5,074 research outputs found

    Impact of shape representation schemes used in discrete element modelling of particle packing

    Get PDF
    In different computer models, shape is represented using different methodologies, to varying degrees of precision. This paper examines two approaches to shape representation, and their effects on accuracy in the context of cylindrical particle packing. Two discrete element method (DEM) based software packages are used. A X-ray CT scan of a packed bed provides the experimental measurements for comparison. Eight sphere-composite representations of the same cylindrical pellet were tested. Two of these gave results that quantitatively follow experimental measurements. A range of factors that in theory could affect accuracy of the simulation results are examined, including edge roundedness, surface roughness and restitutional behaviour as a function of sphere-composite representations. The conclusion is that, for packing at least, matching the object's overall shape and dimensions is not enough. Only when a high enough resolution is applied to corners and edges, could the sphere-composite approach possibly match the experimental data quantitatively

    Packing Characteristics of Different Shaped Proppants for use with Hydrofracing - A Numerical Investigation using 3D FEMDEM

    Get PDF
    Imperial Users onl

    A generic energy‐conserving discrete element modeling strategy for concave particles represented by surface triangular meshes

    Get PDF
    A generic energy-conserving linear normal contact model for concave particles in the discrete element method (DEM) is presented in the current paper. It is derived based on a recently enhanced general energy-conserving contact theory for arbitrarily shaped particles. A set of more effective evaluation schemes required in the model are also given, which shows that only the intersection boundary between two contact shapes, instead of their contact region or surfaces, is required to be explicitly obtained, thereby substantially improving both efficiency and applicability of the proposed contact model over the previous version. A surface triangular mesh is used to represent any 3D concave particle. The computational issues associated with the contact of two surface triangulated 3D shapes, including the contact detection, the determination of intersection boundary segments, the computation of contact features and parallelisation, critical time step, and friction and damping treatment for multiple contacts are described in detail. Two sets of numerical examples involving various concave 3D shapes with a large number of surface triangles are presented to demonstrate either the superb energy-conserving property of the proposed model model, or its effectiveness, robustness and universal nature for wider and more complex problems

    DEM investigation of the influence of particulate properties and operating conditions on the mixing process in rotary drums: Part 1-Determination of the DEM parameters and calibration process

    Get PDF
    This paper's goal was to select methods and a calibration procedure which would lead to the determination of relevant parameters of a discrete element method (DEM) and virtual material creation. Seven particulates were selected with respect to their shape (spherical and non-spherical), size and density. The first calibration experiment involved "packing test" to determine the shape accuracy and bulk density of virtual packed particulates. The series of simulations were compared with real experiments, and the size, shape and density of virtual particles were optimized. Using three apparatuses, the input parameter values were experimentally determined for a contact model that defines the behavior of particulates in DEM simulations. The research part of the paper examines the influence of factors such as particle number; pile formation method; and the method of evaluation of the angle of repose on the process of the calibration of virtual material. The most reproducible results were achieved by the "pilling" method and by the rotating drum-both evaluated by the geometric method. However, it is always advisable to make an overall visual comparison of the slope shape between the calibration simulation and the experimental curves. The bowl's diameter to particle size ratio should be greater than 25, and the calibration experiment should contain approximately 4000 particles to ensure representative results during angle of repose calibration experiment.Web of Science82art. no. 22

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues

    Get PDF
    The contact volume based energy-conserving contact model is presented in the current paper as a specialised version of the general energy-conserving contact model established in the first paper of this series (Feng, 2020). It is based on the assumption that the contact energy potential is taken to be a function of the contact volume between two contacting bodies with arbitrary (convex and concave) shapes in both 2D and 3D cases. By choosing such a contact energy function, the full normal contact features can be determined without the need to introduce any additional assumptions/parameters. By further exploiting the geometric properties of the contact surfaces concerned, more effective integration schemes are developed to reduce the evaluation costs involved. When a linear contact energy function of the contact volume is adopted, a linear contact model is derived in which only the intersection between two contact shapes is needed, thereby substantially improving both efficiency and applicability of the proposed contact model. A comparison of this linear energy-conserving contact model with some existing models for discs and spheres further reveals the nature of the proposed model, and provides insights into how to appropriately choose the stiffness parameter included in the energy function. For general non-spherical shapes, mesh representations are required. The corresponding computational aspects are described when shapes are discretised into volumetric meshes, while new developments are presented and recommended for shapes that are represented by surface triangular meshes. Owing to its additive property of the contact geometric features involved, the proposed contact model can be conducted locally in parallel using GPU or GPGPU computing without occurring much communication overhead for shapes represented as either a volumetric or surface triangular mesh. A set of examples considering the elastic impact of two shapes are presented to verify the energy-conserving property of the proposed model for a wide range of concave shapes and contact scenarios, followed by examples involving large numbers of arbitrarily shaped particles to demonstrate the robustness and applicability for more complex and realistic problems

