory communication to allow a hybrid parallelisation which utilises both shared
memory and message passing for communication. However, in addition to greatly increasing the
complexity of the software implementation, the parallel algorithms would need to be redesigned
from the ground up to support this heterogeneous parallelisation structure.

106

CHAPTER 5. CONCLUSIONS

5.2.2 Implicit matrices

I described in Section 2.2.5 how large CS problems may be solved with modest memory
consumption when large, structured matrices may be stored implicitly rather than explicitly.
Furthermore, reconstruction algorithms may be accelerated greatly if the equivalent sampling
matrix can be replaced with fast transform operators such as the FFT. In this thesis I focused
on a general purpose implementation of the parallel algorithms rather than the use of implicit
matrices. When implicit matrices are used parallelisation will not be required for memory
reasons. However, the use of parallel computing with implicit matrices or fast transform
operators may result in speed-up over using a single compute worker. I will now briefly describe
how DistMP and DistOMP could be extended to allow the use of implicit matrices and fast
transform operators.

InDistMP, two references aremade to the local portion of the dictionaryL: The selection step
(c ← LT r) and storing the selected column (g ← LK). The former is already a multiplication
by the transpose of L and the latter can be simply represented as a multiplication of L. Since L

is a contiguous subset of the columns of A, if we have fast transform operators for application
of A then these can be easily converted to fast transform operators for application of L. Thus,
DistMP may be converted to replace the explicit representation of L with an implicit matrix or
fast transforms with minimal modification.

For DistOMP, the conversion to use implicit matrices or fast transform operators is not
as convenient: P and R cannot be stored implicitly, so there are still significant memory
requirements despite the replacement of L. However, P and R are likely to be much smaller
than L, and replacing L is still likely to result in some speed-up. The correlation and selection
step may be modified in the same manner described for DistMP in the previous paragraph. The
MGS update and BS sections of the algorithm do not make reference to L, so no modification
is required. Finally, the residual update section is amenable to an implicit form of L, as we only
need carry out a single matrix-vector multiplication by L.

5.2.3 Parallelisation of further greedy algorithms

In this thesis I have considered the parallelisation of MP and OMP, two fundamental greedy
pursuits utilised for CS reconstruction. Many other greedy algorithms have been specifically
developed for the purpose of CS reconstruction; three common examples are Regularized
Orthogonal Matching Pursuit (ROMP) [54], Stagewise Orthogonal Matching Pursuit (StOMP)
[52], and Compressive Sampling Matching Pursuit (CoSaMP) [55]. It is likely that these
algorithms would be amenable to parallelisation in a broadly similar manner to that used
to develop DistMP and DistOMP, but further research would be required to verify this and
characterise the performance of the resulting parallel algorithms.

StOMP is similar toOMPexcept that it uses a hard-thresholding process for column selection:
instead of picking the single correlation with the greatest magnitude, a threshold is applied and

107

CHAPTER 5. CONCLUSIONS

all correlations exceeding the threshold are selected. This means multiple columns may be
added to the working set in each iteration. Because the update to the working set in each
iteration is more significant than OMP, it is no longer attractive to maintain and update the
QR decomposition in each iteration. Instead, StOMP uses a CG solver to optimally project the
residual onto the working set. Outside of working set storage and the CG solver, StOMP should
parallelise in a similar manner to OMP. It is not immediately clear how the CG solver could
be parallelised, but it is possible that the working set storage could be striped over compute
workers in the same way that Q is in DistOMP and that the CG solver could then be carried out
in parallel across the compute workers.

Iterative Thresholding (IT) is another greedy algorithm which can be used for CS recon-
struction. It is very similar to StOMP except that the orthogonal decomposition is replaced by
a simple relaxation of the residual onto the working set. It is therefore likely that IT could be
parallelised in a similar manner to StOMP.

CoSaMP is also similar to StOMP but adds a pruning step at the end of each iteration where
columns may be removed from the working set if they are not deemed useful. Parallelisation of
CoSaMP should, therefore, be very similar to StOMP.

