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Abstract 

 

This paper describes a Combined Finite-Element Discrete Element Method (FEMDEM) approach to modelling the packing 

porosity of cylindrical proppants at 10:1 scale settling under gravity. These investigations were performed at a 10:1 scale 

because of industry interest in particle scale simulations. The aim of this work is to first, quantify the effects of aspect ratio, 

and friction coefficient on the packing porosity of cylindrical proppants, and secondly, to investigate the effect of aspect ratio 

on the stress distribution within cylindrical proppants. Such simulations provide insight on the optimal cylinder aspect ratio 

which packs to higher porosity, and consequently, higher permeability, while withstanding a chosen fracture closure stress of 

25 MPa.  

 

These were performed using a 3D FEMDEM code ,Y3D, included in an open source suite of geoscience simulation tools 

(VGeST) resulting from a 5 year collaborative research project between Imperial College London (Latham) and Queen Mary, 

University of London (Munjiza). FEMDEM has advantages over the discrete-element method (DEM) based on spheres and 

superquadrics, because it allows complex geometries to be introduced easily. In addition, the contact algorithms implemented 

also make it an efficient method for simulating large numbers of interacting bodies in a single model. 

 

Our simulations results of packing porosity of different aspect ratio cylinders with 3D FEMDEM showed a good agreement 

with experiments and simulations of cylinder packing found in literature. The packing structures of cylinders near the wall are 

also realistically reproduced in our simulations. Unfortunately, because we attempted to simulate as closely to particle scale as 

we thought was possible, the friction and stress loading simulations could not be concluded in the timeframe of our research. 

Additional simulations performed at 1000:1 scale showed that the total computational time was reduced up to 8 fold when 

compared to 10:1 scale simulations.    

 

We will briefly present the theory behind the contact algorithms and implementation of deformability in FEMDEM. The mesh 

generation workflow is explained, and we detail the simulation setups and justify the choices of key simulation parameters 

because the FEM component captures the deformability of each discretely interacting particle. It can also capture internal 

stresses which are vital for assessing the proppant survivability under applied stresses. Key findings are presented and 

discussed along with recommendations for future work. Our simulation results of cylinder aspect ratio show lowest porosity of 

40% for equilateral cylinders, and increases to 47% as aspect ratio increases up to 4.0. 

1 Introduction 

 

Since the 1950s, hydraulic fracturing has been used to stimulate wells of reservoirs comprised of tight formation rock where it 

would otherwise be uneconomic to develop. A typical hydraulic fracturing job consists of pumping hydraulic fracturing fluid 

with a suspension of proppants in varying concentrations determined in the design stage, into the reservoir borehole. As 

hydraulic fracturing pressure increases, hydrofrac fluid leaks-off into the reservoir, leaving the proppants lodged in newly 

created fractures. When pressure equilibriates and reduces below reservoir pressure, the fractures close on these proppants, and 

they remain propped open. The success of a stimulation job can be gauged by the increase in hydrocarbon production 

afterwards due to improved fracture conductivity (SPE 143426). 

 

Fracture conductivity depends on the permeability in the fracture ( Prats 1961), and this is strongly related to the porosity by 

Carmen-Kozeny’s (Kozeny 1927, Carman 1937) and Ergun’s correlations (Ergun 1952). In field tests, hydrofracing proppants 

that form high porosity packs in laboratories have been known to increase hydrocarbon production more than dense packing 

proppants (SPE 135360). This could be due to improved pore interconnectivity from enlarged pore throats found in high 

porosity proppant packs. Other favourable hydraulic fracturing behaviours are also observed in high porosity proppant packs, 

such as increased proppant flowback resistance (less proppant is required), increased cleanup of hydraulic fracturing fluids 

(less clogging), and alignment parallel to the flow (decreased pressure loss). These benefits associated with high porosity 

packs interest the industry, and have prompted more research into the packing behavior of cylindrical proppants.  
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The main consequences of changing particle geometry are the impact on the packing behavior, and the failure modes of the 

subsequent packed bed (SPE 135360). The packing behaviour of spheres is very well studied, and its porosity is reported to 

range from 36% to 42%. Packing behavior of cylinders is more complex as they show orientational freedom, and is reflected 

in the wider range of porosity (24% to 45%) documented in literature for equilateral cylinder packings (Wenli Zhang 2006). 

While the quantitative analysis of cylinder packing porosity in literature is limited at the particle scale because of the difficulty 

in simulating non-spherical particles using traditional techniques, there is even less evidence of stress loading experiments on 

cylindrical particles. The stress loading of cylinder shaped proppant has only been investigated by proppant manufacturers 

performing tests according to API Standard Recommended Practice 19 guidelines (API RP 19C 2008), which report breakage 

percentage for a specified test stress. There is no other method of evaluating new proppant geometries without first producing 

samples and then testing them.  

