174 research outputs found

    Hard-wired epimysial recordings from normal and reinnervated muscle using a bone-anchored device

    Get PDF
    Background: A combined approach for prosthetic attachment and control using a transcutaneous bone-anchored device and implanted muscle electrodes can improve function for upper-limb amputees. The bone-anchor provides a transcutaneous feed-through for muscle signal recording. This approach can be combined with targeted muscle reinnervation (TMR) to further improve myoelectric control. Methods: A bone-anchored device was implanted trans-tibially in n = 8 sheep with a bipolar recording electrode secured epimysially to the peroneus tertius muscle. TMR was carried out in a single animal: the peroneus tertius was deinnervated and the distal portion of the transected nerve to the peroneus muscle was coapted to a transected nerve branch previously supplying the tibialis anterior muscle. For 12 weeks (TMR) or 19 weeks (standard procedure), epimysial muscle signals were recorded while animals walked at 2 km·h−1. Results: After 19 weeks implantation following standard procedure, epimysial recording signal-to-noise ratio (SNR) was 18.7 dB (± 6.4 dB, 95% CI) with typical recordings falling in the range 10–25 dB. Recoveries in gait and muscle signals were coincident 6 weeks post-TMR; initial muscle activity was identifiable 3 weeks post-TMR though with low signal amplitude and signal-to-noise ratio compared with normal muscle recordings. Conclusions: Following recovery, muscle signals were recorded reliably over 19 weeks following implantation. In this study, targeted reinnervation was successful in parallel with bone-anchor implantation, with recovery identified 6 weeks after surger

    Microwire regenerative peripheral nerve interfaces with wireless recording and stimulation capabilities

    Get PDF
    A scalable microwire peripheral nerve interface was developed, which interacted with regenerated peripheral nerves in microchannel scaffolds. Neural interface technologies are envisioned to facilitate direct connections between the nervous system and external technologies such as limb prosthetics or data acquisition systems for further processing. Presented here is an animal study using a handcrafted microwire regenerative peripheral nerve interface, a novel neural interface device for communicating with peripheral nerves. The neural interface studies using animal models are crucial in the evaluation of efficacy and safety of implantable medical devices before their use in clinical studies.16-electrode microwire microchannel scaffolds were developed for both peripheral nerve regeneration and peripheral nerve interfacing. The microchannels were used for nerve regeneration pathways as a scaffolding material and the embedded microwires were used as a recording electrode to capture neural signals from the regenerated peripheral nerves. Wireless stimulation and recording capabilities were also incorporated to the developed peripheral nerve interface which gave the freedom of the complex experimental setting of wired data acquisition systems and minimized the potential infection of the animals from the wire connections

    Towards Natural Control of Artificial Limbs

    Get PDF
    The use of implantable electrodes has been long thought as the solution for a more natural control of artificial limbs, as these offer access to long-term stable and physiologically appropriate sources of control, as well as the possibility to elicit appropriate sensory feedback via neurostimulation. Although these ideas have been explored since the 1960’s, the lack of a long-term stable human-machine interface has prevented the utilization of even the simplest implanted electrodes in clinically viable limb prostheses.In this thesis, a novel human-machine interface for bidirectional communication between implanted electrodes and the artificial limb was developed and clinically implemented. The long-term stability was achieved via osseointegration, which has been shown to provide stable skeletal attachment. By enhancing this technology as a communication gateway, the longest clinical implementation of prosthetic control sourced by implanted electrodes has been achieved, as well as the first in modern times. The first recipient has used it uninterruptedly in daily and professional activities for over one year. Prosthetic control was found to improve in resolution while requiring less muscular effort, as well as to be resilient to motion artifacts, limb position, and environmental conditions.In order to support this work, the literature was reviewed in search of reliable and safe neuromuscular electrodes that could be immediately used in humans. Additional work was conducted to improve the signal-to-noise ratio and increase the amount of information retrievable from extraneural recordings. Different signal processing and pattern recognition algorithms were investigated and further developed towards real-time and simultaneous prediction of limb movements. These algorithms were used to demonstrate that higher functionality could be restored by intuitive control of distal joints, and that such control remains viable over time when using epimysial electrodes. Lastly, the long-term viability of direct nerve stimulation to produce intuitive sensory feedback was also demonstrated.The possibility to permanently and reliably access implanted electrodes, thus making them viable for prosthetic control, is potentially the main contribution of this work. Furthermore, the opportunity to chronically record and stimulate the neuromuscular system offers new venues for the prediction of complex limb motions and increased understanding of somatosensory perception. Therefore, the technology developed here, combining stable attachment with permanent and reliable human-machine communication, is considered by the author as a critical step towards more functional artificial limbs