ROMP is similar to StOMP in that at each iteration some number of columns are selected by
choosing those with the largest magnitude of correlation to the residual. A regularisation step
is then applied where the selected columns are separated into groups with similar coordinates
and in each group only the column with the greatest energy is selected. The regularised set is
then merged with the working set. A LLSQ problem is then solved to orthogonalise the residual
in the same way as in OMP. Since the working set is only extended and columns are never
removed, it may be possible to use the same parallel MGS technique as OMP to parallelise
ROMP. However if a large number of columns are added to the working set in each iteration and
there are a relatively small number of iterations, it may be faster to simply use CG to approximate
the pseudo-inverse to solve the LLSQ problem independently in each iteration.

5.2.4 Multiple R-workers

In Section 3.4.1 I stated that in OMP the matrix holding the coefficients from the QR decom-
position, R, has a maximum size of n × n where n is the number of rows in the effective
sampling matrix. I also explained why R will usually be much smaller than A in practical CS
problems, so storing R on a single compute worker would be unlikely to pose a limitation to
the size of problem which could be solved. However, problems which require many iterations
to solve will lead to R being large, and using a large number of workers will lead to L and P

both being smaller. Combined, these could lead to a scenario where fitting R on a single worker
is a limiting factor for the size of problem which can be solved. In this section I will outline
modifications to DistOMP which could be made in order to avoid this limitation.

The key to removing this limitation is allowing R to be split over multiple compute workers.

108

CHAPTER 5. CONCLUSIONS

DistOMP would then be structured as follows: We divide our logical workers into two distinct
groups, QA-workers and R-workers, where A and Q are split over the QA-workers as before
and R is split over the R-workers. The number of R-workers required is calculated based on the
estimated size of R (from the predicted number of iterations) and the main memory available
on each worker. The remaining available workers then become QA-workers.

To implement this strategy, we must first determine whether R is to be split up by columns
or by rows and howwe allocate these portions ofR to the R-workers. In each iteration we extend
R by appending a column and then carry out BS, which reads the contents of R row-by-row,
starting from the bottom. Splitting up R by assigning contiguous sets of rows to each R-worker
would allow an R-worker to carry out BS with no communication except to receive a partially
complete a from a previous R-worker and to pass on a more complete a to the next R-worker.
However, this complicates the updates to R, as each new column would need to be distributed
across the R-workers.

Splitting up R by columns greatly simplifies the updates, as we simply append columns
on the lowest numbered R-worker which has yet to exhaust its available memory. However,
each step of BS would need to involve all the R-workers which held columns. Carrying out
the matrix-vector product between a and the row of R in parallel could possibly lead to some
speed-up, however this is likely counteracted by the extra communication overhead involved.

I have developed a proof of concept implementation using the latter approach. Details are
not included in this thesis as it has not been extensively tested and I have not measured the
impact on run time of using multiple R-workers. If a convincing motivation for the use of
multiple R-workers was found, this technique could be further developed in order to allow the
solution of large CS problems which also require a large number of iterations. Furthermore,
an implementation partitioning R row-wise could be developed to compare the performance
against partitioning R column-wise.

5.2.5 Distributed reconstruction with compute accelerators

Darwin, the cluster used for the implementation of DistMP and DistOMP, equipped each
compute worker with two CPUs but no specialised accelerator hardware. A recent trend in
HPC clusters is for each compute node to be equipped with one or more GPU accelerators.
In Section 2.5.1 I reviewed several pieces of research which used GPU compute to accelerate
CS reconstruction. The unstructured problems reconstructed using GPUs were smaller than
those which could be reconstructed by using distributed algorithms on a cluster, but the use of
GPUs was reported to give significant speed-up. By combining the use of distributed algorithms
with GPU acceleration of each worker it seems likely that reconstruction time could be greatly
reduced for very large problems. Problem data could be transferred to GPUs at initialisation and
stored in GPU memory between iterations so that during reconstruction only communications
to or from other nodes need to be transferred via the host system. A toolkit such as cuBLAS

109

CHAPTER 5. CONCLUSIONS

could be used to translate the vector operations in DistMP and DistOMP to execute on a compute
accelerator without significant modification to the high-level structure of the algorithm.

5.3 Final remarks

In this thesis I introduced two new parallel algorithms I have developed which allow HPC
cluster computing to be used for CS reconstruction. Experiments I carried out demonstrate
solution of very large problems and enormous speed-up compared to reconstruction using a
single processor. I believe my techniques could broaden the scope of CS research by allowing
much larger problems to be solved than previously possible. I hope my work stimulates further
collaboration between the research areas of CS and HPC: I believe further attention given to
parallelisation and high-performance implementations of reconstruction algorithms will help to
alleviate the significant computational burden associated with CS reconstruction, which could
aid the adoption of CS in new applications.

