24 research outputs found

    Read Bulk Data From Computational RFIDs

    Full text link

    Realistic chipless RFID: protocol, encoding and system latency

    Get PDF
    Chiplose Identifikation über Funkfrequenzen, RFID (engl., Radio Frequency IDentification) ist eine vielversprechende Technology, der man die Fähigkeit zuschreibt, in naher Zukunft den optischen Barcode zu ersetzen. Letztgenannter hat Einschränkungen durch i) RFID Tags sind bei nicht vorhandener Sichtverbindung (engl. Non-Line-Of-Sight, NLOS) auch nicht lesbar; ii) das Scannen der Barcodes benötigt in den meisten Fällen manuelles Eingreifen; iii) es ist unmöglich mehrere Barcodes gleichzeitig auszulesen; iv) und als Folge davon entsprechende Verzögerungen beim Auslesen größerer Mengen von Barcodes, da alle einzeln gescannt werden müssen. Die Beiträge der vorliegenden Dissertation konzentrieren sich auf drei Schwerpunkte von frequenzcodierten (engl. frequency coded, FC) chiplosen RFID Systemen. Der erste Schwerpunkt ist die gleichzeitige Identifikation von mehreren RFID Tags und kümmert sich um den Fall, dass sich mehrere RFID Tags in der Lesezone des RFID Lesegerätes befinden. Der zweite Aspekt betrifft die Verzögerung des Systems, die Zeit, das Lesegerät zum Identifizieren der RFID Tags benötigt. Und drittens die Coding Kapazität des Systems, sie ist verantwortlich für die zu erreichende Bittiefe des RFID Systems. Ein real umsetzbares RFID System erfordert Lösungen in allen drei Aspekten. Da chiplose RFID Tags keine integrierten Schaltungen (ICs) und somit auch keine Speicherbausteine besitzen, ist die Anzahl der auf dem RFID Tag speicherbaren Bits begrenzt. Und als Folge davon sind die Standards und Protokolle, die für die herkömmlichen chipbehafteten RFID Systeme entwickelt worden, nicht auf chiplose RFID Systeme übertragbar. Das wesentliche Ziel des ersten Beitrages ist die Einführung eines neuen Multi-Tag Antikollisionsprotokolls, das auf der Modulation der Notchposition (engl. Notch Position Modulation, NPM) und Tabellen (engl. Look-Up-Table, LUT) zur Bestimmung der Netzwerk- und MAC- Layer des chiplosen RFID Systems basiert. Die erste Generation der vorgeschlagenen Protokolls (Gen-1) baut auf einer Zweiteilung des zur Verfügung stehenden Spektrums auf. Im unteren Frequenzbereich, als Präambel Bandbreite bezeichnet, wird jedem RFID Tag seine individuelle Frequenzverschiebung übermittelt und im zweiten Bereich, der sogenannten Frame Bandbreite, ist die Identifikationsnummer (ID) des RFID Tags hinterlegt. Mit dieser Anordnung lässt sich jegliche Interferenz zwischen den verschiedenen RFID Tags unterbinden, da sich die Antworten der RFID Tags nicht gegenseitig überlagern. Die zweite Generation dieses Protokolls bringt eine Verbesserung sowohl bei der Coding Kapazität als auch bei der Nutzung des zur Verfügung stehenden Frequenzspektrums. Dies wird dadurch erreicht, dass die ID des RFID in einer Tabelle im Lesegerät gespeichert wird. Die individuelle Frequenzverschiebung dient dabei als Adresse für die gespeicherten IDs. Dieser Schritt vereinfacht die Komplexität der Struktur des RFID Tags signifikant, während gleichzeitig die Erkennungswahrscheinlichkeit erhöht wird. Des Weiteren werden die Key Performance Indikatoren untersucht um die Leistungsfähigkeit der Protokolle zu beweisen. Beide Protokollversionen werden modelliert und in einer Umgebung mit 10 chiplosen RFID Tags simuliert, um die Randbedingungen für die Entwicklung der RFID Tags und des RFID Lesegerätes zu ermitteln. Außerdem wird eine neuartige Testumgebung für ein MultiTag Ultra Breitband (engl. ultra wideband UWB) RFID System unter realen Testbedingungen basierend auf einem Software Defined Radio (SDR) Ansatz entwickelt. In dieser Testumgebung werden sowohl die gesendeten Signal als auch Detektierungstechniken, Leerraum Kalibrierung zur Reduzierung der Streustrahlung und die Identifikationsprotokolle untersucht. Als zweiter Schwerpunkt dieser Arbeit werden neue Techniken zur Reduzierung der Systemlaufzeit (engl. System Latency) eingeführt. Das Ziel dabei ist, die Zeit, die das RFID Lesegerät zum Erkennen aller in Lesereichweite befindlichen chiplosen FC RFID Tags braucht, zu verkürzen. Der Großteil der Systemlaufzeit wird durch das gewählte Frequenzscanverfahren, durch die Anzahl der Mittelungen zur Eliminierung der umgebenden Streustrahlung und durch die Dauer eines Frequenzsprungs bestimmt. In dieser werden dazu ein adaptives Frequenzsprungverfahren (engl. adaptive frequency hopping, AFH) sowie ein Verfahren Mittels adaptiver gleitender Fensterung (engl. adaptive sliding window, ASW) eingeführt. Das ASW Verfahren ist dabei im Hinblick auf die Identifizierung der RFID Tags nach dem Gen-1 Protokoll entwickelt, da es ein gleitendes Fenster zur Detektierung der Notches mit einer variablen Breite zum Auslesen der ID erfordert. Im Gegensatz dazu wird das Auffinden der im Gen-2 Protokoll verwendeten Notchpattern durch das AFH Verfahren verbessert. Dies wird über variable Frequenzsprünge, die auf die jeweiligen Notchpattern optimiert werden, erreicht. Beide Verfahren haben sich als effektiv sowohl im Hinblick auf die Systemlaufzeit als auch auf die Genauigkeit erwiesen. Das ASW und das AFH Verfahren wurden dazu in der oben erwähnten Testumgebung implementiert und mit dem klassischen Frequenzsprungverfahren, feste feingraduierte Frequenzschritte, verglichen. Die Experimente haben gezeigt, dass das vorgeschlagene AFH Verfahren in Kombination mit ASW zu einer beachtlichen Reduzierung der Systemlaufzeit von 58% führen. Das Ziel des dritten Schwerpunkts dieser Arbeit ist die Einführung einer neuartigen Technik zur Erhöhung der Informationsdichte (engl. Coding capacity) in einem chiplosen FC RFID Systems. Die hierfür vorgeschlagene Modulation der Notchbreite (engl. notch width modulation, NWM) ermöglicht die Kodierung von 4 Bits (16 Zuständen) pro Resonator in dem die Notchbreite und die dazugehörige Frequenzlage ausgenutzt werden. Für jeden Notch werden 150MHz Bandbreite reserviert, innerhalb derer das Codebit durch eine bestimmte Bandbreiten an unterschiedlichen Frequenzen bestimmt wird Cj ( fk,Bl). Das bedeutet, bei einer Arbeitsfrequenz im Bereich von 2–5 GHz können so 80 Bits realisiert werden. Des Weiteren wurde eine smarte Singulärwertzerlegung (engl. smart singular value decomposition, SSVD) Technik entwickelt, um die Notchbreite zu ermitteln und eine geringe Fehlerwahrscheinlichkeit zu garantieren. Die Nutzung von Blockcodes zur Behebung von Fehlern wurde untersucht, um den größtmöglichen Nutzen aus der so gewonnene Bittiefe zu erzielen. Als Folge konnte eine große Bittiefe mit einer hohen Lesegenauigkeit bei vereinfachtem Aufbau des Lesegeräts erzielt werden. Außerdem wurde eine neuartige RFID Tag Struktur entworfen, die bei einer Größe von 4× 5 cm2 eine Codedichte von 4 Bits/cm2 erreicht. Verschiedene RFID Tag Konfigurationen wurden erstellt und das neu eingeführte Codierungsverfahren mit Hilfe von elektromagnetischen (EM) Simulation und der bereits erwähnten Testplattform überprüft. Die erzielten Ergebnisse ermöglichen ein widerstandsfähiges RFID System in einer realen Umgebung. Alle vorgeschlagenen Beiträge sind durch analytische Modelle, Simulationen und Messungen auf mögliche Probleme und die Grenzen einer Realisierung unter realistischen Bedingungen geprüft worden.Chipless Radio Frequency IDentification (RFID) is a promising technology predicted to replace the optical barcode in the near future. This is due to several problematic issues i) the barcode cannot read Non-Line-Of-Sight (NLOS) tags; ii) each barcode needs human assistance to be read; iii) it is impossible to identify multiple tags at the same time; and iv) the considerable time delay in case of massive queues because different types of objects need to be serially scanned. The contributions included in this dissertation concentrate on three main aspects of the Frequency Coded (FC) chipless RFID system. The first one is the multi-tag identification, which deals with the existence of multiple tags in the reader’s interrogation region. The second aspect is the system latency that describes the time the reader needs to identify the tags. Finally, there is the coding capacity that is responsible for designing a chipless tag with larger information bits. The aim of these aspects is to realize a chipless RFID system. Since the chipless tags are memoryless as they do not include Integrated Circuits (ICs), the number of bits to be stored in the chipless tag is limited. Consequently, the current RFID standards and protocols designed for the chipped RFID systems are not applicable to the chipless systems. The main objective of the first contribution is to introduce novel multi-tag anti-collision protocols based on Notch Position Modulation (NPM) and Look-Up-Table (LUT) schemes determining the network and MAC layers of the chipless RFID systems. The first generation of the proposed protocol (Gen-1) relies on dividing the spectrum into two parts; the first one is the preamble bandwidth that includes a unique frequency shift for each tag. The second part is the frame bandwidth