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Abstract

The contact volume based energy-conserving contact model is presented in the current
paper as a specialised version of the general energy-conserving contact model established
in the first paper of this series [1]. It is based on the assumption that the contact energy
potential is taken to be a function of the contact volume between two contacting bodies
with arbitrary (convex and concave) shapes in both 2D and 3D cases. By choosing such
a contact energy function, the full normal contact features can be determined without
the need to introduce any additional assumptions/parameters. By further exploiting the
geometric properties of the contact surfaces concerned, more effective integration schemes
are developed to reduce the evaluation costs involved. When a linear contact energy func-
tion of the contact volume is adopted, a linear contact model is derived in which only the
intersection between two contact shapes is needed, thereby substantially improving both
efficiency and applicability of the proposed contact model. A comparison of this linear
energy-conserving contact model with some existing models for discs and spheres further
reveals the nature of the proposed model, and provides insights into how to appropriately
choose the stiffness parameter included in the energy function. For general non-spherical
shapes, mesh representations are required. The corresponding computational aspects are
described when shapes are discretised into volumetric meshes, while new developments
are presented and recommended for shapes that are represented by surface triangular
meshes. Owing to its additive property of the contact geometric features involved, the
proposed contact model can be conducted locally in parallel using GPU or GPGPU com-
puting without occurring much communication overhead for shapes represented as either
a volumetric or surface triangular mesh. A set of examples considering the elastic impact
of two shapes are presented to verify the energy-conserving property of the proposed
model model for a wide range of concave shapes and contact scenarios, followed by exam-
ples involving large numbers of arbitrarily shaped particles to demonstrate the robustness
and applicability for more complex and realistic problems.

keywords: Concave shapes, Energy conservation, Contact volume based contact model,
Volumetric mesh representation, Triangular mesh representation

1 Introduction

In [1], a generic energy conserving contact theory for arbitrarily shaped particles is com-
prehensively presented. The resulting general contact model outlines the procedure to fully
determine the features of the normal contact force between any two shapes, including the
magnitude, normal direction and contact point/line. The detail of the model solely depends
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on what form of the contact energy function will be adopted. In this part, the contact energy
function is taken to be a function of the volume of the contact region between the two contact
bodies. The resulting contact model is termed the contact volume based energy-conserving
contact model.

This special energy-conserving contact model is first proposed in [2] for polygons and used for
super-quadrics in [4] then extended to polyhedra in [3, 5]. The model is presented in a more
general form in [6]. Applications of this model to achieve stable DEM simulations for non-
spherical or irregular particles can be found, for instance, in [8] for 2D polygons, [9] for convex
polyhedra, and in [10] for decomposable non-convex shapes. However, as the contact volume
is involved either explicitly or implicitly, the associated computational cost can be high for
other shapes, such as super-quadrics [11, 12, 13] and dilated particles [14, 15, 16]. This high
computational cost can hinder the wider application of the model in DEM. In the current
part of the series, this contact volume based model will be developed and presented in a more
rigorous and concrete fashion. More features are exploited and new computational schemes
are proposed to significantly improve the overall performance of the model. A similar idea of
using the energy function for contact is also used in [17] for triangle/tetrahedron contacts in
the context of the combined finite element/discrete element methodology.

All the important aspects of the model will be comprehensively addressed in the next section
for general 3D shapes. In particular, it will be shown that when a linear contact energy
function of the contact volume is adopted, only the intersection between two contact shapes,
instead of their contact region and surfaces, is needed to fully determine the features of
the normal contact force, thereby substantially improving both efficiency and applicability
of the proposed contact model. A special version for 2D shapes will also be described. A
comparison of this specialised energy-conserving contact model with some existing models
for discs and spheres is also taken to further reveal the nature of the proposed model. This
provides an insight into how to appropriately choose the stiffness parameter included in
the energy function. Section 3 is devoted to the computational aspects of the model when
applied to arbitrarily shaped 3D particles and particularly when shapes are discretised into
volumetric meshes. Some significant new developments are presented in Section 4 for shapes
represented by surface triangular meshes, resulting in a set of numerical operations only
involving triangles. The additivity nature of the contact geometric features involved in the
proposed contact model makes the contact model between two particles ideal to adopt parallel
processing such as GPU or GPGPU computing for large scale industrial problems as already
demonstrated in [10]. A set of examples considering the impact of two concave shapes is
presented in Section 5 to validate the universal energy-conserving property of the proposed
model for various contact scenarios. This is followed by examples involving large numbers
of different concave shapes to demonstrate the robustness and applicability of the proposed
model for more complex and realistic problems. Conclusions are drawn in Section 6.

Note that the same set of notations and conventions used in the first paper of this series [1]
is adopted here.

2 Contact Volume Based Energy-Conserving Contact Model

Consider the following contact energy function

w = w(Vc) (1)

where Vc = ∣Ωc∣ is the volume of the contact region Ωc between two contact bodies concerned.
As the contact volume is independent of the global coordinate system, any monotonically
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Figure 1: Two arbitrarily shaped bodies Ω1 and Ω2 in contact and the contact region formed
by two contact surfaces S1 and S2

increasing function of the contact volume satisfies both translational and rotational invariants
as established in Section 3.4 of the first paper [1]. Thus such a function is a valid candidate
for the contact energy function.

2.1 Contact Volume Based Energy-Conserving Contact Model for 3D Shapes

Applying the particular form (1) of the contact energy to the general contact model devel-
oped in Section 3 of [1] leads to the specialised contact volume based normal contact model,
which fully describes the features of a normal contact force including the normal direction,
magnitude and contact point/line and also guarantees elastic energy conservation in any con-
tact scenario. Referring to Figure 1, the main aspects of the proposed contact model are
summarised below.

Model 2 (Contact Volume Based Model). Let w(Vc) be a monotonically increasing function
of the contact volume Vc. Then the normal force Fn exerted on Body 1 can be obtained as

Fn = −∇xw(Vc) = −w′(Vc)Sn (2)

where Sn is the vector area of the contact surface S1

Sn = ∫
S1

dS (3)

with the projected or scalar contact area Sn = ∣Sn∣. Then

1) The unit normal contact vector n is defined as the negative unit direction of Sn

n = −Sn/Sn (4)

2) The magnitude Fn is identified as

Fn = w′(Vc)Sn (5)

3) The contact point c is determined by the coordinates xc

xc =
n ×Gn

Sn
+ λn, with Gn = ∫

S1

r × dS (6)

where λ is a free parameter, and its all possible values define the normal contact line.
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The normal force F′

n exerted on Body 2 by Body 1 is

F′

n = −Fn = −Fnn (7)

and can be applied to the same contact point (but in Body 2) or any point on the contact line.

In the following subsection, some key aspects of the model will be proved. Other important
issues will be discussed in the subsequent subsections.

The key to the development of this contact volume based model is the derivation of the
following relation

∇xVc =
∂Vc
∂x

= ∫
S1

dS (8)

which can be readily obtained by applying the classic Leibniz integral rule with variable limits
[18], or other similar approaches, such as the Reynolds transport theorem [19], to an integral
with a moving boundary. The details are omitted here.

Next, we prove in a different way from [1] that Fn and F′

n are indeed a pair of action and
reaction forces and that the contact moments at the contact point/line must be zero. The
results will be utilised to derive more effective computational schemes in the next subsection.

Expression (2) for Fn can be rewritten as

Fn = −∫
S1

w′(Vc)dS = −∫
S1

pn ns dS (9)

where ns is the outer normal of the surface S1, and pn = w′(Vc) is a constant. Similarly, F′

n

can also be expressed as

F′

n = −∫
S2

w′(Vc)dS = −∫
S2

pn ns dS (10)

It can be seen from (9) and (10), and first observed in [5], that the proposed contact volume
based contact model is equivalent to defining a uniformly distributed normal contact pressure
p = pnn. This is similar to a hydrostatic pressure acting on the contact surface (i.e. both
contact surfaces S1 and S2) with intensity pn. Fn and F′

n are the resultant forces of the
pressure on the two contact surfaces, respectively.

Similarly, the moments produced by this constant pressure pn on surfaces S1 and S2 about
the origin (or any point) can be expressed as

Mn = −∫
S1

pnr × nsdS; M′

n = −∫
S2

pnr × nsdS (11)

where r is the position vector of a point on S1 or S2.

The pair (Fn,Mn) form a force-couple system which can be replaced by a single Fn acting
at the contact point xc with the condition

Fn × xc = Mn = −∫
S1

pnr × nsdS = −pnGn (12)

which yields the solution for the contact point xc given in (6).

The summation of two expressions (9) and (10) gives the resultant force acting on the whole
contact surface S = S1 + S2

Fs = Fn +F′

n = −∫
S1

pn ns dS − ∫
S2

pn ns dS = −∮
S
pn ns dS = −pn∮

S
dS (13)
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while the moment of the pressure produced from the whole contact surface about the origin
is

Mo = Mn +M′

n = −∮
S
pnr × nsdS = −pn∮

S
r × dS (14)

It is well known in fluid mechanics that any solid object subjected to a uniform hydrostatic
pressure on its entire boundary surface must be in equilibrium, i.e. Fs = Mo = 0. This can
also be derived from the following two geometric relations: any closed surface S satisfies

∮
S
dS = 0; ∮

S
r × dS = 0 (15)

These relations can be easily proved from the classic Gauss theorem (or the divergence the-
orem) and one of its variants [20].

