
 

  

 

Aalborg Universitet

A Multiday Evaluation of Real-Time Intramuscular EMG Usability with ANN

Waris, Asim; Zia Ur Rehman, Muhammad; Niazi, Imran Khan; Jochumsen, Mads; Englehart,
Kevin; Jensen, Winnie; Haavik, Heidi; Kamavuako, Ernest Nlandu
Published in:
Sensors (Basel, Switzerland)

DOI (link to publication from Publisher):
10.3390/s20123385

Creative Commons License
CC BY 4.0

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Waris, A., Zia Ur Rehman, M., Niazi, I. K., Jochumsen, M., Englehart, K., Jensen, W., Haavik, H., & Kamavuako,
E. N. (2020). A Multiday Evaluation of Real-Time Intramuscular EMG Usability with ANN. Sensors (Basel,
Switzerland), 20(12), 1-13. [3385]. https://doi.org/10.3390/s20123385

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 25, 2020

https://doi.org/10.3390/s20123385
https://vbn.aau.dk/en/publications/7f94ac60-b51a-405a-a931-04224f11a7e3
https://doi.org/10.3390/s20123385


sensors

Article

A Multiday Evaluation of Real-Time Intramuscular
EMG Usability with ANN

Asim Waris 1 , Muhammad Zia ur Rehman 2 , Imran Khan Niazi 3,4,5,* , Mads Jochumsen 3 ,
Kevin Englehart 6 , Winnie Jensen 3, Heidi Haavik 4 and Ernest Nlandu Kamavuako 7

1 Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
asim.waris@smme.nust.edu.pk

2 Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad 46000, Pakistan;
ziaur.rehman@riphah.edu.pk

3 Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University,
9220 Aalborg, Denmark; mj@hst.aau.dk (M.J.); wj@hst.aau.dk (W.J.)

4 Center of Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand;
Heidi.Haavik@nzchiro.co.nz

5 Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University,
Auckland 0627, New Zealand

6 Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton,
NB E3B 5A3, Canada; kengleha@unb.ca

7 Centre for Robotics Research, Department of Informatics, King’s College London, London WC2R 2LS, UK;
ernest.kamavuako@kcl.ac.uk

* Correspondence: imran.niazi@nzchiro.co.nz

Received: 3 May 2020; Accepted: 12 June 2020; Published: 15 June 2020
����������
�������

Abstract: Recent developments in implantable technology, such as high-density recordings, wireless
transmission of signals to a prosthetic hand, may pave the way for intramuscular electromyography
(iEMG)-based myoelectric control in the future. This study aimed to investigate the real-time control
performance of iEMG over time. A novel protocol was developed to quantify the robustness of the
real-time performance parameters. Intramuscular wires were used to record EMG signals, which
were kept inside the muscles for five consecutive days. Tests were performed on multiple days using
Fitts’ law. Throughput, completion rate, path efficiency and overshoot were evaluated as performance
metrics using three train/test strategies. Each train/test scheme was categorized on the basis of data
quantity and the time difference between training and testing data. An artificial neural network
(ANN) classifier was trained and tested on (i) data from the same day (WDT), (ii) data collected from
the previous day and tested on present-day (BDT) and (iii) trained on all previous days including the
present day and tested on present-day (CDT). It was found that the completion rate (91.6 ± 3.6%)
of CDT was significantly better (p < 0.01) than BDT (74.02 ± 5.8%) and WDT (88.16 ± 3.6%). For
BDT, on average, the first session of each day was significantly better (p < 0.01) than the second
and third sessions for completion rate (77.9 ± 14.0%) and path efficiency (88.9 ± 16.9%). Subjects
demonstrated the ability to achieve targets successfully with wire electrodes. Results also suggest
that time variations in the iEMG signal can be catered by concatenating the data over several days.
This scheme can be helpful in attaining stable and robust performance.

