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Towards Natural Control of Artificial Limbs 
A Novel Osseointegrated Human-Machine Gateway, Neuromuscular Electrodes, and Pattern 
Recognition 

Abstract 

The use of implantable electrodes has been long thought as the solution for a more 
natural control of artificial limbs, as these offer access to long-term stable and physiologically 
appropriate sources of control, as well as the possibility to elicit appropriate sensory feedback 
via neurostimulation. Although these ideas have been explored since the 1960’s, the lack of a 
long-term stable human-machine interface has prevented the utilization of even the simplest 
implanted electrodes in clinically viable limb prostheses. 

In this thesis, a novel human-machine interface for bidirectional communication 
between implanted electrodes and the artificial limb was developed and clinically 
implemented. The long-term stability was achieved via osseointegration, which has been 
shown to provide stable skeletal attachment. By enhancing this technology as a 
communication gateway, the longest clinical implementation of prosthetic control sourced 
by implanted electrodes has been achieved, as well as the first in modern times. The first 
recipient has used it uninterruptedly in daily and professional activities for over one year. 
Prosthetic control was found to improve in resolution while requiring less muscular effort, as 
well as to be resilient to motion artifacts, limb position, and environmental conditions. 

In order to support this work, the literature was reviewed in search of reliable and safe 
neuromuscular electrodes that could be immediately used in humans. Additional work was 
conducted to improve the signal-to-noise ratio and increase the amount of information 
retrievable from extraneural recordings. Different signal processing and pattern recognition 
algorithms were investigated and further developed towards real-time and simultaneous 
prediction of limb movements. These algorithms were used to demonstrate that higher 
functionality could be restored by intuitive control of distal joints, and that such control 
remains viable over time when using epimysial electrodes. Lastly, the long-term viability of 
direct nerve stimulation to produce intuitive sensory feedback was also demonstrated. 

The possibility to permanently and reliably access implanted electrodes, thus making 
them viable for prosthetic control, is potentially the main contribution of this work. 
Furthermore, the opportunity to chronically record and stimulate the neuromuscular system 
offers new venues for the prediction of complex limb motions and increased understanding 
of somatosensory perception. Therefore, the technology developed here, combining stable 
attachment with permanent and reliable human-machine communication, is considered by 
the author as a critical step towards more functional artificial limbs. 

 
Keywords: advanced prosthetic control, artificial limbs, bone-anchored prostheses, cuff electrodes, 
epimysial electrodes, neural interfaces, neurostimulation, osseointegration, pattern recognition, real-
time and simultaneous prosthetic control, robotic prostheses, sensory feedback.  
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Introduction 

Scope of the Thesis 

As opposed to axolotls that can regenerate their limbs and tails (Figure 1), or the 

planarian flatworm that goes as far as regenerating its head and body from only its tail, 

humans do not have such remarkable capabilities of recovering after an amputation. Despite 

recent advancement in regenerative medicine, such as the finding that blocking the Wnt 

signaling pathway1 (common through the animal kingdom) allows species of flatworms with 

limited generation capabilities to grow severed heads (Sikes and Newmark, 2013), the 

translation of such discoveries into humans regenerating amputated limbs, is today extremely 

futuristic. 

 

Figure 1. Limb regeneration by an axolotl2  

Analogous to solid organ transplantation, a limb can be transplanted in a surgical 

procedure as a treatment for limb amputation. This is currently a rare procedure 

(approximately 70 cases worldwide), and it is contraindicated for unilateral and congenital 

amputees (Elliott et al., 2013). Arguments for limb transplantation include cosmetic 

restoration, certain degree of intuitive motor control, and limited but naturally perceived 

sensory feedback. Current drawbacks include shortened expected life span (due to lifelong 

immunosuppression), potential rejection and its treatment, and high costs. Because of these 

reasons, hand transplantation has been mainly performed in bilateral amputees, as the 

tradeoff between benefits and drawbacks in unilateral and above-elbow amputations is more 

difficult to balance. 

This doctoral thesis is dedicated to artificial limbs, or limb prostheses, as currently being 

the most common method used for limb replacement. More specifically, this work deals with 

                                                           
1 Means of cellular communication considered important for cell proliferation and differentiation. 
2 Image by James Monaghan used with permission, http://nuweb5.neu.edu/monaghanlab/, accessed 
Jan 1st, 2014. 
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the control of powered upper limb prostheses, rather than the prosthetic hardware itself. The 

approach employed in this work addresses three of the major problems in the field, namely: 

1. The mechanically stable attachment of the limb prosthesis to the stump. This is 

addressed via orthopedic osseointegration as the mean to provide direct skeletal 

attachment, and further enhanced as a communication interface (Paper V). 

2. The lack and instability of physiologically appropriate signals to intuitively control 

several degrees of freedom of the prosthetic limb. This is approached by implanted 

neuromuscular interfaces (Papers I and II) and decoding algorithms (Papers III and 

IV). 

3. The lack of appropriate and distally referred sensory feedback. This is addressed by 

implanted neural interfaces (Papers I and II) and neurostimulation (Paper V). 

Neuromuscular interfaces in the context of this thesis refer to electrodes at the peripheral 

nerves and muscles, excluding the central nervous system (brain-machine interfaces [BMIs]).  
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Aims of the Thesis 

The purpose of this doctoral thesis is to improve the control of powered limb prostheses 

by enabling the clinical use of implantable neuromuscular interfaces. In order to achieve this, 

the principal objective is to develop a long-term stable and bidirectional osseointegrated 

human-machine gateway (OHMG), which allows for the communication between the 

implanted neuromuscular electrodes and the artificial limb (Figure 2). 

The direct connection to the neuromuscular system as the source of control is required 

for the OHMG to be clinically useful. Therefore another objective of this work is to 

investigate the viability of current neuromuscular electrodes for the control of artificial limbs, 

as well as to further develop them if necessary. 

The third objective of this thesis is to investigate advanced prosthetic control strategies 

based on pattern recognition algorithms. This is with the purpose to allow for intuitive 

control of additional degrees of freedom (DoF) than currently possible by conventional 

myoelectric control. 

 

Figure 2. The Osseointegrated Human-Machine Gateway (OHMG), a long-term and bidirectional 
communication interface between neuromuscular electrodes and the artificial limb. 
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Motivation 

Approximately 1,000 to 1,100 amputations have been estimated to occur every year in 

Sweden (Johannesson, 2009). In the United States of America, a 1.6 million amputee 

population was estimated in 2005, and this number is expected to double in 2050 (Ziegler-

Graham et al., 2008). In both countries, lower limb amputation is the most common (Pezzin 

et al., 2000, 2004; Dudek et al., 2005; Asplund et al., 2009), and cardiovascular diseases the 

most common cause (Johannesson, 2009; Adams et al., 1999), while traumatic amputations 

are most common in younger people (Pezzin et al., 2000; Asplund et al., 2009). In Sweden, 

the incident for traumatic amputations was observed to be 5.21 per 100,000 person-year 

between 1998 and 2006, with males between 15 and 30 years of age suffering most of the 

traumatic amputations (Asplund et al., 2009). 

The International Classification of Functioning, Disability and Health (ICF), by the 

World Health Organization (WHO), classifies disabilities at three levels: 1) body functions 

and structures, 2) activity, and 3) participation (WHO, 2002). The loss of an extremity has a 

clear impact in all of them at different degree depending on the amputation level. 

An integral rehabilitation is crucial for the quality of independent living after a traumatic 

event such as a limb amputation, especially in young and active patients with high mobility 

requirements. Analogously, patients with congenital malformation face similar challenges to 

alleviate what otherwise are life-permanent disabilities. A successful limb replacement would 

not only improve the patient’s quality of life, but also facilitate the individual integration as a 

productive member of the society. Additional benefits that must not be overlooked are the 

reduced burden placed on the patient’s family, and the improvement of their social 

relationships. Additionally, restoring the functionality of a missing limb will also impact the 

social cost associated to these disabilities, which is relevant to current worldwide concerns on 

the burden of healthcare expenses. 
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A Brief History on Robotic Prostheses 

The use of cosmetic and potentially functional prosthetic devices is estimated as long 

back as 950-750 BCE3 (Finch et al., 2012). Several improvements in prosthetic technology 

involving a wide variety of disciplines have been reported since then. The following is a non-

exhaustive compilation of findings and achievements relevant to powered upper limb 

prosthetics, and the quest for mastering their control. 

1948 Demonstration of myoelectric control (Reiter, 1948). 

1959 Discovery of osseointegration by P.I. Brånemark (Brånemark, 1959). 

1960’s Myoelectric prosthesis clinically implemented in Europe and Russia (Sherman, 

1964). Electromagnetic noise was early recognized as a major problem. 

1964  Probably the first attempt of hand transplantation in a bilateral amputee. It failed 

and resulted in re-amputation three weeks later (Gilbert, 1964; Elliott et al., 2013). 

1967  Utilization of myoelectric pattern recognition (MPR) to decode motor intention 

from synergistic muscle activations recorded by surface electrodes (Finley and 

Wirta, 1967).  

1968 Fully implanted myoelectric recording electrodes using telemetry (Herberts et al., 

1968). Five out of six devices were removed owing to mostly mechanical failures (3 

to 15 months implantation). The implant distance to the skin surface was observed 

as critical. 

1970’s Implanted neurostimulators to treat chronic pain with follow up for over 9 years 

(Nashold et al., 1982), and to correct footdrop (Waters et al., 1975) with follow up 

for over 12 years (Waters et al., 1985). Both systems used cuff electrodes as a neural 

interface and were probably the first long-term implanted neurostimulators.   

1973 Myoelectric pattern recognition using surface electrodes at the stump (Herberts et 

al., 1973; Graupe et al., 1973). Simultaneous control was reported without a 

quantitative evaluation (Herberts et al., 1973). Although analog electronics were 

                                                           
3 before common era 
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used by Herberts et al., microprocessors were argued to be already sufficient to 

compute classification in real-time by Graupe (1974). 

1974 Peripheral nerve stimulation provided sensory feedback to patients wearing body-

powered prostheses. A series of patients were treated with a fully implanted system 

enabled with telemetry (Clippinger et al., 1974). The causes that prevented the 

continuation of this work are unknown to the author (no further reports were 

found). Duke University and Avery Laboratories did not answer on the author 

requests of further information. 

1977 Implantation of epimysial and cuff electrodes intended for prosthetic control in an 

amputee (Stein et al., 1980; Hoffer and Loeb, 1980). Improved controllability was 

reported until the implementation had to be stopped due to infection in the 

percutaneous lead. No motor activity was recorded with the cuff electrode, however, 

stimulation was possible. 

1977 Direct simultaneous control using epimysial electrodes (2 DoF); one-for-one (one-

electrode to one-action)  (Stein et al., 1980; Hoffer and Loeb, 1980).  

1977 Study on the discrimination of artificially inputted feedback information using 

neurostimulation (Anani et al., 1977). 

1978 Clinical trials of prosthetic control based on myoelectric pattern recognition within 

a laboratory environment (Herberts et al., 1978; Wirta et al., 1978). Analog 

electronics implemented the classifiers and were embedded in a transradial 

prosthesis capable of 6 movements. Real-time tests for MPR controllers were 

introduced (Herberts et al., 1978). An independent study employed the synergistic 

activation of more proximal muscles for the control of transhumeral prostheses, 

however hand open/close was not decoded (Wirta et al., 1978). 

1979 Home clinical trial of prosthetic control based on myoelectric pattern recognition 

and surface electrodes (Almström et al., 1981).  

1980 Hoffer & Loeb suggested the possibility to use remnant muscles as biological 

amplifiers of neuroelectric signals physiologically corresponding to the lost degrees 

of freedom (principle of targeted muscle reinnvervation, Hoffer and Loeb [1980]). 
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1981 Prosthetic sensory feedback through neurostimulation in lower limb amputees using 

telemetry (Clippinger et al., 1981). Similar technology as mentioned above in year 

1974 (Clippinger et al., 1974). 

1981 Microneurography report of potential motor neural activity in long-term amputees 

(< 4 years, Nyström and Hagbarth [1981]). 

1982  Feasibility experiment to record motor neural activity from the ulnar, median and 

radial nerves in an amputee using wire loops as extraneural electrodes (De Luca et 

al., 1982). 

1990 Orthopaedic osseointegration allowed the first long-term successful bone-anchored 

limb prostheses (Brånemark et al., 2001). 

1998 Technically successful hand transplantation (Dubernard et al., 1999). The 

transplanted hand was eventually amputated presumably because the patient was 

unable to physiologically adapt to the donor’s hand (Elliott et al., 2013).  

2000 Real-time and simultaneous control of a robotic arm using brain-machine interfaces 

in non-human primates (Wessberg et al., 2000). 

2004 First patient treated with Targeted Muscle Reinnvervation (TMR). Muscles that no 

longer act over a joint, and thus have no functional actuation, were reinnervated 

with nerve branches from lost distal muscles. This allowed for direct simultaneous 

control (one-for-one) of 2 DoF using surface electrodes (Kuiken et al., 2004).  

2004 Study suggests the feasibility of recording neural motor activity from long-term 

amputees (up to 15 years) using short-term implanted intrafascicular electrodes. 

Moreover, these electrodes were also used to elicit discrete and graded sensations of 

touch and joint position/movement (Dhillon et al., 2004, 2005). 

2005  Demonstration of direct prosthetic control and sensory feedback using 

intrafascicular electrodes (short-term implantation) in long-term amputees (Dhillon 

and Horch, 2005).  