Both (3) and (6) indicate that the contact surface S1 (and equally S2) solely determines
the contact normal direction and the contact point or line, while the magnitude of the force
may also be affected by the contact volume Vc. Thus how these contact geometric features
associated with the contact region are evaluated will dictate the computational costs involved
and may have a significant effect on the overall efficiency of a DEM simulation with non-
spherical particles when employing the proposed contact model.

In order to compute Sn and xc (or Gn), it may be necessary to explicitly obtain the whole
contact region Ωc. This is clearly a challenging task to fulfil for most geometric shapes. Thus
it makes the current contact model, despite offering superior numerical accuracy and stability,
computationally expensive and less appealing than existing, mainly empirical-based contact
models for non-spherical particles.

However, the computational issue mentioned above can be largely resolved. The following
two subsections develop new schemes to effectively compute Sn and Gn based only on the
intersection Γ between the two contact surfaces S1 and S2 and neither of the surfaces needs to
be explicitly obtained. Consequently, the computational costs involved in evaluating n and
xc can be significantly reduced. In Section 2.4, the energy function w(Vc) is assumed to be a
linear function of Vc, then the explicit construction of the contact region Ωc can be entirely
avoided. Further implication of adopting this linear energy function is also discussed. These
two developments will substantially improve the numerical efficiency of the proposed contact
model.

2.2 Evaluation of the normal contact and the contact centre

The evaluation of both the normal contact direction n and the contact point xc requires the
evaluation of the following two integrals over S1

Sn = ∫
S1

dS; Gn = ∫
S1

r × dS

The two identities in (15) lead to the following alternative expressions for Sn and Gn

Sn = −∫
S2

dS; Gn = −∫
S2

r × dS (16)

which implies that both Sn and Gn are independent of the actual shape of S1, provided that
S2 is fixed. The immediate consequence of this observation is that S1 can be replaced by any
other surface as long as they share the same boundary ∂S1 (or ∂S2).

Let Γ = ∂S1 be the boundary of S1 and oriented consistently with the outer normal of the
surface as shown in Figure 2. Γ is also the intersection between S1 and S2. The boldfaced
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Figure 2: The contact surface S1 with the boundary Γ and one ’conical’ replacement surface
S̄

Γ, Γ, is used to represent the oriented Γ below, and -Γ is the oriented boundary of S2. The
orientation of Γ, consistent with the outer normals of S1 and S2, can be attained if its positive
(tangential) direction τ at an intersection point is determined in the following way

τ = n1 × n2 (17)

where n1 and n2 are the outer normals of the two surfaces S1 and S2 at the intersection point
respectively.

2.2.1 Alternative evaluation Schemes for Sn

We now have a more general expression for Sn: for any surface S̄ with the same oriented
boundary Γ

Sn = ∫
S̄
dS ∀S̄ ∶ ∂S̄ = Γ (18)

This expression may lead to a more effective evaluation if a proper replacement surface S̄ can
be chosen. In practical terms, an ideal replacement surface would be one that offers the best
computational benefit in evaluating the above integral.

One possible candidate, as shown in Figure 2, is a conical surface with the origin as its apex
and Γ as its base or directrix. As this special surface is entirely determined by Γ, this further
implies that it is the intersection of the two contacting bodies Γ that dictates Sn or the
normal direction, rather than the contact region Ω or surfaces S1 and S2. This assertion is
fully supported by the following derivation which gives rise to another evaluation scheme for
Sn.

Stoke’s theorem [20] relates the surface integral of a curl of a vector field F over an open
surface S to the line integral of F over its consistently oriented boundary Γ = ∂S by

∫
S
∇×F ⋅ dS = ∮

Γ
F ⋅ dΓ (19)

If ∇×F = u is a constant vector, then the left hand side of the above integral represents the
projection of Sn = ∫S dS onto u

∫
S
∇×F ⋅ dS = u ⋅ Sn (20)
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Thus, if there exist three independent constant vectors ui (i = 1,2,3), Sn can be recovered.
Obviously, the best choice of these three direction vectors will be i, j and k, the unit vectors
of the three coordinate axes. For a vector F = [Fx, Fy, Fz]T , its gradient is

∇F = [∂Fz
∂y

− ∂Fy
∂z

,
∂Fx
∂z

− ∂Fz
∂x

,
∂Fy

∂x
− ∂Fx
∂y

]
T

It is easy to check that the gradients of the following three vector fields Fi,Fj and Fk, as
arranged in matrix form, are i, j and k respectively

F = [Fi,Fj ,Fk] =
1

2

⎡⎢⎢⎢⎢⎢⎣

0 z −y
−z 0 x
y −x 0

⎤⎥⎥⎥⎥⎥⎦
= 1

2
I × x (21)

For example,

Fk = −yi + xj + 0k, ∇Fk =
1

2
∇(−yi + xj + 0k) = k

An arbitrary constant vector c can be added to x without altering F in (21)

F = 1

2
I × (x + c) (22)

With the three vector fields Fi,Fj and Fk defined, Sn can now be evaluated as a line integral
over the boundary Γ

Sn = ∫
S1

dS = 1

2
∮

Γ
F ⋅ dΓ = 1

2
∮

Γ
(I × x) ⋅ dΓ (23)

By utilising the scalar triple product identity

a ⋅ (b × c) = b ⋅ (c × a) = c ⋅ (a × b)

Equation (23) is reduced to a simpler form

Sn =
1

2
∮

Γ
x × dΓ = 1

2
∮

Γ
r × dΓ (24)

where r = x is the position vector of x from the origin. Now Sn can be viewed as half of
the total moment produced by the intersection line Γ, treated as a line-distributed ’force’,
about the origin. Adding a non-zero constant vector c to x or r will not alter the result as

∮Γ dΓ = 0, but is equivalent to choosing the point −c as the new ’moment’ centre.

Equation (24) not only proves that Sn is solely determined by the intersection of the two
contacting bodies, but also provides an alternative and more efficient procedure to evaluate
Sn. The original surface integral over the contact surface S1 is now replaced by a line integral
over the intersection Γ.

Both (18) and (24) offer two alternative evaluation schemes for Sn. When the conical surface
S̄ shown in Figure 2 is used as the replacement surface, the two schemes are identical. Further
details will be provided in Section 4 for the case where both bodies are triangulated and thus
the intersection Γ is also discretised into a polyline.
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2.2.2 Alternative evaluation schemes for the contact point

The key to determining the contact point xc by Equation (6) is to evaluate the surface integral
Gn over S1

Gn = ∫
S1

r × dS

Following the preceding discussion for Sn, a similar alternative scheme for evaluating Gn is
to use a computationally simpler surface S̄ to replace S1

Gn = ∫
S̄

r × dS (25)

Again, the special conical surface S̄ used for computing Sn is an ideal option.

The second alternative scheme can also be developed as follows. Consider another identity
from Stoke’s theorem over a surface S with the correctly oriented boundary Γ: for a scalar
function f defined on S, it has

∫
S
∇f × dS = −∮

Γ
f dΓ (26)

If the function f has the form

f = 1

3
r ⋅ r = 1

3
∥r∥2

it can be shown that
∇f = r

Then

∫
S
∇f × dS = ∫

S
r × dS = −1

3
∮

Γ
r ⋅ rdΓ (27)

Directly applying this formula to Gn leads to the second alternative evaluation scheme

Gn = ∫
S1

r × dS = −1

3
∮

Γ
r ⋅ rdΓ (28)

In addition, if the boundary Γ can be parameterised by a scalar t, the above expression can
be further reduced to a definitive integral over an interval

Gn = −
1

3
∫

t1

t0
r(t) ⋅ r(t)dt (29)

where r(t0) = r(t1) are the starting and ending points of the boundary.

Equation (28) reduces the evaluation of Gn from the original surface integral over the contact
surface S1 to a line integral over the contact intersection Γ, while Equation (29) further
reduces it down to an integral over a parameter interval. Similar conclusions from the Sn
case can also be drawn in this case.

Note that the above proposed alternative schemes for evaluating Sn and Gn have reduced
the associated computation cost to an insignificant level in comparison with finding the
intersection Γ. The detailed numerical implementation of these schemes for triangulated
shapes will be provided in Section 4.
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2.3 Minimal Contact Surface and Unique Contact Point

In the current model, Sn = ∣Sn∣ is taken as the contact area which can be readily used to model
heat conduction between non-spherical particles. The nature of DEM makes it impossible to
know the actual contact surface. Thus, Sn can be treated as an approximation to the actual
contact area.

However, the contact point cannot be uniquely determined. In theory, any point along the
contact line can be taken as the contact point without affecting the motion of the particles
in the normal direction. Thus, it may be helpful if an additional condition can be imposed
so that a unique contact point can be determined.

Here we introduce the concept of a minimal surface for a given boundary. Finding the minimal
surface for a given boundary with some specified constraints is a mathematical problem [21]
in the field of calculus of variations.

In the current case, for an open surface S with boundary Γ, we may define its (scalar) surface
area Sa as

Sa = ∫
S
dS; ∂S = Γ (30)

The minimal contact surface Sm associated with the boundary Γ is characterised as the
surface with the minimal surface area Sa. The problem can be described in a few equivalent
ways in other fields. In geometry, a minimal surface is defined as the surface with zero mean
curvature, and satisfies a partial differential equation called Lagrange’s equation [22]. In
architecture or structural engineering, a minimal surface is the shape of the soap film that
naturally forms around the boundary as the wire frame.