Keywords: intramuscular electromyography (iEMG); prosthetic hand; pattern recognition (PR)

Sensors 2020, 20, 3385; doi:10.3390/s20123385 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0190-0700
https://orcid.org/0000-0002-6141-3648
https://orcid.org/0000-0001-8752-7224
https://orcid.org/0000-0001-7729-4359
https://orcid.org/0000-0003-4525-1121
https://orcid.org/0000-0001-6846-2090
http://dx.doi.org/10.3390/s20123385
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/12/3385?type=check_update&version=2


Sensors 2020, 20, 3385 2 of 13

1. Introduction

The electric signals generated by the contraction of myofibers in the motor units can be recorded
using either surface (noninvasive) or intramuscular (invasive) electrodes. The traditional clinical use
of intramuscular electromyography (iEMG) is in the diagnoses of myopathies, myodystrophies and
neuromuscular disorders. Their use in myoelectric prosthetic control is limited due to its invasiveness
and instability of the implanted electrodes as well as the lack of commercially available implantable
recording electrodes.

Herberts et al. were the first to implant intramuscular electrodes to estimate the contraction level
of muscles by applying different loads on hand joints [1]. A few years later, Tucker and Peteleski
implanted an intramuscular electrode into the functioning forearm muscle of a subject with congenital
limb deficiency. The system reportedly worked well but no detail of signal processing and performance
of the system was reported [2]. Stein et al. implanted four pairs of electrodes for one year and compared
their performance with surface electrodes; improved direct control with greater reliability of the
implanted system was reported compared to surface electrodes [3]. These studies were limited to direct
myoelectric control only. Several other studies utilized intramuscular recordings for neurophysiological
investigations [4–7]. The focus of these studies was to determine discharge times of individual motor
units. It was also found that decomposition of surface EMG signals is more cumbersome as compared
to iEMG as in surface and EMG signals are in the superimposed form. Moreover, analysis of iEMG
signals showed that individual motor units can be decomposed more accurately allowing recordings
from deep muscles [8,9].

Recently, a variety of implantable electrodes are being developed and tested in humans, making
iEMG signals clinically viable for future myoelectric control [10–16]. These implantable electrodes
are designed to transmit the iEMG signal wirelessly to the prosthetic hand [10]. The Myoelectric
Implantable Recording Array (MIRA) can also be used in the future as such systems provide an
additional option of multiple independent control sites to myoelectric control [13,15]. These wireless
detection systems can be implanted by utilizing a small surface area on the amputated limb and provide
up to 64 channels of EMG signal by inserting only a few wires. With the help of implanted electrodes,
EMG signals can be recorded from small and deep muscles providing very localized information and
the amount of information gathered can be increased significantly with these detection systems [13,15].
Furthermore, an implanted iEMG electrode may provide high interday repeatability, multiple and
independent channels, stable and robust signal source that is less affected by factors such as electrode
shifts, skin impedance and precipitation [16,17]. However, the selectivity of these iEMG recordings
may constitute a drawback as they reflect the activity of a small number of motor units of muscle fibers
located close to the detection site [17].

More recent studies using iEMG as a control signal focused on pattern recognition techniques (PR)
for myoelectric control [18–21]. Smith et al. compared EMG signals recorded from the surface of the
forearm sEMG and iEMG for simultaneous control of hand motions using Linear Discriminant Analysis
(LDA). Higher classification accuracy was reported for iEMG compared to sEMG, parallel classifier
method was used without including the 2-DOF motion class data in training [18]. Fitts’ law tests were
also utilized by Kamavuako et al. to evaluate the adoption of iEMG recordings in acute settings [19].
In another study, significant differences in offline classification performances were found between
sEMG and iEMG recordings using LDA [20]. Data were recorded for seven continuous days [22]. All
of these studies assessed iEMG-based PR techniques in either offline or in acute settings only.