2010  Decoding of motion intent (3 movements) using intrafascicular electrodes (short-

term implantation) in a transradial amputee (Micera et al., 2010). 
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2011  Object discrimination through solely direct stimulation of afferent fibers using 

short-term implanted intrafascicular electrodes in amputees (Horch et al., 2011). 

2012  Real-time, proportional, and simultaneous control of a robotic arm by a patient with 

tetraplegia via a brain-machine interface consisting of 2 microelectrode arrays 

(Collinger et al., 2012). Experiments conducted in a controlled environment (patient 

does not use it at home). 

2013  Demonstration of long-term reproducibility of sensory perception through 

neurostimulation  in patients at 18 months (Tan et al., 2013) and 10 years (Paper V) 

after amputation. 

2013  Permanent and bidirectional communication between implanted electrodes and 

artificial limbs enabled via an osseointegrated implant (Paper V). This allowed for 

probably the first (in modern times since 1977 [Stein et al., 1980; Hoffer and Loeb, 

1980]), and longest implementation of prosthetic control sourced by implanted 

neuromuscular interfaces in daily and professional activities (> 1 year).   

2013  A transradial amputee was the first recipient of the implantable myoelectric sensors 

(IMES [Weir et al., 2009]). These are fully implantable and wireless intramuscular 

recording electrodes designed for prosthetic control (as in Herberts et al. [1968]), 

and probably the first wireless solution used by patients in activities of the daily 

living in modern times (Pasquina et al., under review).  
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Current Clinical Situation 

Attention must be paid when the literature indicates that certain technologies have 

allowed disable patients to performed activities of daily living, as this suggests that the 

disability in question have been reduced or overcome. However, the conditions in which 

such improvements have been demonstrated must be carefully assessed. More often than not, 

the technologies in question have proven their principle within the convenience of research 

laboratories, and in a short period of time, which does not necessarily mean readiness for 

clinical dissemination. This is unfortunately the case for artificial limbs (Jiang et al., 2012a; 

Farina et al., 2014), and to less extent for neuroprostheses (Borton et al., 2013b). 

Prosthetics have been thought as “the oldest of the technological rehabilitation sciences” 

(Andrade et al., 2014), and although bionic limb replacement with neuromuscular control 

was devised since the 1940’s (Reiter, 1948), artificial limbs are still far from providing the 

functionality of their biological counterpart. Moreover, technology used since the 1960’s is 

still the state-of-the-art solution provided to patients in clinics around the world. Myoelectric 

prosthesis using surface electrodes with control strategies established decades ago, such as 

“two-site two-states” or “one-site three-states” (Parker and Scott, 1986; Parker et al., 2004), 

are presently the most sophisticated solutions available to patients. An exception to the latter 

are subjects treated with Targeted Muscle Reinnervation (TMR, Kuiken et al., 2004), a 

surgical procedure that allows for additional myoelectric sites for direct control (“one-site 

one-action” or “one-for-one” [Wirta et al., 1978]). However, TMR patients continue to suffer 

from the challenges presented by surface electrodes (Schultz and Kuiken, 2011), a technology 

plagued with instability problems (Paper I), to the point where the persistence of noise in 

surface recordings has been described as “endemic and unavoidable” (De Luca et al., 2010). 

The introduction of osseointegration to provide stable mechanical attachment of 

prosthetic limbs to the skeleton has shown to improve quality of life for amputees 

(Brånemark et al., 2014). However, as a coupling mechanism alone, it mostly affects the 

functionality of joints adjacent to the amputation. The control of a powered terminal device, 

or other more distal joints, has continued to depend mostly on superficial myoelectric 

recordings. 

Functionality was early identified as the main need in upper limb prosthesis (LeBlanc, 

1985). Currently, there are commercially available robotic devices to substitute elbow, wrist, 

and hand with individually actuated fingers, which could potentially restore considerably 

more functionality than a single actuated unit. However, since patients can hardly control 
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more than one of these units at the time, these powered prosthetic devices are rarely used all 

together (elbow + wrist rotator + hand) and to their full capabilities (finger control in high-

end hand prostheses). Moreover, no tactile feedback is currently provided, even in its 

simplest form (Antfolk et al., 2013). This is despite that sensing hardware (position and force 

sensors) is widely available for robotic applications. All this might explain why despite that 

more advanced prosthetic hardware has been made available in the last decades, improved 

functionality continues to be requested by patients using powered upper limb prosthesis 

(Kyberd et al., 2007). 

Now that prosthetic hardware is potentially capable to restore considerable more 

functionality, the major challenge in the field is widely recognized to be to produce reliable 

and intuitive control (Atkins et al., 1996; Hargrove et al., 2010; Cipriani et al., 2011; Pistohl et 

al., 2013; Andrade et al., 2014), which is mainly limited due to the lack of long-term stable 

and physiologically appropriate control signals (Baker et al., 2010; Scheme and Englehart, 

2011). Inherent to amputation, some or all of the muscles required for actuation are lost, thus 

causing a lack of myoelectric signals suitable for advanced prosthetic control. Paradoxically, 

as the level of amputation increases, more functions need to be restored while fewer 

myoelectric control sites are left available to do so (Hoffer and Loeb, 1980). Furthermore, the 

environmental dependency of surface electrodes can only deliver temporarily stable signals, 

which have shown to be insufficient for clinical implementations of control strategies beyond 

direct control (Schultz and Kuiken, 2011). 

Conversely, implantable electrodes have the potential of providing additional, long-term 

stable, and physiologically appropriate control signals, as well as to elicit appropriate and 

distally referred sensory feedback (Paper I). However, the problem of achieving permanent 

electrode-prosthesis communication, due to the lack of a reliable and long-term stable 

cutaneous interface, has been a major obstacle for the utilization of implanted electrodes 

beyond research experiments. To find a solution to this long-standing problem is the main 

focus of this thesis (Paper V). The sources for control (Paper I, II) and pattern recognition 

strategies to improve controllability are also addressed (Paper III, IV). 

Myoelectric pattern recognition (MPR) has shown promising results for the intuitive 

control of several prosthetic units when evaluated in controlled environments. However, it 

has still not produced clinical evidence of its practical usability (Andrade et al., 2014), despite 

being tested in clinical trials since the 1970’s (Herberts et al., 1978; Wirta et al., 1978; 

Almström et al., 1981). A major limitation recognized back then, and which continues today, 
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is precisely the instability of surface electrodes. The variability resulting from the use of 

surface electrodes are known to be detrimental to the prediction of motion intent (Tkach et 

al., 2010). Epimysial electrodes, as the implanted analogous of surface electrodes, could 

provide the missing stability required for MPR implementation, but again, neither direct 

control nor MPR systems have been able to clinically exploit the advantages of even the 

simplest implanted electrodes due to the lack of a reliable and long-term stable human-

machine communication. 

Summary of the current clinical situation: 

• Prosthetic hardware and decoding technology are currently available to potentially 
improve the functionality of limb prostheses.  

• However, the lack of sufficient, long-term stable, and physiologically appropriate 
control signals have hindered the clinical utilization of such hardware and decoders. 

• Implantable electrodes can provide long-term stability and additional 
physiologically appropriate control signals, furthermore, neural interfaces can be 
used to provide intuitive and appropriate sensory feedback. 

• However, implantable electrodes have not been clinically used due to the lack of a 
long-term stable and reliable human-machine trans/percutaneous interface. 
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Neuroprosthetics 

Neuroprostheses aim to restore a certain degree of sensorimotor impairments (Hoffer et 

al., 1996; Borton et al., 2013b). In the case of spinal cord injuries (SCI), where the volitional 

control of muscles is lost, a fully implantable system can be used to record control signals 

from more proximal and still voluntarily controlled muscles in order to stimulate those 

impaired (Figure 3). Such systems have been clinically tested in humans for over 2 years in 

activities of daily living (Kilgore et al., 2008). Its predecessor, the FreeHand System, was 

probably the first commercial neuroprosthesis for restoring upper limb motion in SCI 

(Peckham et al., 2001), and it has been estimated that 250 patients have been recipients 

worldwide (Kilgore et al., 2008). The obvious difference between neuroprostheses and limb 

prostheses is that since the biological actuators are lost in the latter, hence new requirements 

on the mechanical and communication interface arise. Nevertheless, the knowledge gained 

by neuroprostheses in materials, leads, connectors, and electrode technology, have been 

instrumental for the work realized in this doctoral thesis.  

 

 

Figure 3. Illustration of a fully implanted neuroprosthesis aimed to restore upper limb function. Image 
published in the open access article: Kilgore et al. (2003). 
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Targeted Muscle Reinnervation (TMR) 

Neural recordings represent several technological challenges due to the small amplitude 

of the nerve conducting action potentials (few µV). In 1980, Hoffer and Loeb suggested the 

reinnervation of available muscles with more functionally relevant nerve branches deprived 

from their original target muscle due to the amputation (Hoffer and Loeb, 1980). This idea 

was first brought to clinical reality by Kuiken et al. (2004) in a patient that suffered from a 

bilateral shoulder disarticulation. By increasing the number of myoelectric control sites 

(Figure 4), TMR allows for simultaneous control of myoelectric prosthesis (one-for-one) 

using surface electrodes. Furthermore, an additional and unexpected benefit of this 

procedure is that sensory fibers innervate skin patches in their new targets, thus providing 

naturally perceived sensory feedback (Kuiken et al., 2007a, 2007b). It has been estimated that 

over 60 patients have been treated with this procedure since 2002 (Young et al., 2014). 

Presently, no study has been published on the efficacy of this technique. 

  

Figure 4. Illustration of the Targeted Muscle Reinnervation (TMR) procedure in a patient with shoulder 
disarticulation in which the musculocutaneous, median, and radial nerves were used to reinnervate the 
pectoralis major muscle, and thus provide myoelectric sites for intuitive prosthetic control. Illustration by the 
Rehabilitation Institute of Chicago and published in the open access article: Scheme and Englehart (2011). 

Recently, another surgical technique has been proposed in which a small portion of 

muscle is transplanted to serve as a target for nerves severed by the amputation (Kung et al., 

2013a, 2014). As in TMR, these muscles do not aim to actuate over a joint, but serve as 

biological amplifiers for the neural motor commands. However, since the transplanted 

muscle is smaller than those used in TMR, surface electrodes might be unable to capture its 

electrical activity. This technology named Regenerative Peripheral Nerve Interface (RPNI) is 

therefore designed for implanted muscular electrodes. The idea has been currently tested 

using epimysial electrodes in animal models with promising results (Urbanchek et al., 2011; 

Kung et al., 2013b, 2014).  
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Prosthesis Attachment 

Sockets 

The conventional method to attach limb prostheses to the patient’s stump is the use of a 

socket.  Sockets rely on mechanically compressing the stump to secure the limb prosthesis, 

and therefore loads are transferred through the soft tissue by direct contact on the skin. 

Compression is a constant aggression to skin and soft tissue, which results in a variety of 

problems ranging from inconvenient to disabling. As a result, socket suspension is regarded 

as a major source of problems for amputees (Lyon et al., 2000; Hagberg and Brånemark, 

2001; Dudek et al., 2005; Pezzin et al., 2004; Gailey et al., 2008). 

The heavier the prosthesis, or the higher the loads developed during prosthetic use, the 

stronger will be the coupling required to keep the prosthesis in place. This translates into a 

higher compression and adhesion by the socket on the skin. For this reason, it is not 

surprising that the most active patients have an increased risk of dermatologic problems 

(Dudek et al., 2005). However, this situation is not exclusively reported by the most active 

prosthetic users, problems such as dermatitis and infected sores are also commonly reported 

by amputees due to this coupling mechanism (Lyon et al., 2000; Hagberg and Brånemark, 

2001; Dillingham et al., 2001; Dudek et al., 2005; Pezzin et al., 2004). 

Heat transfers poorly between the skin and the socket (Andrade et al., 2014), thus 

unavoidably causing discomfort. Physical activity and environmental conditions will cause 

increased heat and sweat within the socket interface (Hagberg and Brånemark, 2001), which 

also translates to unpleasant odors. The latter could affect the social relationships of the 

subjects at different levels depending on their cultural background. 

The hard frame of a socket, inherently limits the range of motion when close to the 

joints. Moreover, patients with short stumps cannot use a socket without locking or reducing 

the range of motion of the adjacent joint, which results in increase disability at the functional 

level, and potentially at the activity and participation levels as well, for example: 1) patients 

with high bilateral transfemoral amputations can hardly use sockets that provide enough 

suspensions for the prosthetic legs, thus wheelchairs become their only option for mobility; 

2) in a high transhumeral amputation, the socket or complementary suspension components 

cover part of the shoulder or chest, thus limiting its range of motion and causing additional 

discomfort (Figure 5). Moreover, even in cases where the adjacent joint is not locked, moving 
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into certain limb position will cause friction between the socket and adjacent tissue, e.g., 

sitting discomfort is commonly reported by patients with transfemoral amputations 

(Hagberg and Brånemark, 2001). Discomfort caused by the socket has been reported by the 

majority of amputees (Dillingham et al., 2001), and it has also been found as the major aspect 

of dissatisfaction among prosthetic users (Pezzin et al., 2004). In summary, it is not 

surprising that the socket suspension has been found as a common denominator in problems 

affecting amputees’ quality of life (Hagberg and Brånemark, 2009). 