which represents the tag ID. The tag ID is obtained based on the predefined frequency positions, making use of the unique frequency shift. Consequently, the interference is avoided as there will not be any overlap between the tags’ responses. The second generation of the protocol (Gen-2) introduces an improvement in the spectrum utilization and coding capacity. This is realized by transferring the tag-ID to be stored in a table in the main memory of the reader (look-up-table). The unique shift of each tag represents the address of the tag’s ID. Therefore, the complexity of the tag structure will be significantly reduced with an enhanced probability of detection. Furthermore, the key performance indicators for the chipless RFID system are explored to validate the protocol’s performance. Both protocols are modeled and simulated to identify 10-chipless tags in order to set the regulations of the tag and reader design. Moreover, a novel real-world testbed for a multi-tag Ultra Wideband (UWB) chipless RFID system based on Software Defined Radio (SDR) is introduced. In this testbed, all the signaling schemes related to the transmitted signal, the detection techniques, the empty room calibration for the clutter removal process, and the identification protocols are applied. The aim of the second aspect is to introduce novel techniques that reduce the time required by the reader to identify the FC chipless RFID tags existent in the reader’s interrogation region. This time delay is called system latency. The main parameters that significantly affect the overall system latency are the frequency scanning methodology, the number of spectrum scanning iterations for the clutter removal process, and the hop duration. Therefore, the Adaptive Frequency Hopping (AFH) and the Adaptive Sliding Window (ASW) methodologies are proposed to meet the requirements of the FC chipless RFID tags. Regarding the ASW technique, it is suitable to identify the tags using the Gen-1 protocol which utilizes a sliding window (for detecting the notch) with an adaptive size to extract the tag’s-ID. The second adaptive methodology, AFH, can identify the tags with the Gen-2 protocol by using a variable frequency step that fits the corresponding notch patterns. These techniques are proven to be efficient for the chipless RFID systems with regard to latency and accuracy. Likewise, the designed AFH and ASW technique’s performance is compared to the classical Fixed Frequency Hopping (FFH) methodology with a fine frequency step to validate the accuracy of the proposed techniques. A real-world SDR based testbed is designed and the proposed adaptive algorithms as well as the classical FFH methodology are implemented. The experiments show that the proposed AFH combined with the ASW algorithms significantly reduce the system latency by 58%. The goal of the third aspect is to introduce a novel technique that increases the coding capacity of the FC chipless RFID system. The proposed Notch Width Modulation (NWM) scheme encodes 4 bits (16-combinations) per single resonator exploiting the notch bandwidth and its corresponding frequency position. Furthermore, each notch can reserve a window with a bandwidth of 150 MHz and inside this window the notch can obtain a certain bandwidth with a specific resonant frequency constructing the coding pairs Cj ( fk,Bl). Hence, 80-bits could be achieved at the operating frequency 2–5 GHz, preserving the operating frequency bandwidth. Also, a Smart Singular Value Decomposition (SSVD) technique is designed to estimate the notch bandwidth and to ensure a low probability of error. In addition, the utilization of a linear block code as an error correcting code is explored to make the best use of the obtained coding gain. Consequently, a high encoding efficiency and an accurate detection can be achieved in addition to a simplified reader design. Moreover, a novel 4× 5 cm2 tag structure is designed to meet the requirements of the NWM coding technique achieving a coding density of 4 bits/cm2. Different tag configurations are manufactured and validated by measurements using the SDR platform. The introduced coding methodology is conclusively validated using Electromagnetic (EM) simulations and real-world testbed measurements. The considered achievements for the proposed aspects offer a robust chipless RFID system that can be considered in real scenarios. Furthermore, all the proposed contributions are validated using analytical modeling, simulation and measurements in order to list their difficulties and limitations