The consistent and stable performance of PR schemes is an important factor that needs to be
addressed for the clinical translation of these techniques. Recently, it was depicted in the literature that
between-day performances degrade over time using sEMG [21–24]. To the best of our knowledge, no
iEMG-based real-time evaluation of a PR scheme has previously been conducted over multiple days.
The aim of this study was to quantify the real-time subchronic usability of iEMG recordings using a
Fitts’ law approach with different train/test schemes.
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Training of a classifier is an important step in any PR-based technique. How this factor affects the
overall performance of myoelectric control in real-time over time, if trained differently is an important
question. This factor is investigated in this study by designing a novel protocol for the experiment.
In a five-day experiment, intramuscular EMG recordings were used to test three different training
methodologies: (i) within-day training and testing of a classifier, (ii) between-day training and testing
of a classifier and (iii) combined-day training and testing of a classifier. Offline classification accuracies
were also evaluated keeping the same training strategies as of real-time (i) within-day classification error
(WCE), (ii) between-day classification error (BCE) and (iii) combined-day classification error (CCE).

2. Materials and Methods

2.1. Subjects

In total, five able-bodied subjects took part in the experiment. None of the subjects had any
medical condition related to their muscles. The average age of the participants in the experiment was
25.4 y. Written consent was taken from all the participants in the study. The protocol of the experiments
was in accordance with the Declaration of Helsinki and approved by the local ethical committee of the
region of Northern Jutland (Approval Number: N-20160021).

2.2. Experimental Procedures

An EMG12 amplifier by OT Bioelectronica was used to record iEMG signals which were then
passed through a bandpass filter (100–900 Hz). These filtered analog signals were amplified with
a gain of 5000, at a sampling rate of 2kHz and digitized using 16 bits analog to digital converter
(NI-DAQ PCI-6221). A band electrode was placed on the wrist contralateral to the dominant one as a
reference. Figure 1 shows the setup for this experiment. Using three pairs of wire electrodes, iEMG
was recorded from three different muscles, namely: Extensor Digitorum on Channel 1, Extensor Carpi
Radialis Longus on Channel 2 and Flexor Digitorum Superficialis on Channel 3. These in vivo wire
electrodes were made from 50 µm diameter Teflon-coated stainless steel. A 25-gauge sterilized needle
was inserted in each muscle for each electrode. Precautionary measures against the risk of infection
were thoroughly observed. Each subject’s skin was disinfected with 70% isopropyl alcohol before
needle insertion. Sterile electrodes and gloves were used while handling the subjects.

The needle was inserted 10–15 mm below the muscle fascia and removed once the electrodes had
been fixed inside the muscle. The insulated wires were unsheathed from the tip by about 3 mm to
maximize the pickup area [19]. These electrodes were to stay in each subject’s arms for five days.

A double bandage strategy was implemented to minimize the movement of intramuscular
electrodes. After the electrodes were inserted, a sterile bandage was taped on the wires leaving leeway
for in vivo wire motion during extension and flexion and to allow connection to amplifiers. After each
session, another bandage was placed to completely cover the wires before each subject left the room.
This bandage served as a precautionary measure against electrode displacement. It was removed once
the subject re-entered the room for further sessions. The bottom bandage was only removed upon the
subject’s wish to withdraw or after all the sessions had been successfully completed.
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Figure 1. (a) GUI interface during the training session. Each motion was graphically displayed to the
subject during training with the time-cue. (b) Intramuscular electrode insertion sites on the forearm of
one of the subjects participated in the experiment. (c) Motions that each subject performed during the
training session.

2.3. Experimental Scheme

The experiment had two main steps: (i) data were collected to train a classifier (ii) then the models
trained on different sets of collected data were tested online. For the first step, subjects were required
to produce a medium level contraction from rest to motion. They were prompted by an image of a
specific motion randomly generated by a customized MATLAB-based Graphical User Interface. For
each motion, data were collected four times, for 6 s each time. Between each sustained contraction, a 6
s break was given. Data for four active motions (Wrist Extension, Wrist Flexion, Hand Open, Hand
Close) and one rest (no motion) were collected. After each set of five motions, a break of 12 s was given.