 

Figure 5. Example of a transhumeral amputee fitted with a socket prosthesis which limits shoulder 
abduction (a) and flexion (b) to less than 45°, despite that the patient is still capable of full range of motion (c). 
The distal part of the stump consists of approximately 40 mm of soft tissue which cannot be used to transfer 
load to the prosthesis, thus a harness is necessary to provide enough suspension (prosthetic fittings vary 
depending on the stump anatomy). Additionally, skin irritation can be observed at the stump due to the socket 
compression (d). Pictures by Stewe Jönsson adapted with permission.  

Bone-Anchored Prostheses 

Due to the inherent problems of socket suspension, the idea of a direct coupling between 

the artificial limb and the residual bone has been explored since decades ago (Mooney and 

Predecki, 1971). Aside to static biocompatibility, the materials for such surgical approach 

must allow living tissue to tolerate the functional stresses generated by prosthetic use. The 

failure of initial attempts to consolidate this idea has been attributed to the poor mechanical 

integration between bone and implant. The introduction of titanium solved this problem and 

allowed the first successful skeletal attachment of limb prostheses in 1990 (Brånemark et al., 

2001). This was based on the principle of osseointegration which was discovered by P.I. 

Brånemark in Gothenburg, Sweden, in the 1950’s (Brånemark, 1959). Since then, research 

groups around the world have developed different bone-anchored systems (Pitkin, 2013). 
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Researchers at Gothenburg University, Sahlgrenska University Hospital, and Chalmers 

University of Technology have pioneered the use of osseointegration in a variety of 

applications since its discovery (Brånemark et al., 2001); from dental implants (Brånemark et 

al., 1977) to bone conducting devices to restore hearing impairment (Håkansson et al., 1985; 

Snik et al., 2005). 

Based on the experience gathered with the first bone-anchored prostheses, R. Brånemark 

and colleagues established the Osseointegrated Prosthesis for the Rehabilitation of Amputees 

(OPRA) treatment protocol in 1999 (Hagberg and Brånemark, 2009), which has shown to 

provide stable and long-term fixation through radiostereometric analysis (Nebergall et al., 

2012). The Centre of Orthopaedic Osseointegration at the Department of Orthopaedics, 

Sahlgrenska University Hospital was established the same year to further develop the novel 

treatment concept (Figure 6). By the end of 2013, the Centre of Orthopaedic 

Osseointegration at Sahlgrenska University Hospital treated approximately 200 patients with 

osseointegrated limb prostheses (OPRA Implant System4, Figure 7), of which the majority 

has been transfemoral amputations, but also transtibial, transhumeral, transradial and thumb 

amputations have been treated. Additionally, this treatment has been expanded to clinics 

around the world and it is currently provided in Australia, Belgium, Chile, Denmark, 

England, France, Netherlands, Portugal, and Spain. 

   

Figure 6. Five year follow up X-ray from a high transfemoral amputee treated with the OPRA protocol (left 
inset). Schematic illustration of a leg prosthesis couple to an osseointegrated implant via a safety device (right 
inset). The safety device prevents accidentally dangerous torque and bending movements to be transferred to 
the implant. 

                                                           
4 Integrum, Gothenburg, Sweden. 
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The OPRA implant system has a modular design that has proven particularly useful for 

lower limbs where the abutment or abutment screw can bend or fracture before the bone is 

affected due to excessive mechanical stress, in which case these components are simply 

replaced in the out-patient clinic without the need of major surgery. In a recent study, 4 

transfemoral patients (out of 51) required an abutment change due to such mechanical 

complications (2 year follow up). However, they immediately recovered normal function 

after replacing the damaged components (Brånemark et al., 2014). The alternative bone-

anchored implant designs will need to be completely removed in such situations, or would 

result in bone fracture, with either outcome requiring a long-recovery aside of potential 

hospitalization. Currently, no retrospective or prospective study has been published by other 

groups working with bone-anchored prostheses, and therefore the efficacy and complications 

of alternative designs are unknown. 

 
Figure 7. Illustration of the OPRA implant system. A fixture is implanted intramedullary and it becomes 

osseointegrated over time. An extension is created with the abutment which is the percutaneous component. 
Soft tissue is stabilized and fat is removed between the most distal part of the bone and the skin. This is done in 
order to reduce motion of the skin at the percutaneous interface. 

There are inherent advantages of bone-anchored over socket suspension. The first and 

most obvious is the elimination of the socket itself, and thus the soft tissue compression, skin 

obstruction, limitation in the range of motion, and locking of adjacent joints. An additional 

advantage is the ease of donning and doffing (Figure 8), which has been found as an 

important consideration for patients (Kyberd et al., 2007). Moreover, it has been found that 

OPRA patients use more sophisticated prosthesis, arguably because they can take better 

advantage of such devices when not afflicted by socket related problems (Häggström et al., 

2013a). 
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Figure 8. Donning and doffing of a bone-anchored transhumeral prosthesis using a clamp mechanism. 

The Percutaneous Interface 

A permanent percutaneous abutment is probably the most controversial part of bone-

anchored prostheses. Percutaneous devices can present different failure modes (von Recum, 

1984), from which the risk of infections is arguably the major concern, probably because this 

has been traditionally a problem of mechanically unstable percutaneous devices such as 

catheters and leads, but also for stable so called external fixator systems used for fracture 

treatment or callus distraction (e.g., Ilizarov apparatus [Ilizarov, 1990]). Previous permanent 

percutaneous devices based on osseointegration faced an even stronger reluctance by 

professionals during their origins, particularly dental implants as the first clinical application 

in shifting the state-of-knowledge on implantable materials and percutaneous devices. 

Currently, a dental implant is a widely accepted technology which is routinely prescribed 

around the world. Another successful example of permanent osseointegrated devices are 

bone conducing hearing aids, for which a recent study found no adverse soft tissue reactions 

in 95.5% of 7,415 observations in 1,132 percutaneous implants (Dun et al., 2012). 

In the most recent study of the OPRA Implant System, no superficial infection was found 

to develop into a deep infection, and in average, patients had one superficial skin infection 

every other year, which were treated successfully with oral antibiotics (Brånemark et al., 

2014). Skin infections are commonly present due to socket suspension (Lyon et al., 2000; 

Dudek et al., 2005), and thus this is not a problem exclusively of bone-anchored prostheses. 

In a smaller study of 39 patients, which included patients treated before the establishment of 

the OPRA protocol, two patients reported deep infections. One of them was cured with 

antibiotics, and the other had the implant removed. It is worthy of notice that the cause of 

infection could not be directly related to the percutaneous interface, and overall, it was found 

that infections rarely lead to disability or implant removal (Tillander et al., 2010). 
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In relation to the skin interface, the OPRA treatment indicates that 1) soft tissue at the 

stump must be stabilized in order to reduce skin displacement during motion, and 2) 

subcutaneous fat must be removed in order for the skin to attach to the underlying bone 

structure. These principles have been independently suggested as fundamental for a 

successful percutaneous interface (Affeld et al., 2012). Furthermore, relative motion has been 

suggested as the main catalyst of infections in previous percutaneous interfaces (Pitkin, 

2013).  

The interface between the skin and nails is a successful evolutionary solution that follows 

the aforementioned principles. Other approaches, such as growing skin into porous 

percutaneous components have paradoxical complications due to the keratinocytes 

(predominate cells in the epidermis) actually growing into the device (as designed), which 

prevents them from sliding and migrating to the top layer at the end of their life cycle, thus 

causing a sulcus (depression) around the device where bacteria can thrive (Affeld et al., 

2012).  

Topographic modifications to the implant surface have long been explored as means of 

reduction of bacterial adhesion and prevention of biofilm creation, however, with conflicting 

results (Shah et al., 2013). Nevertheless, these continue to be explored together with surface 

modifications that promote osseointegration (Brånemark et al., 2011), which has been 

incorporated to the new generation of fixtures in the OPRA Implant System, after being 

clinically successful in dental implants (Thomsson and Larsson Wexell, 2013). 

Additional suggestions have been given to improve the skin interface. One of them is 

broadening the bone area around the implant, which effect has been calculated to reduced 

shear stress (Yerneni et al., 2012). This or other methods to further improve the skin 

interface, such as antibacterial coatings (Zaborowska et al., 2014), are currently explored by 

our group and others. 

Clinical Outcomes 

OPRA has shown to increase prosthetic use and mobility when compared with socket 

suspension (Hagberg et al., 2008). In transfemoral amputees, it has shown to provide a wider 

hip range motion (Hagberg et al., 2005; Tranberg et al., 2011), and reduced pelvic tilt 

(Tranberg et al., 2011). However, despite of osseointegrated patients showing a more normal 

gait pattern over socket users, these were not equal to those from able-bodies (Frossard et al., 

2010). This is potentially because prosthetic attachment alone does not automatically provide 



 

22 
 

full control over the prosthesis, as able-bodies have over their extremities, and also because 

transfemoral amputees lack of powered knee and ankle joints. 

Osseointegrated patients have reported a reduced perception of disability and energy 

consumption (Sullivan et al., 2003; Lundberg et al., 2011). Moreover, osseointegrated 

prosthesis have been described as a more integral part of the patient, rather than viewed as an 

external tool (Lundberg et al., 2011). The latter might in part be due to a phenomena called 

osseoperception, which describes the patient’s ability to better perceive the environment due 

to the direct transmission of load and vibration from the prosthetic limb to the bone 

(Brånemark et al., 2001). An improved sensory feedback from the surroundings has been 

anecdotally reported by osseointegrated patients regardless of the level of amputation. This 

led to scientific investigations in which OPRA patients showed a higher perception of 

vibratory and pressure stimuli over socket users (Jacobs et al., 2000), as well as themselves 

before osseointegration (Häggström et al., 2013b). Moreover, it has been found that tactile 

stimulation in osseointegrated finger prostheses activates the corresponding somatosensory 

areas in the brain, which was investigated after reports of patients being able to identify 

textures and surfaces by touch (Figure 9). The brain activation was found bilaterally, rather 

than strongly in the contralateral side to the amputation, which was suggested as a 

compensatory mechanism (also observed in other conditions such as stroke) due to the 

missing biological sensors in the amputated hand (Lundborg et al., 2006). This finding 

supports the notion that along with the mechanosensibility associated with osseointegrated 

implants, osseoperception also results in brain plasticity maintaining sensory function 

(Klineberg et al., 2005). 

 

Figure 9. The osseointegrated thumb prostheses allow full range of motion in the adjacent joint and a high 

degree of sensory feedback, thus restoring functionality (right inset). 
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Overall, the OPRA treatment has shown to improve the patients quality of life (Sullivan 

et al., 2003; Hagberg et al., 2008; Brånemark et al., 2014). Patients have described it as a 

revolutionary change, adding existential implications to the quality of life, where they can “be 

more engaged in their life and social interactions rather than focusing on a scrambling socket 

chafing their skin or aching and pinching”, thus the impact of osseointegrated prosthesis has 

been observed beyond functional improvements. Patient can participate in activities from 

which they were restricted due to the socket suspension, such as dancing or cycling (Figure 

10-11), and since they are now less limited, they can get more involved in self-development 

(Lundberg et al., 2011). 

 

Figure 10. Transfemoral osseointegrated patient who is a certified body-pump instructor and cycled 

approximately 320 km from London to Paris using her osseointegrated prosthesis5. 

 

 

Figure 11. Transhumeral and transfemoral osseointegrated patient who is a Paralympic swimmer6. 

                                                           
5 Central image by FitPro (www.fitpro.com) with permission. 

http://www.fitpro.com/
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Our research group and others have observed that once the limitations of the socket 

coupling has been overcome, patients have higher expectations now limited by the artificial 

limb and its control (Sullivan et al., 2003). The latter being the main focus of this thesis. 

Economic Matters 

Patients treated with the OPRA Implant System have shown an approximately 50% 

reduction on the number of visit to the prosthetic workshop (Häggström et al., 2013a). This 

can be explained by considering that sockets require to be exchanged in average every 2 years 

(Dillingham et al., 2001). Socket related issues have been found as the main cause for visiting 

the prosthetists workshop over problems relating the prosthesis itself or cosmetic covers 

(Häggström et al., 2013a). 

Despite that prosthetic coupling and safety components utilized in bone-anchored 

prosthesis differ from those utilized with sockets (Jönsson et al., 2011), a recent retrospective 

cost analysis found that prosthetists spend considerably less time (∼50%) fitting and 

maintaining limb prosthesis in osseointegrated patients. Furthermore, despite that OPRA 

patients use more sophisticated prosthetic devices, the overall cost was found similar since 

they require fewer visits and personnel working hours (Häggström et al., 2013a). This study 

did not include implant and surgical costs. 

As expected, a treatment requiring a surgical intervention including an implant has a 

higher immediate cost over conventional socket suspension. However, the long-term costs 

must not be overlooked. In the case of the Hospital del Trabajador in Santiago de Chile, 

Chile, 23 of 25 patients successfully treated with the OPRA Implant System are able to 

continue their professional activities7. One could argue that the cost related to a life-long 

disability can be higher than an initially more expensive treatment if such treatment reduces 

the disability, and thus reduces related costs over time. 