110

Bibliography

[1] C. E. Shannon. ‘A Mathematical Theory of Communication (Part I)’. In: Bell System
Technical Journal (1948).

[2] R. Tibshirani. ‘Regression Selection and Shrinkage via the Lasso’. In: Journal of the
Royal Statistical Society 58.1 (1996), pp. 267–288.

[3] S. G. Mallat and Z. Zhang. ‘Matching pursuits with time-frequency dictionaries’. In:
IEEE Transactions on Signal Processing 41.12 (1993), pp. 3397–3415.

[4] D. L. Donoho and X. Huo. ‘Uncertainty principles and ideal atomic decomposition’. In:
IEEE Transactions on Information Theory 47.7 (2001), pp. 2845–2862.

[5] D. L. Donoho and M. Elad. ‘Optimally sparse representation in general (nonorthogonal)
dictionaries via l1 minimization’. In: Proceedings of the National Academy of Sciences
100.5 (2003), pp. 2197–2202.

[6] J. A. Tropp. ‘Greed is good: Algorithmic results for sparse approximation’. In: IEEE
Transactions on Information Theory 50.10 (2004), pp. 2231–2242.

[7] E. J. Candès, J. Romberg and T. Tao. ‘Robust uncertainty principles: exact signal re-
construction from highly incomplete frequency information’. In: IEEE Transactions on
Information Theory 52.2 (2006), pp. 489–509.

[8] S. S. Chen, D. L. Donoho andM.A. Saunders. ‘AtomicDecomposition byBasis Pursuit’.
In: SIAM Journal on Scientific Computing 20.1 (1998), pp. 33–61.

[9] E. J. Candès and T. Tao. ‘Decoding by linear programming’. In: IEEE Transactions on
Information Theory 51.12 (2005), pp. 4203–4215.

[10] J. A. Tropp and A. C. Gilbert. ‘Signal Recovery from Random Measurements via
Orthogonal Matching Pursuit’. In: IEEE Transactions on Information Theory 53.12
(2007), pp. 4655–4666.

[11] M. B. Wakin et al. ‘An architecture for compressive imaging’. In: Proceedings of
the 2006 International Conference on Image Processing. Atlanta, GA: IEEE, 2006,
pp. 1273–1276.

[12] E. Candès and J. Romberg. ‘Sparsity and incoherence in compressive sampling’. In:
Inverse Problems 23.3 (2007), pp. 969–985.

111

BIBLIOGRAPHY

[13] P. Binev et al. ‘Compressed Sensing and Electron Microscopy’. In:Modeling Nanoscale
Imaging in Electron Microscopy. Boston, MA: Springer, 2012, pp. 73–126.

[14] A. Stevens et al. ‘The potential for bayesian compressive sensing to significantly reduce
electron dose in high-resolution STEM images’. In:Microscopy 63.1 (2014), pp. 41–51.

[15] A. Stevens et al. ‘Applying compressive sensing to TEM video: a substantial frame rate
increase on any camera’. In: Advanced Structural and Chemical Imaging 1.10 (2015).

[16] D. J. Brady et al. ‘CompressiveHolography’. In:OpticsExpress17.15 (2009), pp. 13040–
13049.

[17] Y. Endo et al. ‘GPU-accelerated compressive holography’. In: Optics Express 24.8
(2016), pp. 8437–8445.

[18] J. Hahn et al. ‘Video-rate compressive holographic microscopic tomography’. In:Optics
Express 19.8 (2011), pp. 7289–7298.

[19] J. Belle, R. Armstrong and J. Gain. ‘Accelerated Deconvolution of Radio Interferometric
Images using Orthogonal Matching Pursuit and Graphics Hardware’. In: Journal of
Astronomical Instrumentation 6.4 (2017).

[20] A. Fiandrotti et al. ‘GPU-accelerated algorithms for compressed signals recovery with
application to astronomical imagery deblurring’. In: International Journal of Remote
Sensing 39.7 (2018), pp. 2043–2065.

[21] M. Aharon, M. Elad and A. Bruckstein. ‘k-SVD: An Algorithm for Designing Over-
complete Dictionaries for Sparse Representation’. In: IEEE Transactions on Signal
Processing 54.11 (2006), pp. 4311–4322.