    Numerical Simulation and Characterisation of the Packing of Granular Materials

    No full text
    The scientific problems related to granular matter are ubiquitous. It is currently an active area of research for physicists and earth scientists, with a wide range of applications within the industrial community. Simple analogue experiments exhibit behaviour that is neither predicted nor described by any current theory. The work presented here consists of modelling granular media using a two-dimensional combined Finite-Discrete Element Method (FEM-DEM). While computationally expensive, as well as modelling accurately the dynamic interactions between independent and arbitrarily shaped grains, this method allows for a complete description of the stress state within individual grains during their transient motion. After a detailed description of FEM-DEM principles, this computational approach is used to investigate the packing of elliptical particles. The work is aimed at understanding the influence of the particle shape (the ellipse aspect ratio) on the emergent properties of the granular matrix such as the particle coordination number and the packing density. The diff erences in microstructure of the resultant packing are analysed using pair correlation functions, particle orientations and pore size distributions. A comparison between frictional and frictionless systems is carried out. It shows great diff erences not only in the calculated porosity and coordination number, but also in terms of structural arrangement and stress distribution. The results suggest that the particle's shape a ffects the structural order of the particle assemblage, which itself controls the stress distribution between the pseudo-static grains. The study then focuses on describing the stress patterns or \force chains" naturally generated in a frictional system. An algorithm based on the analysis of the contact force network is proposed and applied to various packs in order to identify the force chains. A statistical analysis of the force chains looking at their orientation, length and proportion of the particles that support the loads is then performed. It is observed that force chains propagate less efficiently and more heterogeneously through granular systems made of elliptical particles than through systems of discs and it is proposed that structural diff erences due to the particle shape lead to a signifi cant reduction in the length of the stress path that propagates across connected particles. Finally, the e ffect of compression on the granular packing, the emergent properties and the contact force distribution is examined. Results show that the force network evolves towards a more randomly distributed system (from an exponential to a Gaussian distribution), and it confi rms the observations made from simulations using discs. To conclude, the combined finite-discrete element method applied to the study of granular systems provides an attractive modelling strategy to improve the knowledge of granular matter. This is due to the wide range of static and dynamic problems that can be treated with a rigorous physical basis. The applicability of the method was demonstrated through to a variety of problems that involve di fferent physical processes modelled with the FEM-DEM (internal deformations, fracture, and complex geometry). With the rapid extension of the practical limits of computational models, this work emphasizes the opportunity to move towards a modern generation of computer software to understand the complexity of the phenomena associated with discontinua

    Numerical analysis of railway ballast behaviour using the Discrete Element Method.