  

                                                                                                                                                         
6 Pictures by Karin Nauclér. 
7 Personal communication April 2014 - Dr. Rainhold Garcia, published with permission. 
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Human-Machine Communication 

Percutaneous Leads 

Percutaneous leads have been employed widely in experimental research in functional 

electrical stimulation. A retrospective study on intramuscular electrodes with percutaneous 

leads (62 subjects) found that 14.5% of patients reported at least one infection event in the 

skin interface (Knutson et al., 2002). The longest time these leads were implanted was 

approximately one year, and therefore it is unknown how infections and other mechanical 

instabilities will affect the implant survival in longer periods of time. It has been widely 

suggested that percutaneous leads will eventually lead to infections, which would ultimately 

result in the device failure (Stein et al., 1980; Hoffer and Loeb, 1980; Dhillon et al., 2004), 

arguably due to poor immobilization of the lead at the percutaneous site (Affeld et al., 2012). 

Thus reliability, safety, and cosmetics problems are associated to percutaneous leads (Weber 

et al., 2012). 

Percutaneous leads require external connectors that must be stabilized on the skin 

(Figure 12), e.g., using an adhesive tape. This raises several practical questions such as: How 

easy would it be for the patient to wear the prosthesis and make electrical coupling with a 

skin-fixed connector? How long can the skin-obstructive bandages and tapes remain in 

place? Are there skin related problem due to the adhesive tapes? How comfortable it is to 

have adhesive tapes over the skin for long periods of time? One protocol has been prescribing 

removal of the bandages and clean the site with alcohol once or twice per week (Knutson et 

al., 2002), which might be painful due to the open skin. 

Additionally, a catastrophic failure would be the result of accidentally pulling the 

connector and leads in activities of the daily living, e.g., undressing, making sports, playing 

with children, etc. Therefore it is also important to consider the disabling consequences 

imposed by such system, i.e., are the subjects free to swim and shower without putting their 

device at risk? 

Despite not being regarded as a long-term stable solution, percutaneous leads play an 

important role in research and clinical practice, such as the preliminary evaluation of a 

neurostimulation based therapy before proceeding with a permanent implantation. 
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Figure 12. Percutaneous leads with skin surface connector. Left inset - electrode leads exiting from skin 
surface (A), connector block (B), and stimulator cable (C). Right inset- bandage (D) covering implant site and 
connector block-stimulation cable interface. Illustration from the open access article: Knutson et al. (2002). 

Wireless systems 

In this time of electronic mobility, wireless technology is an obvious solution for the 

challenge of communicating the implanted electrodes and the artificial limb. In paper I, 

advantages and disadvantages of wireless technologies for recording and stimulation are 

briefly discussed, and special attention was given to the Implantable Myoelectric Sensors 

(IMES [Weir et al., 2009]). As opposed to distributed systems where each implant has 

telemetry capabilities, such as the IMES and previous work by Herberts et al., (1968), 

centralized systems where electrodes are connected via leads to a single transmission and 

control unit have also been developed specifically aimed for the control of prosthetic limbs 

(McDonnall et al., 2012; Lewis et al., 2013), as well as for more convenient physiological 

studies (Axelsson et al., 2007). These systems have had unidirectional focus solely on 

recordings, however, there are reports of bidirectional neuroprostheses employing similar 

wireless technology (Hart et al., 2011). Wireless systems aimed for prosthetic control have 

been tested in-vitro and in-vivo in animal models, and although the general idea was explored 

in human patients since the 1960’s (Herberts et al., 1968; Clippinger et al., 1974, 1981), it is 

not until now that a clinical implementation is pursued again (Pasquina et al., under review). 

Promising results have been recently announced on the implantation of the IMES (Figure 13) 

in a transradial patient (Hankin et al., 2014), as part of a clinical trial filed in May 20138. 

Currently, this system requires a series of external components to operate, which most likely 

will be miniaturized in order to be embedded on the prosthetic arm. 

                                                           
8 Study registered at ClinicalTrials.gov, ID: NCT01901081, “Feasibility of Implantable Myoelectric 
Sensors to Control Upper Limb Prostheses (IMES)” (accessed: Apr, 2014). 
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Figure 13. The Implantable Myoelectric Sensors (IMES) originally developed by Weir et al. (2009), and 
currently in the process to reach clinical implementation by the Alfred Mann Foundation, USA (Merrill et al., 
2011; Pasquina et al., [under review]). Illustration by the Alfred Mann Foundation used with permission. 

Wireless systems for neural recordings in the central nervous system are also showing 

promising results (Sharma et al., 2011; Borton et al., 2013a). Borton et al. have recently 

reported on a fully implantable device capable of transmitting neural data from a 

microelectrode array at considerably fast speed (24 Mbps). This device can operate 

continuously during 7 hours before requiring to be recharged via induction (Borton et al., 

2013a). Similarly to the approaches on the peripheral nerves, clinical implementation has not 

been reported. On the other hand, fully implanted and wireless neurostimulators to treat 

conditions such as chronic pain or footdrop have been used in human patients since early 

1970’s (Nashold et al., 1982; Waters et al., 1975). The contrasting difference might be due to 

the amount information required to be transferred via the wireless link. Pacemakers and 

neurostimulators commonly use the wireless link solely to transfer programing parameters, 

status reports, and on/off signals. A neurally controlled prosthetic limb would require 

continuous transfer of information which raises the requirements on power consumption 

and safety. Heating at the antenna site due to constant transmission must be kept below 2°C 

from the body temperature9 in order to avoid thermal injury. Identified issues with telemetry 

systems are power consumption (Axelsson et al., 2007), overheating (Borton et al., 2013a), 

coupling and orientation (Baker et al., 2010), and susceptibility to electromagnetic 

interference, as more and more consumer products are enabled with wireless transmission. 

It is worth mentioning that even when solving all technical and safety challenges related 

to wireless systems, these will always have a more limited bandwidth in comparison to a 

wired solution, as suggested in Paper V. Wireless systems also require superficial 

                                                           
9 According to the international standard ISO14708-3:2008, Implants for surgery - Active Implantable 
Medical Devices 
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components, which can cause a variety of problems ranging from discomfort to disability, 

particularly if a socket is required. Additionally, the inherent complexity of wireless 

communication makes it more prone to failures, as we have learned from industrial 

automation where wireless systems are carefully used owing to the related cost of stopping 

production due to communication problems. On the other hand, a wireless system leaves the 

skin intact, and therefore such a solution will always have a place as an alternative to a 

percutaneous implant, or for patients with shoulder disarticulations where percutaneous 

osseointegrated implants has not yet been employed. 

The Osseointegrated Human-Machine Gateway  

As opposed to mechanically unstable percutaneous leads, the idea of employing an 

osseointegrated device to allow electrical communication between implanted electrodes and 

limb prostheses is as old as the use of osseointegration in bone-anchored prosthesis 

(Brånemark, 1993). This rather “straightforward” idea has continued to be suggested in the 

literature (Dhillon et al., 2004), presented in scientific conferences (Ortiz-Catalan, 2010), and 

explored in bench and animal models (Ortiz Catalan, 2010; Pitkin et al., 2012; Al-Ajam et al., 

2013). The real challenge, however, remained in developing an implant system that preserves 

the mechanical integrity required for load transfer between bone and prosthesis, and at the 

same time, allows for electrical communication in and out of the body (bidirectional). The 

work done during this doctoral thesis is the first to bring this idea to clinical reality (Paper V). 

Extensive work previously conducted in neuroprosthetics taught us that epimysial and 

cuff electrodes are safe, reliable, and well characterized neuromuscular interfaces (Paper I). 

Moreover, it provided us with enough information to avoid unnecessary animal experiments 

to validate the feasibility of permanently implantable electrodes as source for prosthetic 

control. The epimysial electrodes have been extensively used in humans for recording and 

stimulation as part of neuroprostheses (Kilgore et al., 2005). These have remained implanted 

for over 20 years and used in activities of the daily living (Kilgore et al., 2008). The clinical 

trial of the FreeHand system reported 408 electrodes implanted in 51 patients, from which 

only 3 presented failures, and presumably only one due to mechanical fatigue (Peckham et 

al., 2001). In a related study, 2 out of 204 epimysial electrodes (27 patients) failed with an 

average follow up of 7.1 years (3.2 to 16.4 years) (Kilgore et al., 2003). In both studies the 

electrode leads (lengths of 28 to 83 cm in the latter study) crossed up to 3 joints, which 

increased the mechanical stress to which they are exposed, and nevertheless, high survival 

rates were observed. Similarly, cuff electrodes have been extensively used in humans to treat 
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chronic pain (Nashold et al., 1982), tinnitus (Ridder et al., 2013), epilepsy (Tahry et al., 2010; 

Ben-Menachem et al., 2013), sleep apnea (Schwartz et al., 2001), and blindness (Veraart et 

al., 1998; Delbeke, 2011), as well as for restoring upper (Haugland and Sinkjaer, 1995; 

Polasek et al., 2009; Memberg et al., 2014) and lower (Waters et al., 1985; Haugland and 

Sinkjaer, 1995) limb function in patients with tetraplegia or hemiplegia, respectively. 

 

Figure 14. The left inset shows a common socket fitting for a high transhumeral amputee limiting the 
range of motion (green line) and prosthetic control at certain height (red line). The OPRA treatment releases 
the adjacent joint and allows for full range of motion (central inset). However, the controllability of the 
prosthesis is compromised in certain limb position due to myoelectric cross-talk from adjacent muscles (red 
line). The enhancement of the OPRA treatment to provide a more natural control of artificial limbs (NCAL) 
allows for permanently implantation of neuromuscular electrodes to robustly provide long-term stable signals 
for control, independently of limb position or environmental conditions.  

As previously mentioned, bone-anchored prostheses allow for full range of motion of the 

remaining joints. However, myoelectric control can be compromised in certain limb position 

when utilizing surface electrodes due to myoelectric interference from adjacent muscles 

(Figure 14). This was a major problem for the first recipient of the OHMG, as the restricted 

myoelectric control was particularly disabling in professional activities. Moreover, the 

control was considerably affected in outdoor activities during the winter time due to poor 

conduction at the skin interface (a recurrent problem living in the north of Sweden). By 

employing implanted neuromuscular electrodes, the skin interference is eliminated from the 

recording path, together with the skin related issues. As a result, the controllability of the 

prosthesis becomes independent from limb position and environmental conditions (Paper 

V). Moreover, since the electrode is closer to the source, the control signals no longer require 

traveling through soft tissue, skin, and potentially dead skin cells before reaching the 
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electrode, which translates into lower muscular effort and increased grip resolution and 

proportional control (Paper V), as expected from an increased signal bandwidth. 

The OHMG was designed modularly in order to keep within the philosophy of the 

OPRA implant system (Figure 7). More importantly, the percutaneous and osseointegrated 

components (abutment and fixture, respectively) were kept intact to secure the mechanical 

stability required for load transfer between the prosthesis and the bone, as well as reduced 

disturbances at the skin interface. The abutment screw was modified to embed two 

feedthrough connectors, one parallel at the distal end, and one in-line at the proximal end. 

An in-line pin extends from the central sealing component to interface with the proximal 

connector at the abutment screw, from which signals are transferred via the feedthrough 

sealing component to leads that extend intramedullary to a connector unit located in soft 

tissue. The neuromuscular interfaces can be then connected to this latter connector unit in 

the soft tissue. This modular design allows upgrading or replacing any component with 

minimum disturbance to the others (Figure 15).  

 

Figure 15. Illustration of the osseointegrated human-machine gateway (OHMG). Loads are transferred 
from the artificial limb to the abutment, the abutment to the fixture, and the fixture to the bone. The abutment 
screw (AS), which goes through the abutment to the fixture, is designed to keep the abutment in place. A 
parallel connector is embedded in the AS’s distal end (1) to electrically interface the artificial limb. This 
feedthrough is electrically connected to an in-line connector embedded in the AS’s proximal end (2). The in-line 
connector interfaces with the corresponding in-line pin extending from the central sealing component (3), from 
which leads extend intramedullary to a connector unit located in the soft tissue. The neuromuscular electrodes 
are finally mated to this connector. 
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In this first generation of the OHMG, no active components are implanted but instead 

the biopotential amplifiers and control electronics are placed in the prosthesis (developed 

within this thesis). The resulting system is completely self-contained and no components 

over the skin are required. The patient only needs to couple the prosthetic arm to the 

abutment (single handed as shown in Video 1 of Paper V), and all electrical connections and 

functionality is made available automatically. An intermediate connector with concentric 

rings was developed to allow for the prosthetic arm to be attached in any angular orientation, 

as spring-loaded contacts will automatically mate with their corresponding pair. This 

intermediate connector has the purpose to facilitate donning, but more importantly, to 

protect the abutment screw connector from any accidental torque. 

As a novel medical device, the OHMG does not fall within a single regulatory standard. 

Nevertheless, it was developed within the ISO 13485:2003 standard (Med Dev – Quality 

Management), and following a variety of international and European standards such as the 

93/42/EEC (Med Dev), 90/385/EEC (Active Imp Med Dev), ISO 14708-1 (Active Imp Med 

Dev), ISO 14708-3 (Active Imp Med Dev, Neurostimulators), and IEC 60601-1 (Med Elect 

Equip), from which relevant sections were considered. 
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Biopotential Electrodes 

Electric potentials produced by biological systems can be recorded with a variety of 

electrodes. Dry surface electrodes are used in myoelectric prostheses due to the difficulties in 

sustaining a stable wet interface on the skin (although applying water is a common practice 

by patients). Despite that similar recordings have been observed when comparing dry and 

wet surface electrodes (Chan and Lemaire, 2010; Laferriere et al., 2011), as well as similar 

MPR performance (Li et al., 2011), the former are more susceptible to noise and motion 

artifacts. Dry electrodes are normally made of stainless steel or noble metals, which results in 

a polarized interface (Merletti et al., 2009). The high impedance of such interface (kΩ to 

MΩ), and its capacitive nature, easily allows for motion artifacts that saturates the 

amplification electronics. Skin abrasion is recommended when using surface electrodes as 

this will remove dead skin cells and thus reduce the interface impedance and noise. However, 

this practice is rarely followed in myoelectric prostheses, arguably because it is impractical 

for patients. This illustrates the importance of practical solutions if these are to be successful 

in clinical use. Practical problems around surface electrodes are further described in Paper I 

along with relevant findings for prosthetic control. 