    Collective Communications and Computation Mechanisms on the RF Channel for Organic Printed Smart Labels and Resource-limited IoT Nodes

    Get PDF
    Radio Frequency IDentification (RFID) and Wireless Sensor Networks (WSN) are seen as enabler technologies for realizing the Internet of Things (IoT). Organic and printed Electronics (OE) has the potential to provide low cost and all-printable smart RFID labels in high volumes. With regard to WSN, power harvesting techniques and resource-efficient communications are promising key technologies to create sustainable and for the environment friendly sensing devices. However, the implementation of OE smart labels is only allowing printable devices of ultra-low hardware complexity, that cannot employ standard RFID communications. And, the deployment of current WSN technology is far away from offering battery-free and low-cost sensing technology. To this end, the steady growth of IoT is increasing the demand for more network capacity and computational power. With respect to wireless communications research, the state-of-the-art employs superimposed radio transmission in form of physical layer network coding and computation over the MAC to increase information flow and computational power, but lacks on practicability and robustness so far. With regard to these research challenges we developed in particular two approaches, i.e., code-based Collective Communications for dense sensing environments, and time-based Collective Communications (CC) for resource-limited WSNs. In respect to the code-based CC approach we exploit the principle of superimposed radio transmission to acquire highly scalable and robust communications obtaining with it at the same time as well minimalistic smart RFID labels, that can be manufactured in high volume with present-day OE. The implementation of our code-based CC relies on collaborative and simultaneous transmission of randomly drawn burst sequences encoding the data. Based on the framework of hyper-dimensional computing, statistical laws and the superposition principle of radio waves we obtained the communication of so called ensemble information, meaning the concurrent bulk reading of sensed values, ranges, quality rating, identifiers (IDs), and so on. With 21 transducers on a small-scale reader platform we tested the performance of our approach successfully proving the scalability and reliability. To this end, we implemented our code-based CC mechanism into an all-printable passive RFID label down to the logic gate level, indicating a circuit complexity of about 500 transistors. In respect to time-based CC approach we utilize the superimposed radio transmission to obtain resource-limited WSNs, that can be deployed in wide areas for establishing, e.g., smart environments. In our application scenario for resource-limited WSN, we utilize the superimposed radio transmission to calculate functions of interest, i.e., to accomplish data processing directly on the radio channel. To prove our concept in a case study, we created a WSN with 15 simple nodes measuring the environmental mean temperature. Based on our analysis about the wireless computation error we were able to minimize the stochastic error arbitrarily, and to remove the systematic error completely