    A Multiday Evaluation of Real-Time Intramuscular EMG Usability with ANN

    Get PDF
    Recent developments in implantable technology, such as high-density recordings, wireless transmission of signals to a prosthetic hand, may pave the way for intramuscular electromyography (iEMG)-based myoelectric control in the future. This study aimed to investigate the real-time control performance of iEMG over time. A novel protocol was developed to quantify the robustness of the real-time performance parameters. Intramuscular wires were used to record EMG signals, which were kept inside the muscles for five consecutive days. Tests were performed on multiple days using Fitts’ law. Throughput, completion rate, path efficiency and overshoot were evaluated as performance metrics using three train/test strategies. Each train/test scheme was categorized on the basis of data quantity and the time difference between training and testing data. An artificial neural network (ANN) classifier was trained and tested on (i) data from the same day (WDT), (ii) data collected from the previous day and tested on present-day (BDT) and (iii) trained on all previous days including the present day and tested on present-day (CDT). It was found that the completion rate (91.6 ± 3.6%) of CDT was significantly better (p < 0.01) than BDT (74.02 ± 5.8%) and WDT (88.16 ± 3.6%). For BDT, on average, the first session of each day was significantly better (p < 0.01) than the second and third sessions for completion rate (77.9 ± 14.0%) and path efficiency (88.9 ± 16.9%). Subjects demonstrated the ability to achieve targets successfully with wire electrodes. Results also suggest that time variations in the iEMG signal can be catered by concatenating the data over several days. This scheme can be helpful in attaining stable and robust performance

    Multi-Day Analysis of Surface and Intramuscular EMG for Prosthetic Control

    Get PDF

    Long-term decoding of movement force and direction with a wireless myoelectric implant

    Get PDF
    Objective. The ease of use and number of degrees of freedom of current myoelectric hand prostheses is limited by the information content and reliability of the surface electromyography (sEMG) signals used to control them. For example, cross-talk limits the capacity to pick up signals from small or deep muscles, such as the forearm muscles for distal arm amputations, or sites of targeted muscle reinnervation (TMR) for proximal amputations. Here we test if signals recorded from the fully implanted, induction-powered wireless Myoplant system allow long-term decoding of continuous as well as discrete movement parameters with better reliability than equivalent sEMG recordings. The Myoplant system uses a centralized implant to transmit broadband EMG activity from four distributed bipolar epimysial electrodes. Approach. Two Rhesus macaques received implants in their backs, while electrodes were placed in their upper arm. One of the monkeys was trained to do a cursor task via a haptic robot, allowing us to control the forces exerted by the animal during arm movements. The second animal was trained to perform a center-out reaching task on a touchscreen. We compared the implanted system with concurrent sEMG recordings by evaluating our ability to decode time-varying force in one animal and discrete reach directions in the other from multiple features extracted from the raw EMG signals. Main results. In both cases, data from the implant allowed a decoder trained with data from a single day to maintain an accurate decoding performance during the following months, which was not the case for concurrent surface EMG recordings conducted simultaneously over the same muscles. Significance. These results show that a fully implantable, centralized wireless EMG system is particularly suited for long-term stable decoding of dynamic movements in demanding applications such as advanced forelimb prosthetics in a wide range of configurations (distal amputations, TMR).German Federal Ministry for Education and Reseach (BMBF) grant No, 16SV3695, 16SV3699, 16SV3697 and 01GQ1005C, DFG Deutsche Forschungsgemeinschaft grant No. GA1475-C