In 2012, a brain-machine interface (BMI) allowed a tetraplegic patient to control a 

robotic arm within a controlled environment (Collinger et al., 2012). For patients in such 

conditions, a centralized approach (BMIs) is deemed necessary (for a review in BMIs see 

Bensmaia and Miller [2014]). In the case of amputees, acquisition of control signals and 

neurostimulation for sensory feedback can also be done at the spinal cord and peripheral 

nerves, where filtering of unwanted motor intention and sensory pathways occurs naturally. 

Because of this reason, electrodes at the peripheral nervous system (PNS), and remnant 

musculature at the stump, were of the main interest of this thesis (Figure 16). 

 

Figure 16. Tradeoffs for different muscular and neural electrodes (Paper I). 
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A comprehensive review on electrode materials is given by Geddes and Roeder (2003); 

surface electrodes by Merletti et al. (2009); and implantable electrodes by Schultz and Kuiken 

(2011), in the PNS by Navarro et al. (2005), in the CNS by Cheung (2007), and with 

particular focus on sensory feedback by Weber et al. (2012). A review on implantable 

electrodes with focus on their clinical application to prosthetic control is given in Paper I. 

Non-electric interfaces 

Neuromuscular activity can be detected in a variety of ways that do not necessarily 

require an electric coupling, although this is the most commonly used approach. A super-

conducting quantum interference device (SQUID) can be used to detect the weak magnetic 

field generated by the flow of ions (Hoshiyama et al., 1999). A major limitation for the 

clinical use of such device is the considerable cooling and shielding infrastructure required. 

Other approaches such as acoustic myography, vibromyography, and phonomyography (all 

together mechanomyography) use microphones or accelerometers to detect muscular activity 

(Islam et al., 2012). These sensors are accessible and less dependent on the skin interface. In a 

similar way, ultrasound can be used to measure the variation on muscle thickness resulting 

from a contraction, defined as sonomyography (Guo et al., 2013). On the invasive side, 

optogenics is currently the technology that can potentially deliver the highest selectivity for 

recordings and stimulation (Boyden et al., 2005). All these technologies have advantages and 

disadvantages in comparison with electromyography or neuromyography, and ultimately, 

their utility will be demonstrated by their clinical acceptance. 
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Bioelectric signal acquisition 

The differential measurement is the most common method to record bioelectric 

potentials due to their small amplitude within a noisy environment. Myo- and neuro-electric 

signals are normally a few mV and µV, respectively, and therefore their amplification is 

susceptible to intrinsic and extrinsic noise from a variety of sources. Different capacitances 

can develop between the body and ground; body and power lines; and, leads and amplifiers, 

which induce interference currents that affect the amplification electronics. Differences in the 

electrode impedances can cause the common-mode voltage to become differential, thus 

creating an offset at the amplifier output. Different techniques to avoid these problems and 

improve bioelectric signal acquisition are given in (Metting Van Rijn et al., 1990). For 

example, filtering at 20 Hz as the high-pass cutoff frequency and a slope of 12 dB/oct has 

been recommended to eliminate motion artifacts in surface recordings (De Luca et al., 2010), 

while 400-450 Hz for the low-pass cutoff frequency is suggested as enough to capture the 

relevant spectrum of myoelectric activity  (Merletti et al., 2009). Additionally, a notch filter to 

reject the power line frequency is advisable. 

The front-end for bioelectric signal acquisition has to carefully consider factors such as 

the input impedance (rule of thumb, at least 100 times higher than the highest expected 

electrode impedance [Merletti et al., 2009]), input referred noise (voltage and current), 

common mode rejection ratio (CMRR), power supply rejection ratio (PSRR), output voltage 

offset and drift, and leakage current. All the bioelectric amplifiers used in this doctoral thesis 

were designed by the author using commercially available instrumentation amplifiers as the 

analog front-end, and following the aforementioned considerations. An advantage of 

utilizing instrumentation amplifiers in a single integrated circuit (IC) is that passive 

components are closely matched to reduce undesirable effects due to impedance variations 

and parasite capacitances. Additionally, a single IC reduces board space, power consumption, 

and very frequently costs (as these are mass produced). Furthermore, variations in 

temperature are distributed more homogenously, thus reducing its effect on the amplifier 

performance. Special attention was made to meet regulatory requirements on safety, 

particularly to the leakage current, which was kept below 0.1 nA. This is far below the upper 

limits of 1 µA and 0.1 µA that are required by the ISO14708-1:2000 and EN45502-1 (Active 

Implantable Medical Devices) standards, respectively. 
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Bioelectric signal processing 

Pre-processing 

Noise and unwanted information can be reduced, or ideally eliminated, by frequency 

and spatial filters as we have a prior knowledge on the characteristics of the desired 

bioelectric signals. Common cutoff frequencies for EMG were given in the previous section. 

Frequency filters are normally implemented by hardware to avoid saturation of the following 

amplification chain, although they can also be programmed in software at the cost of a 

normally higher delay. In a similar way, spatial filters can be implemented by hardware or 

software to improve the selectivity of the recorded electric field. The later (Huang et al., 

2009), and a combination of both (Huang et al., 2013), have shown to improve MPR. In the 

case where these filters are not enough, there are other more sophisticated processing 

techniques such as independent component analysis (ICA) and whitening (Liu et al., 2013). 

Similarly to the work done with filters, these processing algorithms have shown to marginally 

improve MPR. Nevertheless, none of them have been tested in real-time, where a higher 

improvement might still be obtained. 

Signal processing and pattern recognition algorithms are commonly run continuously in 

order to predict motion intent. This continuous approach requires unnecessary 

computations when the patient is at rest (no motor intention). The author has employed a 

floor noise detection strategy to prevent unnecessary classifications when no myoelectric 

activity is sensed, which at the same time prevents misclassifications of low intensity EMG 

patterns (Paper IV, V). Alternatively, there are other more elaborated methods to detect 

EMG onset such as using 1-D local binary patterns (McCool and Chatlani, 2012). 

Additionally, an optimal selection of the available information sources has evident 

practical advantages such as reduction of the number of electrodes, acquisition hardware, 

and computational cost. Methods that facilitate such selection can also facilitate prosthetic 

fittings by helping to better localize optimal electrode placement. These methods can be as 

straightforward as an exhaustive search or symmetrical reduction (Hargrove et al., 2007). In a 

study using the Kullback-Leibler measure, the authors proposed a quasi-optimal method for 

channel selection based on probability neural networks (Shibanoki et al., 2013). However, it 

is worthy of mentioning that none of the previous approaches have been tested in real-time 

or in a stand-alone implementation, where motion artifacts and electromagnetic interference 

might affect the classification accuracy. 
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When employing an array of electrodes over the same muscle, the “optimal” electrode 

selection can be made based on the electrode recording the highest signal amplitude, and it 

prevalence as the highest on repeated contractions (Kendell et al., 2012). In the case of 

myoelectric pattern recognition, where one would like to predict more than one movement 

from the same muscle or group of muscles, one could select the electrodes within the array 

with the highest signal amplitude per movement (Figure 17), as was done in Paper V. 

 

Figure 17. High density surface electromyography (HD-sEMG) used for the selection of electrode 
placement based on the strongest signals given for predefined movements. A superimposed temperature map 

shows the electrodes with higher myoelectric activity towards the red color (normalized).  
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Feature extraction 

The neural drive can be extracted in real-time by high-density surface electromyography 

(sEMG), thus providing considerable information on the number of motor units, and their 

frequency of activation (Farina and Negro, 2012). Pattern recognition in the form of 

decomposition methods (such as template matching) can identify individual motor units with 

particular action potential profiles. This is particularly useful for the study of the 

neuromuscular system, to identify neuropathies, and monitoring neuromuscular 

rehabilitation. However, this is not the level of detailed information traditionally used for the 

prediction of motor intention when using sEMG, or more recently epimysial EMG (Paper V). 

Rather than decoding the detailed neural drive, features that characterize the summation of 

several motor units are more commonly used as the bioelectric signature of different 

motions. 

Trains of individual motor units can be observed when using highly selective electrodes 

(e.g. intramuscular or intrafascicular), and therefore algorithms that exploit such information 

are preferred (Micera et al., 2010). As a downside, motor unit decomposition or spikes 

counting becomes increasingly difficult at higher contraction forces due to cross-talk 

interference. The majority of the literature report less invasive and single differential sEMG, 

which delivers a superposition of several motor unit action potentials, and therefore it has 

been more practical to use amplitude-based or statistical descriptors such as the mean 

absolute value or the standard deviation, respectively. 

A finite length of the signal must be defined in order to extract such descriptive features. 

This is commonly refereed as “time windowing” or “signal windowing”, thus the particular 

name of “time window” is given to the snapshot in time from which the signal features are 

calculated. Finally, a feature vector can describe a single or mixed class, for individual or 

simultaneous movements, respectively. Further details on signal windowing and features are 

given in Paper III. 
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Feature selection 

As stated by Guyon and Elisseeff (2003), the purpose of feature selection is three-fold: 

• Increasing classification accuracy (specific and less redundant descriptors) 
• Faster and thus more cost-effective classifiers (reduced training, testing and 

prediction times) 
• Providing better understanding of the underlying processes responsible for the 

observable data 

In machine learning, and specifically pattern recognition, it is not unusual that a given 

classification problem has a feature space prohibitive for real-time computations (thousands 

or millions features). The selection of optimal features sub-sets is not only desirable but 

necessary in such cases. In MPR, the feature space is normally lower than hundreds, thus 

real-time prediction is still possible, but not necessarily optimal and sufficiently accurate. In 

Paper III (Table 1), a non-exhaustive list of features and feature sets is presented. Currently, 

no study has explored all those features together in order to find optimal sets. This is 

important because how the pattern is represented (features) might have a higher impact on 

MPR than the classifier itself (Parker and Scott, 1986; Hargrove et al., 2007). Explorative 

work has been done by the author on the optimal selection of 21 time and frequency features 

via a genetic algorithm (Ortiz-Catalan et al., 2012). 

Features can also be transformed to provide an alternative representation, which can 

render better separation and reduced redundancy. Algorithms to this end have also shown to 

improve MPR, such as: Principal Component Analysis (PCA) (Englehart et al., 1999; Kanitz 

et al., 2011; Liu and Zhou, 2013; Al-Timemy et al., 2013); Individual Principal Component 

Analysis (iPCA) (Camacho et al., 2013); Orthogonal Fuzzy Neighborhood Discriminant 

Analysis (OFNDA) (Al-Timemy et al., 2013); and Common Spatio-Spectral Pattern (CSSP) 

(Huang et al., 2013). 

Currently, no feature selection or transformation algorithm seems to be necessary for an 

accurate prediction of motor intention. This is because pattern recognition algorithms alone 

already produce a considerably higher accuracy, but again, real-time testing might show 

otherwise. 
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Myoelectric Pattern Recognition (MPR) 

As can it be deduced from the previous section on feature extraction, the use of the term 

myoelectric pattern recognition (MPR) in the context of this thesis is aimed to the prediction 

of motor intention, rather than the identification of motor unit action potentials.  

Information from individual motor units might as well be used for the prediction of 

motor intention. However, this requires the use of high-density sEMG (HD-sEMG) 

electronics that although becoming more portable (Barone and Merletti, 2013), recording 

from dozens of electrodes simultaneously while keeping a good skin contact over long-

periods of time makes this approach more cumbersome than using fewer electrodes. Four to 

six bipolar electrodes, which already causes several stability issues, have been shown to be 

enough in a variety of MPR experiments (Hargrove et al., 2007; Farrell and Weir, 2008; Li et 

al., 2010), including simultaneous (Young et al., 2013) and finger control (Al-Timemy et al., 

2013). Nevertheless, since no conventional MPR system has been successful in clinical use 

(Farina et al., 2014), MPR based on motor unit decomposition via HD-sEMG might still have 

something to offer, as well as electrode grids with lower density (Tkach et al., 2014).  

A general computational flow chart for advanced prosthetic control strategies based on 

MPR is shown in Figure 18. This modular design includes signal acquisition, treatment (pre-

processing), feature extraction, pattern recognition (including feature selection and classifier 

topologies), and control (post-processing). All these segments are further described within 

this thesis and can be practically explored in the open access platform introduced in Paper III 

(BioPatRec). 