 

In this paper, we will introduce a framework to perform preliminary investigations which may provide some answers by 

employing 2 versions of the 3D FEMDEM code. The first, is called Y3D_D (D for deformable), and it evaluates the stresses 

and deformations in a particle. The other version is Y3D_R (R for rigid), and it assumes a body is rigid and skips the 

deformation calculations. This rigid version runs significantly faster and is used for our packing porosity investigations since 

very little deformation is expected for gravity deposited particles at 10:1 scale. It is worth noting that small particles will 

increase the computational time required. We chose this scale to provide data as close to particle scale as possible numerically 

within our investigation timeframe. Likewise, the deformable version, Y3D_D, is used for our stress loading simulations at 

10:1 scale. High aspect ratio cylinders under stress will experience additional 3-point-bending modes that will induce both 

tensile and compressive stresses on a particle which will significantly reduce the strength of ceramic cylinders. 

2 Background 

 

2.1 Cylinder packing experiments 

 

Experimental investigations on the packing behaviour of cylinders are less commonly performed than spheres, even though 

they are also of great importance in understanding flow through columnar beds, and catalytic reaction bed applications.  

 

Roblee et al. (1958) packed cylinders in a column and filled the void spaces with wax. Radial shells of the solid cylinder were 

removed carefully, and weighed to determine the porosity. The shells were analysed using radial density functions, and 

oscillations can be observed up to 3 diameters from the wall. These oscillations exhibited sinusoidal damping behavior which 

stabilises at the centre of the pack. They reported a porosity of 25% for equilateral cylinders. This porosity is much lower than 

documented anywhere else, and could be due to wax not fully filling void spaces before solidifying. Dixon (1988) carried out 

cylinder packing experiments which were later used to develop an empirical correlation between porosity as a function of 

tube-to-particle diameter ratio. He reported a porosity of 36% for loose packing of equilateral cylinders. Nardin et al. (1985) 

created loose and dense packings of polypropylene cylinders for a range of aspect ratios up to long fibres. They noted that the 

porosity increases with aspect ratio, and reported a porosity of 46.2% for loose packings of equilateral cylinders.  

 

Foumeny and Roshani (1991) packed steel cylinders of a range of aspect ratios (0.5 to 3) into cylindrical containers with light 

vibration to encourage random packings. The porosity of the packing was determined using a water displacement method 

which was also employed by Sharma et al. (2001) in their flow experiments. A porosity correlation based on tube-to-diameter 

ratio was introduced for a range of cylinders with aspect ratios of 0.5 to 3. Benyahia (1996) packed lead equilateral cylinders 

into a cylindrical mould and filled the void spaces in the packing with dyed resin to provide colour contrast. The solid column 

was then sliced at 1mm intervals and the packing structure was processed using an image analysis program. They reported that 

the mean packing voidage with equilateral cylinders is lower than non-equilateral cylinders and spheres for comparable 

container-to-particle ratios. Wall and end effects extend about 3 diameters from the container walls. For aspect ratios of 0.5, 

the end effects are eliminated before 2 diameters from wall. Zou and Yu (1996) performed experiments on loose and dense 

packing of cylinders and disks using different column diameters and correlated them by introducing a concept of equivalent 

packing diameter. Equivalent packing diameter is defined as the diameter of an equivalent sphere containing the same volume 

as the non-spherical particle. The correlation is based on particle sphericity ψ, which is defined as the ratio of the surface area 

of a sphere with the same volume as the particle to the surface area of the particle. From this, the porosity of equilateral 

cylinders is calculated to be 40.4%. 

 

Montillet and Le Coq (2001) performed packing experiments on PVC cylinders with aspect ratio 5.29, and focused their 

analysis on characterizing the wall and end effects. The packings were poured and compacted with a piston, void spaces were 

filled with dyed resin for image analysis. They observed that bottom end effects can be seen as longitudinal variations in 

porosity, and top end effects result in high mean porosity within 2 to 3 equivalent sphere diameters. Lumay and Vandewalle 

(2004) investigated the tapped packing porosity of cylinders of different length to container diameter ratios. Loose packs were 

prepared by pouring solid pasta cylinders into a glass tube and then tapping is introduced using a computer controlled 
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electromagnetic hammer. They found that when the cylinder length equals the container diameter, the packing porosity of 

equilateral cylinders ranges between 42 to 50%. This range is among the highest quoted in literature, and is due to some 

cylinders with horizontal orientations causing jams in the container. They also observed that as cylinder length to container 

diameter ratio increases, more cylinders align in the vertical orientation and form denser packings as a result. This behavior 

was also shared by Villarruel et al. (2000) in a similar setup involving vibrated packs of cylinders of aspect ratio 3.89 in a 

vertical tube (tube diameter to cylinder length ratio = 2.71). Benyahia and O'Neil (2005) introduced an empirical correlation 

for cylinders with aspect ratios 0.76 to 1.78. A water displacement technique was used in their experiments to measure the 

packing voidage of cylinders. The porosity of equilateral cylinders packings in a container with tube-to-particle diameter ratio 

of 15 is 38.8%. 