    Get PDF
    The development of high-speed train lines has increased significantly during the last twenty-five years, leading to more demanding loads in railway infrastructures. Most of these infrastructures were constructed using railway ballast, which is a layer of granular material placed under the sleepers whose roles are: resisting to vertical and horizontal loads and facing climate action. Moreover, the Discrete Element Method was found to be an effective numerical method for the calculation of engineering problems involving granular materials. For these reasons, the main objective of the thesis is the development of a numerical modelling tool based on the Discrete Element Method which allows the users to understand better railway ballast mechanical behaviour. The first task was the review of the specifications that ballast material must meet. Then, the features of the available Discrete Elements code, called "DEMPack", were analysed. After those revisions, it was found that the code needed some improvement in order to reproduce correctly and efficiently the behaviour of railway ballast. The main deficiencies identified in the numerical code were related to the contact between discrete element particles and planar boundaries and to the geometrical representation of such a irregular material as ballast. Contact interactions between rigid boundaries and Discrete Elements are treated using a new methodology called the Double Hierarchy method. This new algorithm is based on characterising contacts between rigid parts (meshed with a Finite Element-like discretisation) and spherical Discrete Elements. The procedure is described in the course of the thesis. Moreover, the method validation and the assessment of its limitations are also displayed. The representation of irregular particles using the Discrete Element Method is a very challenging issue, leading to different geometrical approaches. In this work, a deep revision of those approaches was performed. Finally, the most appropriate methods were chosen: spheres with rolling friction and clusters of spheres. The main advantage of the use of spheres is their low computational cost, while clusters of spheres stand out for their geometrical versatility. Some improvements were developed for describing the movement of each kind of particles, specifically, the imposition of the rolling friction and the integration of the rotation of clusters of spheres. In the course of this work the way to fill volumes with particles (spheres or clusters) was also analysed. The aim is to control properly the initial granulometry and compactness of the samples used in the calculations. After checking the correctness of the numerical code with simplified benchmarks, some laboratory tests with railway ballast were computed. The aim was to calibrate the ballast material properties and validate the code for the representation of railway ballast behaviour. Once the material properties were calibrated, some examples of a real train passing through a railway ballast track were reproduced numerically. This calculations allowed to prove the possibilities of the implemented tool.El desarrollo de las líneas de alta velocidad ha aumentado significativamente durante los últimos veinticinco años, dando lugar a cargas más exigentes sobre las infraestructuras ferroviarias. La mayor parte de estas infraestructuras se construyeron con balasto, que es una capa de material granular colocada bajo las traviesas cuyas funciones principales son: resistir las cargas verticales y horizontales repartiéndolas sobre la plataforma y soportar las acciones climáticas. Además, se encontró que el Método de Elementos Discretos es muy eficaz para el cálculo de problemas de ingeniería que implican materiales granulares. Por estas razones se decidió que el objetivo principal de la tesis fuera el desarrollo de una herramienta de modelación numérica basada en el Método de Elementos Discretos que permita a los usuarios comprender mejor el comportamiento mecánico del balasto ferroviario. La primera tarea fue la revisión de las especificaciones que el balasto debe cumplir. A continuación, se analizaron las características del código de Elementos Discretos disponible, denominado "DEMPack". Después de esas revisiones, se encontró que el código necesitaba alguna mejora para poder reproducir correcta y eficientemente el comportamiento del balasto ferroviario. Las principales deficiencias identificadas en el código numérico estaban relacionadas con el contacto entre partículas y contornos planos y con la representación geométrica de un material tan irregular como es el balasto. Los contactos entre contornos rígidos y elementos discretos se tratan usando una nueva metodología llamada el "Double Hierarchy method". Este nuevo algoritmo se basa en la caracterización de contactos entre elementos rígidos (discretizados de forma similar a los elementos finitos) y elementos discretos esféricos. La descripción detallada del procedimiento se presenta a lo largo de la tesis. Además, también se muestra la validación del método y sus limitaciones. La representación de partículas irregulares utilizando el Método de Elementos Discretos se puede abordar desde diferentes enfoques geométricos. En este trabajo, se realizó una revisión de estos enfoques. Finalmente, se escogieron los métodos más adecuados: esferas con resistencia a la rodadura y clusters de esferas. La principal ventaja del uso de las esferas es su bajo coste computacional, mientras que los clusters de esferas destacan por su versatilidad geométrica. Se han desarrollado algunas mejoras para describir el movimiento de cada uno de los tipos de partículas, concretamente, la imposición de la resistencia a la rodadura y la integración de la rotación de clusters de esferas. En el curso de este trabajo también se analizó la forma de llenar volúmenes con partículas (esferas o clusters). El objetivo es controlar adecuadamente la granulometría inicial y la compacidad de la muestra. Después de comprobar el comportamiento del código numérico con tests simplificados, se emularon numéricamente algunos ensayos de laboratorio con balasto ferroviario. El objetivo era calibrar las propiedades del balasto y validar el código para representar con exactitud su comportamiento. Una vez calibradas las propiedades del material, se reprodujeron numéricamente algunos ejemplos de un tren pasando sobre una vía con balasto. Estos cálculos permiten demostrar las posibilidades de la herramienta numérica implementada
    corecore