 

Figure 18. Computational flow chart for advanced prosthetic control strategies based on myoelectric 
pattern recognition. This particular design is the fundamental framework of BioPatRec, a modular platform for 
research, development and benchmarking (Paper III). 
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Pattern Recognition 

Pattern recognition is an umbrella term for a variety of algorithms that range from purely 

statistical (e.g. linear discriminant analysis), to biologically inspired (e.g. artificial neural 

networks). The terms classifier, predictor, and decoder are normally used interchangeably to 

denote an instance of such algorithms. Pattern recognition algorithms (PRAs) require input 

given in data sets (feature vectors) that characterize the classes or labels (these two terms also 

used interchangeably), which in this particular field refers to movements or postures (e.g. 

hand close). PRAs might need an iterative training processes (learning) or calibration (less 

iterative). The latter could also be seen as learning, even if there is a predefined baseline; it is 

all about semantics (not a subject of this thesis). The training or calibration can be supervised 

(labels known) or unsupervised (labels unknown) (Sensinger et al., 2009). Other 

mathematical approaches (Jiang et al., 2009; Rasool et al., 2013), which are normally 

biologically inspired, have been described as model-based rather than pattern recognition. 

This is despite that both literary serve the purpose of differentiation of myoelectric patterns 

to predict motor intention. For that reason, all algorithms used for the 

differentiation/decoding/classification/prediction of myoelectric signals are considered 

MPRs within this work.  

There has historically been a variety of algorithms used for the prediction of motor 

intention using myoelectric signals. Discriminate Analysis (DA) methods occupy the first 

place in the literature as the most commonly used algorithms, in particular Linear 

Discriminate Analysis (LDA). These statistical approaches have been used as far back as the 

first implementations of MPR (Herberts et al., 1973, 1978). More recently, LDA has been the 

preferred algorithm used by two influential research groups (Rehabilitation Institute of 

Chicago and University of New Brunswick), which might explain its prevalence in the 

literature. LDA has shown merit for being a relatively simple and fast training/prediction 

algorithm, but more importantly, with a performance similar to other more “sophisticated” 

classifiers (Scheme et al., 2011). 

Artificial Neural Networks (ANNs) are probably the second most used algorithms in 

MPR, in particular the Multilayer Perceptron (MLP), but also Self-Organizing Maps 

(Eriksson et al., 1998), Probabilistic Neural Networks (Shibanoki et al., 2013), Time Delayed 

Artificial Neural Networks (Pulliam et al., 2011), and Tree-structured Networks (Sebelius et 

al., 2005) have been used. MLP and LDA have been historically compared, and even 

combined (Amsuss et al., 2014), with variable results regarding offline accuracy (Englehart et 
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al., 1999; Hargrove et al., 2007; Huang and Kuiken, 2009). LDA has been found to 

outperform MLP in the real-time prediction of individual movements (Paper III), on the 

other hand, MLP has shown to be more suitable for simultaneous control (Paper IV). 

Algorithms used to a lesser extent are Gaussian Mixture Models (Huang et al., 2005), 

Hidden Markov Models (Chan and Englehart, 2005), and Support Vector Machine (Oskoei 

and Hu, 2008; Shenoy et al., 2008). Regression techniques, such as linear regression, mixture 

of linear experts, and kernel ridge regression (Hahne et al., 2014), produce a continues 

output rather than a binary prediction, which is more attractive for the prediction of 

kinematics and proportional control (also doable with MLP). Similarly, the Non-negative 

Matrix Factorization (NMF) algorithm has been argued to be exceptionally useful to predict 

unseen patterns such as simultaneous movements (Jiang et al., 2009; Ajiboye and Weir, 

2009), although not particularly better than MLP when directly compared (Jiang et al., 2009, 

2013c). Lastly, a more recent and distinctive approach based on PCA and postural synergies 

(joint angle transformation), namely Morphing Hand Posture Control, has shown to 

accurately predict up to 13 joint angles for hand grasping (Segil and Weir, 2014). 

The main argument for employing pattern recognition in the context of prosthetic 

control is that signal separation is considerable hard to achieve by selectively spacing surface 

electrodes, and thus a direct link between one muscle and one prosthetic action (direct 

control), becomes unreliable for more than a couple of movements. Furthermore, studies in 

individual (Hargrove et al., 2013a) and simultaneous control of upper (Young et al., 2014) 

and lower limbs prosthetics (Hargrove et al., 2013b), have found MPR to improve 

controllability even in cases where direct control is possible, such as in patients that have 

undergone TMR. Moreover, MPR has been successfully employed to predict motor intention 

in other patient populations such as incomplete spinal cord injuries (Liu and Zhou, 2013) 

and stroke (Lee et al., 2011; Geng et al., 2013), as well as for the treatment of phantom limb 

pain (PLP) in combination with augmented reality and gaming (Ortiz-Catalan et al., 2014). 

In the latter study and Paper V, the author demonstrated that it is possible to reliably predict 

movements indirectly related to the muscles from which the myoelectric signals are recorded, 

as long as these are activated as support (muscle synergies). This has been shown in real-time 

for hand open/close, wrist pro/supination, and elbow flexion/extension using signals from 

muscles at the upper arm (Paper V). However, the reliability of this strategy still needs to be 

tested in activities of daily living, as this has only been demonstrated while the patient was 

sitting in a static position.  



 

42 
 

The prediction of motion intent can be done at different levels, from a binary intention 

(e.g. wrist flexion or not) to more detailed characteristics of the movement (kinematics) such 

as speed and target angle (e.g. wrist flexion to 45° moving at 2 deg/ms). Speed and strength 

are currently addressed in conventional myoelectric prosthesis by proportionally relating 

EMG strength to force or velocity (proportional control). MPR-based strategies have also 

included proportionality, either within the algorithm itself, or with additional average 

amplitudes scaled to strength or speed. MPR with proportional control of the latter type has 

been shown to outperform MPR alone (Simon et al., 2011c), while training with dynamic 

contraction force seems to improve the classifier real-time performance (Scheme and 

Englehart, 2013a). More recently, a similar method including a threshold-constrained range 

showed to outperform the original mean averaging and an exponential method in a 1-D real-

time test where only 1 DoF was predicted at the time (Scheme et al., 2014).  

Most of the research work in MPR has been focused on predicting motion intent alone 

(binary). However, some groups have explored the direct prediction of joint angles 

(kinematics). Currently, no considerable differences have been found when the training 

target is either joint force or angle, as long as the muscular activity is comparable (Ameri et 

al., 2014). From the classifier’s viewpoint, the algorithms themselves do not actually 

incorporate information on the meaning of the matching output. From the users and 

operational viewpoint, however, differences might appear due to the intuitiveness of control 

and relative electrode displacement during the isometric contractions (varying joint angle 

and thus muscle length). 

More importantly, it has been suggested that further refinement of MPR is not necessary 

(Jiang et al., 2012a), as current methods which optimistically report almost perfect accuracies 

are not yet available outside the research laboratories (Farina et al., 2014). Moreover, we can 

observe an apparent plateau of classification performance by a variety of algorithms 

(Hargrove et al., 2007 and Paper III, IV); an observation not only restricted to prosthetic 

control, but also to PRAs in general (Ho et al., 2006). Nevertheless, the possibility still 

remains that more sophisticated signal processing techniques, as well as feature selection and 

extraction algorithms, might provide the currently lacking robustness to MPR, and thus 

become a solution reliable enough for clinical implementation. 
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Simultaneous MPR of mixed movements 

It has been suggested that pattern recognition algorithms are not capable of 

simultaneous prediction of mixed movements (Jiang et al., 2009, 2013a; Roche et al., 2014; 

Farina et al., 2014), probably due to the ambiguity around the term “pattern recognition” as 

discussed previously. However, our work and others have shown that a variety of pattern 

recognition algorithms can successfully accomplish such task (Al-Timemy et al., 2013; Ameri 

et al., 2014), and without necessarily increasing the number of classes (Ortiz-Catalan et al., 

2013a, 2013b and Paper IV). Similarly, proportional control has been pointed out as a 

limitation of pattern recognition (Roche et al., 2014), but again, this only applies to certain 

algorithms, i.e., ANNs can be trained to predict proportionality along with simultaneous 

movements (Muceli and Farina, 2012), as well as a variety of regression algorithms (Hahne et 

al., 2014). Moreover, there are no “official” delimitations on where algorithms start and end. 

For instance, an ANN could be trained to recognize simultaneous movements while a parallel 

one trained to work out proportionality, a new name could be given to such arrangement, 

and thus a “new” PRA would be created that could do both, proportional and simultaneous 

control. Moreover, due to the high speed of computation of ANNs, and currently available 

processing hardware, such algorithm would produce an acceptable real-time response for the 

application in question (myoelectric control). 

In the last decade, a growing interest on providing more intuitive control has led to the 

exploration of simultaneous control strategies, which were initially studied offline (Yatsenko 

et al., 2007; Jiang et al., 2009; Pulliam et al., 2011; Muceli and Farina, 2012; Jiang et al., 2012b, 

2013a), and more recently in real-time for 2 DoF (Muceli et al., 2013; Jiang et al., 2013c, 

2013b; Young et al., 2014; Ameri et al., 2014; Tkach et al., 2014) and 3 DoF (Ortiz-Catalan et 

al., 2013a, 2013b and Paper IV). It is worthy of notice that most of this research has been 

published in the last year, and most likely conducted independently between the different 

groups. Previously, research on MPR was focused on the prediction of individual 

movements, although there are early reports of  simultaneous MPR in the 1970’s and 1980’s 

(Herberts et al., 1973; Saridis and Gootee, 1982). The possibility of simultaneous control was 

an early request by patients (Atkins et al., 1996), who not surprisingly also have expressed 

preference for systems that allow this (Young et al., 2014). 

While some approaches such as a NMF and ANN can potentially handle increasing DoF, 

others based on majority voting (e.g. LDA) and label power set (Tsoumakas and Katakis, 
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2007), might face increasing difficulties as the number of DoF increases. Nevertheless, all 

approaches still need to prove their utility in such cases (> 3 DoF). 

The author and others have observed that simultaneous MPR normally produced lower 

accuracies when classifying individual motions in comparison with individual MPR (Young 

et al., 2014 and Paper IV). In order to improve this situation, the author has proposed a 

simple solution in which the activation threshold of the output neurons in a MLP can be 

adjusted by the user in real-time (Ortiz-Catalan et al., 2013b). 

Evaluation of MPR strategies 

MPR strategies have been mostly evaluated offline, which means that the reported 

accuracy (or coefficient of determination [R2] for kinematics) of a given classifier is 

computed with pre-recorded data. A recording session is normally divided in 

training/validation and testing sets, where the latter is unseen by the classifier until it has 

been trained, and therefore it is assumed to be a good estimate of classification performance, 

i.e., if three repetitions of all involved movements were recorded, the corresponding feature 

sets are randomized, and then data equivalent to one of the repetitions is separated from the 

training/validation pool, and is only used for testing. 

Intriguingly, the offline accuracy has been repeatedly found as a poor indicator of real-

time performance (Lock et al., 2005; Li et al., 2010; Scheme et al., 2011). Algorithms with 

similar offline accuracy can have a wider spread in real-time, but more importantly, 

algorithms with an apparent poorer offline accuracy can outperform the others in real-time 

(Paper III). This is in line with reports suggesting that high offline accuracy is not always 

necessary for an acceptable real-time control (Jiang et al., 2013c). Nevertheless, these findings 

strongly suggest real-time testing as a necessary evaluation when proposing advanced 

prosthetic control strategies. One reason for authors refraining from performing real-time 

evaluations might be due to the lack of acquisition hardware or software routines, 

particularly a virtual reality environment. This was one of the motivations for the open 

source release of BioPatRec (Paper III), which provides real-time evaluation routines such as 

the Motion and Target Achievement Control tests, together with a virtual reality 

environment. These tests were originally developed at the Rehabilitation Institute of Chicago 

(Kuiken et al., 2009; Simon et al., 2011b), and implemented with modifications described in 

Paper III and IV. Such modifications include the increment of the required correct 

predictions in order to consider a motion completed (20 versus 10 in the original motion 
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test). This was important because in our experimental setting, 10 predictions were easily 

achieved, potentially due to the classification speed (predictions every 50 ms). A similar 

situation was observed if the original 2 second dwell time, as used in (Simon et al., 2011b, 

2011a; Young et al., 2012 and Paper IV), was reduced to 1 second (Scheme and Englehart, 

2013b; Scheme et al., 2013, 2014; Ameri et al., 2014; Kamavuako et al., 2014; Tkach et al., 

2014) or less (Jiang et al., 2013c, 2013b; Muceli et al., 2013), as done in the same or other 

controllability tests. Decreasing the dwell time would potentially increase completion rates 

(Hochberg et al., 2006). Because all these variables might affect the end results, it is extremely 

important for the reproducibility that all the relevant information of the experimental setup 

is reported, but more importantly for the sake of comparison, that it is consistently followed. 

However, even when the same experimental protocol is followed, different subjects can 

produce a different outcome. In MPR (Bunderson and Kuiken, 2012; Ortiz-Catalan et al., 

2013b, 2014), as well as in BMIs (Collinger et al., 2012), practicing is known to improve the 

performance over time (subjects learning), thus the experience of the subjects play an 

important role (Figure 19-20). The ideal situation would be to compare algorithms under the 

same circumstances and in the same subjects, which would be facilitated by using a common 

evaluation platform where all algorithms can be implemented directly by the proposers, such 

as the one suggested in Paper III (BioPatRec). 

 
Figure 19. Difference between experienced and inexperienced subjects completing a real-time test of 

simultaneous control of 3 degrees of freedom. Figure from the article Ortiz-Catalan et al. (2013b).  

The second best alternative when no real-time evaluation can be performed would be to 

utilize the same data sets for benchmarking. For some conditions such as neuropathic pain, 

open data bases for the variable parameters of spinal cord stimulation are available (Meier et 

al., 2013), however, this has not been the case for MPR. BioPatRec provides a hosting 

platform for a shared repository of myoelectric signals related to limb movements. 