    Performance Assessment of Routing Protocols for IoT/6LoWPAN Networks

    Get PDF
    The Internet of Things (IoT) proposes a disruptive communication paradigm that allows smart objects to exchange data among themselves to reach a common goal. IoT application scenarios are multiple and can range from a simple smart home lighting system to fully controlled automated manufacturing chains. In the majority of IoT deployments, things are equipped with small devices that can suffer from severe hardware and energy restrictions that are responsible for performing data processing and wireless communication tasks. Thus, due to their features, communication networks that are used by these devices are generally categorized as Low Power and Lossy Networks (LLNs). The considerable variation in IoT applications represents a critical issue to LLN networks, which should offer support to different requirements as well as keeping reasonable quality-of-service (QoS) levels. Based on this challenge, routing protocols represent a key issue in IoT scenarios deployment. Routing protocols are responsible for creating paths among devices and their interactions. Hence, network performance and features are highly dependent on protocol behavior. Also, based on the adopted protocol, the support for some specific requirements of IoT applications may or may not be provided. Thus, a routing protocol should be projected to attend the needs of the applications considering the limitations of the device that will execute them. Looking to attend the demand of routing protocols for LLNs and, consequently, for IoT networks, the Internet Engineering Task Force (IETF) has designed and standardized the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). This protocol, although being robust and offering features to fulfill the need of several applications, still presents several faults and weaknesses (mainly related to its high complexity and memory requirement), which limits its adoption in IoT scenarios. An alternative to RPL, the Lightweight On-demand Ad Hoc Distancevector Routing Protocol – Next Generation (LOADng) has emerged as a less complicated routing solution for LLNs. However, the cost of its simplicity is paid for with the absence of adequate support for a critical set of features required for many IoT environments. Thus, based on the challenging open issues related to routing in IoT networks, this thesis aims to study and propose contributions to better attend the network requirements of IoT scenarios. A comprehensive survey, reviewing state-of-the-art routing protocols adopted for IoT, identified the strengths and weaknesses of current solutions available in the literature. Based on the identified limitations, a set of improvements is designed to overcome these issues and enhance IoT network performance. The novel solutions are proposed to include reliable and efficient support to attend the needs of IoT applications, such as mobility, heterogeneity, and different traffic patterns. Moreover, mechanisms to improve the network performance in IoT scenarios, which integrate devices with different communication technologies, are introduced. The studies conducted to assess the performance of the proposed solutions showed the high potential of the proposed solutions. When the approaches presented in this thesis were compared with others available in the literature, they presented very promising results considering the metrics related to the Quality of Service (QoS), network and energy efficiency, and memory usage as well as adding new features to the base protocols. Hence, it is believed that the proposed improvements contribute to the state-of-the-art of routing solutions for IoT networks, increasing the performance and adoption of enhanced protocols.A Internet das Coisas, do inglês Internet of Things (IoT), propõe um paradigma de comunicação disruptivo para possibilitar que dispositivos, que podem ser dotados de comportamentos autónomos ou inteligentes, troquem dados entre eles buscando alcançar um objetivo comum. Os cenários de aplicação do IoT são muito variados e podem abranger desde um simples sistema de iluminação para casa até o controle total de uma linha de produção industrial. Na maioria das instalações IoT, as “coisas” são equipadas com um pequeno dispositivo, responsável por realizar as tarefas de comunicação e processamento de dados, que pode sofrer com severas restrições de hardware e energia. Assim, devido às suas características, a rede de comunicação criada por esses dispositivos é geralmente categorizada como uma Low Power and Lossy Network (LLN). A grande variedade de cenários IoT representam uma questão crucial para as LLNs, que devem oferecer suporte aos diferentes requisitos das aplicações, além de manter níveis de qualidade de serviço, do inglês Quality of Service (QoS), adequados. Baseado neste desafio, os protocolos de encaminhamento constituem um aspecto chave na implementação de cenários IoT. Os protocolos de encaminhamento são responsáveis por criar os caminhos entre os dispositivos e permitir suas interações. Assim, o desempenho e as características da rede são altamente dependentes do comportamento destes protocolos. Adicionalmente, com base no protocolo adotado, o suporte a alguns requisitos específicos das aplicações de IoT podem ou não ser fornecidos. Portanto, estes protocolos devem ser projetados para atender as necessidades das aplicações assim como considerando as limitações do hardware no qual serão executados. Procurando atender às necessidades dos protocolos de encaminhamento em LLNs e, consequentemente, das redes IoT, a Internet Engineering Task Force (IETF) desenvolveu e padronizou o IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). O protocolo, embora seja robusto e ofereça recursos para atender às necessidades de diferentes aplicações, apresenta algumas falhas e fraquezas (principalmente relacionadas com a sua alta complexidade e necessidade de memória) que limitam sua adoção em cenários IoT. Em alternativa ao RPL, o Lightweight On-demand Ad hoc Distance-vector Routing Protocol – Next Generation (LOADng) emergiu como uma solução de encaminhamento menos complexa para as LLNs. Contudo, o preço da simplicidade é pago com a falta de suporte adequado para um conjunto de recursos essenciais necessários em muitos ambientes IoT. Assim, inspirado pelas desafiadoras questões ainda em aberto relacionadas com o encaminhamento em redes IoT, esta tese tem como objetivo estudar e propor contribuições para melhor atender os requisitos de rede em cenários IoT. Uma profunda e abrangente revisão do estado da arte sobre os protocolos de encaminhamento adotados em IoT identificou os pontos fortes e limitações das soluções atuais. Com base nas debilidades encontradas, um conjunto de soluções de melhoria é proposto para superar carências existentes e melhorar o desempenho das redes IoT. As novas soluções são propostas para incluir um suporte confiável e eficiente capaz atender às necessidades das aplicações IoT relacionadas com suporte à mobilidade, heterogeneidade dos dispositivos e diferentes padrões de tráfego. Além disso, são introduzidos mecanismos para melhorar o desempenho da rede em cenários IoT que integram dispositivos com diferentes tecnologias de comunicação. Os vários estudos realizados para mensurar o desempenho das soluções propostas mostraram o grande potencial do conjunto de melhorias introduzidas. Quando comparadas com outras abordagens existentes na literatura, as soluções propostas nesta tese demonstraram um aumento do desempenho consistente para métricas relacionadas a qualidade de serviço, uso de memória, eficiência energética e de rede, além de adicionar novas funcionalidades aos protocolos base. Portanto, acredita-se que as melhorias propostas contribuiem para o avanço do estado da arte em soluções de encaminhamento para redes IoT e aumentar a adoção e utilização dos protocolos estudados

    Sistemas eficientes de transmissão de energia sem-fios e identificação por radiofrequência