If the minimal contact surface for Γ exists, the contact point can be taken as the intersection
point of this surface with the normal contact line. Thus in order to find the unique contact
point, we need to explicitly construct the minimal surface. However, solving this minimal
surface problem for any given boundary is not trivial, and thus will not be attempted in this
work. Nevertheless, when Γ is discretised as a polyline and further conditions are imposed,
the problem can be significantly simplified and a simple analytical solution can be found.
The details will be presented in Section 4 where triangular meshes are adopted to represent
particles and the intersection boundary is a polylines.

2.4 Contact Force Evaluation and Linear Contact Energy Function

The main development in Section 2.2 can be summarised as follows: for the evaluation of Sn
and the contact point/line, the contact region or surfaces are no long needed, and only the
intersection of the two contact surfaces Γ is required. This results in a significant simplification
over the original need of explicitly constructing contact surface S1 or S2.

The remaining issue to be addressed is evaluating the magnitude of the normal force Fn, Fn.
By definition

Fn = w′(Vc)Sn (31)

Thus Fn is proportional to the (scalar) contact area Sn and also to w′(Vc). The actual form
of w(Vc) therefore needs to be specified. Typically, w(Vc) may take the following power-law
form

w(Vc) = knV m
c (32)

where kn may be considered as a normal stiffness (the unit is different though); the exponent
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m ≥ 1. Then Fn has the form
Fn =mknV m−1

c Sn (33)

In addition to kn, the contact volume Vc, Sn and the exponent m also affect Fn. Note that
the commonly used contact overlap is not presented. Sn may be interpolated as the measure
of the contact area (in 3D) or width (in 2D), and thus can be useful when, for instance, heat
conduction between contacting bodies is modelled.

In general, as Fn depends on the contact volume Vc, the contact region Ωc may have to be
explicitly obtained and its volume computed. The advantage gained from the new evaluation
schemes developed in Section 2.2, which only use the intersection Γ for Sn and Gn, may
therefore become much less significant.

However, when m = 1, i.e. w is a linear function of Vc, Fn becomes

Fn = knSn (34)

Now, Fn is only proportional to Sn which can be obtained solely from Γ and crucially, Vc
disappears. Hence, neither the contact region Ωc nor the contact surface S1 or S2 are involved
in Fn, and only the intersection Γ between the two contacting bodies needs to be explicitly
constructed. This feature, together with the alternative schemes (24) and (28) for the contact
normal and the contact point/line, gives a much simpler and effective normal contact model
than those derived from other forms of the energy function. This improvement can also
simplify the data structure to be used in the implementation. This is specially true when
particles are represented by triangular meshes as discussed in Section 4.

Consequently, this particular contact model, referred to as the contact volume-based linear
model or the linear contact model for short below, is recommended as the default model
within the contact volume based modelling framework.

Note that in addition to the proposed contact model which is generally non-linear, the above
recommended linear contact model is also different from the conventional overlap based linear
spring model. Thus there are implications of the proposed both linear and nonlinear models
on the critical time step associated with the time integration and on energy dissipation when
the standard linear viscous damping model is used. The related issues will not be discussed
in this work but will be addressed elsewhere.

2.5 Additivity of the Contact Geometric Features in the Contact Volume
Based Model

In the general form of the contact volume based model, the quantities that need to be
evaluated include the contact volume Vc, Sn and Gn. These quantities are all integrals
of geometric domains (regions, surfaces and lines), and are therefore naturally additive. So,
when the original domains of the two bodies are divided into sub-domains, the required values
can be obtained by summating all the sub-domain values. This additive property makes the
current contact model flexible and highly parallelisable.

When the original shapes in contact need to be decomposed into sub-domains, Vc, Sn and
Gn are evaluated distributively. In the first case, the shapes are composed of individual
geometric entities, and naturally, Vc, Sn and Gn can be evaluated locally for sub-contact
domains between individual sub-entities.

In the second case, the shape in contact may be geometrically complicated. For instance,
it may be a triangulated surface mesh with many triangles, which could represent either
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a scanned realistic 3D object or a large complicated wall surface. The computational cost
involved in computing Vc, Sn and Gn for two such shapes can be significant and therefore it
may be desirable to reduce the cost through parallel computing such as GPU computing.

The additivity of the contact geometric features Vc, Sn and Gn in the current contact model
ensures that the distributed computing for Vc, Sn and Gn can be correctly undertaken,
sequentially or in parallel, in a straightforward way. For the contact model without using a
linear energy function, the magnitude of the total normal force Fn needs to be updated after
the total Vc is computed. However, this step is omitted for the linear contact model where
Vc is not required. The distributed computing of Sn and Gn is discussed below.

Suppose that the two bodies Ω1 and Ω2 are decomposed or divided into sub-domains Ωik:

Ωi = ∑Ωik(i = 1,2) (35)

Denote the overlapping region of two sub-domains Ω1i and Ω2j , one from each body, as Ωcij

Ωcij = Ω1i⋂Ω2j (36)

If Ωcij ≠ ∅, two associated sub-contact surfaces S1ij and S2ij and the corresponding properly
oriented sub-intersection Γij can be obtained. Then the original intersection Γ can be pieced
together from all the sub-intersections if needed:

Γ = ∑
ij

Γij (37)

Utilising (24) and (28), we have

Sn =
1

2
∫

Γ
r × dΓ = ∑

ij

S1ij ; S1ij = ∑
ij
∫

Γij

r × dΓ (38)

and
Gn = ∮

Γ
r ⋅ rdΓ = ∑

ij

Gnij
; Gnij

= ∫
Γij

r ⋅ rdΓ (39)

The intersection Γ may consist of multiple independent closed curves for complex contact
shapes. Each closed curve may represent the outer boundary of a solid or void contact
surface. Figure 3 demonstrates a case with three closed boundaries forming a solid contact
area with two inner holes on a 3D plane. The nature of the enclosed area, solid or hole,
by a closed boundary curve can be identified from the boundary orientation in relation to
the contact normal direction n. However, the additive property of the model makes this

1
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Figure 3: A multi-boundary case: a solid contact area (in grey) and two voids formed by
three disjoint boundaries Γ1,Γ2 and Γ3, with an indicative contact normal direction n
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identification unnecessary. Each closed boundary is treated equally and the orientation or
the nature of the enclosed area is automatically taken into account in the definitions of Sn
and Gn, as implied in both (38) and (39).

In Figure 3, let Sin (i = 1,2,3) each be Sn of the three boundaries Γi (i = 1,2,3) respectively.
S1
n is the Sn for the whole area enclosed by Γ1 only, while S2

n and S3
n are those of the two holes

formed by Γ2 and Γ3 respectively. The opposite directions of both Γ2 and Γ3 relative to Γ1

ensure that the two vectors S1
n and S2

n are opposite to S1
n. Thus, the resulting Sn = S1

n+S2
n+S3

n

will be the same if only the solid (grey) area is considered. The same argument also applies
to Gn.

Formulae (38) and (39) also suggest two slightly different approaches for evaluating Sn and
Gn. In the first approach, individual sub-intersections are first collected centrally; then (24)
and (28) are used to obtain Sn and Gn. In the second approach, Sn and Gn in each sub-
contact domain are evaluated locally; then their values are collected from all the sub-contact
domains and added together centrally to obtain the overall values.

Using parallel computing to evaluate Sn and Gn, the second approach is preferable as Sn
and Gn can be totally distributed to individual sub-contact domains. All the evaluations
are performed locally and are fully independent, so the whole procedure can be perfectly
parallelised without any cross-partition data exchange and communication overhead. Data
transfer only takes place at the last step to sum the contributions from all sub-contact domains
to recover the total values of Sn and Gn. However, this step may be unnecessary. In fact
each sub-domain contact can be viewed as an individual contact whose contact features are
obtained independently and applied to the contacting bodies directly, depending on the coding
strategy. Another benefit of this approach is that the contact between the two bodies can
now be treated as a distributed contact and consequently, distributed damping and frictional
forces can be applied locally across the contact area. In cases where the contact may take
place over a large area, this treatment may be more appropriate when considering damping
and friction effects.

As mentioned earlier, the actual computational cost involved in evaluating Sn and Gn is
relatively insignificant. The major computation occurs in finding all sub-domain intersections
of the two shapes. Again, this step can be done fully in parallel, provided there is a pre-
processing scheme available which can effectively exclude cases when two sub-domains do not
intersect. A fully parallel but highly ineffective scheme is to check the intersection for all
sub-domain combinations.

2.6 The Area Based Contact Model for 2D Shapes

The contact volume based algorithm for any 3D shapes has been fully established in the
previous section. New schemes have also been proposed for improving the computational
efficiency of the associated algorithm. The model can be easily reduced to 2D cases, leading
to a contact area based normal contact model for any 2D shapes.

2.6.1 Contact geometry

The notations used for 3D shapes will be adopted, but some of the definitions are changed.
Vc is now the contact area Ac; S1 and S2 are two open boundaries instead of surfaces; the
intersection Γ is changed from a boundary line to individual points. As shown in Figure 4,
there are only two intersection points (a,b) in case (a), while in a more complicated contact
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Figure 4: 2D contact cases: (a) a simple contact with two intersection points; and (b) a
complex contact with four contact points

scenario (b), multiple pairs of intersections, (ai,bi) (i = 1, ...,m), may occur. For each pair,
a is classified as the starting point and b the end point, with the following conditions

n1(a) × n2(a) ⋅ k < 0; n1(b) × n2(b) ⋅ k > 0 (40)

where n1(x) and n2(x) are the outer normals of S1 and S2 at the intersection point x
respectively. This condition is compatible with the definition (17) for the positive direction
of Γ in 3D.

