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Abstract

Chipless Radio Frequency IDentification (RFID) is a promising technology predicted to replace

the optical barcode in the near future. This is due to several problematic issues i) the barcode

cannot read Non-Line-Of-Sight (NLOS) tags; ii) each barcode needs human assistance to be

read; iii) it is impossible to identify multiple tags at the same time; and iv) the considerable time

delay in case of massive queues because different types of objects need to be serially scanned.

The contributions included in this dissertation concentrate on three main aspects of the

Frequency Coded (FC) chipless RFID system. The first one is the multi-tag identification, which

deals with the existence of multiple tags in the reader’s interrogation region. The second aspect

is the system latency that describes the time the reader needs to identify the tags. Finally, there is

the coding capacity that is responsible for designing a chipless tag with larger information bits.

The aim of these aspects is to realize a chipless RFID system.

Since the chipless tags are memoryless as they do not include Integrated Circuits (ICs),

the number of bits to be stored in the chipless tag is limited. Consequently, the current RFID

standards and protocols designed for the chipped RFID systems are not applicable to the chipless

systems. The main objective of the first contribution is to introduce novel multi-tag anti-collision

protocols based on Notch Position Modulation (NPM) and Look-Up-Table (LUT) schemes

determining the network and MAC layers of the chipless RFID systems. The first generation of

the proposed protocol (Gen-1) relies on dividing the spectrum into two parts; the first one is the

preamble bandwidth that includes a unique frequency shift for each tag. The second part is the

frame bandwidth which represents the tag ID. The tag ID is obtained based on the predefined

frequency positions, making use of the unique frequency shift. Consequently, the interference is

avoided as there will not be any overlap between the tags’ responses. The second generation of

the protocol (Gen-2) introduces an improvement in the spectrum utilization and coding capacity.

This is realized by transferring the tag-ID to be stored in a table in the main memory of the reader

(look-up-table). The unique shift of each tag represents the address of the tag’s ID. Therefore,



the complexity of the tag structure will be significantly reduced with an enhanced probability

of detection. Furthermore, the key performance indicators for the chipless RFID system are

explored to validate the protocol’s performance. Both protocols are modeled and simulated to

identify 10-chipless tags in order to set the regulations of the tag and reader design. Moreover, a

novel real-world testbed for a multi-tag Ultra Wideband (UWB) chipless RFID system based on

Software Defined Radio (SDR) is introduced. In this testbed, all the signaling schemes related

to the transmitted signal, the detection techniques, the empty room calibration for the clutter

removal process, and the identification protocols are applied.

The aim of the second aspect is to introduce novel techniques that reduce the time required

by the reader to identify the FC chipless RFID tags existent in the reader’s interrogation region.

This time delay is called system latency. The main parameters that significantly affect the overall

system latency are the frequency scanning methodology, the number of spectrum scanning itera-

tions for the clutter removal process, and the hop duration. Therefore, the Adaptive Frequency

Hopping (AFH) and the Adaptive Sliding Window (ASW) methodologies are proposed to meet

the requirements of the FC chipless RFID tags. Regarding the ASW technique, it is suitable

to identify the tags using the Gen-1 protocol which utilizes a sliding window (for detecting the

notch) with an adaptive size to extract the tag’s-ID. The second adaptive methodology, AFH,

can identify the tags with the Gen-2 protocol by using a variable frequency step that fits the

corresponding notch patterns. These techniques are proven to be efficient for the chipless RFID

systems with regard to latency and accuracy. Likewise, the designed AFH and ASW technique’s

performance is compared to the classical Fixed Frequency Hopping (FFH) methodology with

a fine frequency step to validate the accuracy of the proposed techniques. A real-world SDR

based testbed is designed and the proposed adaptive algorithms as well as the classical FFH

methodology are implemented. The experiments show that the proposed AFH combined with

the ASW algorithms significantly reduce the system latency by 58%.

The goal of the third aspect is to introduce a novel technique that increases the coding

capacity of the FC chipless RFID system. The proposed Notch Width Modulation (NWM)

scheme encodes 4 bits (16-combinations) per single resonator exploiting the notch bandwidth

and its corresponding frequency position. Furthermore, each notch can reserve a window with a

bandwidth of 150 MHz and inside this window the notch can obtain a certain bandwidth with

a specific resonant frequency constructing the coding pairs C j ( fk,Bl). Hence, 80-bits could be

achieved at the operating frequency 2–5 GHz, preserving the operating frequency bandwidth.

Also, a Smart Singular Value Decomposition (SSVD) technique is designed to estimate the



notch bandwidth and to ensure a low probability of error. In addition, the utilization of a linear

block code as an error correcting code is explored to make the best use of the obtained coding

gain. Consequently, a high encoding efficiency and an accurate detection can be achieved in

addition to a simplified reader design. Moreover, a novel 4×5 cm2 tag structure is designed to

meet the requirements of the NWM coding technique achieving a coding density of 4 bits/cm2.

Different tag configurations are manufactured and validated by measurements using the SDR

platform. The introduced coding methodology is conclusively validated using Electromagnetic

(EM) simulations and real-world testbed measurements.

The considered achievements for the proposed aspects offer a robust chipless RFID system

that can be considered in real scenarios. Furthermore, all the proposed contributions are validated

using analytical modeling, simulation and measurements in order to list their difficulties and

limitations.





Abstrakt

Chiplose Identifikation über Funkfrequenzen, RFID (engl., Radio Frequency IDentification) ist

eine vielversprechende Technology, der man die Fähigkeit zuschreibt, in naher Zukunft den

optischen Barcode zu ersetzen. Letztgenannter hat Einschränkungen durch i) RFID Tags sind

bei nicht vorhandener Sichtverbindung (engl. Non-Line-Of-Sight, NLOS) auch nicht lesbar;

ii) das Scannen der Barcodes benötigt in den meisten Fällen manuelles Eingreifen; iii) es ist

unmöglich mehrere Barcodes gleichzeitig auszulesen; iv) und als Folge davon entsprechende

Verzögerungen beim Auslesen größerer Mengen von Barcodes, da alle einzeln gescannt werden

müssen.

Die Beiträge der vorliegenden Dissertation konzentrieren sich auf drei Schwerpunkte von

frequenzcodierten (engl. frequency coded, FC) chiplosen RFID Systemen. Der erste Schwer-

punkt ist die gleichzeitige Identifikation von mehreren RFID Tags und kümmert sich um den

Fall, dass sich mehrere RFID Tags in der Lesezone des RFID Lesegerätes befinden. Der zweite

Aspekt betrifft die Verzögerung des Systems, die Zeit, das Lesegerät zum Identifizieren der RFID

Tags benötigt. Und drittens die Coding Kapazität des Systems, sie ist verantwortlich für die zu

erreichende Bittiefe des RFID Systems. Ein real umsetzbares RFID System erfordert Lösungen

in allen drei Aspekten.

Da chiplose RFID Tags keine integrierten Schaltungen (ICs) und somit auch keine Spe-

icherbausteine besitzen, ist die Anzahl der auf dem RFID Tag speicherbaren Bits begrenzt.

Und als Folge davon sind die Standards und Protokolle, die für die herkömmlichen chipbe-

hafteten RFID Systeme entwickelt worden, nicht auf chiplose RFID Systeme übertragbar. Das

wesentliche Ziel des ersten Beitrages ist die Einführung eines neuen Multi-Tag Antikollision-

sprotokolls, das auf der Modulation der Notchposition (engl. Notch Position Modulation, NPM)

und Tabellen (engl. Look-Up-Table, LUT) zur Bestimmung der Netzwerk- und MAC- Layer

des chiplosen RFID Systems basiert. Die erste Generation der vorgeschlagenen Protokolls

(Gen-1) baut auf einer Zweiteilung des zur Verfügung stehenden Spektrums auf. Im unteren



Frequenzbereich, als Präambel Bandbreite bezeichnet, wird jedem RFID Tag seine individuelle

Frequenzverschiebung übermittelt und im zweiten Bereich, der sogenannten Frame Bandbreite,

ist die Identifikationsnummer (ID) des RFID Tags hinterlegt. Mit dieser Anordnung lässt sich

jegliche Interferenz zwischen den verschiedenen RFID Tags unterbinden, da sich die Antworten

der RFID Tags nicht gegenseitig überlagern. Die zweite Generation dieses Protokolls bringt

eine Verbesserung sowohl bei der Coding Kapazität als auch bei der Nutzung des zur Verfügung

stehenden Frequenzspektrums. Dies wird dadurch erreicht, dass die ID des RFID in einer Tabelle

im Lesegerät gespeichert wird. Die individuelle Frequenzverschiebung dient dabei als Adresse

für die gespeicherten IDs. Dieser Schritt vereinfacht die Komplexität der Struktur des RFID Tags

signifikant, während gleichzeitig die Erkennungswahrscheinlichkeit erhöht wird. Des Weiteren

werden die Key Performance Indikatoren untersucht um die Leistungsfähigkeit der Protokolle zu

beweisen. Beide Protokollversionen werden modelliert und in einer Umgebung mit 10 chiplosen

RFID Tags simuliert, um die Randbedingungen für die Entwicklung der RFID Tags und des

RFID Lesegerätes zu ermitteln. Außerdem wird eine neuartige Testumgebung für ein Multi-

Tag Ultra Breitband (engl. ultra wideband UWB) RFID System unter realen Testbedingungen

basierend auf einem Software Defined Radio (SDR) Ansatz entwickelt. In dieser Testumgebung

werden sowohl die gesendeten Signal als auch Detektierungstechniken, Leerraum Kalibrierung

zur Reduzierung der Streustrahlung und die Identifikationsprotokolle untersucht.

Als zweiter Schwerpunkt dieser Arbeit werden neue Techniken zur Reduzierung der Sys-

temlaufzeit (engl. System Latency) eingeführt. Das Ziel dabei ist, die Zeit, die das RFID

Lesegerät zum Erkennen aller in Lesereichweite befindlichen chiplosen FC RFID Tags braucht,

zu verkürzen. Der Großteil der Systemlaufzeit wird durch das gewählte Frequenzscanverfahren,

durch die Anzahl der Mittelungen zur Eliminierung der umgebenden Streustrahlung und durch die

Dauer eines Frequenzsprungs bestimmt. In dieser werden dazu ein adaptives Frequenzsprungver-

fahren (engl. adaptive frequency hopping, AFH) sowie ein Verfahren Mittels adaptiver gleitender

Fensterung (engl. adaptive sliding window, ASW) eingeführt. Das ASW Verfahren ist dabei im

Hinblick auf die Identifizierung der RFID Tags nach dem Gen-1 Protokoll entwickelt, da es ein

gleitendes Fenster zur Detektierung der Notches mit einer variablen Breite zum Auslesen der ID

erfordert. Im Gegensatz dazu wird das Auffinden der im Gen-2 Protokoll verwendeten Notch-

pattern durch das AFH Verfahren verbessert. Dies wird über variable Frequenzsprünge, die auf

die jeweiligen Notchpattern optimiert werden, erreicht. Beide Verfahren haben sich als effektiv

sowohl im Hinblick auf die Systemlaufzeit als auch auf die Genauigkeit erwiesen. Das ASW

und das AFH Verfahren wurden dazu in der oben erwähnten Testumgebung implementiert und



mit dem klassischen Frequenzsprungverfahren, feste feingraduierte Frequenzschritte, verglichen.

Die Experimente haben gezeigt, dass das vorgeschlagene AFH Verfahren in Kombination mit

ASW zu einer beachtlichen Reduzierung der Systemlaufzeit von 58% führen.

Das Ziel des dritten Schwerpunkts dieser Arbeit ist die Einführung einer neuartigen Technik

zur Erhöhung der Informationsdichte (engl. Coding capacity) in einem chiplosen FC RFID

Systems. Die hierfür vorgeschlagene Modulation der Notchbreite (engl. notch width modula-

tion, NWM) ermöglicht die Kodierung von 4 Bits (16 Zuständen) pro Resonator in dem die

Notchbreite und die dazugehörige Frequenzlage ausgenutzt werden. Für jeden Notch werden

150MHz Bandbreite reserviert, innerhalb derer das Codebit durch eine bestimmte Bandbreiten an

unterschiedlichen Frequenzen bestimmt wird C j ( fk,Bl). Das bedeutet, bei einer Arbeitsfrequenz

im Bereich von 2–5 GHz können so 80 Bits realisiert werden. Des Weiteren wurde eine smarte

Singulärwertzerlegung (engl. smart singular value decomposition, SSVD) Technik entwickelt,

um die Notchbreite zu ermitteln und eine geringe Fehlerwahrscheinlichkeit zu garantieren. Die

Nutzung von Blockcodes zur Behebung von Fehlern wurde untersucht, um den größtmöglichen

Nutzen aus der so gewonnene Bittiefe zu erzielen. Als Folge konnte eine große Bittiefe mit einer

hohen Lesegenauigkeit bei vereinfachtem Aufbau des Lesegeräts erzielt werden. Außerdem

wurde eine neuartige RFID Tag Struktur entworfen, die bei einer Größe von 4× 5 cm2 eine

Codedichte von 4 Bits/cm2 erreicht. Verschiedene RFID Tag Konfigurationen wurden erstellt und

das neu eingeführte Codierungsverfahren mit Hilfe von elektromagnetischen (EM) Simulation

und der bereits erwähnten Testplattform überprüft.

Die erzielten Ergebnisse ermöglichen ein widerstandsfähiges RFID System in einer realen

Umgebung. Alle vorgeschlagenen Beiträge sind durch analytische Modelle, Simulationen und

Messungen auf mögliche Probleme und die Grenzen einer Realisierung unter realistischen

Bedingungen geprüft worden.
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1 | Introduction

With the increasing demand for identification and tracking applications when it comes to the

Internet-of-Things (IoT), or Internet-of-Objects [1–4], RFID technology has sparked consider-

able interest due to its remarkable advantages such as automated communication and remote

reading. The use of conventional Integrated Circuit (IC) chip-based RFID tags, however, has

lead to enormous challenges to their use in the supply chain for item-level tracking and the

identification of consumer goods, mainly because of the high price. Auspiciously, chipless RFID

tags, combine some of the benefits of the chipped RFID systems (non-line-of-sight requirement,

unique identification of each tag, can include sensors and good reading range) and barcode bene-

fits (low cost, printable working even under high environmental temperature). Thus, they have a

better chance of entering the era of penny-cost tags and item-level identification demands. The

dissertation summarizes the author’s endeavors towards the realization of extremely inexpensive

chipless RFID tags [5].

1.1 Chipless RFID: Challenges, Motivation and Scope

Chipless RFID is a promising technology intended to replace the barcode by 2020 as it exhibits

some of the same advantages as the barcode such as low manufacturing costs in addition to

some advantages of the RFID with chip system. However, here are some of the challenges of

implementing the chipless system, as follows:

1. The chipless tags are chip-less (without any registers, memory or, IC). Thus, they have a

very limited number of bits compared to the chipped RFID.

2. Low backscattered power, such that the reflected power from the tag is very weak.
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Chapter1. Introduction

3. Reading range, which determines how far the tags can be placed from the reader, is another

problem. This could be enhanced by using high gain directive antennas at the reader side.

The tag should also have high radar-cross-section values.

4. Environmental clutter significantly affects the accuracy of the detection and tag identifica-

tion.

5. The collision between the multi-tag responses because the tags share the same spectrum.

So, if several tags are located within the same interrogation region, the backscattered signal

from each tag may interfere with another tag.

6. Coding capacity, which is the number of bits to be assigned to each tag, also needs to be

considered.

Therefore, the existing RFID standards and protocols designed for the chipped RFID systems

are not applicable to the chipless systems.

In this dissertation, novel techniques for obtaining a robust chipless RFID system are proposed.

Fig. 1.1 summarizes the main topics explored throughout the dissertation such as:

1. Multi-tag identification: There are very few studies dealing with the multi-tag identifi-

cation for the Frequency Coded (FC) chipless RFID. There are only simulation results

for two-chipless tag scenarios. However in this dissertation, a clear (easy-to-use) medium

access control algorithm that prevents the collision between multi-chipless tags is proposed.

Furthermore, the key performance indicators for evaluating the proposed MAC protocol

are explored.

2. Chipless RFID system latency: The system latency could be defined as the time required

to identify the tags existent in the reader’s interrogation region. There is no prior research

that considers the system latency for the FC chipless RFID. The latency is improved

by designing adaptive techniques for sweeping the operating frequencies conserving the

detection accuracy of the tag.

3. Coding capacity: The number of bits that could be assigned to the chipless tags is a

critical issue as they do not include memories or storage elements. Furthermore, the

coding technique should be easily decoded and resistant against environmental effects.

Consequently, a novel technique that significantly increases the number of bits that are
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coded on the chipless tag depending on the notch bandwidth and frequency location is

developed..

As can be seen from the aspects mentioned above, the topics covered by this dissertation are

highly attractive since they include the critical issues of the utilized FC chipless RFID systems

considering the real-world implementation as well as practical issues. Consequently, the aim of

the designed system is to create an in-hand product in order to serve the commercial market.

System 
Latency

Coding Capacity

Multi-Tag 
Identification 

Figure 1.1: The main topics included in the thesis.

1.2 Dissertation Contributions and Organization

In this dissertation, we design novel techniques and algorithms in order to improve the overall

performance of the FC chipless RFID system. The main contributions and structure of this

dissertation can be summarized as follows.

• Chapter 2: Basic Concepts and State of the Art

This chapter introduces the RFID systems and lists the main groups of the chipped RFID.

Furthermore, the factors that have an effect on the reading range are illustrated. Also, the

difficulties of obtaining a low-cost RFID tag with chip are discussed. Afterwards, the core

functions of the FC chipless RFID system are explained while also mentioning the different
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types of existing chipless tags. The proposed reader based on a software-defined-radio,

that can be used to identify chipless tags, is then described. Finally, a comprehensive study

that compares the chipped RFID, the barcode, and the chipless RFID is included.

• Chapter 3: Multi-Tag Identification and Protocol Evaluation Framework

Chapter 3 describes novel techniques that identify several chipless tags existent in the

reader’s interrogation region. This chapter introduces two generations of the MAC pro-

tocols that serve to prevent the collision between the chipless tags’ responses. The first

generation of the MAC algorithm, Gen-1, is based on notch position modulation. With this

technique, the spectrum is divided into two main parts. The first part is called the preamble

region, and is responsible for obtaining the unique tag frequency shift. The second part

represents the tag-ID. A certain process is utilized to identify the tag and to extract its ID.

The second generation of the MAC protocol, Gen-2, is based on a look-up-table stored in

the reader’s main memory that contains the tags’ ID. Consequently, at Gen-2, the design

of the tag is much simpler as it only includes the unique frequency shift which is used

as a reference for the look-up-table. Furthermore, a complete mathematical framework

is presented for both techniques. Additionally, the key performance indicators (spectrum

utilization efficiency, the probability of error and overhead) are defined in order to estimate

the performance of the two proposed protocols. Finally, measurements are presented based

on the proposed software-defined-radio based reader.

The contributions to this chapter are listed below:

- A. El-Awamry, M. Khaliel, A. Fawky and T. Kaiser, "A Novel Multi-Tag Identifi-

cation Technique for Frequency Coded Chipless RFID Systems based on Look-Up-

Table Approach," 2017 11th European Conference on Antennas and Propagation

(EuCAP), Paris, 2017, pp. 1-5.

- M. El-Hadidy, A. El-Awamry, A. Fawky, M. Khaliel and T. Kaiser, "A novel collision

avoidance MAC protocol for multi-tag UWB chipless RFID systems based on Notch

Position Modulation," 2015 9th European Conference on Antennas and Propagation

(EuCAP), Lisbon, 2015, pp. 1-5.