For the second step, a cursor at the center of the screen was to be controlled by the hand. Figure 2
shows the GUI interface from the testing phase. There were two axes on the screen: the top YY’
represented Hand Closed while the bottom YY’ represented Hand Opened. Similarly, the left XX’
represented Hand Flexion and the right XX’ represented Hand Extension. To be considered a successful
movement, the cursor had to hit the target and remain at it for one second. The entire experiment
spanned five days. On each day, three types of online tests were carried out as shown in Table 1. Firstly,
within-day training and testing of the artificial neural network (ANN) was denoted by the WDT (data
from the same day) row shown in the table. BDT (data collected from the previous day and tested
on present-day) represents the online test in which the training data of the previous day was used
to test the data of the present day. Lastly, the training data of all the previous days was used to test
the present-day data in CDT (trained on all previous days including the present day and tested on
present-day). Each day, three sessions for testing were performed. There were four indexes of difficulty
levels, thus each motion was tested 18 times in 3 sessions per day. A break of 10 minutes was given
between each session. Additionally, it should be noted that, in a single session, 24 targets (4 directions
× 2 distances × 4 widths) were to be reached by the subjects. Each target was unique with respect to its
motion and size of the target.
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Figure 2. Shows the interface of GUI during the testing phase. The blue dot at the center of the XY
plane corresponds to the rest position whereas red rectangles represent the target. Subjects had to
achieve targets with the cursor placed at the origin in the XY plane. The target appeared randomly on
any of the XX’ or YY’ axes. Each target was represented by a movement shown in Figure 1c.

Table 1. Complete scheme of the experiment. Three real-time tests were done on Days 2–5 and one on
Day 1.

Day 1 Day 2 Day 3 Day 4 Day 5

WDT Train1 Test1 Train2 Test2 Train3 Test3 Train4 Test4 Train5 Test5

BDT Train1 Test2 Train2 Test3 Train3 Test4 Train4 Test5

CDT Train1–2 Test2 Train1–2–3
Test3

Train1–2–3–4
Test4

Train1–2–3–4–5
Test5

WDT - data from the same day. BDT - data collected from the previous day and tested on present-day.CDT - trained
on all previous days including the present day and tested on present-day.

2.4. Feature Extraction and Experimental Procedure

A 200ms overlapping window with an increment of 50ms was used to segment the steady-state
part of 4 s of the data from each 6 s recorded signal. Six features were examined, namely: Mean
Absolute Value, Cardinality, Waveform Length, Zero Crossings, Willison Amplitude and Slope Sign
Changes. Table 2 summarizes the description of each feature used in this study [25].
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Table 2. Description of all features used in this study. N represents the total number of samples in a
signal window, n is the sample index and ε is the threshold value.

Feature Description Formula

MAV
Mean Absolute Value (MAV) is the average of
the absolute value of the EMG signal. It is an

indication of muscle contraction levels.
MAV = 1

N

N∑
n = 1
|xn|

WL

Waveform length (WL) is related to the
fluctuations of a signal when the muscle is

active. Thus, the feature provides combined
information about the frequency, duration and

waveform amplitude of the EMG signal.

WL =
N−1∑

n = 1

∣∣∣xn − xn+1
∣∣∣

ZC

Zero Crossing (ZC) measures the number of
crosses by zero of the signal and is related to the

frequency content of the signal. This feature
provides an approximate estimation of

frequency domain properties.

ZC =
N−1∑
k = 1

[
(xn·xn+1 < 0)∩ (

∣∣∣xn − xn+1
∣∣∣ > ε)]

SSC

Slope Sign Changes (SSC) measures the number
of times the sign changes in the slope of the
signal. It is another method to represent the
frequency information of the sEMG signal.

SSC =
N−1∑

n = 2
[(xn − xn−1)·(xn − xn+1)] > ε

WAMP
Willison Amplitude (WAMP) estimates the
number of active motor units, which is an

indicator of the level of muscle contraction.
WAMP =

N−1∑
n = 1

∣∣∣xn − xn+1
∣∣∣ > ε

CARD

Cardinality of a set is a measure of the number
of distinct values. This can be computed in two
steps. Data needs to be sorted and one sample

is distinct from the next if the difference is
above a predefined threshold.