2.6.2 Contact features

The normal force Fn still takes the same form as in (2), but Sn becomes a line integral over the
contact boundary. Furthermore, the previously developed alternative schemes for Sn based
on the intersection line is no longer valid, while the scheme using a simple contact boundary
S̄ to replace S1 is still valid and becomes even simpler: S̄ shares the same interaction points
as S1.

For the two-intersection point case in Figure 4(a), the line segment linking the two points
(a,b) is the simplest S̄, and Sn can be explicitly written as

Sn = ∫
S̄
dS = −wcn (41)

where wc = ∣b−a∣ is the distance between the two intersection points and is therefore termed
the contact width; and n is the normal contact direction perpendicular to the line segment
b − a. Thus the link direction b − a is also the tangential direction.

By extending the definition of Gn to the line segment S̄ and setting the origin as the reference
point or moment centre (so r = x), it can be shown that

Gn = ∫
S̄

r × dS = a + b

2
× (wcn) (42)

Based on (6) and taking λ = 0, the contact point can be obtained as

xc =
a + b

2
(43)

which is the middle point of the two intersection points.

By definition, the magnitude of the normal force is

Fn = w′(Ac)wc (44)



14

For a linear energy function w = knAc, it becomes

Fn = knwc (45)

i.e. the contact width wc, instead of the traditional contact overlap, primarily determines the
force magnitude.

In summary, for a 2D contact with two intersection points, these two points determine all the
contact geometric features: the distance is the contact width, the link defines the tangential
direction, the normal direction is perpendicular to this link, and the middle point can be
taken as the contact point.

For multiple intersection points with the linear contact energy function, each pair of the
intersection points can be treated as an independent contact using the above procedure. If
an overall contact is preferred, Sn and Gn can be computed as

Sn = ∑
i

wcini; Gn = ∑
i

wci
ai + bi

2
× ni (46)

from which the normal direction n and the contact point xc can be obtained following (4)
and (6).

This energy conserving contact model for 2D shapes is first proposed in [2] for polygons and
extended to 2D super-quadratics in [4], while the model is directly degenerated here from the
general 3D contact model as a special case and the derivation involved is more straightforward.
It is highlighted that the current model can be applied to the contact between any 2D convex
or concave shapes. For the linear contact model, only the intersection points between two
shapes need to be found, and the computational cost involved is comparable with some
existing models, e.g. for ellipses and super-quadratics.

2.7 Comparison with Standard Disc/Sphere Contact Models

The proposed contact volume based model is different from most conventional models cur-
rently employed in DEM. In its simplest form when the linear contact energy function is
used, all the contact features depend on the intersection Γ of the two shapes. An analyt-
ical expression for the intersection is only available for discs and spheres. Other shapes,
except for polygons (in 2D) or polyhedra (3D), may need to be discretised into polygons or
polyhedra, so their contact can be treated as the contact between polygon/polygon or poly-
hedron/polyhedron. Computational issues of the volume based contact model for discretised
non-spherical shapes will be comprehensively described in the next two sections.

The existence of an analytical solution for a pair of discs or spheres can be used to compare
the current model with conventional models in order to gain an insight into the nature and
differences of the model with the others.

Consider the contact of two discs/spheres with radii r1 and r2 and an overlap δ. Let d =
r1 + r2 − δ, ∆r = r1 − r2. Then wc can be derived as

w2
c = 2[(r1 + r2) −

∆r2

d
] δ − [1 + (∆r

d
)

2
] δ2 (47)

Thus for discs, the normal force magnitude Fn is equal to

Fn = knwc = kn

√
2[(r1 + r2) −

∆r2

d
] δ − [1 + (∆r

d
)

2
] δ2 (48)
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For spheres, the contact intersection is a circle with wc as the diameter. Thus Sn = πw2
c/4,

and the magnitude Fn is

Fn = knSn = kn
π

2
{[(r1 + r2) −

∆r2

d
] δ − 1

2
[1 + (∆r

d
)

2
] δ2} (49)

To understand the nature of the two formulas (48) and (49), set r1 = r2 = r. Also recall that
the actual contact radius in the Hertzian theory is equal to a =

√
rδ. Thus the two formulae

are reduced to

Fn = 2kn
√
rδ = 2kna∝

√
δ (disc) (50)

Fn = knπ(rδ −
δ2

4
) = knπ(a2 − δ

2

4
) ∝ δ (sphere) (51)

which indicates that the force for discs is proportional to the equivalent contact radius a or
to the square root of the overlap δ; while for spheres, the force is proportional to the actual
contact area πa2 or linear to δ if ignoring the higher order δ2 term for a small overlap. For
comparison, the Hertzian contact force for two monosized and linearly elastic spheres with
Young’s modulus E and zero Possion’s ratio is

Fn =
4E

3
aδ ∝ δ3/2 (52)

Clearly, the current model for spheres is very close to a linear spring model. It may not
be accurate for problems where the Hertzian contact model is more appropriate, but for
many practical problems where particle shapes are non-spherical and the contact interaction
between particles is far from the Hertzian contact, a linear spring model is often adopted. In
these cases, the current model should produce similar results.

The equivalence of the current model to a standard linear spring model for spheres for a
small overlap may also suggest a practical way to properly choose the spring stiffness in the
current linear model for general 3D shapes. Equation (51) indicates that the spring stiffness
may be taken as kn/πr, where kn is the value used in a conventional linear spring model, and
r can be considered as the (equivalent) characteristic length or radius of curvature of the two
shapes at the contact zone.

3 Contact Modelling of Non-spherical Particles with Volu-
metric Discretisation

The intersection Γ plays a pivotal role in the current contact model, as has been established
in the previous sections. However, an analytical expression for Γ only exists for spheres. Thus
some approximation needs to be introduced when dealing with non-spherical shapes using
the proposed contact model.

For smooth shapes described by mathematical equations, such as cylinders, capsules, ellip-
soids and super-quadratics, a partial solution is to construct the intersection Γ in a discrete
manner. First, find any intersection point by simultaneously solving the two equations rep-
resenting the two surfaces. Then trace the intersection from this point as the initial position
in an incremental way until the whole intersection is completely covered. The resulting in-
tersection is a polyline from which the contact feature can be computed. The next section
will discuss the procedure in detail. Note that the above approach is not ideal as the com-
putational cost involved is much higher than currently used overlap based methods, see for



16

instance [7] for cylinders, [12] for super-quadratics, [15, 16] for dilated polyhedra and [23] for
poly-super-ellipsoids.

An alternative solution is to discretise a non-spherical shape and then to develop specialised
contact volume based models to deal with the contact between two meshed shapes. There
are mainly two types of mesh available: volumetric mesh and surface triangular mesh. The
computational procedures for the associated contact models are different, resulting in different
performance and applicability.

In this section, 3D shapes are assumed to be discretised into volumetric meshes, particularly
tetrahedral meshes. The resulting contact model is termed the volumetric mesh based normal
contact model. The next section will focus on the development of the computational procedure
for handling the contact between surface triangulated shapes and the corresponding contact
model is termed the surface triangulation based normal contact model.

3.1 The Contact Modelling of Convex Polyhedra

First consider the contact between two convex polyhedra using the proposed contact volume
based model. A polyhedron can be geometrically described in different ways. A common
approach is to define the position of a polyhedron by its vertex coordinates, and its topology
by face connectivities in terms of vertex index. There are some variations differed by addi-
tional data, such as edges and face normals. A convex polyhedron can also be fully defined
by a number of half-spaces. Each face of the polyhedron can be represented by a bounding
half-space in the form of a linear inequality, and the polyhedron is the intersection or union
of the half-spaces.

Combinations of the above two representations gives rise to three different computational
techniques aiming at explicitly constructing the contact region. These three techniques are
described below.

1). Half-space cutting

Let the first polyhedron, P1, with nf polygonal faces be represented by a set of nf linear
inequations

(x − xi) ⋅ ni ≤ 0 (i = 1,⋯, nf) (53)

where ni is the outer normal vector of the i-th face; xi is any point on the face (normally
one of its vertices). Let the second polyhedron, P2, be represented in the same way by its
vertices and all edge and face connectivities.

The half-space cutting technique is to repeatedly find the intersection of each half-space of
P1 with P2 and update P2 as the resulting intersection. If the contact exists between P1 and
P2, the final updated P2 is the contact region Pc, which is also a convex polyhedron. This
technique is equivalent to using all the oriented planes of the faces of P1 to cut P2. Each
cutting may cut through some edges of P2 to create a polygon as the new face and change
or remove some existing vertices/edges/faces of P2 to form an updated P2. The remaining of
P2 is Pc.

The new polygonal faces of Pc created by the consecutive cuttings of P1 constitutes the
contact surface S1. For the i-th new face, compute its signed area Ai and the centroid ci,
then Sn and Gn can be obtained:

Sn = ∑
i

Ai; Gn = ∑
i

ci ×Ai (54)

The corresponding contact features of Fn can be fully determined as described by Model 2.
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In addition to the computationally intensive part of determining all the intersections between
the cutting plane and the edges for each cut, another time consuming part of this technique
is some housing-keeping operations required after each cut to maintain the correct topology
of the updated P2. Note that a slightly different implementation is given in [9].