[22] L. Gan. ‘Block compressed sensing of natural images’. In: 15th International Conference
on Digital Signal Processing. 2007, pp. 403–406.

[23] J. E. Fowler, S. Mun and E. W. Tramel. ‘Block-Based Compressed Sensing of Images
and Video’. In: Foundations and Trends in Signal Processing 4.4 (2010), pp. 297–416.

[24] H. T. Kung and S. J. Tarsa. ‘Partitioned compressive sensing with neighbor-weighted
decoding’. In: Proceedings of the IEEE Military Communications Conference. 2011,
pp. 149–156.

[25] NVIDIA. cuBLAS. 2019. url: https://developer.nvidia.com/cublas.

[26] J. D. Blanchard and J. Tanner. ‘GPU accelerated greedy algorithms for compressed
sensing’. In: Mathematical Programming Computation 5.3 (2013), pp. 267–304.

[27] D. S. Smith et al. ‘Real-Time Compressive Sensing MRI Reconstruction Using GPU
Computing and Split Bregman Methods.’ In: International journal of biomedical ima-
ging (2012).

112

https://developer.nvidia.com/cublas

BIBLIOGRAPHY

[28] A. Borghi et al. ‘A Simple Compressive Sensing Algorithm for Parallel Many-Core
Architectures’. In: Journal of Signal Processing Systems 71.1 (2013), pp. 1–20.

[29] M. Andrecut. ‘Fast GPU implementation of sparse signal recovery from random projec-
tions’. In: Engineering Letters 17.3 (2009).

[30] Y. Fang et al. ‘GPU implementation of orthogonal matching pursuit for compressive
sensing’. In: Proceedings of the International Conference on Parallel and Distributed
Systems. 2011, pp. 1044–1047.

[31] A. Kulkarni et al. ‘Low Overhead CS-Based Heterogeneous Framework for Big Data
Acceleration’. In: ACM Transactions on Embedded Computing Systems 17.1 (2018).

[32] A. Septimus and R. Steinberg. ‘Compressive sampling hardware reconstruction’. In:
IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and
Systems. 2010, pp. 3116–3119.

[33] H. Rabah et al. ‘FPGA Implementation of OrthogonalMatching Pursuit for Compressive
Sensing Reconstruction’. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23.10 (2015), pp. 2209–2220.

[34] Ö. Polat and S. K. Kayhan. ‘High-speed FPGA implementation of orthogonal matching
pursuit for compressive sensing signal reconstruction’. In: Computers & Electrical
Engineering 71 (2018), pp. 173–190.

[35] A. Kulkarni and T. Mohsenin. ‘Low Overhead Architectures for OMP Compressive
Sensing Reconstruction Algorithm’. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 64.6 (2017), pp. 1468–1480.

[36] S. Boyd et al. ‘Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers’. In: Foundations and Trends in Machine Learning 3.1
(2010).

[37] W. Deng et al. ‘Parallel Multi-Block ADMM with O(1 / K) Convergence’. In: Journal
of Scientific Computing 71.2 (2017), pp. 712–736.

[38] A. J. W. Mayer. ‘The architecture of the Burroughs B5000: 20 years later and still ahead
of the times?’ In: ACM SIGOPS Operating Systems Review 10.4 (1982), pp. 3–10.

[39] P. Enslow. ‘Multiprocessor Organization—a Survey’. In: ACM Computing Surveys 9.1
(1977), pp. 103–129.

[40] D. Geer. ‘Chip makers turn to multicore processors’. In: Computer 38.5 (2005), pp. 11–
13.

[41] M. J. Flynn. ‘Very High-Speed Computing Systems’. In: Proceedings of the IEEE 54.12
(1966), pp. 1901–1909.

[42] M. J. Flynn. ‘Some computer organizations and their effectiveness’. In: IEEE Transac-
tions on Computers C-21.9 (1972), pp. 948–960.

113

BIBLIOGRAPHY

[43] E. Strohmaier et al. ‘Recent trends in the marketplace of high performance computing’.
In: Parallel Computing 31.3–4 (2005), pp. 261–273.

[44] The MPI Forum. ‘MPI: A Message Passing Interface’. In: Proceedings of the 1993
ACM/IEEE Conference on Supercomputing. 1993, pp. 878–883.