- El-Hadidy, M., El-Awamry, A., Fawky, A., Khaliel, M., and Kaiser, T. (2016) Real-

world testbed for multi-tag UWB chipless RFID system based on a novel collision

avoidance MAC protocol. Trans. Emerging Tel. Tech., doi: 10.1002/ett.3124.
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• Chapter 4: Adaptive Frequency Sweeping Techniques to Reduce System Latency

After identification of multiple chipless tags existent in the same interrogation region of

the reader, the identification process should be performed in a short time. Consequently,

Chapter 4 introduces those factors that directly influence the overall system latency.

Furthermore, novel adaptations that reduce system latency are proposed. The first one is

applicable to the Gen-1 protocol, which utilizes an adaptive sliding window technique

in order to identify and extract the tag-IDs. The window size can be adjusted to capture

the signal backscattered from the tag. Another novel technique based on the adaptive

frequency hopping method is introduced. It is suitable for the Gen-2 MAC protocol and all

the FC chipless tags existent. With this technique, the reader transmits a signal with several

hopping rates in order to fit the physical properties of the chipless tags. This technique

is practically proven to be efficient for the FC chipless RFID systems as it offers a high

detection accuracy (by utilizing the simple energy detection)

- A. El-Awamry, M. Khaliel, A. Fawky and T. Kaiser, "Adaptive Frequency Sweeping

Techniques for Enhancing the Chipless RFID System Latency," Transactions on

Emerging Telecommunications Technologies (Weily), 2016, pp. 1-16.

- A. El-Awamry, A. Fawky, M. Khaliel,and T. Kaiser, "A Novel Adaptive Spectrum

Scanning Technique for Reducing the Identification Time of the UWB Chipless RFID

System," 14th IEEE International Conference on Networking, Sensing and Control,

Calabria, Italy, 2017, pp. 1-6.

- A. El-Awamry, M. Khaliel, A. Fawky, M. El-Hadidy and T. Kaiser, "Novel adaptive

sliding window algorithm reducing latency for multi-tag chipless RFID systems," Ra-

dio Science Meeting (Joint with AP-S Symposium), 2015 USNC-URSI, Vancouver,

BC, Canada, 2015, pp. 206-206.

- A. El-Awamry, A. Fawky, M. El-Hadidy and T. Kaiser, "Smart notch detection

techniques for robust frequency coded chipless RFID systems," 2015 9th European

Conference on Antennas and Propagation (EuCAP), Lisbon, 2015, pp. 1-5.

- A. Fawky, M. Khaliel, A. El-Awamry, M. El-Hadidy and T. Kaiser, "Novel Pseudo-

Noise coded chipless RFID system for clutter removal and tag detection," 2015 IEEE

International Conference on RFID (RFID), San Diego, CA, 2015, pp. 100-104.

• Chapter 5: Coding Capacity

In this chapter, a novel technique that increases the maximum number of bits that can be
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coded on the chipless tag is introduced. The proposed technique is based on the notch

bandwidth and frequency location. 16-combinations are achieved per single resonator,

which denotes to 4-bits per resonator (the maximum number of bits per single resonator in

the literature is 2-bits/resonator). Each notch obtains a specific bandwidth (one of three

predefined values, BW1, BW2, and BW3) and a particular frequency position, constructing

a 2D constellation diagram with 16 possible combinations. A novel tag structure is

presented to obtain the predefined bandwidths and frequency locations. Furthermore, a

complete mathematical framework relates the tag’s ID to the proposed coding pairs C j

( fk,Bl). An intelligent singular value decomposition technique is designed to decode the

backscattered signal from the tag and to then retrieve the tag’s ID. The probability of

error is estimated for the detection of three designed tags based on the proposed coding

technique. Additionally, the utilization of a linear block code as an error correcting code

for the chipless RFID system is shown. Finally, the robustness of the proposed coding

technique is verified by applying the decoding technique to the software defined radio

based reader.

- A. El-Awamry, M. Khaliel, A. Fawky, M. El-Hadidy and T. Kaiser, "Novel notch

modulation algorithm for enhancing the chipless RFID tags coding capacity," 2015

IEEE International Conference on RFID (RFID), San Diego, CA, 2015, pp. 25-31.

- A. Fawky, M. Khaliel, A. El-Awamry and T. Kaiser, "’Novel Notch Detection and

Identification Techniques for Frequency Coded Chipless RFID Readers," submitted

in IET Communications, 2016, pp. 1-20.

- M. Khaliel, A. El-Awamry, A. Fawky, M. El-Hadidy and T. Kaiser, "A novel co/cross-

polarizing chipless RFID tags for high coding capacity and robust detection," 2015

IEEE International Symposium on Antennas and Propagation and USNC/URSI

National Radio Science Meeting, Vancouver, BC, 2015, pp. 159-160.

• Chapter 6: Conclusions and Future Work

This chapter summarizes the main research challenges and highlights the results achieved.

Moreover, it offers effective guidelines and recommendations for future extensions of this

work.

Fig. 1.2 shows a diagram of the dissertation outline and the contribution used for each chapter.

Furthermore, the relation between the proposed contributions constructing a complete system for

the FC chipless RFID is illustrated.
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Figure 1.2: Schematic representation of the contributions and the chapters.
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2 | Basic Concepts and State of the Art

In this chapter, the fundamental principles and the background of the chipless RFID

system will be introduced. Additionally, the main procedures of the automatic-ID are

analyzed. Moreover, the two main families of the chipped RFID (near-field and far-field)

are illustrated. The difficulties of realizing a low-cost RFID tag with a chip will be

discussed. Furthermore, the different types of existing chipless tags and the corresponding

reader requirements are introduced. An overview of the proposed software-defined-radio

based reader will be presented. Afterwards, the communication layers (physical, data-link,

and network) are defined for the proposed chipless RFID system. Finally, a comprehensive

study is performed focusing on the chipped RFID, the barcode, and the chipless RFID.

2.1 Introduction

Radio Frequency Identification (RFID) is a wireless technique for capturing data. It uses Radio

Frequency (RF) waves to automatically identify objects [6]. Fig. 2.1 illustrates the well-known

existing procedures for automatic identification. The goal of this automatic identification (or

Auto-ID) is the creation of an “Internet of Objects”. In such a highly connected network, devices

linked within an enterprise can communicate with one another, providing real-time information

about the location, contents, destination, and ambient conditions of goods. This communication

allows much-sought-after machine-to-machine communication and decision-making, rendering

human assistance unnecessary and significantly reducing the number of errors [7]. Ideally, the

data should be stored in a silicon chip. The most common form of electronic data-carrying

devices in use in everyday life is a smart card which uses a contact field (telephone smart card,

bank cards). However, the mechanical contact employed by the smart card has often been
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Chapter2. Basic Concepts and State of the Art

impractical. A contactless transfer of data between the data-carrying device and its reader is far

more flexible. Ideally, the power required to operate the electronic data-carrying device would

also be transferred from the reader using contactless technology. Because of the procedures

used for the transfer of power and data, contactless ID systems are called RFID systems (radio

frequency identification) [8].

RFID relies on RF waves for data transmission between the data-carrying device, called the

RFID tag, and the interrogator. The generic configuration of an RFID system consists of:

1. The ID data-carrying tag that contains the identification code.

2. A reader, which sends the interrogation signal to the tags in range.

3. The middleware, which maintains the interface and the software protocol to encode and

decode the identification data from the reader and to transfer it into a mainframe or personal

computer. It establishes a link using an enterprise application.

Automatic ID

Optical 

Character 

Recognition 

(OCR)

Biometrics Barcode RFID Smart Cards

Fingerprint
Voice 

Identification
Near-Field Far-Field Chipless

Figure 2.1: Overview of automatic identification procedures.

2.2 RFID: System Description and Difficulties

The operations of the main groups of the RFID are illustrated in this section. Furthermore, the

factors affecting the reading range are discussed. Finally, the difficulties of obtaining low-cost

RFID tags are described.
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2.2. RFID: System Description and Difficulties

2.2.1 RFID System Scheme

Fig. 2.2 shows the two main groups of the RFID-with-chip system: near-field RFID as shown

in Fig. 2.2a and far-field RFID as illustrated in Fig. 2.2b. Regarding the near-field RFID, its

operation depends on Faraday’s principle of magnetic induction to establish near-field coupling

between reader and tag. A reader passes a large alternating current through a reading coil,

resulting in an alternating magnetic field in its locality. If a tag incorporated by a smaller coil is

placed in this field, an alternating voltage (electromotive force, em f ) will be generated across the

tag’s coil. Then this alternating voltage is rectified and passed to a capacitor to power the tag’s

chip. Afterwards, the in-field tags send back their data to the reader using load modulation [9].

ISO 15693 and 14443 standards set frequencies below 14 MHz (most of the near-field readers

usually operate at 13.56 MHz), which results in a range of a few centimeters. Near-field RFID is

widely used for cards and access control, but not for the management of goods due to its limited

range.

As shown in Fig. 2.2b, RFID tags based on far-field emission capture electromagnetic (EM)

waves propagating from a dipole antenna attached to the reader [9]. A smaller dipole antenna in

the tag receives this energy as an alternating potential difference that appears across the dipole’s

terminals. A diode rectifies this potential and delivers it to a capacitor, which will result in a

storage of energy in order to power its electronics. The operation of the far-field tags is based

on a backscattering technique which is presented in [9–11]. There are several types of far-field

based RFID systems: active, passive, and semi-passive [12–14]. Unlike the near-field RFID, the

reading range of the far-field RFID systems is determined by the amount of power required for

energizing the tag’s circuit. Consequently, the reading range depends on [15]:

• The Effective Isotropic Radiated Power (EIRP) from the reader which is the reader’s

transmitted power.

• The reader sensitivity, which defines the minimum level of the tag’s signal which the

reader can detect and resolve.

• The tag-chip sensitivity, that is the minimum RF power received that is necessary to power

RFID chip. The lower it is, the longer is the distance at which the tag can be detected.

• The reader’s antenna gain, the tag range is greatest in the direction of the maximum gain

which is significantly limited by the frequency of operation and the tag size.
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• The tag’s antenna polarization, the tag should match the reader’s antenna polarization.

Tag Chip

Reader

Coil
Coil

Magnetic Field

Application

Few Centimeters

Energy Harvesting 

+Tag Chip

Reader

Application

Several Meters

Antenna Antenna

(a)

(b)

Figure 2.2: RFID system schemes: (a) Near-Field Communication RFID principle. (b) Far-Field
Communication RFID principle.

2.2.2 Restrictions of Realizing Low Cost RFID

In order to manufacture an RFID tag, the process illustrated in Fig. 2.3 is performed. The

limitations for not having a cheap RFID tag are presented in [16]. Much of the cost of an RFID

tag does not only result from the integrated electronic chip, but, more importantly, from the

manufacturing complexity of the entire tag. This involves handling the tiny electronic chip and

assembling the whole electronic label including the tag’s antenna, silicon chip, and harvesting

circuit. Furthermore, the cost of the silicon wafer is independent of the IC’s design, the cost

of the RFID chip is estimated based on the silicon area used for the RFID chip. Significant

achievements have been made in reducing the size of the transistors allowing more transistors

per wafer area [17].

12



2.3. Chipless RFID: Towards a Low Cost Identification System
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Figure 2.3: The basic process for manufacturing an RFID label.

2.3 Chipless RFID: Towards a Low Cost Identification System

The chipless tags can be considered as a specific type of passive RFID tags. In these tags, instead

of storing the ID in a digital IC, it is encoded in physical permanent modifications when the tag

is manufactured. These modifications are unique for each tag.

2.3.1 Core Functionality

Chipless tags are a promising low-cost alternative to RFID systems, since they do not require an

IC to work [18, 19]. In chipless tags, the ID is stored in physical permanent modifications in a

scattering antenna. The modifications are unique for each tag and change its RF backscattered

response. This represents the tag’s signature.
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Figure 2.4: Overview of frequency coded chipless RFID.

Fig. 2.4 illustrates a layout of the chipless RFID system. It is worth noting that the

information stored in the chipless tags cannot be changed once they have been manufactured,

since their physical characteristics are permanent. Still, chipless RFID can provide a low-cost
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alternative, which could increase the capabilities of automatic identification. Unlike the RFID

with chip-based tags, there is no standard for the chipless RFID; there are several approaches

that attempt to create chipless RFID tags. Fig. 2.5 shows a classification of chipless RFID tags

given in [18, 20–22].

2.3.2 Chipless RFID Tags’ Classifications
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Figure 2.5: Classifications of chipless RFID tags.

The functionality of time domain based chipless RFID tags is evaluated by transmitting a pulse

signal from the reader and listening to the reflected signal from the tag. The data is encoded

by sending adjacent pulses at different time slots [23, 24]. The Surface Acoustic Wave (SAW),

described in [25, 26], is an example of the time domain chipless RFID tags that are successfully

commercialized. However, the tag contains a low number of bits despite its large size.

The printable time domain-based chipless tags can be realized either as a thin-film-transistor

circuit (TFTC) or as microstrip-based tags with discontinuities. The TFTC tags are printed

at high speed on low-cost plastic film [27]. TFTC tags provide advantages over active and
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passive chip-based tags due to their small size and low power requirements. Still, they require

more power than other chipless tags but also offer a greater functionality. However, low-cost

manufacturing processes for TFTC tags have not yet been developed. Organic TFTC could

provide a cost-efficient solution [18]. One of the places that develop organic TFTC is the National

Institute of Advanced Industrial Science and Technology (AIST) in Japan. An organic TFTC

printed on flexible plastic film is illustrated in [28,29]. Another issue is the low electron mobility,

which limits the frequency of operation up to several MHz.

The operation of the delay-line-based chipless tags is based on the utilization of microstrip

discontinuity after a section of delay-line, as reported in [30–32]. The reader excites the tag

by a short pulse (usually 1 ns). The interrogation pulse is received by the tag and reflected at

various points along the microstrip line, creating multiple echoes of the interrogation pulse. The

delay between the echoes is determined by the length of the delay-line between the microstrip

discontinuities. Nevertheless, the initial trials on this chipless technology have shown that only 4

bits of data can be successfully encoded, which shows the limited potential of this technology.

Spectral signature based chipless tags, also called Frequency Coded (FC), encode data into

the spectrum using a resonant design. This means that each data bit is commonly associated

with the presence or absence of a resonant peak at a predetermined frequency position in the

spectrum. The advantages of these types of tags are that they are fully printable, robust, have

greater data capacity capabilities than the other chipless tags, and can be manufactured at low

cost. The disadvantages of these tags are a large spectrum utilization for data encoding, greater

sensitivity to chipless tag orientation requirements, tag-size, and wideband dedicated RFID

reader RF components.

Chemical tags are designed from a deposition of resonating fibers or special electronic ink.

These tags consist of tiny particles of chemicals, which exhibit varying degrees of magnetism.

When EM waves impinge on them, they resonate with certain frequencies, which are analyzed

by the reader [18]. These tags are very cheap and can easily be used inside banknotes. They

are potentially low cost and can work on low-grade paper and plastic packaging material.

Unfortunately, they only operate at frequencies up to a few kilohertz, although this gives them a

very high tolerance to metal and water.

Ink-tattoo chipless tags use electronic ink patterns embedded in the surface of the object

tagged; no actual substrate is required [20]. The corresponding reader interrogates the ink-tattoo

tagged objects with an operating frequency in the microwave range (>10 GHz). The tag creates

a unique pattern which can be detected by the reader. Depending on the limited information
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available for this technology (which is still in the experimental phase) the author assumes that it

is spectral signature based.

Planar circuit chipless RFID tags are designed using standard planar microstrip resonant

structures, such as antennas, filters, and fractals. They are printed on thick, thin, and flexible

laminates and polymer substrates. Capacitively tuned dipoles were first utilized by Jalaly [33] to

design an RF barcode. The tags consist of an array of microstrip dipole-like structures that act as

resonant bandpass or bandstop filters tuned to predetermined frequencies. They are successfully

identified using a vector network analyzer. A frequency-coded tag based on space-filling curves at

900 MHz is presented in [34]. Space-filling curves are able to create resonances with very small

footprints. The advantage of the tag is its compact size due to the properties of the space-filling

curves. However, the disadvantage of the tag is that it requires significant layout modifications to

encode data [18]. The LC resonant chipless tags consist of a magnetic resonant coil at a distinct

frequency. Instead of working at a predetermined frequency, as with NFC standards, the reader

sweeps a frequency band searching for a peak resonant frequency, which corresponds to the tag’s

unique frequency (ID). Commercial LC resonant chipless tags are widely used for surveillance

portals and anti-theft purposes in supermarkets as explained in [16].

The multiresonator based FC chipless tags consist of several resonators that provide a peak

resonance at predefined frequencies representing the tag’s ID. There are two commonly used

multiresonator based tags, the retransmission based tag and the backscattering based tag. The

former relies on two antennas (cross-polarized, for transmission and reception) and a transmission

line with surrounding resonators as in [35]. The other type is illustrated in Fig. 2.4. Here the

signal is backscattered from the tag due to the resonators. The reader is able to detect these tags

using a sweeping method as discussed in [36]. Furthermore, another approach for utilizing a

structure of dipole multiresonator based tags is presented in [37]. In this case, the design is based

on several dipoles which backscatter the incoming wave in its orthogonal polarization. Each

dipole is tuned to a predetermined frequency, and its presence or absence codes the corresponding

bit state. The benefit of depolarization is to mitigate the environmental clutter effects and the

coupling between the reader’s antennas, providing a better detection of the tags. Moreover,

a novel tag structure will be presented in this thesis (Chapter 5). It consists of a dipole, a

rectangular ring, and a rectangular patch which increase the coding capacity.

Amplitude-phase backscatter modulation-based chipless RFID tags operate at narrower

bandwidths compared to time or frequency-coded tags. This type of tags encodes the ID by

varying the amplitude or phase of the backscattered signal based on the loading impedance of
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the chipless tag as described in [38]. The variation of the impedance is realized by varying the

reactive loading of the tag’s antenna [39] which will affect the tag’s radar cross section [18]. The

advantages of this type of chipless tag are that the range of the operating frequency bandwidth

is narrow, and that it has a simple structure. The disadvantages are that the data are encoded

using lumped elements that will increase the cost of the tag. The left-hand (LH) delay line based

tags consist of a narrow-band antenna connected to a series of cascaded LH delay lines [40].

Each LH section produces a discontinuity in the phase of the incident wave. The reader analyzes

the LH-based tag using a modulated signal, such as the quadrature phase shift keying (QPSK)

scheme. Each tag produces a unique phase variation in the carrier signal. The remote complex

impedance-based chipless tags [41] are implemented by a printable scattering antenna (a patch

antenna, for the moment) equipped with a lossless reactance. Each tag has a unique reactance

that generates a particular inductive loading. The backscattered signal, then, exhibits a different

phase for each tag. Stub-loaded-patch antenna based tags [42] are similar to the remote complex

impedance based tags, but with increased robustness. In this case, an open circuit with high

impedance stub loads a patch antenna. The ID is coded in the cross-polarized phase difference

between electric (E) and magnetic (H) planes. In summary, carbon nanotube-loaded chipless

tags consist of RFID antennas loaded by carbon nanotubes (CNTs), which modify the scattering

signature depending on their state. In [43] a conformal UHF RFID antenna is loaded with

single-walled CNTs to realize a chipless RFID gas sensor. The CNL chipless RFID tag operates

by varying the amplitude of the backscattered signal, depending on the concentration of NH3.

Consequently, the amplitude variation of the backscattered power from the tag can be detected at

the reader end and decoded to estimate the level of NH3. The coding of the amplitude will be

inhibited by the channel environmental effects because the amplitude is sensitive to noise and

clutter. Additionally, the phase coding will require a technique for phase error compensation due

to its sensitivity to the multipath and clutter effects.