2). ’Ray-tracing’

This alternative technique, proposed in [10], determines the intersection point between every
edge of P1 against every face of P2, and vice visa. These intersection points, if any, together
with vertices of P1 and P2 that lie inside the other polyhedron are the vertices of Pc. Thus
the convex-hull of these vertices gives Pc due to its convexity.

The key operations of this approach include: 1) Find the intersection of a line segment (edge)
with a polygon (face) and repeat the operation for all edge-face combinations from both P1

and P2; 2) Identify those vertices from one polyhedron that are inside the other polyhedron;
3) Construct the convex-hull of the vertices obtained from the previous two steps; 4) Identify
all triangles of the convex-hull that coincide with the faces of P1 to form the contact surface
S1; 5) Compute the signed area and centroid of each triangle and use the formula (54) to
compute Sn and Gn; 6) Obtain Fn and the contact point.

This ray-tracing technique avoids the constant topology update of the half-space cutting
approach and replaces it by constructing the convex-hull of the vertices to attain Pc, but may
more than double the computational cost in determining the vertices of Pc. It also needs
additional computations to identify those triangles belonging to S1 from the convex-hull. As
a result, both techniques have a similar performance in general.

The total number of operations involved in the above two techniques for determining the
vertices of Pc are roughly proportional to nei × nfj(i = 1, j = 2 or i = 2, j = 1) where nei and
nfi are respectively the numbers of edges and faces of polyhedron i. Thus these techniques
perform well for simple polyhedra, such as tetrahedra, but will be ineffective for polyhedra
with large number vertices and faces.

3). Dual-approach

This technique, proposed in [24], is based on the transformation of a convex polyhedron P
into its dual polyhedron P d, in which each face of P is mapped to a vertex of P d and vice
versa. Let one bounding half-space associated with a face of P be expressed as the following
inequality in component form

ax + by + cz + d ≤ 0 (55)

where the vector (a, b, c) is the outer normal; and the constant d is assumed to be d > 0.
Then the face is dual to the following vertex p′ of P d in a dual space

p′ = (a/d, b/d, c/d) (56)

Suppose that c is a point inside the overlapping polyhedron Pc of P1 and P2. Use c as the
origin of a coordinate system of a primal space, which ensures that the condition d > 0 is
met for every face of P1 and P2 in this coordinate system. Then both P1 and P2 can be
transformed to their duals P d1 and P d2 in the dual space. Further construct the convex hull,
P dc , of all the vertices of both P d1 and P d2 . Now P dc is the dual of the contact polyhedron Pc.
Thus Pc can be obtained by transforming P dc back to the primal space.

The key step in this dual approach is to find an initial point c located inside Pc, and then
update it to maintain this state in the subsequent steps as long as Pc ≠ ∅. An iterative
procedure [24] is available to achieve this. This approach has been adopted, for instance in
[25], to explicitly construct Pc for modelling contacts between two convex polyhedra.
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As the complexity of constructing a convex hull for n vertices is O(n logn), and the iterative
procedure to locate a point in Pc has the same complexity, the overall complexity of this dual
approach is therefore O((nf1 +nf2) log(nf1 +nf2)), which is theoretically better than the first
two approaches.

Nevertheless, the contact volume can be explicitly computed with either of the three ap-
proaches in case a nonlinear energy function of Vc is used. Note that a different approach
based on the Minkowski difference is proposed in [26] for convex polyhedra, which can also
ensure the energy-conserving property but is developed within the framework of using over-
lap based energy contact functions to derive energy-conserving normal contact models. This
alternative framework will be covered in another paper of this series [27].

3.2 Contact Modelling of Volumetric Mesh-based Non-spherical Particles

To apply the above two techniques to a non-spherical (convex or concave) particle, the shape
needs to be decomposed or discretised into convex polyhedra. Then the contacts between
individual polyhedra can be handled independently by using these two techniques. Each
contact can be considered either as a single contact from which the normal contact force is
computed and applied directly to the two associated particles at the contact point, or as part
of the overall contact between the two particles.

If the linear contact model is employed, the contact volume Vc is not required. Then in
the latter case mentioned above, only the contact surface S1 from each contact needs to be
obtained. All such surfaces are combined to form the overall contact surface S1, from which
the required Sn and Gn can be evaluated. Thus the overall normal force Fn and contact
point xc for the contacting particle pair are computed.

Note that after a shape is decomposed/discretised into polyhedra, some faces of these polyhe-
dra are not part of the original or exterior surface of the shape but are newly created from the
interior of the shape. These are termed interior faces. For any face of a contact polyhedron
obtained by the half-space cutting or ray tracing technique, if it belongs to an interior face of
the first ployhedron, it will be cancelled when all contact surfaces are combined to form an
overall contact surface S1. This is because there exists exactly one face from the other ploy-
hedra that is the same but with the opposite normal. Taking advantage of this property can
significantly reduce the computational cost associated with the half-space cutting technique
by excluding all interior faces of a polyhedron from the cutting. However, this favourable
property may not be effectively utilised in the ray-trace technique.

From the computational viewpoint, a non-spherical shape should be discretised into fewer
convex polyhedra, each with a small number of faces. In case the shape is composed of
identifiable convex blocks with a few flat surfaces, it should be decomposed into its ”building
blocks”. See such a shape in Figure 5(a), which can be split into eight simple convex blocks
along the dotted lines shown. However, this is not a common case in real applications, and
very often the decomposition procedure may require a certain level of manual intervention,
and therefore is not sufficiently generic.

A more universal approach is to discretise a shape into a volumetric mesh, and the most
popular mesh type is tetrahedral. See Figure 5(b) for instance. In this way, the contact
between any two shapes reduces to multiple contacts between tetrahedra which can be tackled
based on the half-space cutting technique, as outlined above.

Nevertheless, a tetrahedral mesh discretisation of a non-spherical shape may still not be the
most convenience and effective representation. Any tetrahedron that is embedded inside the
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(a) (b)

Figure 5: A concave shape that can be manually decomposed into several convex ”building
blocks” (a); or discretised into a volumetric or surface mesh (b)

shape but deeper than the maximum possible contact overlap will have no contribution to the
actual contact, and therefore is redundant. One way to reduce this type of redundant elements
to achieve a better tetrahedral mesh is to tune some input parameters in the volumetric mesh
generator so that all vertices of the generated mesh are located on the surface of the shape.
Each surface triangle of the shape belongs to one tetrahedron, thus the number of tetrahedra
in the mesh cannot be smaller than that of the surface triangles. Then this naturally suggests
that it could be more effective to only use the surface triangular mesh to represent a non-
spherical shape. This idea gives rise to the surface triangulated non-spherical particle contact
model, as will be fully exploited in the next section.

4 Surface Triangulated Non-spherical Particle Contact Model

4.1 Triangular Surface Mesh Representation

A triangular surface mesh is a universally applicable representation for any 3D shape and has
been widely used as the default scheme for digitally representing geometric entities, including
scanned objects. See Figure 6 for a scanned image of an ancient rock and a (coarsened)
surface triangular mesh with a very large number of vertices and triangles. There are many
existing (CAD) toolkits available that can provide a triangular surface mesh for a 3D shape.
Triangular meshes are most likely to be used to discretise any wall geometry that is not
a simple flat surface in DEM simulations. Hence what to be presented below is equally
applicable to a particle-wall contact scenario. Note that in a triangular mesh representing
a 3D solid without holes, it can be deduced from Euler’s formula in algebraic topology that
the numbers of vertices (v) and triangles (f) satisfy the relationship

v = f/2 + 2 (57)

With the surface triangular mesh representation, modelling contacts between non-spherical
particles becomes the handling of the contact between two triangular meshes as the core
operation. Major issues to be addressed in this section include: 1) the construction of the
intersection Γ between two triangular mesh described shapes; and 2) the effective evaluation
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(a) (b)

Figure 6: (a) A scanned image of an ancient rock; and (b) its (coarsened) surface triangular
mesh with 24572 vertices and 49140 triangles

of Sn and Gn to fully determine the normal contact force Fn. Also the numerical procedure
adopted to find the minimal contact surface under a simple condition and further to uniquely
determine the contact point will be proposed.

4.2 Construction of Intersection Line Segments

For two shapes with surfaces being discretised by triangular meshes, their intersection is a
closed polyline Γh, which is a discretised version of Γ, as shown in Figure 7. Its segments are
formed by the intersection of individual triangles from both surfaces. The basic operation
involved is to find the line segment of the intersection (if exists) between two given trian-
gles from each surface, and this can be done in a straight forward manner. There are two
intersection points for two triangles in contact. If two triangles lie on the same plane, there
will be no contact. The start and end points of the segment should be properly identified
to ensure a correct orientation. The positive direction τ of the segment, consistent with the
positive orientation of Γ defined by (17), is given by

τ = n1 × n2 (58)

where n1 and n2 are the outer normal directions of the two triangles respectively.

All the segments obtained form a single or multiple closed polylines. Each closed polyline can
be treated as a separate contact. Note, however, that it may not be necessary to explicitly
construct polyline(s) from these segments. This is because the additive nature of Sn and Gn

ensures that their computations can be done in a segment by segment manner and in any
order. Only when Γh consists of multiple polylines, and each closed polyline is considered to
be a separate contact to compute the contact force, Γh should be pieced together from the
segments in a right order.