[45] J.Dongarra. ‘Trends inHigh-PerformanceComputing’. In:Handbook ofNature-Inspired
and Innovative Computing. Boston, MA: Springer, 2006. Chap. 15, pp. 511–520.

[46] A. Grama et al. Introduction to Parallel Computing. United Kingdom: Pearson, 2003.

[47] P. S. Pacheco. Introduction to Parallel Programming. Elsevier, 2011.

[48] I. T. Foster. Designing and Building Parallel Programs. Boston, MA: Addison-Wesley
Longman, 1995.

[49] E. J. Candès and M. B. Wakin. ‘An Introduction To Compressive Sampling’. In: IEEE
Signal Processing Magazine 25 (2008), pp. 21–30.

[50] R. Baraniuk et al. ‘A Simple Proof of the Restricted Isometry Property for Random
Matrices’. In: Constructive Approximation 28.3 (2008), pp. 253–263.

[51] T. Blumensath and M. E. Davies. ‘Iterative thresholding for sparse approximations’. In:
Journal of Fourier Analysis and Applications 14.5–6 (2008), pp. 629–654.

[52] D. L.Donoho et al. ‘Sparse Solution ofUnderdetermined Systems of Linear Equations by
Stagewise Orthogonal Matching Pursuit’. In: IEEE Transactions on Information Theory
58.2 (2012), pp. 1094–1121.

[53] D. Needell and R. Vershynin. ‘Uniform uncertainty principle and signal recovery via reg-
ularized orthogonal matching pursuit’. In: Foundations of Computational Mathematics
9.3 (2009), pp. 317–334.

[54] D. Needell and R. Vershynin. ‘Signal Recovery From Incomplete and Inaccurate Meas-
urements Via Regularized Orthogonal Matching Pursuit’. In: IEEE Journal of Selected
Topics in Signal Processing 4.2 (2010), pp. 310–316.

[55] D. Needell and J.A. Tropp. ‘CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples’. In: Applied and Computational Harmonic Analysis 26.3 (2009),
pp. 301–321.

[56] W. Dai and O. Milenkovic. ‘Subspace Pursuit for Compressive Sensing Signal Recon-
struction’. In: IEEE Transactions on Information Theory 55.5 (2009), pp. 2230–2249.

[57] E. J. Candès and T. Tao. ‘Near-optimal signal recovery from random projections: Uni-
versal encoding strategies?’ In: IEEE Transactions on Information Theory 52.12 (2006),
pp. 5406–5425.

[58] E. J. Candès, J. K. Romberg and T. Tao. ‘Stable signal recovery from incomplete and
inaccurate measurements’. In: Communications on Pure and Applied Mathematics 59.8
(2006), pp. 1207–1223.

114

BIBLIOGRAPHY

[59] A. M. Tillmann and M. E. Pfetsch. ‘The computational complexity of the restricted
isometry property, the nullspace property, and related concepts in compressed sensing’.
In: IEEE Transactions on Information Theory 60.2 (2014), pp. 1248–1259.

[60] D. L. Donoho, M. Elad and V. N. Temlyakov. ‘Stable Recovery of Sparse Overcomplete
Representation in the Presence of Noise’. In: IEEE Transactions on Information Theory
52.1 (2006), pp. 6–18.

[61] D. Slepian and J. K. Wolf. ‘Noiseless Coding of Correlated Information Sources’. In:
IEEE Transactions on Information Theory 19.4 (1973), pp. 471–480.

[62] M. F. Duarte et al. ‘Distributed compressed sensing of jointly sparse signals’. In: Pro-
ceedings of the 2005 Asilomar Conference on Signals, Systems, and Computers. Pacific
Grove, CA: IEEE, 2005, pp. 1537–1541.

[63] D. Baron et al. ‘An Information-Theoretic Approach to Distributed Compressed Sens-
ing’. In: Proceedings of the 43rd Allerton Conference on Communication Control and
Computing. 2005.

[64] M. S. Schlansker and B. R. Rau. EPIC: An Architecture for Instruction-Level Parallel
Processors. Tech. rep. 2000.

[65] H. Sharangpani and K. Arora. ‘Itanium processor microarchitecture’. In: IEEE Micro
20.5 (2000), pp. 24–43.

[66] W. J. Watson. ‘The TI ASC: a highly modular and flexible super computer architecture’.
In: Proceedings of the Fall Joint Computer Conference, part I. Anaheim, California:
ACM Press, 1972, pp. 221–228.