Step 1 : yn = sort(xn), n = 1 : N
Step 2 :

CARD =
N−1∑

n = 1

∣∣∣yn − yn+1
∣∣∣ > ε

ANN was used as an offline and online training and testing classifier [26]. The network was
trained with the Levenberg–Marquardt algorithm. A single hidden layer was used and after several
trials, the size of the input layer was made equal to the size of the features vector (18 × 1). The offline
configuration was simulated in the GUI such that it had a fixed number of neurons in the hidden layer.
A profile specific to each subject was created in which the subject’s calibrated signals were stored. The
trained ANN was subjected to Fitts’ law to classify the cursor-controlled hand gestures [27].

During the implementation of Fitts’ law, participants were asked to move the cursor from the
rest position (origin of the axes) to a random target at a distance (D) and width (W) from the origin.
Upward movement of the cursor represented open hand, downward movement represented closed
hand, left represented wrist flexion while the right movement represented wrist extension. Based
on the distance D and width W from the origin, each target’s index of difficulty (ID) was calculated.
Various combinations of target distances and widths calculated by Equation (1) are tabulated in Table 3.

ID = log2

( D
W

+ 1
)

(1)

While testing in real-time, subjects were required to remain at a target for a dwell time of 1 s for
the movement. Motion considered unsuccessful if the cursor remained in the target for less than one
second [28,29]. Similarly, if the subject was unable to hit a target after 15 s of cue, the motion was
considered unsuccessful and the cursor was moved back to the origin. To evaluate real-time system
performance: path efficiency (PE), overshoot (OE), throughput (TP) and completion rate (CR) were
examined as four performance parameters. Path efficiency (PE) is calculated by the distribution of
the straight-line distance over the traveled distance [30]. It defines the quality of the control system.
Overshoot is defined as the ability to stop at the target. It is the number of occurrences of the cursor
being on the target and then leaving the target before the end of the 1s dwell time divided by the total
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number of targets [30]. Throughput (TP) is the ratio between the index of difficulty (ID) and the time
taken (in seconds) to reach the target. The completion rate computes the percentage of successfully
completed tasks within the time limit.

Table 3. Target distance (D) and width (W) from the origin. ID is the index of difficulty (in bits) of each
target based on D and W.

Distance (D) Width (W) Index of Difficulty (ID)

50 5 3.46

50 10 2.59

50 20 1.81

100 5 4.39

100 10 3.46

100 20 2.59

Offline classification performance parameters were computed using the obtained data. The
training strategies were like the ones applied for online classification. Errorij was defined as the ratio
of misclassified decisions and total decisions. Between-day classification error (BCE) was computed
by using the training data of the previous day and the testing data of the present day. Errorij was
calculated by Day i training data and Day j testing data. Within-day classification error (WCE) was
computed by using training and testing data of the present day. Errorij was computed by implementing
two-fold validation. Combined-day classification error (CCE) was calculated using training data
attained on all former days and present-day testing data.

2.5. Statistics

To evaluate the overall offline performance based on classification error, a nonparametric
Friedman’s test with two-way layout with factor types (WCE, BCE and CCE) and the day (without
Day 1) was used. p-values less than 0.05 were considered significant. To investigate the suitability
of Fitts’ law test for the online experiment the relationship between completion time and index of
difficulty was examined. The R2 coefficient of the linear model was examined to determine how the
obtained data fit the computed linear model. For the overall performance based on each performance
matric, nonparametric Friedman’s test was used to quantify the difference between days (without
Day 1) and sessions. p-values less than 0.05 were considered significant. Results are presented as mean
± standard deviation.