Computations of Sn and Gn for the intersection segments are discussed in the next two
subsections, in which for each line segment, a local parameterised form is used, as detailed
below. Denote the i-th line segment as ∆Γi with the start and end points being xi and xi+1,
and set ∆xi = xi+1 − xi. With a local coordinate system on the segment with parameter
t ∈ [0,1], the parametric equation and the infinitesimal increment of the segment are

x(t) = xi + t∆xi; dΓ = ∆xi dt (59)
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Figure 7: The contact surface S1 with the discretised boundary polyline Γh and also the
discretised replacement surface S̄h

4.3 Computation of Sn

Section 2.2 proposes two schemes to evaluate Sn as below

Sn = ∫
S̄
dS = 1

2
∮

Γ
r × dΓ

where S̄ is a replacement surface of S, and r is chosen to be x = [x, y, z].
The discretised version of the second scheme is

Sn =
1

2

m

∑
i=1
∫

∆Γi

x × dΓ =
m

∑
i=1

Sin (60)

where m is the total number of segments; and Sin is the contribution from the i-th segment

Sin =
1

2
∫

∆Γi

x × dΓ = 1

2
[∫

1

0
x(t)dt] ×∆xi, (61)

while the integral in the brackets above is equal to the middle point of the segment, x̄i:

∫
1

0
x(t)dt = xi + xi+1

2
= x̄i (62)

Thus Sin can be computed with four identical formulae:

Sin =
1

2
x̄i ×∆xi =

1

2
xi ×∆xi =

1

2
xi+i ×∆xi =

1

2
xi × xi+1 (63)

which are geometrically equivalent to the signed area of the triangle formed by the origin
o and the two end points xi and xi+1, or the ’moment’ produced by the ’force’ ∆xi about
the origin. The last expression may be the most convenient to use, and leads to a simple
discretised formula to evaluate Sn

Sn =
1

2

m

∑
i=1

xi × xi+1 (64)

The triangles formed by the origin and the end points of the segments provide a triangulated
mesh, S̄h, for the conical surface as the replacement surface, and Si is the same as the signed
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area of the i-th triangle. Hence, the above result is identical to the first scheme using S̄h as
the replacement surface, as shown in Figure 7.

When a constant vector c is added to all x as in (22), the result of (64) will remain the same,
but the formula changes to

Sn =
1

2

m

∑
i=1

(xi + c) × (xi+1 + c) (65)

which is equivalent to choosing the point −c instead of the origin to individual triangles or
as the ’moment’ centre. The corresponding replacement surface is still the conical surface
but with −c as its apex. The choice of c can be made to suit individual circumstances to
facilitate the computation. In most cases, c = o is the best choice.

4.4 Computation of Gn

Section 2.2 proposes three schemes (25) (28) and (29) to evaluate Gn, as summerised below

Gn = ∫
S̄

r × dS = −1

3
∮

Γ
r ⋅ rdΓ = −1

3
∫

t1

t0
r(t) ⋅ r(t)dt

where S̄ is a replacement surface of S1, and t is the variable used to parameterise the inter-
section Γ.

For the first scheme, the triangular mesh S̄h is used again as the replacement surface for S̄.
Let Ti be the i-th triangle with ni as its unit outward normal and ci = (o + xi + xi+1)/3 be
the centroid. The integral over Ti, Gi

n, can be explicitly expressed in the following form due
to the linearity of r over the triangle,

Gi
n = ∫

Ti
r × dS = ∫

Ti
r × nidA = ci × Si

n (66)

Then the total integral Gn can be computed as

Gn =
m

∑
i=1

ci × Si
n (67)

For the second and third schemes, they are the same for each segment of Γh. For the i-th
segment ∆Γi

∫
∆Γi

r ⋅ rdΓ = [∫
1

0
(x2 + y2 + z2)dt]∆xi (68)

Again as x, y, and z are linear functions of the parameter t on the segment ∆Γi, the term in
the brackets, which is the moment of inertia of the unit line segment about the origin, can
be derived as

∫
1

0
(x2 + y2 + z2)dt = xi ⋅ xi+1 +

1

3
∆xi ⋅∆xi (69)

Therefore we have

Gn = −
1

3

m

∑
i=1

(xi ⋅ xi+1 +
1

3
∆xi ⋅∆xi)∆xi (70)

It can be verified that both (67) and (70) are identical, but numerically, the latter is slightly
more effective as fewer vector operations are evaluated.
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4.5 Determination of Minimal Contact Surface and Final Contact Point

In Section 2.3, the minimal contact surface is defined as the surface with a fixed boundary
Γ that has a minimal total area. The intersection Γ of two triangular meshed shapes is
now a polyline, but solving a minimal surface problem for this simpler boundary is still not
trivial for the currant contact model. Instead we further constrain the allowed surface to
be a conical-like surface, similar to the conical surface S̄ used before: i.e. it uses Γ as its
base or directrix, but its apex must be on the contact line. Thus, finding a minimal surface
from this particular type of surface is equivalent to determining the final contact point. In
order to derive a simple analytical solution for the problem below, we will minimise the
total squared area of the surface rather than the total area. Also, we only consider the case
that Γ will form a single-connected surface without holes; while when Γ consists of multiple
unrelated polylines each representing an independent contact, these polylines can be dealt
with as individual cases.

According to (6), a contact point on the contact line can be expressed in terms of the param-
eter λ as

xc(λ) = xc(0) + λn; with xc(0) = n ×Gn/Sn (71)

where xc(0) is the contact point when λ = 0. Following (64), the signed area of the triangle
formed by the i-th segment ∆Γi and xc(λ) takes the form

Si(λ) =
1

2
(xi − xc) × (xi − xc) = Si −

1

2
xc(λ) ×∆xi (72)

Define the total squared area of the conical surface with xc as the apex by

Sm(λ) =
m

∑
i=1

∥Si(λ)∣∣2 (73)

Then the surface that has the minimum total squared area when λ = λm is the minimal
contact surface, and the contact point determined by xc(λm) is taken to be the final contact
point.

From (71), it has
dxc(λ)
dλ

= n (74)

so
dSi(λ)
dλ

= −1

2
n ×∆xi (75)

The condition for a minimal surface states

dSm(λ)
dλ

∣
λ=λm

= −
m

∑
i=1

Si(λm) ⋅ (n ×∆xi) = 0 (76)

which, after some algebraic manipulation, yields the following explicit solution of λm

λm = ∑i n ⋅ (∆xi × Si) +∑i xc(0) ⋅ (∆x2
in −∆xin∆xi)

∑i(∆x2
i −∆x2

in)
(77)

where ∆xi = ∥∆xi∥ and ∆xin = ∆xi ⋅ n. The final contact point can be computed as

xc = xc(0) + λmn (78)
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4.6 Strategies to Improve the Overall Computational Performance

Finding all line segments of the intersection between two surface triangulated shapes dom-
inates the overall performance of the current contact model, particularly for shapes with a
large number of surface triangles. However, the cost occurred in this local resolution stage
needs to be considered collectively with the cost occurred in the so-called global search stage
of the DEM solution procedure, as outlined in [28]. The global search stage excludes those
particle pairs that cannot be in contact, and produces a potential contact list between par-
ticles in the system based on their bounding box representations. Most of global search
algorithms used in DEM, either tree based [29] or grid based [30, 31], can effectively handle
a large of number bounding boxes.

From the overall performance perspective of a DEM simulation, the following strategies can
be considered in handling contacts between particles with a large number of surface triangles.

1). One bounding box for a particle in the global search. This approach results in a minimal
cost in the global search. Then in the local resolution stage to resolve each particle-particle
contact, a local search is needed to effectively exclude most of triangle pairs (one from each
particle) that do not intersect. The actual intersection computation is only performed for
the remaining triangle pairs. One way to achieve this goal is to apply a local search to the
bounding boxes of all the surface triangles.

2). One bounding box for every surface triangle of a particle in the global search. In this
way the total number of bounding boxes involved in the global search can be substantial for
large scale problems, resulting in a very high computational cost at this stage. However, in
the particle-particle contact stage, only triangle pairs that may be in potential contact will
be involved in the intersection computation.

3). Multi-level bounding box representation of particles. Each particle and its surface triangles
are decomposed into a multi-level sub-domain structure using octrees [32], for instance. Each
sub-domain is a bounding box of a group of triangles. Then the whole triangular mesh of a
particle is represented by different sized bounding boxes depending on the level of resolution
required. For a given level, non-empty sub-domains at the level will be involved in the
global search. Then in the particle-particle contact stage, only triangles belonging to the
sub-domains that are in the potential contact list will be checked for their intersection.

In the first option, the particle-particle resolution is computationally intensive, whereas with
the second option a large portion of the computation is shifted to the global search stage. The
overall performance may be similar with these two approaches depending on the implemen-
tation details. The third option attempts to balance the cost in the two stages depending
on the resolution level specified. If only one level is used, this strategy becomes the first
option, or the second option if a high level of resolution is applied. Thus a proper selection
of the representation level based on the actual mesh of the particle may improve the over-
all performance of a DEM simulation for particles discretised by a large number of surface
triangles.