[67] L. Stringer. ‘Vectors: How the Old Became New Again in Supercomputing’. In: HPC
Wire (2016).

[68] R. M. Hord. The Illiac IV. Springer, 1982.

[69] N. Hirose and M. Fukuda. ‘Numerical Wind Tunnel (NWT) and CFD research at Na-
tional Aerospace Laboratory’. In: High Performance Computing on the Information
Superhighway. Seoul, South Korea: IEEE, 1997.

[70] R. Esser and R. Knecht. ‘Intel Paragon XP/S - Architecture and Software Environment’.
In: Supercomputer ’93. Berlin, Heidelberg: Springer, 1993.

[71] J. Bashor. ‘Researchers Achieve One Teraflop Performance With Supercomputer Simu-
lation Of Magnetism’. In: Berkeley Lab Research News (1998).

[72] S. Ristov et al. ‘Superlinear Speedup in HPC Systems: why and when?’ In: Proceedings
of the Federated Conference on Computer Science and Information Systems. 2016,
pp. 889–898.

115

BIBLIOGRAPHY

[73] G. M. Amdahl. ‘Validity of the single processor approach to achieving large scale
computing capabilities’. In: Proceedings of the April 18-20, 1967, spring joint computer
conference. ACM, 1967.

[74] J. L. Gustafson. ‘Reevaluating Amdahl’s law’. In: Communications of the ACM 31.5
(1988), pp. 532–533.

[75] S. Balay et al. PETSc Web page. 2018. url: http://www.mcs.anl.gov/petsc.

[76] S. P. Johnson, C. S. Ierotheou and M. Cross. ‘Automatic parallel code generation for
message passing on distributed memory systems’. In: Parallel Computing 22.2 (1996),
pp. 227–258.

[77] A. Saa-Garriga. ‘Automatic Source Code Adaption for Heterogeneous Platforms’. PhD
thesis. Universitat Autonoma de Barcelona, 2016.

[78] Z. Yu et al. ‘Fast compressive sensing reconstruction algorithm on FPGA using Ortho-
gonal Matching Pursuit’. In: IEEE International Symposium on Circuits and Systems
(ISCAS). 2016, pp. 249–252.

[79] J. L.V.M. Stanislaus and T. Mohsenin. ‘High performance compressive sensing recon-
struction hardware with QRD process’. In: IEEE International Symposium on Circuits
and Systems. 2012, pp. 29–32.

[80] Y. Quan et al. ‘FPGA Implementation of Real-Time Compressive Sensing with Partial
Fourier Dictionary’. In: International Journal of Antennas and Propagation (2016).

[81] G. Huang and L. Wang. ‘High-speed Signal Reconstruction for Compressive Sensing
Applications’. In: Journal of Signal Processing Systems 81.3 (2015), pp. 333–344.

[82] Y. Chen and X. Zhang. ‘High-speed architecture for image reconstruction based on
compressive sensing’. In: IEEE International Conference on Acoustics, Speech and
Signal Processing. 2011.

[83] D. Sundman et al. ‘Distributed predictive subspace pursuit’. In: IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE, 2013, pp. 4633–4637.

[84] D. Sundman, S. Chatterjee and M. Skoglund. ‘Distributed greedy pursuit algorithms’.
In: Signal Processing 105 (2014), pp. 298–315.

[85] D. Sundman, S. Chatterjee and M. Skoglund. ‘Design and analysis of a greedy pursuit
for distributed compressed sensing’. In: IEEE Transactions on Signal Processing 64.11
(2016), pp. 2803–2818.

[86] T.Wimalajeewa and P. K. Varshney. ‘Cooperative sparsity pattern recovery in distributed
networks via distributed-OMP’. In: IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings. 2013, pp. 5288–5292.

116

http://www.mcs.anl.gov/petsc

BIBLIOGRAPHY

[87] C. Ravazzi, S. M. Fosson and E. Magli. ‘Randomized Algorithms for Distributed Non-
linear Optimization Under Sparsity Constraints’. In: IEEE Transactions on Signal Pro-
cessing 64.6 (2016), pp. 1420–1434.

[88] J. F. C.Mota et al. ‘Distributed basis pursuit’. In: IEEETransactions on Signal Processing
60.4 (2012), pp. 1942–1956.