 

2.2 Numerical simulation of packing 

 
There are 2 main types of numerical simulation approaches to particle packing: geometric approaches, and mechanical 

approaches. Examples of geometric approaches are sequential deposition, Monte Carlo, and mechanical contraction 

algorithms. These algorithms only take into account the geometry of the particles, and the only constraint enforced is that no 

overlaps are allowed. Geometric approaches ignore friction, contact forces, and stress mechanics, and are often very 

computationally efficient. Realistic sphere packs have been created using these approaches with good agreement with packing 

experiments. Cylinder packing simulations are even rarer than experimental investigations mainly because geometric packing 

algorithms used to generate sphere packings cannot be adapted to cylinder packings.  

 

The earliest simulation of cylinder packings was done by Vold (1959, 1960, 1963) to replicate sedimentation behavior of 

colloidal particles in suspension. He employed a geometric numerical model to deposit randomly orientated cylinders (aspect 

ratios of 1 to 18) from random locations above a rectangular container. These particles were allowed to drop in a vertical 

trajectory until it contacts a previously deposited particle and its motion is frozen. He observed that his simulations produced 

packing porosities up to 2.5 times larger than his experiments. Coelho et al. (1997) simulated ellipsoids, parallelepipeds, and 

cylinders with varying aspect ratios (1 to 10) using a sequential deposition (SD) algorithm. He reported that equilateral 

cylinders packed to a porosity of 44.8%, which would represent the upper bound porosity for equilateral cylinder packings. 

This characteristic larger packing porosity is also seen in other implementations of sequential deposition packing algorithm 

simulations by Sherwood (1997) and Nandakumar (1999).  

 

Visscher and Bolsterli (1972) used a different geometric method called the Monte Carlo 

packing algorithm to generate random sphere packings. This algorithm randomly fills a 

space with the particle and removes particles when there is an overlap. They reported an 

average porosity of 40% at the central bulk of the sphere packs. Wenli Zhang (2006) 

generated packings of non-spherical particle commonly found in catalyst beds, using 

commercial Monte Carlo packing algorithm called DigiPac. Their findings suggest that 

while it can predict trends in packing porosity of different geometries, it fails to 

replicate ordering patterns observed in experimental results. Stoyan et al. (1998, 2006), 

Williams and Philipse (2003), and Wouterse et al. (2007) simulated dense packings of 

spheres, spheroids (Figure 1), and spherocylinders using a mechanical contraction 

packing algorithm. Particles are placed randomly within a defined volumetric domain, 

starting from the extremities. At each timestep, the domain contracts and more particles 

are placed without allowing overlaps.  

 

While there have been attempts to create cylinder packs with geometrical approaches, the general conclusion is that this 

approach is inadequate for creating realistic cylinder packs. The orientational freedom that cylinder particles exhibit creates 

complex packing patterns not observed in sphere packings because of wall contact forces, wall and particle friction, particle 

orientation, jamming, and volume exclusion effects. This introduces the need for mechanical approaches which incorporate 

mass, contact, and friction mechanics.  

 

The Discrete Element Method (DEM) is a mechanical approach proposed by Cundall and Strack (1979) which has been 

extensively used for simulating large numbers of particles in granular, particle, and rock mechanics problems. DEM 

incorporates contact force interactions, friction, and rotational degree-of-freedom. Each particle is treated as a seperate entity, 

and their velocity, rotation, and position is calculated and updated after every timestep. The velocity and rotation mechanics 

are desribed by Newtonion laws and evaluated by integration over the timestep. The contact force model employed varies 

depending on DEM implementation, but energy and momentum must be conserved to maintain numerical stability. The main 

drawback of DEM codes is that complex geometries cannot be introduced easily. Most DEM codes based on superquartics 

introduce slight bumps due to the reliance on clustering spheres and reduce simulation accuracy. In the next section, we will 

introduce the combined finite-discrete element method (FEMDEM) theory which is the framework used in our investigations. 