5 Numerical Verification and Illustrations

In this section, the energy-conserving nature of the proposed contact model will be first
verified by a set of selected examples all involving a pair-wise elastic impact between two
shapes. The evolution of the kinetic energy of each system during the whole impact duration
will be recorded and examined for conservation before and after the impact. Then some
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illustrative examples are provided to demonstrate the wide applicability of the proposed
contact model and numerical methodology. All the shapes concerned will be represented
by triangular meshes and thus the surface triangulated contact model and the associated
numerical procedures as described in Section 4 are adopted for all the simulations in this
section.

5.1 Energy Conservation Verification

There are four cases of elastic impact to be considered. In each case, the two shapes involved
are represented by triangular surface meshes. Initially separated but under initial velocities,
the shapes are subject to an elastic impact and will eventually bounce back into a separation.
No friction, damping effects and gravity will be considered. To verify the energy conservation
property of the proposed normal contact model, the total kinetic energy, which is the sum of
translational energy and rotational energy, should be the same before and after the impact.

The central difference or leap-frog time integration scheme is applied to solve the translational
motion of the two particles. As all shapes considered here are irregular and concave, the
rotational motion is solved by a symplectic time integration scheme [33] in conjunction with
the use of the quaternion representation for shape orientation. The recommended linear
contact model (34) is used for all the cases. In addition, the time step employed for time
integration is selected such that it is sufficient small to ensure both numerical stability and
reasonable accuracy. Note that the effects of the proposed model on the critical time step
and other aspects of a DEM simulation will be addressed elsewhere.

In each case, the evolution of the translational, rotational and total kinetic energy of the two
shapes as one system in the whole impact duration will be displayed. The total kinetic energy
conservation can be validated if its value remains unchanged before and after the impact. To
simplify comparisons, both the energy and impact time are normalised without affecting the
conclusion.

Case 1: Elastic impact of two crisps. Two crisps, both scaled versions of the sample
(smoothed) crisp shown in Figure 8(a), have the same orientation but slightly different sizes.
The surface triangular mesh for each shape has 511 vertices and 1018 triangles. Note that
the thickness is (relatively) very small. The smaller crisp is initially positioned exactly on
top of the larger one, and both are subject to a ”head-on” collision with unit but opposite

(a) (b)

Figure 8: Surface triangulations: (a) a crisp with 511 vertices, 1018 triangles; and (b) a rock
with 625 vertices, 1246 triangles
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(a) (b)

(c) (d)

Figure 9: Elastic impact of two crisps: (a) initial configuration; (b) configuration at the
maximum penetration, and its top view (c) and bottom view (d)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised Time

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 K
in

et
ic

 E
ne

rg
y

Total
Translation
Rotation

Figure 10: Elastic impact of two crisps: evolution of translational, rotational and total kinetic
energy

initial velocities in the vertical direction, as shown in Figure 9(a).

The snapshot of the impact at the maximum penetration is displayed in Figure 9(b) with the
top view in Figure 9(c). There are clearly two independent contact regions developed which
are not exactly the same shape because of the asymmetric surface meshes used. Also, due
to the very small thickness, together with the use of a small normal contact stiffness kn, the
smaller crisp partially penetrates through the larger one, as shown in Figure 9(d) which is
the bottom view of the contact at the maximum penetration.

The evolution of the (normalised) translational, rotational and total kinetic energy of the
system is shown in Figure 10. Due to the same orientation of the two shapes and the ”head-
on” impact direction, almost no rotation occurs after the impact. It is evident that the total
kinetic energy is indeed conserved, even a large penetration contact with partial pass-through
is encountered in this case.
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(a) (b)

(c) (d)

Figure 11: Elastic impact of two rocks: (a) before impact; (b) at the increasing penetration
stage; (c) at the maximum penetration; and (d) after impact

Case 2: Elastic impact of two rocks. The two rock particles, obtained by scaling the
sample rock shown in Figure 8(b), have slightly different sizes. Each surface triangular mesh
has 625 vertices and 1246 triangles.

Initially, the two rocks are randomly orientated and are subject to an elastic collision with
unit but opposite initial velocities in the horizontal direction, as shown in Figure 11(a). The
snapshots of the impact at an instance in the first stage of impact and at the maximum
penetration are displayed in Figure 11(b) and (c) respectively. As a small value of the
contact stiffness kn is used, the maximum contact region and penetration depth are excessive
as illustrated in Figure 9(c).

Figure 12 shows the evolution of the (normalised) translational, rotational and total kinetic
energy of the system during the impact. Because of the irregularity of the shapes, the
rotational motion has developed after the impact. It is evident that the total kinetic energy
is again conserved, even both an excessive penetration contact and rotational motion are
observed in this case.

Case 3: Elastic impact of a nut and a bolt. The nut and the bolt used are the scaled
versions of the sample nut and bolt models shown in Figures 13 (a) and (b) respectively,
where the nut consists of 625 vertices and 1246 triangles, while the bolt has 1030 vertices and
2056 triangles. Note that there are many highly badly shaped triangles in both meshes.

Initially, the nut has a tilted orientation and the bolt in an up right position. They are
given unit but opposite initial velocities in the horizontal direction, as shown in Figure 14(a).
The snapshots of the impact at an instance in the early stage of impact, at the maximum
penetration and after the impact are displayed in Figure 14(b), (c) and (d) respectively.

Again a small value of the contact stiffness kn is used in order to induce a large contact region



28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalised Time

0

0.2

0.4

0.6

0.8

1

N
or

m
al

is
ed

 K
in

et
ic

 E
ne

rg
y

Total
Translation
Rotation

Figure 12: Elastic impact of two rocks: evolution of translational, rotational and total kinetic
energy

(a) (b)

Figure 13: Surface triangulations: (a) a nut with 645 vertices and 1286 triangles; and (b) a
bolt with 1030 vertices and 2056 triangles

to test the proposed contact model. At the early stage of the impact (b), there are three
separate contact regions but they emerge into one when the impact progresses as shown in
(c). Thus the multiple contact regions in the early stage, which also re-appear in the bounce
back stage, are of an associated nature, as classified in Section 5.1 of [1].

Figure 15 depicts the evolution of the (normalised) translational, rotational and total kinetic
energy of the system during the impact. Owing to the irregularity of the shapes, the rotational

(a) (b) (c) (d)

Figure 14: Elastic impact of a nut with a bolt: (a) before impact; (b) during increasing
penetration stage; (c) at the maximum penetration; and (d) after impact
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motion has developed after the impact as in the previous case. The total kinetic energy
is clearly conserved, although an associated multiple contact scenario coupled with large
penetration and rotational motion has occurred in this case.

Case 4: Elastic impact of two bolts. The bolts are the same as the one used in the
previous case. Initially, they are in an up right configuration with opposite orientations and
are subject to unit but opposite initial velocities in the horizontal direction, as shown in
Figure 16(a). The snapshots of the impact at an instance in the early stage, at the maximum
penetration and after the bounce back are displayed in Figures 16(b), (c) and (d) respectively.

As shown in (b), there exist multiple independent contact regions as soon as the contact
is established between the two, but because the linear spring stiffness is not too small and
the maximum penetration is not large, these contact regions remain isolated throughout the
whole impact duration. Thus this is a non-associated multiple-contact case, as classified in
Section 5.1 of [1].

Figure 17 shows the evolution of the (normalised) translational, rotational and total kinetic
energy of the system during the impact. Due to the irregularity of the shapes, the rotational
motion has developed after the impact, but the total kinetic energy is still conserved in this
case.

From the above four cases, it is evident that energy conservation has been indeed observed
in various contact scenarios. It has also been demonstrated that the proposed numerical
procedures in association with the contact model are also very robust and are not sensitive
to the (poor) quality of triangular meshes representing general shapes.

5.2 Further illustrative examples

After the energy-conserving nature of the proposed contact model has been numerically
verified above, six more examples are presented below to further illustrate the robustness and
applicability of the model in more realistic scenarios. In the first five examples, a coefficient
of friction of 0.5 is used, while a value of 0.05 is used for Example 6. The classic Coulomb
friction model is adopted for the frictional tangential contact. The standard linear viscous
damping model is extended and adopted with the current contact model. The damping ratio
equivalent to a restitution of 0.1 is applied to both normal and tangential contacts. Gravity
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Figure 15: Elastic impact of a nut and a bolt: evolution of translational, rotational and total
kinetic energy
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(a) (b) (c) (d)

Figure 16: Elastic impact of two identical bolts: (a) before impact; (b) during increasing
penetration stage; (c) at the maximum penetration; and (d) after impact

is active.

Again, both the central difference and the symplectic time integration scheme [33] are used
to solve both translational motion and rotational motion of particles respectively. The time
step in each case is selected mainly to achieve a stable simulation. The contact point of each
contact is determined by the minimum surface scheme presented in Section 4.5. The first
strategy as described in Section 4.6 is adopted in each example where every triangle of a par-
ticle is represented by an axial aligned bounding box and is considered in the global search.
No further attempt is made to optimise the overall performance of the simulation by consid-
ering the other two strategies mentioned in Section 4.6, and thus the actual computational
costs involved in these examples are not included.

