17,827 research outputs found

    Identifying and Modelling Complex Workflow Requirements in Web Applications

    Get PDF
    Workflow plays a major role in nowadays business and therefore its requirement elicitation must be accurate and clear for achieving the solution closest to businessā€™s needs. Due to Web applications popularity, the Web is becoming the standard platform for implementing business workflows. In this context, Web applications and their workflows must be adapted to market demands in such a way that time and effort are minimize. As they get more popular, they must give support to different functional requirements but also they contain tangled and scattered behaviour. In this work we present a model-driven approach for modelling workflows using a Domain Specific Language for Web application requirement called WebSpec. We present an extension to WebSpec based on Pattern Specifications for modelling crosscutting workflow requirements identifying tangled and scattered behaviour and reducing inconsistencies early in the cycle

    On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis

    Get PDF
    In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    Towards an Intelligent Workflow Designer based on the Reuse of Workflow Patterns

    Get PDF
    In order to perform process-aware information systems we need sophisticated methods and concepts for designing and modeling processes. Recently, research on workflow patterns has emerged in order to increase the reuse of recurring workflow structures. However, current workflow modeling tools do not provide functionalities that enable users to define, query, and reuse workflow patterns properly. In this paper we gather a suite for both process modeling and normalization based on workflow patterns reuse. This suite must be used in the extension of some workflow design tool. The suite comprises components for the design of processes from both legacy systems and process modeling

    Model-driven design, simulation and implementation of service compositions in COSMO

    Get PDF
    The success of software development projects to a large extent depends on the quality of the models that are produced in the development process, which in turn depends on the conceptual and practical support that is available for modelling, design and analysis. This paper focuses on model-driven support for service-oriented software development. In particular, it addresses how services and compositions of services can be designed, simulated and implemented. The support presented is part of a larger framework, called COSMO (COnceptual Service MOdelling). Whereas in previous work we reported on the conceptual support provided by COSMO, in this paper we proceed with a discussion of the practical support that has been developed. We show how reference models (model types) and guidelines (design steps) can be iteratively applied to design service compositions at a platform independent level and discuss what tool support is available for the design and analysis during this phase. Next, we present some techniques to transform a platform independent service composition model to an implementation in terms of BPEL and WSDL. We use the mediation scenario of the SWS challenge (concerning the establishment of a purchase order between two companies) to illustrate our application of the COSMO framework

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    A visual exploration workflow as enabler for the exploitation of Linked Open Data

    Get PDF
    Abstract. Semantically annotating and interlinking Open Data results in Linked Open Data which concisely and unambiguously describes a knowledge domain. However, the uptake of the Linked Data depends on its usefulness to non-Semantic Web experts. Failing to support data consumers to understand the added-value of Linked Data and possible exploitation opportunities could inhibit its diffusion. In this paper, we propose an interactive visual workflow for discovering and ex-ploring Linked Open Data. We implemented the workflow considering academic library metadata and carried out a qualitative evaluation. We assessed the work-flowā€™s potential impact on data consumers which bridges the offer: published Linked Open Data; and the demand as requests for: (i) higher quality data; and (ii) more applications that re-use data. More than 70 % of the 34 test users agreed that the workflow fulfills its goal: it facilitates non-Semantic Web experts to un-derstand the potential of Linked Open Data.
    • ā€¦
    corecore