    The Use of Skeletal Muscle to Amplify Action Potentials in Transected Peripheral Nerves

    Get PDF
    Upper limb amputees suffer with problems associated with control and attachment of prostheses. Skin-surface electrodes placed over the stump, which detect myoelectric signals, are traditionally used to control hand movements. However, this method is unintuitive, the electrodes lift-off, and signal selectivity can be an issue. One solution to these limitations is to implant electrodes directly on muscles. Another approach is to implant electrodes directly into the nerves that innervate the muscles. A significant challenge with both solutions is the reliable transmission of biosignals across the skin barrier. In this thesis, I investigated the use of implantable muscle electrodes in an ovine model using myoelectrodes in combination with a bone-anchor, acting as a conduit for signal transmission. High-quality readings were obtained which were significantly better than skin-surface electrode readings. I further investigated the effect of electrode configurations to achieve the best signal quality. For direct recording from nerves, I tested the effect of adsorbed endoneural basement membrane proteins on nerve regeneration in vivo using microchannel neural interfaces implanted in rat sciatic nerves. Muscle and nerve signal recordings were obtained and improvements in sciatic nerve function were observed. Direct skeletal fixation of a prosthesis to the amputation stump using a bone-anchor has been proposed as a solution to skin problems associated with traditional socket-type prostheses. However, there remains a concern about the risk of infection between the implant and skin. Achieving a durable seal at this interface is therefore crucial, which formed the final part of the thesis. Bone-anchors were optimised for surface pore size and coatings to facilitate binding of human dermal fibroblasts to optimise skin-implant seal in an ovine model. Implants silanised with Arginine-Glycine-Aspartic Acid experienced significantly increased dermal tissue infiltration. This approach may therefore improve the soft tissue seal, and thus success of bone-anchored implants. By addressing both the way prostheses are attached to the amputation stump, by way of direct skeletal fixation, as well as providing high fidelity biosignals for high-level intuitive prosthetic control, I aim to further the field of limb loss rehabilitation

    Increasing the robustness of active upper limb prostheses

    Get PDF
    This thesis is based on my work done at the Institute for Neurorehabilitation Systems at the University Medical Center Goettingen. My work has been partially founded by German Ministry for Education and Research (BMBF) via the Bernstein Focus Neurotechnology (BFNT) Göttingen under grant number 1GQ0810 The local ethics committee approved all studies involving human subjects, and all subjects signed informed consents prior to their participation in the studies. The entire thesis has been originally written by me. Part of the materials used in this thesis have also been published in journals or conferences, where I am the first or corresponding author. All rights for re-use of previously published material were obtained. Reused figures and tables of IEEE publications are marked with © [Year] IEEE. Hereby I declare that I have written this thesis independently and with no other aids and sources than quoted

    Biocompatible microchannel scaffold with microwires for recording regenerative peripheral nerve neural spikes

    Get PDF
    A new process for the fabrication of a microchannel scaffold with microwires for peripheral nerve applications is presented. This microchannel scaffold implemented between the ends of nerves, the axons of which regenerate through microchannel in scaffold and fixed microelectrodes. This device is entirely handcrafted using commercially available materials such as microwires, PDMS film, liquid PDMS, dental cement, and epoxy glue. This device was implemented in the a Lewis rat sciatic nerve to better analyze the electrical signals of regenerated axons. 64-electrode microchannel scaffolds were developed for both peripheral nerve interfacing and peripheral nerve regeneration. The microwires were used for recording electrode to capture neural signal from the regenerated peripheral nerves. To further differentiate the methodology, the new addition of a ribbon cable will facilitate the transmission of the electrical signals. A total of eight devices have been developed, the nerve regeneration were examined four weeks after device implantation

    Multiday Evaluation of Techniques for EMG Based Classification of Hand Motions

    Get PDF
    • 

    corecore