    Get PDF
    Doutoramento em Engenharia EletrotécnicaIn the IoT context, where billions of connected objects are expected to be ubiquitously deployed worldwide, the frequent battery maintenance of ubiquitous wireless nodes is undesirable or even impossible. In these scenarios, passive-backscatter radios will certainly play a crucial role due to their low cost, low complexity and battery-free operation. However, as passive-backscatter devices are chiefly limited by the WPT link, its efficiency optimization has been a major research concern over the years, gaining even more emphasis in the IoT context. Wireless power transfer has traditionally been carried out using CW signals, and the efficiency improvement has commonly been achieved through circuit design optimization. This thesis explores a fundamentally different approach, in which the optimization is focused on the powering waveforms, rather than the circuits. It is demonstrated through theoretical analysis, simulations and measurements that, given their greater ability to overcome the built-in voltage of rectifying devices, high PAPR multi-sine (MS) signals are capable of more efficiently exciting energy harvesting circuits when compared to CWs. By using optimal MS signals to excite rectifying devices, remarkable RF-DC conversion efficiency gains of up to 15 dB with respect to CW signals were obtained. In order to show the effectiveness of this approach to improve the communication range of passive-backscatter systems, a MS front-end was integrated in a commercial RFID reader and a significant range extension of 25% was observed. Furthermore, a software-defined radio RFID reader, compliant with ISO18000-6C standard and with MS capability, was constructed from scratch. By interrogating passive RFID transponders with MS waveforms, a transponder sensitivity improvement higher than 3 dB was obtained for optimal MS signals. Since the amplification and transmission of high PAPR signals is critical, this work also proposes efficient MS transmitting architectures based on space power combining techniques. This thesis also addresses other not less important issues, namely self-jamming in passive RFID readers, which is the second limiting factor of passive-backscatter systems. A suitable self-jamming suppression scheme was first used for CW signals and then extended to MS signals, yielding a CW isolation up to 50 dB and a MS isolation up 60 dB. Finally, a battery-less remote control system was developed and integrated in a commercial TV device with the purpose of demonstrating a practical application of wireless power transfer and passive-backscatter concepts. This allowed battery-free control of four basic functionalities of the TV (CH+,CH-,VOL+,VOL-).No contexto da internet das coisas (IoT), onde são esperados bilhões de objetos conectados espalhados pelo planeta de forma ubíqua, torna-se impraticável uma frequente manutenção e troca de baterias dos dispositivos sem fios ubíquos. Nestes cenários, os sistemas radio backscatter passivos terão um papel preponderante dado o seu baixo custo, baixa complexidade e não necessidade de baterias nos nós móveis. Uma vez que a transmissão de energia sem fios é o principal aspeto limitativo nestes sistemas, a sua otimização tem sido um tema central de investigação, ganhando ainda mais ênfase no contexto IoT. Tradicionalmente, a transferência de energia sem-fios é feita através de sinais CW e a maximização da eficiência é conseguida através da otimização dos circuitos recetores. Neste trabalho explora-se uma abordagem fundamentalmente diferente, em que a otimização foca-se nas formas de onda em vez dos circuitos. Demonstra-se, teoricamente e através de simulações e medidas que, devido à sua maior capacidade em superar a barreira de potencial intrínseca dos dispositivos retificadores, os sinais multi-seno (MS) de elevado PAPR são capazes de excitar os circuitos de colheita de energia de forma mais eficiente quando comparados com o sinal CW tradicional. Usando sinais MS ótimos em circuitos retificadores, foram verificadas experimentalmente melhorias de eficiência de conversão RF-DC notáveis de até 15 dB relativamente ao sinal CW. A fim de mostrar a eficácia desta abordagem na melhoria da distância de comunicação de sistemas backscatter passivos, integrou-se um front-end MS num leitor RFID comercial e observou-se um aumento significativo de 25% na distância de leitura. Além disso, desenvolveu-se de raiz um leitor RFID baseado em software rádio, compatível com o protocolo ISO18000-6C e capaz de gerar sinais MS, com os quais interrogou-se transponders passivos, obtendo-se ganhos de sensibilidade dos transponders maiores que 3 dB. Uma vez que a amplificação de sinais de elevado PAPR é uma operação crítica, propôs-se também novas arquiteturas eficientes de transmissão baseadas na combinação de sinais em espaço livre. Esta tese aborda também outros aspetos não menos importantes, como o self-jamming em leitores RFID passivos, tido como o segundo fator limitativo neste tipo de sistemas. Estudou-se técnicas de cancelamento de self-jamming CW e estendeu-se o conceito a sinais MS, tendo-se obtido isolamentos entre o transmissor e o recetor de até 50 dB no primeiro caso e de até 60 dB no segundo. Finalmente, com o objetivo de demonstrar uma aplicação prática dos conceitos de transmissão de energia sem fios e comunicação backscatter, desenvolveu-se um sistema de controlo remoto sem pilhas, cujo protótipo foi integrado num televisor comercial a fim de controlar quatro funcionalidades básicas (CH+,CH-,VOL+,VOL-)