The main purpose of these examples is purely to demonstrate the suitability and applicability
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Figure 17: Elastic impact of two bolts: evolution of translational, rotational and total kinetic
energy
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(a)
(b)

Figure 18: Surface triangulations: (a) a banana with 152 vertices and 300 triangles; and (b)
a pear with 851 vertices and 1696 triangles

(a) (b) (c) (d)

Figure 19: Random deposition of bananas and pears in a box with their configurations at
several time instances (a) - (d)

of the proposed contact model for arbitrarily shaped particles in wider simulation scenarios.
Thus no effort is made to choose any geometric and physical parameter involved in a sim-
ulation to reflect any real application that the example may intend to mimic. In all cases,
the energy conservation feature of the proposed contact model and the associated numeri-
cal procedure ensure that no velocity spike will appear to cause numerical instability in a
simulation.

The first four examples involve the random deposition of various shaped particles or their
combinations with different sizes within a box. Owing to the existence of friction and damping
effects that dissipate energy, particles will eventually settle in a static packing state. In
example 5, rock particles and cylindrical particles are mixed in a ball-milling setting where
the boundary is moving. The last example concerns the sliding of rock particles on the surface
of a terrain to mimic a land slide.

Example 1: Random packing of bananas and pears. In this example, bananas and
pears, based on the triangulated models shown in Figures 18 (a) and (b) respectively, are
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(a) (b) (c) (d)

Figure 20: Random deposition of nuts and bolts in a box with their configurations at several
time instances (a) - (d)

(a) (b) (c) (d)

Figure 21: Random deposition of rocks in a box with their configurations at several time
instances (a) - (d)

used. The surface mesh of a banana has 152 vertices and 300 triangles; the mesh for a pear
has 851 vertices and 1696 triangles. A total number of 1160 bananas and pears with slightly
different sizes are randomly generated and dropped under gravity in the box. In total there
are 334,993 vertices and 664,852 triangles in the system after all the particles are generated.
The configurations of the system at four time instants are illustrated in Figure 19.

Example 2: Random packing of nuts and bolts. Nuts and bolts, based on the trian-
gulated models depicted in Figures 13 (a) and (b) respectively, are used in this example. A
total number of 409 nuts and bolts are randomly generated and dropped under gravity in
the box, resulting in 300,332 vertices and 600,276 triangles for all the particles in the system.
The configurations of the system at four different time instants are illustrated in Figure 20.

Example 3: Random packing of rock particles. In this example, the same triangulated
rock model shown in Figures 8 (b) is used to generate rock particles with slightly different
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(a) (b) (b)

Figure 22: Surface triangulations: (a) 3D letter ”D” with 172 vertices and 340 triangles; (b)
3D letter ”E” with 24 vertices and 44 triangles; and (c) 3D letter ”M” with 26 vertices and
48 triangles

(a) (b) (c) (d)

Figure 23: Random deposition of 3D letters ”D”, ”E” and ”M” in a box with their configu-
rations at several time instances (a) - (d)

sizes. 2630 rock particles are randomly injected and dropped under gravity in the box. So
the total number of vertices and triangles of all the rock particles are 1,643,750 and 3,276,980
respectively. The configurations of the system at four different time instants are illustrated
in Figure 21.

Example 4: Random packing of letters ”D”, ”E” and ”M”. In this example, discre-
tised 3D letters ”D” and ”E” and ”M” are used as rigid particles. Their surface triangulations
are shown in Figure 22. The numbers of vertices and triangles are respectively 172 and 340
for ”D”, 24 and 44 for ”E”; and 26 and 48 for ”M”. In total, 1097 of these letters with varied
sizes are randomly generated and dropped under gravity in the box. The configurations of
the system at four different time instants are illustrated in Figure 23. This is a relatively
easy case as most of contacts are of a local convex contact nature and the total numbers of
vertices and triangles of the letters involved are low compared to the other examples.

In the above four examples, the particles involved have all settled into a stable packing
state and no any numerical instability has been observed, demonstrating again the superb
robustness and stability of the proposed contact model.
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(a) (b)

(c) (d)

Figure 24: Rocks and metal bars in a rotating drum with baffles: triangulations of rocks and
rods and the drum (a); and configurations at several time instances t = 3s (b), 6s (c) and 9s
(d). Colours in (b) - (d) representing velocity magnitudes of bars

Example 5: Rocks and metal bars in a rotating drum with baffles. This example
attempts to simulate the operation of a ball mill in a conceptual way. A 12-sided rotating
drum of 2 metres in diameter with six baffles is represented by a surface triangular mesh, and
rotates at 20 rpm anti-clockwise. Over 200 rock particles with varied sizes are obtained from
scaling of the triangulated rock model shown in Figure 8 (b). 40 long cylinders representing
metal bars are each discretised by 74 vertices and 144 regular surface triangles. Although a
cylinder is a convex shape, no distinction in terms of convexity is made between the cylinders
and the rock particles in the simulation and the same numerical procedure as outlined in
Section 4 is adopted.
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The meshes of the drum, rock particles and metal bars are shown in Figure 24(a). Both rock
particles and cylindrical bars are randomly and continuously injected into the drum from a
small cuboid region around the rotating axis of the drum. The configurations of the system at
three different time instants t = 3,6, and 9s are illustrated in Figures 24 (b)-(d) respectively.
The velocity magnitudes of the metal bars are also indicated visually in colours in the figures
(where blue and red denote the lowest and highest velocities respectively).

(a) (b)

(c) (d)

Figure 25: A column of rock particles sliding on a terrain surface: configurations at different
time instances (a) - (d). Colours representing velocity magnitudes of rocks

Example 6: Rocks sliding on the surface of a terrain. This example has a similar
setting as a land slide scenario but without considering fine particles. Rock particles with
varied sizes are obtained from scaling the triangulated rock model shown in Figure 8 (b).
The terrain as a 3D region is represented by a closed surface triangulated mesh with 1680
vertices and 3356 triangles, and is artificially constrained by four high vertical planes around
the four boundary sides to avoid the rock particles moving beyond the terrain. The rock
particles are randomly and progressively released from a cuboid region above the far corner
of the terrain as shown in Figure 25(a). There are 7543 rock particles generated in total,
resulting in 4,714,375 vertices and 9,398,578 triangles that are used to represent the rock
particles. Thus the computational costs involved at each time step are considerable.

The coefficient of friction between the rocks and the terrain surface is taken to be a low
value of 0.05 to increase the mobility of the rocks. Under the action of gravity, the rock
particles start to slide on the surface of the terrain and move towards the lower valley, and
eventually fill the whole valley due to the low friction and the block of the four vertical planes.
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The configurations together with the velocity magnitudes of the rocks at four different time
instances are illustrated in Figure 25, where the four vertical planes are not shown.

Again, in the above two examples, no any numerical instability has been observed in the
simulations, showing that the proposed contact model and the corresponding numerical pro-
cedures can also effectively deal with irregular particles in contact with moving or complex
shaped boundaries.

6 Concluding Remarks

This paper has re-established a special form of the general energy-conserving contact model
[1], based on the assumption that the contact energy potential is a function of the contact
volume between two contacting bodies with general shapes in both 2D and 3D cases. By
specifying such a function, the normal contact features associated with the contact model
are fully determined without the need to introduce any additional parameters. The contact
point, which can be any point along the contact line, can be fixed following the introduction of
a simplified minimum surface concept. By further exploiting the geometric properties of the
contact surfaces concerned, more effective integration schemes have been developed to reduce
the evaluation costs involved in the model. When a linear contact energy function in terms of
the contact volume is adopted, a linear contact model has been derived in which no contact
region and surfaces need to be explicitly constructed and only the intersection between the
two shapes is required to be constructed. These developments have therefore significantly
improved the numerical efficiency of the proposed model compared to the previous version
[5].

For general 3D shapes except for spheres, a mesh discretisation should be used. When a
shape is represented by a volumetric (i.e. tetrahedral or hexahedral) mesh, the contact of
two such shapes can be obtained by independently processing multiple pair-wise contacts
between two convex polyhedra using the two techniques discussed. However, the surface
triangulation representation is recommended and the corresponding numerical procedures
have been discussed in detail. The associated core operation involves the determination of
the intersections between two sets of triangles from the two shapes concerned. Based on the
additive property of the proposed contact model, the modelling of two 3D shapes in contact
can be conducted fully in parallel without incurring much communication overhead, using
either a volumetric or surface triangular mesh representation. Consequently the proposed
contact model is ideal for parallel GPU or GPGPU computing, although this aspect has not
been implemented in the current work.

The numerical examples conducted have verified the energy-conserving property of the pro-
posed contact model for a wide range of shapes and contact scenarios. Additional examples
have been provided to illustrate the robustness and applicability of the model for more real-
istic problems.

As highlighted in [1], the proposed contact volume based normal contact model is based on a
particular form of the contact energy form. It is essentially a numerical based contact model,
and therefore may not be able to truthfully capture the contact physics of particles. Thus
further validation of the model and comparison with some existing contact models for certain
types of particle shapes are needed.

Also note that the proposed contact model results in contact interaction laws that differ
from traditional overlap based contact models. Consequently, additional theoretical issues
arise, such as how to determinate the critical time step and how to incorporate the contact
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model properly with the standard (linear) viscous damping model to achieve a similar energy
dissipation behaviour. These issues will be addressed in future work. Furthermore, the
overall computational efficiency of DEM simulations using the current model is a major
issue for large scale problems with particles represented by a large number of vertices and
triangles. Although three possible strategies have been proposed, no numerical evidence has
been presented to compare their relative performance. Further work is needed, particularly
in conjunction with GPU or GPGPU parallel computing techniques.
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