Recordings from 20 and 17 subjects have been made available for individual and 
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simultaneous hand and wrist movements (Paper III, IV). These are the largest sets used in 

any published MPR study known to the author.  

 

Figure 20. The increment in classification accuracy illustrates the learning progress of a subject that 
suffered a quasi-elbow-disarticulation 48 years earlier, and trained (once per week) in the execution of 8 
movements (hand open/close, wrist flexion/extension, wrist pro/supination, and elbow flexion extension). 
These movements were decoded by MPR using sEMG at the stump. Figure from Ortiz-Catalan et al. (2014). 

Evaluations on Able-Bodies versus Amputees 

A common disclaimer (or selling point) in the MPR literature is that algorithms or 

proposed control strategies must be tested in amputees. While there is wide agreement and 

validity in this argument, it can be argued that not all evaluations require the inclusion of 

amputee populations, and one must conduct the appropriate tests to support a given claim. 

For instance, comparisons between different classifiers have shown to hold between able-

bodies and amputees (Scheme et al., 2011; Jiang et al., 2013c; Young et al., 2013; Al-Timemy 

et al., 2013; Liu et al., 2013), i.e., if algorithm A outperforms algorithm B in able-bodies, 

algorithm A also outperforms algorithm B in amputees. If the same musculature is targeted in 

both groups (which is normally the case, e.g., transradial systems place the electrodes 

proximally in the forearm where the anatomy is preserved), there is no neuromuscular 

disorder, and both tests are conducted in the same environments, why would there be 

differences between algorithms decoding myoelectric signals from comparable anatomy and 

operating conditions? Admittedly, a different scenario is presented if the musculature is 

reduced, or there is additional scar-tissue, or basically any anatomical alteration is present in 

the amputee. This situation would certainly affect the myoelectric patterns as the sources 

would be affected, however, even in this case it is still likely that algorithm A outperforms 

algorithm B, under the rationale that it already does it in an “easier” condition, and the new 

“more difficult” condition would affect both algorithms. 
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Reliability of MPR 

MPR algorithms have been mostly evaluated in controlled conditions such as at constant 

temperature and with the subjects being relatively static. However, in real life operation, 

MPR faces a variety of dynamic conditions that have been shown to be detrimental to its 

performance. 

Electrode shift is expected when using surface electrodes due to skin motion within the 

socket and due to donning/doffing of the prosthesis. It has been found that targeted 

placement of the surface electrodes makes the MPR more sensitive to electrode shift, thus 

equally spacing the electrodes seems advantageous for reliability (Young et al., 2011, 2012).  

An additional strategy that has shown to improve MPR reliability is to increase the 

traditional bipolar inter-electrode distance from 2 cm to 4 cm (Young et al., 2012). Moreover, 

4 cm inter-electrode distance has shown to increase the EMG information content over 2 cm 

and 6 cm (Farfán et al., 2010). While placing the bipolar electrodes longitudinally to the 

muscle fibers is recommended to increase the amplitude of the recorded signal, it has also 

been found that the addition of few transversal bipolar electrodes can be beneficial for MPR 

stability (Young et al., 2012).  

Variations on limb position (e.g. elbow flexed at 0° versus 150°) have also been identified 

to decrease MPR reliability. This could be attributed to myoelectric cross-talk, and electrode 

shift due skin movements and muscle length changes. Some of these issues can be partially 

overcome by training the classifiers in different positions and employing additional sensors 

such as accelerometers (Fougner et al., 2011; Geng et al., 2012).  Unfortunately, in cases such 

as transhumeral amputations where considerable stronger muscles are close to the surface 

electrodes, the cross-talk interference can completely mask any other signal and therefore 

diminish the effectiveness of such approaches. Surface electrodes record muscle cross-talk 

due the volume conduction effect by the soft tissue in between the electrode and the muscle 

(Kuiken et al., 2003), and as expected, cross-talk increases with the distance from the 

electrode to the target source. Additionally, the high impedance of the commonly polarized 

interface easily produces motion artifacts that can directly cause misclassifications. 

In summary, most of these issues are mainly related to the use of surface electrodes 

(Paper I), which might explain why MPR has not been implemented despite clinical efforts 

since the 1970’s (Herberts et al., 1978; Wirta et al., 1978; Almström et al., 1981).  
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Post-processing and Control Algorithms 

Once the prediction of motor intention has been obtained, this can hardly be used as 

“raw” control signal to drive a prosthetic device. This is because even occasional 

misclassifications can considerable affect the controllability if no post-processing is applied. 

For instance, it has been reported that transitions between the aimed movement and rest, as 

well as the other way around, have caused frustration on the users due to the resulting 

misclassifications, also named the bounce-back effect (Scheme and Englehart, 2013b). 

There are a variety of post-processing algorithms applicable to MPR such as 1) majority 

voting (Englehart and Hudgins, 2003), where a buffer is used to discard predictions in 

minority; or 2) real-time adjustable output thresholds, as employed to improve the 

classification of individual (Hargrove et al., 2010) and simultaneous (Ortiz-Catalan et al., 

2013b) movements; or 3) floor-noise rejection (Ortiz-Catalan et al., 2013b and Paper IV), 

where the system automatically outputs the rest (no motion) class if the myoelectric activity 

is not higher than a certain threshold calculated using the noise during the recording session 

at the rest state (floor noise), which was found particularly useful to avoid misclassification 

due to the bounce-back effect. The latter method can also be considered as a pre-processing 

algorithm, as no classification is performed below the floor-noise threshold. It is worth 

mentioning than these methods are not mutually exclusive. 

The rejection of misclassifications can also be done in terms of Bayesian probability by 

assigning a confidence value to each prediction and comparing them with class-specific 

thresholds. Such a strategy has been shown to outperform the use of raw LDA classification 

in real-time tests (Scheme et al., 2013). Similarly, learning approaches where an additional 

pattern recognition algorithm (MLP) is trained to evaluate prior predictions, as well as the 

strength of the muscle contraction, has shown higher reliability over raw predictions and the 

majority voting post-processing strategy (Amsuss et al., 2014). 

In 2011, a novel approach was presented by Simon et al., in which the maximum velocity 

at which the limb can be actuated is gradually reached if the classifier continuously predicts 

the same movement (velocity ramp). As opposed to majority voting in which the correct 

action is not reflected until the buffer has been overcome, in the velocity ramp the predicted 

movement will be slowly activated since the first prediction. However, it will be stopped 

whenever is not predicted any longer, thus avoiding overshooting as commonly done by 
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majority voting (Simon et al., 2011a). This approach can be combined with the 

aforementioned strategies and it is suitable for simultaneous MPR (Paper IV). 

Alternative Prosthetic Control Strategies 

Prediction of motion intent has been explored beyond pattern recognition of myoelectric 

signals. Postural synergies have been suggested as an alternative method for prosthetic control 

(Kaliki et al., 2013). The shoulder’s posture can be used to infer the position of elbow and 

wrist joints in the case of transhumeral amputees. This idea has been tested with motion 

capture systems (magnetic tracking) in controlled environments, and because of the bulky 

hardware employed, its usability on activities of daily living still needs to be demonstrated. 

However, even when the hardware could be substituted by more compact sensors such as 

accelerometers and gyroscopes, an additional shortcoming of this approach is that individual 

DoF cannot be independently controlled, which includes the actuation of the terminal device 

(e.g. hand open and close). Moreover, actuation of the terminal device cannot be intuitively 

achieved, but instead, it is linked to a specific shoulder motion (e.g. sternoclavicular 

protraction), or tied to myoelectric signals in a hybrid approach. Additional alternatives to 

myoelectric signals are force-sensing resistors, foot pedals, air bladders, and conventional 

switches. Combinations of these technologies have been used as non-invasive solutions for 

the control of several DoF (Resnik et al., 2011), with the disadvantage of requiring a high 

cognitive effort. 

Alternative control strategies as the presented above are neither natural nor intuitive, yet 

if practical for patients, they might restore a higher level of functionality over more 

“physiologically appropriate” approaches. 

Intuitive control by preserving proprioception has been proposed for the control of wrist 

rotation via an osseo-magnetic link. In this approach, a magnet would be implanted in the 

residual bone and an external sensor would be used to track its motion to drive the rotator. 

The feasibility of this approach has been demonstrated in a bench test  (Rouse et al., 2011). 
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Sensory Feedback 

Humans rely on a variety of exteroceptive (external) and proprioceptive (internal) 

sensory information when interacting with the environment, particularly for motor control. 

It has been shown that learning a repetitive motor task can lead to its successful completion 

without the need of sensory feedback, however, once uncertainty is introduced (or the first 

time a task is performed) this can hardly be achieved without it (Saunders and Vijayakumar, 

2011). Moreover, additionally to the biological sensors that provide a physical description of 

the environment, humans and other mammals have dedicated sensory nerve fibers such as 

the C-tactile, which are believed to play an important role in social interaction (Olausson et 

al., 2010; Ackerley et al., 2014). The loss of an extremity impairs the perception of all this 

information, and despite the well-known importance of sensory feedback, no commercially 

available prosthesis today purposely provides sensory information back to the user (Antfolk 

et al., 2013). 

Users of myoelectric prostheses rely on visual and auditory clues to determine the 

correctness of the interaction of their artificial limb with the environment. This normally 

requires considerable attention (cognitive effort), thus limiting the activities and the speed of 

execution that otherwise could be possible. The reduction of such cognitive burden has been 

reported as priority by power prosthetic users (Atkins et al., 1996), as sensory feedback ranks 

as one of the lowest aspects in users satisfaction (Kyberd et al., 2007). 

Commercial prosthetic devices currently embed sensors for their internal control (self-

regulation). These allow features such as adaptive grip and slip detection10. In the research 

arena, external sensors have been developed for prosthetic applications which are capable of 

providing tactile information beyond that of human finger tips (Fishel and Loeb, 2012). This 

sophisticated sensor has also been used in strategies of self-regulation that have shown to 

improve the handling of fragile objects (Matulevich et al., 2013). This supports the author’s 

argument that prosthetic hardware is currently beyond our capabilities to naturally interface 

it with user, because although these strategies are practical and useful, the user continues to 

receive no tactile information. 

Efforts to provide tactile feedback have been mostly focused on sensory substitution 

(Antfolk et al., 2013), which means that the stimulation is perceived proximally in 

anatomically incorrect locations (e.g., forearm rather than finger tips), and mostly with a 

                                                           
10 E.g., Bebionic 3 by RSL steeper, i-limb ultra by Touch Bionics, SensonHand Speed by Ottobock. 
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different quality. Superficial vibro- or electro-tactile stimulation in the stump regulated by 

force or position sensors in the terminal device (e.g. prosthetic hand) have shown to improve 

prosthetic control (Dietrich et al., 2012; Witteveen et al., 2012). Despite their potential utility, 

these approaches have been less clinically successful than self-regulation, as the latter is the 

only one currently in use. A reason for this might be due to reliability problems on the 

feedback actuators. To this end, a simple and ingenious solution has been proposed by 

Antfolk et al. (2012), in which pressure is transferred from the prosthetic fingers to the stump 

via silicone pads filled with air, and thus when the sensor-bulb is compressed, its 

corresponding terminal in the tactile display expands proportionally. Although not yet in 

clinical use, this approach seems promising due to its simplicity and so far demonstrated 

effectiveness at translating tactile information. 

Sensory substitution via superficial stimulation is experimentally easier to achieve than 

approaches aiming to mimic the biological sensors and provide more natural and distally 

referred perception. However, physiologically appropriate sensory feedback has been argued 

to drive perceptual shift towards embodiment of the prosthesis, which is fundamental for an 

image of intact-self (Marasco et al., 2011). Additionally, no training is required as the 

perception is somatotopically matched, as opposed to sensory substitution. A non-invasive 

solution to this end is to utilize mechano- and vibro-tactile stimulation in phantom maps 

(Antfolk et al., 2012), which are rare, variable, and mostly incomplete, and thus not a 

possibility for all amputees. Another option is the use of the same type of superficial 

stimulation and TMR, which has resulted in sensory reinnervation (Kuiken et al., 2007a, 

2007b). A downside of this approach is that the resulting phantom map is rather random 

(Figure 21), and thus not all functionally relevant locations and sensations might be available. 

Direct stimulation of afferent fibers, or the somatosensory cortex itself, has been long 

thought as a solution for an intuitive sensory feedback. In the 1970’s, a series of patients 

where fitted with a body power prosthesis instrumented with a strain gauge from which force 

was translated into frequency of extraneural stimulation pulses (Clippinger et al., 1974). 

Patients reported to discriminate different level of force and the consistency of objects (soft, 

resilient, and hard), and although the perception was distally referred (mostly), the quality 

was described as unnatural (paresthesia). Although this pioneering work demonstrated the 

feasibility of such approach decades ago, today it is not clinically available, arguably due to 

the problems related to human-machine communication (see Human-Machine 

Communication section). Since then, a variety of short-term experiments have continued to 

show the feasibility of direct neurostimulation to discriminate information such as force and 
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joint angle (Dhillon and Horch, 2005; Horch et al., 2011; Mabuchi, 2013; Raspopovic et al., 

2014), with two exceptions, a one year study using percutaneous leads (Tan et al., 2013), and 

the work reported in Paper V. For historical and contemporary reviews in prosthetics sensory 

feedback see references (Clippinger et al., 1974; Johansson and Flanagan, 2009; Weber et al., 

2012; Antfolk et al., 2013). 