3. Results

3.1. Offline Data Analysis

Results showed that classification accuracies were significantly affected by training schemes
(p ≤ 0.01) and but not with days (p = 0.09). Multiple comparison showed no significant difference
(p = 0.41) between average WCE (4.6 ± 3.7%) and CCE (7.9 ± 4.8%). Classification performance
improved over time in all train/test schemes but found no significance between days WCE (p = 0.06),
CCE (p = 0.69), BCE (p = 0.18). The rate of improvement in classification performance was highest in
WCE. It reduced to (2.6 ± 2.1%) on the final day from (12.9 ± 6.8%) on the first day. Figure 3 depicts the
percentage classification error per training scheme in offline analysis.
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3.2. Fitts’ Law Test (Online Results)

The regression model depicted a strong linear relationship (coefficient of determination R2
≥ 0.91)

between completion time and index of difficulty in all three schemes. Figure 4 representing WDT
was included in the paper. High values of correction between completion time and index of difficulty
indicate the suitability of using the Fitts’ law test. By comparing training strategies with respect to IDs,
it was found that CDT on average performed better than BDT (Table 4).
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Table 4. Comparison of completion time with respect to performance metrics for between-day testing
(BDT), WDT, and combined-day testing (CDT).

BDT WDT CDT

1.81 5.47 ± 1.45 5.31 ± 0.80 4.88 ± 0.56

2.58 8.45 ± 2.61 8.21 ± 2.74 8.04 ± 2.44

3.46 8.67 ± 2.78 8.63 ± 2.56 8.48 ± 2.48

4.39 11.71 ± 1.34 11.27 ± 0.87 10.97 ± 1.33

It was found that for BDT, completion rate reduced over days. It was lowest on Day 5 (Figure 5).
Similarly, in CDT, completion rate improved over days. This has important implications in real-world
conditions describing all the variations in the EMG signals over days that can be catered by including
those variabilities in training data. Table 5 represents the summary of all performance parameters in
three sessions averaged across all days.

Table 5. Session wise difference in all three control schemes. Results depict averaged performance over
five days per session. Asterisks (*) indicate a case where there is a significant difference.

Within-Day Testing (WDT)

Session 1 Session 2 Session 3

Completion Rate 90.3 ± 10.5 88.5 ± 10.2 88.7 ± 1.1

Overshoot 15.6 ± 8.5 14.5 ± 8.6 15.2 ± 9.1

Path Efficiency 83.4 ± 3.2 84.4 ± 3.3 82.7 ± 3.6

Throughput 38.1 ± 1.8 37.7 ± 2.6 37.6 ± 2.4

Between-Day Testing (BDT)

Session1 Session 2 Session 3

Completion Rate 77.9 ± 14.0 (*) 72.3 ± 15.9 71.9 ± 17.6

Overshoot 33.2 ± 10.8 33.5 ± 11.2 28.5 ± 5.8

Path Efficiency 88.9 ± 16.9 (*) 83.1 ± 9.1 81.1 ± 7.9

Throughput 35.8 ± 3.2 36.1 ± 3.2 35.1 ± 3.5

Combined-Day Testing (CDT)

Session 1 Session 2 Session 3

Completion Rate 94.0 ± 6.7 91.5 ± 9.5 89.4 ± 10.3

Overshoot 14.1 ± 11.0 13.0 ± 10.7 14.3 ± 11.6

Path Efficiency 85.6 ± 3.1 86.7 ± 3.6 84.1 ± 3.1

Throughput 39.2 ± 2.4 38.5 ± 2.9 38.0 ± 3.3

In Table 5, the results depict that for BDT, on average, the first session of each day was significantly
better (p < 0.01) than the second and third sessions for completion rate (77.9 ± 14.0%) and path efficiency
(88.9 ± 169%). Figure 6 represents the averaged values of all performance parameters across all days
and sessions. Completion rate (CR; 91.6 ± 3.6%) of CDT was significantly better than BDT (74.0 ± 5.8%)
and WDT (88.1 ± 3.6%). Overshoot (OS) was the lowest and path efficiency (PE) and throughput were
the highest for CDT.
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4. Discussion

The use of iEMG has been the interest of scientists for many years. Providing the ability to
control several prosthetic motions independently with greater dexterity, interday repeatability and
intuitiveness is a laudable goal (as it outweighs surface EMG in these parameters). With the recent
developments in the implantable sensor technology, these goals can be achieved. In this study, three
strategies based on the training of a classifier were investigated over five days. The aim was to find the
usability of iEMG in real-time and to find the effect of different training and testing strategies over
multiple days in order to understand variabilities in EMG signals. This will help develop a robust



Sensors 2020, 20, 3385 11 of 13

myoelectric control and minimize the duration of recalibration. Fitts’ law test showed a high-value
coefficient of determination (R2 > 0.91) for all days in all three investigated schemes.