2.3.3 Reader Design for FC Chipless Tag Identification

The Software Defined Radio (SDR) [44] provides flexibility in the design and implementation

of different radio systems. One of the popular tools for implementing the SDR is an open

source software called GNU Radio [45]. Its corresponding hardware counterpart is Ettus’ USRP

(Universal Software Radio Peripheral). The proposed SDR based reader to identify the FC

chipless tags is shown in Fig. 2.6. The USRP consists of an RF daughter-board and a fixed

function FPGA which is connected to the PC via a 1 Gigabit Ethernet interface. The transmission
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and reception paths of the USRP are separated such that:

• The utilized N210 USRP is connected to a host PC that serves as a software-defined

radio. Incoming signals are mixed down using a Direct-Conversion Receiver (DCR) [46],

also called a homodyne receiver, to baseband I/Q components, which are sampled by a

2-channel, 100 MS/s, 14-bit Analog-to-Digital Converter (ADC). The digitalized I/Q data

follow parallel paths through a Digital-Down-Conversion (DDC) process that mixes, filters,

and decimates the incoming 100 MS/s signal to a user-specified rate. The down-converted

samples, when represented as 32-bit numbers (16 bits each for I and Q), are passed to the

host computer at up to 20 MS/s via a standard Gigabit Ethernet connection.

• For the signal’s transmission path, baseband I/Q signal samples are synthesized by the host

computer and fed to the USRP at up to 20 MS/s over a Gigabit Ethernet when represented

with 32-bits (16-bits each for the I and Q components). The USRP hardware interpolates

the incoming signal to 400 MS/s using a Digital-Up-Conversion (DUC) process and then

converts the signal to analog with a dual-channel, 16-bit Digital-to-Analog converter

(DAC). The resulting analog signal is then mixed up to the specified carrier frequency

(controlled by the user).

Regarding the processing executed on the PC, there are two tasks performed simultaneously:

• A linear frequency sweeping mechanism is used as the transmitted signal to interrogate

the achievable chipless tags. The details of the utilized frequency sweeping mechanism

will be discussed in detail in the following chapters.

• The reader continuously monitors the backscattered signals reflected by the tags. After-

wards, an FFT process is performed on the received signal as the USRP is a time domain

device. Then, the designed protocol for multi-tag identification is applied (as will be

described in Chapter 3) using a technique that employs fast identification (as will be

described in Chapter 4). Finally, the signal is decoded to obtain the corresponding tag-ID

(as illustrated in Chapter 5).

2.4 Proposed Communication Layers

Unlike for the chipped RFID system, there is no standard for the chipless RFID systems.

Consequently, the thesis proposes the communication layers for the reader for its communication
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Figure 2.6: Block diagram of the proposed reader to identify the FC chipless tags.

with the chipless tags as follows:

• a physical layer which includes the detection and decoding process.

• a data link layer that constitutes the Medium Access Control (MAC) technique which

prevents the collision of multiple identified tags existent in the same interrogation region.

• a network layer which is responsible for defining a rule for the identification of multiple

tags (distinguishing one tag from the other).

Regarding the security issues, the chipless tags are hard-coded (the code is printed on the chipless

tag, as will be described in the following chapters). Thus, the risk of hacking the tag’s code is

slim.
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2.5 Conclusion

Chipless RFID is an upcoming technology predicted to replace the optical barcode within the

next five years. This is due to the constraints of the latter in i) the barcode cannot read non-

line-of-sight (NLOS) tagged items; ii) each barcode needs human assistance to be read; iii) the

limited information-carrying ability of the barcode [47] iv) it is impossible to identify multiple

tags at the same time; and v) a considerable time delay in case of large queues because each

different type of objects needs to be scanned serially.

The prospective passive chipless RFID systems can provide both identification and high-

definition localization [48–50] of objects with improved reliability and accuracy while maintain-

ing low power requirements [51, 52] and reduced production costs (unlike conventional RFID

systems that are defined by a high cost per tag unit and low robustness [53]). Since the chipless

RFID tags are memoryless, capture very low backscattered power and have a short reading range,

the classical modulation and encoding schemes are not applicable [54]. Table 2.1 illustrates the

comparison between the chipped RFID, the barcode, and the chipless RFID.
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Table 2.1: Comparison between the chipped RFID, the barcode, and the chipless RFID.

Attribute Chipped RFID Barcode Chipless RFID
Line-of-Sight Not Required Required Not Required
Cost 0.22 Euro Less than 1 cent Less than 1 cent

Identification
Uniquely Identify

Each Tagged Object
Only Identify

the Type pf Object
Uniquely Identify

Each Tagged Object
Printability No Yes Yes
Operating
Temperature -25°to 65°C -40°to 80°C -20°to 80°C

Reading Range

for Passive tags
up to 10 m,

at TX = 30 dBm
but

about 5 cm,
at TX = 0 dBm .

Some modern scanning
techniques can

provide up
to 6 m with

perfect orientation

Currently it can
reach about 1 m

and some researches
aim to

enhance the
reading range

Multi-Object
Collection 200 tags per second [55] only one object at a time 50 tags in 9 seconds

Standard
EPCglobal and

ISO 18000-V1-7
for Air interface

ISO/IEC 15426-1/2 and
GS1 Global Code Not Existent

Interference
Little known interference

(with tuning)

Anything blocking/warping
the label will interfere
(dirt, packaging, paint,

coating and etc.)

Little known interference
some new techniques

are designed to
completely mitigate

the interference

21





3 | Multi-Tag Identification and Protocol Eval-

uation Framework

Chipless RFID tags are dummies, memoryless, with a limited number of bits, very low

backscattered power, and a short reading range. Therefore, the existing RFID standards

and protocols designed for the chipped RFID systems are not applicable to the chipless

systems. The main objective of this contribution is to introduce novel multi-tag anti-

collision protocols based on Notch Position Modulation (NPM) and Look-Up-Table

(LUT) schemes defining the network and MAC layers for the chipless RFID systems. The

first generation of the proposed protocol relies on coding the chipless tags according to

predefined notch frequency positions that avoid interference between the tags’ responses.

Furthermore, the tag-ID is encoded with a unique frequency shift for each tag. The second

generation of the protocol improves the spectrum utilization and coding capacity. This

is accomplished by transferring the tag-ID to be stored in a table in the main memory

of the reader (look-up-table). The unique shift of each tag represents the address of the

tag’s ID. The key performance indicators for the chipless RFID system are explored to

validate the protocol’s performance. Both protocols are modeled and simulated to identify

10-chipless tags in order to set the regulations for the tag and reader design. Moreover,

a novel real-world testbed for the multi-tag UWB chipless RFID system based on a

software defined radio is introduced. In this testbed, all the signaling schemes related to

the transmitted signal, the detection techniques, an empty room calibration for the clutter

removal process, and the identification protocols are applied. The contents of this chapter

have been partially published in reference [54, 56].
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3.1 Introduction

The identification of multiple tags is one of the most important challenges in order to realize

the chipless RFID systems. Since the chipless tags share the same operating frequency, there

needs to be a Media Access Control (MAC) technique that is responsible for preventing the

collision between the shared tags and that ensures a successful identification of the chipless tags.

Thereafter, a protocol needs to be designed to define a rule to identify the tags.

Tag-tag collision occurs when multiple tags respond to the same reader simultaneously,

the response of one tag interferes with the response of the other tags. Collisions reduce the

throughput of data collection, increase the identification delay, and lower the system’s efficiency

and reliability [57]. In chipped RFID systems many anti-collision algorithms are proposed to

identify multiple tags, illustrated in [58]. Popular solutions such as the Tree Walking Algorithm

(TWA) [59] and the Slotted Termination Adaptive Collection (STAC) [60] protocol have been

introduced for UHF/HF respectively. However, these protocols are used in chipped RFID

standards like EPC [61] and IEC [62], they can therefore not be used in chipless RFID systems,

since chipless tags are memoryless and lack the ability to perform complex operations. They

also do not have a reconfigurable signature ID to suit any conventional multi-access algorithm.

Few prior contributions have addressed the chipless multi-tag collision problem using signal

processing techniques. An algorithm based on transmitting Linear Frequency Modulated (LFM)

signals and using Fractional Fourier Transform (FrFT) for multi-chipless-tag detection was used

in [63]. This algorithm requires high post-processing computational power and the increase

in the overlap region will lead to faulty detection. In [64, 65] the Time Difference Of Arrival

(TDOA) of the backscattered signal has been utilized to detect signals from various distances.

Additionally, a spread spectrum signature was used in [66] for the coding of the Time Domain

Refractometry (TDR) chipless tags to avoid collisions. Furthermore, an algorithm based on the

Short-Time-Matrix-Pencil Method (STMPM) has been presented in [67, 68] in order to separate

the IDs of chipless tags from one another. Some of the aforementioned algorithms are collected

and listed in [69]. However, all these contributions have high-performance computing needs,

which will slow down the reading process in real-time systems and will significantly increase

the reader’s price. In addition, these contributions discuss the identification of tags without

considering the tags’ ID representation. Moreover, some contributions depend on the time of

arrival which can lead to faulty identifications in a multipath fading channel [70]. A logical

solution is spatial multiplexing which uses a narrow steerable reader antenna [71]. However, in
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problematic scenarios several tags might be in close proximity to each other in the main lobe of

the antenna.

To enable the reader to decode the IDs of multiple tags correctly, an approach for collision-

free tag communication must be developed. Unlike chipped RFID, chipless RFID tags pose a

number of problems that arise from the nonexistence of a MAC protocol and lack of a chipless

RFID standard. The MAC anti-collision protocols provide identification of the various tags in

the interrogation region to enable conflict free communication. The MAC protocol also provides

a high quality-of-service and fair medium access to all contending devices [72].

In this contribution, the MAC and protocol (network) layers are proposed to be used for

frequency coded multi-tag communication which will lead to the development of a global chipless

RFID standard to control both the tag and the reader design. Consequently, two anti-collision

MAC protocols are introduced. The first generation (Gen-1) is based on NPM in which the tag’s

ID is modulated according to a predefined frequency position of notches. The second generation

(Gen-2) is an enhancement of the Gen-1 algorithm so that the tag’s ID is stored in the main

memory of the reader side while the tag’s signature represents an address for the stored ID. This

methodology is called LUT as the reader looks for the tags’ ID in the table stored in the main

memory.

The Radar Cross Sections (RCSs) of the chipless RFID tags have been designed and

simulated based on the requirements of a multi-tag scenario. The mathematical framework of

both NPM-Gen-1 and LUT-Gen-2 techniques is introduced, followed by the simulation results

and performance analyses of the proposed MAC protocols. Finally, a real-world testbed for a

multi-tag scenario is developed in an indoor environment illustrating the MAC protocol and the

clutter removal technique based on Software Defined Radio (SDR) platforms.
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Figure 3.1: Frequency coded chipless RFID system for multi-tag scenario considering clutter
effects.

3.2 Frequency Coded Chipless RFID System

In a chipless RFID system, a tag reflects the UWB signal sent from the reader’s transmitter.

The ID information of the RF tag depends on the resonance frequencies of the tag. In a multi-

tag scenario, as shown in Fig. 3.1, all tags in the interrogation zone will modulate the signal

transmitted from the reader-transmitter (X( f )) by its signature (ID) generating the modulated

signal Γn( f ) which is reflected back to the reader-receiver. The total received signal Y ( f ) is

the summation of all backscattered signals from the tags and the influence of the channel and

environmental clutter. This will be presented in detail in Section 3.4.

Y ( f ) = X( f ).[
N

∑
n=1

Hfn( f ).Γn( f ).Hbn( f )+Hc( f )] (3.1)

where Hfn( f ) is the forward channel towards tag-n, Hbn is the backward channel for tag-n, and

Hc( f ) is the environmental clutter.

Furthermore, all the FC chipless tags share the same operating frequency. Consequently, if

several tags have the same ID, a collision will occur.
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Figure 3.2: Illustration of a collision between 3-chipless tags.

Fig. 3.2 illustrates the collision between three chipless tags. Here, Tag-1, Tag-2, and Tag-3

IDs are "0110", "0101" and "0011", respectively. Thus, there should be a criterion (rule) that

prevents a collision between the chipless tags existent within the same interrogation zone. This

rule is the proposed anti-collision protocol.

3.3 Protocol Description

In this section, the two generations of MAC protocols (NPM-Gen-1 and LUT-Gen-2) will be

thoroughly analyzed. The analysis is divided into two parts. The first section deals with the

layout and design of the chipless tag’s ID signature. The second part is concerned with the

reader’s design and with the decoding process.

3.3.1 Gen-1: Notch Position Modulation

The first generation of the proposed MAC protocol is based on the NPM scheme. There are

some guidelines for notch positions that allow the identification of different chipless tags at the

same time even if they have the same ID.
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A. Chipless Tag

The requirement for chipless tags based on the Gen-1 protocol is adapted to match the tags’

signature illustrated in Fig. 3.3 according to the following rules.

1. All the resonator based tags need to contain a fixed resonance of the preamble frequency

(Fpr), this will represent the first bit. The preamble frequency will give an indication to the

reader as to whether or not a tag is present in the interrogation region. It will also prevent

the reader from scanning the whole spectrum looking for a tag, saving power and time.

2. The second resonator will be unique for each tag and it will generate a notch at a frequency

position ε , which is part of the preamble frequency. It will denote the value of the frequency

shift for the rest of the tag ID from the bit reference frequency (Fstarti). This bit will

allow the reader to differentiate between multiple tags since every tag must have a different

frequency shift value. Therefore, no collision can occur. The rest of the resonators will

contain the actual tag ID taking into consideration the frequency shift in every bit based

on the second resonator.

3. The space between the notch positions should prevent inter-symbol-interference assuming

there is a suitable guard band ζ between the notches, which can be estimated by:

ζ =
Resonant frequency of the last notch−Resonant frequency of first notch

2×Resonator quality factor
(3.2)

The block diagram of the chipless tag structure considering the Gen-1 protocol requirements is

shown in Fig. 3.4.

The maximum number of tags N that could be supported by a reader is represented in

Equation (3.3). Moreover, the maximum number of bits per tag K is a function of the frame

bandwidth (∆ f ) and the whole UWB transmitted signal bandwidth excluding the reserved band

of the preamble as illustrated in Equation (3.4).

NGen-1 =

⌊
Preamble BW

Notch BW

⌋
−1 (3.3)

KGen-1 =

⌊
UWB Txed Signal BW−Preamble BW

Frame BW

⌋
−1 (3.4)
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Figure 3.3: The TAG-ID frequency response of n chipless RFID tags based on the novel
multi-tag MAC protocol.
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Figure 3.4: Conceptual physical design of the MAC protocol on the chipless RFID tag.

B. Reader

The reader receives signals from multiple tags that are located in the interrogation region as shown

in Fig. 3.1. The reader has two main functions. First, it sweeps the operating frequency (using

the method described in Chapter 4). Second, it identifies the tags. Algorithm 3.1 describes the

processing required by the Gen-1 protocol. The reader starts scanning the preamble bandwidth

with a fine frequency hopping methodology in order to:

• Obtain the number of tags,

• Estimate the corresponding frequency shift for each tag (εi), such that εi = [ε1, ε2,

...,εN]1×N , where N is the number of tags.

29



Chapter3. Multi-Tag Identification and Protocol Evaluation Framework

Algorithm 3.1 Gen-1 MAC algorithm for chipless multi-tag identification

1: //BWpr is the preamble bandwidth
2: //Fpr is the preamble frequency
3: //Bitres is the bit resolution
4: //BitBW is the bit bandwidth
5: //εi is the ith tag shift parameter
6: //Fstarti is the reference frequency for the ith bit bandwidth
7: //Ftagm is the unique absorption frequency for tag m
8: //Bitposition is the position of the bit
9: //ζ is the guard band between notches

10: for all BWpr do
11: if Fpr is existent then
12: εi← Ftagm−Fpr−ζ

13: Calculate the number of tags;
14: Switch to the kth bit bandwidth;
15: else
16: Go to the idle state (at Fpr position);
17: end if
18: end for
19: for all BitBW do
20: Formulate the tag’s ID;
21: Bitposition← Fstarti + εi
22: if Bitposition resonance is existent then
23: This bit represents one of the ith order;
24: else
25: This bit represents zero of the ith order;
26: end if
27: end for
28: Arrange the tag’s ID in a matrix;

Depending on the value of εis, the interrogator will effectively jump to different frequencies

that correspond to the shifts starting at the most significant bit for each tag. This will save power

and reduce complexity by avoiding searching for resonances in the unused bands. The advantage

of the proposed algorithm is that it is only frequency dependent (it does not depend on time and

avoids synchronization problems).

3.3.2 Gen-2: Look-Up-Table Based

The second generation of the chipless RFID protocol is based on the LUT methodology to store

the tag’s ID. The reader will look for the tag’s ID in a table stored in the main memory of the

reader based on the unique address extracted from the tag’s response.
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Figure 3.5: Proposed multi-tag identification methodology.

A. Chipless Tag

Each tag includes only two notches, the first one is the same for all tags and the second one is

unique for each tag. Fig. 3.5 shows the required tag response to meet the requirements of the

Gen-2 protocol. The block diagram of the tag’s structure looks like Fig. 3.4 but without the tag

ID.

Therefore, the number of tags that can be identified by the reader using the LUT-Gen-2

protocol is expressed by Equation (3.5). It has been observed that a larger number of tags can be

represented at a much lower operating frequency, as will be illustrated in Section 3.5.

N =

⌊
fend− fstart

BWNotch

⌋
−1 (3.5)

where fend is the end of the operating frequency, fstart is the start of the operating frequency, and

BWNotch is the notch bandwidth.

The number of bits is not restricted by the physical structure of the tag since they are stored

digitally in the LUT.
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B. Reader

The table that contains the tags’ IDs is stored in the main memory of the reader. This table

will be stored once with all the possibilities that the chipless tag’s ID could obtain as shown in

Table 3.1. The addresses in this table represent the unique frequency shift between the tag’s

unique notch and the preamble frequency position.

Table 3.1: Look Up Table (LUT) for the chipless tags’ IDs.

Unique Address
Tag ID

bk . . . b2 b1 b0
a1 1 . . . 0 1 1
a2 0 . . . 0 1 1
. . . X . . . X X X
. . . X . . . X X X

aN−1 X . . . X X X
aN 0 . . . 1 0 0

Algorithm 3.2 describes the functionality of the enhanced Gen-2 protocol. It ensures a

much lower complexity, a greater accuracy, and greater spectrum utilization efficiency than the

previously mentioned Gen-1 technique.

Algorithm 3.2 Gen-2 MAC algorithm for chipless multi-tag identification

1: //UWBBW is the preamble bandwidth
2: //Fpr is the preamble frequency
3: //εN is the Nth tag shift parameter
4: //FtagN is the unique absorption frequency for tag N
5: //ζ is the guard band between notches
6: for all UWBBW do
7: if Fpr is existent then
8: εN ← FtagN−Fpr−ζ

9: Obtain the tag’s ID from the look-up-table;
10: else
11: Go to the idle state (at Fpr position);
12: end if
13: end for

The size of the LUT is determined by the number of tags that could be identified at operating

frequency. However, the hardware used for the reader’s implementation limits the operating

frequency and, accordingly, the number of tags (for both Gen-1 and Gen-2).
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3.3.3 Key Performance Indicators for the Chipless RFID Protocols

The performance of the designed protocols can be evaluated by means of Key Performance

Indicators (KPIs). The most well-known KPIs in networking societies are:

1. Probability of Error; this parameter indicates the robustness of the designed protocols with

the variation of a signal-to-noise ratio. Moreover, it represents the probability that the

decoded tag-ID is not equal to the real tag-ID.

2. Overhead; it represents the number of bits used by the protocol in the RFID network to

identify the tags. It is called overhead because these bits do not represent data, but they are

only used for identification purposes. This indicator can be expressed as seen in Equation

(3.6).

3. Spectrum utilization; it indicates the number of tags that can be represented at operating

frequency.

V =

⌊
Preamble Bits

Total No. of Bits

⌋
×100 (3.6)

3.4 Mathematical Framework and Signalling Schemes

In this section, the mathematical framework of both the NPM-Gen-1 and the LUT-Gen-2

protocol for the FC chipless RFID system is introduced. The chipless tags consist of notches

with predefined frequency locations as described in the anti-collision protocols. Therefore, the

notch can be modelled like a 2nd order notch filter, as will be discussed in Chapter 5.

S(ω) =
ω2

r −ω2

(ω2
r −ω2)+(ωr

Q ω)i
(3.7)

S( f ) =
f 2
r − f 2

( f 2
r − f 2)+( fr

Q f )i
(3.8)

where ωr equals 2π fr and represents the notch angular resonance frequency. Q is the quality

factor of the notch filter (resonator used in the chipless tag design). Moreover, the quality factor

for the designed protocol-based chipless tag is a constant.
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3.4.1 Mathematical Framework of the Gen-1 Protocol

First, the tag’s ID frequency response Γ( f ) based on the NPM-Gen-1 will be presented, followed

by the complete RFID signaling scheme of the proposed protocol.

A. Tag Frequency Response

The overall frequency response for a chipless RFID tag n based on the Gen-1 anti-collision

protocol is expressed by Equation (3.9). The tag’s response consists of a common notch for all

tags at the preamble frequency fpre, a unique notch for each tag at frequency position fn, and the

tag’s ID.

Tagoverall response = Tagpreamble freq +Tagunique freq +TagID (3.9a)

Γ
Gen-1
n ( f ) = S( f )| fr= fpre +S( f )| fr= fn− fpre +

K

∑
k=1

cn,k.S( f − k∆ f − εn) (3.9b)

where S( f ) is the notch shape in the frequency domain as described in Equation (3.8), n

is the tag index, k is the index of the digital bit representation in the frequency domain that

represents the tag’s ID, ∆ f is the frame bandwidth, εn is the unique frequency shift for the tag n

that has the value of fn− fpre, and cn,k is the binary code of the nth tag at the kth index which

has a value of either 1 or 0. Thus, Equation (3.9) yields the shape and spectral position of every

resonance in the proposed notch position modulation scheme.

B. RFID Signalling Schemes

In a typical chipless RFID system, the tags are identified by using an UWB impulse signal.

This offers a fast detection, but with the disadvantage of a short reading range due to the low

transmitted signal power to meet the FCC’s UWB regulations (as will be explained in Chapter

4). In this contribution, a novel reading method to increase the reading range of the frequency

signature based chipless RFID systems is proposed. The FCC’s regulation states that the Effective

Isotropic Radiated Power (EIRP) for an UWB device operating in the range 3.1–10.6 GHz must

not exceed −41.3 dBm/MHz. However, the FCC’s regulations allow a peak level of emission

with a maximum of 0 dBm, contained within a bandwidth of 50 MHz centered at the frequency

at which the highest emission occurs [73–75]. Therefore, the method depends on detecting the
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presence of a tag in a spectrum using frequency sweeping and hopping techniques instead of

sending a UWB impulse signal. The reflected power from either logic-0 "no-notch" or logic-1

"notch" detection in case of narrowband transmission is 400 times the power reflected in the case

of UWB transmission at a distance of 30 cm [76, 77].

Detecting all the tags efficiently by scanning the whole RFID bandwidth in the traditional

way is time consuming, energy inefficient, and computationally expensive. The reader’s trans-

mitted signal using the NPM-Gen-1 protocol to identify the chipless tags consists of two parts.

The first one is the sweeping of the preamble bandwidth to determine the existence of the tags

and the unique frequency shift code corresponding to each tag. The second part is dedicated to

identifying the chipless tags as represented in Equation (3.10).

Xinventory( f ) = Xpreamble( f )+Xidentification( f ) (3.10)

Equation (3.11) illustrates the scanning of the preamble bandwidth necessary to calculate the

unique frequency shift defined for the nth tag (εn). In addition, this scan enables the reader to

determine the number of chipless tags available in the reader’s interrogation zone.

Xpreamble( f ) =
M−1

∑
m=0

A.δ ( f −m.ξ ) (3.11)

where M represents the hopping frequencies in the preamble bandwidth, A is the amplitude of

the transmitted signal of the preamble, and ξ is the frequency sweeping step used to scan the

preamble band.

The identification of the transmitted signal is divided into two parts as described in Equation

(3.12). The first part is the identification of the nth tag’s ID (XID-n( f )) and the second part

is determining the beginning of the bit bandwidths (∆ f ), Xframe-start( f ). After the preamble

bandwidth spectrum sweeping, the number of tags is determined and each tag is assigned its

own εn (frequency notch position parameter). The reader sweeps the kth bit of the nth chipless

tag by hopping the frequencies in the spectrum of the predefined frequency locations according

to the tags’ unique shift parameters εn. Furthermore, the reader sweeps each start of the bit

bandwidth ∆ f in order to obtain better results for environmental clutter removal using the empty
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room calibration process described in the measurements section.

Xidentification-n( f ) = XID-n( f )+Xframe-start( f ) (3.12a)

=
K

∑
k=1

A.δ ( f − k∆ f − εn)+
K

∑
k=1

A.δ ( f − k.∆ f ) (3.12b)

where ∆ f is the frame (bit) bandwidth and K is the maximum number of bits as illustrated

in Equation (3.4)

The frequency response of the received signal is represented by Equation (3.13).

Y ( f ) = Xinventory( f ).[(
N

∑
n=1

Hfn( f ).ΓGen-1
n ( f ).Hbn( f ))+Hc( f )]+N( f ) (3.13)

where Xinventory( f ) is the reader’s transmitted signal, Hfn( f ) is the forward channel to identify

tag-n with a frequency response ΓGen-1
n ( f ), Hbn( f )) is the backward channel for tag-n, Hc( f )

is the environmental clutter that is expected at the start of each frame bandwidth (expressed in

Equation 3.14), and N( f ) is the noise response.

H̃c =
K

∑
i=1

Hc( f −∆ fi) (3.14)

3.4.2 Mathematical Framework of the Gen-2 Protocol

A. Chipless Tag Frequency Response

Based on the LUT-Gen-2 anti-collision protocol, the chipless tag consists of two notches. The

first one is the same for all chipless tags working with the Gen-2 protocol. The other one is

unique for each tag as described in Equation (3.15).

Γ
Gen-2
n ( f ) = S( f )| fr= fpre +S( f )| fr= fn− fpre (3.15)
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B. Signaling Schemes

The reader sweeps the overall operating frequency using either fixed or adaptive hopping

techniques in order to reduce the overall system latency (as will be described in Chapter 4).

XGen-2( f ) =
M−1

∑
m=0

A.δ ( f −m. fh) fstart ≤ f ≤ fstop (3.16)

where XGen-2( f ) is the transmitted signal based on the Gen-2 protocol and M is the number

of frequency hops with a step of fh. The frequency step estimation is made more precise by using

an adaptive technique for the sweeping process as will be explained in Chapter 4. This improves

the system latency significantly. In addition, fstop− fstart represents the spectrum of possible

operating frequencies. Furthermore, the ID of the chipless tags is stored in the look-up-table of

the main memory at the reader. The address of the memory location is obtained by the frequency

shift between the tag’s unique signature and the preamble frequency as in Equation (3.17). Thus,

each tag is represented by a unique address in the memory.

an = fn− fpre (3.17)

The received signal’s frequency response is represented by Equation (3.18).

YGen-2( f ) = XGen-2( f ).[(
N

∑
n=1

Hfn( f ).ΓGen-2
n ( f ).Hbn( f ))+Hc( f )]+N( f ) (3.18)

The description and implementation of the LUT-Gen-2 anti-collision MAC protocol is much

easier than that of the Gen-1 algorithm.

3.5 Simulation Results and Discussions

In this section, the simulation results showing the validity of the proposed multi-tag anti-collision

protocols are outlined. The utilized simulation environment is presented in Fig. 3.6. A model of

the RFID chipless tags will be described in chapter 5 using a second-order notch filter approach

which matches the simulated chipless tags using CST-Microwave Studio. Equations (3.9 and

3.15) are used to represent the chipless tags in the simulations. Afterwards, the two proposed

protocols are evaluated by estimating the probability of error deriving from the variation of the

signal-to-noise ratio on the receiver’s side. The simulations are performed for 10-tags and the
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corresponding results with regard to the key performance indicators are discussed. Furthermore,

overhead and spectrum usage are studied for both of the proposed protocols. In addition, the

effect of increasing the operating frequency during the performance of the chipless tag employing

Gen-1 and Gen-2 protocols is discussed. The simulation is implemented using the MATLAB

M-file simulation tool.

Tag-1 Tag-2 Tag-10

Chipless Tag Analytical Model

Apply MAC Algorithms

MATLAB, M-File

Gen-1

NPM

Gen-2

LUT

... 

Figure 3.6: Block diagram of simulation environment.
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3.5.1 Gen-1 Protocol Simulation

A. Chipless Tag Response
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Figure 3.7: Simulation of 10-tags using Gen-1 MAC.

Fig. 3.7 shows the normalized RCS magnitude for ten 4-bit chipless tag responses with the

Gen-1 protocol. Each tag is represented by a different color. The dashed vertical lines indicate

the preamble bandwidth and the 4-coding bandwidths. Therefore, the representation of the

10 chipless tags with 4-bit coding capacity each is implemented within a 4.5 GHz operating

bandwidth by means of utilizing the proposed NPM technique.

B. Probability of Error

The probability of error is estimated by varying the signal-to-noise ratio per bit to study the

behavior of the proposed technique at low SNR values. The low SNR causes a deformation in

the notch pattern due to the effect of the noise. Hence, it is important to study the robustness of

the proposed protocols considering the deformation error of the notch pattern.
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Figure 3.8: Probability of error for 10-chipless tags with 4-bits coding capacity when employing
the Gen-1 protocol.

The probability of error for the identification of 10-chipless tags using the Gen-1 protocol is

illustrated in Fig. 3.8. It shows that at lower SNR/bit values the probability of error is high. This

is due to the fact that if any bit is received wrongly, the overall tag code is wrongly detected. Also,

there are two sources of errors in the identification of tags using the Gen-1 protocol. The first one

is caused by a wrong decision at the preamble bandwidth (which determines the tag’s existence).

The second one derives from the extraction of the tag’s ID (from the coding bandwidth). The

detection technique used in the simulation process is called window-based energy detection and

is outlined in [36].

C. Overhead

The overhead parameter is calculated by using Equation (3.6). Fig. 3.9 illustrates the relationship

between the overhead, the number of data bits, and the number of tags. The overhead is dra-

matically reduced when the number of coding bits (tags’ data capacity) is much higher than the

number of preamble bits as illustrated in Equation (3.19b). Moreover, the network’s overhead

is enhanced with a higher number of tags within the same interrogation zone as expressed in

Equation (3.19a).
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Figure 3.9: Overhead simulation when applying the Gen-1 protocol.

V =
P
T

(3.19a)

=
P

P+C
(3.19b)

where V is the overhead, P is the number of preamble bits, T is the total number of bits,

and C is the number of coding bits (tag-ID).

3.5.2 Gen-2 Protocol Simulation

A. Chipless Tag Response

The normalized RCS magnitude of the 10-chipless tags using the Gen-2 LUT-based protocol

is shown in Fig. 3.10. As mentioned in Section 3.3, the chipless tags’ IDs are stored in a

look-up-table as shown in Table 3.2. The frequency shift between the notches is 80 MHz. Each

tag is represented by a different color. The 10-chipless tags are perceived at 0.9 GHz by applying

the look-up-table based on the Gen-2 protocol, since that overall tag’s ID is stored in the main

memory on the reader.
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Figure 3.10: Simulation of 10-tags using Gen-2 MAC.

Table 3.2: Look-Up-Table (LUT) showing the IDs of the simulated chipless tags.

Frequency Shift (MHz)
Tag ID

b3 b2 b1 b0
80 1 0 0 1

160 1 1 1 1
240 X X X X
... ... ... ... ...

800 X X X X

B. Probability of Error

The probability of error is estimated for the identification of 10-chipless tags based on the

look-up-table of the Gen-2 protocol and the window-based energy detection described in [36].

Fig. 3.11 shows that the Gen-2 protocol performs better as it shows a much lower probability of

error. This is due to the fact that the Gen-2-tag’s response is assigned a much lower spectrum

than the Gen-1-tag’s response.
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Figure 3.11: Probability of error for 10-chipless tags with 4-bits coding capacity when applying
the Gen-2 protocol.

C. Overhead

The benefit of the look-up-table method is that it combines identification and coding process.

Therefore, there is no overhead when using the Gen-2 protocol because the same notches are

used for both identification (unique identifier) and coding (address to the ID at the LUT).

3.5.3 Effect on the Protocols’ Performances when Increasing the Carrier
Frequency

The influence on the performance of the chipless RFID system when increasing the operating

frequency is studied considering multi-tag systems in order to determine whether or not it

is beneficial to operate at higher frequencies. The consequences of increasing the operating

frequency are as follows:

1. The notch bandwidth is increased as a result of increasing the frequency. This is shown in

Chapter 4. It will require an increase of the operating frequency’s bandwidth to identify

the same number of chipless tags. For example:
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• For Gen-1, 10-tags represented with an operating frequency of 2–6.5 GHz are

represented in the range of an operating frequency of 4–12 GHz in order to avoid

interference between adjacent notches.

• For Gen-2, the 10-tags are represented by an operating frequency of 2–3 GHz. These

tags can be represented in a frequency range of 8–10 GHz.

2. The probability of error to identify the 10-tags represented by a higher carrier frequency is

shown in Fig. 3.12. It can be seen that the probability of error is lower when operating at

higher frequencies. This is due to the fact that notches with a wider bandwidth are more

accurately detected than the narrower ones. This is discussed in Chapter 5. Consequently,

the detection of tags operating at higher frequencies is much better than of those that are

working at lower frequencies. Furthermore, the Gen-2 protocol performs very well at a

higher operating frequency. This directly impacts the reading range which is increased for

operation at higher frequencies.
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Figure 3.12: Probability of error for the identification of 10-chipless tags operating at a higher
carrier frequency: (a) Gen-1. (b) Gen-2.

3.6 Measurements

In order to validate the proposed chipless RFID collision avoidance protocols, two chipless tags

(with 3-coding bits that represent the tag’s ID) are designed and manufactured based on Gen-1
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and Gen-2 using the CST-Microwave Studio EM simulation tool. Then, a real-world testbed is

designed based on a software defined radio platform (USRP) to identify the chipless tags when

applying the Gen-1 and Gen-2 protocols.

3.6.1 Protocol Based Chipless Tags

Designing chipless RFID tags with the frequency responses as shown in Figs. 3.3 and 3.5

is crucial. They require a uniform spacing between resonances, a high coding capacity, no

harmonics within the frequency band of interest, easy coding, and a compact size. Herein, the

orientation independent tag presented in [78] is employed to fit the protocol’s requirements.

Hence, the slot ring resonators are optimized using CST-MWS [79] to present different codes

that satisfy the Gen-1 and Gen-2 protocol’s instructions as illustrated in Figs. 3.13 and 3.13,

respectively. The operating frequency of the chipless tags is 4–6 GHz, which can be detected

using the USRP, with 3-bits of coding data representing the tags’ IDs. In order to increase the

level of backscattered power, the tags are designed in a (2×2) array. Accordingly, different arrays

of tags are designed, simulated, and evaluated. The substrate used in the design is RO4003C

with a permittivity of 3.38, a loss tangent of 0.0027, and a thickness of 1.52 mm. Fig. 3.13

illustrates the response of the chipless tags based on the Gen-1 NPM protocol such that the ID

of Tag-1 is "111" and that of Tag-2 is "110". The responses of the Gen-2 based tags are shown

in Fig. 3.14, which uses IDs stored in the look-up-table. The manufactured chipless tags are

depicted in Fig. 3.15. They are planar without ground plane. Therefore, the detection of these

tags can either occur in the backscattering mode or the transmission-through mode.

3.6.2 Measurement Setup and Environment

A real time Software Defined Radio (SDR) hardware platform is employed in the measurement

setup as a reader. For all experiments and tests an Ettus USRP N210 [80] with a CBX [81]

daughter-board as RF front-end is used. This is a wide band transceiver that supports full duplex

operation for a frequency band of 1.2 GHz to 6 GHz with an instantaneous bandwidth of 40 MHz.

As illustrated in Fig. 3.16, a GNU Radio based chipless RFID reader is implemented to detect

the frequency signature of the protocol based tags. The overall signal processing operations are

implemented in the PC (written in Python including the designed protocols) and then transferred

to the FPGA and the RF frontend at the USRP by means of an Ethernet connection.
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Figure 3.13: The RCS frequency response simulation of two RFID chipless tags using CST-
MWS and an analytic method based on Equation (3.9) when applying the Gen-1 NPM protocol.
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Figure 3.14: The RCS frequency response simulation of two RFID chipless tags using CST-
MWS and an analytic method based on Equation (3.15) when applying the Gen-2 LUT protocol.
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Tag-1 Tag-2

Figure 3.15: Manufactured tags.
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Figure 3.16: Block diagram of the measurement setup.

Specifications for the USRP N210, CBX, and the frequency sweep parameters are given in

Table 3.3. Two directional horn antennas are used in a frequency range of 4 GHz to 6 GHz. The

setup in Fig. 3.17 indicates that the USRP is connected via Ethernet cable to the laptop where

the advanced signal processing techniques are implemented. Additionally, the laptop also sends

commands to the USRP to control the transmitted and received signals. In the designed testbed,

the Tx and the Rx antennas are in a line-of-sight distance of Dant = 30 cm. Moreover, the two

protocol based tags (Gen-1 and Gen-2) are placed in the middle of the interrogation zone of the

two antennas. The measured signal Y ( f ) does contain the backscattered tag response, in addition

to the clutter effects, the antennas’ transfer functions, and the additive noise. In order to extract
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Table 3.3: USRP Parameters.

Parameter Value
FPGA Spartan 3A-DSP 3400
Sampling Rate 1 M samples / second
Transmitter Gain 31.5 dB
Receiver Gain 0 dB
Start Frequency 4 GHz
End Frequency 6 GHz
Frequency Step 10 MHz
Output Power 12 dBm
Interface Gigabit Ethernet

Frequency Sweep
Averaging 100
FFT size 1024
Notch detection algorithm Energy detection

Reader Antenna
Type Horn
Gain 5 dBi

30 cm

USRP N210

MAC Based Tags

Tx
Rx

5 cm

Figure 3.17: Real scenario for multi-tag identification using a software defined radio platform
(USRPN210).

the tags’ signature accurately, an empty room calibration has to be performed, then a subtraction

process takes place as illustrated in Equation 3.20.

|YR( f )|dB =
1
A

A

∑
a=1

[|Y a( f )|dB−|Y a
Empty( f )|dB] (3.20)
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where Y a
Empty( f )|dB describes the empty room measurements on a dB scale and YR( f )|dB

represents the backscattered received power from the two tags after applying an empty-room

calibration, clutter removal, and a noise averaging process as presented in Figs. 3.18 and 3.19.

Moreover, A represents the maximum amount of averaging done for noise suppression as it

increases the dynamic range of the signal above the noise levels.

3.6.3 Measurement Results
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Figure 3.18: Detected signal using USRP after applying a real-time clutter removal and equal-
ization process utilizing the Gen-1 protocol. (Red: Notches of Tag-1, Blue: Notches of Tag-2)

Fig. 3.18 shows the measurements of the backscattered received power from the two tags based

on the Gen-1 NPM anti-collision protocol after applying an empty-room calibration, clutter

removal, and a noise averaging process. Furthermore, Fig. 3.18 illustrates a noticeable decay

in the received signal power for operating frequencies greater than 5 GHz. This is because the

utilized CBX daughter board’s functionality decreases for high operating frequencies which is

observed during the experiments. This is why most of the tags designed and described in the

following chapters are working at an operating frequency of 2–5 GHz.

The measurement result of the received signal when using the two Gen-2 based chipless

tags is illustrated in Fig 3.19 taking into consideration environmental effects by also applying the
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empty-room calibration process. Furthermore, the experiment with the two chipless tags is now

performed within a much lower bandwidth and with a lower complexity than the Gen-1 NPM

protocol. This means that:

1. The CBX-RF-daughter board performs at a frequency range lower than 5 GHz so that the

average power of the received signal does not decay.

2. It is much easier to identify the chipless tags when using the LUT-Gen-2 protocol and the

accuracy of detection is much greater.

3. The utilized LUT stored in the reader’s main memory is illustrated in Table 3.4 for the two

identified tags.

4. There is a frequency shift of 40 MHz between the measured and the simulated tags. This

is due to manufacturing issues.
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Figure 3.19: Detected signal using USRP after applying a real-time clutter removal and equal-
ization process when using the Gen-2 protocol.

Table 3.4: Stored LUT in the reader’s main memory.

Unique Frequency Shift (MHz) Tag-ID
150 Tag-1-ID
340 Tag-2-ID
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3.7 Conclusion

In this work, new protocols for anti-collision avoidance between tags in a chipless RFID network

have been proposed. The introduced algorithms are not only able to identify the number of

tags in the reader’s interrogation zone but they also effectively identify the ID of each tag.

The first generation of the protocol is based on unique frequency shifts hard coded in every

chipless tag based on an NPM technique that represents the tag’s ID. An advanced frequency

sweeping signaling scheme is applied for tag identification meeting the FCC UWB regulations

and increasing the backscattered power by a factor of 400 compared to the traditional UWB-IR

signaling scheme.

The second generation of the protocol enhances the spectrum’s utilization efficiency and the

coding capacity. The Gen-2 protocol uses the unique frequency shifts of each tag as addresses

to their IDs which are stored in a table in the main memory of the reader. In addition, the

influence of increasing the operating frequency on the performance of the chipless RFID system

is investigated from the multi-tag identification point of view. It was shown that the probability

of detection is enhanced when operating at higher frequencies because the notch bandwidth is

increased. Thus, the detection process is improved. However, a greater operating frequency

bandwidth is required to identify the chipless tags.

In order to imitate the real-world characteristics of the chipless RFID system, an SDR

platform is used as a real time reader for two MAC based manufactured chipless tags. For

these the empty room calibration and equalization processes were performed to obtain the ID of

the tags successfully. As expected, both collision free tag IDs were promptly identified on the

reader’s side in an indoor scenario at a distance of 30 cm. Finally, the comparison between the

two proposed anti-collision protocols is listed in Table (3.5).

Table 3.5: Comparison between the proposed anti-collision protocols, Gen-1 and Gen-2, and the
introduced techniques in the literature

Key Performance
Indication

Evaluation
LUT-Gen-2 NPM-Gen-1 [63] [65]

Probability of Error Low Low - -
Spectrum Utilization Low High High High
Multiple-Tags
Multiple-Bits Yes Yes No No

Complexity Low Moderate High High
Hardware
Implementation Yes Yes No No
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4 | Adaptive Frequency Sweeping Techniques to

Reduce System Latency

The main objective of Chapter 4 is to introduce novel techniques to reduce the time taken

by the reader to identify the Frequency Coded (FC) chipless RFID tags existent in the

reader’s interrogation region. This delay is called system latency. The frequency scanning

method, the number of spectrum sweeping iterations to remove the environmental clutter,

and the hop duration are the three main parameters that significantly affect the overall

system latency. Consequently, the Adaptive Frequency Hopping (AFH) and Adaptive

Sliding Window (ASW) methodologies are introduced and shown to be efficient for the

chipless RFID systems to reduce the latency and to improve the accuracy. Likewise,

the performance of the designed AFH and ASW techniques is compared to the classical

Fixed Frequency Hopping (FFH) method with a small frequency step to validate the

accuracy of the proposed techniques. Moreover, four differently coded FC chipless

tags are manufactured and used in the measurements. A real-world testbed is designed

which includes a Software Defined Radio (SDR) platform in which the proposed adaptive

algorithms and the traditional FFH method are implemented. All the measurements

are performed in an indoor scenario. It also includes all environmental effects. The

experiments show that the proposed AFH combined with ASW algorithms reduces the

system latency by 58%. A section of this chapter is already published in [82].

4.1 Introduction

The time required to identify the chipless RFID tags, called system latency, is critical in the

design of chipless RFID systems. In order to achieve a realistic system, the tagged objects need
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to be accurately classified in a short time. Therefore, the technique at the reader’s side used for

recognizing the chipless tags has to take into consideration all the other system latency parameters

besides the accuracy of detection as presented in [36]. Reducing the system latency leads the

chipless RFID scheme to be more reliable, robust, and efficient for real-world applications.

Consequently, a new method will be presented to decrease the system latency for chipless RFIDs.

It is worth noting that most of the studies dealing with the latency of RFID systems focus on

the chipped RFID technologies (RFID-with-chip). In [83–88], the identification time is studied

resulting from several modifications of the Medium Access Control (MAC) protocols that are not

applicable to the chipless RFID systems. Therefore, the factors that are taken into consideration

to reduce the latency of chipless RFID systems are quite different.

The Adaptive Frequency Hopping (AFH) technique is described in several studies such

as [89]. Here the hopping rate is considered in an adhoc network [90–92] and adapted according

to the channel quality after applying a spectrum sensing process. Likewise, the research in [93]

adapts the hopping rate according to a feedback system with a quality measure for frequencies

that avoids the bad frequency components. In addition, the research in [94, 95] utilizes the AFH

technique to reduce interference and to obtain a better performance at the Bluetooth application.

The aforementioned studies related to the AFH differ from the currently proposed technique for

the chipless RFID systems such that:

• The hop rate is determined by the PN sequence used, which is different from the proposed

AFH technique.

• The hop rate is adapted according to the channel quality where it is not the case with the

introduced AFH scheme which is adapted according to the notch pattern. This will be

explained in Section 4.3.

• The presented AFH technique for the chipless RFID system is not a spread spectrum

scheme, but it is only used for the identification of the chipless tag during the process of

spectrum scanning.

Therefore, this chapter explores the system latency of the chipless RFID system which, as far

as the author knows, has not been mentioned in any of the prior studies on the chipless RFID.

Two novel adaptive techniques, AFH and the Adaptive Sliding Window (ASW), are designed to

match the requirements of the chipless RFID tags so they can be identified using the adaptive

frequency sweeping methodology. The adaptive techniques are implemented in a real-world

testbed utilizing a Software Defined Radio (SDR) platform.
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This chapter is organized as follows. The system latency and the factors affecting the

chipless RFID’s system latency are listed in Section 4.2. The core functionality of the adaptive

frequency hopping and of the adaptive sliding window are illustrated in Section 4.3. In order to

verify the proposed method, real FC chipless RFID tags are designed and manufactured based

on the description in Section 4.4. The proposed AFH and ASW techniques are simulated in

Section 4.5 and evaluated using a real-world testbed based on an SDR platform (USRP N210).

The measurement results are explained and verified in Section 4.6. Finally, a comparison is

performed between the proposed techniques and concluded in Section 4.7.

4.2 Latency of Chipless RFID Systems

In this section, the system latency of the chipless RFID is evaluated. Furthermore, the factors

that affect the system latency are discussed and modeled.

4.2.1 Factors Affecting the System Latency of Chipless RFID

The system latency is interpreted as the time it takes the reader to identify the chipless tags

existent in the reader’s interrogation region. It is considered to be one of the most important KPIs

of the chipless RFID systems. The factors that affect the system latency can be summarized as:

1. Spectrum scanning Tscan: this is the time required to sweep the overall operating frequency

in order to identify the tag’s Identification number (ID).

2. Hop duration Thop: which is the time in which a certain frequency occupies the channel

before switching to the other hop (frequency). This factor is controlled by the Voltage

Controlled Oscillator (VCO) used in the testbed because it has to remain at the same

frequency for a certain time (hop-duration) before switching to the next one.

3. Number of reading iterations (N) required for the environmental clutter removal process.

The system latency can be mathematically expressed by Equation (4.1a).

Tsys-latency = N×Tscan

= N×n×Thop (4.1a)
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with

Tscan = n×Thop (4.1b)

where n is the number of hops required to sweep the spectrum. Therefore, the scanning method

has a significant effect on the system latency.

4.2.2 Spectrum Scanning Method

The RFID reader’s transmitter is responsible for the scanning mechanism at the operating

frequency in order to identify the FC-chipless tags. There are two options to sweep the spectrum:

1. The operating frequencies are swept linearly starting at the lowest operating frequency and

finishing with the highest operating frequency.

2. A UWB-RF pulse is sent which will cover the operating frequencies according to the

Gaussian distribution criterion.

A. Linear Frequency Modulation

With the Linear Frequency Modulation (LFM), chirp, the signal sweeps the spectrum from

low-to-high frequencies. This signal can be generated by sending a series of sinusoidal signals

with an incremental sequence of frequencies [96–99]. This transmitting signaling scheme is

well-known at Frequency Modulated Continuous Wave (FMCW) Radar systems [100–103].

The LFM signal can be represented as described in Equation (4.2).

x(t) = Acos

(
2π( fstartt +

k
2

t2)

)
(4.2a)

when

k =
fstop− fstart

T
(4.2b)

where x(t) is the transmitted signal, A is the amplitude of the signal, fstart is the start of the

operating frequency, fstop is the end of the operating frequency, T is the time taken to sweep

from start to finish of the operating frequency, and k is the chirp rate.
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Figure 4.1: Simulation and measurement of the transmitted signal using the LFM scheme,
the utilized hop duration is 30 ms: (a) Frequency response of the transmitted signal. (b)
Frequency–Time graph for the LFM signal.

Fig. 4.1a shows the frequency domain of the LFM’s transmitted signal which indicates a

flat magnitude response. Moreover, the relation between frequency and time shows a linear

relationship as depicted in Fig. 4.1b. Fig. 4.2 portrays the flowchart of transmitting an LFM

signal using the SDR platform in the proposed testbed, which is represented by the red lines in

Fig. 4.1.

B. UWB-RF Pulse

The second method of scanning the overall operating frequency is to transmit a UWB signal.

This can be generated by transmitting an RF-Gaussian pulse which is represented in Equation

(4.3).

x(t,α) = Ae−t2/(2α2) (4.3)

where α is the parameter used to control the width of the pulse. The full term of the normalized

Gaussian pulse can be expressed as in Equation (4.4).

x(t,δ t) =

(
2
√

log2√
πδ t

)1/2

e−2t2 log2/(δ t2) (4.4)
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Figure 4.2: Flowchart of transmitting a signal using the LFM technique.

where δ t is the full width of the pulse. Furthermore, the frequency domain representation of the

normalized Gaussian pulse is expressed in Equation (4.5) and the entire mathematical derivation

and framework are represented in [104].

x(ω,δ t) =

( √
πδ t√
log2

)1/2

e−ω2δ t2/(8log2) (4.5)

58



4.3. Core Functionality of Adaptive Frequency Hopping Techniques

0 2 4 6 8 10
0

2

4

6

Time (s)

(b)
Fr

eq
ue

nc
y

(G
H

z)

1 2 3 4 5

−46

−44

−42

Frequency (GHz)

(a)

Tr
an

sm
itt

ed
Po

w
er

(d
B

m
)

Figure 4.3: Illustration of the RF pulse (Gaussian RF pulse) method: (a) Frequency response of
the signal. (b) Frequency–Time graph of the RF-Gaussian pulse.

Fig. 4.3 shows the simulation results of an UWB-RF Gaussian pulse in the range of (2–5

GHz) and the corresponding frequency–time relationship. It indicates that the UWB-RF Gaussian

pulse, unlike the LFM scheme, is able to cover the overall operating frequency in a very short

time. Still, there are some disadvantages for the UWB-RF pulse, for example:

1. The power transmitted is much lower according to the FCC regulations of both UWB

indoor and outdoor scenarios, which in turn reduces the reading range of the chipless RFID

system, as discussed in Chapter 3.

2. The cost of the hardware to be used for generating the UWB-RF pulse is much higher than

that used in the proposed testbed when applying the LFM signaling schemes.

Therefore, the LFM method is used in the identification process of the chipless RFID system.

Thus, the number of hops that are necessary to sweep the overall operating frequency can be

reduced to obtain a lower system latency.

4.3 Core Functionality of Adaptive Frequency Hopping Techniques

This section explores the proposed adaptive techniques (AFH and ASW) that are designed to

match the requirements of the FC chipless RFID systems and to reduce the system latency.
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Furthermore, the traditional FFH method is discussed and compared to the proposed adaptive

techniques.

4.3.1 Fixed Frequency Hopping

Before exploring the proposed techniques to reduce the system latency, the primary FFH has to

be mentioned to illustrate the classical method of the FC chipless tag’s identification process.

The pseudo code that is used in the FFH methodology for the identification of chipless tags is

described by Algorithm 4.1. With this technique, the overall spectrum (operating frequency) is

scanned with a fixed frequency step (Fstep), which is described in Equation (4.6).

Fhopping = Fstart + k×Fstep (4.6)

where Fhopping is the set of hopping frequencies, Fstart is the start of the operating frequency, k is

an integer number from (0 . . . k), and Fstep is the step frequency.

Algorithm 4.1 Scanning with Fixed Frequency Hopping.

1: //Fstart is the starting operating frequency
2: //Fstep is the frequency step
3: //Fend is the end of operation frequency
4: //T X is the transmitter operation
5: //RX is the receiver operation
6: //N is the number of sweeping iterations to remove the clutter
7: while Fstart < Fend do
8: Fhopping← Fstart + k×Fstep
9: end while

10: for each Fhopping do
11: T X ← send_ f req(Fhopping)
12: RX ← get_amp(Fhopping)
13: apply_averaging(N)
14: end for

4.3.2 Adaptive Frequency Hopping

The notch bandwidth BW is increased according to the frequency as illustrated in Fig. 4.4 which

shows the RCS magnitude response of a real chipless tag using CST-Microwave Studio (as will

be explained in Section 4.4).
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Figure 4.4: Illustration of the notch–bandwidth increment with operation frequency for a
chipless tag designed using the CST-MW Studio EM simulator.

Thus, notches with wider bandwidths will be identified by a larger number of frequency

hops than the narrower ones are as shown in Fig. 4.5a. Consequently, an adaptive technique is

designed to diminish the number of hops which will reduce the system latency accordingly. The

proposed AFH technique relies on scanning the notches with a narrow bandwidth using a fine

frequency hopping rate (larger number of hops) and the wider-bandwidth notches with fewer

frequency hops (with different frequency steps). Fig. 4.5b shows a simulation of the application

of the proposed AFH technique (using MATLAB) for a designed FC chipless tag (with the Radar

Cross Section (RCS) magnitude shown in Fig. 4.4). It also illustrates the dynamic hopping

frequency allocation method which indicates that the number of hops is reduced. The number of

hops used to identify the chipless tag is illustrated in Fig. 4.6 after applying the introduced AFH

technique and the classical FFH methodology. It becomes clear that the AFH technique identifies

the tag with a much lower number of hops than the classical FFH methodology. The pseudo

code of the proposed AFH scanning method and its utilization in the chipless RFID systems are

described by Algorithm 4.2. The different hop rates are calculated according to several frequency

steps as expressed in Equations (4.7a–4.7c).
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Figure 4.5: The functionality of the AFH technique compared to the FFH method: (a) Applica-
tion of the FFH technique for a designed chipless tag. (b) Application of the proposed AFH for
the same chipless tag.
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Figure 4.6: Simulation results for the number of hops used for AFH vs. FFH.

Fh-1 = Fstart + k1×Fstep Fstart ≤ Fh-1 < Fe-1 (4.7a)
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Algorithm 4.2 Scanning with Adaptive Frequency Hopping.

1: //Fstart is the starting operating frequency
2: //Fstep is the frequency step
3: //Fend1 is the end of fast hopping
4: //Fend2 is the end of moderate hopping
5: //Fend3 is the end of slow hopping
6: //k1&k2&k3 are the different hopping rates
7: //T X is the transmitter operation
8: //RX is the receiver operation
9: //N is the number of sweeping iterations to remove the clutter

10: while Fstart < Fend1 do
11: Fhopping← Fstart + k1×Fstep
12: end while
13: while Fend1 < Fend2 do
14: Fhopping← Fend1 + k2×Fstart
15: end while
16: while Fend2 < Fend3 do
17: Fhopping← Fend2 + k3×Fstart
18: end while
19: for each Fhopping do
20: T X ← send_ f req(Fhopping)
21: RX ← get_amp(Fhopping)
22: apply_averaging(N)
23: end for

Fh-2 = Fe-1 + k2×Fstep Fe-1 ≤ Fh-2 < Fe-2 (4.7b)

Fh-3 = Fe-2 + k3×Fstep Fe-2 ≤ Fh-3 ≤ Fe-3 (4.7c)

where Fh-1 is the the set of frequency hops used for narrow notch bandwidths (at lower fre-

quencies), Fstart is the start of the operating frequency, k1 is the rate used to identify the lower

frequencies (high rate), Fstep is the frequency step, Fe-1 is the end of the 1st hopping rate, Fh-2

is the set of frequency hops used for notches with moderate bandwidths, k2 is the rate used for

moderate frequencies (medium rate), Fe-2 is the end of the 2nd hopping rate, Fh-3 is the set of

frequency hops used for wider notch bandwidths (low rate), k3 is the rate used to identify the

notches at higher frequencies, and Fe-3 is the end of the operating frequency spectrum.

The suitable hopping rates are estimated by obtaining the average notch bandwidths at lower,

moderate, and higher frequencies. Thus, the equation (BW =
Fr

Q
) can be used to estimate the

notch bandwidth; where BW is the notch bandwidth, Fr is the notch resonance frequency, and Q is

the quality factor of the tag’s resonator (notch filter). Thus, by changing the resonance frequency
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the corresponding notch bandwidth can be calculated. Afterwards, the required frequency steps,

used to identify the notch patterns based on the operating frequencies, are estimated and the

corresponding hop rates are predefined. The proposed AFH technique yields a high accuracy for

the identification of chipless RFID tags as will be shown by the measurements in (Section 4.6).

In addition, a reduced system latency will be introduced which conserves the system’s simplicity.

4.3.3 Adaptive Sliding Window
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Figure 4.7: Illustration of the variation of size of the decision window and its adaption to fit the
notch pattern: (a) Fixed window size. (b) Adaptive window size.

Since the notch bandwidth increases with the frequency as shown in Fig. 4.4, the adaptive window

size is utilized. This technique is mainly introduced to fit the requirements of the Notch Position

Modulation (NPM) MAC algorithm illustrated in Chapter 3. The NPM technique divides the

operating frequency into two parts, the preamble bandwidth and the coding bandwidth. The first

part is responsible for determining the tag’s existence and the second part shows the frequency

locations that represent the tag’s ID making use of the unique frequency shifts extracted from the

preamble bandwidth. The proposed Adaptive Sliding Window (ASW) algorithm starts scanning

the preamble bandwidth with a fixed window size. Then it scans the rest of the band according

to the estimated frequency position using an adapted window size. Consequently, the scanning

time can be calculated as described in Equation (4.8). The traditional fixed window size method

is shown in Fig. 4.7a where the window size is adapted to meet the increment in the notch BW,
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as illustrated in Fig. 4.7b.

Algorithm 4.3 Scanning with Fixed Sliding Window

1: //BWpre is the preamble bandwidth
2: //W is the window size
3: //Fpre is the preamble frequency
4: //BitBW is the bit bandwidth
5: //εi is the ith tag shift parameter
6: //Fstarti is the reference frequency of the ith bit bandwidth
7: //Ftagm is the unique absorption frequency of tag m
8: //Bitposition is the position of the bit
9: //ζ is the guard band between notches

10: W = const_value ;
11: for all BWpre do
12: Locate the center of the window at Fpre;
13: if Fpre is existent then
14: εi← Ftagm−Fpre−ζ

15: Calculate the number of tags;
16: Switch to the kth bit bandwidth;
17: else
18: Go to the idle state (at Fpre position);
19: end if
20: end for
21: for all BitBW do
22: Bitposition← Fstarti + εi;
23: d1← Bitposition−W,d2← Bitposition−0,d3← Bitposition +W ;
24: if average(d1,d2,d3) is LOW then
25: This bit represents one of the ith order;
26: else
27: This bit represents zero of the ith order;
28: end if
29: end for
30: Arrange the tag’s ID in a matrix;

Algorithm 4.3 describes the functionality of spectrum scanning with fixed window size

based on the NPM-MAC protocol illustrated in Section 3.3. The notches at higher frequencies

suffer under wider bandwidths which require several windows in order to detect the whole notch

as shown in Fig. 4.7a. Here three windows are required to detect the notch, and the decision

(notch or no notch) is based on the average of all decisions for each window. To improve

processing efficiency and to reduce latency, the window’s size is adapted to the notch bandwidth

as illustrated in Algorithm 4.4 and shown in Fig. 4.7b. Accordingly, the detection of each notch

is done once for each window as described in [36].
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Algorithm 4.4 Scanning with Adaptive Sliding Window

1: //BWpre is the preamble bandwidth
2: //W is the window size
3: //Fpre is the preamble frequency
4: //BitBW is the bit bandwidth
5: //εi is the ith tag shift parameter
6: //Fstarti is the reference frequency of the ith bit bandwidth
7: //Ftagm is the unique absorption frequency of tag m
8: //Bitposition is the position of the bit
9: //ζ is the guard band between notches

10: //Q is the quality factor of the notch
11: for all BWpre do
12: W = initial_value ;
13: wndow_position← Fpre ;
14: if Fpre is existed then
15: εi← Ftagm−Fpre−ζ

16: Calculate the number of tags;
17: Switch to the kth bit bandwidth;
18: else
19: Go to the idle state (at Fpre position);
20: end if
21: end for
22: for all BitBW do
23: Bitposition← Fstarti + εi
24: W ← Bitposition/Q;
25: if (d inside W) is LOW then
26: This bit represents one of the ith order;
27: else
28: This bit represents zero of the ith order;
29: end if
30: end for
31: Arrange the tag’s ID in a matrix;

Tscan = Tpreamble +Tbitbw (4.8)

where Tpreamble is the time used to scan the preamble bandwidth and Tbitbw is the time required to

scan the bit bandwidth.
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4.4 Chipless Tag Design

As shown in Fig. 4.8, the created chipless tag relies on slot ring resonators without a ground plane

illustrated in [105, 106]. This increases the flexibility of identifying the tag in backscattering

mode or transmission through mode (the latter is used in the measurement setup). Each slot

resonator is responsible for absorbing the signal at a certain frequency (notch filter) resulting in a

notch with a particular resonant frequency that is decoded to represent a bit or several bits. This

process will be described in Chapter 5.

Figure 4.8: RFID chipless tag design using CST-Microwave Studio.

The utilized FC chipless tag has two advantages:

1. The level of backscattered power is increased by designing a (2×2) array which enhances

the tag’s detection and identification.

2. The detection of this tag is orientation independent since the frequency absorbing element

is the circular resonator.

The designed tags are simulated using the CST-MW studio EM simulator. The simulations

are conducted by exciting the tags using a plane wave and monitoring the backscattered signal of

the tag. This setup is called backscattering mode because the backscattered signal is analyzed to

extract the tag’s signature. Fig. 4.9 shows the simulation results and the RCS magnitude response

of the four designed chipless tags coded with different IDs (tag signature). The substrate used in

the design is RO4003C with a permittivity of 3.38, a loss tangent of 0.0027, and a thickness of

1.52 mm.
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Figure 4.9: Simulation of FC-chipless tag using the CST-Microwave Studio EM simulator.

4.5 Simulation Environments and Results

In this section, the performance of the proposed adaptive techniques (AFH, ASW with fixed

hopping, and ASW with adaptive hopping) is evaluated based on simulations that also take into

consideration the real chipless tags. The obtained results are compared to the classical FFH to

validate the accuracy and the latency reductions of the introduced techniques.

4.5.1 Simulation Environment

The proposed algorithms are implemented by using the MATLAB simulation tool and by applying

it to chipless RFID tags (described in Section 4.4), which are designed and evaluated using the

CST-Microwave Studio Electromagnetic (EM) simulator. A block diagram of the simulation

environment is shown in Fig. 4.10.

68



4.5. Simulation Environments and Results

Tag-1 Tag-2 Tag-3 Tag-4

CST-MW Studio

MATLAB

M-File

MATLAB

FFH AFH ASW

Figure 4.10: Block diagram of simulation environment.

Table 4.1: Frequency steps of the proposed AFH and of the classical FFH algorithm.

Frequency Range (GHz) Value (GHz)
AFH

2.3–2.9 0.01
2.9–3.9 0.03
3.9–4.9 0.06

4.9–5.00 0.1
FFH

2.3–5.00 0.01

4.5.2 Simulation Results

A. Adaptive Frequency Hopping

The proposed AFH method defines different hopping rates to identify and detect the chipless

RFID tags. Each hopping rate is defined for a certain operating frequency with a specific

frequency step as illustrated in Table 4.1. The frequency step is selected to meet the increment of

the notch bandwidth when the frequency is increased. For the designed chipless tags shown in

69



Chapter4. Adaptive Frequency Sweeping Techniques to Reduce System Latency

Fig. 4.9, the average notch bandwidths for the predefined frequency ranges (defined in Table 4.1)

are 0.1, 0.22, and 0.35 GHz, respectively. Therefore, the estimated frequency steps are suitable

to accurately detect the notch patterns using the operating frequency. The AFH technique is

compared to the classical FFH methodology which employs a frequency step of 0.01 GHz for

the operating frequency (2.3–5 GHz) to ensure a high accuracy of notch detection.
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Figure 4.11: Simulation results with regard to the number of hops for the proposed AFH
technique and for the classical FFH method (4-different frequency steps are used).

The number of hops of the primary FFH methodology is linearly proportional to the

operating frequency since the hopping rate is constant in the entire range of the operating

frequency as shown in Fig. 4.11 by the red-dotted line. Equation (4.6) is used to estimate the

hopping frequencies necessary to identify the four chipless tags.

Unlike the FFH, the proposed AFH technique offers different hopping rates to identify and

detect the chipless RFID tags. Therefore, the number of hops is significantly reduced over the

entire operating frequency. Fig. 4.11, the multi-colored curve, illustrates the reduction of the

number of hops as a result of the adaptation of the hopping rates. This can be explained as

follows:

1. The red curve shows a hopping rate with a frequency step of 0.01 GHz to identify the

notches with narrow bandwidths.
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2. The magenta line illustrates a hopping rate with a frequency step of 0.03 GHz, which is

suitable for notch patterns with moderate bandwidths.

3. The green part of the curve presents a hopping rate with a frequency step of 0.06 GHz in

order to match the increase in the notch bandwidth.

4. the red curve presents a hopping rate with a frequency step of 0.1 GHz that is convenient

for notches with high bandwidths.
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Figure 4.12: System latency simulation results based on Equation (4.1a).

As explained in Section 4.3, the number of hops directly influences the overall system latency.

Furthermore, the system latency can be modeled using Equation (4.1). In order to illustrate

the improvement, the system latency of the proposed algorithms is normalized for the fixed

frequency hopping method according to Equation (4.9) considering a hop duration of 30 ms and

100-iterations for the clutter removal parameter.

Tsys-latency-normalized =
Tsys-latency-AFH

Tsys-latency-FFH

=
nAFH

nFFH
(4.9)

where Tsys-latency-normalized is the normalized system latency, Tsys-latency-AFH is the system latency

for the adaptive frequency hopping technique, Tsys-latency-FFH is the system latency for the basic
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fixed frequency hopping method, nAFH is the number of hops necessary with the AFH technique,

and nFFH is the number of hops necessary with the FFH methodology. The simulation results for

the normalized system latency are shown in Fig. 4.12 which indicates a satisfactory improvement

with regard to the system latency when applying the AFH technique. Now, the number of

hops for FFH and AFH are 271-hops and 113-hops, respectively which means more than 58%

reduction of the overall system latency.

B. Adaptive Sliding Window

The normalized system latency for the ASW algorithm is evaluated by estimating the number of

hops inside the windows which are used to identify the designed chipless tags. Moreover, two

scenarios of the adaptive sliding window are simulated and compared to one another:

1. The Adaptive Sliding Window with Fixed Hopping rate (ASW-FH) uses the concept

of variable window size, but with fixed frequency steps inside the detection window

(frequency step of 0.01 GHz).

2. The Adaptive Sliding Window with Adaptive Hopping rates (ASW-AH) makes use of the

benefit of the adaptive hopping technique to reduce the overall system latency (frequency

steps of 0.01, 0.03, 0.06, and 0.1 GHz).

The ASW algorithm is specifically designed to meet the NPM-MAC protocol’s requirements

which are applied to identify the four chipless tags. Likewise, the system latency for the

ASW algorithms (ASW-FH and ASW-AH) are normalized over the FFH technique, using

Equation (4.9). Fig. 4.13 shows a comparison of the normalized system latency of the FFH,

ASW-FH, and ASW-AH algorithms. The number of hops for the ASW-FH technique is 230,

however, the number of hops for the ASW-AH algorithm is 112 after using the concept of the

presented adaptive hopping criterion.

4.6 Measurements and Real-World Testbed

In this section, a real-world testbed is described based on an SDR platform and real manufactured

chipless tags (shown in Fig. 4.14) in an indoor scenario. In addition, the adaptive algorithms are

compared to the traditional FFH method in order to validate the performance of the proposed

algorithms.
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Figure 4.13: System latency simulation results for the Adaptive Sliding Window with Fixed
Hopping (ASW-FH) and for the Adaptive Sliding Window with Adaptive Hopping (ASW-AH).

Figure 4.14: Manufactured RFID chipless tags.

4.6.1 Measurement Setup

The measurements are implemented using Universal Software Radio Peripheral (USRP) N210 [80]

and a CBX daughter-board [81] operating in a frequency range of (1.2–6 GHz), the instantaneous

bandwidth of the CBX daughter-board is 40 MHz. The parameters of the measurement setup are

summarized in Table 5.2. Fig. 4.15 shows the block diagram of the designed testbed in which
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RF Frontend

Chipless 

Tag

15 cm

TX RX

Frequency 

Sweeping 

(LFM)

FFT
Identification 

Protocol

Detection 

Technique

Tag 

Identification

FPGA

PC/Laptop

USRP

Gigabit Interface

Figure 4.15: Block diagram of the measurement setup.

the laptop is connected to the USRP using a Gigabit Ethernet interface.

The measurements are performed in a real environment (indoor scenario) in order to validate

the proposed AFH technique in a setup that includes environmental effects and multipath

components.

A Linear Frequency Modulated (LFM) scheme, also known as linear chirp, is applied to

generate a UWB-like signal at the transmitter’s side which is described in Equation (4.2). The

USRP baseband signal is up-converted by a variable carrier frequency (2.3–5 GHz) by means

of the CBX daughter-board. Due to hardware limitations, a pure UWB-impulse cannot be

generated because the CBX daughter board possesses a bandwidth of 40 MHz. Furthermore,

the disadvantage of UWB impulse generation is its limited power constraints (-41.3 dBm/MHz

according to the UWB-FCC regulations for indoor scenarios [107]). However, the frequency

sweeping mechanism does not suffer from the same problem as the transmitted power can be 0

dBm within a bandwidth of 50 MHz [73]. So, in the proposed testbed, the transmitted power

can be increased up to 0 dBm. The designed testbed is shown in Fig. 4.16. Moreover, the

hop duration is set to be 30 ms (which is recommended by the supplier) and the number of

sweeping iterations is 100 to remove the environmental clutter. This could also be removed by

using PN-sequence schemes to speed up the process without using all the iterations as explained

in [106]. All algorithms (classical FFH and Adaptive hopping) are performed in Python and

can be applied to the USRP platform. The frequency steps used for the AFH algorithm are

illustrated in Table 4.1. A room calibration process is performed at the beginning by subtracting
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Figure 4.16: The real-world measurement setup based on SDR (USRP N210).

Table 4.2: USRP Parameters.

Parameter Value
Sampling Rate 1 M samples / second
Transmitter Gain 31.5 dB
Receiver Gain 0 dB
Start Frequency 2.3 GHz
End Frequency 5 GHz
Frequency Step 10, 30, 60, 100 MHz

Frequency Sweep
Averaging 100
Hop Duration 30 ms

Reader Antenna
Type Log-Periodic Antenna Array
Gain 2–5 dBi

the backscattered signal power of the tag from the received signal without any tags existent in

the detection area as illustrated in Equation (4.10). This removes all environmental effects.

Ri
measured = Ri

tag−Rair (dB) (4.10)

where Ri
measured is the total measured backscattered signal power of tag i, Ri

tag is the backscattered

signal power of tag i, and Rair is the backscattered signal power of the environment. This last

component is calculated once in the beginning.
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4.6.2 Measurement Results

The measurement results for the system latency are obtained by estimating the time it takes to

identify the chipless tags when the proposed algorithms are applied to the USRP device. Also,

the hardware restrictions are taken into consideration in the proposed measurements. In order to

validate the proposed techniques, the following key performance indicators are examined:

1. Detection accuracy: this parameter indicates the accuracy of identifying the chipless tags

when applying frequency sweeping.

2. The number of hops: this parameter guarantees that the hardware used is able to vary the

hop rates to fit the requirements of the proposed algorithms.

3. Normalized system latency: this is measured by normalizing the time it takes to identify

the tags when applying the proposed adaptive techniques and comparing it to the time

taken by the FFH method.
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Figure 4.17: Measurement results for the backscattered signal from the chipless RFID tags after
applying the proposed AFH technique and comparing it to the classical FFH methodology using
USRP: (a) Tag-1. (b) Tag-2. (c) Tag-3. (d) Tag-4.

Fig. 4.17 shows a great similarity between the proposed AFH technique and the classical FFH

method (used with a fine frequency resolution of 0.01 GHz). The received signals from the

tags are compared to the simulation results obtained by the CST-MW studio EM simulator

(shown in Fig. 4.8) in order to determine the accuracy of the proposed technique. The absorption

of the notch is different due to channel effects. Moreover, the FFH methodology shows a

greater number of fluctuations because the utilized averaging process is applied to each adjacent

frequency step to remove environmental clutter. This results in higher error points than it does

for the newly developed adaptive technique.

Fig. 4.18 illustrates the different hopping rates used to identify the chipless tags.
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Figure 4.18: Measurement results for the backscattered signal from the chipless RFID tags
illustrating the four frequency steps used to identify the chipless tags: (a) Tag-1. (b) Tag-2. (c)
Tag-3. (d) Tag-4.

The USRP-transmitter generates a sweeping signal based on the predefined hopping rates

(with different frequency steps as presented in Table 4.1). The backscattered signal from the tag

is received by the USRP-receiver as shown in Fig. 4.17. Then, the signal processing techniques

are executed including the adaptive sliding window criterion and the energy detection technique

in order to translate these patterns into the corresponding bit stream.
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Figure 4.19: The measured number of hops after applying the AFH and the FFH spectrum
scanning technique using the USRP.
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Figure 4.20: Normalized measured system latency.

The number of hops needed by the USRP for the classical FFH method and the proposed

AFH technique is shown in Fig. 4.19 (the number of hops for both AFH and FFH are 113 hops
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and 271 hops, respectively). Furthermore, the overall system latency is measured by estimating

the time taken to scan the operating frequency when applying the AFH and FFH techniques.

The normalized latency is calculated by dividing the latency for the adaptive algorithms by the

latency for the classical FFH methodology. Fig. 4.20 shows that the proposed AFH technique

reduces the system latency by more than 58% considering the hardware issues, which excellently

matches the simulation results obtained by the latency modeling, shown in Fig. 4.12.

4.7 Conclusions

In this chapter, novel techniques to reduce the system latency of the reader, which is the time

needed to identify the Frequency Coded chipless RFID tags, are proposed. It could be shown

that the overall system latency is affected by the chosen frequency scanning method, the number

of scanning iterations to remove clutter, and the frequency-hop duration. Therefore, a method

of Adaptive Frequency Hopping (with variable detection window size) is designed, simulated,

and implemented in a real-world testbed using a Software Defined Radio platform (USRP N210,

with CBX daughter-board). Furthermore, the measurement setup relies on real manufactured FC

chipless tags. The proposed algorithms are written in Python and introduced over the USRP. The

measurements are performed outside the anechoic chamber, so that environmental effects can be

included. The designed AFH algorithm is compared to the classical FFH method and the results

show that the AFH algorithm works efficiently in the FC chipless RFID systems. When applying

the proposed AFH technique, the overall system latency can be reduced by more than 58% and

the chipless tag is accurately detected with the help of the adaptive sliding window criterion. A

close match between simulation and measurement results can be seen throughout the results.

A comprehensive study is performed between the proposed AFH algorithm, the classical FFH

methodology, and the ASW techniques. The results are summarized in Table 4.3.

Table 4.3: Comparison of the proposed AFH, ASW-FH, ASW-AH, and FFH algorithms.

FFH AFH ASW-FH ASW-AH
Number of Hops High Low High Low
System Latency High Low High Low
Detection Accuracy Moderate High Moderate Moderate
Algorithm Complexity Low Low High High
Tag-Type Dependancy No No Yes Yes
Latency Increment with the No. of Tags No No Yes Yes
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The main objective of this contribution is to introduce a novel technique that increases

the coding capacity of the Frequency Coded (FC) chipless RFID system. The presented

scheme encodes 4 bits per single resonator which employs the notch bandwidth and its

corresponding frequency position. Hence, 80-bits can be achieved in the range of 2 to 5

GHz preserving the operating frequency bandwidth. Furthermore, a Smart Singular Value

Decomposition (SSVD) technique is utilized to estimate the notch bandwidth and to ensure

a low probability of error. Consequently, a high encoding efficiency and accurate detection

can be achieved with a simplified reader design. In addition, the use of Error Correction

Codes (ECC) is explored and applied to the chipless RFID system. This will enhance the

system’s performance due to the obtained coding gain. Likewise, a novel 4×5 cm2 tag is

designed to fit the requirements of the devised coding technique and to achieve a coding

density of 4 bits/cm2. Different tag configurations are manufactured and validated with

measurements using a Software Defined Radio (SDR) platform. The introduced coding

method is conclusively validated using Electromagnetic (EM) simulations and real-world

testbed measurements. This work has already been partially published in [24].

5.1 Introduction

One of the most important applications of the chipless RFID system is the supermarket scenario,

where the system is anticipated to replace the optical barcode by 2020 [71,108]. The conventional

encoding schemes as mentioned in [109–111] are not applicable to the chipless RFID tags since

they do not include memory and modulation modems [53]. The coding capacity and ease of

chipless RFID tag detection are necessary functions to compete with the existing barcode systems
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Figure 5.1: Block diagram of chipless RFID system.

and to simplify the reader’s design. Chipless RFID tags are defined according to their coding

method as time domain [112], frequency domain [105], image based [113], and hybrid. The

hybrid tag uses more than one dimension for data encoding and decoding such as (frequency -

phase) [114], (frequency - polarization) [53], and (frequency - time) [115] to increase the coding

capacity.

The time domain based chipless RFID tags are evaluated by transmitting a pulse signal

from the reader and listening to the reflected signal from the tag. The data is encoded by sending

adjacent pulses at different time slots [23]. However, the tag employs only a low number of bits

at a comparably large tag size.

The chipless Frequency Coded (FC) RFID system relies on a frequency signature induced

by the tag on the transmitted signal with the aid of resonators. The chipless RFID tag is detected

by analyzing the backscattered signal that constitutes the tag’s ID. With the help of the proposed

Notch Width Modulation (NWM) technique, the tag’s response consisting of notches with

different bandwidth and frequency locations can be detected as presented in Fig. 5.1. The

involved signal processing for decoding and detecting the tag’s ID is quite challenging as it is

used for fast (reduced system latency) and accurate (minimum error of detection) identification.

An increased number of data bits for chipless RFID tags is important to match the barcode
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standards listed in [116] and the associated Electronic Product Code (EPC) [117].

Table 5.1 summarizes all previous studies dealing with the encoding techniques for chipless

RFID tags and compares them to the proposed encoding technique.

Table 5.1: Comparison between existing chipless RFID encoding techniques.
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Frequency
Domain

Spiral [118] N 1 0.61 3–7 N
Open Stub [119] N 1 <1 2–4 N
Dual Band [120] N 1.5 <1 2.5–5.5 Y
C-Shaped [121] Y 1 2.9 2.5–7.5 N
Dual Polarized [78] N 1 >7 7–12 N
Depolarization [37] Y 1 0.66 3–7 Y
Stepped Impedance [122] Y 2 >7 3–9 Y
C-Shaped, RCS level coding [123] Y 3 1.25 2–5 N
Proposed Technique Y 4 4 2–5 Y

Time
Domain

SAW [25] Y 1 <1 2.44 N
Delay Line [124] N 1 0.17 2.44 N

For the prior studies listed in Table 5.1, the maximum number of bits encoded in each

resonator is three while the proposed technique introduces 4 bits per single resonator, which

represents the notch. Moreover, the approaches listed in the literature use a Vector Network

Analyzer (VNA) and a horn antenna (at the reader’s side) in the measurement setup. The

newly developed measurement setup uses a Universal Software Radio Peripheral (USRP), which

is responsible for decoding and detection, and a low-cost monopole reader antenna (gain of

2–5 dB). These improvements enable a realistic implementation of the chipless RFID system.

Furthermore, the proposed coding technique yields a high coding capacity relying on a lower

operating frequency (2–5 GHz). Likewise, so far no studies have been done that deal with the

effect of coding/detection of the chosen techniques on the probability of error. Up to now it

also has not been evaluated in how far the proposed solutions are simple and trustworthy in a

83



Chapter5. Coding Capacity

real-world environment.

In this chapter, a realistic novel hybrid coding technique is introduced. It is based on the

notch bandwidth and its corresponding resonance frequency position. The proposed encoding

method does not encode the bits in phase. Thus, it does not require any phase compensation

methods at each tag as it is very sensitive to the channel effects [105]. Furthermore, a Smart

Singular Value Decomposition (SSVD) detection technique is presented to ensure a low detection

error and increased simplicity. Section 5.2 interprets the core functionality of the proposed coding,

the mathematical framework, the introduced tag design, the detection/decoding techniques, and

the utilization of error correcting codes in the chipless RFID system. Section 5.3 depicts the

simulation results of decoding the chipless tags coded with the NWM scheme. Finally, Section

5.4 illustrates the measurement results to show the validity of the introduced approach.

5.2 Proposed Coding and Detection Techniques

This section introduces an encoding technique that represents several bits per notch depending

on the notch bandwidth and the frequency location. The proposed technique has the advantage

of simultaneously executing the decoding and detection processes for the chipless tags encoded

with the NWM technique. Furthermore, it reduces the overall bandwidth of the system which

lets it operate at lower cost and with reduced complexity. This is due to the fact that a larger

number of bits can be achieved with a lower number of notches as each notch is represented by

4-bits. In addition, the utilization of error correction codes is investigated in this section.

5.2.1 Basic Operation and Core Functionality

The efficiency of the coding capacity is increased by encoding multiple bits for each notch

(which is implemented using a resonator). The proposed coding technique is based on notch

bandwidth and frequency location. The benefits of the proposed NWM approach are:

1. The ability to code with a high coding capacity within a smaller operating bandwidth (2–5

GHz). This can reduce the reader’s cost due to lower hardware demands.

2. The use of a smart detection technique SSVD to reduce the detection error of the received

chipless tag’s ID while reducing the design complexity and detecting the notch widths and

resonance frequencies.
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3. Robustness against channel and multipath effects (no need for phase compensation for

each tag as in [121]). Besides, the RCS level is not used in the encoding process (as

in [123]) due to its sensitivity to environmental channel effects.

The first step to encode several bits per single notch based on the notch bandwidth and

frequency location is illustrated in Fig. 5.2. The proposed coding technique comprises three

notch bandwidths (BW1, BW2, and BW3) and frequency positions (Fr, Fr +∆ f , and Fr−∆ f )

such that BW is the notch bandwidth, Fr is the notch resonant frequency, and ∆ f is the frequency

shift used in the second dimension for coding.

C A B
−20

−10

0

Frequency

(c)

BW3

1101
1110
1111

C A B
−20

−10

0

Frequency

(b)

BW2

0101
0110
0111

C A B
−20

−10

0

Frequency

(a)

M
ag

ni
tu

de
(d

B
)

BW1

0001
0010
0011

Figure 5.2: Basic principle of the coding technique: (a) Codes for notch with bandwidth BW1.
(b) Codes for notch with bandwidth BW2. (c) Codes for notch with bandwidth BW3.

However, the total number of combinations for the method used in Fig. 5.2 that can be

obtained is ten which will yield only 3-bits or 4-bits with six combinations that remain impossible

to achieve. Consequently, two additional frequency shifts per notch bandwidth are required.

Thus, the second step to obtain the unreachable combinations is to have five frequency locations

for each notch bandwidth as illustrated in Fig. 5.3.
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Figure 5.3: Basic principle of the coding technique: (a) Codes for notch with bandwidth BW1.
(b) Codes for notch with bandwidth BW2. (c) Codes for notch with bandwidth BW3.

Hence, all 16 combinations can be obtained when encoding 4-bits per notch represented by

the single resonator. Fig. 5.4 illustrates the 2D constellation diagram that describes the hybrid

technique relying on both, notch bandwidth and frequency position. The notch bandwidths are

estimated using the SSVD algorithm outlined in Section 5.2.4.
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Figure 5.4: 2D constellation diagram for the proposed technique.

Fig. 5.5 illustrates the proposed coding principle for a real chipless tag using the CST-

Microwave Studio EM simulator. The dashed magenta lines represent the windows that can

include a notch with certain bandwidth and frequency location.
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Figure 5.5: Basic principle of the coding technique.

The pseudo code describing the NWM decoding technique is illustrated by Algorithm 5.1.

The SSVD technique is applied to each frequency location in order to estimate the notch pattern.

Consequently, the notch coding pairs C j ( fk,Bl) are obtained in order to be able to extract the

corresponding ID which is stored in a look-up-table in the reader’s main memory.

5.2.2 Mathematical Framework

The chipless RFID tag’s response consists of several notches with predefined bandwidths and

frequency positions. These represent a certain code as described before. The notch pattern can

be expressed as a function of the frequency location ( fk) and the notch bandwidth (Bl). The

notch pattern is modeled by a 2nd order notch filter scheme [125] as described in Equations (5.1).

S(s) =
s2 +ω2

k

s2 + ωk
Ql

s+ω2
k

(5.1a)

S(ω) =
ω2

k −ω2

(ω2
k −ω2)+(ωk

Ql
ω)i

(5.1b)

S( f ) =
f 2
k − f 2

( f 2
k − f 2)+( fk

Ql
f )i

(5.1c)
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Algorithm 5.1 Proposed Coding Technique for Chipless RFID Tag

1: //BW1 is notch bandwidth with value BW1 used for coding
2: //BW2 is notch bandwidth with value BW2 used for coding
3: //BW3 is notch bandwidth with value BW3 used for coding
4: //Fr is notch resonant frequency
5: //∆ f is the shift frequency used for coding
6: // f is notch frequency position
7: //ssvd_opt the output of SSVD algorithm
8: //d is the minimum distance to pre-calculated constellation points
9: for all f ← Fr do

10: ssvd_out put← apply_ssvd_algorithm();
11: d← calculate_min_distance_constellation(ssvd_opt);
12: if d is no_notch then
13: f ← Fr +∆ f ;
14: ssvd_opt← apply_ssvd_algorithm();
15: d← calculate_min_distance_constellation(ssvd_opt)
16: if d is no_notch then
17: f ← Fr +2∆ f ;
18: ssvd_opt← apply_ssvd_algorithm();
19: d← calculate_min_distance_constellation(ssvd_opt)
20: if d is no_notch then
21: f ← Fr−∆ f ;
22: ssvd_out put← apply_ssvd_algorithm();
23: d← calculate_min_distance_constellation(ssvd_opt)
24: if d is no_notch then
25: f ← Fr−2∆ f ;
26: ssvd_out put← apply_ssvd_algorithm();
27: d← calculate_min_distance_constellation(ssvd_opt)
28: if d is no_notch then
29: T he code is 0000;
30: else
31: get_code_ f rom_LUT ();
32: end if
33: end if
34: end if
35: end if
36: end if
37: end for

where ωk equals 2π fk and represents the notch angular resonance frequency. Ql is the quality

factor of the notch filter. Furthermore, the notch bandwidth Bl is represented by Equation (5.2).

Bl =
fk

Ql
(5.2)
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Thus, the notch pattern S( f ) is expressed based on the notch bandwidth Bl and the frequency

position fk. Consequently, the notch is modulated by a specific bandwidth and frequency location

that represents a certain code (bit stream).

S( f ) =
f 2
k − f 2

( f 2
k − f 2)+(Bl× f )i

(5.3)

Thereafter, the chipless tag is illustrated by Equation (5.4) based on the proposed NWM encoding

technique with the coding pairs C j ( fk,Bl) .

ΓNWM( f ) =
K

∑
k=1

ck.Sk( f )|( fk,Bl) (5.4)

The chipless tag’s response ΓNWM( f ) is analytically described based on the predefined frequency

position fk and the notch bandwidth Bl . Also, ck is the code factor that shows whether or not

there is a notch with a certain code existent in the interrogation area. The absence of this specific

code is represented by code-0000.

In order to validate the suggested mathematical framework of the proposed notch with modulated

tags, three chipless tags are designed based on the NWM technique using the CST-Microwave

Studio EM simulator, as described in the "Tag Design" Section. The CST-simulation results are

compared to the proposed mathematical framework. Fig. 5.6 shows a close match between the

newly-developed analytic model and the simulation results.
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Figure 5.6: Results of analytic model and simulation: (a) Tag-1 analytic and simulation. (b)
Tag-2 analytic and simulation. (c) Tag-3 analytic and simulation.

5.2.3 Tag Design

According to the proposed NWM coding technique, the tag is able to provide three different notch

bandwidths at specified frequencies inside each window (the window definition is illustrated in
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Section 5.2.4). However, it is still problematic that the quality factor of the same resonator over

the same substrate is almost constant, thus the bandwidth is increased with increasing frequency

(shown in Chapter 4) as expressed by Equation (5.2). Consequently, a novel tag structure is

developed in order to meet the NWM’s coding requirements. The tag relies on three different

resonating elements specifying the three coding bandwidths. The coding elements are a dipole, a

rectangular ring, and a rectangular patch which correspond to the first, the second, and the third

coding bandwidth, respectively.
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Figure 5.7: NWM based notch patterns at three different frequency bands using the CST-
Microwave Studio EM simulator: (a) First window. (b) Second window. (c) Third window.

The average notch bandwidths for these elements are calculated using Equation (5.2) with

the given quality factor value for each resonating element. They can also be estimated by using

the CST-MW Studio simulator for each GHz of the operating frequency. Fig. 5.7 shows the

pattern of the notches within the operating frequency in the ranges of 2–3, 3–4, and 4–5 GHz,
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respectively. These values of notch bandwidths are used by the reader to decode the backscattered

signal from the tag. Three different tags are designed to meet the requirements of the NWM

technique as shown in Fig. 5.8.

Tag-1 Tag-2 Tag-3

4 cm

5 cm

Figure 5.8: Proposed tag design.
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Figure 5.9: Simulation results of the designed chipless RFID tags using the CST-Microwave
studio EM simulator.

The responses of the designed tags are shown in Fig. 5.9 which illustrates the flexibility of

controlling both the notch bandwidth and the resonant frequency with the predefined values that

represent a certain code. Likewise, the notch arrangement of these tags yields results contrary to
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all previously known phenomena with regard to the notch bandwidth’s increment with rising

frequency. This is due to the fact that here each tag’s response starts with the wider notch

bandwidth and continues with the narrower ones. Additionally, it is observed that up to 20

notches can be allocated in an operating frequency range of 2–5 GHz representing around 80-bits.

The dotted magenta lines represent the coding window and each dotted cyan line shows the

center of this coding window. Thus, the notch can be located on these cyan lines or, in order to

represent a specific code, it can be shifted to the left or to the right.

5.2.4 Proposed Smart Singular Value Decomposition Detection Technique

In this section, the use of the SSVD algorithm proposed in [36] is briefly described to estimate

the notch bandwidth in order to meet the encoding requirements.

A. Windowing

Windowing is an essential process that is part of the proposed detection technique. In this work,

windowing is done in the frequency domain by multiplying the received signal Y ( f ) with a

shifting window function as illustrated by Equation (5.5).

Yk( f ) = Y ( f ).rect(
N

fmax− fmin
− k.N) (5.5)

where N is the number of frequency points in the window and k is the kth window in

the whole band. Moreover, fmax− fmin is the bandwidth of the window. These windows are

represented by the dashed magenta lines shown in Fig. 5.9 with a bandwidth of 150 MHz.

B. Smart-SVD

The classical Singular Value Decomposition (SVD) algorithm mentioned in [126] uses 2b

combinations to create the detection constellation points, where b is the total number of bits for

each chipless tag. When the number of bits is increased, the number of constellation points also

rises, thus decreasing the probability of detection (accordingly, this increases the probability of

error). Moreover, the size of the matrix used to calculate the constellation coordinates rapidly

expands, making the detection very computationally expensive.

The SSVD is a fast and improved method to detect the notch using Signal Space Represen-

tation (SSR). In the SSVD, only four training sequences are considered for any number of total
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notches, creating a rank four matrix M as illustrated by Equation (5.6).

M = UΣVT = [γ1,γ2,γ3,γ4]m×4 (5.6)

where [γ1,γ2,γ3] represents the three predefined notches with different pattern bandwidths

(according to the coding technique requirements, BW1, BW2, and BW3) and γ4 constitutes a

no-notch representation. U and V are unitary matrices composed of orthonormal column vectors

ui and vi. Moreover, Σ is a diagonal matrix consisting of four constant values of σi as presented

in Equation (5.7).

M =
[
u1 ... u4

]
N×4


σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4


4×4



vT
1

.

.

.

vT
4


4×4

(5.7)

Using the orthonormal property of the SVD matrix, the four constellation points are calculated

off-line.
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Windowing 
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Offline coding

BW1 BW2 BW3
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Decoding

(fk,Bl) Cj

Bit stream

1100xxx

Tag-ID

Figure 5.10: Block diagram of Smart-SVD.

Fig. 5.10 shows the block diagram of the decoding cycle for the received signal Y ( f ) which

is reflected from the tag and decoded with the proposed NWM coding technique. The received

signal is windowed Yk( f ) and then compared to the previously calculated constellation points c j.

The minimum distance vector criterion is applied as described in Equation (5.8). Afterwards, the

notch pattern that is defined by the frequency and bandwidth pairs, called coding pairs ( fk,Bl), is
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decoded to a specific code C j.

dk = min
{
|| 〈Yk( f ),U〉− c j||2

}
j = 1..4 (5.8)

Therefore, utilizing the already introduced SSVD algorithm, the notch bandwidth can be

estimated according to the predefined bandwidths derived from the offline coding. Furthermore,

the notch frequency location is determined inside each window by applying the SSVD within

narrow frequency location ranges.

5.2.5 Error Correction Coding

In this section, the utilization of a linear block code (i.e., Hamming codes) as an error correction

code for the chipless RFID system is presented. Within a block code, a block of k data digits

is encoded by a codeword of n digits such that (n > k). Here, the number of bits used for error

correction is m with m = n− k. They are called parity check digits p(1×m). Fig. 5.11a shows

the structure of the systematic codeword for a linear block coded chipless tag. The tag-ID, the

codeword, and the parity check bits are represented as follows [127]:

d = [d1, · · · ,dk] (5.9a)

c = [c1, · · · ,cn] (5.9b)

p = [p1, · · · , pm] (5.9c)

Tag-ID (d(1×k))
Parity Check 

Digits (p(1×m))

Linear Block 

Coder 

Linear Block 

Decoder 

Tag-ID

(k-bits)

Coded 

Tag-ID

(n-bits)

Tag-ID

(k-bits)

(a)

(b)

Detection 

Technique 

c (n-bits)

Figure 5.11: Illustration of the utilization of error correction coding in the chipless RFID system:
(a) Structure of the systematic codeword. (b) Block diagram of coding/decoding the chipless tag
using linear block codes.

In addition, the relationship between the number of bits in the codeword n and the number

of parity check bits m is formulated by Equation (5.10) [128]. Furthermore, the coding efficiency
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(also known as code rate R) is expressed as k/n.

n = 2m−1 (5.10)

A. Coding

For the general case that uses linear block codes, all the n digits of the codeword are formed

by linear combinations (modulo-2 additions) of k data digits. The special case where c1 = d1,

c2 = d2, · · · , ck = dk and the remaining digits from ck+1 to cn are linear combinations of d1, · · · ,
dk is known as a systematic code [128]. The structure of the systematic codeword is illustrated

in Fig. 5.11a and the parity check digits are formed by linear combinations of the data digits.

c1 = d1 (5.11a)

c2 = d2

...

ck = dk

ck+1 = p11d1⊕ p12d2⊕·· ·⊕ p1kdk

ck+2 = p21d1⊕ p22d2⊕·· ·⊕ p2kdk

...

cn = pm1d1⊕ pm2d2⊕·· ·⊕ pmkdk

c = dG (5.11b)

where

G = [I(k×k)
... P(k×m)]

=


1 0 0 · · · 0 p11 p12 · · · pm1

0 1 0 · · · 0 p21 p22 · · · pm2
...

...

0 0 0 · · · 1 p1k p2k · · · pmk

 (5.12)
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The k×n matrix G is known as the generator matrix and can be separated into a k× k identity

matrix and a k×m parity check digits matrix as expressed by Equation (5.12). Thus, in order to

code the chipless tag-ID with a linear block code, Equation (5.11b) is employed.

B. Decoding

When considering some of the codeword’s properties that are necessary for the decoding purpose,

Equation (5.13) is obtained by the derivation depicted in [127–129].

cHT = 0 (5.13a)

where

HT =

P

Im


and its transpose

H = [PT Im] (5.13b)

is called the parity check matrix. Each codeword must satisfy Equation (5.13a). Due to the

channel noise, possible errors (e) can be expected when decoding the received word (r) which

can be written as:

r = c⊕ e (5.14)

Moreover, the syndrome (s) is used to detect the position of the error bit as illustrated in [128]

and expressed in Equation (5.15).

s = rHT (5.15)

where s is a nonzero row vector called syndrome. After obtaining the syndrome vector s to the

received word r, the corresponding error e is extracted from the decoding table. The complete

description of the linear codes and the syndrome decoding is illustrated in [127–131].
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C. Coding Gain

Coding gain is a measure for the difference of the signal-to-noise ratio (SNR) levels between

the uncoded system and the coded system that is required to reach the same probability of error

levels when used with the Error Correcting Code (ECC). Thus, it indicates the amount of SNR

improvement after applying the ECC. The asymptotic coding gain Ga is expressed by Equation

(5.16) [132, 133].

Ga = 10log[dminR] (5.16)

where dmin is the minimum distance of a linear block code that represents the smallest Hamming

distance between any pair of code vectors in the code. This is the same as the smallest Hamming

weight. t is the number of errors that need to be corrected using the ECC. Likewise, dmin

is expressed as 2t + 1 as discussed in [127, 128]. The coding gain is calculated for different

Hamming pairs and the corresponding parity check digits with dmin = 3 as shown in Fig. 5.12.

Thus, the coding gain is increased when increasing the number of parity check digits.
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Figure 5.12: Asymptotic coding gain in relation to the number of parity bits.

In order to validate the usefulness of the ECC in the chipless RFID system, a 15-bit chipless

tag is designed with the RCS magnitude response illustrated in Fig. 5.13a. The (15,11) error

correction Hamming pair is applied. Furthermore, the probability of error is estimated for the

designed chipless tag without and with the use of the ECC. As depicted in Fig. 5.13b, a coding
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gain of 3.42 dB is obtained when applying the ECC with the (15,11) coding pair.
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Figure 5.13: Illustration of the use of error correction coding: (a) 15-bits chipless tag. (b)
Performance with and without error correction coding.

Consequently, the chipless tags in which each notch represents a single bit can successfully

use the ECC technique to significantly enhance the system’s performance. Since the proposed

NWM technique encodes several bits for each notch in a particular window W , there is a need to

design other coding techniques in order to obtain the appropriate combinations inside each W .

This, however, will be the subject of future studies.

5.3 Simulation and System Performance

In this section, the simulation results of detecting/decoding the chipless tags based on the NWM

coding technique will be discussed. The probability of error is estimated for the identification of

the designed chipless tags.

5.3.1 Simulation Environment

The chipless RFID tags are designed and implemented using the CST Microwave Studio EM

simulator. The output files from the CST are then used in MATLAB in order to apply the

proposed decoding algorithm and the detection techniques as illustrated in Fig. 5.14.
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Figure 5.14: Block diagram of simulation environment.

The three designed chipless tags coded with the NWM technique are illustrated in Fig. 5.9.

The range of the operating frequency is from 2 GHz to 5 GHz, the window size (bandwidth) is

150 MHz. This is illustrated by the magenta dashed lines. The Monte-Carlo iterations are 1500.

5.3.2 Simulation Results

The proposed algorithm defines three values for the notch bandwidths and five frequency positions

for each window as illustrated in the 2D-constellation diagram shown in Fig. 5.4. As mentioned

previously, the notch bandwidth is estimated using the SSVD algorithm, which is designed

to match the nature of the received signal. Moreover, the frequency location of the notch is

determined by sweeping each window with a narrow frequency step so that the coding pairs

C j( fk,Bl) can be obtained. In order to evaluate the overall system’s efficiency when applying

the NWM coding/decoding technique, the probability of error is estimated by changing the

signal-to-noise ratio per symbol (energy per symbol to noise power spectral density ratio, Es/N0,

because each notch represents a symbol with 4-bits). Additionally, the probability of error is

determined for the:

1. Detection of notches using predefined bandwidths.

2. Detection of all the chipless tags coded using the proposed NWM coding technique.
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A. Notch Bandwidth Detection Performance
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Figure 5.15: Probability of error for the received notch bandwidths.

The probability of error is evaluated for each detected notch bandwidth (BW1, BW2, BW3, and

absence of notch) as shown in Fig. 5.15. It illustrates that when no notch is present, the error

of detection is at its minimum because no code needs to be detected correctly. Moreover, the

detection of the intermediate notch bandwidth BW2 shows the highest error. This is because it is

enclosed between two values (BW1 and BW3). Therefore, there is a probability of detecting the

notch of BW2 as if it was BW1 and to detect BW2 as if it was BW3. Furthermore, the detection

error decreases with increasing notch bandwidth (at lower Signal to Noise Ratio per symbol

values, less than 10 dB). This is due to the fact that the SVD algorithm yields a smaller error

at a higher signal bandwidth (for BW1 and BW3). Only three values of notch bandwidths are

examined in order to create a realistic design with regard to the implementation issues. The 3D

constellation diagram that illustrates the results of the discussion above is shown in Fig. 5.16.
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Figure 5.16: Constellation diagram for the notch bandwidths.

B. Overall NWM-Based System Performance

The general performance of the tags is illustrated in Fig. 5.16. It is shown that Tag-3 has the

better performance at a lower SNR (less than 10 dB). This is due to the fact that it contains three

notches in the higher frequency band (4–5 GHz) as shown in Fig. 5.9. They are relatively high

bandwidths as illustrated in Fig. 5.7c. Also, Tag-2 has a higher probability of error since its

response is mainly located in the intermediate bandwidth range (3–4 GHz). Tag-1, however,

shows a higher probability of error because its response is located in the range of the lowest

frequency bandwidth (2–3 GHz). Thus, its notches are positioned at the smallest bandwidths as

shown in Fig. 5.7a.
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Figure 5.17: Probability of error for notch detection using the NWM method.

5.4 Measurements and Real-World Implementation

The real-world implementation for the proposed chipless RFID system working with the NWM

encoding/decoding technique is described in this section.

5.4.1 Measurement Setup

The measurements are obtained by using an SDR platform based on USRP N210 [80] and a

CBX RF-daughter board with an operating frequency of (1.2–6 GHz) [81], as illustrated in

Fig. 5.18. The testbed setup parameters are summarized in Table 5.2. The tag is positioned

at a distance of 30 cm from the reader’s monopole antenna. A copper plate is placed between

the two interrogator’s antennas in order to isolate the effect of each one on the other, whereas

the reader’s antenna is omni-directional. Nevertheless, if a directive antenna is used, then the

isolating plate can be removed. Furthermore, in order to increase the reading range of the chipless

RFID system, an UWB reflect antenna array can be used at the reader’s side as described in [71].

A frequency sweeping mechanism is applied in such a way that a sinusoidal wave is transmitted

in a range of 2 GHz to 5 GHz with a frequency step of 10 MHz, as described in Chapters 3 and

4, respectively. At the same time, the receiver monitors the backscattered signal from the tag
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Table 5.2: USRP Parameters.

Parameter Value
Sampling Rate 1 M samples / second
Transmitter Gain 31.5 dB
Receiver Gain 0 dB
Start Frequency 2 GHz
End Frequency 5 GHz
Frequency Step 10 MHz

Frequency Sweep
Averaging 100

Reader Antenna
Type Monopole
Gain 2-5 dBi

(because the CBX daughter board is full-duplex). Subsequently, the reader starts the processing

phase by applying the SSVD algorithm and the designed decoding technique. The code for the

N210 USRP platform is written in Python. The measurements are performed by subtracting the

reflected signal power from the front of the tag and the received one from the tag’s copper side

as illustrated in Equation (5.17).

Ri
measured|dB = Ri

front|dB−Ri
back|dB (5.17)

where Ri
measured|dB is the total backscattered signal power measured from tag i, Ri

front|dB is

the backscattered signal power from the front of tag i, and Ri
back|dB is the backscattered signal

power from the back of tag i (the copper side).

After employing the normalization process represented by Equation 5.17, the signal is

transferred to the frequency domain by applying the FFT operation. Afterwards, the signal is

windowed and the SSVD technique is used to decode and estimate the coding pairs C j ( fk,Bl)

as described in the testbed block diagram, Fig. 5.18a. Finally, the tag-ID is extracted from the

look-up-table stored in the reader’s main memory.
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Figure 5.18: Measurement setup inside the anechoic chamber: (a) Testbed block diagram. (b)
Real testbed.
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5.4.2 Measurement Results

In order to validate the usefulness of the proposed NWM encoding and decoding techniques,

the RFID chipless tags illustrated in Fig. 5.8 are employed (shown in Fig. 5.19), detected, and

measured. Each tag consists of four resonators. Each resonator can individually encode 4 bits

based on the notch bandwidth and the frequency position as mentioned in Section 5.2.1. The

material used is RO4003 Rogers material with a thickness of 1.52 mm.

Tag-1 Tag-2 Tag-3

Figure 5.19: Manufactured chipless RFID tags employing the proposed encoding technique
(The material used is RO4003 Rogers material with a thickness of 1.52 mm).
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Figure 5.20: Normalized received signal power of the implemented NWM-tags using USRP-
N210.
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Fig. 5.20 illustrates all the backscattered signals received from each tag at the reader’s side

(USRP). Further, the obtained measurement results are normalized using Equation (5.17). Then,

the proposed decoding technique is applied to the received signal and the SSVD algorithm is

employed. The measurement results offer a close match to the simulation shown in Fig. 5.9. This

highlights the validity of the proposed encoding and detection method in comparison to a real

system.

Moreover, the comparison between the response of the received signal reflected from the

chipless NWM-tags and the simulation results is shown in Fig. 5.21.
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Figure 5.21: The measured tags’ responses outside the anechoic chamber in reference to the
simulation results obtained from CST-Microwave Studio: (a) Tag-1. (b) Tag-2. (c) Tag-3.

5.5 Conclusion

In this chapter, a novel technique to improve the coding efficiency of a chipless RFID system

is proposed. The introduced coding technique relies on the precoded notch bandwidth and

frequency position achieving 4 bits per resonator that uses the estimated coding pairs C j( fk,Bl).

The notch pattern is analytically described to fit the proposed NWM-coding method. It

yields a close match to the designed chipless tags using the CST-Microwave Studio EM simulator.

Also, the tags are intentionally designed to have the wider notch bandwidth at lower

frequencies and the lower notch bandwidth at higher frequencies, which is contrary to the well-

known phenomenon that the notch bandwidth increases with rising frequency (as shown in the

previous chapters). This demonstrates the ability of the proposed new tag structure to control the
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bandwidth.

Furthermore, a smart singular value decomposition detection algorithm is customized and

realized to estimate the notch bandwidth, to decode the predefined notches, and to ensure accurate

detection.

Subsequently, the utilization of the error correction codes in the chipless RFID system is

discussed, in particular, the use of linear block codes. The (15,11) Hamming pair is applied to a

designed frequency coded chipless tag with 1-bit per notch coding scheme and the corresponding

coding gain is estimated. In order to obtain a higher coding gain, the minimum distance of the

designed ECC code needs to be increased. Some studies aim at finding the optimum distance

profiles for the linear block codes as introduced in [134, 135].

Moreover, the proffered NWM approach is realized using the commercial USRP platform

and a low-cost monopole antenna to validate the presented system.
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In this chapter, the achieved contributions throughout the thesis are concluded and summa-

rized. Furthermore, future research aims based on the accumulated experience regarding

the difficulties of implementing the proposed chipless system will be discussed.

6.1 Conclusions

In Chapter 3, novel MAC protocols to prevent the collision of backscattered signals from the

chipless RFID tags were proposed. The introduced algorithms efficiently identify the number of

tags located in the reader’s interrogation region and effectively identify the tags’ IDs.

• The first generation of the protocol (Gen-1) is based on unique frequency shifts hardcoded

into every chipless tag based on the presented NPM technique that decodes the tag-ID and

demonstrates the tag’s existence. The Gen-1 protocol divides the overall spectrum into two

parts; the first one includes the unique frequency shift for each tag. The second contains

the tag-ID. The tag-ID is obtained by using the tag’s unique frequency shift value which is

obtained by hopping the corresponding locations with a step equal to the unique frequency

shift. Afterwards, the tag-ID is derived utilizing the basic energy detection technique.

Furthermore, an advanced frequency sweeping signaling scheme is applied for the tag’s

identification meeting the FCC UWB regulations and increasing the backscattered power

by a factor of 400 compared to the traditional UWB-IR signaling scheme.

• The second generation of the protocol (Gen-2) enhances the spectrum’s utilization effi-

ciency and the coding capacity. The Gen-2 protocol makes use of the unique frequency

shifts serving as addresses to their IDs which are stored in a table in the main memory
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on the reader’s side. Consequently, the information can be transferred from the tag to the

reader only requiring the tag’s address.

In order to reflect the real-world aspects of the chipless RFID system, an SDR platform is used as

a real-time reader for two MAC based manufactured chipless tags. The empty room calibration

and equalization processes were performed to obtain the ID of the tags successfully. In this setup,

the collision free tags’ IDs were promptly identified on the reader’s side in an indoor scenario at

a distance of 30 cm.

In Chapter 4, novel adaptive techniques are proposed to reduce the required time to identify

the Frequency Coded chipless RFID tags existent in the reader’s interrogation region. This time

is called system latency. The overall system latency is shown to be affected by the frequency

scanning methodology, the number of spectrum sweeping iterations to reduce the clutter, and

the frequency-hop duration. Therefore, the introduced adaptive techniques sweep the operating

frequency range with a lower number of frequency hops while conserving the detection accuracy.

Moreover, two adaptive hopping techniques are designed to meet the requirements of both Gen-1

and Gen-2 multi-tag protocols. Furthermore, the proposed techniques are designed to meet the

notch pattern variation phenomenon, which shows that the notch bandwidth increases with a rise

of the resonating frequency.

• First of all, the classical Fixed Frequency Hopping (FFH) technique is examined with a

narrow frequency step in order to perform an accurate detection and identification of the

chipless tags.

• The first adaptive technique is called Adaptive Frequency Hopping (AFH). With the AFH

method, the reader sweeps the operating frequency range with a variable frequency step,

according to the notch pattern variation. The average frequency steps are found when

analyzing the relationship of the notch bandwidth and the resonant frequency at a given

quality factor as in (BW = Fr/Q). The benefit of the AFH sweeping method is that it is not

only suitable for Gen-2 based tags, but it can be used for all FC chipless tag’s detections.

• The second adaptive technique is designed to meet the requirement of the Gen-1 protocol

is the Adaptive Sliding Window (ASW) method. The reader starts scanning the preamble

bandwidth with a fixed window size and then scans the rest of the band according to

the estimated frequency position with an adapted window size. The scanning inside the

window is preferred to be done with an adaptive hopping rate, in order to also make use
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of the benefits obtained from the proposed AFH technique that reduces the number of

frequency hops and, accordingly, the overall system latency.

The FFH, AFH, and ASW techniques are modeled, simulated, and implemented in a real-

world testbed using a Software Defined Radio platform (USRP N210, with a CBX daughter-

board). Furthermore, the measurement setup relies on real manufactured FC chipless tags. The

measurements are performed outside the anechoic chamber to include environmental effects.

The designed AFH algorithm is compared to the classical FFH method. This comparison shows

that the AFH algorithm can be efficiently applied to the FC chipless RFID systems. As a result of

applying the newly-developed AFH technique, the overall system latency is reduced by more than

58% and the chipless tag is accurately detected utilizing the adaptive sliding window criterion. A

close match between the simulation and the measurements can be seen throughout the results. A

comprehensive study is performed to compare the proposed AFH algorithm, the classical FFH

method, and the ASW techniques.

In Chapter 5, a novel technique to increase the coding capacity of the chipless RFID

tag is described. The introduced coding technique depends on the precoded notch bandwidth

and the frequency position achieving 4 bits per single resonator when utilizing the estimated

coding pairs C j( fk,Bl). The notch pattern is analytically represented to describe the proposed

Notch Width Modulation (NWM) coding methodology which relates the notch pattern to the

required code. It shows a close match to the real chipless tags using the CST-Microwave Studio

EM simulator. Also, the tags are intentionally designed to have the wider notch bandwidth

at lower frequencies and the lower notch bandwidth at higher frequencies. This is contrary

to the well-known phenomenon that the notch bandwidth increases with the frequency. This

demonstrates that the newly-developed tag structure can control the bandwidth. Furthermore, a

Smart Singular Value Decomposition (SSVD) detection algorithm is customized and realized to

estimate the notch bandwidth, to decode the predefined notches, and to ensure accurate detection.

Additionally, the usefulness of Error Correction Codes (ECC) is explored when they are used

in chipless RFID systems. Moreover, the proffered approach is realized using the commercial

USRP platform and a low-cost monopole antenna at the reader’s side to assess the presented

system.

6.2 Future Work

In this section, some possible solutions to enhance the chipless RFID’s robustness are proposed.
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• For multi-tag identification: While preventing negative influences from clutter and

environmental effects, a good performance can be achieved when the reader transmits

signals at certain frequencies and the tag receives these signals but responds with a signal

at other frequencies. The element used at the tag’s side that is responsible for transforming

its response into other frequencies is the Diode. However, as these tags are passive, the

diode needs to be able to operate with a very small biasing voltage. Consequently, the

zero-bias Schottky diodes with low convergence loss values are the ones most likely to

be used in this application [136]. This technique to identify the tags is called a nonlinear

chipless RFID system. The following techniques are used in the nonlinear chipless RFID

system.

- Harmonic RADAR: The basic architecture of a 1 bit harmonic RFID system consists

of a reader transmitting a signal at a fundamental frequency f0 while having the

receiver tuned to 2 f0. At the tag’s side, it receives the signal transmitted by the reader

at the predefined fundamental frequency. Then, the signal is passed to the Schottky

diode that generates the fundamental frequency and the harmonics. The signal is

filtered by an antenna with a center frequency tuned to the 1st harmonic. Finally the

filtered signal is reflected back to the reader that identifies the tag. Consequently,

the clutter related to the fundamental frequency is avoided by receiving the tag’s

response at another frequency. The disadvantage of this technique is that it cannot

identify several tags existent within the reader’s interrogation region at the same

time, since each tag will only respond to a particular fundamental frequency from

the reader [137].

- Dual frequency selective multiple access to RFID mixer tags: In this setup, two RF

signals with different frequencies are transmitted by a reader and downconverted

in the tag by an unbiased Schottky diode mixer after reception only when the in-

terrogation frequencies of both signals match the filter characteristics of the two

narrow-band receiving antennas. The downconverted RF signal (the lower component

of the mixer’s output) is backscattered to the reader by a third narrow-band antenna.

Thus, several tags can be accessed with the help of individual frequency pairs [138].

- Intermodulation technique: This technique is an extension of the nonlinear RFID

mixer tags since it makes use of the intermodulation components of two or more RF

signals with different frequencies [139–141]. The selection of the intermodulation

112



6.2. Future Work

components is executed by using a filter tuned to the required frequency components.

• Regarding the overall system latency: The time required to identify the chipless tags

can be reduced by following these suggestions.

- For the proposed chipless system: One of the factors that has an effect on the system

latency is the hardware used. The SDR based reader uses an USRP which requires

30 ms to switch to another frequency (hop duration). Consequently, if hardware with

a smaller hop duration is used, the overall system latency is reduced. In addition,

employing the PN sequence to detect the chipless tag’s response improves the latency

because there is no more need for empty room calibration or an averaging process

that removes the environmental clutter effect.

- For the nonlinear chipless system: The system latency is supposed to be lower than

for the proposed chipless RFID system because the nonlinear system works at a

narrower bandwidth (especially for the intermodulation technique).

• For the coding capacity: Besides increasing the coding capacity of the chipless RFID

tag, the probability of error for decoding these coded tags is a critical issue. This is due to

the fact that more bits can be encoded to the tag, but few of them are correctly received.

Consequently, our recommendation to reduce the probability of error for the decoded

tags is to use the channel coding technique since it provides additional protection against

ISI and fading. Moreover, the space-time coding for the RFID with chip is illustrated

in [142]. Yet, no prior studies discuss the impact of channel coding on enhancing the

coding efficiency. In addition, another detection technique can be used to detect/decode

the proposed NWM-coded chipless tags, which is the Dynamic Time Warping (DTW)

described in [143]. The benefit of utilizing the DTW technique is that it leads to more

robustness against the error resultant from frequency shifts since the utilized NWM coding

method not only depends on the notch bandwidth but also on the notch resonance frequency.

So, the error of detection may result either from the bandwidth or the frequency shift. The

proposed SSVD provides greater robustness against errors due to the bandwidth but only

very small values of frequency shift are allowed. However, the DTW provides much better

robustness against errors due to bandwidth and frequency shifts. The disadvantage of the

DTW method is that its complexity is greater than that of the SSVD algorithm.
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