    Realistic chipless RFID: identification and localization

    Get PDF
    Für die weitere Massenverbreitung von RFID Systemen ist ein günstiges und genaues Verfahren zur Objektlokalisierung und –verfolgung zwingend erforderlich. Chiplose RFID Systeme erlauben im Gegensatz zu herkömmlichen chipbehafteten RFID Systemen den Einsatz von einfachen, druckbaren RFID Tags, eine Möglichkeit zum Einstieg in die Ära von extrem billigen RFID Tags. Diese Dissertation konzentriert sich auf die Lösung von drei Herausforderungen bei der Erkennung von chiplosen RFID Tags innerhalb geschlossener Räume. Der erste in der vorliegenden Arbeit diskutierte Aspekt beschäftigt sich mit Methoden zum Eliminieren des Störechos der Umgebung (clutter removal techniques). Im chiplosen RFID System ist das Umgebungsstörecho definiert durch das von der Umgebung reflektierte Signal, das nicht mit dem RFID Tag interagiert. Die Stärke dieses Signals ist in jedem Fall größer als die des vom RFID Tag zurückgestrahlten (backscattered) Signals, was die Signaturerkennung des RFID Tags unmöglich macht. Zur Lösung dieses Problems schlage ich zwei Algorithmen vor. Der erste ist die Leerraum-Kalibrierung (empty room calibration). Bei diesem Algorithmus werden die Messungen mit RFID Tag von denen ohne RFID Tags abgezogen. Der zweite Algorithmus basiert auf dem Rake-Receiver unter Nutzung einer Zufallsfolge (PN sequence), er erfordert keine zusätzliche Kalibrierung. Der zweite Aspekt betrifft die Notch Erkennung und Identifikation, ein sehr wichtiger Bereich des chiplosen RFID Systems. Er ist dafür verantwortlich, die Notchs in Bits umzuwandeln. Für eine effektive Detektion werden Windowing (Fenster) Verfahren vorgeschlagen, wobei jedes Fenster einen oder auch keinen Notch beinhalten kann. Insgesamt drei neue Verfahren zur Notch Erkennung wurden implementiert. Als erstes ein Matched Filter (MF), in dem der einkommende Notch mit einem Referenz Notch verglichen wird. Das zweite Verfahren basiert auf einer gefensterten Singulärwertzerlegung, damit kann sowohl der Notch erkannt werden, als auch seine Bandbreite bestimmt werden. Als drittes Verfahren wird das dynamische Frequency Warping vorgestellt. Diese Technik nutzt nichtlineare um die Notche unddie Frequenzverschiebungen, die an den Notches auftreten, zu erkennen. Als dritter Aspekt wird die Lokalisierung der RFID Tags in dieser Dissertation diskutiert. Dazu werden zwei Algorithmen erklärt und implementiert. Der erste Algorithmus beruht auf der Triangulation durch drei getrennte RFID Lesegeräte, während sich der zweite die Position des RFID Tags aus der Signalstärke und dem Winkel des vom RFID Tag kommenden Signals berechnet. Alle genannten Algorithmen und Verfahren wurden in einer realen Innenraum Testumgebung mit RFID Tags und einer Software Defined Radio (SDR) Plattform vermessen, um die Zuverlässigkeit der Algorithmen unter normalen Bedingungen zu überprüfen.For mass deployment of RFID systems, cheap and accurate item level identification and tracking are profoundly needed. Fortunately, unlike conventional chip-based RFID, chipless RFID systems offers low-cost printable tags holding a better chance to enter the era of penny-cost tags. This dissertation concentrated on solving three challenges in the detection of the chipless tag inside an indoor environment. The first aspect discussed in the thesis are the chipless RFID clutter removal techniques. In chipless RFID the environmental clutter response is defined as the signal reflected from the environment, that does not interact with the tag. This signal has higher power than the backscattered signal from the tag, rendering the tag signature undetectable. Two algorithms to overcome this problem was used, the first is empty room calibration. The first algorithm is based on subtracting the measurement with the tag from the one without. The second algorithm is Rake receiver using PN sequence; this algorithm requires no pre-measurement calibration. The second aspect is notch detection and identification which is a critical part of the chipless system. This part is responsible for converting the notches into bits. For effective detection, a windowing operation is proposed, where each window may contain a notch or not. Three novel techniques are implemented to detect the notch. The first is matched filter were a reference notch is compared with the incoming signal. The second is window based singular value decomposition, where a constellation is created to detect not only the existence of a notch but also the bandwidth of the notch. The third notch detection technique is dynamic frequency warping. This technique utilizes non-linear warping to detect the notch and the frequency shifts that occurs on the notch. The third aspect discussed in the thesis is tag localization. In this aspect, two algorithms are implemented and explained. The first is trilateration which requires three different readers. The second localization algorithm exploits received signal strength and angle of arrival to detect the location of the tag accurately. All the algorithms were tested using a real testbed to validate the reliability of the techniques. The measurements were done using fabricated tags in an indoor environment using Software Defines Radio (SDR)

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Enabling technologies and cyber-physical systems for mission-critical scenarios