Studies have shown that BCE increases as the time difference between training and testing of
classifiers increases [23,31,32]. Offline results indicated a similar trend where a greater decrease in CCE
was observed than BCE over days. Completion rate, one of the important performance parameters
in the real-time tests, was found to be different between CDT, WDT and BDT over days as shown in
Figure 5. Across all days, the completion rate (91.6 ± 3.6%) of CDT performed significantly better than
BDT (74.0 ± 5.8%) and WDT (88.2 ± 3.6%). The trend of improvement in CDT and degradation in
BDT represents the adaptation of the system. This effect can be more pronounced if the data can be
combined for several days. Data from several days may also require deep networks to understand this
process of adaptation of the system. The frequency of doing system recalibration of prostheses in a
PR-based myoelectric control can be reduced if the deeper network is trained on long term data [31,32].

The completion time with respect to ID indicated differences in-between train/test strategies
(Table 4). The performance metrics used in this study are comparable to intramuscular studies
previously done [20,32]. Path efficiency describes the ability of the designed model to reach the target
with the shortest distance. In this study, it was recorded (83.5 ± 4.4%), higher than reported in previous
iEMG real-time studies (73.1% ± 2.8%, 77.09 ± 0.89%) [20,30]. Similarly, corresponding overshoot value
was found low (15.0 ± 0.06%) compared to (22.1 ± 3.6%) in [30] and (56.3 ± 4.3%) in [20]. This explains
the ability of the subject to hold at the target also improved over time.

Factors that can affect the surface-based real-time performance of myoelectric control are electrode
shift, precipitation, skin impedance, interelectrode distances and electrode size. The overall trend in
improvement could not be influenced by these factors in iEMG recordings. So, improvement in the
real-time performance of WDT and CDT can only be described by the subject’s learning ability over
time. This could improve further if the training time increases in the experiment.

The quantification of outcomes is always a challenge with respect to arm function in myoelectric
control studies. Most PR-based studies evaluated only classification accuracy as a performance metric.
These offline results can further be validated by testing online. In this study, offline results reconciled
with online tests, as offline analysis revealed that increasing training data over time, decreases the
classification error. In a combined-day offline analysis (CCE), data trained on one day had a higher error
(14.1 ± 7.6%) compared to data trained on four days concurrently (5.0 ± 2.1%). BCE and WCE analysis
showed no significant difference in performance over days. Training strategies over a shorter duration
of time had low errors, but they failed to encompass the normal variations in different hand motions.
This problem can be solved by increasing the amount of training data for many days, to cater to natural
variabilities in hand movements. However, unlike deep learning algorithms, the performance of
classical machine learning algorithms degrades with large datasets that are spanned over days [32]
and thus deep learning networks are encouraged to be used for future PR control schemes.

Challenging experimental protocol prohibited the acquisition of a sufficient number of subjects.
However, results in this study illustrate a new research protocol and evaluation technique, which could
be replicated in future case studies having more subjects and amputees. We believe that this study
makes an important contribution to the literature.

5. Conclusions

In this study, we have developed a protocol to assess the real-time control parameters with
fine-wire electrodes inserted in forearm muscles. We believe the protocol was a more challenging part
that allowed recordings from inside muscles giving more insight to subchronic stability of performance
parameters. A real-time evaluation of different training-testing schemes was demonstrated. Two
DOF target acquisition tasks were tested using Fitts’ law. Both offline and online results suggest that
time affects the robustness of real-time PR-based myoelectric control. Real-time performance can be
enhanced by combining training data for many days (up to 100 days or more). Short-term experimental
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results may not represent the true performance of a control system, thus we recommend using training
data of multiple days for better intuitive control of the prosthesis.
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