Recent and more sophisticated technologies such as optogenetics have clear potential on 

allowing selective stimulation (Boyden et al., 2005). However, this exciting approach still 

faces the strict regulatory challenges before translation into clinical applicability (Borton et 

al., 2013b). 

 

 

Figure 21. Phantom map after sensory reinnervation in patient BSD. Illustration published in the open 
access article: Kuiken et al., (2007a), Copyright (2007) National Academy of Sciences, U.S.A. 
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Summary of the Publications 

I - Implantable neuromuscular interfaces: Review with clinical focus 

In Paper I, different electrodes technologies with special emphasis on their clinical 

application in prosthetic control were reviewed from the scientific literature. The practical 

problems related to surface electrodes were summarized and weighted against the possible 

complications of their implanted counterparts. Advantages and disadvantages of muscular 

versus neural interfaces were discussed. This work provides a reference for the clinical 

viability of intra-/extra- muscular/neural electrodes by summarizing relevant findings on 

safety and long-term stability, as well as their proven capabilities for recordings and 

stimulation. This study was instrumental to the selection of epimysial and cuff electrodes as 

currently the better characterized and most used implantable electrodes in humans, thus 

providing the support necessary for their permanent implantation in Paper V. Additionally, 

cuff electrodes were further optimized as a neural recording interface in Paper II. 

II – Increasing information content and SNR in extraneural recordings 

As found in Paper I, cuff electrodes are currently the most clinically used neural 

interface. Neurostimulation has been its main application, whereas interfering noise has been 

a major limitation when used as a recording interface. This is mostly due to the low signal-to-

noise ratio (SNR) achieved in extraneural recordings. Ring tripolar configurations have 

shown to increase the SNR at the cost of providing a single information channel.  In Paper II, 

the effect on SNR of splitting the ring contacts as an attempt to extract more information 

within the same cuff was investigated. 

Different recording configurations with ring and discrete contacts were studied in vitro 

using the frog’s sciatic nerve. Compound action potentials were elicited via neurostimulation 

and recorded together with the stimulation artifact. Myoelectric noise was simulated as a 

sinusoidal signal induced in the medium at amplitude sufficiently high to be recorded by all 

configurations, and thus used for SNR comparison. A common configuration to all 

electrodes allowed normalizing the inter-session experimental differences. 

Splitting all ring contacts was found to have a negative effect on the SNR against 

stimulation artifacts and myoelectric interference, however, if only the central contact of the 

tripole was divided into discrete contacts, a considerable and statistically significant 
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improvement was found. Additionally, the in vitro model employed in this study showed 

comparable results to those obtained using chronic implantation in mammals, thus 

suggesting a simplified method to conduct related investigations. 

The results from this study suggest that any tripolar configuration benefits from splitting 

the central ring contact when considering for higher SNR and additional channels of 

information. Both of these factors are relevant to the utilization of cuff electrodes as 

recording neural interfaces. Furthermore, having discrete contacts also increases the number 

of channels for stimulation, and thus creates the possibility to elicit perception in different 

projected locations, as demonstrated in Paper V.  

III - BioPatRec 

Paper III introduced an open source research platform for development and 

benchmarking of advanced prosthetic control strategies based on pattern recognition 

(BioPatRec). The motivations for this work were 1) the impossibility to compare the wealth 

of algorithms proposed for prosthetic control, mainly due to the number of inter-study 

dependent variables; 2) foster collaboration, allow repeatability, and possibly reduce 

unnecessary repetition of common code; and 3) the creation of a common repository of 

bioelectric signals related to limb motions.  

BioPatRec allows a seamless implementation of algorithms in the fields of signal 

processing; feature selection and extraction; pattern recognition; and, real-time control. It is 

the first open source platform that includes all the necessary routines for the control of a 

virtual arm with a variety of the algorithms in the aforementioned fields.  

Three pattern recognition algorithms were compared in real-time, including a new 

paradigm based on negative feedback. Additionally to the traditional performance metrics by 

the motion tests, real-time accuracy was introduced. The results indicate that algorithms with 

similar offline accuracy can produce contrasting real-time results, thus stressing the need for 

real-time evaluations. Two of such real-time evaluations are provided in BioPatRec (Motion 

and Target Achievement Control tests), including a virtual arm. One year after its release in 

February 2013, BioPatRec has been downloaded over 160 times and it has been personally 

shared by the author to 10 researchers in 8 countries. 

BioPatRec offers the first open repository of bioelectric signals related to limb motions. It 

initially provided recordings from 20 subjects executing 10 individual movements (Paper 
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III), and consequently 17 subjects executing simultaneous motions in 3 DoF for a total of 26 

movements (Paper IV). More importantly, the online hosting platform allows for any person 

to contribute to this repository, in which neuroelectric signals will be also included in the 

future. 

IV – Simultaneous and real-time prosthetic control 

In paper IV we demonstrated that a variety of pattern recognition algorithms can 

successfully predict simultaneous movements if arranged in dedicated topologies, or 

provided with a proper problem transformation. The performance of such strategies was 

evaluated for real-time prediction and controllability, as opposed to exclusively offline 

accuracy as previously done. A floor-noise strategy was implemented to reduce 

misclassification during transient periods between rest (no motion) and the desired 

movement. The strategies presented in this study require solely myoelectric signals as the 

input information, thus they are applicable to bilateral amputees and more practical for the 

clinical setting, as no other sensing hardware is required (e.g., motion compute or force 

measuring hardware). It was demonstrated that simultaneous MPR produced a higher 

controllability over individual MPR when used in a target acquisition test based on virtual 

reality. 

V - The osseointegrated human-machine gateway (OHMG) 

The concept and clinical implementation of the OHMG is presented in Paper V. 

Epimysial and cuff electrodes were permanently implanted in a transhumeral patient who 

had received an osseointegrated implant (OPRA) for direct skeletal attachment of his arm 

prosthesis 3 years earlier. His implant was upgraded with custom made components that 

allowed for feedthrough electrical communication to the implanted electrodes. No 

complications have been reported at 15 months follow up. 

The patient was fitted with an analog controller for his conventional myoelectric 

prosthesis using the epimysial electrodes as the source for control. This system has been used 

by the patient in daily and professional activities uninterruptedly for over one year, making 

him the first patient in modern times to receive permanently implanted electrodes as source 

for prosthetic control in activities of the daily living. 
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Improved controllability was observed in function of grip resolution and force; reduced 

muscular effort; increased comfort; and resilience to motion artifacts, limb position, and 

environmental conditions. All these improvements resulted in increased prosthetic use and 

wearing time. 

Intuitive control of additional degrees of freedom (DoF) was shown possible via 

myoelectric pattern recognition (MPR) for up to 4 DoF offline, and evaluated in real-time for 

3 DoF available in commercial prostheses. It was found that epimysial electrodes produced 

the same or higher accuracy than surface electrodes located in an equivalent location. 

Additionally, we found that classifiers can produce similar real-time performance after 3 

months without retraining when fed by the epimysial electrodes, thus additionally 

demonstrating the long-term stability of the implemented control source. 

Direct nerve stimulation via the cuff electrode was used to elicit appropriate sensory 

perception. A single asymmetric balanced pulse produced consistent sensory perception in 

quality, intensity, and projected locations for 8 months, thus demonstrating the feasibility of 

a long-term implementation of intuitive and distally referred sensory feedback. 
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Summary of the Thesis Contributions 

Despite the stride made in the field of artificial limbs using neuromuscular interfaces and 

osseointegration, these technologies have not previously been combined in a meaningful way 

for patients until this work, which is the major contribution of this doctoral thesis (Paper V). 

Additional conclusive results and contributions of this thesis are: 

• It was demonstrated that consistent tactile perception (quality, magnitude, and 

localized projection) can be chronically reproduced (> 8 months) via direct electrical 

stimulation of severed peripheral nerves, and despite a long-term amputation (> 10 

years) - Paper V. 

• It was demonstrated that an improved prosthetic control resolution and resilience to 

motion artifacts, limb position, and environmental conditions is achieved, when 

epimysial as opposed to surface electrodes were employed as the source of control 

(Paper V). 

• Accurate prediction of hand and wrist movements from more proximal muscles 

such as biceps and triceps was demonstrated. More importantly, it was shown that 

the classifier performance remains consistent after long periods of time without 

retraining (3 months), thus demonstrating the long-term stability of myoelectric 

signals recorded by epimysial electrodes (Paper V).  

• Simultaneous and real-time control with a variety of pattern recognition algorithms 

and topologies was demonstrated. It was shown that practically any pattern 

recognition algorithm can be successful in this task if arranged in a dedicated 

topology, or using the label power set transformation (Paper IV). The presented 

strategies do not require additional hardware other than EMG acquisition, and they 

are applicable to bilateral amputees. 

• It was demonstrated the simultaneous MPR improves controllability over sequential 

control when tested in a virtual limb (Paper IV). 

• It was found that classifiers can deliver considerably different real-time performance 

despite having similar offline accuracy. This suggests that there is no clear rule on 

how a given prediction strategy will perform in real-time based solely on offline 

accuracy, and therefore the real-time testing must be seen as a requirement in 

further work (Paper III). 
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• The first open source platform for the development and benchmarking of advanced 

prosthetic control strategies based on pattern recognition algorithms was released 

for public use (Paper III). 

•  The largest data sets used in any published MPR study were released in an open 

access repository. Recordings from individual (Paper III) and simultaneous 

movements are provided (Paper IV).  

• It was found that splitting the central ring contract in tripolar configurations 

improve the signal-to-noise ratio and increase the number of information channels 

(Paper II). 

• A convenient methodological in vitro approach is proposed which eliminates the 

need of chronic implantations when studying improvement ratios of extraneural 

interference rejection in neural recordings (Paper II). 

• A review of the clinical relevance of implanted neuromuscular interfaces for 

prosthetic control was conducted (Paper I). 

Despite that the work conducted in this thesis was focused in upper limbs, the 

developments and discoveries presented here can also be applied to lower limbs. 

However, the lack of commercially available lower limb prostheses driven by myoelectric 

signals will probable slow down the translation of this research to lower limb prosthetics. 

In a similar way, even though this thesis had a focus on electrodes at the peripheral 

nerves and muscles, BMIs could also be interfaced with the artificial limb via the OHMG. 
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Conclusion and Future Work 

A summary of the latest upper limb prosthetic technologies in research laboratories 

around the world has been presented in the framework of this thesis. Promising and exciting 

developments are ongoing worldwide. Unfortunately for patients, the current clinical reality 

is that the majority of upper limb amputees do not even wear a myoelectric prosthesis 

(Kyberd et al., 2007), although this is presently the most sophisticated solution available. 

There is a variety of reasons for why patients would choose not to use myoelectric or any type 

of prostheses at all. Socket problems, poor functionality, and lack of sensory feedback have 

been found as the main complains with prosthetic devices. Not surprisingly, patients that 

have reported to use their prostheses the least, also reported to be mainly dissatisfied with the 

prosthesis functionality and socket suspension (Kyberd et al., 2007). 

The use of osseointegration alone has several benefits amounting to an improve quality 

of life (Brånemark et al., 2014), some of which are improved functionality and sensory 

feedback, aside eliminating socket related problems. The work realized in this thesis has 

expanded in this technology to address prosthetic control sourced by implanted 

neuromuscular interfaces via a permanent and bidirectional osseointegrated human-machine 

gateway. 

The implications to reliably access implanted electrodes for the control of artificial limbs 

can only be understood when carefully examining the current clinical reality, which has not 

considerably improved after decades of research on advanced prosthetic control strategies 

(Farina et al., 2014). Therefore the author considers the technology presented here as a 

necessary step towards the clinical implementation of such advanced prosthetic control 

strategies, including appropriate sensory feedback. This and the clinical trial of the OHMG 

are logic continuation steps from this work. Ongoing efforts are dedicated to the creation of 

an artificial limb controller (ALC) to be embedded in the prosthetic limb. The ALC must 

provide enough processing power to execute pre- and post-processing algorithms, as well as 

the pattern recognition, control, and monitoring (Figure 22). In parallel, a user-friendly 

computer program is currently under evaluation by our group, where the patient can safely 

train advanced prosthetic control strategies using augmented reality at home. On the sensory 

side, current work is conducted for a more detailed understanding of the long-term 

psychophysics resulting from extraneural stimulation, which findings will be eventually 

implemented in a sensory feedback system connected to the ALC. 
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Finally, while the current tradeoff between the risks associated with osseointegrated 

percutaneous implants, and the functionality restored by this technology, is in favor of the 

solution presented here, there are always rooms for improvements. Therefore, additional 

strategies for infection control are currently explored by our group to further improve the 

percutaneous interface. 

All the aforementioned current and future work is clear indications of the efforts still 

required if artificial limbs are expected to one day satisfactorily restore the functionality lost 

by an amputation. 

 

 

Figure 22. Implanted electrodes are accessed via the osseointegrated human-machine gateway (OHMG) 
from which amplifiers and acquisition electronics feed the bioelectric signals to a microcontroller (MCU). This 
prototype is the foundation for a future artificial limb controller (ALC), which will be embedded in the 
prosthetic device. The wireless interface was implemented for electrical isolation as a safety measure during 
unsupervised operation at home, as this system can also be used for practicing on advanced prosthetic control 
strategies using a virtual limb. 
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