[89] S. Bernabe et al. ‘GPU implementation of a hyperspectral coded aperture algorithm
for compressive sensing’. In: International Geoscience and Remote Sensing Symposium
(IGARSS). 2015.

[90] Y. Yang et al. ‘ADMM-CSNet: A Deep Learning Approach for Image Compressive
Sensing’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2018).

[91] Åke Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[92] N. D. Matsakis and F. S. Klock. ‘The Rust Language’. In: ACM SIGAda Ada Letters
(2014).

[93] Q. Wang et al. ‘AUGEM: Automatically Generate High Performance Dense Linear
Algebra Kernels on x86 CPUs’. In: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (2013).

[94] Andrew Straw et al. BLAS (Rust binding). 2018. url: https://crates.io/crates/
blas (visited on 21/07/2018).

[95] L. Dagum and R. Menon. ‘OpenMP: an industry standard API for shared-memory
programming’. In: IEEE Computational Science and Engineering (1998).

[96] B. Steinbusch and A. Gaspar. rsmpi (Rust binding). 2018. url: https://crates.io/
crates/mpi (visited on 21/07/2018).

[97] W. Chen and I. J.Wassell. ‘Energy efficient signal acquisition via compressive sensing in
wireless sensor networks’. In: 6th International Symposium on Wireless and Pervasive
Computing (ISWPC). Vol. 2. Hong Kong: IEEE, 2011.

[98] M. E. Lopes. ‘Estimating unknown sparsity in compressed sensing’. In: Proceedings of
the 30th International Conference on Machine Learning. Atlanta, GA, 2013, pp. III–
217–III–225.

[99] M. E. Lopes. ‘Unknown Sparsity in Compressed Sensing: Denoising and Inference’. In:
IEEE Transactions on Information Theory 62.9 (2016), pp. 5145–5166.

[100] D. L. Donoho. ‘Compressed sensing’. In: IEEE Transactions on Information Theory
52.4 (2006), pp. 1289–1306.

117

https://crates.io/crates/blas
https://crates.io/crates/blas
https://crates.io/crates/mpi
https://crates.io/crates/mpi

	Contents
	List of figures
	List of algorithms
	List of acronyms
	List of symbols
	Notation
	Introduction
	Sparsity and Compressive Sensing
	CS reconstruction of large signals
	Applications involving large signals
	Reconstruction techniques for large signals

	Parallelism and High Performance Computing
	Motivation and research questions
	Original contributions
	Thesis outline

	Review of CS and parallel computing literature
	Information and sparsity
	Compressive Sensing
	Sampling
	Reconstruction
	Reconstruction by combinatorial optimisation
	Reconstruction by convex optimisation
	Reconstruction using greedy algorithms
	Sparse regression

	Review of CS literature
	Sparse transforms
	Fast transforms and implicit dictionaries
	Applications

	High performance parallel computing
	Types of parallel computer
	SISD: Instruction-level parallelism
	SIMD: Data parallelism
	MIMD: Task parallelism

	Interconnect architecture
	Terminology
	History

	Parallelisation
	Performance metrics
	Theory
	Task-based parallelisation
	Data-based parallelisation

	Message Passing Interface
	MPI Primitives

	Hybrid-memory parallelisation
	Automatic Parallelisation

	Accelerated CS reconstruction
	GPU-accelerated reconstruction
	FPGAs and ASICs
	Distributed reconstruction for DCS
	Distributing convex algorithms using ADMM

	Chapter summary

	Parallelised greedy pursuits
	Matching Pursuit
	Distributed Matching Pursuit
	Orthogonal Matching Pursuit
	Implementing the LLSQ solver
	OMP with MGS updates and BS

	Distributed Orthogonal Matching Pursuit
	Storage and organisation
	Distribution of computation
	QA-worker algorithm
	R-worker algorithm

	Chapter summary

	Experimental results and analysis
	The Darwin cluster
	Implementing the algorithms
	Methodology
	Interpretation of results
	Results
	Multithreaded MP
	DistMP
	Multithreaded OMP
	DistOMP
	Large demonstration problem

	Comparison with Amdahl's Law
	DistMP
	DistOMP

	Chapter summary

	Conclusions
	Research questions
	Future work
	Hybrid parallelisation
	Implicit matrices
	Parallelisation of further greedy algorithms
	Multiple R-workers
	Distributed reconstruction with compute accelerators

	Final remarks

	Bibliography