    Get PDF
    Programa Oficial de Doutoramento en Tecnoloxías da Información e Comunicacións en Redes Móbiles . 5029P01[Abstract] Reliable transport systems, defense, public safety and quality assurance in the Industry 4.0 are essential in a modern society. In a mission-critical scenario, a mission failure would jeopardize human lives and put at risk some other assets whose impairment or loss would significantly harm society or business results. Even small degradations of the communications supporting the mission could have large and possibly dire consequences. On the one hand, mission-critical organizations wish to utilize the most modern, disruptive and innovative communication systems and technologies, and yet, on the other hand, need to comply with strict requirements, which are very different to those of non critical scenarios. The aim of this thesis is to assess the feasibility of applying emerging technologies like Internet of Things (IoT), Cyber-Physical Systems (CPS) and 4G broadband communications in mission-critical scenarios along three key critical infrastructure sectors: transportation, defense and public safety, and shipbuilding. Regarding the transport sector, this thesis provides an understanding of the progress of communications technologies used for railways since the implantation of Global System for Mobile communications-Railways (GSM-R). The aim of this work is to envision the potential contribution of Long Term Evolution (LTE) to provide additional features that GSM-R would never support. Furthermore, the ability of Industrial IoT for revolutionizing the railway industry and confront today's challenges is presented. Moreover, a detailed review of the most common flaws found in Radio Frequency IDentification (RFID) based IoT systems is presented, including the latest attacks described in the literature. As a result, a novel methodology for auditing security and reverse engineering RFID communications in transport applications is introduced. The second sector selected is driven by new operational needs and the challenges that arise from modern military deployments. The strategic advantages of 4G broadband technologies massively deployed in civil scenarios are examined. Furthermore, this thesis analyzes the great potential for applying IoT technologies to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where defense and public safety could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. The last part is devoted to the shipbuilding industry. After defining the novel concept of Shipyard 4.0, how a shipyard pipe workshop works and what are the requirements for building a smart pipe system are described in detail. Furthermore, the foundations for enabling an affordable CPS for Shipyards 4.0 are presented. The CPS proposed consists of a network of beacons that continuously collect information about the location of the pipes. Its design allows shipyards to obtain more information on the pipes and to make better use of it. Moreover, it is indicated how to build a positioning system from scratch in an environment as harsh in terms of communications as a shipyard, showing an example of its architecture and implementation.[Resumen] En la sociedad moderna, los sistemas de transporte fiables, la defensa, la seguridad pública y el control de la calidad en la Industria 4.0 son esenciales. En un escenario de misión crítica, el fracaso de una misión pone en peligro vidas humanas y en riesgo otros activos cuyo deterioro o pérdida perjudicaría significativamente a la sociedad o a los resultados de una empresa. Incluso pequeñas degradaciones en las comunicaciones que apoyan la misión podrían tener importantes y posiblemente terribles consecuencias. Por un lado, las organizaciones de misión crítica desean utilizar los sistemas y tecnologías de comunicación más modernos, disruptivos e innovadores y, sin embargo, deben cumplir requisitos estrictos que son muy diferentes a los relativos a escenarios no críticos. El objetivo principal de esta tesis es evaluar la viabilidad de aplicar tecnologías emergentes como Internet of Things (IoT), Cyber-Physical Systems (CPS) y comunicaciones de banda ancha 4G en escenarios de misión crítica en tres sectores clave de infraestructura crítica: transporte, defensa y seguridad pública, y construcción naval. Respecto al sector del transporte, esta tesis permite comprender el progreso de las tecnologías de comunicación en el ámbito ferroviario desde la implantación de Global System for Mobile communications-Railway (GSM-R). El objetivo de este trabajo es analizar la contribución potencial de Long Term Evolution (LTE) para proporcionar características adicionales que GSM-R nunca podría soportar. Además, se presenta la capacidad de la IoT industrial para revolucionar la industria ferroviaria y afrontar los retos actuales. Asimismo, se estudian con detalle las vulnerabilidades más comunes de los sistemas IoT basados en Radio Frequency IDentification (RFID), incluyendo los últimos ataques descritos en la literatura. Como resultado, se presenta una metodología innovadora para realizar auditorías de seguridad e ingeniería inversa de las comunicaciones RFID en aplicaciones de transporte. El segundo sector elegido viene impulsado por las nuevas necesidades operacionales y los desafíos que surgen de los despliegues militares modernos. Para afrontarlos, se analizan las ventajas estratégicas de las tecnologías de banda ancha 4G masivamente desplegadas en escenarios civiles. Asimismo, esta tesis analiza el gran potencial de aplicación de las tecnologías IoT para revolucionar la guerra moderna y proporcionar beneficios similares a los alcanzados por la industria. Se identifican escenarios en los que la defensa y la seguridad pública podrían aprovechar mejor las capacidades comerciales de IoT para ofrecer una mayor capacidad de supervivencia al combatiente o a los servicios de emergencias, a la vez que reduce los costes y aumenta la eficiencia y efectividad de las operaciones. La última parte se dedica a la industria de construcción naval. Después de definir el novedoso concepto de Astillero 4.0, se describe en detalle cómo funciona el taller de tubería de astillero y cuáles son los requisitos para construir un sistema de tuberías inteligentes. Además, se presentan los fundamentos para posibilitar un CPS asequible para Astilleros 4.0. El CPS propuesto consiste en una red de balizas que continuamente recogen información sobre la ubicación de las tuberías. Su diseño permite a los astilleros obtener más información sobre las tuberías y hacer un mejor uso de las mismas. Asimismo, se indica cómo construir un sistema de posicionamiento desde cero en un entorno tan hostil en términos de comunicaciones, mostrando un ejemplo de su arquitectura e implementación

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore