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resumo 
 

 

No contexto da internet das coisas (IoT), onde são esperados bilhões de objetos 
conectados espalhados pelo planeta de forma ubíqua, torna-se impraticável uma 
frequente manutenção e troca de baterias dos dispositivos sem fios ubíquos. 
Nestes cenários, os sistemas radio backscatter passivos terão um papel 
preponderante dado o seu baixo custo, baixa complexidade e não necessidade de 
baterias nos nós móveis. Uma vez que a transmissão de energia sem fios é o 
principal aspeto limitativo nestes sistemas, a sua otimização tem sido um tema 
central de investigação, ganhando ainda mais ênfase no contexto IoT. 
Tradicionalmente, a transferência de energia sem-fios é feita através de sinais CW 
e a maximização da eficiência é conseguida através da otimização dos circuitos 
recetores. Neste trabalho explora-se uma abordagem fundamentalmente diferente, 
em que a otimização foca-se nas formas de onda em vez dos circuitos. Demonstra-
se, teoricamente e através de simulações e medidas que, devido à sua maior 
capacidade em superar a barreira de potencial intrínseca dos dispositivos 
retificadores, os sinais multi-seno (MS) de elevado PAPR são capazes de excitar 
os circuitos de colheita de energia de forma mais eficiente quando comparados 
com o sinal CW tradicional. Usando sinais MS ótimos em circuitos retificadores, 
foram verificadas experimentalmente melhorias de eficiência de conversão RF-DC 
notáveis de até 15 dB relativamente ao sinal CW.  
A fim de mostrar a eficácia desta abordagem na melhoria da distância de 
comunicação de sistemas backscatter passivos, integrou-se um front-end MS num 
leitor RFID comercial e observou-se um aumento significativo de 25% na distância 
de leitura. Além disso, desenvolveu-se de raiz um leitor RFID baseado em software 
rádio, compatível com o protocolo ISO18000-6C e capaz de gerar sinais MS, com 
os quais interrogou-se transponders passivos, obtendo-se ganhos de sensibilidade 
dos transponders maiores que 3 dB. Uma vez que a amplificação de sinais de 
elevado PAPR é uma operação crítica, propôs-se também novas arquiteturas 
eficientes de transmissão baseadas na combinação de sinais em espaço livre. 
Esta tese aborda também outros aspetos não menos importantes, como o self-
jamming em leitores RFID passivos, tido como o segundo fator limitativo neste tipo 
de sistemas. Estudou-se técnicas de cancelamento de self-jamming CW e 
estendeu-se o conceito a sinais MS, tendo-se obtido isolamentos entre o 
transmissor e o recetor de até 50 dB no primeiro caso e de até 60 dB no segundo.  
Finalmente, com o objetivo de demonstrar uma aplicação prática dos conceitos de 
transmissão de energia sem fios e comunicação backscatter, desenvolveu-se um 
sistema de controlo remoto sem pilhas, cujo protótipo foi integrado num televisor 
comercial a fim de controlar quatro funcionalidades básicas (CH+,CH-,VOL+,VOL-).  
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In the IoT context, where billions of connected objects are expected to be 
ubiquitously deployed worldwide, the frequent battery maintenance of ubiquitous 
wireless nodes is undesirable or even impossible. In these scenarios, passive-
backscatter radios will certainly play a crucial role due to their low cost, low 
complexity and battery-free operation. However, as passive-backscatter devices 
are chiefly limited by the WPT link, its efficiency optimization has been a major 
research concern over the years, gaining even more emphasis in the IoT context. 
Wireless power transfer has traditionally been carried out using CW signals, and 
the efficiency improvement has commonly been achieved through circuit design 
optimization. This thesis explores a fundamentally different approach, in which the 
optimization is focused on the powering waveforms, rather than the circuits. It is 
demonstrated through theoretical analysis, simulations and measurements that, 
given their greater ability to overcome the built-in voltage of rectifying devices, high 
PAPR multi-sine (MS) signals are capable of more efficiently exciting energy 
harvesting circuits when compared to CWs. By using optimal MS signals to excite 
rectifying devices, remarkable RF-DC conversion efficiency gains of up to 15 dB 
with respect to CW signals were obtained.  
In order to show the effectiveness of this approach to improve the communication 
range of passive-backscatter systems, a MS front-end was integrated in a 
commercial RFID reader and a significant range extension of 25% was observed. 
Furthermore, a software-defined radio RFID reader, compliant with ISO18000-6C 
standard and with MS capability, was constructed from scratch. By interrogating 
passive RFID transponders with MS waveforms, a transponder sensitivity 
improvement higher than 3 dB was obtained for optimal MS signals. Since the 
amplification and transmission of high PAPR signals is critical, this work also 
proposes efficient MS transmitting architectures based on space power combining 
techniques. 
This thesis also addresses other not less important issues, namely self-jamming in 
passive RFID readers, which is the second limiting factor of passive-backscatter 
systems. A suitable self-jamming suppression scheme was first used for CW 
signals and then extended to MS signals, yielding a CW isolation up to 50 dB and a 
MS isolation up 60 dB.  
Finally, a battery-less remote control system was developed and integrated in a 
commercial TV device with the purpose of demonstrating a practical application of 

wireless power transfer and passive-backscatter concepts. This allowed battery-

free control of four basic functionalities of the TV (CH+,CH-,VOL+,VOL-). 
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1. INTRODUCTION  

1.1. Background and motivation  

The third internet generation or the Internet of Things (IoT) is rapidly moving beyond the 

traditionally-connected devices (e.g. personal computers, tablets or smartphones) to the quotidian 

objects. The future internet grid is expected to link computers/phones/people, household 

appliances, buildings, industrial plants, transportation, clothing, wearables, groceries and many 

other quotidian things. More than 50 Billions of connected objects are expected worldwide by 2020 

[1][2], and eventually, beyond a trillion in a not so distant future [3]. The ideal IoT vision is to 

ubiquitously provide connectivity to everything, anywhere, anytime. Thus, in addition to the 

conventional power-consuming and high-complexity wireless technologies devoted to bandwidth-

demanding applications [4-6], low profile technologies featuring low-power consumption, ideally 

battery-free, low-cost and low complexity, are imperative to allow ubiquitous applications. 

Moreover, as billions of IoT devices are expected to be deployed across the planet or even into 

space, the (frequent) replacement of batteries is not a viable option. Therefore, low power wireless 

sensors, passive-backscatter radios such as passive RFIDs, RFID-enabled sensors and passive 

wireless sensors [7-11] are seen as key-enabling technologies to realize the future ubiquitous IoT. 

The latter make use of Wireless Power Transfer (WPT) and energy harvesting technologies to 

operate in a battery-free manner. 

The theoretical analysis of radio path shows that, unlike conventional wireless communication 

systems, which are mainly limited by noise and receiver sensitivity, passive-backscatter systems 

are primarily limited by the forward power link, i.e. the energy transfer from the reader or 

interrogator device to the transponder [12][13]. A closer look reveals that this limitation lies on the 

reduced RF-DC conversion efficiency of existing RF power harvesting circuits at low power level 

regime. Because Schottky diode and CMOS devices commonly used in rectifier circuits exhibit a 

non-zero turn-on voltage, the RF-DC conversion efficiency at low input power levels is limited 

[14-16]. Therefore, improving the overall energy transfer efficiency is crucial to achieve longer 

coverage range and expand the computation capabilities of wirelessly-powered devices. 

Traditionally, WPT efficiency has been maximized through circuit and system level design 

optimization, and a variety of approaches to enhance the overall WPT efficiency and extend the 

coverage distance have been attempted, including the use of threshold-compensated CMOS 

rectifiers [17][18], custom-built schottky diodes, harmonically-terminated rectennas [19], antenna 

beamforming [20] and auxiliary transmitters [21]. As opposed to the majority of conventional 

approaches, which focus exclusively on circuit optimizations, this thesis addresses waveform 

design optimization as an alternative to improve WPT efficiency. By using properly formatted high 
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Peak-to-Average Power Ratio (PAPR) waveforms such as in-phase Multi-Sine (MS) signals, the 

RF-DC conversion efficiency of existing rectifier circuits can be improved in comparison to 

traditional Continuous Wave (CW) signals. This is owed to the higher peak voltage swings that 

allow to efficiently overcome the turn-on voltage of rectifying devices at low average power levels. 

Although another research group had already looked to a similar approach [60][61], our findings 

were done independently when our group was focused on the study [22][23] and modeling [I-III] of 

diode power probes for RF and microwave measurements. During that study it was found that, at 

certain output load conditions, a CW-calibrated diode power probe can provide erroneous power 

measurement values when measuring wideband and high PAPR signals. For instance, a two-tone 

signal can provide a rectified DC output different than that obtained with a CW signal with the 

same average power, which gives a wrong indication of average power if the probe is calibrated 

with a CW signal. Because at that time we were also focused on WPT, the following questions 

were formulated: 1) “Can the same effect that leads to errors in power probe measurements of high 

PAPR signals be used to boost the efficiency of similar RF-DC converter circuits used in WPT?”; 

2) “How can we efficiently generate and transmit such high PAPR waveforms?”; and 3) “Can 

properly designed waveforms improve the coverage range of passive-backscatter systems such as 

passive RFID?”. This thesis sought an answer to the first question by evaluating the efficiency of 

rectifying circuits under high PAPR MS signals. Afterward, efficient transmitter schemes were 

proposed to address the second challenge. Finally, the concept was applied to passive-backscatter 

radios, both through the integration of MS signals in commercial RFID readers and through the 

design of Software-Defined Radio (SDR) RFID readers with waveform design capability.   

1.2. Objectives and methodology  

The central objective of this thesis is the evaluation of waveform design optimization as an 

alternative to circuit optimization to maximize the efficiency of rectifying circuits and consequently 

enhance the coverage range of passive-backscatter systems such as passive RFID. For this purpose, 

non-CW signals featuring high PAPR such as in-phase MS signals will be tested. First, cabled 

experiments will be conducted, where a Vector Signal Generator (VSG) will directly feed the 

rectifying circuits with a CW and several MS signals, and the RF-DC conversion efficiency will be 

evaluated. Rectifying circuits under test include single diode detector and charge pump circuits 

both based on discrete Si-Schottky devices. As these circuits behave in a similar way as diode-

connected CMOS rectifiers typically used in passive RFID transponders, the cabled measurements 

will first assess the potential of this approach to increase the communication range of passive 

transponders. In order to optimize the MS waveforms, the frequencies, amplitudes and phases of 

the individual subcarriers must be properly selected. Additionally, the MS bandwidth should fit the 
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rectifier input bandwidth, and the frequency separation of the MS subcarriers should match to the 

output filter of the rectifier circuits.  

Having completed the cabled measurements, field experiments will be performed to validate the 

proposed approach in multipath faded wireless channels. A study of joint WPT and backscatter 

data communication and an evaluation of the reading range improvements using MS signals will be 

conducted. First, the MS scheme will be integrated in a commercial RFID reader, and then a MS-

capable RFID reader based on software-defined radio will be constructed. The latter approach gives 

the possibility of creating software-defined waveforms to satisfy the initial waveform design goal. 

From the view-point of the WPT receiver, high PAPR is a desired feature, however, it challenges 

the power amplification stage of the transmitter. Thus, the evaluation of enhanced transmitting 

architectures to efficiently deliver high PAPR waveforms is also an important goal. 

Other not less important objectives, which somehow complement the previous ones, include non-

linear analysis, characterization and modelling of RF-DC converter circuits, evaluation of self-

jamming in passive-backscatter systems and design of prototypes and demonstrators. 1) Non-linear 

analysis, characterization and modelling are essential to understand and predict the behaviour of 

rectifying circuits and to assist in waveform design optimization; 2) Since self-jamming is an 

important limiting factor (actually the second most limiting one) in passive-backscatter systems, 

both CW and MS self-jamming cancellation will deserve attention in this thesis; 3) The thesis aims 

also at the design of prototypes and demonstrators including RF-DC converter circuits for the 

previously described cabled experiments, hardware for the SDR RFID readers, and complete 

battery-free prototypes capable of demonstrating real application of passive RFID and WPT 

concepts.          

The objectives of this thesis can be summarized as follows: 

o Waveform design optimization for improved RF-DC conversion efficiency.  

o Evaluation of rectifying circuits under optimal MS signals. 

o Proposal and demonstration of improved architectures for high PAPR transmission.  

o Evaluation of joint WPT and backscatter data communication using MS signals. 

o Integration of MS schemes into existing backscatter radio systems. 

o Design of SDR RFID Readers with waveform design capabilities. 

o Evaluation of self-jamming and DC-offset generation in DCR receivers 

o Non-linear analysis, characterization and modeling of RF-DC converter circuits. 

o Design of prototypes and demonstrators.  
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1.3. Thesis outline 

Chapter 1 first presents the motivations, objectives and original contributions of this work. 

Afterward, a history overview of WPT and RFID is presented, showing the common roots of these 

technologies, highlighting the main events and contributors to their evolution and showing how 

they are intimately related, namely concerning the role of WPT as the enabler of passive-

backscatter RFID.    

 

Chapter 2 introduces basic definitions, concepts and operating principles of near-field and far-field 

RFID systems and presents the fundamentals of passive-backscatter RFID. An analysis of the 

backscatter communication link is conducted to support later design. In order to evaluate which of 

the forward or reverse link imposes the most stringent limitation in passive-backscatter systems, a 

power budget analysis is performed. This chapter also introduces advanced concepts such as RFID-

enabled sensors and software-defined radio-based RFID readers. The latter concept is applied in 

chapter 7.              

 

Chapter 3 starts by listing the main research topics of current RFID technology. Then, RFID-

related literature and state-of-the-art industry implementations are reviewed with focus on 

strategies that use WPT efficiency optimization to maximize the coverage range and improve the 

performance of passive systems. The first part of this chapter covers system and circuit approaches, 

while the second part addresses approaches closely related to the work presented in this thesis, 

namely involving waveform design.  

  

Chapter 4 evaluates waveform design optimization for efficient WPT. It is demonstrated through 

theoretical analysis, simulations and measurements that properly-designed high PAPR MS signals 

are capable of enhancing the RF-DC conversion efficiency of rectifying circuits, especially at low 

power levels. Such circuits including envelope detectors and charge pumps are tested under several 

MS signals and a figure of merit is introduced to evaluate the efficiency gains relative to CW 

signals. This chapter also suggests optimal conditions for maximum gains.    

 

Chapter 5 proposes architectures to efficiently deliver high PAPR MS signals by using spatial 

power combining, where the individual tones are generated, amplified and radiated separately, and 

the MS signal is passively combined in free space. Hence, the problem of amplifying large PAPR 

signals is overcome. Two different architectures are unveiled, one of them using an external 

reference signal to phase-lock several frequency synthesizers and another one based on mode-

locked oscillator arrays that avoid the use of an external phase reference. 
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Chapter 6 evaluates joint WPT and backscatter communication through MS signals and reports on 

the integration of a MS scheme in a commercial RFID reader. 1) a description is provided for 

downlink and uplink using MS signals; 2) guidelines are presented for the MS design including 

subcarrier separation, MS bandwidth and central subcarrier positioning; 3) by following these 

guidelines, the reading range can be improved and a traditional reader receiver architecture is still 

able to demodulate/decode the backscattered MS signal without requiring any change. 

 

Chapter 7 reports on the design of a SDR-based RFID reader with MS capability. The chapter 

discusses aspects of hardware, software, EPC Gen2 protocol implementation and MS generation. In 

order to show the effectiveness of the MS reader in enhancing the operation of the transponders, 

the sensitivity of a commercial transponder is measured using several software-defined waveforms. 

The chapter ends with a performance assessment of MS signals in multipath faded channels.    

  

Chapter 8 addresses the second limiting factor of passive RFID systems, namely RF self-jamming 

and the consequent generation of DC-offsets. Several approaches to deal with these issues are 

evaluated and new proposals are presented namely a method for transient correction in software 

and an improved non-linear HPF to simultaneously cancel the DC-offset and the transient effect. 

Self-jamming suppression of MS signals is also investigated. The study in this chapter is 

accompanied by lab experiments and measurements conducted on two SDR reader platforms based 

on DSP and FPGA.   

 

Chapter 9 describes the implementation of a battery-less remote control system. First, the design 

and measurements of the remote control unit (ReC) are presented. An off-the-shelf reader is used to 

assemble an RFID-to-infrared interface which is then incorporated in a commercial TV device to 

form a complete demonstration prototype. This allows a four-key ReC prototype to control four 

basic functionalities of the TV (CH+, CH-, VOL+, VOL-).    

 

Chapter 10 presents the final conclusions, the main accomplishments of this thesis, the proposals 

for future work and the list of publications.  

 

Appendix A derives an AC-DC transfer function for envelope detectors under high PAPR signals. 

 

Appendix B presents some aspects of the Gen2/ISO18000-6C protocol used in chapters 6-9.  

 

Appendix C showcases alternative configurations for the battery-less remote control unit.  
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1.4. Original contributions of the thesis  

The original contributions of this thesis are: 

 First assessment of the behavior of rectifying circuits under high PAPR MS signals. This 

triggered the interest of some groups in the wireless power transfer community to look to 

alternative waveforms (other than CW) for energy transfer.    

 Transmitting architectures based on space power combining for efficient generation and 

radiation of high PAPR MS signals.   

 Survey on the use of unconventional waveforms for wireless power transfer. 

 Evaluation of joint wireless power transfer and backscattering through non-CW signals 

(e.g. MS signals) 

 Reading range extension of commercial UHF RFID readers by using a MS front-end, and 

guidelines to design a MS waveform that allows a conventional RFID receiver to 

demodulate a backscattered MS signal without requiring any change in the receiving path.   

 First design from scratch of a software-defined radio RFID reader with arbitrary waveform 

design capability (e.g. MS waveforms). Given its flexibility, this platform is also a 

powerful tool for RFID measurement, characterization and research.  

 Development of a battery-less remote control system and its integration in a commercial 

TV device to provide a functional demonstration prototype. This system proved to be a 

very effective didactic tool to demonstrate wireless power transfer and battery-less 

concepts to the general public through social media.  

 An X-parameter RF-DC model for energy harvesting circuits. Useful to encapsulate circuit 

behavior, which can be gathered directly from measurements, and also useful to protect 

intellectual properties. 
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1.6. History of wireless power transfer and radio-frequency identification 

1.6.1. Early  radio transmission in the 19
th
 century  

As we know it today, wireless technology is the result of many contributions in electricity and 

electromagnetism (EM) fields. Modern electromagnetism started with Michael Faraday (1791-

1867), a self-educated British scientist, who discovered, in 1831, that the movement of a magnet in 

the vicinity of a conductor circuit generates an electric current in the circuit, establishing the law of 

electromagnetic induction [24]. Later, Faraday envisaged the existence of lines of force around 

electric charges and magnetic poles and he predicted the existence of EM waves [25]. Faraday was,  

however, unable to theoretically demonstrate the existence of such electromagnetic waves to the 

scientific community. A couple of decades later (in 1864), James Clerk Maxwell (1831–1879), a 

Scottish physicist who believed in Faraday’s ideas, provided a mathematical support for the 

Faraday’s hypothesis on the existence of EM waves. In the volume entitled “A Dynamical Theory 

of the Electromagnetic Field”, Maxwell not only summarized the concepts of electricity known at 

that time, but also considerably extended the theory, converging the electrical, magnetic and optic 

concepts [26]. According to Maxwell’s theory, EM waves are of the same nature as light, having 

the same characteristics as propagation speed, polarization, reflection and refraction, and the light 

itself is an electromagnetic phenomenon.  

After a contest of the Academy of Science in Berlin to experimentally validate some aspects of the 

Faraday-Maxwell theory, Heinrich Hertz (1857-1894), the first scientist to successfully generate, 

transmit and receive EM waves [25], provided the ultimate proof of the existence of EM waves and 

their similarities with light. Hertz’s experimental setup consisted of a tuned spark gap transmitter 

and a tuned spark gap receiver [27]. The transmitting oscillator was formed of an induction coil, a 

Leyden jar (used as a “condenser” or capacitor), and several accumulators (batteries). Oscillations 

were achieved by discharging an electric “condenser” through an air gap, which produced a spark 

over the air gap and originated an oscillatory phenomenon. The oscillatory wave was then radiated 

using metal plates and detected some meters away from the transmitter by another coil with a spark 

air gap, in which small sparks were induced whenever the transmitter circuit was operated. The 

very small sparks at the receiver were visually detected in a dark room. Hertz also used metal 

reflectors in parabolic shape as mirrors to focus the electromagnetic beam. Despite his great 

findings, as a pure scientist, Hertz did not get interested for practical applications of EM waves.  

The first reportedly experiments with EM waves were conducted by Nikola Tesla (1856-1943) in 

the United States in 1889 [25], who dedicated to the transmission of energy wirelessly [28][29]. At 

the same time, Guglielmo Marconi (1874-1937) invented radio/wireless telegraphy and was able to 

make it a commercial success (Fig.1.1). 
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1.6.2. Transmitting power via radio waves 

Nikola Tesla was the first to experiment with EM waves for the transference of energy wirelessly 

in the late 1800’s and early 1900’s [30][31]. Among other experiments, Tesla demonstrated 

wireless lamps at the World Columbian Exposition in Chicago in 1893, by illuminating lamps 

without using wires for powering [32]. Tesla also worked on high frequency and high voltage 

transformers and started the construction of a radiation station (the Wardenclyffe tower) intended 

for wireless transfer of electricity [25]. However, his large scale experiments for electricity 

transportation failed mainly due to very high power requirements, inappropriate (low) frequency 

band, power diffusion, limitations on the radiating structures and low power densities [33]. After 

that, Tesla projects on wireless electricity were stopped, the Wardenclyffe tower was demolished 

some years later, and WPT activities were interrupted for several decades. However, Tesla’s 

pioneer work in WPT and many other fields [34] fostered many of the great technological advances 

of the twenty century.  

Benefiting from the technological advances occurred during the second world war, namely on high 

power devices (e.g. magnetron microwave tubes), WPT experiments were successfully resumed in 

the 1960’s, mainly with the work of William C. Brown. He first proposed the use of microwaves to 

transfer energy – Microwave Power Transmission (MPT) [30][35]. Brown introduced the concept 

of rectifying antenna, the rectenna, for receiving and rectifying microwaves [35], and also carried 

out many experiments at 2.45 GHz band [31]. In 1964, he demonstrated the concept of MPT by 

powering a subscale helicopter from ground using a microwave beam at 2.45 GHz [36]. Several 

academic and research activities followed Brown experiments on MPT. The concept of Solar 

Power Satellite (SPS) systems was proposed in 1968 to efficiently explore out-of-space solar 

energy by harvesting solar energy outside the Earth’s atmosphere and sending it to the Earth 

through microwave beams [37-39]. The SPS studies and experiments greatly helped to advance the 

MPT technology even further. In 1987, the world’s first fuel free airplane powered from ground by 

microwaves was reported in Canada [40]; in 2004, Japan proposed the wireless charging of electric 

motor vehicles by using MPT; in 2007, high power WPT through inductive resonant coupling was 

demonstrated by MIT researchers who wirelessly powered a 60W light bulb with 40% efficiency at 

2m [41]; one year later Intel reproduced the same experiment with an increased efficiency of 75% 

[42] . With the growth of the consumer electronics, portable devices and wireless communications 

markets, WPT has become attractive also for the industry. In 2008, several large companies created 

the Wireless Power Consortium (WPC), dedicated to inductive WPT [43]. WPC later introduced Qi 

[44], one of the first inductive WPT standards. Several companies employed WPT in portable 

applications, and new companies devoted to WPT emerged (e.g. sCoupled, WiPower, Powermat, 

Powercast, WiTricity, EVWireless, Momentum Dynamics [45-48]).  
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Fig. 1.1 The history of radio transmission and wireless power transfer (recreated from [33]) 

 

1.6.3. Wireless power and wave backscatter for RF-identification 

One of the first use of radio waves for remote sensing is attributed John L. Baird, who received one 

of the earliest patents on radio object detection in 1926 [50]. Baird’s system remotely illuminated 

an object with a directional beam of radio waves and the reflected signals were captured and 

processed to obtain a picture of the scanned object. In 1935, Robert Watson-Whatt developed the 

first practical RADAR (Radio Detection and Ranging) system, which played a decisive role in the 

second world war [51]. By sending pulses of radio waves and by measuring the reflected signals, 

the system was able to detect the presence of distant objects such as aircrafts and ships. However, 

the first radar system had an important limitation as it was unable to distinguish the aircrafts. One 

of the first methods of true identification by means of radio frequency is the IFF (Identify Friend or 

Foe) system, also developed during the second world war. As opposed to the first radar systems, 

the IFF system was able to distinguish between allied and enemy by providing allied aircrafts with 

a transponder or responder system which replied to the ground interrogation station with a “friend” 

identification.   

During the cold war, a very advanced modulated-backscatter device was used by the Soviet Union 

to spy on the US embassy in Moscow. In 1945, Soviet scout children presented to the US 

ambassador a wooden replica of the Great Seal of the United States with a hidden listening device 

engineered by Leon Theremin [52], which was composed of a monopole antenna attached to a 

resonant cavity with a sound-sensitive membrane (see Fig.1.2). The membrane deformations due to 

sound waves caused the cavity resonant frequency and antenna load to change. Hence, when 
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illuminated from outside with an RF CW signal the antenna re-transmitted a version of this signal 

modulated by the voice sound from the ambassador’s office. This very elaborated backscattering 

system was well in advance compared to the first counter-theft 1-bit EAS RFID systems developed 

later in the 1960’s, or even some N-bit transponder systems developed in the next decade.  

In the paper entitled “Communications by means of Reflected Power” published in 1948 [53], 

Henry Stockman theorized on the use of radio, light and sound wave reflections for passive 

transference of information. This theory is essentially the same used in modern backscatter RFID 

systems.  

Since very early, attention was given to the battery handicaps in mobile devices, namely the 

increased size and weight, need for periodical replacement and maintenance expenses. Thus, efforts 

were also put on the development of battery-free devices. In 1960, Donald B. Harris proposed a 

battery-free backscattering system for voice communication [54]. This was one of the first attempts 

to combine WPT and backscattering, which contributed to the conception of modern passive RFID. 

In the 1960's the RFID technology advanced significantly and RFID was first considered as a 

commercial solution. The first large scale commercial use of the RFID concept took place in this 

decade with 1-bit Electronic Article Surveillance (EAS) systems used for counter-theft [55]. In 

1966, the first RFID companies were born, namely Sensormatic and Checkpoint.    

In 1973, Mario W. Cardullo received the fist patent on RFID [56]. Cardullo’s system (Fig.1.3) 

referred to a passive RFID transponder with rewritable memory, logic circuitry and processing 

capability, which was initially thought for car electronic toll collection systems. For the first time, 

RFID transponders were proposed as data carriers that could be remotely accessed by an 

interrogator or reader. Following this, several other patents in similar RFID concepts were 

conceded and the technology was on the path to industry adoption. 

 

Fig. 1.2 The listening device inside the Great Seal Bug – a very sophisticated passive-backscattering system 

developed by Soviets during the cold war for espionage [source: Wikimedia Foundation]  
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Fig. 1.3 First patented passive RFID transponder with readable and rewritable memory [56] 

The 1990’s was a period of affirmation of the RFID tag concept, mainly driven by the large scale 

deployment of toll collection systems in several countries. Although the first RFID 

implementations were based on proprietary infrastructures, during this decade there was a great 

effort on standardization in order to provide interoperability. One of the first standards to emerge 

was the Automatic Equipment Identification (AEI) in 1991, approved by the Association of 

American Railroads (AAR) to substitute a previous (unsuccessful) optical barcode identification 

system [57]. In the following years, AAS mandated the adoption of RFID tags under AEI standard 

to identify and track railcars. In 1999, the MIT Audio-ID center, a consortium of several global 

consumer products manufacturers, was founded to develop the EPC (Electronic Product Code), a 

global RFID-based identification system intended to replace bar codes. The first version of EPC 

was released by 2003. Several versions of the EPC standard followed the 2003 version, and by 

today, most of the deployed passive RFID systems in the UHF band are under the EPC Class 1 

Generation 2 specification [58]. Figure 1.4 summarizes the main milestones in the evolution of 

RFID technology.   

1906: Alexanderson 

Continuous Wave

1926: Baird Patent 

Radio Object 

Detection

1935: Watson Watt 

RADAR patent

1948: Harry Stockman 

Communications by means 

of Reflected Power 

1966: Sensormatic and 

Checkpoint

EAS

1973: Mario Cardullo

Patent 

Passive RFID

1987: Norway

Vehicle toll collection

1991: Association of 

American Railroads 

AEI Standard 

(RFID in Railcars)

1999: MIT 

Auto-ID Center founded

2003: EPC System

Version 1.0

2005: Wal-Mart Retailer 

RFID mandate to 

suppliers

1960: Harris Patent 

Radio Tx with Passive 

Modulatable Responder

… 2015: Around the World

Electronic Toll Collection, Retail, Electronic ID and Passports, E-payment, Access 

Control, Implants, Fashoin, Pharmacy, Health care and Hospitals, Sports, Animal ID, 

Airports, luggage ID and tracking, ...     

Fig. 1.4 RFID technology milestones 
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2. FUNDAMENTALS OF RFID SYSTEMS  

2.1. Introduction to RFID systems 

2.1.1. Basic concepts and definitions 

Radio-Frequency Identification is an automatic identification method in which a fixed RF 

interrogator or reader wirelessly access the memory of a mobile data carrier named transponder or 

tag [1][2]. The very attractive features of RFID, namely non-line-of-sight operation and very fast 

inventory capability over large tag populations, make this technology preferable over other 

automatic identification methods (e.g. bar-codes). Although mass adoption of RFID initially 

encountered obstacles mainly related to per-unit tag price and infrastructure deployment costs, 

recent advances in semiconductors specially in CMOS tag technology have made the technology 

affordable. RFID systems are currently used for a variety of purposes including supply chain 

logistics, personnel identification and access control to buildings, animal tagging, ticketing, anti-

theft systems, indoor localization, airline baggage handling, vehicle identification and intelligent 

transportation systems, passive keyless entry, electronic passports, product authentication, 

pharmaceutical and health care industry, etc [3][4].  

Passive RFID concept is intimately-related to WPT technology, and in fact, passive RFID is the 

most spread commercial application of WPT so far. Being free of batteries and signal generators, 

passive RFID transponders offer very interesting possibilities, and there has been a great research 

effort to expand the functionalities of passive tags beyond simple identification. The integration of 

passive RF identification, passive sensing and increased computation capabilities has enabled the 

concept of RFID-enabled sensors and Passive Wireless Sensors (PWS) [5], that are not only able to 

perform RF identification but also sensing, data logging and advanced computation. It is expected 

that these technologies will play a fundamental role within the IoT eco-system, allowing the 

interaction with quotidian objects in a low-cost and ubiquitous manner. 

RFID systems can be categorized according to tag power-supply mechanism, reader-tag coupling 

method, tag memory capacity, system architecture, etc. Regarding the memory capacity, RFIDs can 

be divided into 1-bit tag systems and N-bit tag systems. The first systems allow to distinguish only 

between the presence or absence of tags in the field of the reader, and are typically used in counter-

theft applications. N-bit transponders have higher memory capacity, being able to store unique N-

bit identification numbers or user data. With respect to the coupling mechanism, RFID systems are 

divided in three groups according to the component of the EM field that is used to transfer 

data/energy between reader and tags: electrical, inductive and electromagnetic systems. The latter 

is the object of this thesis.   
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2.1.2. Frequency bands, power levels, read ranges and standards 

Table 2.1 presents the allocated frequency bands for RFID applications along with the respective 

allowed  power levels, maximum achievable range, target applications and main standards for each 

frequency band. Also, some of the main RFID manufactures are listed.   

 TABLE 2.1  

FREQUENCY BANDS, ALLOWED POWER LEVELS AND READ RANGES 

 

                                                           
1
 EIRP = Equivalent Isotropic Radiated Power; EIRP = PTX + GTX; ERP = Equivalent Radiated Power; ERP = 

EIRP – 2.15dB. 

Frequency band Allowed 

Power 

Max. 

Range 

Standards Comments, applications, 

manufactures 

9 - 135 kHz  Up to 

20cm 

ISO11784/5,  

ISO14223,  

ISO/IEC 18000-2, 

HiTag 

Low Frequency, inductive 

systems. EM 

Microelectronics SA 

3.155 - 3.4 MHz    EAS Systems, Anti-theft 

13.55 - 13.567 MHz  Up to 1m ISO14443-A & B, 

Mifare, EPC HF 

Class 1, 

ISO15693, 

Tag-It, I-Code, 

ISO18000-3,  

ISO/IEC-18047, 

TIRIS 

ISM Medium Frequency 

(13.56 MHz), inductive 

systems, smart cards and 

smart labels, NFC, 

contactless, proximity and 

vicinity systems. LEGIC, 

NXP, 3ALogics, AMS, TI 

26.957 - 27.283 MHz    ISM Medium Frequency, 

Industry an hospital 

applications 

402-405 MHz 25uW ERP   Medical Implants  

433 MHz 10 - 100 mW Up to100m 

(active) 

ISO/IEC 18000-7, 

ANSI 371.2, 

RFCode 

ISM UHF, active systems 

860 - 960 MHz 

EU: 866-868 MHz 

US: 902–928 MHz 

Japan:950-956MHz 

China:920-924.5 

MHz 

EU: 2W ERP
1
 

US: 4W EIRP 

Japan: 4W 

EIRP 

China: 2W 

ERP 

 

 

Up to 10m 

 

EPCGlobal, Class 

0, Class 1, Gen2, 

ISO18000-6A e 

6B, ISO1037, 

Ucode 

UHF, ISM, US-915 MHz, 

EU-968 MHz, backscatter 

modulation. NXP, 

Creative Systems, AMS, 

Mojix, Allien Technology, 

Impinj, Gao RFID, 

ThinkMagic, Motorola  

2.4 - 2.483 GHz 4 W US, 500 

mW  EIRP EU 

Up to 10m  ISM Microwaves, 

backscatter modulation 

 

2.446 - 2.454 GHz 

0.5 W outdoor, 

4 W indoor 

 ISO/IEC-18047,  

ISO1037,  

ISO/IEC 18000-4, 

Intellitag, μ-chip, 

Alien BAP 

 

ISM Microwaves, AVI 

(Automatic Vehicle 

Identification) 

 

5.725 - 5.875 GHz 

 

4W US, 500 

mW EU 

  ISM Microwaves, 

backscatter modulation,  

24,05 - 24,5GHz    For future use 
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TABLE 2.2 

PARAMETERS OF THE ISO18000-6C AND EPC GENERATION 2 STANDARD 
 

Frequency RT 

coding 

RT  

bit rate 

RT  

Mod 

TR 

coding 

TR  

bit rate 

TR  Mod Anti-Collision 

Algorithm 

860-960 

MHz 

PIE Max. 

128 

kbps 

ASK or 

PR-ASK 

FM0 or 

Miller 

Max. 

640 

kbps 

ASK or PSQ Random Slotted  

(Q-Algorithm) 

 

2.1.3. EPC-Global Class 1 Generation 2 and ISO18000-6C standards 

Standardization is an important aspect for the global adoption of RFID. In particular, the 

standardization on spectrum usage is fundamental to avoid interference to other systems sharing the 

spectrum as well as to guarantee an efficient spectrum usage. In 1999, the MIT Audio-ID center 

was founded to develop an RFID-based identification system to replace bar-codes (UPC). 

Accordingly, the first version of the EPC system, EPC Gen 1, was launched in 2003. In the same 

year, the MIT Auto-ID center formally became Auto-ID Labs (the research-oriented group) and 

EPC-Global (the network and standard-oriented group).  

Due to several mandates of international retailers and also governmental bodies (e.g. US DoD), 

EPC systems have been largely adopted worldwide, and currently, EPC-Global C1 Gen2 [6] as 

well as its counterpart ISO18000-6C stand as the dominant standards for passive-backscattering 

RFID systems operating in the UHF band. EPC C1 Gen2 version attempted to put together the best 

of its predecessors (Gen 1) and previous ISO protocols in order to provide improved modulation 

and codification schemes, improved anti-collision algorithm, operation for dense reader 

environments, increased security and higher tag read rates (up to 1500tags/s [4]). The current EPC 

version (Gen2) defines the requirements for the physical and logical layers for passive-backscatter, 

Reader Talks First (RTF), RFID systems operating in the 860-960 MHz band (902-928 MHz for 

US and 866-868 MHz for EU). Table 2.2 presents the physical parameters of EPC Gen 2 standard. 

Some aspects of Gen2 physical layer protocol are presented in Appendix B, and a detailed 

explanation of the Q-slotted anti-collision algorithm is given in chapter 7.   

 

2.1.4. Passive versus active RFID systems  

Depending on the power supply method, tags can be categorized as passive, semi-passive or active. 

An active tag [Fig. 2.1(a)] is similar to a traditional radio transceiver, employing a transmitter, 

receiver and battery, and generating its own RF signal. This allows long coverage range, only 

limited by transmitted power and receiver sensitivity. Active tags usually have larger memory 

capacity and are able to perform complex computation tasks. They can also operate offline (without 
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communicating with the reader), for instance, to sample a temperature sensor and store the data, 

and communicate the data to the reader only when it is turned on. Drawbacks of active tags include 

increased complexity, cost and size, and the need for battery maintenance. 

Passive tags [Fig. 2.1(b)] harvest their supply power from the magnetic or electromagnetic field 

generated by the reader. Additionally, they use power backscattering to communicate data to the 

reader. In general, passive tags are smaller and cheaper than active transponders, and do not require 

maintenance. However, a shorter coverage range is possible and tag functionalities are limited in 

comparison with active transponders.  

Semi-passive or semi-active systems stand in between passive and active systems [Fig. 2.1(c)]. 

Semi-passive transponders employ a battery only for the digital section, while the tag-to-reader 

communication is realized by power backscattering as in passive systems. Semi-active systems 

present a trade-off solution, permitting longer ranges than passive systems and increased battery 

life time in comparison with active systems. 
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B.B.

SEMI-
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reader data only

(c)
Reflected signal

(tag data)
 

Fig. 2.1 Active, semi-passive and passive RFID systems  

2.2. Operating principles of passive RFID systems 

Most RFID systems on the market today rely on near-field magnetic induction and far-field 

electromagnetic propagation. The first method is typically used for short range LF and HF systems, 

while the second is generally applied to UHF, microwave, and more recently Millimeter-wave 
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RFID systems with higher data rates and potentially longer coverage range. These are essentially 

the same methods used for general purpose WPT applications. The main difference is that in 

passive RFID applications WPT (used for tag power-supply) is combined with an additional 

mechanism for tag-to-reader data communication. Load-modulation is used for this purpose in 

inductive systems and backscatter modulation is used in far-field systems.       

 

2.2.1. Defining near-field and far-field operating regions 

Whether or not a system is operating in the near-field or far-field depends on how close the 

receiver is from the radiating antenna, on the largest antenna dimension and on the wavelength or 

operating frequency. As illustrated in Fig. 2.2, the space surrounding the antenna can be classified 

into reactive near-filed region (r < r1), radiating near-field or Fresnel region (r1 < r < r2) and far-

field region (r > r2), where r1 and r2 are given by (2.1) and (2.2) respectively [7] and r3 extends to 

infinity. In the reactive near-field region, the reactive fields predominate, the electric (E) and 

magnetic (H) fields are not in phase and the angular field distribution is strongly dependent on the 

distance and direction from the radiating source. In this region the fields strength decay rapidly 

with the distance according to 1/r
2
 or 1/r

3
. Beyond r2, we are in the far-field region were the 

electromagnetic field separates from the antenna and propagates into free-space in TEM mode. 

Here, the electric and magnetic fields are related via the free-space impedance (E/H = 377Ω) and 

decay according to 1/r. As the distance increases toward infinity, the spherical wave front emanated 

from the antenna approximates to the ideal planar phase front of a plane wave. Since the change 

from near to far field is not abrupt, there exist a transition region defined by r1 < r < r2, where the 

electric field and magnetic fields are not completely orthogonal to each other (non-TEM mode) and 

any structure inside this region will couple with the antenna distorting its radiating pattern. As a 

result, antenna gain measurement inside this region varies with distance and it is not a meaningful 

parameter.  

For electrically small antennas (D << λ) used in LF/HF RFID (e.g. at 13.56 MHz), r1 may be larger 

than r2 which means that there is no radiating near-field region and the near-far-field boundary is 

given by (2.1). For antennas used in UHF RFID, with size comparable to the wavelength, the 

approximate boundary between the near field and the far field regions is given by the sphere with 

radius r2 (2.2). 

        
  

 
 

(2.1) 
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 (2.2) 

where D is the largest dimension of the antenna, r is the distance from the antenna, and λ is the 

wavelength. For instance, the far-field region of a UHF antenna, with D=0.25m operating at 866 

MHz (λ ≈ 0.35m), starts at approximately 0.36m.     

Near-field 

non-radiative 

region

Far-field 

radiative 

region

r1

r2

Near-field radiative region

r3 → ∞

D

 

Fig. 2.2 Illustration of near-field and far-field operating regions. 

  

2.2.2. Near-field inductively-coupled systems 

Near-field inductively-coupled RFID systems (Fig. 2.3) rely on magnetic induction to transfer 

energy from the reader to the tag, and load-modulation to transfer data from the tag to the reader. 

Similar to a voltage transformer, the energy is wirelessly transferred from the primary coil at the 

reader side to the secondary coil at the tag side. By applying an alternating current to its coil, the 

reader creates an alternating magnetic field (B) according to Ampere’s law. An alternating 

electromotive force (EMF) or AC voltage proportional to the rate of change of the generated 

magnetic flux is developed on the tag coil, which is coupled to the primary via a mutual coupling 

factor M, according to Faraday’s law of induction. By using an RF-DC converter circuit, the AC 

energy induced in the tag’s coil is converted to DC power to supply the digital electronics. 

Additionally, circuits for over-voltage protection, voltage regulation and power management are 

used to deliver a stable DC supply to the tag. A capacitor (C1 in Fig 2.3) is often used in parallel 

with the coil to form a resonant LC circuit tuned to the operating frequency, and thereby improve 

the energy transfer efficiency [1]. In order to transfer its data to the reader, the tag load-modulates 

its coil according to the data bits to be sent, by using a MOSFET transistor connected across the 

coil. By switching the gate of the transistor ON and OFF, the tag changes the load impedance of the 

secondary coil, and thereby modulates the voltage and current across the primary coil. These small 

current/voltage perturbations on the reader coil are used to decode the tag data.  
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Inductively-coupled RFID systems include contactless IC cards, proximity cards [8] and NFC 

systems [9], with coverage distance of several centimeters, and vicinity cards [10] covering up to 1 

meter. Typical operating frequencies are at the LF band (100-135kHz) and HF band (10-15 MHz). 

Inductive 

RFID 

Reader

c1 c2
Tag 

Logic

RF-DC 

Converter

Load-modulator

Power and 

reader data

Load modulation 

(tag data)

TX/Primary Coil RX/Secondary Coil

Tag data bits to send

Magnetic 

Field (B)

M

 

Fig. 2.3 Near-field passive RFID system. The magnetic field lines (B) are in actuality closed ones.     
 

2.2.3. Inductively-coupled 1-bit systems 

Inductively-coupled 1-bit systems are the simplest RFID systems, which detect only the presence 

or absence of a tag in the vicinity of the reader. The reader coil and tag coil are coupled via 

magnetic induction. A simple 1-bit transponder [Fig. 2.4(a)] consists of a tuned LC circuit 

resonating at a given frequency fc, where the inductance is commonly that of the coil antenna. At 

the resonance frequency, a large current flows through the LC circuit and therefore when the tag is 

brought to the proximity of the reader, it produces a load effect, extracting energy from the reader’s 

field and causing a drop in the voltage across the reader coil antenna [see Fig. 2.4(b)][2]. By 

sweeping its operating frequency, the reader can detect the abrupt voltage drop on its coil whenever 

the tag is in the field. By using  multiple resonances in the same tag and by coding each resonance 

with a binary weight, it is possible to create a very low-cost and low complexity N-bit chipless 

system.  

Alternatively to the LC circuit, a resonant 1-bit tag can also be constructed by using a strip of 

magnetically sensitive metal mechanically resonant at the operating frequency of the reader [2]. 

Tags of this type were first introduced in the 1960’s for use in anti-theft applications, and are still 

in use today. Similarly to the LC tags, this system presents several benefits: the tag is quite simple, 

practical, compact and inexpensive; the reader is also practical and inexpensive; moreover, the low 

operating frequency used (from tens of kHz to 10 MHz) simplifies the design of both reader and 

tag.  
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2.2.4. 1-bit microwave systems based on non-linear effects  

Figure 2.5 depicts another 1-bit system, based on EM propagation, devoted to EAS applications. 

This system explores the non-linear generation mechanism of an RF diode, and uses a very simple 

transponder design consisting of a single diode attached to a λ/4 dipole antenna. When the tag is 

illuminated by a microwave signal (with a fundamental frequency fc), harmonics of the 

fundamental (at 2fc, 3fc,... nfc) are generated in the diode and re-radiates to the medium. Typically, a 

fundamental frequency of 2.45 GHz is used, which generates harmonics at 4.9 GHz, 7.35 GHz, 9.8 

GHz, etc. The reader detects the presence of transponders in the field by analyzing one of the 

harmonics (typically the second one): if the reader receives/detects incoming energy at that 

harmonic it learns that there is a tag in the field. In order to make the receiver immune to noise and 

external interference, the fundamental carrier is modulated by a known baseband pattern (e.g. a 

1kHz square wave) before being transmitted [1]. A suitable detection technique consists of passing 

the received down-converted base-band signal through a bandpass filter centred at the frequency of 

the modulating signal. Other ideas have been proposed to explore the nonlinear effects of a single 

RF diode, such as the one proposed in [11] which uses intermodulation for localization purposes.    
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Fig. 2.4 Inductively-coupled 1-bit RFID system [After Walton, US Patent 3,752,960] 
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Fig. 2.5 1-bit microwave system based on harmonic generation of an RF diode. 
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2.2.5. Far-field passive-backscatter systems    

In a far-field passive-backscatter system (see Fig. 2.6), wireless energy and data are conveyed 

through EM wave propagation. The backscatter mechanism used in passive RFID systems, consists 

of three steps: first, the reader radiates an un-modulated CW signal; second, the tag harvests DC 

power from the incoming RF signal, and once it collects enough energy it activates its electronics; 

third, the tag reflects part of the received RF power according to the data bit stream to be sent to the 

reader. By controlling the gate of a backscatter-modulator transistor connected across the antenna, 

the tag is able to vary its antenna reflection coefficient and thereby modulate its antenna Radar 

Cross Section (RCS). Communication by means of RCS modulation is described in section 2.5.  

A possible binary modulation scheme utilizes a matched and an unmatched state: when the 

transistor is OFF (i.e. the gate is open), the tag antenna is matched to the RFID chip impedance and 

there is only a (minimal) structural reflection due to the tag antenna itself. This state is coded with a 

logical value “0”. On the other hand, when the transistor is ON, it short-circuits the tag antenna 

causing its complete mismatch and increasing significantly the reflected power. This is coded with 

a logical value “1”. Switching between a matched state, that maximizes the power delivered to the 

RFID chip, and a load resistance that introduces a mismatch to generate a backscatter signal, is a 

very common way to implement an ASK modulator (commonly used in commercial chips). Other 

strategies using arbitrary impedance states are also implemented in practice; For instance, binary 

PSK modulation can be implemented by switching a capacitor across the terminals of the antenna 

to introduce a phase shift [12].  

Regardless of whether the tag locally generates ASK or PSK modulation, most readers perform an 

IQ demodulation followed by a rotation of the constellation to the real axis, allowing the 

constellation to be demodulated as if it was ASK-modulated. This is done because the constellation 

suffers arbitrary phase rotations along the propagation channel, which makes it unpredictable at the 

reader location. Moreover, a given change in the tag antenna is altered by reader self-jamming and 

other un-wanted environment scattering. For these reasons, existing codification schemes are based 

on state transitions rather than amplitude or phase. For instance, the FM0 coding scheme used in 

ISO18000-6c and EPCGlobal for uplink communication is based on the time interval between 

transitions [6]. 
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Fig. 2.6 Passive-backscatter RFID system.  

2.3. Passive RFID transponders and RFID-enabled sensors  

Passive RFID tags are unique compared to other wireless systems, as they do not require batteries, 

self-oscillator, mixers, amplifiers or other complex blocks. This allows to drastically reduce the 

power consumption, complexity, size and cost of passive tags, making them ideal for ubiquitous 

applications. The architecture of a passive RFID transponder/RFID-enabled sensor is depicted in 

Fig. 2.7. A typical RFID transponder incorporates the following basic blocks: 

1) Energy Harvesting Circuit: is one of the most important blocks of a passive RFID tag, 

responsible for collecting energy from the incoming RF signal to power up the tag electronics. 

Typically, charge pump circuits are used to boost the output DC magnitude to a level that 

complies with the digital electronics of the transponder. This block is detailed in chapter 4. 

2) Power Management Unit: is composed of a voltage regulator, a voltage supervisor and an over-

voltage protection circuit [13]. The voltage regulator circuit at the output of the harvesting 

circuit provides the tag with a stable DC power independently of the RF power at the antenna. 

Additionally, the voltage supervisor monitors the DC output, and when the DC reaches a 

predefined level, an interrupt signal is issued to wake up the digital circuitry.  

3) Clock oscillator: is used for clocking the baseband logic and for timing the data 

communications. Passive tags usually employ oscillators with relatively low frequency in order 

to reduce the overall power consumption. In some implementations, the required clock is 

remotely sent by the reader embedded in the data encoding [14], which considerably reduces the 

tag complexity and consumption.  

4) Demodulator: receives the data from the reader. Modulation and codification schemes are 

carefully selected in order to reduce the complexity while maintaining an acceptable 

performance and a stable power delivery to the tag. For simplicity, ASK modulation is used in 

most passive systems for reader-to-tag data link and therefore a low complexity envelope 

detector is sufficient to demodulate the reader data. On the other hand, reader-to-tag codification 

schemes must avoid long periods of absence of signal. For this reason, NRZ coding may not 
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suitable the most appropriate, instead pulse interval encoding (PIE) techniques with very short 

dead periods are utilized, as in Gen2 standard. Other standards (e.g. ISO14443-B) utilize 

modulation indexes different than 1 to improve energy transference.  

5) Backscatter-Modulator: is most of times based on a simple MOSFET transistor operating as a 

switch, which is used to modulate the antenna load impedance and thereby modulate the RCS. 

6) Memory: is usually based on a EEPROM (Electrically Erasable Programmable Read Only 

Memory), which contains the tag ID and eventually user data. Some user memory fields 

(including the transponder ID) can be programmed online by the reader.  

7) Baseband Digital Logic: is typically based on a finite state-machine processor which performs 

vital tasks including data encoding/decoding, reader command processing and protocol 

handling, memory access and power management. In passive sensors, the control unit is also 

responsible for handling sensors and data logging. While commercial tags employ low-cost, low 

complexity ASIC state-machine processors, other solutions dedicated to research may use 

microcontrollers (WISP platform [5]) or more sophisticated resources such as FPGAs/CPLDs 

(Complex Programmable Logic Devices)[15]. Note that a tradeoff between flexibility and 

power consumption exists: while ASICs and CPLDs consume significantly less power than 

microcontrollers, the latter allows superior flexibility and arbitrary instruction execution [15].        

 

Over the years, RFID has become an umbrella term that covers a panoply of related technologies 

such as RFID-enabled sensors, Passive Wireless Sensors (PWS), Internet of Things, autonomous 

wireless sensors and much more. Although the traditional function of passive RFID is associated to 

mere identification, the current research and industry trend is to expand the functionalities of 

passive RFID in order to include sensing and other advanced functionalities. This emerging 

concept named passive wireless sensor or RFID-enabled sensor has been applied to several 

situations including passive sensor networks and biomedical implants [5][16-19]. A well known 

passive sensor platform for research is Wireless Identification and Sensing Platform (WISP) [5], 

which consists of a custom-built passive UHF RFID with a programmable microcontroller that can 

communicate with commercial RFID readers running EPCGlobal C1 Gen2 protocol.  

The industry has also released passive RFID devices with expanded functionalities. An example is 

the SL900A RFID sensor [20], which incorporates an internal temperature sensor and interfaces for 

external sensors, an integrated Analog-to-Digital Converter (ADC) to sample the internal and 

external sensors and a digital serial data interface (SPI) for communication with external digital 

devices. Some passive tags also provide auxiliary DC ports for external power sources [21]; Other 

incorporate multiple antenna ports in order to allow improved antennas arrangements [22].  
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Fig. 2.7 Passive RFID tag/RFID-enabled sensor. The advanced functionality blocks of RFID-enabled sensors 

are filled with yellow.  

 

Because passive RFID design is generally ruled by low power consumption, low complexity, small 

size and low-cost requirements, the  integration of new functions significantly augments the design 

challenges, especially in terms of energy demand, because new features like sensors also need to be 

powered wirelessly. Hopefully, the continuous reduction in power consumption of modern 

semiconductor technologies allied with efficient wireless power delivery will enable the efficient 

realization of passive wireless sensors. Furthermore, synergistic energy harvesting from multiple 

sources including electromagnetic, solar, thermal and vibration has been explored to energy-assist 

passive wireless devices.  

2.4. RFID Reader architectures  

Current RFID reader implementations are either based on commercial ASICs (Application Specific 

Integrated Circuits) [23-25] and custom-designed ICs [26-27] or on SDR design [28-31]. The SDR 

approach fundamentally diverges from the other approaches, as it utilizes software to implement 

functions that are conventionally implemented in hardware. In terms of architecture, most of today 

RFID readers use direct conversion, in which the received RF signal is directly down-converted to 

baseband, and the transmit baseband data is directly translated to the desired RF frequency. 

Although simple ASK modulation is commonly used for downlink and uplink, readers employ in-

phase and quadrature (IQ) modems. Since the reader-to-tag distance is variable and unknown and 
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so it is the channel phase shift, an IQ modulator is essential to receive the tag constellation affected 

by arbitrary phase rotations. Transmitting IQ modulator is needed to implement advanced 

modulation schemes, such as Single-Side Band (SSB) ASK, that provides increased spectral 

efficiency compared to Double-Side Band (DSB) ASK. 

Since passive RFID requires full-duplex operation, readers need to separate the transmitter and 

receiver paths by using either a bistatic (separate transmitter and receiver antenna) or a monostatic 

(single antenna) configuration. The RFID front-end design is challenging because the transmitted 

power and noise may couple into the receiver and overpower the faint backscatter signal form the 

transponder, preventing the reader to decode the tag information; Therefore, readers quite often 

employ self-jamming cancellation schemes, which are implemented externally to the main RFID 

reader [30] or incorporated in the reader IC design [24][26].  

Hand-held or portable RFID reader is a class of readers used in logistics to complement fixed RFID 

reader infrastructures. Attempts also have been made to integrate RFID readers into mobile devices 

(e.g. smart phones). In these application scenarios, the compactness of reader and antennas, and the 

power consumption are the primary design constraints.        

Figure 2.8 depicts the basic block diagram of an ASIC-based RFID reader implementation. Typical 

UHF ASIC chips incorporate an analog RF front-end and a digital part. The analog front-end is 

composed of frequency synthesizer, IQ modem, filters and amplifiers; the digital part includes data 

converters, built-in processor for baseband and RFID protocol handling, and digital interface to 

communicate with an external microcontroller. Commercially available UHF reader chips are 

capable of implementing the complete physical and data link layers of RFID protocols. Some ICs 

also incorporate advanced functions such as self-jamming suppression.  
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Fig. 2.8 Basic RFID reader configuration based on a commercial ASIC. 
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Fig. 2.9 Typical SDR RFID reader implementation. 

 

2.4.1. Software Defined Radio-based reader architectures 

Since its inception, RFID technology has been in constant evolution, and consequently, the 

standards have been suffering mutations in order to achieve improved performance (e.g. higher 

data rates, improved anti-collision schemes, better reader operation in dense reader environments, 

etc). However, since ASIC solutions are typically tied to a given standard, they have to be 

replaced/re-designed whenever it is necessary to operate a new standard. Moreover, even for 

current standards, ASIC-based solutions are often inflexible, not allowing for parameter tuning 

(e.g. power level, frequency, etc), which is sometimes useful for RFID measurements and protocol 

evaluation. In contrast to that, SDR is a flexible radio implementation approach in which some or 

all of the physical-layer functions (e.g. modulation, codification, tuning, etc.) are implemented in or 

defined by software. SDR was first used in the military to allow backward compatibility and 

equipment interoperability, and in recent years, this technology has moved to general wireless and 

mobile applications, providing radios with the ability to accommodate different communication 

standards by using adaptable software along with reconfigurable hardware.  

Similarly, an SDR reader provides increased flexibility and is able to interoperate with different 

standards and upgrade to new ones by simply upgrading its software. Therefore, the SDR approach 

has been used in commercial RFID readers [32] as well as in research [28], RFID characterization 

and measurements [29], protocol exploration [30] and localization [31]. In this thesis, SDR is used 

to implement an RFID reader that is able to generate efficient software-defined waveforms for 

improved communication range.  

Figure 2.9 presents the SDR architecture typically used in RFID applications. In this 

implementation, a direct conversion IQ modem is used to down-convert the incoming signal to 

baseband, and up-convert the outgoing baseband to the desired RF frequency. A digital signal 
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processor unit (typically based on DSP or FPGA) processes the complex data that are received 

from IQ ADC and sent via IQ DAC.  

2.5. Backscatter communication in passive RFID 

The use of reflected radio waves from an object was first explored in the early radar systems 

developed during the second world war, and the use of radio wave backscattering for 

communication purposes has been studied since the work of Harry Stockman in 1949. In radar 

theory, any reflective object can be characterized by a RCS, σRCS, that is a measure of how 

reflective the object is to RF signals. The greater the RCS is, the larger the amount of scattered 

power. A passive-backscatter transponder utilizes the concept of cooperative radar to convey 

information to the reader by modulating the RCS of its antenna and thereby modulate the power 

being scattered. 

 

2.5.1. Analysis of the backscatter link 

This section presents an analysis of the backscatter link in passive RFID systems. The analysis 

consider the effects of the communication channel, namely, arbitrary propagation phase shift due to 

variable distance between reader and tag, self-jamming provoked by imperfect reader transmitter-

to-receiver isolation and scattering from surrounding objects. Figure 2.10 shows a passive-

backscatter radio system including a tag with two modulation states (binary ASK or PSK) and an 

IQ demodulator. In the forthcoming analysis, the following assumptions are made: all link gain/loss 

factors are neglected; the effective length of each antenna is assumed to be unitary such that the 

electric field and voltage at the antenna interface are interchangeable and simply referred to as 

signal [S(t)]; the un-modulated structural scattering from the tag antenna is not considered; noise is 

disregarded; the wireless channel is considered to be stationary with respect to the data signal 

backscattered from the tag, in other words, the tag data rate is much higher than the rate of change 

of the un-wanted signals (self-jamming and reflections) and the tag moving speed relative to the 

reader. Consider that the reader radiates an un-modulated carrier given by: 

                    

    (2.1) 
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Fig. 2.10 Passive-backscatter RFID system using binary RCS modulation.   

 

The modulated signal backscattered by the tag is related to the reflection coefficient in each 

modulation state, represented by the complex phasor 2,1
2,1

 je . This yields the signal at the tag site 

(2.2) and its corresponding phase-shifted version at the reader site (2.3). Amplitude scaling due to 

path loss is not considered and the contributions of jammer and environment reflections are added 

later in (2.13) and (2.14). 

    
                                

(2.2) 

                                         

(2.3) 

where  path is the modulation-independent round trip phase shift due to the propagation channel, 

 1 and  2 are the phases of the two modulation states and k is a real-valued scaling constant. 

Assuming a PSK modulation ( 2 =  1+180º), the signals at the receiver site for the two 

modulation sates come as,  

Modulation state 1:                                    

(2.4) 

Modulation state 2:                                      

(2.5) 

The contribution of reader self-jammer signal and scattered signals from surrounding environment 

at the reader receiver antenna are given respectively by (2.6) and (2.7). 

                             

(2.6) 
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(2.7) 

where |Sjam| and  jam are respectively the amplitude and phase shift of the jammer signal, N is the 

total number of reflections, |Γn| and  n are respectively the amplitude and phase with respect to the 

LO of the n-th reflection coefficient of the n-th reflecting object. The received signals (2.4), (2.5), 

(2.6) and (2.7) can be processed separately by the IQ demodulator (which performs a correlation 

product with the LO signal), then the resulting complex baseband signals can be combined. 

Accordingly, the complex output solely due to modulation state 1 is given by:   

  
    

      
   

 

    
                                 

    

 

                  

  
 

    
                                             

     
 
 
 
   

    

 

 
              

 
               

              

 
               

   (2.8) 

which can be written using the complex baseband notation as: 

  
  

              

 
             

(2.9) 

Similarly, the complex-baseband signals of modulation state 2, jammer and reflections come as 

follows:  

  
  

              

 
               

(2.10) 

    
  

           

 
       

(2.11) 

    
                

 

   

 

(2.12) 

Finally, the total signal received for each symbol comes as the sum of the respective modulation 

state signal, S1,2, and the arbitrary jamming (2.11) and reflection (2.12) components: 
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(2.13) 

  
     

      
      

 

 
              

 
               

                 

 
                        

 

   

 

(2.14) 

Figure 2.11(b) depicts the complex baseband vectors, (2.13) and (2.14), which result from the 

demodulation of a PSK constellation similar to that shown in Fig. 2.11(a). 

In the RFID reader design carried out in chapter 7, the High-Pass Filter (HPF) illustrated in Fig. 

2.11(e) is implemented in the analog domain by using a switched non-linear HPF similar to the one 

described in [XIV], which not only removes the DC-offset component but also eliminates transient 

effects. A straightforward implementation of the phase rotation operation described in Fig. 2.11(f) 

consists of finding the absolute value of the complex IQ signal (        
    

  ), dropping the 

phase information which is not relevant for ASK demodulation. An alternative implementation 

consists of first processing the data in one of the branches (I or Q) and only process the second 

branch if the first data demodulation attempt is unsuccessful. This approach was followed in the 

design presented in chapter 7. This method can be further improved by first pre-processing the two 

branches in order to access their signal strength/quality, and accordingly, decide which branch to 

fully process first for data demodulation.      
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Fig. 2.11 (a) Example of PSK modulation states at the tag, (b) Received baseband constellation. (c) 

Constellation rotation after change in distance and consequent propagation phase shift. (d) Received signal 

after change in self-jamming and scattering components, and distance change. (e) DC-offset rejection by 

using a HPF. (f) Constellation phase rotation to the real axis. 

 

2.5.2. Forward and backscatter power budgets  

The power transferred to the transponder chip and the power reflected by the transponder antenna 

and received by the reader receiving antenna are given respectively by the Friis equation, as the 

power density at the transponder location times its effective antenna aperture area (2.15) and by the 

radar equation (2.16)[12]:     

       

      

    
 

(2.15) 

        

           

       
 

(2.16) 

where PTX is the power radiated by the reader, GTX and GRX are respectively the gain of the reader 

transmitting and receiving antennas, λ is the radiation wavelength, d is the distance between reader 



40 

 

and transponder, Ae is the affective aperture of the transponder antenna, which determines the 

power transferred to the chip and σRCS is the RCS of the transponder antenna, which determines the 

amount of power being scattered. The effective aperture and the RCS of an antenna loaded by an 

impedance ZL are given respectively by [32][35]: 
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 (2.17) 
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(2.18) 

 

where ΓL is reflection coefficient of the load as defined by (2.19) and As is a complex vector that 

represents the load-independent RCS component due to the antenna structural mode. The term (1-

|ΓL|
2
)

 
is the power transmission coefficient, accounting for the mismatch between the antenna Za 

and the load ZL. When the load is matched (ΓL=0), Ae assumes the usual form of effective aperture 

described by Friis (Ae=Gtagλ
2
/4π).  

Although (2.17) and (2.18) suggest that minimizing the mismatch between the antenna and the load 

(ΓL = 0) gives the best results, backscatter modulation for data transfer requires two (or more) 

distinct load impedance states, thereby in terms of RCS, more important than the RCS of each 

individual state is the differential RCS as given by (2.22).         

 

   
     

 

     
 

(2.19) 

Equation (2.19) is the Kurokawa power wave reflection coefficient [38] valid when the source and 

load impedances are complex and there is no transmission line in between, as is the case for a 

passive RFID chip directly connected to an antenna. Note that Kurokawa’s definition reduces to the 

usual form of transmission-line reflection coefficient when Za is purely real. 

By varying ZL between two load impedances, Z1 and Z2, it is possible to modulate the antenna 

reflection coefficient between two modulation states, Γ1 and Γ2, and thereby modulate its RCS:  

     
       

 

       
 

(2.20) 

After Pursula [34], assuming a 50% duty-cycle square wave modulation between two impedance 

states, the effect of load modulation on (2.17) and (2.18) leads to the averaged effective aperture 

(  
 ) and differential modulated RCS (    
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(2.21) 
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(2.22) 

where the superscript m indicates modulation, the one-half weighting term in equation (2.21) is due 

to the modulation between two states which causes the power available to the tag to be an average 

of the power in the individual states [34]. Substituting (2.21) in (2.15), and (2.22) in (2.16), one 

ends up respectively with the average power delivered to the transponder chip and the modulated 

power backscattered by the transponder and received by the reader receiving antenna: 
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(2.23) 
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(2.24) 

The power reflected from the tag depends on the differential reflection coefficient        , and a 

load modulation index or modulation loss (between 0 and 1) is usually defined as 
 

 
       

 . The 

power reflection is maximized when extreme reflection coefficient values (-1 and 1) are used for 

the two states, however such choice would cause all the power to be backscattered and no power 

would be available to supply the transponder electronics. A tradeoff is, thus, necessary in the 

design.    

By including the polarization mismatch loss and the multipath fading margin, and by writing (2.23) 

and (2.24) in a more convenient form, one ends up with the following:       
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(2.25) 
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(2.26) 

where Ѳf is the polarization mismatch loss between the reader transmitter antenna and the tag 

antenna, Ѳb is the polarization mismatch loss between the tag antenna and the reader receiver 

antenna; Ff  is the forward fade margin, which is defined as the additional transmitted power needed 

in a faded channel to keep the same read rate achieved in a non-faded channel [35]. Note that, other 

aspects affect the power budget, e.g., tag gain penalty due to attachment in objects or blockage loss 

due to the obstruction of the line-of-sight [35], etc. Some of these aspects are discussed in chapter 

3. 
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2.5.3. A power budget example 

In order to evaluate which of (2.25) or (2.26) primarily limits the range of passive-backscatter 

RFID, consider the following typical parameters and conditions: PTX = 30 dBm; GTX  = GRX = 6 dBi 

(EIRP = 36 dBm); Gtag = 2 dBi; Ѳf  = Ѳb = -3 dB (circular reader versus linear tag polarization); Ff  

= Fb = 0 dB (a dominant direct line-of-sight link is considered); λ ~ 35cm (fc = 866 MHz); the 

transponder switches between a matched state (Γ1 = 0, obtained by using a conjugate match, Z1=Ra-

jXa) and an unmatched state (Γ2 = -1), yielding a modulation index of M = 0.25; Finally, two 

receiver sensibility values and tag activation power values are considered Si = -80 dBm (typical 

value) and Si = -90 dBm (state-of-art value), Ptag_min = -15 dBm (typical value) and Ptag_min = -20 

dBm (state-of-art value). Accordingly, (2.25) and (2.26) are plotted in Fig. 2.12.  

 

Fig. 2.12 Typical curves of power harvested by tag and power level reflected by tag and received by reader. 

 

2.5.4. Remarks 

 Due to variable distance between the reader and tag, and the consequent change in the 

propagation phase shift ( path), the transponder constellation suffers unpredictable rotations 

before it reaches the reader [refer to Fig. 2.11(c)]. On the other hand, self-jamming and 

environment scattering generate a variable baseband DC-offset component [see Fig. 2.11(d)]. 

While this DC-offset must be eliminated during the demodulation procedure, strong self-

jamming can saturate the RF stage of the receiver and degrade its sensitivity. These issues are 

addressed with more details in [XIV] and chapter 8. A pre-processing of the down-converted 

baseband signal is needed, including DC-offset removal and constellation rotation to the real 

axis [see Fig. 2.11(e)-(f)]. 
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 Tag modulation states must be properly chosen in order to maximize power transfer to the tag 

while providing a backscatter power sufficiently strong. For instance, reflection coefficient of 

1 or -1 maximizes the power reflection but penalizes the available power to the chip. A 

matched/unmatched scheme must be properly designed such that enough power can be 

received during the matched state for operation while in the unmatched state. 

 Although virtually all current passive-backscatter transponders available commercially employ 

binary modulation schemes (ASK or PSK), some works have recently explored multi-state M-

ary QAM modulation schemes to achieve increased data rates [12][36-37].   

 From Fig. 2.12,  it can be concluded that the operating range of passive-backscatter systems is 

primarily limited by the forward link (tag limitation). The stated example shows that, although 

reader sensitivities of -80 dBm/-90 dBm would allow to reach ranges of 23m/42m, the 

coverage distance is limited by the transponder activation power level (-20 dBm/10μW) which 

only permits a maximum range of 11m.  
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3. LITERATURE REVIEW  

3.1. Current research topics in passive RFID  

As demonstrated in the previous chapter, the reader-to-transponder power link imposes the more 

stringent limitation in passive RFID systems in terms of coverage range and transponder 

functionalities. Therefore, considerable research is dedicated to improve WPT in passive RFID 

systems (a literature/industry review is presented in the next section). Self-jamming caused by 

imperfect isolation between transmitter and receiver is the second limiting aspect of passive-

backscatter systems. Since passive RFID systems operate in full-duplex mode, power and noise 

from the transmitter can leak into the receiver degrading its sensitivity. A number of research 

works address CW self-jamming cancellation techniques for passive RFID systems [1-7]. In 

chapter 8 and [XIV] self-jamming cancellation is treated for CW signals and extended to MS 

signals. Other relevant research topics include Integrated Circuit (IC) design [8-10], antenna design 

for tags and readers [11], RFID-based localization techniques [12][13], non-conventional substrates 

and inject-printed electronics for tag design [14-17], anti-collision algorithms [18][19], basic 

principles of backscattering propagation [20], low-power and low-cost design, higher order 

modulation schemes (QAM) for increased data rates [21], and RFID-enabled sensors and passive 

wireless sensors. A number of other issues make the design of passive RFID challenging, including 

polarization mismatch loss, tag orientation sensitivity, degradation of tag performance, namely 

antenna gain reduction and impedance mismatch, due to tag attachment in objects, small-scale 

multipath fading loss, etc. Also, SDR-based RFID reader design has been devoted to research [22], 

RFID characterization and measurement [23], protocol exploration [24] and localization [13].           

3.2. Improving wireless power transfer in passive-backscatter RFID 

Figure 3.1 depicts the WPT subsystem of a far-field passive RFID system. The DC-to-DC 

efficiency is given by the ratio between the DC power collected at the transponder and the DC 

power injected at the reader transmitter (3.1). The maximization of DC-to-DC efficiency is 

achieved by improving the DC-RF efficiency, the beam efficiency and the RF-DC efficiency. In 

order to enhance the first, switching mode power amplification (SMPA) [25][26] along with 

SMPA-based transmitter architectures [27][28] have been used. State-of-art approaches to enhance 

the beam efficiency and RF-DC efficiency are reviewed in the next sections.      
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Radio Channel
(path loss, polarization 
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Fig.3.1The wireless power transfer subsystem 
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3.2.1. Beam efficiency improvement  

Considering the free-space model of the forward power link presented in chapter 2, equation 2.25, 

we can infer several ways of improving the beam efficiency, e.g., by increasing the gains of the 

antennas, by selecting proper backscatter modulation loads, by using polarization insensitive 

antenna schemes and by mitigating multipath fading. Some of these approaches are reviewed next.       

 

A. Antenna beamforming:  

An effective way to increase the beam efficiency in a point-to-point MPT system is by increasing 

the gain of the antennas [29]. Parabolic antennas, horn antennas and large antenna arrays with very 

high gains (20 dBi or higher) and very narrow 3 dB beamwidth (of less than 10º) are used to 

achieve very high beam efficiencies [30]. However, in most passive RFID applications, low gain 

antennas (around 5 to 7 dBi) are traditionally used in the reader. In order to simultaneously achieve 

high gain while maintaining wide coverage area, antenna beamforming have been proposed. In 

[31], a steerable beam antenna array featuring 12.1 dBi directivity in two different directions was 

proposed. Also, RFID manufacture companies as Mojix Inc. currently use steerable phased-array 

antennas to improve RFID reader performance and provide additional functionalities (e.g. object 

location) [32][33]. It is worth mentioning that the improved gain performance is obtained at the 

expense of an increased equipment cost, size and weight (especially at UHF band), and a trade-off 

is necessary. Nevertheless, this technique is very effective at microwave frequency bands (e.g. 5.8 

GHz) where the electrical length is substantially smaller, allowing the design of very high gain 

antenna arrays at reduced size, weight and cost.       

 

B. Circular polarization 

The polarization mismatch between the transmitter and receiver antenna affects the energy transfer 

efficiency between reader and transponder. Passive RFID tags typically employ simple linearly-

polarized antennas while readers are often equipped with circularly-polarized antennas to reduce 

polarization sensitivity. In a circular-to-linear antenna polarization scheme, the polarization loss is 

equal to ½ (3 dB) regardless of the relative orientation between the antennas. In a linear-to-linear 

antenna configuration, the polarization loss is a function of the angle between the two antennas, 

being zero (i.e. no loss) when the antennas are fully aligned (0
o
), and infinity (i.e. no link) if the 

antennas are orthogonally-oriented (90
o
). Because RFID tags are often attached to objects that can 
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appear in the field of the reader with arbitrary orientations, in spite of the 3 dB power loss, circular-

to-linear arrangement is preferred in the majority of RFID applications, providing improved 

orientation insensitivity. Besides, circular polarization presents improved performance in vehicular 

applications [34][35].  

 

C. Multiple polarizations  

In order to take advantage of the increased efficiency of linear polarization while maintaining the 

desired orientation insensitivity of circular polarization, the use of multi-polarized antennas is a 

viable option for RFID readers. This technique can also increase the immunity to multi-path fading. 

A commercial application of this concept is claimed in Impinj Inc. RFID reader portal. The 

Speedway reader portal is claimed to be able to continuously switch between a pair of linearly-

polarized antennas to obtain an alternating vertical-horizontal polarization pattern [36]. 

Nevertheless, we have not found detailed information in the literature about this approach. In 

chapter 7, we designed a multi-polarization antenna to work in conjunction with our SDR RFID 

reader.       
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Fig. 3.2 Multiple antenna receiver.  

    

D. Multi-antenna receivers  

A strategy to improve the insensitivity to polarization misalignment between transmitter and 

receiver consists of providing the receiver with multiple antennas. For instance, by using two 

linearly-polarized orthogonal antennas, the receiver is able to collect energy from vertical and 

horizontal E-field components regardless of the polarization angle. By combining signals from 

various antennas after envelope detection as in Fig. 3.2, the orientation insensitivity and coverage 

range can be improved. Dual linearly-polarized antenna approaches have been proposed for energy 

harvesting, MPT and Passive Wireless Sensor Networks (PWSN) applications [37][38]. Multi-
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antenna RFID tags have also been proposed [39][40], and RFID manufactures currently provide 

multi antenna port chips [41], giving the possibility to use dual-polarization schemes as in [42].   

 

E. Diversity schemes to combat multipath fading 

In a multipath faded channel, radio signals reach the receiving antenna by several paths with 

different amplitudes, phases and angles of arrival, causing the signal to combine constructively or 

destructively at different locations or time instants. In passive RFID, multipath fading is caused by 

waves scattered from walls and surrounding objects located in the vicinity of the RFID system, 

which causes the power received by the tag to vary as a function of position – small-scale 

multipath fading. This phenomenon can render the transponder powerless in some locations and 

significantly reduce the communication range and reliability. In order to combat the effects of 

multipath fading, techniques as frequency diversity, spatial/antenna diversity or polarization 

diversity are often employed. These techniques are based on the observation that a relatively subtle 

change in frequency, transmitter/receiver antenna position or polarization can completely change 

the multipath fading pattern. Thereby, a field null (fade) can be dislocated by slightly changing the 

frequency, antenna position or polarization. Modern RFID readers utilize Frequency Hoping as a 

frequency diversity mechanism [43][44]. The use of multiple antennas in the reader and 

transponder has been proposed to provide space diversity [45][46]. Also, polarization diversity has 

been investigated [47].  

 

F. Auxiliary power sources  

Other techniques that can improve the overall performance include the use of extra power sources 

in RFID tags in addition to the power of the main RFID reader. Park et. al. were able to double the 

read range of passive tags by using an auxiliary CW transmitter in addition to the main RFID 

reader [48]. A similar strategy is used by Mojix Inc. RFID manufacturing company, which deploys 

auxiliary excitation nodes in addition to the main RFID reader [49][50], which greatly increases the 

overall coverage. With the same purpose of providing RFID tags with extra energy, A. Georgiadis 

et. al. proposed an ingenious scheme that uses a solar-to-RF converter to assist a passive RFID tag 

[51]. This concept, illustrated in Fig. 3.3, uses a solar cell to convert solar energy into DC power, 

which is used to power up an RF oscillator that feeds the transponder with extra RF power. By 

taking advantage of recent industry releases, the same concept can also be implemented with new 

RFID chips either supporting multiple antenna ports [41], or providing auxiliary DC input ports 

[52]. The use of exposed DC ports in passive RFID transponders, first proposed in [53], also allows 

the realization of semi-passive configurations with improved sensitivity. For instance, the read and 
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write sensitivity of NXP UCODE G2iL chip can be improved up to -27 dBm when assisted by a 

1.85V external power supply [52].  
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Fig. 3.3 Solar-assisted RFID tag concept (after [51]) 

 

3.2.2. Enhancement of RF-DC conversion efficiency   

In passive RFID and passive sensors devices, voltage multipliers or charge pumps are commonly 

employed. As the maximum power level radiated by RF interrogators is limited by regulations, and 

the RF energy received by passive devices is usually very small, especially in multipath faded 

environments and far away from the interrogator, these devices must be able to operate at very low 

power levels (from few mW down to μW [54-56]). In order to obtain a DC level that complies with 

digital electronics, N-stage CMOS-based Dickson charge pumps are commonly used to boost the 

small amplitude of the incoming RF signal [57-62]. Although low barrier Schottky diodes can 

achieve higher RF-DC conversion efficiency (specially at low power levels), diode-connected 

MOSFET transistors are currently preferred for UHF RFID applications because they are process-

compatible with CMOS, which is a well matured and very low-cost technology, and CMOS 

performs quite well at UHF frequencies. On the other hand, Schottky diodes are incompatible with 

low-cost standard CMOS processes, which prevents them to enter into mainstream UHF RFID 

applications. In fact, the widespread adoption of passive UHF RFID technology is greatly 

attributed to the possibility of integrating all the tag electronics (including N-stage charge pumps) 

into the same CMOS chip, allowing to dramatically reduce the cost of tags. However, a weakness 

of CMOS is the increase of threshold voltage due to the transistor body effect [62], which leads to 

efficiency degradation at low power levels. Some strategies to deal with this issue are overviewed 

later in this section. 

However, while performing well at the UHF band, CMOS technology has not yet been 

satisfactorily scaled to microwave bands in terms of cost, power and efficiency. For this reason, 

most rectifiers/rectennas for SPS and MPT applications at high microwave frequencies employ 

discrete, low potential barrier, Schottky diodes [63-69]. The increased efficiency of single and 
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double diode rectifiers, at low power levels, also justifies their use in low power ambient energy 

harvesting applications. 

Since the RF-DC conversion efficiency ultimately limits the range of MPT, energy harvesting, 

passive RFID and passive wireless sensor systems, a great research effort is put on the optimization 

of the RF-DC efficiency. One of the highest efficiencies ever reported was achieved in 1977 by W. 

Brown at Raytheon Company [70]. Using a GaAs – Pt Schottky barrier diode and an aluminum bar 

dipole, a conversion efficiency of 90.6% was achieved at 8W microwave input power level. Later, 

Brown reported a printed thin-film rectenna version at 2.45 GHz with 85% RF-DC conversion 

efficiency [71]. In 1991, ARC0 power Technologies Inc. company, built a rectenna at 35 GHZ with 

72% RF-DC conversion efficiency [72].    

Figure 3.4 presents typical RF-DC conversion efficiencies reported in the literature [54-79], 

including a recent survey conducted by Valenta et. al. on state-of-the-art far-field energy harvesting 

circuits and efficiencies [79]. 

 

Fig. 3.4 State-of-the-art efficiencies for different frequency bands as a function of input power (data from 

[56][78][79]). 

 

According to the literature review and Fig. 3.4, the following conclusions can be drawn:  

 The RF-DC conversion efficiency decreases with the decrease in power level and with the 

increase in frequency. The first behavior is because of the need to overcome the threshold 

barrier and the second effect is due to the increase of parasitic losses at higher frequencies.  

 Harvesting circuits for UHF RFID applications are mostly based on CMOS technology and 

operate at lower power levels (typically below 0 dBm).  
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 Circuits for SPS, MPT and WPT-oriented applications, working at microwave range (2.4 GHz, 

5.8 GHz and beyond), are based on discrete Schottky diodes, work at significantly higher 

input power levels and present increased efficiencies (e.g. 90.6%@39 dBm~8W [77]). 

 The efficiency of ambient EM energy harvesting at very low power levels (below -30 dBm) is 

reduced (e.g. lower than 20% in UHF band [56]).       

 

In general, the conversion efficiency of rectifier circuits is affected by diode-device parameters, RF 

input signal frequency and amplitude, circuit topology, input filter and output load conditions. In 

the following we review some approaches attempted to enhance the RF-DC conversion efficiency. 

 

A. Selecting rectifying devices 

Most of rectenna designs found in the literature are based on off-the-shelf discrete silicon (Si) 

Schottky diodes, mainly because these devices are commercially available at low-cost. The main 

parameters to take into account in the choice of a rectifying diode are: the series resistance, which 

is a major source of losses; the parasitic junction capacitance, which limits the efficiency at higher 

frequencies; the threshold or turn-on voltage and the breakdown voltage. The last two parameters 

determine the power handling capability or dynamic range of the device. The lower the threshold 

voltage is, the more suitable and efficient the device is for low power levels. Zero-bias Schottky 

diode exhibit very low threshold voltages (around 150-300mV) and are suitable for applications 

below -20 dBm [80]. On the other hand, the higher the breakdown voltage is, the higher the power 

handling capability of the device. Conventional rectifiers utilizing Si-based Schottky diodes 

typically operate at power levels below 30 dBm [81]. 

B. Alternative rectifying devices 

Although existing rectifier circuits are predominantly based on Schottky diodes and diode-

connected CMOS transistors, alternative devices have also been used. An example is Gallium 

Arsenide (GaAs) Schottky technology. In spite of being similar to Si Schottky diodes in most 

aspects, GaAs present higher carrier mobility and very low junction capacitance, which permit 

them to operate at much higher frequencies (commercially available beyond 100 GHz). E-pHEMT 

transistors have also been tested for rectifying purposes, showing good efficiency performance at 

medium power levels [82]. In order to take advantage of high switching speed and low turn-on 

voltage of Schottky diodes and also to benefit from modern CMOS processes, attempts have been 

made to integrate Schottky junctions into CMOS [83]. Heterojunction tunnel field-effect transistors 

(HTFET) featuring very low turn-on voltage were used to achieve an improved performance at 

very low UHF ambient power levels (over 50% conversion efficiency at -40 dBm to -25 dBm input 
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power) [56]. Some works have also investigated custom-built Schottky diodes using non-

conventional material in order to reduce the parasitic losses [84].   

C. Harmonic filters:  

The optimization of the overall rectenna design is necessary to maximize the RF-DC conversion 

efficiency. In order to prevent higher harmonics generated in the non-linear device to be re-

radiated, harmonic filters/terminations are often used at the input of the rectifier circuit [85][86]. 

In order to suppress the higher frequency components at the output load resistance, a capacitor is 

typically used for relatively low frequencies. Alternatively, a quarter wavelength open stub, which 

acts as short-circuit at the operating frequency, is often used in the microwave range. Nevertheless, 

these load impedance terminations allow the current and voltage waveforms across the diode to 

overlap in time, which results in power dissipation in the series resistance, and consequently in 

degradation of the efficiency. The use of improved harmonic terminations, such as Class-F loads, 

have been investigated to improve the efficiency of rectifying circuits [87]. Similarly to switching 

mode power amplifier design [88], multi-resonant load networks are used to impose non-

overlapping voltage and current waveforms, and reduce the dissipation loss in the diode. The 

condition for class-F operation is that the impedance of the rectifier output filter is zero at even 

harmonics and infinity at odd harmonics. By using a class-F-terminated rectenna, a conversion 

efficiency of 65.6% was obtained at 24 GHz in contrast with 52.1% efficiency obtained with a 

conventional capacitor-terminated rectenna. 

 

D. Improved rectifier topologies 

Achieving high RF-DC conversion efficiency is challenging at extreme conditions of very low 

power level (limited by the turn-on voltage) and very high power level (limited by the breakdown 

voltage). High power RF-DC conversion using Si-based Schottky diodes is challenging not only 

because the rectification of signal amplitudes in excess to the diode breakdown voltage becomes 

inefficient, but also because excessively high input power levels can permanently damage the 

semiconductor junction. Some approaches have been proposed to overcome the breakdown voltage 

limitation and achieve efficient rectification at high input power levels. The simplest way to 

increase the power handling capability of a rectifier is by putting N diodes in series to form a N-

diode structure with a higher voltage breakdown and improved efficiency at higher power levels 

[89]. Another approach consists of splitting the input power before rectifying. In [81], a 

transformer-based power-dividing network is used to split a high power signal into four signals 

with lower power level that are separately rectified using regular Si-based Schottky diodes, and 

then the resulting DC voltages are combined at the load. By using this scheme an input power level 

as high as 41 dBm was handled without reaching the breakdown limit of the diodes.  
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Rectifiers are commonly designed to work either in a low or high narrow power range, in which the 

RF-DC conversion efficiency is satisfactory. However, some applications may require extended 

dynamic range to cover both low and high input power levels. In [89], an adaptive rectifier circuit 

is proposed, that automatically adapts to the input power level and provides high efficiency over a 

wide input power range. With that arrangement, an efficiency of more then 50% was kept from -14 

dBm to 21 dBm.  

Conversely to the serialization of diodes to optimize high power operation, several diodes are often 

used in parallel, in order to reduce the overall series resistance and consequently reduce their 

resistive loss at low power levels [87]. However, this approach is not recommended for very high 

frequencies, as the parallelization of diodes increases the total parasitic capacitance.  

Half-wave (Dickson topology) voltage multipliers are widely utilized in passive UHF RFID tags. 

These rectifiers consist of diodes, pumping capacitors and stage voltage storage capacitors. The 

pumping capacitors are pre-charged in parallel in the negative half cycle of the RF signal, and in 

the next positive half cycle, the pumping capacitors feed the current to the grounded storage 

capacitors. Because the current from the RF signal enters the diodes only half cycle, this topology 

presents a limited current capability, which drops significantly with increased output load current. 

Hence, full-wave charge pump circuits were proposed in [90] to overcome the limitations in current 

driving capability, and thereby improve the efficiency in comparison to half-wave voltage 

multipliers. The main drawback of the full-wave charge pump is the larger layout area required, 

since twice the number of diodes are needed.   

E. Threshold-compensated CMOS  

A major limitation of diode-connected CMOS transistors is the increased threshold voltage, which 

penalizes the conversion efficiency at very low power levels (this is the case in passive RFID). 

Therefore, researches have attempted strategies to either reduce the intrinsic threshold voltage of 

devices by adjusting the physical parameters of the transistors, or compensate the turn-on voltage 

internally or externally. Several threshold compensation schemes have been proposed. One of them 

used an external voltage from a battery or a second energy harvester to bias the main high 

efficiency charge pump circuit [91]. While this is effective to reduce the turn-on voltage of the 

main rectifier circuit, the requirement of having a battery may be a problem in passive scenarios 

where a local power source is not desired or available. Other schemes employ self-compensation 

methods, by using the own DC output generated by the rectifier itself to bias the gate of the 

transistors [see Fig. 3.5 (a)]. In another approach, rather than using the output voltage of the 

rectifier, K. Kotani et. al. inserted photovoltaic cells into the gate bias paths to compensate the turn-

on voltage of MOSFETs with the photo-generated voltages [92]. Similarly to A. Georgiadis et. al. 
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who used a solar-assisted RFID tag [51], this is an example of synergistic energy harvesting, 

combining multiple energy harvesting sources to improve the overall efficiency. 

 

Fig. 3.5 CMOS threshold-compensation schemes. (a) Self-Vth cancellation. (b) Photovoltaic-assisted 

rectifier. Both circuits are voltage doublers using diode-connected nMOS and pMOS transistors. [92]  

 

3.3. Closely-related work: waveform design for improved efficiency 

According to the previous literature review, it is clear that the non-zero turn-on voltage is the main 

cause of efficiency degradation in existing rectifying devices operating at low input power levels, 

and researchers (specially in the CMOS field) have attempted a number of circuit strategies to deal 

with this issue.  

As an alternative to circuit approaches, waveform design optimization has been investigated to 

improve WPT efficiency. The use of High PAPR waveforms, with high peak voltage swings and 

low average power, allows to efficiently overcome the threshold barrier of rectifying devices, while 

keeping a low average power that complies with regulations and reduces the overall power 

consumption of the system. This strategy has been recently investigated by using non-conventional 

waveforms including intermittent CW signals, Ultra Wide Band (UWB) signals, Power-Optimized 

Waveforms (POW), chaotic signals, white noise, modulated signals and multi-carrier signals [93-

99][IV].    

In this thesis, we evaluate in-phase high PAPR MS signals, which can provide improved RF-DC 

conversion efficiency in existing rectifier circuits, specially under low average power conditions, 

compared to traditional CW signals. Previous work by Trotter et. al. explored a similar concept 

called POW [96][97]. Recently, C. Valenta also investigated POW for 5.8 GHz energy hasting 

circuits [100-101].  
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4. UNCONVENTIONAL WAVEFORM DESIGN FOR WIRELESS POWER TRANSFER 

4.1. Introduction 

This chapter addresses the first question formulated in the introduction section of this thesis “Can 

the same effect that leads to errors in power probe measurements of high PAPR signals be used to 

boost the efficiency of similar RF-DC converter circuits used in WPT?”.  

Traditionally, WPT has been carried out using constant envelope CW signals. However, it has been 

shown recently that high PAPR waveforms can improve the efficiency of existing rectifying 

circuits, especially at low average power levels. This can potentially increase the reading range of 

passive-backscatter systems. Curiously, the first electromagnetic signals successfully generated, 

transmitted and detected by Heinrich Hertz were damped waveforms with non-constant envelope 

[1], which were utilized for many years in wireless telegraphy and also in some WPT experiments 

conducted by Tesla [2]. However, due to large spectrum occupancy, dumped waves were banned 

later. They were replaced with CW signals (first generated by Ernst Alexanderson in 1902 [3]) 

which have been adopted for power transfer since Brown’s MPT experiments in the 1960’s.  

The theoretical analysis of CW radio path presented in chapter 2 [equations (2.25) and (2.26), and 

Fig. 3.4] shows that, unlike conventional wireless communication systems, which are mainly 

limited by noise and receiver sensitivity, passive-backscatter systems are primarily limited by the 

power downlink, i.e., the reader-to-transponder energy transfer. This was also theoretically 

predicted in [4][5], and confirmed by practical experiments in [6], where a far RFID listener device 

was used to capture the signal backscattered from a tag while being interrogated by a closer 

principal RFID reader. In that experiment, the RFID listener was able to receive and decode the 

uplink/backscattered signal 35 meters away from the tag, a distance well beyond the maximum 

attainable range of current RFID systems (up to 10m). This shows that the more stringent limit on 

range is in fact imposed by downlink. A closer look reveals that the downlink limitation lies on the 

reduced RF-DC conversion efficiency of existing energy harvesting circuits at low power level 

regime. Because Schottky diodes and CMOS devices commonly used in rectifier circuits exhibit a 

non-zero turn-on voltage, a certain amount of energy is needed to overcome the electrical barrier of 

the device and thereby the RF-DC conversion efficiency at low input power levels is degraded. 

This is evident in the state-of-the-art efficiency values presented in Fig. 3.4 of chapter 3. 

In order to maximize the RF-DC conversion efficiency, circuit level optimization is conventionally 

carried out (several techniques are reviewed in the previous chapter). Alternatively, the RF-DC 

conversion efficiency can be boosted by selecting properly formatted waveforms, such as high 

PAPR in-phase MS signals, that are capable of efficiently surpassing the turn-on voltage of 

rectifying devices at low average power levels. In [V], we have presented a survey on the use non-
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conventional waveforms for WPT, including chaotic signals, intermittent CW, UWB signals, multi-

carrier signals, harmonic signals, modulated signals and white noise.  
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Fig. 4.1 Basic blocks of an RF-DC conversion circuit  

4.2. RF-DC power conversion basics  

Figure 4.1 depicts the block diagram of an RF-DC converter system, composed of an RF power 

source, a matching circuit to allow maximum power transference, a non-linear rectifying device, 

that is the main component of the circuit, followed by a low-pass filter and a DC load. The non-

linear device transforms the input AC signal at frequency f0 into a DC component plus fundamental 

and harmonic components: yout = NL[xin] = Y(DC)+Y(f0) + Y(2f0) + Y(3f0) +...+ Y(nf0). In order to 

depurate only the DC component, a low-pass filter is used to remove the AC components of the 

rectified signal.  

4.3. Typical RF-DC converter topologies  

Figure 4.2 depicts the most popular harvester topologies, namely the shunt diode rectifier 

[Fig.4.2(a)], the series diode rectifier [Fig.4.2(b)], and the N-stage Dickson voltage multiplier or 

charge pump [Fig.4.2(d)]. Charge pumps are typically employed in passive RFID tags and single 

diode rectifiers, especially the microwave version of the shunt rectifier, are commonly used for EM 

ambient energy harvesting and MPT applications.  

The voltage doubler or single-stage charge pump [dashed circuit in Fig.4.2(d)], which is the cell 

unit of a Dickson charge pump,  is composed of a pumping capacitor at the input, a shunt diode, a 

series diode and a storage capacitor at the output. It operates as follows: when the capacitors are 

uncharged and the input signal with peak amplitude Vp is in the negative cycle, the series diode is 

cut and the pumping capacitor is charged with a voltage –Vp through the shunt diode; when the 

input waveform swings to its positive cycle, the shunt diode is cut, the series diode conducts, and 

the peak amplitude of the input signal, +Vp, is summed to the pre-charged voltage, yielding a 

voltage of 2Vp in the output storage capacitor. The charge pump has a similar operation, being the 

DC output of each voltage doubler stage used as a reference level for the next stage, such that the 

maximum voltage at the output of the N-th stage is given by (2N-1)(Vp-2VD), where N is the 

number of stages, Vp is the peak amplitude of the AC signal and VD is the voltage drop in the 

diodes.  

Typical efficiency curves of different RF-DC converter circuits are presented in Fig.4.3, from 

which two main conclusions can be drawn. First, the efficiency depends on the selected circuit 
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topology, and the lower the number of devices, the higher the efficiency. This is explained because 

of the need for a minimum amount of input power to switch on the rectifying devices and also due 

to the increase in parasitic losses as the number of devices increases. Nevertheless, the higher the 

number of stages, the higher the collected DC voltage. For this reason, charge pumps are used in 

RFID tags to boost the output DC to a level compliant with tag electronics. Second, the efficiency 

depends on the available power at the input of the circuit: for low power levels the efficiency is low 

because the rectifying device is not completely switched on. As the input power increases the 

efficiency increases and reaches a maximum value right before the input amplitude reaches the 

diode breakdown voltage. After this point, diode reverse current starts to be significant and the 

efficiency starts to drop. Losses due to higher order harmonics also increase with the increase in the 

input power level.  
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Fig. 4.2 Typical energy harvesting circuit topologies. (a) Shunt diode rectifier. (b) Series diode rectifier. (c) 

Shunt diode rectifier using microstrip λ/4 stubs. (d) N-stage Dickson voltage multiplier.    

 
Fig.4.3 Typical efficiency curves of different rectifying circuits. 
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4.4. Rectifying device characterization and modeling   

The Schottky diode is the key component of many rectifying circuits. Its circuit model (Fig.4.4) 

comprehends a nonlinear junction current source ij(vj), shunted by a nonlinear junction capacitance 

Cj(vj) and a series parasitic resistance RS. Packaged diodes also include a parasitic package 

capacitance (Cp) and inductance (Lp).  
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Fig. 4.4 Physical model of a Schottky diode 

 

The non-linear forward and reverse breakdown I-V characteristics (If and Ibr) of the junction barrier 

can be described respectively by (4.1) [7] and (4.2) [8], and the total diode current is given by (4.3).  

        
   

            
  

           
       

       

 (4.1) 

        
 

      

        
 

            
   

(4.2) 

          

(4.3) 

where IS is the diode reverse saturation current, k is the Boltzmann constant (1.3806488 × 10
-23

 m
2
 

kg s
-2

 K
-1

), Vt = kT/q is the thermal voltage ( ≈ 26mV @ room temperature), T is the junction 

temperature in Kelvin (room temperature = 298K), q is the electron charge (1.60217657 × 10
-19

 

coulombs), η is the diode ideality factor, used to model imperfections in the junction, Vj is the 

voltage across the junction barrier, which is equal to an external voltage applied to the diode, VD, 

minus the voltage drop in the parasitic series resistor RS, Vbi is the built-in potential, Vbr is the 

reverse breakdown voltage and IBV is the breakdown saturation current. Note that (4.1) and (4.2) are 
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both non-liner equations that do not have a closed-form analytical solution and are treated 

numerically in the RF-DC model presented in Appendix A. 

Figure 4.5 shows the typical I-V characteristic curve described by equations (4.1)-(4.3). According 

to (4.1), at low forward (positive) current, the voltage drop across the parasitic series resistance is 

insignificant and the diode behavior is dominated by the non-linear resistance of the Schottky 

barrier. At very high positive bias levels, the ohmic resistance RS dominates, and the I-V curve 

assumes a linear relationship. For negative bias levels above the breakdown voltage, the 

exponential terms in (4.1) and (4.2) are negligible and the total diode current (4.3) approximates a 

constant value equal to –IS. Below the breakdown voltage, equation (4.2) governs the diode 

behavior. Depending on the input power level, the zero-bias Schottky detector operates in different 

regimes as illustrated in Fig. 4.6: at very low power level (typically bellow -20 dBm, 20mV), the 

diode operates in the square-law region where the it produces an average DC output proportional to 

the average input power [9]. Above 0 dBm (>300mV), the diode enters into forward conduction in 

each positive cycle of the carrier, and the peak RF voltage is held by the output smoothing 

capacitor [see Fig. 4.7(a)]. In this regime, known as linear, the rectifier behaves as a peak or 

envelope detector, and the output DC is proportional to the input peak amplitude minus the voltage 

drop across the diode. The region between -20 dBm and 0 dBm is said to be a transition region. At 

very high input power levels, the DC output compresses due to the breakdown effect (described 

next).    
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Fig. 4.5 Typical DC I-V curve of a Schottky diode and respective operating regions 
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Fig. 4.6 Typical RF-DC characteristic of a detector circuit, illustrating the operation in square-law, linear and 

compression regions. 

4.5. CW envelope detection 

The rectification of a single RF carrier in an envelope detector (linear regime) is illustrated in 

Fig.4.6: in the positive cycle of the input signal vi(t), whenever the total signal across the diode 

vD(t) (input signal minus the generated DC output) is larger than the diode turn-on voltage (vD(t) > 

Vbi), the output capacitor is charged through the diode and the peak RF voltage (minus the drop in 

the diode) is held by the output smoothing capacitor. In the negative cycles of the input signal 

(vD(t) < Vbi), the charge stored in the output capacitor bleeds thorough the load resistance. The low-

pass filter, formed of the output capacitor and load resistance, ideally filters out all the RF 

components generated in the rectification process, allowing only the DC component to reach the 

load.  
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Fig. 4.7 (a) Illustration of single-carrier rectification in a series diode detector. (b) Breakdown effect. 

 

4.5.1. Self-biasing and breakdown effects 

Although the rectifying devices used in WPT applications are not intentionally biased (since a local 

DC source is not available in battery-less applications), diode rectifiers present a self-biasing 

mechanism via the DC voltage collected from the RF signal. Initially, the output capacitor is 

uncharged, the diode is zero-biased and the total signal VD(t) applied to the diode is solely due to 

the input signal vi(t). When the input signal satisfies the turn-on condition, the output capacitor 

starts charging and the total voltage applied to the diode becomes equal to vD(t) = vi(t) + Vself-bias, 

where Vself-bias is the self-bias voltage, which is given by the mean value of the signal across the 

diode (equation 4.4). If the turn-on condition maintains (vi(t) + Vself-bias > Vbi) and the input signal 

continue to increase, then the DC output and thereby the self-bias will continue to increase (Fig. 

4.7). Once the amplitude of the signal across the diode reaches the diode threshold voltage Vbr, a 

significant amount of reverse current will start to flow through the diode in the negative cycles of 

the input signal, which contributes to decrease the average current across the diode and to degrade 

the RF-DC efficiency as the input signal increases (see Fig. 4.7). From this point on, regardless of 

any increase in the input signal, the generated DC voltage will be fixed to a maximum value of 

approximately Vbr/2. Therefore, the maximum DC power produced by a single diode rectifier is 

limited by (4.5). 

                    
 

  
            

  

 

        

(4.4) 

where the operator     denotes the average over time, and VDC is the output DC voltage produced 

by the rectifier. Note that the diode is biased with a voltage symmetrical to its own generated DC.   
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 (4.5) 

4.6. High PAPR signal rectification  

High PAPR waveforms are able to enhance the RF-DC conversion efficiency of energy harvesting 

circuits, especially at low input power level. This is due to their greater ability to overcome the 

built-in potential of the rectifying devices when compared to constant envelope CWs. In order to 

evaluate the impact of the high PAPR feature in an envelope detector circuit, an analytical-

numerical model [based on the diode equations (4.1)-(4.3)] is derived in Appendix A. The model 

uses a pulsed signal with a variable amplitude and duty-cycle to mimic a general high PAPR signal. 

Given the input signal amplitude and duty-cycle (which determine the signal’s PAPR) and the 

diode parameters, the model was used to predict the output DC voltage, RF-DC conversion 

efficiency and efficiency gain, as functions of input average power and PAPR. The following 

conclusions were drawn from the preliminary model results [please refer to Fig.A.3 in appendix A]: 

1) At low power levels, as the PAPR increases, the RF-DC conversion efficiency increases, 

which is attributed to the greater ability to overcome the built-in potential of the diode.  

2) For higher power levels, however, the increase in PAPR degrades the efficiency. This 

effect is due to an increased voltage drop across the diode series resistance and consequent 

resistive loss. 

3) Moreover, as the PAPR increases, the breakdown is reached earlier and the maximum 

efficiency is significantly decreased. 

In this work, the high PAPR feature is achieved by constructively summing several sinusoidal 

carriers to form a time-domain waveform with high peaks and low average power level. The 

rectification of such MS signal is discussed in the next section. Note that although the model 

presented in Appendix A considers a general high PAPR signal, the conclusions drawn from that 

model are valid for high PAPR MS signals. This is confirmed by the similarities between the model 

predictions on Fig. A.3 (d)-(e) and the simulated and measured gain curves obtained in the next 

section for the MS signals.      
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4.7. Using multi-sines for wireless power transfer      

4.7.1. MS signal definition  

A MS signal results from the sum of several sine waves each with a given amplitude, phase and 

frequency. In order to create a high PAPR signal, the sine waves must be constructively combined 

in phase. In this case, the higher the number of subcarriers, the higher the PAPR and the higher the 

signal bandwidth. A MS signal can be expressed in the time-domain as 

                                    

 

   

 

(4.6) 

where   ,             , and    are respectively the amplitude, frequency and phase of the 

individual subcarriers,      is the lowest frequency component, N is the number of subcarriers, 

and    is the frequency spacing between them. The total signal bandwidth, the maximum
2
 peak 

amplitude (        ), the peak and average power, and the maximum PAPR of the MS signal are 

affected by the number of subcarriers, their amplitudes, phases and frequency spacing, and are 

given respectively by:  

           

             

      
 

  
    

  

    
 

   
   

     

     
     

   
                         

(4.7) 

It may be convenient to design the MS with the same average power as a given CW signal. This 

can be done by making V1…VN = VCW/sqrt(N), where VCW is the peak amplitude of the CW signal 

and N is the number of subcarriers of the MS signal. The top of Fig. 4.8 shows a 4-tone MS signal 

with a random phase arrangement (left) and a 4-tone MS with 0º phase arrangement overlapped 

with an average power-equivalent CW (right). The respective frequency spectra are depicted on the 

bottom of Fig. 4.8. Notice the higher peak amplitudes of the MS in the time-domain waveform, 

which implies the spreading of the spectrum with respect to a CW with the same average power. 

Note also that, although the 0º phase arrangement provides the highest PAPR, the random phase 

arrangement is still overpassing the CW in terms of PAPR.   

                                                           
2
 Maximum peak is obtained when the subcarriers are phase-synchronized, which occurs for a constant phase 

progression as discussed later.  
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Fig. 4.8 (a) Time-domain waveform of a 4-tone MS with random phase arrangement. (b) 4-tone MS with 0º 

phase arrangement (blue signal) overlapped with a CW with same average power (green signal). (c) 

frequency spectrum of a CW and MS signal.  
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Fig.4.9 CW (green signal) versus MS (blue signal) rectification.  

 

4.7.2. Multi-sine rectification 

The rectification of a high PAPR MS signal is illustrated in Fig. 4.9. In comparison with a CW 

signal with the same average power, the high PAPR MS signal provides higher time-domain peaks. 

As a consequence, for low average power levels (similarly to the general high PAPR signals 



73 

 

evaluated in Appendix A), the MS can more easily overpass the device turn-on voltage and force it 

into a more efficient regime than a CW with the same average power would do. 

 

4.7.3. Memoryless model to describe MS RF-DC conversion   

In the forthcoming analysis, the Schottky diode current is approximated by a memory-less Taylor 

polynomial expansion around a quiescent bias point (Vbias, Ibias) as done in [IV]. Although simple, 

this model is useful to understand the general non-linear behavior of the rectifier under CW and 

MS signals, and also to assess the impact of MS parameters such as phase arrangement. The current 

across the diode is given by:  

         

 

   

             
      

 

   

                   
  

(4.8) 

where vD(t) = vi(t)-vo(t), the bias point is taken as the self-bias voltage as given by equation (4.4), 

and            are the coefficients of the Taylor model, which are obtained from the successive 

derivatives of the diode current with respect to the diode voltage, taken at the bias point [7]:  

             
     
             

 

  
  

   

   
 
 
        

 
  
  

 
     
   

     
 
   

(4.9) 

By assuming that the output capacitor is high enough such that the steady-state output voltage is 

constant [         ], and by taking the self-bias quiescent point (          ), it follows that, 

 

          
    
       

  
  

 
    
   

     
 
      

  
  

 
    
   

     
        

 
 

  
  

 
    
   

     
 
       

 

 
  
  

 
    
   

     
 
       

   
  
  

 
     
   

     
 
       

  

(4.10) 

For the purpose of finding the output DC using the model (4.10), only the even order terms are 

considered (i=0,2,4,6...), as the odd order ones do not contribute to the DC component. 

Considering the first even terms up to the fourth order as done previously in [IV], and exciting the 

system (4.10) with a single tone signal with frequency 1, amplitude VA and phase φ1,  

 

                    
 

(4.11) 

the following output current is produced:  
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(4.12) 

Recalling the assumption of constant DC output imposed by the output low-pass filter, the current 

components at RF frequencies, namely at     and    , are eliminated, and the remaining term is a 

pure DC component that gives the average value of the diode current: 

            
           

    
   

  
  

 (4.13) 

At low power regime (square-law), the second order term k2 dominates, and the output DC can be 

approximated by 
 

 
  

   , which provides power information since it is proportional to the square of 

the input amplitude. This is the key rule for average power measurements at low power levels. 

Now, in order to evaluate the system (4.10) under MS excitation, consider an evenly-spaced 4-tone 

MS signal (4.14) whose individual subcarriers have amplitudes V1 = V2 = V3 = V4 = VB, relative 

phases φ1, φ2, φ3 and φ4, and evenly-spaced frequencies  1,  2=  1+△ ,  3=  1+2△  and  4= 

 1+3△ , where △  is a constant subcarrier frequency spacing: 

 

                                                              

(4.14) 

Substituting (4.14) in (4.10), and after low-pass filtering, the following output DC component is 

obtained: 

                    
 

 
    

        
       

                 

    
                      

                     

 (4.15) 

In order to set MS signal to be the same average power as the single-carrier, we make VB = 

VA/sqrt(N), where N = 4 is the number of tones. Accordingly, (4.15) can be rewritten as: 

 

                         
             

             
                  

          
                           

                    

 

 (4.16) 

The following conclusions can be drawn from the previous analysis:  

1) The phase-independent component in (4.16) is greater than (4.13). 

2) The phase-dependent term can be maximized by choosing an optimal phase arrangement. 

3) Considering the same input average power for the CW and MS signals, (4.16) provides a 

higher output DC level than that provided by (4.13), guaranteed that 2) is fulfilled. 
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4.7.4. Waveform optimization: MS phase arrangement optimization  

In order to maximize (4.16), the arguments of all the three cosines (4.17) must be simultaneously 

set to zero. 

 

              

               

                

  

 (4.17) 

As stated in [IV], the most trivial phase arrangement that equals equations (4.17) to zero and 

maximizes equation (4.16) is              º. In fact, this a particular case; in general, 

(4.16) can be maximized by imposing a constant phase progression, as in the case of the phase-

locked antenna array presented in [VI]: 

              

 (4.18) 

where    is a constant phase value. Considering (4.18) and taking the phase of the first subcarrier 

(  ) as the reference (                              ), the zero condition for 

all the three arguments (4.17) can be simultaneously satisfied:  

 

 

                                 

                            

                                   

  

 (4.19) 

The general condition stated by (4.18) as well as the 0º phase condition in [IV] are consistent, as 

they also provide the MS signal with the maximum PAPR. Subcarriers’ amplitudes may also be 

optimized as in [10]. Other aspects such as optimal MS bandwidth are discussed in [VII]. 

4.8. Defining a FOM to evaluate the efficiency gain 

In order to evaluate the improvements obtained with the MS signals, compared to CWs, a FOM 

(figure of merit) is defined, namely the RF-DC efficiency gain (  ), which relates the DC power 

collected from a single-carrier with the DC power obtained with a MS waveform with the same 

average power (                .  

               
   

   
          

               

               
   

         
       

       
          

       
 

       
   

 

(4.20) 
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where,     and     are the efficiency of the CW and MS signal respectively,         and 

         refer to the output DC power obtained in a rectifier circuit when using respectively a CW 

and a MS signal at its input. It should be stressed that the second part of (4.20) is valid when the 

average input power level and the output DC load are the same for the CW and MS signals. The 

previously derived equation for the power received by the transponder chip (2.25) can now be 

combined with the usual RF-DC efficiency under CW excitation and the RF-DC efficiency gain 

(4.20) to obtain an estimation
3
 of the received DC power under MS excitation: 

      
                       

 

   
 

           
 

 
     

      
                                  

(4.21) 

where        is the RF-DC efficiency under CW excitation, which is between 0 and 1. If N equal 

amplitude subcarriers are used and the reader receiver only demodulates the central subcarrier, then 

the received power (2.24) should be re-written to account for the reduction in the received power 

level compared to a power-equivalent CW signal:  

      
                            

 

   
          

 

 
         

           

                 

(4.22) 

Although there is a reduction in the received power level by a factor of N (4.22), it is expected that 

the extra sensitivity capability of typical readers will compensate for this reduction (see Fig. 2.10). 

Nevertheless, as demonstrated later in chapter 7, it is possible to demodulate the tag information 

backscattered on top of all the subcarriers by using a MS matched filter. This will strengthen the 

overall signal received from the tag.    

4.9. Simulations  

The circuit of Fig. 4.10(a) is used in ADS to evaluate the RF-DC conversion using CW and MS 

signals. For this purpose, two situations were simulated using multi-frequency Harmonic Balance 

(HB). In the first case, a CW was used as the input signal, and in the second, an evenly-spaced N-

tone MS signals with zero phase shift between the subcarriers was applied. The average power of 

the MS signals was set to the same value as the CW average power by doing             

      , where PCW (in dBm) is the average power of the CW signal, and               are the 

power levels of the individual MS subcarriers. A central frequency and tone spacing of 2.4 GHz 

and 1 MHz respectively was considered. For the sake of an efficient HB simulation, the frequency 

                                                           
3
 This estimation assumes perfect MS synchronization at the receiver site. If the MS is affected by multipath 

fading, then the actual gain at the receiver site may be lower than that obtained in the cabled measurements.  
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mapping of Fig. 4.10(b) was used, allowing to evaluate the CW and all the MS signals in a single 

HB run.  

Figure 4.11 depicts the input and output time-domain waveforms corresponding to a CW,  a 2-tone 

and a 4-tone MS input signals. First, it can be observed that the output ripple follows the envelope 

of the input signal and it is strongly dependent on the time constant of the output filter. In the CW 

case, the output ripple is insignificant (blue curves), as the RF signal period (TRF = 1/fRF  ≈ 0.4ns) is 

very small compared to the time-constant of the output RC filter (τ = RC = 4.7ms). On the other 

hand, the 2-tone and 4-tone MS signals are affected by a considerably larger output ripple (red and 

green curves). This is due to the much slower envelope of the MS signal, whose periodicity is 

related to the frequency spacing between the subcarriers (Tenv = 1/△ ). Therefore, the output filter 

has to be optimized to account for the MS envelope frequency rather than the RF frequency. As 

seen in Fig. 4.11(b) and Fig. 4.11(d), by increasing the time-constant of the output filter (e.g., 

increasing C form 47pF to 150pF), it is possible to reduce the output ripple (curve with circles).   

The simulated output DC voltages and efficiency gains as given by equation (4.20) are depicted 

respectively in Fig. 4.12(a) and Fig. 4.12(b), as a function of the input average power. A maximum 

gain of 5 dB is obtained for a 8-tone MS for the series diode configuration tested here, and a similar 

gain was obtained in [IV] for a shunt diode simulated at 5.8 GHz.  
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(b) 

Fig. 4.10 (a) Simple series diode rectifier used in ADS HB simulations. (b) Frequency mapping of the input 

signals used in the HB simulations.  
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(a)                                                                                (c) 

 
                                                             (b)                                                                                 (d)     

Fig. 4.11 Time-domain waveforms obtained in the HB simulations. (a) Input 2-tone MS signal overlapped 

with a CW signal with the same average power, and (b) respective output waveform. (c) Input 4-tone MS 

signal overlapped with a CW signal with the same average power, and (d) respective output waveform. In (b) 

and (d), the constant curve (blue) corresponds to the CW signal and the rippled waveforms (read and green) 

corresponds to the MS signals.  
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(a) 

 

(b) 

Fig. 4.12 (a) Simulated DC voltage as a function of average input power for several input excitation signals. 

(b) Efficiency gain as a function of average input power.  

 

A more accurate efficiency metric that accounts for the actual average power being inputted to the 

rectifier circuit can be used (4.23). Simulation results using this definition and the matched rectifier 

circuit of Fig. 4.13(a) are exhibited in Fig. 13(b). These results also evidence an efficiency increase 

when using MS signals. 

  
    

    
 

             
  

 

           
  

 
  

 

(4.23) 

where vi(t) and ii(t) are respectively the input voltage and current, vo(t) and io(t) are respectively the 

voltage and current at the output DC load, and NT is an integer number of CW carrier periods or an 

integer number of periods of the MS envelope. 
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(a) 

 

(b) 

Fig. 4.13 (a) Rectifier circuit matched to the source impedance at 2.4 GHz. (b) Efficiencies under CW and 

MS excitations as a function of the average input power and number of tones. In this case, the actual average 

input power level is calculated based on  the voltage and current at the input of the circuit as in (4.23).     

 

4.10. Measurements  

A set of measurements was conducted to evaluate the efficiency gains obtained in two RF-DC 

converter circuits under several MS signal excitations. For this purpose, a single diode detector 

operating at 2.3 GHz [see Fig. 4.14(a)] and a five-stage charge pump voltage multiplier working at 

866 MHz [see Fig. 4.14(b)] were tested. The respective simulated and measured return loss of the 

circuits under test are also depicted in Fig. 4.14. In order to evaluate the performance under several 

excitation signals, both rectifying circuits were first fed with a CW signal and then with a MS 

signal with the same average power as the CW. This was done over a range of input power, input 

signal bandwidth and MS phase arrangements. Figures 4.15 and 4.16 present the DC output 

voltages and efficiency gains as defined by equation (4.20). The measurement results support the 

initial premise that MS signals can provide an efficiency gain over CW signals. This is valid for the 

single diode rectifier (both series and shunt configurations) which showed an efficiency gain up to 

6 dB, as well as for the charge pump circuit which exhibited a gain up to 2.75 dB. These results 
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suggest that this scheme can potentially extend the range of passive RFID systems. This is further 

explored in the next chapters. 

 

Fig. 4.14 Rectifying circuits used in the cabled measurements and respective input return loss (simulated and 

measured). (a) Single diode detector operating at 2.3 GHz band. (b) Charge pump rectifier with 866 MHz 

center frequency. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.15 (a) Measured DC output voltage of the single diode detector, as a function of average input power. 

(b) Efficiency gain of the single diode detector, as a function of average input power. Except for the 64-tone 

MS, as the number of tones and the PAPR increase, the gain also increases. (c) Output DC voltage as a 

function of the input signal bandwidth. It is visible that there is an optimal MS bandwidth that produces a 

maximum output DC.   
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(a) 

 

(b) 

 

(c) 

Fig. 4.16 (a) Measured DC output voltage of the charge pump, as a function of average input power. (b) 

Efficiency gain of the charge pump, as a function of average input power. (c) Output DC voltage as a 

function of the input signal bandwidth.   
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Fig. 4.17 Probability density functions of noise and synthesized MS signals. (a) Normal distribution. (b) 

Uniform distribution.  

 

Fig. 4.18 Measured DC output voltage of the charge pump, for a CW signal, and a 16-tone MS with uniforme 

and normal amplitude distrubutions, and with 0º phase arrangement. 

 

A. The impact of input signal statistics  
 

The circuits under test were also evaluated using different input amplitude statistics, including a 

16-tone MS with 0º phase, normal amplitude distribution and uniform amplitude distribution. To 

achieve a given amplitude distribution, the algorithm outlined in [11] was used to synthesize MS 

signals from noise signals with the desired amplitude statistics. The algorithm returns the phases of 

a MS with the same amplitude statistics as the reference noise signal. The Probability Density 

Functions (PDF) of the noise and MS with normal and uniform distributions are depicted in Fig. 

4.17. Figure 4.18 shows the measured output DC voltage of the charge pump, for a CW, and a 16-

tone MS with 0º phase arrangement, normal and uniforme amplitude distrubutions. As can be seen 

in Fig. 4.18, the 0º phase MS provides the best performance, followed by the MS with normal 

amplitude distribution. A similar result is obtained for the single diode detector.  
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4.11. Conclusions   

This chapter answers affirmatively to the first question formulated in the introductory chapter of 

this thesis. The major conclusions can be summarized as follows: 

 When compared to conventional CWs, high PAPR signals are able to more efficiently overpass 

the turn-on voltage of existing rectifying devices, especially at low power levels, yielding an 

improved RF-DC conversion efficiency. High PAPR MS signals provide higher DC power 

compared to a CW with the same average power level. This results in an efficiency gain which 

increases with the increase in PAPR at low average power. However, for very high PAPR 

values, as predicted by the model in Appendix A, the efficiency is significantly degraded.  

 The MS time-domain waveform is impacted by the phase arrangement, number of tones and 

their frequency domain distribution. If the subcarriers are phase-synchronized, the higher the 

number of tones, the higher the PAPR and the higher the efficiency gain at low power levels. 

The peak repetition rate in time-domain is inversely proportional to the tone separation in the 

frequency domain, and thus, a decrease in tone separation imposes an increase in the output 

ripple. On the other hand, a very large tone separation may cause the total MS bandwidth to 

exceed the input bandwidth of the circuit, resulting in an efficiency drop. Therefore, an optimal 

tone separation should be selected.  

 Contrary to the cabled measurements conducted in this chapter, in which we have full control 

over the MS parameters, in open air experiments, we lose control over the subcarrier phases and 

amplitudes, especially due to multipath fading. Nevertheless, measurements show that even 

with a random phase arrangement, the MS signal can outperform the CW signal. This aspect is 

further investigated in the field experiments conducted in the next chapters. 

 While the output filter design is not critical for CW operation (as a relatively small output 

capacitor is sufficient to smoothen the output ripple), for MS operation, the output filter design 

is important and should take into account the MS signal envelope. The output ripple follows the 

MS envelope, and the average output DC depends on the time-constant of the output filter. 

 Not less important, the use of a MS transmitter represents an increased complexity and the 

amplification of high PAPR signals is challenging because it may occur non-linear distortion 

(amplitude clipping, spectrum regrowth) and efficiency degradation. For this reason, space 

power combining is proposed in the next chapter as an efficient way to crate and radiate high 

PAPR MS signals.  
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5. SPATIAL POWER COMBINING OF MULTI-SINE SIGNALS FOR WPT 

APPLICATIONS 

5.1. Introduction  

This chapter addresses the second challenge posed at the beginning of this thesis, namely “How can 

we efficiently generate and transmit such high PAPR waveforms?”. 

Although considerable research has been dedicated to the receiver side of WPT systems, rather less 

attention has been paid to the transmitter side. Concerning the use of high PAPR signals, 

investigations have been confined only to the study of the (receiver) RF-DC conversion efficiency. 

However, the high PAPR scheme is effective only if the high PAPR waveform reaches the 

receiver. Thus, the transmitter should be capable of transmitting the signal without clipping it, 

preserving the high PAPR feature of the time-domain waveform, that is responsible for the 

improvement of the RF-DC conversion efficiency in rectifier circuits. However, high PAPR signals 

can push traditional power amplifier architectures to saturation/clipping leading to non-linear 

distortion and spectrum regrowth. These non-linear effects may not only destroy the desired high 

PAPR time-domain shape, they can degrade the energy efficiency and the spectral efficiency of the 

system. Therefore, improved architectures for high PAPR signals transmission are necessary.  

This chapter presents two architectures for efficient generation and transmission of  high PAPR MS 

signals, which have demonstrated to improve the RF-DC conversion efficiency of rectifying 

circuits. In order to overcome the challenges associated to the amplification of high PAPR signals, 

the proposed schemes make use of the spatial power combining concept, in which the individual 

subcarriers are separately amplified, radiated and then passively combined in free-space. With this 

concept, first introduced in [VI][VIII][1], no special constraints are imposed on the power amplifier 

stage that only handles CW signals. In order to achieve the desired high PAPR feature, proper 

synchronization of the individual subcarriers is required. Accordingly, two synchronization 

mechanisms are proposed in this chapter: the first one is based on the transmission of single tone 

signals that are externally locked to a common reference signal that establishes the necessary phase 

reference; the second architecture is based on a mode-locked oscillator scheme that requires no 

external reference signal. Instead, this scheme takes advantage of the self-synchronization 

phenomena in coupled oscillator circuits to establish the phase reference. Measurements are 

presented to validate both schemes and to show their effectiveness in improving the RF-DC 

conversion efficiency in rectifier circuits. 
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5.2. Spatial power combining: spatially-combined MS signals 

Power combining is a technique commonly used in millimeter-wave technology to achieve 

moderate to high power levels [2-4]. Millimeter-wave components and devices, such as power 

amplifiers, have small sizes; therefore, their dissipation capabilities are very limited. For this 

reason, it is difficult to achieve high power levels with a single component/device, and power 

combining techniques are used to obtain higher power levels. The traditional approach consists of 

splitting the input signal into N branches, amplifying them separately and combining them again to 

obtain an amplified version of the input signal. Since the splitting and combining stages are usually 

implemented using lossy transmission line circuits, this approach becomes inefficient as the 

number of branches increases. Spatial power combining has been proposed to overcome this 

drawback [2-4] by passively combining the signal components in free-space.  

A spatially-combined MS transmitter can be implemented as an array of oscillators externally 

synchronized to a common reference source that establishes the phase reference for the system, or 

alternatively, using mode-locked coupled oscillators, where the coupling between adjacent 

elements allows for frequency locking and at the same time establishes the system phase reference 

[4]. In this paper, both architectures are considered in order to implement spatially-combined high 

PAPR MS signals for WPT. Figure 5.1 depicts the proposed transmitter architectures considering N 

= 2n+1 synchronized signal sources that generate a MS E-field by means of space power 

combining. Assuming far-field observation [5], and considering a small spacing between adjacent 

antenna elements, the total E-field at a distance r is given by: 

                              

 

    

 

 (5.1) 

where k is the propagation constant, ωi and i are the frequency and phase of each signal source, Ei 

is the amplitude of each E-field component and Gi(θ) is the gain of each antenna. 

In order to achieve a MS E-field with maximum PAPR, the conditions of equally-spaced 

frequencies (ωi = ω0 + iΔω) and constant phase distribution (i+1 – i = Δ) must be met [IV][4]. 

Notice that this is the same set of conditions established before in chapter 4 [equations (4.14) and 

(4.18)].  

In the next section, an externally synchronized MS signal generation scheme is presented, in which 

the constant frequency progression between the sines is guaranteed by properly setting the signal 

generators frequencies, and the phase distribution condition is externally imposed by using a 10 

MHz reference signal as shown in Fig. 5.1(a).  

An alternative transmitter scheme that allows to establish a phase reference without the need for an 

external reference source is by using active antenna arrays of coupled oscillators, in which the 
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oscillators are coupled by means of radiative coupling through the antenna elements [see Fig. 

5.1(b)]. This coupling allows to synchronize the oscillators in the so-called mode-locked state. In 

this state a phase reference is established, and at the same time it is possible to synthesize different 

phase-shift distributions between the oscillator elements [1] such as the required constant phase 

shift distribution necessary to achieve high PAPR signals. Section 5.4  is dedicated to these type of 

active antenna arrays operating in mode-locked regime for their use in MS signal generation. 

In order to evaluate the improvements obtained in a rectifier circuit when using the proposed MS 

transmitter schemes, compared to a single-carrier transmitter, the same FOM defined in chapter 4 

(equation 4.20) is used.  

5.3. Externally-synchronized spatially-combined MS transmitters 

In the first spatially-combined MS transmitter architecture, each of the elements is composed of a 

VSG and an antenna, and all the elements in the transmitting array are synchronized to a common 

10 MHz reference signal that establishes a phase reference. 

 

5.3.1. Spatially-combined two-tone signal  

In order to provide a first validation of the concept, a two-tone experiment was conducted. A 

rectenna (a dipole antenna connected to a five-stage voltage multiplier circuit) is placed between 

two transmitting antennas that are connected to two signal generators (Fig. 5.2). Each of the 

transmitting antennas is placed at a distance r = 35 cm from the receiving rectenna. First, one of the 

transmitting antennas is fed with a single-carrier at 879 MHz with power PCW. Afterward, the two 

transmitting antennas are fed with two tones at 878 MHz and 880 MHz. In this case, the power of 

each tone is set to P2T  = PCW  – 3 dB, such that the total average power is the same as in the single-

carrier experiment. For both experiments, the DC voltage at the output of the rectifier is measured 

and the RF-DC efficiency gain (  ) was calculated according to (4.20). The results are presented in 

Table 5.1. Note that, unlike scenarios with more than two tones, in the case of two-tone signals the 

phase relationship between the sines is not important since it does not affect the PAPR of the 

signal. Therefore, no external reference signal is required. 
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Fig. 5.1 (a) Externally-synchronized multi-sine transmitter. (b) Mode-locked coupled-oscillator array with 

coupling through the antennas.  

 
 
Fig. 5.2 Measurement setup to evaluate rectifier performance under two-tone and CW signal (r = 35cm).   

 

 

Table 5.1 presents the measured output DC voltages of the five-stage voltage multiplier with a 510 

kΩ load. Considering the same transmitted average power for the single-carrier and for the two-

tone signal, the obtained DC voltage is higher for the two-tone case. However, the RF-DC 

efficiency gain Gη obtained is not very expressive. This is mainly due to the fact that only two 

tones is used in the MS signal, which does not provide a very high PAPR. In order to obtain a 

higher gain, a higher order MS is considered (see next section). 
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TABLE 5.1  

DC VOLTAGE AT THE RECTIFIER OUTPUT AND EFFICIENCY GAIN  

 

PCW  

(dBm) 

VDC_CW 

(Volt) 

P2T = 

PCW - 3 dB 

(dBm) 

VDC_2T 

(Volt) 
G  

(dB) 

10.7 1.090 7.7 1.090 0 

11.7 1.288 8.7 1.293 0.034 

12.7 1.501 9.7 1.509 0.046 

13.7 1.726 10.7 1.762 0.179 

14.7 1.940 11.7 2.056 0.504 

15.7 2.203 12.7 2.381 0.675 

16.7 2.480 13.7 2.731 0.837 

 

5.3.2. Spatially-combined three-tone signal  

Experiments using more than two tones MS signals were conducted in order to evaluate the impact 

of the phase arrangement and synchronization of the individual sources. The setup used for this 

experiment is shown in Fig. 5.3, where a three-tone signal is generated by spatial power combining. 

At the transmitter side, the subcarriers are generated using independent signal sources that are then 

amplified and transmitted by three antenna elements. In order to guarantee a constant phase 

progression between the sources, they must be phase-synchronized to a common reference. For this 

purpose, one of the generators is used as the reference, providing a 10 MHz reference signal for all 

the sources. To guarantee that the synchronization is achieved and kept during the measurements, 

the following is required: 1) the generator with the best output reference signal is chosen as the 

reference; 2) the cables used to distribute the reference signal are identical; additionally, 3) an 

oscilloscope is used at the receiver side to monitor the received signal in order to check if the 

sources are synchronized.  

In this experiment, the frequencies of the subcarriers are set to f1 = 876 MHz, f2 = 877 MHz, f3 = 

878 MHz, and the total average power (measured at the input of the rectifier circuit) is set to same 

value as the single-carrier signal (Ptone1 + Ptone2 + Ptone3 = Pcw, Ptone1 = Ptone2 = Ptone3). The RF-DC 

efficiency gain (  ) of the MS relative to the single-carrier is given by (4.20).  

For a small spacing (d) between the antennas, and considering far-field conditions (rantenna1 ≈ rantenna3 

≈ r) and free-space power combining, the E-field at the receiver location can be modelled by (5.1). 

At the receiver side, the spatially-combined signal is collected by a dipole antenna and rectified by 

a five-stage voltage multiplier whose output DC voltage is measured by using a voltmeter. A 

sample of the received RF signal (obtained through a directional coupler) is displayed in a 

Spectrum Analyzer (SA) or in an RF oscilloscope. The SA is used to visualize the received 

subcarriers in the frequency domain, and to determine the amount of power that is reaching the 

rectifier circuit. The oscilloscope serves to visualize the time-domain waveform and to verify 
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whether the tones are locked in phase or not. When the tones are perfectly synchronized, the 

resulting time-domain signal waveform exhibits the maximum PAPR value as in Fig. 5.4(b); on the 

other hand, if the tones are not properly synchronized, the PAPR is lowered [see Fig. 5.4(c)]. 

The measured RF-DC efficiency gain (    values are depicted in Fig. 5.5 for the synchronized and 

unsynchronized case. For the synchronized MS signal, a maximum gain of 1.72 dB relative to the 

power-equivalent single-carrier is obtained. This means that the DC power collected when using a 

three-tone signal is approximately 49% higher than when using a single-carrier signal, both cases 

with the same average power being delivered to the rectifier circuit. 

 
Fig. 5.3 (a) Diagram of the multi-sine measurement setup. (b)  Multi-sine transmitter. (c) Receiver. d = 9cm, 

r = 70cm.  

 

5.3.3. The effect of phase synchronization 

While the phases of the tones are not important in the two-tone case, for more than two tones the 

phase arrangement has a direct impact on the output DC voltage of the rectifier circuit and 

consequently on the achieved RF-DC efficiency gain   . This section analyzes how the phase 

distribution between the tones affects the obtained RF-DC efficiency gain   .  

Figure 5.4 depicts the time-domain waveforms of a single-carrier, a synchronized three-tone signal 

and an unsynchronized three-tone signal. As can be observed, the synchronized signal exhibits the 

highest PAPR value, which maximizes the efficiency gain. Unlocking the phases leads to a much 

lower PAPR value and consequently to a non-optimal efficiency gain. This can be observed in Fig. 
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5.5, which shows the measured efficiency gain    versus the available average power level at the 

rectifier input. Solid and dashed lines show the moving average of the measured values, while 

squares and triangles correspond to the actual measured values. In the unsynchronized case, the 

common reference signal is turned off, and therefore the individual tones assume random phases. 

Consequently, a lower efficiency gain with a larger standard deviation (squares) is observed. On 

the other hand, when the three tones are synchronized in-phase the efficiency gain is maximized. A 

residual phase variation is verified in this case, however with little impact on the gain (triangles).  

Figure 5.5 also shows that the efficiency gain increases with the input power delivered to the 

rectifier, reaches a maximum value, and then starts to decrease. This effect is due to the non-linear 

behaviour of the rectifying diode. This same behaviour is also observed in section 5.4. 

 

5.4. Mode-locked coupled-oscillator arrays
4
 

An alternative way to create a multi-tone signal is to use mode-locked coupled oscillator arrays 

where an active array of antenna oscillators is used as the transmitting source. Mode-locked 

coupled oscillator arrays can synthesize MS signals without the need of an external reference signal 

to establish the phase reference. This is possible due to the existence of radiative coupling through 

the antennas (Fig. 5.6) that allows synchronizing the oscillator elements, and consequently, makes 

it possible to establish the required phase reference [6-8]. Additionally, if the oscillators have a 

frequency tuning mechanism, varying the free-running frequencies of the oscillators leads to 

different phase-shift distributions along the elements in the array. 

The coupling strength and coupling phase between the oscillator elements play an important part in 

the synchronization properties of the array of active antenna oscillators, and it is important to 

properly select them. The coupling strength and phase directly limit the range of phase-shift 

distributions that can be synthesized, which in practice limits the type of signals that can be 

generated.  

A 4x1 array of active antenna oscillators operating in mode-locked regime has been designed. The 

core element of the proposed mode-locked active antenna array is an active antenna oscillator 

where a patch antenna is aperture coupled to an oscillator element [see Fig. 5.6(a)]. The proposed 

array operates in the C-band. The antenna patches are fabricated on 0.5 mm Arlon A25N substrate 

with dielectric constant 3.38 and loss tangent 0.0025. The active circuitry and coupling slots layer 

are fabricated in Rogers 4003C (0.5 mm thickness) with dielectric constant 3.38 and loss tangent 

0.0027. The two substrates are separated with a 3mm Rohacell foam layer and the three layers are 

                                                           
4
 All the prototypes designed in this section and respective measurements were performed in CTTC 

(Barcelona, Spain) by Profs. Apostolos Georgiadis and Ana Collado, in the scope a collaborative work 

between our groups, which is published in [VI].   
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bonded using a 3M spray adhesive [see Fig. 5.6(b)]. The selected VCO is the commercial Z-

COMM 6200L-LF with an output power of approximately 3 dBm.  

 

 
Fig. 5.4 Time-domain waveform of the received signals. (a) Single-carrier. (b) Three-tone signal with 

synchronized subcarriers. (c) Three-tone signal with unsynchronized subcarriers. 

      
Fig. 5.5 RF-DC efficiency gain    of synchronized and unsynchronized three-tone signals 
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Fig. 5.6 4x1 array of active antenna oscillators. (a) Implemented array. (b) Layer scheme of the 4x1 

array. [built in CTTC, Spain]. 

 

5.4.1. Mode-locked multi-sine signal synthesis 

In order to synthesize a mode-locked MS signal using the 4x1 array, the free-running frequencies 

of the four oscillator elements are selected to have a frequency spacing such that they are not 

synchronize to a common frequency. For this, a significant frequency spacing must be used. 

Initially, only two oscillator elements are turned on, and their frequencies are set to 6.18 GHz and 

6.23 GHz [see Fig. 5.7(a)]. A spacing of 50 MHz is selected to avoid synchronization to a common 

frequency of the two oscillators. Due to the presence of the two frequencies, mixing products 

appear at 6.13 GHz and 6.28 GHz. In a second step, the other two oscillators of the array are turned 

on one at a time. If their frequencies are set close enough to the mixing products of 6.13 GHz and 

6.28 GHz, they will synchronize to them, creating a four-tone signal where the four tones are 

equally spaced and have a phase shift distribution among them that appears due to the 

synchronization phenomena [6][7]. Figure 5.7(b) shows the third oscillator synchronized to the 

6.13 GHz mixing product and Fig. 5.7(c) shows the four oscillators operating in a mode-locked 

regime. 

Once the mode-locked state is reached, it is possible to vary the free-running frequencies of the 

oscillator elements of the array within a certain frequency range in order to establish different 

phase-shift distributions among the oscillators. Additionally, selecting free-running frequencies of 

VCOs

radiating elements

A25N 0.5 mm

Ro4003 0.5 mm

Rohacell 3mm

coupling slots

Vcc

Vtune

(a)

(b)
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the oscillators that are closer or farther to each other makes it possible to synthesize four-tone 

signals with smaller or larger frequency spacing. 

It has to be noted that the minimum spacing possible between the tones is limited by the 

synchronization bandwidth of the oscillator elements in the array. This synchronization bandwidth 

directly depends on the coupling strength through the antenna elements. In this case, the 

synchronization bandwidth of the oscillators was measured to be approximately 90 MHz, which 

means that a frequency spacing of less than 45 MHz between the tones would make the oscillators 

to synchronize to a common frequency and no mode-locked state would be possible. If smaller 

frequency spacing between the tones is desired, the active antenna oscillator array should be 

designed to have smaller synchronization bandwidth, which can be done by reducing the amount of 

coupling through the antenna elements. However, it has to be taken into account that the smaller 

the synchronization bandwidth the more sensitive the system will be to interferences that may 

affect the mode-locked regime. 

Using the 4x1 array, two different mode-locked four-tone signal are generated. One of the signals 

has frequency spacing between the tones of 75 MHz and the other of 45 MHz. The free-running 

frequencies of the four oscillators are properly selected to achieve the desired frequency spacing 

and at the same time maintaining the four tones in-phase in order to create a high PAPR four-tone 

signal. The signals in Fig. 5.8 and Fig. 5.9 exhibit a PAPR of approximately 8.9 dB. 

 

Fig. 5.7 Measured mode-locked synchronization phenomena. (a) Two oscillators. (b) Three oscillators. (c) 

Four oscillators. Subcarrier frequency spacing is initially set to 50 MHz. 
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Fig. 5.8 Measured mode-locked multi-tone signal with frequency spacing 75 MHz. (a) Frequency spectrum. 

(b) Time-domain waveform. 

 
Fig. 5.9 Measured mode-locked multi-tone signal with frequency spacing 45 MHz. (a) Frequency spectrum. 

(b) Time-domain waveform. 
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Fig. 5.10 Measured single-carrier signal. (a) frequency spectrum (b) time-domain waveform.  

 

5.4.2. Single-carrier signal synthesis 

In order to maintain the same setup for the performance evaluation experiment the single-carrier 

signal is synthesized using the same 4x1 array. In contrast to the case of mode-locked MS signals, 

the synthesis of a single tone signal requires that all the oscillators synchronize to a common 

frequency. This can be done by setting the free-running frequencies of all the oscillators to the 

same value (in this case 6.2 GHz). The obtained signal is shown in Fig. 5.10.     

5.4.3. Performance evaluation 

The four-tone mode-locked signal with frequency spacing of 75 MHz and PAPR = 8.9 dB is used 

as the transmitting signal of a WPT system at 6.2 GHz. In the receiving end, a 6.2 GHz rectifier 

circuit is placed in order to evaluate the performance of the system. 

The selected rectifier is an envelope detector with an LC matching network at the input. The 

rectifying device is the MACOM MA2502L Schottky diode. The matching network and the load 

(RL = 10 k) of the rectifier were optimized to maximize the RF-DC conversion efficiency at 6.2 

GHz.  

The setup used for the experiment is shown in Fig. 5.11. The transmitter consists of the 4x1 active 

antenna oscillator array of Fig. 5.6. The receiver is formed by a standard horn antenna and the 

rectifier circuit. The transmitter and the receiver are separated approximately 30 cm. In order to 

recreate the effect of larger distances between the transmitter and receiver, two variable attenuators, 

1 and 2, with 1 dB and 10 dB steps are used in the receiver between the receiving horn antenna 

and the rectifier [see Fig. 5.11]. 
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During the experiment, the attenuation values 1 and 2 are varied and the obtained DC output 

voltage (VDC) is measured using a multimeter (Fig. 5.11). At the same time, the available power at 

the input of the rectifier is measured using a 10 dB directional coupler and an oscilloscope (Agilent 

DSO81004A) with 50 Ohm input impedance. For this measurement, only the power in the 

frequency band that covers the four main carriers of the MS signal (marked by two vertical dashed 

lines in Fig. 5.8) is considered. 

The same experiment was performed using a single-carrier signal in order to calculate the RF-DC 

efficiency gain (G) when using the mode-locked four-tone signal in comparison with a single-

carrier signal. The same setup was used for this experiment. The attenuation values are selected to 

set the power level of the single-carrier signal to the same values that were measured for the four-

tone mode-locked signal. The DC output voltage values obtained for the single-carrier signal are 

recorded.  

Since the same average input power at the rectifier is considered for the mode-locked four sine 

signal and for the single-carrier signal, the previously defined efficiency gain FOM (4.20) can be 

used. The obtained results of    versus available input power at the rectifier are shown in Fig. 5.12, 

showing that there is a clear improvement in the obtained DC voltage when using the mode-locked 

four-tone signal in comparison with the single-carrier signal. The same comparison was performed 

for a four-tone mode-locked signal with a frequency spacing of 45 MHz (Fig. 5.9). The    obtained 

is also shown in Fig. 5.12.  

 
Fig. 5.11 Measurement setup used for the performance evaluation of the rectifier circuit when using the 

mode-locked active antenna array as transmitting source.  
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Fig. 5.12 Measured RF-DC efficiency gain (G) versus available input power at the rectifier. 

5.5. Conclusions 

This chapter has presented two architectures for MS signal generation to be used in WPT 

transmitters. These architectures aim at creating high PAPR MS signals for maximizing the RF-DC 

conversion efficiency in rectifier circuits located in the receiving end of a WPT system. The 

proposed schemes overcome the problem of amplifying large PAPR signals by using spatial power 

combining, where the individual tones are amplified, radiated and then the MS signal is passively 

created by spatial power combining. One of the proposed architectures is based on mode-locked 

oscillators that avoid the use of an external phase reference signal to set the adequate phase 

condition for synthesizing high PAPR MS waveforms by using the synchronization phenomenon in 

oscillators. 
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6. JOINT WIRELESS POWER TRANSFER AND BACKSCATTER COMMUNICATION 

USING MS SIGNALS  

6.1. Introduction: extending the reading range of commercial RFID readers 

This chapter and the next answer to the third question formulated in the introduction section of this 

thesis: “Can properly designed waveforms improve the coverage range of passive-backscatter 

systems such as passive RFID?”. 

Several circuit and system level approaches have been attempted to extend the reading range of 

passive RFID systems. Some of these approaches, reviewed in chapter 3, include the use of antenna 

beamforming [1], external CW transmitters [2], CMOS threshold compensation [3][4] and 

synergistic energy harvesting [4][5]. Recently, waveform design has been explored to increase the 

RF-DC conversion of rectifying circuits, and has also been applied to extend reading range [6-9].     

This chapter evaluates joint WPT and backscattering data communication using MS signals to 

extend the reading range of RFID readers [V-VII]. First, a mathematical description is presented in 

order to show the ability of MS signals to communicate data, with minimal changes in the 

downlink path, while no changes are required in the conventional tag architecture. Moreover, and 

most importantly, if a proper MS design is performed, a conventional reader receiver is still able to 

demodulate and decode the backscattered MS signal from the tag, without any hardware change. 

Thus, guidelines are presented for MS design, including MS nature, central tone positioning, tone 

separation, and bandwidth requirements.  

After, a commercial RFID reader is equipped with an external MS front-end that implements the 

previous mathematical proposals [IX][X]. In order to evaluate the reading range improvement, 

when compared with the conventional single-carrier approach with the same average power, two 

experiments are conducted: in the first one, an oscilloscope is used to visualize the tag response and 

to determine whether the tag does or does not respond. In the second measurement scenario, the 

downlink path is implemented by the reader combined with the front-end, and the uplink is 

implemented solely by the reader. In this case, the decision on successful tag response is taken 

when the reader actually accesses the tag identification (ID) number. The first measurement 

scenario has pointed out for a maximum reading range improvement of near 43% for a 8-tone MS 

signal with 2 MHz tone separation. In the second scenario, a more realistic one, a reading range 

improvement of almost 25% has been obtained for a 8+1 tones MS. In this chapter: 

1) A mathematical model/description is provided for downlink and uplink using MS signals; 

2) MS design requirements are presented to allow communication with a commercial reader;  

3) The MS scheme is integrated in a commercial RFID reader. According to 1) and 2), the 

reader is still able to receive a backscattered MS signal without the deployment of new  

hardware in the receiver path. 



106 

 

6.2. The radio link using multi-sine signals 

The radio link of passive RFID systems exhibits very peculiar characteristics [10][11]. Since a 

passive tag has no batteries, and it is entirely powered by the RF power radiated by the reader, the 

downlink operation has a twofold goal: data communication and power transfer. Moreover, since 

the passive tag has no local oscillator (LO), the uplink communication is implemented by 

backscatter mechanism as described in chapter 2 [11]. In this section, we analyze the data downlink 

and data uplink when using MS excitations instead of a conventional single-carrier. For the 

following mathematical description, consider the basic architecture of an RFID reader plus a MS 

front-end as depicted in Fig. 6.1 and a passive RFID transponder as described in chapter 2.  

 

6.1.1. Multi-sine data downlink 

As shown in chapters 4 and 5, from the viewpoint of WPT, high PAPR MS signals are beneficial 

since they provide increased RF-DC efficiency in diode detectors and charge pumps circuits 

commonly used in passive RFID transponders. This can potentially improve the communication 

range of RFID systems. However, in order to still guaranteeing data communication, the MS must 

be properly designed. In this section, we analyze the downlink data communication and we present 

design rules to guarantee communication with MS signals. In the following analysis, the 

transponder envelope detector and charge pump will be modelled by an even order polynomial 

series. In addition, all link factors are ignored and the effective length of the antennas are assumed 

to be unitary such that the electric field and voltage at their interfaces are interchangeable.  

 

Commercial  RFID Reader

fc

ReaderTag

Baseband

Multisine Baseband

PA

External Multisine Front-End

Demodulator LNA

PA

 
 

Fig. 6.1 Architecture of an RFID reader plus external multi-sine front-end. Using a proper MS design, the 

transponder response can be directly forward to the reader receiver. The attenuator in the forward path is used 

to find the minimum activation power level of the transponder.     

 

 

http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6376259#ref_10
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6376259#ref_11
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6376259#ref_11
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6376259#fig_1


107 

 

The externally generated baseband MS [see Fig. 6.1] is a sum of N baseband subcarriers 

harmonically spaced by   :  

                       

 

   

 

 (6.1) 

where N is the number of tones,    is the frequency separation between tones,    and    are 

respectively the amplitude and phase of each tone. In the next analysis, all signals are represented 

in their Euler equivalent form. The modulated MS signal at the transmitter antenna [Fig. 6.1] is 

given by the mixture of the RFID baseband signal m(t) and the reader LO signal with amplitude    

and frequency ωc, followed by a mixture with a zero phase
5
 baseband MS: 

               

              

 

 

   

    

            

 
  

(6.2) 

 

For instance, if a two-tone baseband MS is used (N = 2), the bandpass modulated MS SMS(t) will 

have spectral components at - (ωc + 2∆ω), - (ωc + ∆ω), - (ωc - ∆ω),-(ωc-2∆ω), (ωc - 2∆ω), (ωc - 

∆ω), (ωc + ∆ω), (ωc + 2∆ω): 

           

 
 
 
 

 
 
 

    

 
             

    

 
           

 
    

 
             

    

 
             

 
    

 
              

    

 
            

 
    

 
              

    

 
             

 
 
 
 

 
 
 

 

(6.3) 

 

The frequency spectrum of SMS(t) is depicted in Fig. 6.2. As can be seen, the frequency separation 

between tones ∆ω must be higher than the bandwidth of the data signal fBB, scuh that the 

information can be successfully recovered at transponder side. Ideally, ∆ω should be much higher 

than fBB (∆ω >> fBB). As an example, the EPC standard allows baseband data rates (fBB/2) of 26.7 to 

128 kbps [12], which requires a bandwidth fBB of 53.4 to 256kHz. In our experiments, the minimum 

tone separation used is 500kHz, that is higher than the maximum bandwidth allowed by the 

standard. The increased bandwidth is one of the drawbacks of the MS scheme, however, the 

maximum bandwidth used in this work is compliant with ISM UHF regulations.  

                                                           
5
 Zero phase arrangement and constant phase progression arrangement are the most efficient ones. 
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Fig. 6.2 Spectrum of a modulated multi-sine signal. The tone separation in the multi-sine must be higher than 

the bandwidth of the reader-to-transponder baseband signal in order to avoid spectrum overlapping that 

prevent the transponder to recover the reader’s baseband information. 

 

In order to understand the MS downlink operation, assume a unitary reader-to-transponder channel 

response and consider that the envelope detector of the transponder behaves as a pure squarer, 

                     
  (a second order model is sufficient to describe the basic ASK 

demodulation operation). By squaring (6.3), baseband components will be generated from the 

product of the symmetric frequency components, -(ωc + 2∆ω)* (ωc + 2∆ω), -(ωc + ∆ω)* (ωc + 

∆ω), -(ωc - ∆ω)*(ωc - ∆ω), -(ωc-2∆ω)*(ωc-2∆ω), yielding the following DC-centred baseband 

signal at the output of the transponder envelope detector (after low-pass filtering): 

       
  

 
          

   
    

   
   

(6.4) 

 

According to (6.4), the transponder’s detector is able to recover the baseband information m(t) sent 

by the reader through the MS signal, provided that the condition ∆ω > fBB is satisfied. If the reader 

baseband information is an ASK signal formed of  two levels (ak = 0, ak =1) with bit period T [12], 

m(t)= 






k

k kTta )( , then [m(t)]
2
 contains essentially the same binary information as m(t). It is 

important to note that no changes are needed in the architecture of a typical transponder in order to 

demodulate these new kind of signals. In the transmission path, changes are only required on the 

reader side, namely to incorporate the MS signal. In this stage, MS signals are incorporated by 

using an external front-end as in Fig. 6.1. In the following chapter, this is efficiently implemented 

by using a SDR approach.  

 

6.1.2. Multi-sine data uplink 

As previously described in chapter 2, transponder-to-reader data communication is realized by 

power reflection: first the reader illuminates the transponder with an un-modulated carrier (a MS 

carrier in this case) and second, the transponder modulates its antenna reflection coefficient 

according to the information to be sent to the reader. Transponder information can be represented 

∆ω 
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by a time-varying reflection coefficient Г(t). Consider now that the transponder is illuminated with 

an un-modulated 3-tone MS signal, where the amplitudes of the subcarriers are respectively V1, V0 

and V2, and the phase relation between the subcarriers is 0º. This MS is designed in such way that 

the central subcarrier with amplitude V0 is at the same frequency as the reader local oscillator. 

Thus, unlike signal (6.3) that has an odd number of tones and has no subcarrier at the local 

oscillator frequency, the bandpass version of this signal will exhibit additional spectral components 

at    and     as can be seen in (6.5). In fact, this is the necessary condition to allow a 

conventional receiver to demodulate the reflected MS signal from the transponder without any 

hardware change. In order to better understand this operating mechanism, consider the transponder 

backscatter modulator (typically, a switching transistor as previously described in chapter 2), which 

modulates the MS subcarriers by acting on the reflection coefficient of the antenna at the different 

subcarrier frequencies, according to the baseband information to be sent to the reader. The reflected 

MS signal from the transponder comes as follows: 

 

               
    

 
           

    

 
             

    

 
            

      
    

 
                 

    

 
                  

    

 
             

      
    

 
                   

    

 
                  

    

 
             

      
    

 
               

 

(6.5) 

where      ,      ,      ,       and       are the time-varying reflection coefficients seen by 

each MS frequency component. Assuming again no link losses, the signal SBack(t) reaches the reader 

receiver antenna and it is forwarded to the down-conversion mixer [see Fig. 6.1] where it is mixed 

with the local oscillator at frequency ωc, resulting in the following signal at the mixer output: 

             
    

 
           

    

 
             

    

 
            

      
    

 
                 

    

 
            

      
    

 
                   

    

 
             

      
    

 
                  

    

 
             

      
    

 
                 

            

 
  

(6.6) 
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Note that, the only components of SIF(t) falling on baseband (centred on DC) result from the 

product of frequency components at ωc and – ωc. After passing the signal SIF(t) through a low-pass 

filter (present in traditional receiver architectures) with a cut-frequency fBB, a sample of the 

transponder’s baseband information can be obtained as,       – reflection coefficient of the central 

frequency component: 

       
 

 
         

  

(6.7) 

The result in (6.7) shows that the received signal at the output of the low-pass filter is related to the 

amplitude of the local oscillator (Vc
2
), but it is also related to the amplitude of the central 

component of the reflected MS signal [V0(t)], which contains the transponder baseband 

information. With the exception of a narrow bandpass filter at the input of the receiver to accept 

only the MS central tone and improve the system performance, with this approach no further 

changes are needed in the architecture of the receiver. Therefore, conventional RFID readers are 

still able to decode the transponder information on top of the MS signal. The previous description 

is illustrated in Fig. 6.3: in the first case, the reader transmits a MS carrier with an even number of 

tones without a component at the local oscillator frequency as in Fig. 6.3(a). In this scenario, 

although the transponder modulates and backscatters information on top of all the subcarriers, a 

conventional reader is not able to recover the transponder information, because after down-

conversion the transponder baseband is not DC-centred and most probably falls out of the receiving 

low-pass band. However, in the second case [see Fig. 6.3(b)], the transponder is illuminated with a 

MS carrier with an odd number of tones, where the central tone coincides with reader’s local 

oscillator. In this case, a conventional reader is able to demodulate and decode the transponder 

baseband information in the same manner it would do for a single-carrier. Note that the frequency 

position of the MS central component, coinciding with the LO frequency, is the necessary 

condition to allow a conventional reader to demodulate/decode MS signals, while the odd number 

of tones is an additional condition to guarantee spectrum symmetry and to simplify the MS signal 

generation and hardware design. Additionally, the bandwidth of the receiver low-pass filter should 

be tight enough to reject all the lateral MS components (that otherwise act as noise), leaving only 

the DC-centred component.  
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Fig. 6.3 (a) Even number of tones scheme. (b) Odd number of tones scheme. Dashed line represents the low-

pass filter. In the first case (even MS), a conventional reader is not able to recover the transponder baseband 

information, while in the second case (odd MS), a common reader is allowed to access and process the 

transponder response.  

6.3. Laboratorial setup and measurements 

In order to evaluate the reading range improvement in comparison to the conventional single-

carrier approach with the same average power, two experiments are conducted: in the first one, an 

oscilloscope is used to capture the transponder response and to determine whether the transponder 

does or does not respond. In the second measurement scenario, the downlink path is implemented 

by the reader combined with the MS front-end and the uplink is fully implemented by the reader, 

by using the previous MS design rules. In this case, the decision on successful tag response is taken 

when the reader actually accesses the tag ID. 
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6.1.3. Measurement setup 1 

In this measurement scenario, a commercial RFID reader [13][14], compliant with ISO/IEC 18000-

6 and EPC Global Class-1 Greneration-2 protocols [12], is equipped with an external front-end that 

incorporates the MS waveform in the built-in reader signal. Figures 6.4 and 6.5 show the block 

diagram and respective laboratory testbed used in the measurements. The setup is similar to the one 

in [6], except that a commercial RFID reader is used here.  

The output of the reader transmitter is mixed with a baseband MS, and then amplified and 

transmitted. Two power splitters are used, the first one to pick a sample of the transmitted signal to 

be used as local oscillator for the receiving path, and the second one to provide a measure of the 

radiated average power. The signal reflected from the transponder is down-converted (mixed with 

fc) so that the tag baseband response can be visualized in the oscilloscope. This provides us with the 

visual information of whether the transponder is or not activated [see tag response in Fig. 6.6]. An 

attenuator is used to control the radiated power and to find the minimum power level needed to 

activate the transponder. The receiving antenna and the EPC Global compliant transponder are 

placed at a fixed distance R of the transmitter antenna.  

In order to evaluate the improvements of the MS scheme, a FOM is defined as the difference 

between the minimum average power required to activate and get a response from the transponder 

using a single-carrier signal (PCW) and the minimum average power required to activate the 

transponder using a MS signal (PMS) at the same distance R: GP (dB) = PCW - PMS. Note that GP is a 

sensitivity gain, which is equivalent to the efficiency gain Gη previously defined in chapter 4. In 

order to determine such gain, first the transponder is illuminated with a single-carrier, and by 

varying the attenuation of the transmission path the minimum average power (PCW) to activate the 

transponder at a distance R is found. In the second experiment, the previous procedure is repeated 

but now using a MS signal. By using the measured gain GP and Friis equation, it is possible to 

estimate the expected communication range gain r (in meters): the minimum DC power needed to 

activate the transponder at a distance R when using a single-carrier is given by         

          
 

   
 

 
, where     is the RF-DC conversion efficiency under CW excitation,    is the 

transmitted power,    and    are the transmitter and receiver antenna gains respectively,   is the 

wavelength and R is the distance between reader and transponder antennas. On the other hand, 

when using a MS with the same average transmitted power   , a power gain GP is expected and 

consequently a reading range gain r. Thus, the Friis equation can be re-written as         

            
 

       
 

 
. By equalling the two previous Friis equations, an estimation for the 

reading range gain can be obtained:            [m]. 
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Table 6.1 presents the measurement results. Four different signals were used in the measurements, 

including a single-carrier and three MS signals with two, four and eight tones. Each MS signal was 

also tested with three different tone separations. The CW reference signal required a minimum 

transmitted power PCW = 19.3 dBm for a reference distance of R = 1.9 m. For the fixed distance R, 

the tag sensitivity gain GP for each MS signal can be obtained based on the reference power PCW 

and on the minimum power required for each MS, PMS. Finally, we can estimate the expected 

reading range gain r. The best result is obtained for the 8-tone MS with an optimal tone separation 

of 2 MHz, pointing out a communication distance improvement of 43%. 

 Alien RFID Reader

fc

ReaderTag
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 Fig. 6.4 Laboratory setup used to measure tag sensitivity gain. 

 

 

 

 Fig. 6.5 RFID reader and multi-sine front-end setup: 1-RFID reader, 2-power splitter, 3-variable attenuator, 

4-mixer, 5-signal generator, 6-power amplifier, 7-power splitter, 8-power meter, 9-cable to the transmitting 

antenna, 10-cable from the receiving antenna, 11-mixer, 12-oscilloscope, 13-spectrum analyzer. 
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Fig. 6.6 Baseband signal visualized in the oscilloscope: RFID reader commands followed by tag responses.  

 

 

TABLE 6.1 

EXPECTED SENSITIVITY GAINS AND READING RANGE GAINS OBTAINED IN THE FIRST MEASUREMENT SCENARIO 

 

Signal ∆ω 

(MHz) 

Pmin  

(dBm) 

GP  

(dB) 

r  

(m) 

r  

(%) 

1-tone  19.3 0.0 0.0  

2-tones 3.0 17.4 +1.9 +0.46 24.2 

2.0 17.5 +1.8 +0.44 23.2 

1.0 17.8 +1.5 +0.36 18.9 

4-tones 3.0 16.5 +2.8 +0.72 37.9 

2.0 17.2 +2.1 +0.52 27.4 

1.0 17.7 +1.6 +0.38 20.0 

8-tones 2.0 16.2 +3.1 +0.81 42.6 

1.0 16.4 +2.9 +0.75 39.4 

0.5 No response ----- ----- ----- 

 

6.1.4. Measurement setup 2 

In this measurement setup, instead of evaluating the tag response using an oscilloscope as did in the 

previous section, the tag response is forwarded to the reader receiver as in Fig. 6.1. In this case, the 

downlink path is implemented by the reader combined with the external front-end, but the uplink is 

implemented solely by the reader, and the decision on successful tag response is taken when the 

reader actually reads the tag ID. Contrary to a more complex receiver configuration using matched 

filters (discussed in the next chapter), this is a very simple scheme that does not require any 

additional hardware to be deployed in the receiving path, provided that the MS design requirements 

stated before are fulfilled, namely odd number of tones, central tone positioning, tone separation 

Reader command  

Tag response  
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and bandwidth. The latter requirements are important in order to avoid spectrum overlapping and 

guarantee compliance with the internal low-pass filter of the reader.  

The MS tone spacing plays an important role, as it should fit the filtering stage of the transponder 

charge pump, as previously discussed in chapter 4, but also it should avoid aliasing between the 

modulation bandwidth of each modulated subcarrier, as seen in Fig. 6.3. Moreover, as previously 

mentioned, the baseband MS signal must have a DC component such that its bandpass version 

exhibits a component at the local oscillator frequency. Since the baseband MS is being provided by 

a signal generator with a DC-decoupled output, an additional function generator and a bias-tee are 

used to add a DC component in the baseband MS [See Fig. 6.7(a)]. Hence, the bandpass MS will 

present a spectral component at the LO frequency, and fulfil the requirements related to odd 

number of tones and central frequency position. The DC component is varied in order to equate the 

amplitude of the central tone to the same level as the other subcarriers. Figure 6.7(b) presents an 

alternative configuration of the transmitter that uses a sample of the reader signal directly 

forwarded to the PA in order to provide the MS with a central component equal to the reader’s 

carrier. In this alternative setup, a DC component in the baseband MS is no longer needed, and an 

attenuator can be used to level the central tone. Depicted in Fig. 6.8(a) is the typical frequency 

spectrum of a 8+1 tones MS. Figure 6.8(b) shows the expected shape of the normalized time-

domain waveform.  

Table 6.2 presents the measurement results obtained in the second setup, where the RFID reader is 

actually reading the tag ID. The notation x+1 tones stands for a MS with an odd number of tones 

with x lateral subcarriers plus a central subcarrier. In this case, the distance between the reader and 

transponder was set to R = 1.7 m, and the minimum power to activate the transponder with the 

single-carrier signal was found to be 16.5 dBm. Although the gains are lower than the first case 

setup (the reason for this is detailed in the discussion section), an improvement of almost 25% has 

been achieved with an 8+1 tones MS with 2 MHz tone separation.  
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                              (a)                                                                                (b) 

Fig. 6.7 Transmitter configurations. (a) Setup used in the experiments, where  a DC component is added to 

the baseband multi-sine in order to create a central component in the bandpass multi-sine. (b) alternative 

setup configuration, where a sample of the reader signal is directly transmitted to provide a central 

component in the multi-sine. 

      
(a)                                                                            (b) 

Fig. 6.8 Modulated 8+1 tones multi-sine signal. (a) Frequency spectrum: the 866.6 MHz RF carrier is modulated 

by an arbitrary ASK signal at 100 kbps and the resultant signal is then mixed with the baseband multi-sine. In this 

example the baseband multi-sine is a 4-tone (centred at 5 MHz, with 2 MHz tone separation) plus a DC 

component externally imposed by a function generator. (b) Normalized time-domain waveform. 

 

TABLE 6.2  

SENSITIVITY GAINS AND READING RANGE GAINS 

 

Signal ∆ω 

(MHz) 

Pmin  

(dBm) 

GP  

(dB) 

r  

(m) 

r  

(%) 

1-tone  16.5 0.0 0.0  

2+1 tones 2.0 15.4 +1.1 +0.23 13.5 

1.0 16.9 (-) -0.4 -0.08 -4.7 

4+1 tones 2.0 14.9 +1.6 +0.34 20.0 

1.0 16.2 +0.3 +0.06 3.5 

8+1 tones 2.0 14.6 +1.9 +0.42 24.7 

1.0 16.2 +0.3 +0.06 3.5 

0.5 No response ----- ----- ----- 
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6.4. Results discussion and conclusions 

Tables 6.1 and 6.2 show that the second experiment provides less expressive results. Recall that in 

the second experiment, the tag information (ID) is actually accessed (demodulated and decoded) by 

the reader, contrary to the first experiment where we were only interested in observing the tag 

response in the oscilloscope, without any consideration on the quality of the tag response. A prior 

investigation [15] showed that, in some situations the tag only returns a partial response and the 

reader is not able to properly decode the information (please refer to figure 4 of [15]). This effect, 

associated to the fact that the reader sensitivity is also important in the second case, helps 

explaining the overestimated results in the first setup. 

As a general trend, the gains in both experiments are degraded with the decreasing of the tone 

separation, and for very low tone separation values, the transponder does not even respond. This is 

very likely due to the ripple effect on the transponder’s RF-DC converter imposed by the low 

frequency separation between tones in the MS. Figure 6.9 illustrates how the tone separation 

imposes different time-domain behaviours at the RF-DC converter output. A phase- synchronized 

MS exhibits a very high PAPR, and thereby high peaks in the time-domain waveform. These time-

domain peaks are temporally separated by T = 1/D, and consequently, as the tone separation is 

reduced, the time-domain peaks will separate from each other and the output ripple will increase. 

The existence of ripple may lead to different kind of problems: first, the average voltage at the 

charge pump output will be reduced as the ripple increases, and may go below the transponder 

activation level, as illustrated in Fig. 6.9; second, with the increase of the ripple, non-DC signal 

components may propagates into the transponder electronics acting as AC interference. 

Nevertheless, it is expected that the regulation stage of the transponder will attenuate this effect. 

These effects are visible in the last columns of Table 6.1 and Tables 6.2, where the transponder 

does not respond for a very low tone separation of 500 kHz. There exist, thus, a minimum tone 

separation value that is strongly related to the output filtering stage of the tag RF-DC converter. 

This minimum value can be optimized (lowered) by reducing the ripple effect through the use of a 

larger capacitance at the output of the RF-DC converter. It is worth mentioning that ripple problem 

is not critical when using a conventional single-carrier because, in that case, the signal envelope 

remains constant. However, in the MS scheme, the ripple is imposed by the tone separation (and 

thereby by the envelope of the MS signal) rather than the RF signal. For instance, a tone separation 

of 2 MHz imposes a MS peak separation equal to 0.5 μs [see Fig. 5.8(b)], while an RF carrier at 

866 MHz has an RF peak separation of approximately 1.15 ns.  

As can be concluded from the experimental results, the gains are directly influenced by the 

combination of the MS parameters such as number of tones, bandwidth and tone spacing: in 

principle, as the number of tones increases, the PAPR also increases leading to an increase in the 
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efficiency of the charge pump, and consequently the coverage range increases. However, at a 

certain point, the increase of the number of tones provides no extra gain. This is explained by the 

breakdown effect and by the increased losses in the series resistance of the rectifying devices 

caused by very high PAPR. On the other hand, for the same tone spacing, as the number of tones 

increases, the MS bandwidth also increases, having a negative impact on the efficiency because of 

the limited input bandwidth of the transponders. An optimal frequency separation value exists 

which is limited by two effects: 1) for the same number of tones, the higher the frequency 

separation, the higher the input bandwidth and some signal components may be attenuated due to 

the limited bandwidth of the transponder. 2) the subcarrier separation in the frequency domain 

directly affects the separation between the signal peaks in the time-domain. Thus, the lower the 

frequency separation, the higher the ripple effect, which degrades the performance. 

Further improvements to the system may include the introduction of a bandpass filter at the output 

of the power amplifier to avoid out-of-band emissions, and the use of a narrowband filter at the 

input of the reader receiver to prevent transmitter-to-receiver leakage of the MS lateral 

components. In this part of the work, a highly-linear amplifier with a high dynamic range is used 

(Mini Circuits PA ZHL-10W-2G+) in order to avoid signal clipping and to guarantee that the high 

PAPR signal reaches the tag.  

Time

Amplitude

T1 T2 > T1

Average Vdc1
Average Vdc2 < Vdc1

 
         (a)                                                               (b) 

Fig. 6.9 Tone separation effect illustrated in the time-domain. (a) Higher average DC voltage obtained with a 

lower envelope period (higher tone separation). (b) Lower average DC voltage for higher envelope period. 

The pulsed signal is the envelope of the high PAPR signal after being rectified, maximum ripple value 

depends both on tone separation and on the output filter of the RF-DC converter.     
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7. SOFTWARE-DEFINED RADIO RFID READER DESIGN WITH IMPROVED 

POWERING WAVEFORMS   

7.1. Introduction: prior work 

Several circuit and system level approaches have been attempted in the literature to improve the 

reading range of passive RFID systems, including antenna beamforming [1], external CW 

transmitters [2], CMOS threshold compensation [3][4] and synergistic energy harvesting [4][5] (see 

chapter 3 for details). For the same reasoning of extending the reading range, waveform design 

optimization has been explored as an alternative to circuit and system design optimization (this is 

addressed in chapter 4).  

In [6], a bursty CW signal with high PAPR and low duty cycle was used in an RFID reader to 

reduce the average transmitted power while keeping the same communication distance that would 

be obtained with an always-ON CW signal with same average power. Although an ON-OFF 

approach was used in that work to achieve high PAPR, the rigid implementation does not allow for 

arbitrary waveform design. In [7], passive RFID tags were tested under a category of multi-sine 

signals (referred to as POW – Power-Optimized Waveforms), which provided an improvement in 

the reading range. However, the RFID protocol was only partially implemented, consisting of a 

single reader-tag-reader transaction, namely reader Query followed by tag RN16 response. The 

MATLAB-generated reader baseband plus POW signal was created using a DAC, while the tag 

response was observed in an oscilloscope. The previous chapter reports on the work conducted in 

[IX][X], where a MS front-end was integrated in a commercial RFID reader to demonstrate that: 1) 

the reading range can be improved when using MS signals; 2) MS receiver complexity can be 

reduced to that of a regular CW receiver if a proper MS design is performed. Nevertheless, only the 

MS signal was generated externally by using a VSG. Since the RFID protocol was handled by a 

commercial RFID reader, it was not possible to access the reader internal signals. In [XI], we 

presented an evaluation of joint wireless power transfer and backscattering communication using 

MS signals and we first attempted on the design of a custom-designed MS reader
6
. Although the 

RFID protocol was implemented using a custom SDR design, due to digital hardware limitations
7
, 

the baseband MS waveform had to be generated externally by using an AWG (Arbitrary Waveform 

Generator).        

SDR RFID reader design offers an increased flexibility and allows to adapt to different standards 

by simply upgrading the reader software. This approach has been used for RFID research purposes 

[8][9], RFID characterization and measurements [10], protocol exploration [11], localization [12] 

                                                           
6
 This RFID reader was also used in the self-jamming evaluation presented in the next chapter. 

7
 A single-core CPU working @ 150MHz was used in contrast to the four-core CPU used here, each core 

operating @ 200MHz. 
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and also industry applications [13]. In [XII], a SDR-based MS RFID reader has been designed from 

scratch for the first time. This chapter reports on such design. In addition to fully implementing the 

RFID communication protocol in CW mode under EPC Global Gen2/ISO-18000-6C standard [14], 

the presented SDR reader is capable of generating arbitrary powering waveforms, such as MS 

signals, that can improve the wireless power transfer capability and thereby increase the coverage 

range. 

Measurements have been conducted using the developed reader, namely to evaluate the self-

jamming cancellation scheme used, the proposed MS demodulation approaches, the multipath 

fading performance and the sensitivity improvement of RFID chips under MS waveforms. A 

sensitivity gain of more than 3 dB relative to the CW has been obtained for an RFID chip under a 

9-tone MS signal with a PAPR of 12.6 dB.  

7.2. Theoretical analysis 

In the previous chapter, the MS backscatter link was described for unitary channel response and it 

was shown that traditional RFID tags are able to demodulate a MS signal similar to (7.3). In order 

to broaden the description to account for arbitrary propagation phase shift, consider the following 

analysis. Signal (7.3) is a symmetrical 3-tone MS signal, which results from the product of the 

reader baseband signal [m(t)], the LO carrier [SC(t)] and an harmonically-related baseband MS 

signal [SMB(t)]. 

                                            

 (7.1) 

                 

 (7.2) 

                      

 
    

 
                                   

    

 
                  

                                                                              (7.3) 

where V0 is a DC component in the baseband MS and Δω is the MS subcarrier separation. As 

demonstrated in chapter 4, signal (7.3) can excite the charge pump circuit of the RFID tag in a more 

efficient way than a CW signal, which can potentially improve the reading range of passive-

backscatter systems. During uplink, signal (7.3) is  radiated by the reader to power up the tag, and 

part of this signal, [SBack(t)], is backscattered by the tag according to its baseband information 

[Γ(t)Γ0(t), Γ1(t), Γ2(t)]. Note that m(t) is held constant during uplink (e.g. m(t) = 1). Thus, the 

backscattered signal is given by: 
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Fig. 7.1 (a) Bank of matched filters. (b) MS matched filter. On the left is the hardware implementation and on 

the right is the corresponding software version. LPF1 is utilized to remove the RF components and LPF2 is a 

narrower filter which is part of the matched filter. 

 

where   ,    and    are the round trip phase shifts of the subcarriers with respect to the reader LO, 

and      ,       and       are the time-varying reflection coefficients seen by each subcarrier. 

Neglecting all scaling factors, signal (7.4) reaches the reader antenna and then it is down-converted 

to baseband, resulting in signal (7.5).  

                     
 

 
         

         
 

 
         

             

 
 

 
         

              
 

 
         

                  

 
 

 
         

             
 

 
         

                   

 (7.5) 

As the MS is symmetrically designed, with a central subcarrier at the LO frequency, then a sample 

of the backscattered tag baseband can be retrieved simply by low-pass filtering (7.5) with a cut-off 

frequency lower than Δω, originating the in-phase tag baseband signal (7.6). This obviates the 

receiver design and allows a conventional receiver to decode the MS tag response as done in [X]. 

Note that the quadrature signal is complementary to (7.6). 
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 (7.6) 

The tag information modulated on the other subcarriers can be retrieved as well by using a bank of 

matched filters [Fig. 7.1(a)] or a single MS matched filter [Fig. 7.1(b)]. In the first case, each filter 

is matched to a subcarrier, and in the second case, the correlation pulse is the baseband MS signal 

(1).  

TABLE 7.1 

LOW-COST DSP AND MICROCONTROLLER DEVICES SUITABLE FOR THIS WORK  

 

Assuming that the RF components of signal (7.5) are removed by LPF1, the output of the MS 

matched filter of Fig. 7.1(b) comes as follows: 

   
     

 

       
               

       

 

 
       

 

 
 

 
       

   
           

 

 
       

   
         

 

 
       

   
         

(7.7) 

Due to random changes in the round trip phase shift [   in (7.6)], the transponder constellation 

suffers unpredictable rotations before it reaches the reader. Hence, the received constellation must 

be phase-rotated such that it aligns with the real-axis and thereby it can be demodulated as if it was 

pure ASK (refer to chapter 2, Fig. 2.11). For this reason, common RFID readers employ quadrature 

demodulators to recover both the in-phase and quadrature components. On the other hand, the 

phase diversity present in (7.7), imposed by the different phase shifts of the several MS subcarriers, 

can be exploited to avoid the use of an IQ demodulator. This is evaluated in the measurements 

section. 
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7.3. The software-defined radio design 

7.3.1. SDR RFID hardware implementation  

In the course of this work, two SDR RFID readers were engineered, one based on a single-core 

MCU/DSP (described in the next chapter) and other based on a dual-core MCU/DSP. The block 

diagram of the latter is depicted in Fig. 7.2 (a) and the respective hardware is shown in Fig. 7.2 (b). 

The RF/analog part is built around an integer-N PLL (Phase Locked Loop) with integrated VCO 

(Voltage Controlled Oscillator) from Analog Devices [15]. The RF front-end, operating in the 840 

MHz – 960 MHz band, is composed of frequency synthesizer, IQ up- and down-conversion stages, 

Rx baseband low-pass filters and PGAs (Programmable Gain Amplifiers). The transmitting path 

uses a modified homodyne architecture in which the RFID bandpass signal (output of Mix1) is 

mixed with a baseband MS signal similar to that in (7.1) to produce a bandpass signal similar to the 

one in (7.3). The resulting signal is then amplified by an external PA.  

The digital part is implemented in DSP (Digital Signal Processor) technology. A survey on low-

cost DSP and microcontroller (MCU) devices in the market suitable for this application is 

presented in Table 7.1. Taking into account the trade-off between cost, processing speed, memory 

space and integrated peripherals, a 32-bit four-core MCU/DSP
8
 from Texas Instruments [16] 

(second column of Table 7.1) was selected for this work. Among the principal features, it includes 

two main CPU cores plus two co-processors (referred to as CLAs – Control Law Accelerators), an 

internal multi-channel ADC (Analog-to-Digital Converter) and several other peripherals. This 

choice offers an increased computational capability in comparison to the one previously used in 

[XI] (first column of Table 7.1). The four cores running at 200 MHz allow the parallelization of 

tasks and permit a maximum processing speed of 800 MIPS. Moreover, the integrated peripherals, 

such as ADCs, DMAs (Direct Memory Access), internal FLASH, etc, greatly reduces the overall 

size and cost, and eases the implementation.  

While the analog-to-digital conversion is realized by the DSP internal multi-channel 12/16-bit 

ADCs, the digital-to-analog conversion is implemented using two external DACs, an IQ DAC 

operating at 2 MSPS (DAC2) for the RFID baseband signal [17], and another DAC working at 100 

MSPS (DAC1) for the baseband MS waveform [18]. In both cases, a 8-bit resolution is used. 

Although the RFID baseband signal and the baseband MS waveform could be mixed directly in 

software, which would require only one DAC and would dispense the need for the second mixing 

                                                           

8
 This device is based on Harvard and reduced instruction set (RISC) architecture, and combines digital 

signal processing capabilities with microcontroller features such as integrated memory and peripherals.  
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stage (Mix2), in this implementation we have chosen to do it externally in hardware. This choice is 

justified in the next section. 

7.3.2. A multi-polarization antenna scheme  

In order to take advantage of the increased efficiency of linear-polarized antennas while 

guaranteeing the orientation insensitivity, a multi-polarization antenna scheme has been designed to 

work in conjunction with the SDR reader. This antenna is controlled by the reader through an RF 

feeding switch in order to continuously switches between several linear polarizations, thereby, 

delivering 3 dB more power than a circularly-polarized antenna in several orientations [please refer 

to Fig. 7.2(c)-(d)]. 
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(c) 

 

(d) 

Fig. 7.2 (a) Simplified block diagram of the developed MS SDR RFID Reader platform. The dashed blocks 

in the digital part are proposed functionalities or CPU allocations that are still to be implemented. (b) 

Photograph of the developed reader hardware. Main blocks: A – RF/analog part, B – digital signal processing 

part, C – power amplifier, D – MS DAC, E – MS reconstruction filter. With exception of block B (DSP 

development board) and block D (DAC evaluation board) all the hardware has been designed from scratch. 

(c) Multi-polarization antenna concept. (d) The designed multi-polarization antenna
9
 with three feeding 

points and respective RF switch. 

 

 

                                                           
9
 The antenna design was done in collaboration with Ricardo Gonçalves from IT, and is detailed in [XVIII].  
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7.3.3. Gen2 RFID protocol and software implementation 

EPC Global Gen2/ISO18000-6C protocol [14] is a Reader Talks First (RTF) standard with Aloha-

based adaptive collision resolution (Q-algorithm) and variable data rates, data coding schemes and 

modulation formats for reader and tag transmissions. An inventory round after Gen2 [Fig. 7.3(a)] is 

started with a Query(Q) command broadcasted by the reader with the Q parameter (from 0 to 16). 

Q specifies the available number of time slots to be used in the anti-collision process (slot count N 

= 2
Q
). After receiving the Query, each tag in the field randomly chooses a slot number in the range 

from 0 to 2
Q
 – 1. If a tag chooses the slot number 0, it wins the medium and automatically answers 

with a 16-bit random number (RN16) that identifies it during the inventory round. The reader then 

broadcasts an acknowledgment command containing the received RN16 [Ack(RN16)] to notify the 

wining tag. After being notified, the wining tag returns its EPC ID (the firmware implementation of 

Ack command followed by EPC response is exemplified in Fig. 7.4). The reader continues the 

round by issuing successive QueryRep commands that cause the remaining tags to decrement their 

slot counter by 1 after receiving each QueryRep. As soon as a tag’s slot counter reaches 0, it 

becomes the wining tag. The choice of Q should represent a trade-off between collision probability 

reduction and inventory speed, and Q can be dynamically adjusted based on the estimation of 

number of tags in the field. For the experiments conducted here, Q has been set to 0. Therefore, a 

single time slot is specified and the first tag to enter the reader’s field is automatically selected as 

the wining tag. 

Gen2 protocol timing is critical, especially the time between each tag response and the subsequent 

reader interrogation transmission [see Fig. 7.3(a)]. After receiving the RN16, the reader must be 

able to send the Ack command during a very short time T2. If the reader fails to satisfy this timing, 

the tag times out and no further communication is possible. The maximum value of T2 depends on 

the selected tag Backscatter-Link Frequency
10

 (BLF) as follows: T2MAX = 20/BLF [14]. Thus, the 

higher is the tag data rate, the more stringent is the time limitation. In order to be able to timely 

process higher tag data rates and answer to the tag before it times out, an efficient design of the 

reader firmware combined with some degree of task parallelization was necessary. For instance, the 

main CPU core starts processing the received data before the complete tag data frame is received 

via ADC/DMA. This requires a proper synchronization and an adequate data threshold level, on the 

one hand, to guarantee that there is enough buffered data to be processed, and on the other hand, to 

ensure that the main CPU processing does not overpass the DMA transference. Furthermore, some 

functions are coded in Assembly, and at boot time, all time-critical functions are loaded from the 

DSP FLASH to RAM memory, which significantly improves the code execution time.  

                                                           
10

 When FM0 encoding is used, BLF coincides with the tag data rate. Otherwise, if a Miller encoding is 

selected, BLF is the frequency of the Miller subcarrier. 
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The implemented RFID Gen2 protocol stack is depicted in Fig. 7.3 and the flowchart of the 

firmware is shown in Fig. 7.4 (dual-core CPU operation) and Fig. 7.5 (EPC protocol handling). For 

reader-tag communication, PIE (Pulse Interval Encoding) coding and ASK/PR-ASK modulations 

have been implemented at the maximum allowed downlink bit rate of 128 kbps. For tag-reader 

link, FM0 encoding has been selected, variable data rates (40 kbps-160 kbps) have been tested, and 

the tag has been commanded to answer with a pilot carrier prior to preamble and payload data. In 

the current implementation [Fig. 7.3(b)], both the preamble detection and the FM0 data decoding 

are based on a Zero-Cross (ZC) detection method similar to that in [19]. Although ZC detection 

provides a lower tag read success rate than other clock recovery schemes [9], the required 

complexity is significantly lower. For further details on Gen2, please refer to Appendix B or Gen2 

standard documentation [14]. 
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Fig. 7.3 (a) Inventory round after EPC Global Gen2/ISO18000-6C with a single tag reply [14]. (b) Gen2 

protocol stack. Dashed blocks in the Tx path are either to be implemented (e.g. the Hilbert transform) or are 

not implemented in real time; PIE encoding, ASK modulation, interpolation and raised-cosine filtering are 
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applied to the individual Tx binary pulses, which are then stored in the DSP memory to be used in a look-up 

table approach. The same approach is used for MS signal generation. 
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Fig. 7.4 Simplified flowchart of the implemented firmware showing dual-core CPU operation. The EPC 

protocol handling module (in grey) is detailed in the next figure.  
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Fig. 7.5 Flowchart of implemented firmware, EPC protocol handling module (grey block in previous figure) 
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7.3.4. Baseband waveform generation 

In order to reduce the real-time processing load, a look-up table approach has been followed to 

generate both the RFID baseband pulses and the baseband MS waveform. The RFID baseband 

pulses are filtered in MATLAB using a pulse shaping filter (e.g. a raised-cosine filter), then the 

samples are stored into the DSP FLASH memory. The used 8-bit DACs allow 256 code levels 

where code 0 represents the most negative number, 128 represents 0, and 255 represents the most 

positive number. The analog samples generated in MATLAB are normalized, scaled and quantized 

according to (7.8). 

    
   

 
 

  

     
     

(7.8)    
 

where SD is the quantized digital word, SA is the analog sample generated in MATLAB, SAMAX is 

the maximum value of the generated analog sequence, and     denotes the quantization to the 

nearest integer number in the 0-255 range. The baseband MS generation is based on a the same 

look-up table approach. A baseband MS signal similar to (7.1) is generated in MATLAB and then 

quantized according to (7.8), and the resulting samples are stored into the DSP FLASH memory. 

Since the MS waveform is periodic, in principle only a single signal period is required to be stored 

in memory. Note that any other waveform, other than MS signals, can be generated using this 

approach. Moreover, different waveforms can be simultaneously stored in memory and selected in 

real-time by the application. In the following experiments and measurements, one switches 

between several stored MS waveforms with different characteristics (e.g. number of tones).    

In this implementation, the RFID signal and the baseband MS signal are externally mixed in 

hardware rather than internally in software. This is done to reduce the required memory space 

needed to store the samples of the baseband pulses. As an example, in the current implementation, 

a reader data rate of 40 kbps at 2 MSPS requires 50 samples per RFID baseband symbol (2 MSPS / 

40 kbps). In addition, a single period of a baseband MS with tone spacing Δ  = 2 MHz at 100 

MSPS requires 50 samples per period. Thus, a total of 100 samples per RFID symbol are enough. 

On the other hand, if the same RFID baseband symbol was memory-stored containing the MS 

pulses, rather than being implemented in hardware using Mix2, 2500 samples (100 MSPS / 40 

kbps) would be necessary for each RFID symbol.  

An alternative to look-up tables is the real-time computation of the MS function, which could be 

done by using DSP trigonometric libraries and resources. This approach reduces the memory usage 

but increases the computational load. 

A PWM (Pulse Width Modulation) module and respective ISR (Interrupt Service Routine) is used 

for data interface with the lower sampling rate DAC (DAC2). For this purpose, the PWM is 

configured to generate interrupts at the same rate as the required data sampling rate (2 MSPS) and 
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the ISR feeds the data samples to DAC2. However, for the higher sampling rate DAC (DAC1), 

working at 100 MSPS, this approach is not suitable due to the speed limitation of the PWM module 

and also due to the ISR execution overhead. In this case, a Universal Parallel Port (uPP) peripheral 

of the DSP is used, which allows 8-bit parallel interface of high speed data using dedicated data 

RAMs and DMAs.      

 

7.3.5. Self-jamming Cancellation 

The reflective self-jamming cancellation scheme, described in detail in the next chapter, is used in 

this reader. This method originally proposed for CW cancelation [20] also shows good results for 

MS self-jamming suppression [XIII]. By un-matching port 3 of the Tx-Rx isolation coupler (which 

is usually matched to 50Ω), a portion of the transmitted signal is reflected and will cancel the self-

jammer signal at port 4. In the preliminary experiments, a 50Ω load and an impedance tuner are 

used to realized a variable load impedance, and the adjustment for optimal impedance is done 

manually. In the future, one of the adaptive self-jamming suppression algorithms presented in 

[XIV] and described in the next chapter will be applied to this reader. 

7.4. Measurements  

7.4.1. The measurement setup  

The setup depicted in Fig. 7.6 was used in the following measurements. Coupler 1 (CPL1) is part of 

the RFID reader itself, being configured as a circulator to isolate the transmitting and receiving 

paths. Its isolated port is connected to a variable load impedance which is used to implement the 

self-jamming cancellation scheme described in the next chapter. Coupler 2 (CPL2) is used to 

measure the power available to the RFID chip when the reader output is directly connected to the 

chip, or the power delivered to the reader antenna. The third coupler (CPL3) is used to assist in the 

self-jamming cancellation experiment, allowing to visualize the received signal after self-jamming 

suppression and to adjust the impedance tuner accordingly. The variable attenuator inserted in the 

transmitting path is used to vary the reader output power in order to find the minimum activation 

power of the transponder. Finally, an oscilloscope is used to access the internal signals of the RFID 

reader. This is useful, for instance, to visualize the received tag baseband signal. 

Fig. 7.7 shows the waveforms in the transmitting path of the MS RFID reader, namely the 

baseband MS signal, the bandpass MS pulses and the PIE-encoded, ASK-modulated symbols using 

a CW and MS carrier. Note that a N-tone baseband MS signal plus a DC component originates 

2N+1 bandpass tones after up-conversion. In Fig. 7.7, four baseband tones are used and a tone 

spacing of 2 MHz is selected.  
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Fig. 7.6 Measurement setup. 
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(c) 

Fig. 7.7 Waveforms in the transmitting path of the MS RFID reader. (a) 4-tone baseband MS plus a DC 

component at the output of the MS DAC. (b) Pulses of the resulting bandpass MS with 8+1 tones which 

results from the mixture of the baseband MS and the LO RF carrier. (c) RFID PIE-encoded, ASK-modulated 

symbols using a CW carrier (black signal) and a MS carrier (blue signal) with the same average power. 

Notice the higher peaks in the MS case.   

 

7.4.2. Measurement of RFID Chip sensitivity improvement  

This section intends to measure the chip sensitivity improvement gain obtained with several MS 

signals. For this purpose, the NXP RFID chip G2XM [21] (without matching network) is directly 

connected to the output of the RFID reader as shown in Fig. 7.6. Direct connection to the reader 

output ensures that multipath fading effects do not interfere with the measurement (these effects are 

evaluated in the next section). Moreover, by using no matching network, it is guaranteed that the 

MS signal is not affected by the input filter. By varying the attenuation of the transmitting path, it is 

possible to find the tag sensitivity or minimum power level required to activate the tag with a CW 

(PMIN_CW) and with a MS signal (PMIN_MS). The difference between these two values corresponds to 

the sensitivity improvement gain provided by the MS signal (GP = PMIN_CW – PMIN_MS). Note that GP 

has the same meaning as the efficiency gain FOM defined in chapter 4 and the power gain defined 

in the previous chapter. The obtained results are presented in Table 7.2. The gain GP is calculated 

with the unmatched measurements. An estimation of the matched activation power level can be 

obtained from the unmatched activation power level and the unmatched return loss, according to 

equation (3) of [XV]. A maximum sensitivity gain of 3.3 dB was obtained for the tested RFID chip 

under a 9-tone MS signal presenting a PAPR of 12.6 dB.   
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TABLE 7.2 

MEASUREMENT OF TAG SENSITIVITY GAIN FOR SEVERAL MS SIGNALS 

 

 CW 3-tone 

MS 

5-tone 

MS 

9-tone 

MS 

PAPR (dB) 3 7.8 10 12.6 

PMIN_Unmatched 

(dBm) 

-4.45 -6.0 -7.1 -7.75 

PMIN_Matched 

(dBm) 

-13 -14.5 -15.6 -16.3 

GP (dB) 0 +1.55 +2.65 +3.3 

 

7.4.3. MS demodulation 

The demodulation approaches previously described in section 7.2 namely the central carrier 

demodulation (7.6) and the MS match filtering (7.7) are evaluated in this section. For the following 

experiments, the output of CPL2 in Fig. 7.6 is connected to a 7 dBi antenna instead of being 

directly connected to the RFID chip. Alien ALN-9540 Squiggle tag based on Higgs-2 chip [22] is 

located at a distance D away from the MS reader. As a first evaluation of the proposed 

demodulation methods, the tag is interrogated with a Query command and the RN16 tag response is 

captured using an oscilloscope, and afterward processed in MATLAB.  

Figure 7.8 (a) shows the received RN16 tag response after down-conversion, where one can notice 

the tag baseband signal on top of the baseband MS subcarriers. The sample of the tag response 

modulated on the central subcarrier can be recovered by simply low-pass filtering the down-

converted signal with a cut-off frequency lower than Δω. This results in the signal of Fig. 7.8(b). 

Note that (7.6) is null whenever the round trip phase shift is equal to              or the tag-

reader distance is equal to D = λ/8 + nλ/4. This is shown in Fig. 7.8 (c) where, for a frequency of 

866 MHz (λ = 35 cm.), the distance between consecutive nulls is approximately D = λ/4 = 8.66cm, 

which corresponds to a round trip phase shift of λ/2 (180º). The first null should theoretically 

appear at D = 4.33 cm (λ/8), however this is not in the far-field. Due to the appearance of these 

nulls, this demodulation method requires a quadrature receiver. A specific reader-tag distance case 

where (7.6) becomes null is shown on Fig. 7.8(d)-top. For the same situation, the MS matched filter 

(7.7) is able to retrieve the tag information without using a quadrature receiver by taking advantage 

of the phase diversity present in (7.7) [see Fig. 7.8(d)-bottom].      
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                                   (a)                                                                                  (b) 

                              
(c)                                                                                          (d) 

 

Fig. 7.8 (a) RN16 tag response after down-conversion. (b) Tag baseband on top of the central subcarrier, 

recovered after a simple low-pass filtering. (c) Amplitude of In-phase tag response as a function of the 

distance. (d) Tag baseband recovered by using a MS matched filter (Bottom) in a tag position where the 

information on the central subcarrier is null (Top).  

 

7.4.4. Field measurements 

According to the field measurements in Fig. 7.9 (a), the MS scheme presents fundamentally the 

same fading pattern as the CW, however with less pronounced fades. On the other hand, the 

received MS PAPR do not alter significantly with distance [refer to Fig. 7.9(b)]. This is probably 

due to the relatively high antenna gain used (7 dBi).  

Although, the RFID chip used in these field experiments differs from the one used in the sensitivity 

measurement, a very similar gain result was obtained for the same MS signal: a distance of 5.85m 

was achieved for a CW with a minimum transmitted average power of 20.1 dBm, while the same 

distance was obtained for a MS with only 17 dBm average power, showing a tag sensitivity 

improvement of 3.1 dB. 

D = 8,66cm (λ/4) 

Round trip phase shift = 180º 
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(b) 

Fig. 7.9 (a) Received average power level in a lab environment as a function of distance from the reader, for 

a CW and a 9-tone MS with same average power. (b) Received PAPR as a function of the distance, when 

transmitting a 9-tone MS signal. In both cases, a 7 dBi Tx antenna and a dipole Rx antenna were used. A 

power meter was used in the first case, and an RF oscilloscope was used in the second measurement. 

 

7.4.5. RFID reader – PC interface 

The developed RFID reader communicates with the computer via RS232 to send the data read from 

the tags (e.g. the EPC IDs) which are displayed by an R232 terminal application. Several tags with 

different EPC IDs have been used. Figure 7.10 depicts a screenshot of Termite application, 

showing several tag readings in CW mode. Along with the tag EPC ID it is shown the information 

of the IQ branch used for data demodulation.  
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Fig. 7.10. Screenshot of Termite RS232 application showing several tag readings.  

7.5. Conclusions 

This chapter and the previous one answered positively to the third question formulated in the 

introductory chapter of this thesis, “Can properly designed waveforms improve the coverage range 

of passive-backscatter systems such as passive RFID?”. While in the previous chapter a MS front-

end was integrated in a commercial RFID reader, in this chapter, a SDR RFID reader with 

waveform design capability has been designed from scratch. Afterward, RFID chips and tags have 

been tested under MS signals. In accordance with the previous chapter, this chapter also shows the 

potential of waveform design to improve backscatter-radios in terms of reading range.  

While the CW mode was fully implemented, the presence of tag response when using MS signals 

was evaluated using an oscilloscope and the proposed MS demodulation was performed in 

MATLAB. Further work is needed to fully implement the MS mode solely in the reader. As 

described in (4.22), the MS scheme suffers a penalty in the backscatter link comparatively to a 

power-equivalent CW scheme, and therefore, a good receiver sensitivity is required. The SNR in 

the MS mode can be enhanced by optimizing the MS self-jamming cancelation, by using noise-

In-phase read 

Quadrature  read 
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improved baseband amplification, by improving MS baseband filtering and by using improved data 

decoding methods.  

The developed platform is a flexible lab tool that allows to conduct many experiments not possible 

with off-the-shelf readers or commercial ASICs. For instance, it allows for settings adjustment (e.g. 

power level, frequency and other protocol parameters), which is useful for RFID characterization 

and measurements, protocol evaluation and research purposes. Moreover, RFID reader design 

based on SDR also presents significant benefits in terms of industry, as it allows for standard 

interoperability and upgradability.   
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8. SELF-JAMMING IN PASSIVE-BACKSCATTER RFID SYSTEMS  

8.1. Introduction  

Self-jamming is perhaps the second most limiting factor in passive-backscatter RFID systems, and 

thus, this topic deserves special attention in this separate chapter. In passive RFID systems, the 

interrogator needs to radiate a strong powering signal to remotely supply the transponder, while 

simultaneously receiving the faint information signal backscattered by the transponder at the same 

frequency [1]. In order to separate the transmitting and receiving paths, either a bistatic or 

monostatic antenna configuration can be used. However, these simple isolation schemes suffer 

from poor transmitter to receiver isolation, which may cause a significant amount of the transmitted 

power to leak into the receiver, degrading its sensitivity to the weak backscattered information 

signal from the tag. LO phase noise leakage [1] and saturation of the receiver front components are 

the main causes of sensitivity degradation. If no self-jamming suppression mechanism is employed, 

then a high dynamic range capability is required for the front LNA and mixer as well for the 

baseband amplifiers and ADCs. In order to improve the performance of receivers, self-jamming 

cancellation techniques have been proposed in the literature [2-11] and used in monolithic RFID 

reader chips [12-13]. Similar techniques are also employed in radar systems where transmitter and 

receiver operate simultaneously [14], and more recently in full-duplex wireless communication 

systems (e.g. full-duplex WiFi) [15-17].  

Another unwanted effect of self-jamming in Direct Conversion Receivers (DCR) [18] is the 

generation of DC-offsets. A DCR directly down-converts the received signal to baseband by 

mixing it with a local oscillator at the exact same frequency, which creates unwanted DC-offsets. 

In typical half-duplex wireless and mobile systems, DC-offsets are solely the result of LO leakage 

(self-mixing) and interferer leakage [19-21]. In DCR-based passive RFID readers, though, self-

jamming is the dominant cause of DC-offset generation. The jammer signal that leaks from the 

transmitter to the receiver is mixed with the LO (at the same frequency) producing a DC 

component that can be much bigger than the down-converted tag signal. Furthermore, the phase 

noise of the leaked LO is directly down-converted to baseband.  

Similarly to other wireless communication systems [19], passive RFID systems have adopted the 

use of DCRs due to their low-cost and reduced complexity which make them preferable over 

heterodyne receivers [18]. Moreover, the increased flexibility makes DCR suitable for Software 

Defined Radio (SDR) applications [22][23]. DCR has, thus, been the natural choice for passive 

RFID, being used in commercial RFID reader chips (e.g. AS399x family [24] and R1000/2000 

family [25]), as well as in a number of SDR-RFID implementations devoted to research [26], 

system characterization and measurement [27], protocol exploration [28], and localization [29].  
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This chapter addresses RF self-jamming and DC-offset generation in passive RFID systems in a 

comprehensive way. First, a theoretical analysis and evaluation of conventional approaches to deal 

with these issues is presented, such as the use of directional couplers terminated with variable 

reflective loads to suppress the jamming signal. Afterward, new hardware and software proposals 

are presented namely an improved non-linear high-pass filter with pre-charged initial condition to 

simultaneously cancel the DC-offset and the transient, and a method for transient correction in 

software. Both the evaluation of existing techniques as well as the validation of the new proposals 

are accompanied by laboratorial measurements. To complement the study, several techniques 

commercially used in modern reader ICs are also described. The laboratorial experiments are 

conducted on two different SDR platforms, one based on DSP/MCU and other based on Field-

Programmable Gate Array (FPGA).  

8.2. Self-jamming and interference in passive RFID 

 Since passive RFID systems operate in full-duplex mode and due to imperfect Tx-Rx 

isolation, a significant amount of radiated power (up to 2W ERP in EU [30] and 4W EIRP in 

USA) may leak into the receiver. An early consequence is the saturation of the RF stages 

(LNA/Mixer). 

 After down-conversion, strong self-jammers generate large DC-offsets, which are in many 

cases, random and much higher than the transponder baseband signal. This challenges the 

baseband stages (mainly the ADC).  

 Moreover, the self-jamming leakage propagates also the LO phase noise into the receiver 

chain. Actual local oscillators generate phase noise in close proximity to the carrier frequency. 

Since the tag signal, typically, is also very close to the carrier frequency (few tens to few 

hundred kHz from the central carrier [31]), the LO phase noise can easily corrupt the tag 

information, thus limiting the receiver sensitivity [see this effect illustrated in Fig. 8.1 (b)]. 

The main sources of interference and self-jamming are illustrated in Fig. 8.1 and include: 

 Antenna mismatch and imperfect isolation of the circulator (or coupler) in monostatic 

configurations [Fig. 8.1(a)] and direct Tx-Rx antenna crosstalk in bistatic configurations. 

 Reflections from surrounding objects, buildings, walls, people, or cars (vehicular applications) 

 Transponder motion and unmodulated or structural reflections from the transponder antenna. 

 Interferer signals from neighbor radios (e.g. other RFID readers) in the same frequency band.  

 

Note that, interferer signals at the exact same frequency as the reader can be seen as self-jammer 

components. On the other hand, in-band interferer signals at a different frequencies are down-
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converted to baseband, taking with them the LO phase noise, as illustrated in Fig. 8.1 (b). The 

amplitude of the interferes and their proximity to the LO frequency will determine their effect.  
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Fig. 8.1 (a) Sources of self-jamming in a bistatic antenna configuration. (b) Self-jamming sources in a 

monostatic configuration, c) illustration of external interference, LO jammer and phase noise leakage.    

8.3. Basic isolation between transmitter and receiver 

Two basic configurations are commonly used to isolate the receiver from the transmitter, namely 

bistatic, which uses two separate antennas to transmit and receive, and monostatic, which shares 

one antenna for transmitter and receiver through a circulator. In the former, cross-talk between the 

two antennas dominates the Tx to Rx leakage, while in the latter, leakage is mainly the result of 

antenna mismatch and imperfect isolation of the circulator (or coupler). Bistatic configurations [32] 

offer, in principle, better isolation performance (30 - 40 dB), however, due to cost and size, 

monostatic configurations (offering 15 – 30 dB isolation) are often preferred. The poor isolation 

and consequent sensitivity degradation is responsible for a reduction of reading range and 

identification rate [10][12]. For this reason, improved self-jamming suppression techniques are a 

must. 
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8.4. RF self-jamming cancellation 

It is important to suppress the unwanted leakage in the RF level before it reaches the active parts of 

the front-end (LNA/mixer), as it may saturate them. If no RF suppression scheme is employed, then 

the front LNA/mixer must feature high dynamic range in order to properly handle the weak tag 

signals in the presence of the strong jammer signals. Baseband amplifiers and ADCs must also 

feature high dynamic range capabilities in order to handle large down-converted DC-offsets.    

To suppress the jammer signal in the RF domain, a sample of the transmitted RF signal may be 

used to cancel out the self-interference in the received signal [2-11]. Two cancellation techniques 

for application in passive RFID are described next, namely the classical self-jamming suppression 

using active amplitude and phase control (Fig. 8.2), and the cancellation by using a variable 

reflective load to terminate the isolating coupler (Fig. 8.3). Adaptive approaches to find the optimal 

parameters settings for the cancellation, including techniques used in commercial ICs, are also 

discussed.     

 

8.4.1. Classical self-jamming suppression scheme 

Figure 8.2 (a) shows the self-jamming cancellation scheme based on active amplitude and phase 

control, which is typically used in passive RFID readers [2-9][12]. In this approach, a sample of the 

transmitted signal, the canceller signal Scanceller(t), is set to the same amplitude and opposite phase 

(180º phase shift) of the jammer signal [Sjammer(t)]. Then, it is deliberately added to the received 

signal [SRX(t)], eliminating the jammer signal and leaving only the tag information signal, SDesired(t). 

In the configuration of Fig. 8.2 (a), a coupler is used to pick up a sample of the Tx signal that is 

properly shaped and then added to the received signal. The amplitude and phase of the canceller 

signal can be controlled by using a variable amplifier/attenuator and a phase shifter, respectively 

[7]. Alternatively, amplitude and phase can be controlled by using vector modulation techniques 

[see Fig. 8.2(b)]. To add the canceller signal to the received signal, a power combiner or a coupler 

can be used as an RF summator. A second coupler and a power detector are used to measure the 

power at the output of the summator. Note that power level information can also be obtained by 

measuring the DC-offsets of the down-conversion mixers. In this case, the quadrature mixer itself 

is used as a power detector, which not only dispenses the use of a dedicated power detector, but can 

also allow the implementation of faster cancellation algorithms by using in-phase and quadrature 

information of the jammer signal [35]. A control unit is needed to generate the amplitude and phase 

control information, based on the output power level measured at the output of the summator. The 

control unit’s algorithm, similar to those described later in this section, should automatically and 

adaptively adjust the amplitude and phase of the canceller signal in order to minimize the residual 
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power level measured at the output of the summator (after cancellation), supposing that only the 

jammer signal is present.  

A commercial implementation of self-jamming cancellation, similar to the one descried here, is 

found in Impinj RFID reader chip Indy R2000 [13]. The main difference, with respect to Fig. 

8.2(a), is that the Indy R2000 uses a vector modulation approach to control the amplitude and phase 

of the canceller signal, rather than using an amplifier and phase shifter. The input of a vector 

modulator [Fig. 8.2(b)] is split into in-phase (I) and quadrature (Q) components, with the Q 

component shifted 90º relative to the I component. These signal components pass through variable 

amplifiers (or attenuators) that independently scale the I and Q amplitudes. The output of the 

amplifiers/attenuators are then summed to create the output signal. By controlling the relative gains 

of the I and Q branches, the magnitude and phase of the output signal can be set as desired. Two 

examples of vector modulators are QHX220 [33] used in [15][16], and AD8340 [34] used in [8].  
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Fig. 8.2 (a) Monostatic reader front-end incorporating a self-jamming cancellation unit. (b) Vector modulator 

used to control amplitude and phase of the canceller signal.     
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Fig. 8.3 Passive self-jamming cancellation using a coupler terminated with a reflective load  

 

8.4.2. Passive self-jamming cancellation using reflective loads 

To realize this scheme proposed in [10][11], a directional coupler is configured as a circulator, and 

the isolated port 3, which is usually matched to 50Ω, is terminated with an unmatched load [refer to 

Fig. 8.3]. Cancellation is achieved by properly choosing the terminating impedance value. This is 

done such that a portion of the transmitter signal coupled into port 3 is reflected toward port 4 

where it will cancel out the coupled jammer [10][11]. To better understand this method, consider 

the received signal at port 4, given by (8.1). Assuming a perfectly symmetrical coupler with 

transmission coefficients T=S21=S12=S34=S43, coupling C=S42=S31, and isolation I=S41=S32, then 

(8.1) can be written as (8.2). Now, if the return loss presented to port 3 is symmetrical to the 

antenna return loss (ΓL= - ΓA), then the received signal at port 4 is free of leakage and contains only 

the desired signal from the transponder (b4 = S42a2).  

b4 = S42a2 + a1(S21ΓAS42 + S31ΓLS43).                                                                                               

(8.1) 

b4 = S42a2 + a1(TΓAC + CΓLT).                         

(8.2)                                                                                

The advantages of this method include reduced complexity, high linearity, and low noise 

performance, since it is completely passive (no active amplification is used). In order to evaluate 

this self-jamming cancellation approach, a bi-directional coupler was constructed (T = 0.5 dB, C = 

12 dB and I = 20 dB) and combined with a load impedance tuner to form a self-jamming 

cancellation module. This module was then used with the DSP-based RFID reader of Fig. 8.9. The 

coupler was first characterized using a VNA, both with and without carrier suppression. For this 
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purpose, a 7 dBi linearly polarized antenna, with a return loss better than 14 dB, was connected to 

Port 2. The isolated port (3) was first terminated with a 50Ω load as usually done (no carrier 

suppression) and then with the load impedance tuner. In the first case, the isolation is limited by the 

intrinsic coupler isolation (around 20 dB). In the second case, the tuner was adjusted for an optimal 

termination impedance of 19.6+13.5j @ 860 MHz, thus improving the overall Tx to Rx isolation to 

approximately 50 dB (Fig. 8.5). After, the setup of Fig. 8.4 was used to evaluate the self-jamming 

cancellation in the RFID reader [Fig. 8.9] with a transmitted power of 30.8 dBm. Table 8.1 presents 

the measured results. Since the wireless channel is constantly changing, the termination impedance 

should also adaptively change.    

TX

RX 

Bi-directional Coupler

RFID reader

VSAOSC

50Ω

Antenna

VSG
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Fig. 8.4 Measurement setup to evaluate the reflective load method. (a) Block diagram. (b) Lab setup using an 

impedance load tuner, a bi-directional coupler and an RFID reader.    

 

Fig. 8.5 Coupler characterization and evaluation of the cancellation method by using a VNA. Coupling 

(circles): 12 dB @ 860 MHz, Isolation without carrier suppression (triangles): 19 dB @ 860 MHz, and 

Isolation with carrier suppression (squares): 46 dB @ 860 MHz.  
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TABLE 8.1 

EVALUATION OF CW ISOLATION 

 

Tuner Impedance 

ZL @ Port 3 

PIN @ Port 1 (dBm) PCPL @ Port 4 (dBm) ISO = S41=|PIN-PCPL| 

(dB) 

50Ω 30.8 11.0 20.8 

(24+14j) Ω 30.8 -10.0 40.8 

 

8.4.3. MS self-jamming suppression  

Multi-sine self-jamming cancellation was investigated in [XIII] using the approach described in the 

previous section. The same setup of Fig. 8.4 was used, but now with a 9-tone MS (Δω = 2 MHz) as 

the transmitted signal. The Tx and Rx spectra were acquired using the VSA and the optimal load 

impedance of the coupler was adjusted to minimize the Tx to Rx leakage power. It was found that: 

1) the best result is obtained when the suppression is optimized for the central subcarrier. 2) the MS 

suppression is further improved by using a narrow-band BPF (Fc = 866 MHz and BW = 2 MHz), 

which attenuates the lateral components and also reduces the crest factor of the leakage signal. The 

results of [XIII] are summarized in Table 8.2 where an isolation of more than 60 dB is observed 

when using the BPF.  

TABLE 8.2 

EVALUATION OF MS ISOLATION 

 

Tuner Impedance             

ZL @ Port 3 

PTX_AV 

(dBm) 

PRX_AV 

(dBm) 

Iso_AV                    

(dB) 

PTX_fc 

(dBm) 

PRX_fc 

(dBm) 

Iso_fc                    

(dB) 

50Ω 10.8 -10.8 21.6 -3.6 -21.5 21.5 

(22+10j) Ω 10.8 -27.5 38.3 -3.6 -58.1 54.5 

(22+10j) Ω          
plus a BPF 

10.8 -55.5 66.3    

 

8.4.4. Adaptive self-jamming cancellation 

In the previous section, the self-jamming suppression was performed in a static manner; the 

optimal setting for the impedance termination was manually found just once and no further 

adjustment was done. However, as the wireless channel changes (due movement of objects and 

people, tag motions and arbitrary scattering), the self-jamming signal component also changes and 

consequently the optimal point is lost. Moreover, for readers using FHSS (Frequency Hopping 

Spread Spectrum), the channel changes as the frequency is changed. This imposes the need for an 

adaptive self-jamming cancellation scheme capable of automatically suppressing the jammer and 

dynamically adapt to the changes of the wireless channel. Hence, the control unit must be able to 

continuously monitor the residual power level after cancellation and adaptively compute the 
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optimal control parameters of the canceller signal that minimize the residual power level after 

cancellation. In order to independently control the amplitude and phase of the canceller signal, two 

independently-controllable variables or control parameters are required. In Fig. 8.2(a), the control 

parameters are the amplitude and phase of the canceller signal [7][12]. In this case, the control is 

achieved directly by using an attenuator/amplifier and a phase-shifter. In Fig. 8.3(b), the in-phase 

and quadrature components of a vector modulator are used as control parameters [5][8][15]. Other 

approaches may require the control of the resistance and reactance of a load, as in [11] where two 

variable capacitors are used to vary the impedance termination presented to a coupler.   

In the next examples in this section, we consider the configuration of Fig. 8.3(a), which uses an 

attenuator and a phase shifter. Fig. 8.6 depicts the theoretical RSSI of the residual signal at the 

output of the summator, as a function of the attenuation and phase shift of the canceller signal 

),( CC  , while the jammer signal is kept unaltered. This set of values, taken around the optimal 

point, shows that the ),( CCRSSI   presents a convex shape with a global minimum at the optimal 

point. In implementations using vector modulation to control the canceller signal, the RSSI curve 

presents a similar behavior with respect to the in-phase and quadrature gains of the vector 

modulator [15]. Next, we present two algorithms that can be used to find the optimal point settings, 

namely full search and gradient descent search [35]. 

Table 8.3 summarizes several implementations of self-jamming cancellation found in the literature 

in terms of achieved isolation, frequency/bandwidth and type of system (including not only passive 

RFID but also radar and full-duplex wireless communication systems).   

 

Fig. 8.6 
),( CCS 

 - theoretical RSSI of the residual signal after self-jamming cancellation depending on the 

attenuation and phase shift of the canceller signal. In this example, the jamming signal has a 0º phase shift 

and 20 dB attenuation w.r.t. the sample of the Tx signal used for cancellation.  
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A. Full search algorithm  

As the name suggests, “full search” is a brute-force algorithm that evaluates all possible 

combinations of the control parameters and then selects the one that produces the best result 

(minimum residual RSSI). For instance, if the control parameters (attenuation and phase) assume N 

possible values, then a total of N
2
 adjustments and measurements are required to find the optimal 

point. In its primitive form, full search is very time consuming, which can make it unpractical. 

Depending on the overall time needed to treat each setting point (including parameters setting time 

and RSSI measurement time), this technique may become extremely slow, which prevents it from 

following the changes of the medium or even from finding the optimal point [35]. Nevertheless, 

due to its simplicity, improved versions of this algorithm are employed in commercial ICs, such as 

the Impinj RFID reader chip Indy R2000 [13]. In order to reduce the scanning time, the algorithm 

is divided into two steps. In the first step, a full scan search with a coarse grid is performed, in 

which only a fraction of the N
2
 points is evaluated. From this first search, the algorithm identifies 

the best point. In the second step, a finer search is performed around the previous best setting. This 

strategy drastically reduces the overall time needed to depurate the optimal point. In the example of 

Fig. 8.7, we would need to scan only 74 points (7
2
 + 5

2
), rather than N

2
=961 points (N=31). Fig. 8.7 

depicts an amplitude-phase constellation and illustrates optimal point search similar to that in 

Impinj IC [13]. This is based on the combination of a coarse grid search and a fine grid search. 

Here, the control parameters are attenuation and phase shift, rather than the in-phase and quadrature 

components of the vector modulator used in Impinj IC [13]. The algorithm first evaluates all the 

possibilities corresponding to the blue points (coarse grid) and finds the coarse best point, which is 

a first non-optimal approximation. Afterward, a finer scan is performed in a finer 5x5 grid around 

the previous best point (red points) in order to find the final optimal point. In order to track the 

optimal settings, the fine scan should be repeated periodically.           
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 Fig. 8.7 Amplitude-phase constellation: the blue points correspond to the coarse search grid and the red ones 

correspond to the fine search grid. Note: although the same number of points (N) is considered for both 

control parameters, different values can be used as convenient. 

 

B. Gradient descent search algorithm  

The optimal point can be more efficiently tracked by using the gradient descent algorithm, which is 

an iterative approach to approximate the minimum of a function, based on its gradient. Some 

implementations of this method can be found in [5] and [16]. Next, we detail an example (Fig. 8.8) 

that can be used in the configuration of [Fig. 8.2(a)]. In each step, the algorithm computes the local 

gradient of the RSSI function in order to determine in which direction the function is decreasing. 

Based on this information, it then computes the values for the next setting of the control 

parameters. In our proposal, in order to compute the local gradient, the algorithm samples three 

points for RSSI. First it samples the current point RSSI ),(  . Then, by separately changing the 

two control parameters ( and  ) by small amounts (  and  ), it samples more two points: 

RSSI ),(    and RSSI ),(   . The slope vector or gradient of the RSSI curve with 

respect to the control parameters    , , is given by equation (8.3). The gradient descent rule is 

defined by equation (8.4), which is used to determine the value of the control parameters to be used 

in the next step of the algorithm. The gradient descent equation imposes that the control parameters 

are always updated in the descendant direction of the function.    
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(8.4) 

where  and   are real positive numbers referred to as step size parameters. After updating the 

control parameters according to the previous equations, the new residual ),( RSSI value is 

sampled. If this value is lower than the current RSSI value, the algorithm continues and then 

repeats the process, according to (8.3) and (8.4). Supposing that the algorithm converges, the next 

values will then be closer and closer to the optimal point (minimum RSSI). If, at any point, the new 

value of the residual RSSI is higher than the previous one, it means that the algorithm is close to 

the minimum. It then decreases the step size (both the derivation step size   and  , and the 

algorithm step size    and   ), reverses the direction, and attempts to converge to the 

optimal point. The optimal point is found when the minimum step size is reached. Using variable 

step size improves the algorithm performance. At the beginning, the step size is set to a relatively 

large value and, as the algorithm approaches the optimal point, the step size is gradually decreased. 

The algorithm should also be able to detect false alarms caused by noisy minimums. This can be 

done, for instance, by discarding minimum values above a predefined threshold value for the 

minimum. Once a valid minimum is found, the algorithm presented in Fig. 8.8(a)-(b) enters a 

monitoring state, in which it keeps the control parameters constant (at the optimal point) until a 

condition change is detected. This is done by continuously measuring the current RSSI and 

comparing it with the optimal one. If the difference is larger than a predefined value, the algorithm 

updates the step size according to this difference and begins to search again for the optimal point. 

Updating the step size according to the deviation from the optimal RSSI improves the algorithm 

because, if the difference is not big, the algorithm doesn’t need to be restarted from the beginning 

with the largest step size, which would take much more time to converge. Figure 8.8(a) depicts the 

flowchart of the described gradient descent algorithm, while Fig. 8.8(b) presents an alternative 

implementation. For improved algorithms with faster convergence, the reader may refer to [35] and 

[36].  
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Fig. 8.8 Adaptive cancellation based on gradient descent algorithm. (a) Direct implementation of gradient 

descent. (b) Alternative implementation.  

 

TABLE 8.3 SUMMARY OF SELF-JAMMING CANCELLATION IMPLEMENTATIONS  

 
Isolation System Comment Ref. 

41-46 dB UHF RFID Continuous adaptive cancellation [19] 

>30 dB RADAR 26 GHz, wide bandwidth 1.7 GHz  [14] 

40 dB RFID UHF Broadband, 82 MHz bandwidth   [8] 

up to 50 dB UHF RFID Reflective load, static adjustment  This work 

70-80 dB UHF RFID Single  frequency , 919 MHz [6] 

45 dB Full-duplex WiFi 40 MHz OFDM Tx signal [15] 

up to 73 dB UHF RFID Multi-antenna: 1Tx and 2Rx antennas [9] 

50-65 dB UHF RFID At least 50 dB @20 MHz bandwidth  [7] 
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8.5. Baseband DC-offset removal techniques 

As a consequence of self-jamming in DCR receivers, DC-offsets may appear at the baseband and 

may exhibit large values if no self-jamming suppression is used. On the other hand, if the ADC has 

a limited dynamic range, it is important to remove the DC-offset in the analog domain prior to 

signal digitalization. However, a simple high pass-filter (simple AC-coupler) may not be effective. 

The AC-coupler capacitor may be pre-charged with an incorrect initial condition during the reader 

transmission period and transient effects can then lead to information loss, especially for high data 

rates [1]. An improved non-linear switched high-pass filter, with pre-charged initial condition is 

presented in this section. This filter removes both the DC-offset and the transient effect, otherwise 

imposed by a simple high-pass filter. A mixed analog-digital alternative is also presented, where 

the DC-offset is removed with an analog high-pass filter and the transient effect is cancelled in the 

digital domain. If the ADC has enough dynamic range (resolution), the analog filter can be 

discarded and the DC-offset can be removed in software after baseband digitalization. We 

evaluated this approach  in a high performance FPGA platform (including also high dynamic range 

ADCs). However, these high performance requirements increase the cost and may not be suitable 

for low-cost implementations.  In our experiments, the down-converted DC-offset and transient 

effects are moderate since a low power level is transmitted (12 dBm in the DSP platform and 18.30 

dBm in the FPGA platform). However, these effects can be more severe for higher transmitted 

power levels [37].   

       

8.5.1. Experimental hardware 

Two different SDR hardware platforms were used in the following experiments. The first is one of 

two the RFID readers built in the scope of this thesis based on DSP/MCU technology and the 

second is based on FPGA technology. The former is depicted in Fig. 8.9, and details of the latter 

can be found in [XIV].  

 

8.5.2. DC-offset elimination and transient issues 

DC removal with a simple high-pass filter (HPF) can corrupt the signal received from the tag, due 

to the transient behavior of the filter. The capacitor value of the filter (Fig. 8.10) should not be too 

high, as the time constant of the filter would be too long and the transient behavior would be quite 

accentuated. On the other hand, the value cannot be too low, as this would excessively attenuate 

important frequency components of the received tag baseband signal. In our experiments, the 

transponder-to-reader data rate is in the range of 40 kbps to 640 kbps, and a 100nF series capacitor 

is used.  
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Two aspects contribute to tag information loss due to transient effect (Fig. 8.11). First, if the filter 

is pre-charged with a wrong initial condition during the prior reader command period, then the 

filter will take too long to recover. Second, if the transponder-to-reader data rate is too high, then  

significant part of the information signal (if not the entire signal) may fall in the transient region 

and may be lost during the transient period [see Fig. 8.11(b)].        
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Fig. 8.9 (a) Block diagram of the SDR RFID reader. Notice the use of a non-linear switched HPF. (b) 

Photography of the implemented hardware where the following blocks are visible: 1 – EPC tag mounted in a 

stand, 2 – Tx antenna, 3 – Rx antenna, 4 – a computer power supply used to supply the reader, 5 – Baseband 

receiving PGA including filters, 6 – DSP/MCU development board, 7 –RF part including up-converter and 

down-converter mixers and amplifiers, 8 – VCO/PLL/frequency synthesizer.  
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Fig. 8.10 Receiver using a simple high-pass filter capacitor to remove DC-offset before LPF and 

amplification. This simple HPF imposes a transient effect that corrupts the received signal. 

 

Fig. 8.11 (a) Reader command followed by tag RN16 response. (b) Zoomed tag response. The transient effect 

imposed by the high-pass filter is visible. The tag data rate used is 320 kbps. 

 

A. DC-offset removal using an analog HPF and transient cancellation in software   

Next, we propose a simple approach to correct the transient effect in software. The DC is removed 

by using a regular analog HPF and the transient-affected signal is then treated in software. The 

digital transient cancellation is achieved by computing the moving average of the transient-affected 

signal and subtracting it from the corrupted signal as follows,   

            
     

       
 

 
       

   

 
                                   

   

 
   

(8.5) 

where n is the present sample number, the subtracted term is the moving average of the transient-

affected signal [SBB(n)], and w is the window or span size of the average. The moving average 
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performs a low-pass filtering, whose cut-off frequency depends on the size of the window w. This 

filter can be equivalently implemented as a FIR filter, with coefficients weight equal to 1/w. Fig. 

8.12 depicts the tag response with transient effect and the respective moving average (negative) for 

two different window sizes (31 and 101 samples). Increasing the window span provides a smoother 

moving average curve, however the computation time is increased. Fig. 8.13 shows the corrected 

signal, as given by (8.5). An additional low-pass filter should be used to remove noise and high 

frequency components as done in the FPGA section. In this example, the reader baseband data is 

generated in the DSP and the down-converted received signal is captured using an oscilloscope and 

then is processed in Matlab.  

 

Fig. 8.12 Tag RN16 response with transient effect (blue) and the respective (negative) moving average (red): 

a) w = 31 samples, b) w = 101 samples  

 

Fig. 8.13 Corrected signal, centered at DC. Additional low-pass filter should be used to remove noise.  

 

8.5.3. Analog DC-offset removal using a non-linear HPF 

Figure 8.14 presents an improved non-linear switched high-pass filter, with pre-charged initial 

condition. This filter removes both the DC-offset and the transient effect otherwise imposed by a 

simple high-pass filter. Two low-cost C-MOS transistors configured as switches are used in this 

scheme to control the isolation and the initial condition of the filter. The principle of operation of 
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the filter and respective waveforms are shown in Fig. 8.15. The series switch (S1) is introduced to 

isolate the receiver during the reader command transmission period and the shunt switch (S2) is 

used to control the capacitor charging. During the reader command transmission, switch S1 is open 

and S2 is closed to isolate the receiver. At the end of the reader command transmission (in the CW 

transmission period), S1 is closed and S2 is kept closed such that C is grounded and is pre-charged 

to the DC-offset value generated by the reader CW. During the reception of tag information, S2 is 

open and S1 is kept closed. Hence, at the initial instant of tag transmission, the pre-charged DC-

offset is subtracted from the incoming signal, thus avoiding the transient effect and centering the 

output signal at 0V. After, the signal is passed through a signal conditioning (to set proper DC 

level) and amplification stage. The switches are controlled by DSP IO pins and timings are 

obtained with DSP timers. The transient-free signal obtained with this scheme is presented in Fig. 

8.16. It is important to note that the charging time must be properly set such that there is enough 

time for the capacitor to charge. Compared to a traditional implementation of this filter which uses 

a single switch (only S2), our implementation offers an improved isolation thanks to the 

introduction of S1, that completely isolate the receiver during transmission. Figure 8.16(a) depicts a 

reader command followed by a tag response after passing through the described non-linear high-

pass filter. The zoom around the tag response [Fig. 8.16(b)] clearly shows the effectiveness of the 

approach in both eliminating the transient effect and centering the signal around 0V. 
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Fig. 8.14 Down-conversion mixer followed by a non-linear switched high-pass filter, with pre-charged initial 

condition, followed by low-pass filter, signal conditioning and baseband amplification. The output of the 

PGA is centered at proper DC level for ADC conversion (1.5V provides optimal ADC dynamic range). 
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Fig. 8.15 Principle of operation of the non-linear filter and respective waveforms. 

 

                                           (a)                                                                                       (b) 

Fig. 8.16 (a) Reader command followed by tag RN16 response after passing through the non-linear high-pass 

filter. (b) Zoom around tag response. Using the two switches, the pulses of the down-converted reader 

command are also suppressed.  

8.5.4. Software DC-offset removal using a FIR HPF
11

 

In this section, it is assumed that the baseband stages (mainly the ADC) have sufficient dynamic 

range to properly handle the received signal. The DC removal is performed in the digital domain by 

using a high-pass Finite Impulse Response (FIR) filter in a FPGA-based platform. The filter bank 

of the receiver also includes a low-pass FIR filter which is used to filter out noise and higher 

frequency components. Both filters were designed in Matlab and their coefficients were then 

imported into the FPGA hardware. The following filter parameters were used to isolate a tag 

                                                           
11

 This part of the work was done in collaboration with colleagues from FPGA field (Prof. Arnaldo Oliveira 

and João Santos). The complete work is presented in [XIV]. 
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response with data rate of 204 kbps: sampling rate after decimation by 20, FS = 3.072 MHz, the cut-

off frequency and the order of the high-pass filter were respectively FC_HIGH-PASS = 60kHz and 

NHIGH-PASS = 50, and the cut-off frequency and the order of the low-pass filter were respectively 

FC_LOW-PASS = 1 MHz and NLOW-PASS = 20. More implementation details can be found in [XIV]. 

First, the RN16 (Fig. 8.17) of a ISO18000-6C tag was obtained from a real tag interrogation, then it 

was imported into Matlab were it was passed through the FIR filter chain. Figure 8.18 shows the 

signals at different points of the receiving chain. Afterward, the FIR filters were implemented in 

FPGA hardware. The obtained results are presented in Fig. 8.19.  

 
Fig. 8.17 Received tag response (RN16) sampled at 61.440 MSPS. Captured by the FPGA. 

 
Fig. 8.18 RN16 signals at the different stages of the FIR filter chain implemented in Matlab. (a) Signal 

spectrum before FIR filter chain. (b) Signal spectrum after low-pass FIR filter to remove noise and decimator 

by 20 to reduce sampling rate. (c) Spectrum after high-pass FIR filter to remove DC component. (d) Time-

domain signal before low-pass filter (bottom) and after high-pass filter (top). These results were obtained in 

Matlab while the ones in the next figure were obtained using the FPGA test bed. 
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(a) 

                      

(b) 

Fig. 8.19 Filtered RN16 signal without DC component obtained in FPGA. (a) Frequency spectrum, b) Time-

domain waveform centered at 0V.  

 

8.6. Conclusions 

Strong self-jammers can not only saturate the receiver front-end of passive readers, but also 

propagate the phase noise of the local oscillator into the receiver. This can degrade the sensitivity 

of the receiver and reduce the reading range and tag identification rate. For this reason, self-

jamming cancellation schemes are necessary to enhance the isolation performance of bistatic and 

monostatic systems, thus preventing excessive Tx power to leak into the receiver.  
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Typical wireless and mobile systems operating in full-duplex mode require wideband cancellation, 

because they need to cancel out wideband modulated signals [15-17]. In passive RFID systems, 

though, bandwidth requirements are more relaxed since the signal to be suppressed is an 

unmodulated CW. Nevertheless, moderate bandwidth capability is desired in order to suppress not 

only the CW, but also the leaked LO phase noise [8]. Broadband suppression may also be desired 

in approaches that use non-conventional signals, such as the MS signals studied in this thesis,  

which are inherently of wide band.  

In this chapter, we presented state-of-the-art self-jamming suppression techniques, including 

approaches commercially used in modern RFID reader ICs. We also investigated MS self-jamming 

cancellation and came to the conclusion that CW schemes can also be effective for MS signals 

[XIII]. We studied adaptive algorithms for changing wireless channels. In the future, these 

algorithms will be applied to the developed SDR reader.   

The generation of large DC-offsets, which is a direct effect of self-jamming in DCR receivers, is 

challenging for the baseband stages, mainly the ADC. Hardware and software approaches were 

presented to deal with DC-offsets, namely enhancements to the basic high-pass filter circuit, which 

allows the suppression of not only the DC-offset, but also the transient behavior.         
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9. A BATTERY-LESS RFID REMOTE CONTROL SYSTEM  

9.1. Introduction 

The remote control is one of the most widespread convenience devices ever invented. It is used to 

wirelessly control a variety of devices, such as TVs, doors, game consoles and air-conditioning 

equipment. Conventionally, remote control systems are based on infrared (IR) technology and the 

controller unit requires batteries to operate. Such systems present, however, some drawbacks 

namely the need for direct line-of-sight, the cost associated to battery maintenance and the limited 

lifetime of batteries. Furthermore, disposable chemical batteries at the end of lifecycle generate 

toxic waste that take hundreds of years to decompose, representing a risk for the environment and 

for the public health. In Portugal, we estimate an average of more than 23 Millions of batteries 

being disposed every year [XV].  

An approach to mitigate the battery problem in conventional IR-based devices consists of using an 

event driven implementation in which the system is always in deep sleep mode and is waken up 

only when the user presses a key. This can significantly reduce the power consumption, extend the 

battery lifetime and reduce the disposal of chemical batteries. Another approach is the use of 

rechargeable batteries. However, this is not cost-effective for low-end home devices. In this 

chapter, we propose an eco-friendly battery-free solution based on WPT and passive RFID. 

The first wireless remote control invented by Eugene Polley in 1955 used a light beam to control a 

TV [1]. At that time, the RF approach was not a viable option due to basic technology limitations. 

Due to its cost-effectiveness and low implementation complexity, the IR technology became 

preferred and widespread in the past decades. However, as the RF/microwave industry has grown 

and the price of components have been considerably lowered, radio has became a valid option, and 

it is likely that, in the future, radio will replace IR technology. Due to the advantages of radio 

technology, the industry now provides some RF-based remote control solutions for home devices. 

In 2009, ZigBee Alliance and a consortium of consumer electronics manufactures have announced 

a new technology/standard, especially tailored for home automation, the RF4CE (RF for Consumer 

Electronics) [2]. Nevertheless, the traditional radio approach based on super-heterodyne 

architecture is still needing disposable batteries.  

Energy harvesting from mechanical strain energy using piezoelectric effect [3][4] has been 

proposed for use in low-power wireless devices (e.g. keyless entry and battery-less home control). 

In [5], the energy to power up a battery-less remote device is harvested from mechanical energy 

generated by the user when pressing a piezoelectric harvesting button. Despite the limited energy 

generation capability of current piezoelectric devices, this approach was claimed to generate 

enough energy to power up a digital encoder and a radio transmitter for use in battery-less devices 

such as light switches. This chapter presents a proposal [XV][XVII] to eliminate the batteries by 
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using WPT and passive RFID concepts [6][7].  
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                                      (a)                                                                      (b) 

Fig. 9.1(a) Diagram of the proposed multi-RFID ReC. (b) alternative passive sensor-alike configuration. 

 

9.2. The proposed system 

The proposed Remote Control (ReC) is based on a multi-RFID approach in which each RFID chip 

is associated to a key as in Fig. 9.1(a). Alternatively, a passive sensor-alike configuration as in Fig. 

9.1(b) can be used, in which a key decoder is used and a single RF front-end is shared by the keys. 

In order to read the transponders’ ID and to identify the respective key, the Device to Control 

(DeC) incorporates an RFID reader. As an alternative, the RFID reader can be externally mounted 

on the DeC [refer to Fig. 9.9(a)]. This strategy guarantees compliance with already installed 

equipment by using an RFID-IR interface. A switch-controlled resonant circuit is used to activate 

each RFID chip [see Fig. 9.2(a)]. In order to interconnect the N passive RFID chips, a multi-port 

microstrip network [Fig. 9.2(b)] is proposed to guarantee that, by default all the chips are in idle 

mode, and once a key is pressed the respective transponder goes to active mode and is read by the 

reader to identify the pressed key. The inactive transponders do not interfere with the active one.  

 

9.2.1. A multi-port switched network 

First, a mechanism is required to allow the user to activate and deactivate the RFID chips. For this 

purpose, a resonant switch controlled LC circuit is parallel-connected to the matched chip. By 

default the switch is closed and the series circuit resonates at the operating frequency, short-

circuiting the RFID chip. In this state the chip is unable to respond to the reader. Once the user 

presses a key, the respective switch opens and the series circuit no longer resonates. In this state, 

the reader is allowed to interrogate the chip. This activation/deactivation circuit is depicted in Fig. 

9.2(a).  
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Additionally, a simple and low-cost multi-port network [Fig. 9.2(b)] is proposed to interconnect the 

N RFID chips and the respective N switch-controlled resonant circuits. This network must 

guarantee that only the active RFID chip is connected to the antenna (port ZIN) while all the 

inactive chips do not interfere with the active one. Moreover, the structure should dynamically re-

arrange as the user presses different keys. Some similarities exist between the proposed multi-port 

network and traditional Single-Pole N-Throw (SPNT) switches [8-10]. This multi-port network 

could be considered as such a type of switch, connecting one of N RFID chips to a single antenna. 

However, while SPNT switches are electrically controlled (typically using PIN diodes), the 

proposed multi-port is mechanically controlled by the user through contact switches. Furthermore, 

in our implementation, the termination load of each port in inactive mode is tuned to the operating 

frequency by using a resonant circuit [see Fig. 9.2(b)]. The proposed network should meet the 

following requirements: 

 Only the active port n (Zi=n) should be routed to the antenna.   

 All other ports do not interfere with port n and remain invisible to the antenna port. 

 The insertion loss between the antenna port and the active port n is ideally 0 dB; the cross-

talking between the antenna port and all inactive ports and the cross-talking between the 

active port and all other are ideally null. 

 By default all ports are terminated with a short, Zi≠n = 0. 

 The active port termination should be set to the characteristic impedance Zi=n = Z0.        

 

Considering the lossless model of a microstrip transmission line, the input impedance looking into 

each branch i of the network of Fig. 9.2(b) is given by:   
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where i=1,2,…n…N, N is the total number of ports of the network, corresponding to the total 

number of keys of the ReC, Zi is the load attached to each branch i, Z0 is the characteristic 

impedance of the system, β1 is the phase propagation constant and l1 is the physical length of the 

line. Similarly, the impedance ZA
’
 can be obtained from ZA as follows:  

 

)tan(

)tan(

220

220
0

'

ljZZ

ljZZ
ZZ

A

A
A








  

(9.2) 

 

If the central transmission line (β2l2) phase-delays the signal by a multiple of half wavelengths, (β2l2 

= k.180º), then 0)tan( 22 lk  and consequently AA ZZ ' . The implication of this is that, if lossless 

lines are considered, then the central lines have no impact in the circuit. However, such lines allow 



170 

 

an increased freedom in the circuit layout design. Considering that AA ZZ ' , the input impedance of 

the circuit in Fig. 9.2(b) simplifies to a parallel impedance arrangement, 
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and the input impedance of a general circuit of this kind (with N ports) is given by (9.4). The phase 

shift of each branch is set to be λ/4 plus a multiple of λ/2 (9.5). 
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The impedance of each port of the network, Zi, can assume two distinct impedance values 

corresponding to the active and inactive transponder states: 
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Considering a N-port network in which port n is active and matched to the system characteristic 

impedance (Zi=n = ZTAG_MATCHED = Z0) and assuming that all other ports are short-circuited to ground 

(Zi≠n = 0) via the resonant circuits [see Fig. 9.2(a)], according to (9.1)-(9.6), the input impedance 

ZIN and the impedance seen by the antenna are equal to the same value (9.7). 
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Previous results can be summarized as follows: if only one chip is activated and matched to Z0, 

while all other chips are short-circuited to ground, then only the matched active chip (Zn = Z0) is 

seen by the antenna.  

                                                           
12

 Ideally this should be a 0Ω impedance, in practice an approximate short-circuit is used. 
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                              (b)                                                     (c) 

Fig. 9.2(a) Port termination composed of a switch-controlled series resonant circuit in parallel with a matched 

RFID chip. (b) Model of the multi-port microstrip network with N+1 ports. Port Zin is the shared antenna port 

and ports Zi are the N key ports. (c) Illustration of a 4-key ReC in which chip RFID4 is active and all other 

are inactive. The active chip is routed to the antenna port. 

In order to better understand the dynamic routing mechanism involved in the ReC circuit, an 

illustrative example is presented in Fig. 9.2(c). Let´s consider a 4-key ReC and assume the user has 

pressed the key number four, forcing the normally-closed switch to be open. Consequently, the 

impedance termination of branch four becomes equal to Z0 (corresponding to the impedance of the 

matched chip RFID4). On the other hand, all other chips are in parallel with a short circuit, 

imposed by a resonant circuit at the operating frequency, so that the impedance seen by the 

deactivated branches is zero. These null impedances are transformed into open circuits by the 90º 

phase shifts imposed by the quarter wavelength lines. In this sense, the short-circuited chips are 

deactivated and do not interfere with the rest of the circuit as illustrated in Fig. 9.2(c), where the 

crosses represent infinite impedances that do not have impact in the parallel impedance association. 

Consider now a different scenario, where RFID1 or RFID2 is activated and RFID3 and RFID4 are 

deactivated. In this case, the infinite impedance (open circuit) appearing at the right crossover node 

would be transposed to the left crossover node by the central half wavelength line (180º phase 

shift). Again the infinite impedance would have no effect on the parallel association of impedances 
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and would not interfere with the rest of the circuit. This is in agreement with equation (9.2).  

9.3. Simulation and measurement results 

9.3.1. RFID chip and switch characterization and matching  

EPCGlobal compliant NXP G2XN chips (manufacture ref. SL3S1002FTT) have been used in this 

work. In order to match the chip impedance, it is necessary to first know its Large Signal S-

parameters. Details of UHF RFID chip measurements can be found in [11]. It is also important to 

characterize the RF behavior of the switches. The switch S-parameters model is extracted and 

imported into ADS simulations for further evaluation and design. In order to have accurate 

measurements both for the RFID chips and switches, first a calibration procedure is conducted. 

Since we are dealing with a non-insertable DUT (Device Under Test) and the reference plane must 

be exactly at the pins of the DUT, a commercial SOL (Short, Open and Thru) calibration kit is not 

suitable. For this reason, we have built a custom SOL calibration kit  [see Fig. 9.3]. SMA 

connectors are used as the fixture for the DUT and for the calibration standards (mounted on the 

edge of the connectors). This allows the definition of a precise reference plane since both the 

calibration standards and the DUT are placed at the same physical location. Moreover, this will 

guarantee a straightforward characterization and specification of the standards in the Vector 

Network Analyzer (see reference [12]). To perform calibration and measurements, the calibration 

standards and DUT are mounted at the top of the SMA connectors [see Fig. 9.3]. The short 

standard is obtained by short-circuiting the inner SMA conductor to the outer conductor, the open 

standard is realized by an open-circuit SMA connector and the load standard is build up with a high 

quality 50 Ohms termination (manufacture ref. CHF1206CNT) on the top of an SMA connector. 

The chip input impedance is depicted in Fig. 9.4. As can be observed, the non-linear impedance 

varies with the input power level. Thus, the matching circuit should consider the desired input 

power level, precisely the minimum input power level required to activate the chip. This 

information can be drawn from Fig. 9.4, in which the activation point is characterized by an 

accentuated fluctuation in the real part of the chip input impedance [13]. The knowledge of the 

unmatched activation point ( dBmPunmatched 5 ) and respective reflection coefficient (

86.0|| 2 unmatched ) allows the calculation of the actual chip activation level according to (9.8), 

dBmPmatched 13 .  

)||1( 2
unmatchedunmatchedmatched PP   

(9.8) 
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Fig. 9.3Custom calibration standards and DUTs mounted on the SMA fixtures 

                              
Fig. 9.4 Measured input impedance of the RFID chip. A simple L-matching circuit is used to match the chip 

to 50Ω. 

                                      
Fig. 9.5 Measurements of the stand-alone switch (points A and B), and measurements of the switch-controlled 

resonant circuit in parallel with the matched RFID chip. When the switch is closed the series circuit resonates 

at 866.6 MHz imposing an approximate short circuit (point C). When the switch is open the input impedance 

is approximately equal to the matched chip impedance (point D).  
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Figure 9.5 depicts the measured input impedance of the switch alone (point A and B) and complete 

port termination (points C and D). Point A corresponds to the default closed position in which the 

switch has a predominant inductive behavior and point B corresponds to the open position in which 

the switch behaves predominantly as a capacitor. In the default (closed) state of the switch, the 

series switch-controlled resonant circuit resonates at 866.6 MHz imposing a short circuit (point C). 

When the switch is open, the input impedance of the circuit approximates the matched chip 

impedance (point D), which means that the series switch has no significant impact. The series 

inductance (Lres) and capacitance Cres are inserted to achieve resonance according to (9.9). The port 

termination is formed by the switched resonant circuit in parallel with the matched RFID chip.  

9.3.2. Multi-port simulation and measurement 

First, a four-port network is simulated in ADS, prototyped and measured in order to validate and 

evaluate the proposed multi-port scheme. In order to reduce the overall circuit size, microstrip line 

meandering is used. An electromagnetic simulation is also carried out using Momentum 

electromagnetic simulator to access the inter-coupling between the meandered lines.  Fig. 9.6(a) 

shows the fabricated four-port network. Return loss of the antenna port (P1), S11, and of one of the 

key ports (P2), S22, are measured and compared with simulations. Also, the insertion loss (S21) 

between the antenna port and the probed key port is evaluated. Both the simulation and 

measurement scenarios consider that only one of the keys is pressed by the user. For this purpose, 

the active port is terminate with 50Ω both in simulations and measurements and the remaining 

ports are terminated with 0Ω by using a via-to-ground. This represents the ideal case in which the 

series circuit exhibit infinite impedance when the switch is open and zero impedance when the 

switch is closed. The obtained results are presented in Fig. 9.6(b). Simulated and measured return 

loss values agree well and indicate a good performance in the band of interest (return loss (|S11|, 

|S22|) better than 17 dB). The insertion loss (|S21|) also achieves an acceptable value around 0.6 dB.    

In the second scenario, a multi-port with a larger number of ports is built [see Fig. 9.7(a)]. In this 

case the objective is to evaluate the performance of the network with respect the number of ports 

and distance between the antenna port and the active port. This allows to evaluate the performance 

degradation as the number of keys and the distance from the antenna port increases. The following 

quantities are measured: return loss of the antenna port (S11) and the active port n (Snn), insertion 

loss between the antenna port and the active port (S1n), isolation between the active port and an 

adjacent inactive port (Sn,n+1) and isolation between the antenna and an inactive port adjacent to the 

active one (S1,n+1). All these measurements are made as a function of the active port number or 

distance from the antenna (n). The evaluated circuit is depicted in Fig. 9.7(a). The upper branches 

are terminated with short-circuits simulating inactive ports, while the lower branches are 

terminated with switch-controlled resonant circuits, allowing the activation and deactivation of the 
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ports during the measurements. In addition, the lower branches are probed through SMA 

connectors. When not connected to the VNA, the active port n or the antenna port is terminated 

with a 50Ω load to keep the matching condition. Results are presented in Fig. 9.7 and Table 9.1. 

    
                                        (a)                                                                          (b) 

Fig. 9.6 (a) Four-port network in which the antenna port (P1) and one of the key ports (P2) are probed using 

the VSA in order to evaluate return loss and insertion loss performance. (b) Simulations (solid line) and 

measurement (crosses) of the four-port network.  

     
                                         (a)                                                                           (b) 

 
                                   (c)                                                                              (d) 

Fig. 9.7 (a) Evaluated multi-port network, fabricated in low-cost FR4 substrate in a 50Ω environment. (b) 

Measured return loss of the antenna port as a function of n (number of the active port). (c) Measured insertion 

loss between the antenna port and the active port. (d) Measured isolation between the antenna and an inactive 

port adjacent to the active one. The isolation between the active port and an adjacent inactive port, not shown 

here, presents similar values.    

Via-to-ground  
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TABLE 9.1 

MULTI-PORT PERFORMANCE AT 884 MHZ  DEPENDING ON THE ACTIVE PORT (N) 

 

n Antenna 

Return Loss 

|S11| (dB) 

Port n  

Return Loss 

|Sn,n| (dB) 

Insertion 

Loss 

|S1,n|(dB) 

Isolation 

|S1,n+1| (dB) 

Isolation 

|Sn,n+1| (dB) 

2 14.6 18.3 1.8 31.0 31.1 

3 15.6 21.5 1.9 23.5 23.8 

4 16.6 25.1 2.0 29.2 29.3 

5 18.7 22.5 2.2 28.5 20.2 

6 19.2 22.9 2.3 28.4 28.3 

 

 

                                              (a)                                                                                     (b) 

 
   (c) 

Fig. 9.8 (a) Simple dipole antenna fabricated in FR4 substrate and respective return loss at 50Ω. (b) A three-

key remote control prototype using a star configuration. (c) A four-key remote control prototype that 

implement the four basic TV control functions (CH +, CH –, Vol +, Vol –).   

 

Table 9.1 summarizes the measured results of Fig. 9.7 for a single frequency (884 MHz). Although 

the central frequency is shifted away from the initial target frequency (866.6 MHz), the network 

presents a large bandwidth, maintaining good performance at 866.6 MHz. Good return loss values 

are achieved both at the antenna port as well as at the active port. Also, the insertion loss values are 
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acceptable. Compared to the previous measurement case (Fig. 9.6), the insertion loss performance 

is degraded because of the increase in the number of ports, which increases the circuit losses. In the 

multi-port circuit, as n increases, the insertion loss also increases. Therefore, there is a distance 

away from the antenna beyond which the performance is not satisfactory. Nevertheless, these 

values are quite acceptable considering the used substrate (FR4). An improved performance can be 

obtained with a better RF substrate. Also in terms of isolation, an acceptable performance is 

achieved.  

The multi-port as well as the antenna are designed in a 50Ω environment. In order to keep the ReC 

design simple and very low-cost, a dipole antenna is used. The antenna is fabricated in an FR4 

substrate, matched to 50Ω, and afterward it is integrated with the multi-port ReC circuit. The 

antenna return loss is depicted in Fig. 9.8(a), indicating a good performance at the band of interest. 

Alternatively to the dipole, a yagi-alike printed configuration similar to the one in [14] can be used 

to achieve higher gain while maintaining low size and complexity. Some ReC prototypes (including 

antenna) are depicted in Fig. 9.8(b) and Fig. 9.8(c).   

 

9.3.3. Reading range measurements 

Additional measurements have been conducted in an anechoic chamber in order to evaluate the 

reading range (Table 9.2), the impact of several blocking materials in the range (Table 9.3) and the 

dependence on the DeC antenna configuration and ReC orientation (Table 9.4). Using 5.5 dBi 

circularly-polarized antennas at the DeC transmitter and receiver, a maximum communication 

distance of 3.5 m has been achieved for a radiated power of 27 dBm. Table 9.3 shows that, 

cardboard, plastic and wood blockers are still allowing communication, while metal and the human 

body completely block the communication. On the other hand, all the tested materials inhibit a 

traditional IR remote control to communicate, which was expected since the blocking materials are 

opaque to the IR radiation. Table 9.4 presents the minimum transmitted power levels required to 

read the ReC using different transmitter/receiver antenna configurations.  
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TABLE 9.2 

READING RANGE AS A FUNCTION OF TRANSMITTED POWER 

 

Pt (dBm) R (m) 

17 1.05 

18 1.22 

19 1.39 

20 1.90 

21 2.24 

22 2.43 

23 2.53 

24 2.61 

25 2.98 

26 3.22 

27 3.50 
 

 

TABLE 9.3 

LINE-OF-SIGHT RELIABILITY TESTS  

 

Blocking Material R (m), Proposed ReC (Pt =17 dBm) R(m), IR Remote Control 

Cardboard 0.72 NC 

Rigid plastic 0.76 NC 

Metal NC NC 

Wood 0.62 NC 

Human body NC NC 
 

 

TABLE 9.4 

MINIMUM TRANSMITTED POWER REQUIRED TO READ THE REC AT 0.7M AWAY 

 

  Reader TX 

antenna 

Reader RX 

antenna 

Remote Control Dipole Antenna 

Polarizati

on angle 

(θ) 

Pmin (dBm) 

Azimuth: 

φ=0º  

Pmin (dBm) 

Azimuth: φ=45º  

A1 A1 0º 13.2 13.3 

45º 12.9 12.9 

90º 13.0 13.1 

A1 A2 0º 13.3 13.3 

45º 13.2 13.2 

90º 13.3 13.1 

A2 A1 0º 13.9 16.1 

45º 15.8 16.5 

90º NC NC 

A2 A2 0º 13.9 18.3 

45º 15.7 18.3 

90º NC NC 

A1 = High gain circularly-polarized patch antenna (5.5 dBi) 

A2 = Low gain dipole antenna 

NC = No Communication  
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9.4. Battery-free demonstration prototype 

In this section a functional demonstration prototype of the battery-free system is described, 

including the developed RFID ReC device and the DeC (a TV). As a proof of concept the remote 

control system is integrated in a TV equipment and some control functionalities are implemented 

and tested. To do so, the four-key ReC prototype of Fig. 9.8(c) is used to implement channel up 

(CH +), channel down (CH -), volume up (Vol +) and volume down (Vol -) functionalities.    

Concerning the communication between the proposed RFID ReC and the DeC, two options exist as 

illustrated in Fig. 9.1(a) and Fig. 9.9(a): the first case requires that an RFID reader front-end is 

embedded in the DeC during the manufacturing process. Such RFID front-end consists of a 

transmitter, which sends data (RFID commands) and wireless power to the ReC device, and a 

receiver responsible for receiving the backscattered  data from the ReC. In this case, both the RFID 

transmitter and receiver are embedded in the DeC and a common control unit can be used. 

Alternatively, an interface unit can be externally mounted in the DeC [see Fig. 9.9(a)]. Such 

interface unit comprises an RFID reader and antennas and an RFID-to-infrared converter that acts 

as a bridge between the RFID reader and the DeC. In this case, the RFID reader has an independent 

control unit. In this scenario, there is no direct electrical contact between the RFID reader and DeC. 

Instead, the communication between the ReC and the DeC is made in two steps: the ReC 

communicates with the interface unit by RF backscattering (RFID) and the communication 

between the interface unit and the DeC is implemented using infrared. This is can useful to 

incorporate the proposed scheme into an already installed system that uses conventional infrared 

technology such an old TV. 

A commercial RFID reader [15][16] is combined with a universal IR remote control to implement 

the aforementioned RFID-IR interface, which acts as a bridge between the RFID reader and the TV 

by receiving information from the reader via a digital I/O interface and sending this information to 

the TV via IR [refer to Fig. 9.9]. The used RFID reader can be controlled by a computer via an API 

(Application Programming Interface), allowing the implementation of custom applications. The 

used RFID reader provides a set of commands [16], namely to perform inventory of tags in the 

field, to read tags’ ID and to access tags’ memory. Such commands are accessible via TCP-IP 

interface by using a custom software application
13

. The RFID reader also provides digital I/O 

interfaces equally controlled by the software application. These I/O interfaces are used to interface 

with the universal IR remote control. The use of a universal remote control allows the prototype to 

adapt to several equipments.  

Figure 9.11 depicts the flowchart of the developed demo application. First, the application sets the 

RFID reader to be continuously scanning its field searching for RFID tags. Once a tag is detected, 

                                                           
13

 JAVA was used in this work to develop the demo application. 
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the application determines whether the read ID is valid or not. If it is a valid key ID, then the 

application activates the corresponding key in the universal IR remote control through the reader 

I/O interface. The universal IR remote control is placed in the proximity of the DeC, allowing line-

of-sight IR communication between the RFID-IR interface and the TV.  

Fig. 9.9(b) shows the complete transmitter/receiver setup including a TV, a commercial RFID 

reader and antennas, a computer running the demo application and a universal IR remote control. 

Figure 9.10 shows the aspect of the developed user interface. The application allows the 

configuration of the RFID reader (e.g. set output power level, start and stop field scanning) and the 

display of the tags’ ID being read. Information about the control actions being performed is also 

displayed (CH-,CH+,VOL-, VOL+).    

9.5. Conclusions 

In this chapter, a battery-less remote control system based on a multi-RFID scheme has been 

proposed. A multi-port microstrip network has been fabricated and measured, and preliminary 

evaluation shows the possibility of extending the concept to a larger number of keys. A complete 

prototype of the battery-free remote control system has been implemented and tested. The system 

has been integrated in a TV and, as a proof of concept, four basic control functionalities have been 

successfully implemented (CH-,CH+,VOL- and VOL+). Although the prototype has been tested 

with a TV equipment, this scheme can be used in many other situations where the use of batteries is 

undesirable. The proposed multi-RFID scheme can also be applied to battery-less keyboards, multi-

functionality cards or user-controlled cards. 

Since the proposed approach is based on a commercially available low-cost technology compliant 

with EPCGlobal standard [17], the ReC unit can be manufactured at a very low-cost.  

In this chapter, a backbone configuration with series chip activation mechanism is used. Appendix 

C presents several other configurations using series chip activation, parallel chip activation or a 

combination of both.   

  

 

 

 



181 

 

TV
 Alien RFID Reader

RFID 

Transmitter

RFID 

Receiver

RFID

Control

Unit

RFID-IR 

Adapter

IR

No electrical connection

PC

TCP-IP

 
(a) 

 

 
(b) 

Fig. 9.9 (a) Diagram of the system using an external RFID-IR adapter to interact with the TV. (b) 

Demonstration prototype: 1 – RFID reader, 2 – reader antennas, 3 – external RFID-IR interface and universal 

IR remote control.  

 

 
 

Fig. 9.10 Demo application software that controls the RFID reader. In this case the channel up icon is red 

indicating  that the corresponding key is being pressed in the remote controller. 

1 

2 2 

3 
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SET TCP-IP Connection

(Connect to RFID reader)

INIT RFID Reader

CONFIGURE Reader

(e.g. SET Output power level)

SCAN Reader’s Filed

IS THERE A TAG 

IN THE FIELD?

NO

YES

READ Tag

(Access Tag ID) 

VALID Key-ID?

YES

NO

DISPLAY Info

(e.g. CH UP icon gets red)

SET I/O Port according 

to read Key-ID

TV operation 

is performed
(CH+,CH-,

Vol+, Vol-)

 
Fig. 9.11 Simplified flowchart of the developed JAVA application software. 
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10. CONCLUSIONS  

 

Passive-backscatter radios such as passive RFID, RFID-enabled sensors and passive wireless 

sensors will certainly play an important role in the realization of the future IoT, and the supporting 

technologies such as wireless power transfer and energy harvesting will not be of less importance. 

Wireless power transfer has always been carried out by using a constant envelope CW signal, and 

the efficiency maximization has been achieved through circuit optimization. In contrast to this, this 

thesis explored a completely different approach, waveform optimization as an alternative to 

improve the efficiency.   

In chapter 4, we demonstrated the effectiveness of non-CW signals, namely high PAPR MS 

signals, to improve the efficiency of energy harvesting circuits at low power levels. The obtained 

results have positively answered to the first question posed at the beginning of this thesis. This first 

validation was done in a cabled setup in which a signal generator was directly connected to  

rectifying circuits. The maximum efficiency gain obtained was limited both by waveform and 

circuit characteristics. Overall, the limiting parameters include the number of subcarriers, the 

frequency spacing between them, the MS bandwidth and PAPR, and the circuit input and output 

networks. A measured efficiency increase of up to 6 dB was obtained for a single diode detector 

under a 16-tone MS signal with 15 dB of PAPR. A charge pump circuit similar to those used in 

passive RFID transponders showed an efficiency improvement of 2.8 dB under a 8-tone MS signal 

excitation with 12 dB of PAPR. 

In order to address the second challenge posed at the beginning of this thesis, two improved 

architectures using space power combining were proposed in chapter 5 to efficiently deliver high 

PAPR MS signals. The first architecture was based on multiple RF signal sources, externally 

synchronized to a common 10 MHz reference signal, to generate a high PAPR MS E-field in space. 

In this case, a gain of up to 1.8 dB was obtained for the same charge pump circuit used in chapter 4, 

under a perfectly synchronized 3-tone MS signal. The gain dropped to 0.6 dB when the subcarriers 

synchronization was lost. In the second case, a 4x1 mode-locked oscillator array working at 6 GHz 

band was used to illuminate an envelope detector circuit with a 4-tone MS signal, which provided 

an efficiency gain higher than 15 dB.        

chapters 6 and 7 affirmatively answered to the third question of this thesis, by showing the ability 

of MS signals to improve the range of passive-backscatter systems. Simultaneous wireless power 

transfer and backscatter communications using MS signals was demonstrated and the concept was 

validated in a multipath faded channel. This was done first by equipping a commercial RFID reader 

with a MS front-end (chapter 6) and afterward by using a custom-designed SDR RFID reader 

(chapter 7). In chapter 6, by using a 9-tone MS signal, the reading range of the commercial RFID 
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reader was improved by 25% compared to the CW. In chapter 7, a passive transponder was 

interrogated with the built SDR RFID reader, and a gain of more than 3 dB compared to the CW  

was obtained for an optimal 9-tone MS signal (the transponder sensitivity was enhanced from 13 

dB to 16 dB).    

Chapter 8 addressed self-jamming and the consequent generation of DC-offsets, which is perhaps 

the second limiting factor of passive-backscatter RFID. Using a self-jamming cancellation scheme 

based on a simple coupler terminated with a reflective load in its traditionally isolated port, a Tx to 

Rx isolation of up to 50 dB was obtained for CW signals. The approach was also investigated for 

MS signals and proved to be effective, providing an isolation of up to 60 dB.     

Finally, chapter 9 accomplished a major goal initially proposed, by providing a practical 

demonstration prototype of a battery-less system (a battery-less remote control system).  

10.1. Concluding remarks 

The coverage range of passive-backscatter systems has always been a central research concern and 

the efficiency of wireless power delivery has gained even more emphasis in today IoT context. 

Passive-backscatter RFID devices are evolving beyond mere identification to integrate new vital 

functionalities for IoT applications (e.g. sensing, intelligence, data logging, etc), which need also to 

be powered wirelessly. Therefore, the energy needs are also growing. Hopefully, in a near future, 

the combined research efforts in several fronts will enable the efficient realization of fully passive 

wireless sensor networks for IoT applications. Important topics include: low power semiconductor 

technologies; synergistic energy harvesting from multiple sources including electromagnetic, solar, 

thermal and vibration; improved backscatter schemes, such as QAM-backscatter, to improve the 

communication bandwidth and to significantly reduce the power consumption; efficient wireless 

power strategies to support longer operating ranges and expanded functionalities. It is our hope that 

the work presented in this thesis may give a small contribute toward these goals.   

10.2. Main achievements in the scope of this thesis  

 Twice finalist of the student paper competition of the IEEE – International Microwave 

Symposium (IMS 2011 and IMS 2016).   

 ANACOM and URSI-Portugal 2011 Prize.  

 IEEE MTT-S Graduate Fellowship Award 2013.    

 Distinguished in the publication “Universidade de Aveiro, 40 Anos, 40 Inventores, 40 

Empreendedores (University of Aveiro, 40 Years, 40 Inventors, 40 Entrepreneurs)”. 
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10.3. Future work  

 Practical implementation of the adaptive self-jamming suppression scheme described in 

chapter 8, its integration in the developed SDR reader and its optimization for MS 

operation. So far, self-jamming suppression has been implemented using a load impedance 

tuner, and the optimal setting has been obtained by manual adjustments. An adaptive 

scheme/algorithm is necessary. 

 Full implementation of the MS mode. Implementation of the presented MS demodulation 

methods within the reader.  

 Integration of all the SDR RFID reader hardware in a single PCB board. 

 Further investigation of MS multipath fading performance. In our experiments, relatively 

high-gain antennas were used, and a moderate reader-to-tag distance was considered in the 

lab environment. This may have benefited the MS fading performance. A more detailed 

study is necessary to investigate multipath fading of MS over longer distances, lower gain 

antennas and other wireless channels.  

 In chapter 9, further work is needed to optimize the energy efficiency at the DeC side. 

 More work is also required to optimize the ReC, namely in terms of size, number of keys 

and antenna performance. 

 Behavioral models for RF-DC converter circuits are also a must. Improve the accuracy of 

the model presented in Appendix A to account for diode capacitive parasitic and ripple 

effects, broaden its reach to cover charge pumps and also validate it against simulations 

and measurements are also future objectives. 

 Explore backscatter FDMA schemes for medium access and backscatter OFDM 

approaches for improved communication bandwidths. This cope well with the MS scheme 

studied in this work.  
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APPENDIX A – DERIVATION OF AN AC-DC TRANSFER FUNCTION FOR 

RECTIFIER CIRCUITS UNDER HIGH PAPR SIGNALS 
 

The accurate simulation of multi-frequency or high PAPR signals with large spectral content may 

be difficult and very time-consuming. In this chapter, we attempt on the derivation of an analytical-

numerical model to evaluate envelope detectors under high PAPR excitations in a fast and simple 

way, without requiring a specialized simulator. This model can be used to predict results such as 

the output DC voltage, output ripple, RF-DC conversion efficiency and efficiency gain of an 

envelope detector under high PAPR signals, given parameters as the input signal amplitude, duty 

cycle and frequency of the signal envelope, and output time constant of the output RC circuit. The 

following assumptions are made: 

1) The diode capacitance effect is not considered in this derivation;  

2) The sinusoid is approximated by a square wave with amplitude VA and 50% duty cycle  [see 

Fig. A.1(a)][1]; 

3) The output smoothing capacitor is assumed to be very large with respect to the RF 

frequency, such that there is no voltage drop between RF peaks at the output. Consequently:  

4) in steady-state, vo(t) tends to a constant value VDC; the output capacitor current       

 
      

  
  ; and the average current of the diode         equals the output DC current Io.   

The high PAPR signal [Fig. A.1(b)] is obtained by shrinking the CW signal according to a duty 

cycle D = TON/(TON+TOFF) such that its peak amplitude and envelope frequency become 

respectively VB = VA/sqrt(D) and  fenv=1/(TON+TOFF).  

+ -
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VDCiC(t)
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-
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vi(t) iD(t)

Io
π

IN

IP

2π 2ππ

RL
C
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π 2π
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High PAPR signal 

with duty cycle D 
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                                                        (a)                                                                             (b) 

Fig. A.1 (a) CW excitation model. (b) High PAPR excitation model. Although the high PAPR signal is 

defined in the interval 0 – 2πD, the integration period is 2π.  
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A. RF-DC model derivation 

The proposed model of the RF-DC converter [Fig. A.2(a)] is based on equations (4.1)-(4.3), and 

encompasses a DC voltage source and a DC current source which are inter-dependent and account 

for the self-biasing mechanism in the diode as follows: at t = 0
+
, right after applying the input 

signal, the output voltage VDC is zero and the first (un-biased) iteration of the diode average current 

is computed; the average current, which is equal to IO, will generate a DC voltage across the output 

load resistance; this DC value will now bias the diode and the next iteration of the (biased) diode 

average current can now be found; This process continues, and eventually, for a fixed amplitude of 

the input signal, the output DC voltage will converge to a steady-state value. The process ends 

when the relative error of the output DC voltage is found to be below a predefined value  

(    
       

        
       

     ), 

where   is a small positive number. As alluded in Fig. A.2(b), the presented model uses a double 

iterative loop, where the inner loop iterates to find the diode current using a Newton-Raphson 

method (described next) and considering a fixed DC output voltage, and outer loop iterates to find 

the steady-sate value of the output DC voltage.            

+ -
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(b) 

Fig. A.2 (a) RF-DC conversion model. Note that, according to the previous assumptions, the circuit output is 

assumed to be an RF ground.  (b) Iterative process to find the output DC voltage for a given input signal 

amplitude. It iterates twice, to find the current through the diode and also the convergence of VDC.  

 

For each value of output DC voltage, the current through the diode is determined as follows. The 

input voltage and the voltage across the diode [Fig. A.1(a)] are given respectively by: 

      

 
 

 
  

       
       

 
  

       
         

        

 
 

 
  

       
           

 
  

       
             

  

 (A.1) 

where VA is the amplitude of the CW signal and the duty cycle D determines the PAPR of the 

signal (for CW signal, D = 1). Considering equations (4.1)-(4.3) and (A.1), the diode current comes 

as follows: 

      

 
 
 

 
 

       

  
       

         

             

       

 
  

       
         

           
  

 
  

       
             

           

  

 (A.2) 

Equations (A.2) are non-linear equations of the kind          ), a, b ϵ R, which do not admit 

a closed-form analytical solution. Therefore, an iterative numerical method is required to find an 

approximate solution. The individual current components in the positive and negative cycles, IP and 

IN, can be determined separately. Approximating the first part of (A.2) is equivalent to find the root 

of a new function         : 

             

  
       

         

            

 (A.3) 

The Newton-Raphson iterative method for non-linear equations [2] can be used to find an 

approximation for (A.3) and determine the positive diode current Ip. If the method converges, then, 

given an initial guess, a better approximation,   
   , can be obtained form a previous 

approximation,   
 , as follows: 
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 (A.4) 

The iterative process is terminated after n+1 iterations when a predefined error condition is 

satisfied,  

   
      

       
      

      

(A.5) 

where ɛ is a small positive number that depends on the desired accuracy. The current in the 

negative cycle,   , can be computed similarly to (A.3)-(A.5). In this case,    [second part of 

equation (A.2)] is broken into two separate iterative problems and the results are then summed: 

   
      

  
   

 
  

       
         

 

         
 

 
  
   

   

 
  

       
         

 

     

 

 (A.6a) 

   
       

  
     

 
 

  
       

            
   

      
 

 
  
  

    
 

 
  

       
            

   

    

 

 (A.6b) 

           

 (A.6c) 

Finally, using the results obtained iteratively from (A.4) and (A.6), the total average current 

flowing through the diode,         = IO, can  be calculated in a single cycle of the input signal as: 

           
 

  
        

   

 

 

 
 

  
     

  

 

 
 

  
     

   

  

 
 

 
        

               
   

 
        

(A.7) 

The output DC power and the average input power are given respectively by: 
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 (A.8) 

    
 

  
             

   

 

 

 
 

  
       

  

 

 
 

  
           

   

  

 

 
 

 
          

 (A.9) 

By definition, the RF-DC efficiency comes as the ratio between the DC output power (PDC) and the 

average input power (Pin):    

       
   

   
 

   

   

        

       
  

 (A.10) 

The efficiency gain can be obtained using the first part of equation (4.20), as the ratio between the 

efficiency under high PAPR signal and the efficiency under CW signal, and the PAPR can be 

defined as [V]: 

                 
 

 
  

(A.11) 

Note that D = 1 implies an always-on or CW input. It is also worth mentioning that, although the 

high PAPR pulse is only defined in the interval 0 – 2πD [see Fig. A.1(b)], the integration interval 

used in calculation of the average diode current and average input power (A.7-A9) is 2π. This is 

necessary to guarantee that the high PAPR pulse actually delivers a higher peak while maintaining 

a low average power.  

 

B. Preliminary model validation  

Given diode parameters (Table below), input signal amplitude and duty cycle of the high PAPR 

signal envelope, the behavior of a single diode rectifier can be predicted. Figure A.2 plots the I-V 

curve given by the model, with RL = 0, and the RF-DC conversion against ADS DC and ADS HB 

simulation results respectively, using the manufacture model. A good agreement is observed.   
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HSMS285x diode parameters Symbol Value 

Saturation current IS 3 μA 

Series resistance  RS 25 Ω 

Zero-bias junction capacitance
14

 Cjo 0.18 pF 

Junction potential  Vj 0.35 V 

Reverse breakdown voltage Vbr 3.8 V 

Current at reverse breakdown IBV 0.3 mA 

Thermal voltage Vt 26 mV 

   

 

(a) 

 
                                                           
14

 In the present derivation, the effect of the parasitic capacitance is neglected.  
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(b) 

Fig. A.2 Model validation. (a) Diode I-V curve with RL = 0, overlapped with ADS simulation results. (b) RF-

DC conversion efficiency as predicted by the proposed model and by ADS HB simulations, with a square 

wave and sine wave input and a 25Ω DC load. 

C. Output DC voltage, RF-DC efficiency and efficiency gain  

The output DC voltage, RF-DC conversion efficiency and efficiency gain as a function of the 

average input power level for different values of duty cycle D (and consequently different PAPR 

values) are depicted in Figures A.3. It is assumed a very large output capacitor value, which 

precludes any significant output ripple. In general, the preliminary model results are in agreement 

with [3]: as the PAPR increases, the RF-DC efficiency increases at lower power levels and 

degrades at higher power levels. The latter effect is due to an increased current voltage drop across 

the diode series resistance (caused by the higher peaks) and consequent resistive loss. Moreover, as 

the PAPR increases, the breakdown is reached earlier and the maximum efficiency is decreased. 

 

(a) 
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(b) 

 

(c) 

 
(d) 
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(e) 

Fig. A.3 (a) Output DC voltage. (b) RF-DC conversion efficiency. (c) RF-DC conversion efficiency in log 

scale, where the benefit of high PAPR signal is visible at lower input power levels. (d) Efficiency gain. (e) 

Zoom on the efficiency gain. All the results are functions of the average input power and duty cycle.  

 

 

D. Conclusions and future improvements  

Although the proposed model is not yet fully validated and needs further improvements, it is a 

good starting point toward a more complete model. It is able to correctly replicate the DC I-V 

characteristic, account for the breakdown effect and describe general trends of output DC voltage, 

RF-DC conversion efficiency and efficiency gain with respect to input PAPR. Future 

improvements will cover the capacitive parasitic effect, the ripple effect and the input matching 

network. 
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APPENDIX B – PHYSICAL LAYER ASPECTS OF THE EPC GEN2 PROTOCOL  
 

Reader-Transponder PIE Symbols 

The R=>T link shall use PIE, shown in Figure 6.1. Tari is the reference time interval for 

interrogator-to-Tag signaling, and is the duration of a data-0. High values represent transmitted 

CW; low values represent attenuated CW. Pulse modulation depth, rise time, fall time, and PW 

shall be the same for a data-0 and a data-1. Interrogators shall use a fixed modulation depth, rise 

time, fall time, PW, Tari, data-0 length, and data-1 length for the duration of an inventory round.  

 
 

Reader-Transponder Preamble and Frame-Sync 

An Interrogator shall begin all R=>T signaling with either a preamble or a frame-sync, both of 

which are shown in Figure 6.4. A preamble shall precede a Query command and denotes the start 

of an inventory round. All other signaling shall begin with a frame-sync.  

 
 

Transponder-Reader FM0 Symbols 

Tags shall encode the backscattered data as either FM0 baseband or Miller modulation of a 

subcarrier at the data rate. The Interrogator specifies the encoding type. 

Figure 6.8 shows basis functions and a state diagram for generating FM0 (bi-phase space) 

encoding. FM0 inverts the baseband phase at every symbol boundary; a data-0 has an additional 

mid-symbol phase inversion. The state diagram in Figure 6.8 maps a logical data sequence to the 
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FM0 basis functions that are transmitted. The state labels, S1–S4, indicate four possible FM0-

encoded symbols, represented by the two phases of each of the FM0 basis functions. The state 

labels also represent the FM0 waveform that is transmitted upon entering the state. The labels on 

the state transitions indicate the logical values of the data sequence to be encoded. For example, a 

transition from state S2 to S3 is disallowed because the resulting transmission would not have a 

phase inversion on a symbol boundary. 

 
 

Transponder-Reader FM0 Preamble 

T=>R FM0 signaling shall begin with one of the two preambles shown in Figure 6.11. The choice 

depends on the TRext value specified in the Query that initiated the inventory round. TRext 

chooses whether a Tag prepends the T=>R preamble with a pilot tone. The “v” shown in Figure 

6.11 indicates an FM0 violation (i.e. a phase inversion should have occurred but did not). 

 
 

Example inventory and access of a single Tag 

Figure E.1 shows the steps by which an Interrogator inventories and accesses a single Tag. 
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APPENDIX C –ALTERNATIVE CONFIGURATIONS FOR THE BATTERY-LESS 

REMOTE CONTROL  
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Fig. C.1 (a) Parallel chip activation mechanism 
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Fig. C.1 (b) Series chip activation mechanism. 
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Fig. C.2 (a)  Single-key remote control with parallel and series activation mechanisms respectively. 
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Fig. C.2 (b) Remote control with two keys using parallel activation mechanism. 
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Fig. C.2 (c) Remote control with two keys using series activation mechanism. 
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Fig. C.2 (d) N-key remote control in star configuration, using parallel activation mechanism.  
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Fig. C.2 (e) N-key remote control in cascade configuration, using series activation mechanism. 
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Fig. C.2 (f) N-key remote control in backbone configuration, using parallel activation mechanism.   
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Fig. C.2 (g) N-key remote control with an hybrid configuration (backbone, cascade and star), using both 

parallel and series activation mechanisms. 
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