 
Figure 1 – Geometric random packing 

of 4000 oblate spheroids. (Stoyan 2006) 
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3 Combined FEMDEM Theory 

 

Munjiza (1990) introduced a combined finite-discrete element method (FEMDEM) which bridged discrete-element modeling 

(DEM) with finite-element modeling (FEM). Each discrete element is discretised into finite elements and the stress within 

each finite-element is calculated. This allows deformation, fracture and fragmentation behaviors to be captured. Prior to 2005, 

3D FEMDEM codes were mainly based on linear 4-node tetrahedral finite elements and have 2 drawbacks. Firstly, volumetric 

locking problems in discrete elements associated with incompressible solids can result in inaccurate simulations.  Secondly, 

deformation was not addressed properly and a body was treated as a rigid entity with only surface finite element meshing. 

 

A new 3D FEMDEM code, Y3D, has been developed by Dr J Xiang under direction of Prof. Munjiza as part of VGW virtual 

geoscience workbench tools, to address the limitations associated with traditional 4-node tetrahedron based FEMDEM codes. 

This code implements an efficient quadratic 10-node tetrahedron element together with an F-bar approach (Neto 2005) to 

overcome locking, and stress propagation wave issues. The F-bar approach splits the deformation gradients into separate 

deviatoric and volumetric terms, and averages the incompressibility constraint throughout the element instead of at a point 

which avoids locking due to constant strains. Illustration of the stress propagation in collisions mechanics modeled with Y3D 

was given in (Xiang et al. 2009) by simulating a concrete cross shaped structure dropped onto a giant anvil. The Cauchy stress 

propagation waves can be observed in the Figure 2. An earlier validation of the FEMDEM method based on results for packing 

characteristics of real particle shapes was reported by Latham and Munjiza (2004) by comparing cube-packing experiments 

with numerical, and they concluded that the results were qualitatively in good agreement (Figure 3). However, this earlier 

version of the FEMDEM code assumes rigid particles (no deformation). 

                 

 

  
 
Figure 2 – Cauchy stress Y3D simulation of concrete cross-
shaped structure dropped onto a giant anvil. (Xiang et al. 2009) 

 
Figure 3 – Comparison of cube packing structures from Y3D 
simulation and experimental setup. (Latham and Munjiza 2004) 

 

 

A brief overview on the key modules of FEMDEM implementation such as the contact detection, contact interaction, and 

deformability theory is presented here. For a more in-depth explanation of the theory, refer to (Munjiza 2004) 

 

3.1 Contact detection 

 

Contact detection and contact interaction algorithms built into FEMDEM allow transient problems with large numbers of 

interacting deformable bodies to be modeled efficiently. At each time step, the contact algorithms are executed. The main 

function of Munjiza’s NBS (no binary search) contact detection algorithm is to reduce the total computational time by 

detecting discrete elements which are close by and ignoring those which will never contact in that timestep. This is 

accomplished by first dividing space into identical cells large enough to contain the largest discrete element in the system, and 

then individually mapping discrete elements to a cell which can only contain one unique discrete element. Only discrete 

elements from neighbouring cells can touch each other, so those which will not contact are ignored. (Munjiza 2004) 

 

There are numerous contact detection algorithms available, but the optimal algorithm depends largely on the type of problem 

solved. Munjiza and Andrews (1998) NBS linear contact algorithm uses less CPU resources than binary search algorithms in 

problems with a large number of discrete elements because the detection time for a discrete element is constant, unlike binary 

search algorithms. This linear increase in total detection time with the number of discrete elements modeled makes it well 

suited for simulating packing density of particles. 
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3.2 Contact interaction 

 

Once couples of contacting discrete elements are detected, a contact interaction algorithm then evaluates the contact forces for 

these coupled discrete elements. The way an algorithm handles contact interaction defines the constituent behavior of the 

system because of the large numbers of separate bodies (Munjiza 2004). Therefore, it is critical that the contact kinematics is 

described realistically by algorithms used. A contact interaction algorithm based on the penalty function method is 

implemented in this code, and in its classical form assumes that two bodies in contact (a contactor and target body, Figure 4) 

will penetrate each other (Munjiza and Andrews 2000). The resultant contact force is directly related to the amount of overlap 

between the 2 bodies.  

 

There are two approaches to evaluating the contact force; a concentrated or a distributed contact force approach. A distributed 

contact force approach which discretises individual discrete elements into finite elements is used in this FEMDEM code. It is 

easier to implement than a concentrated contact force approach, and also preserves energy balance regardless of the number 

and geometry of the discrete elements in contact. This yields realistic contact force distributions and overcomes the numerical 

distortion of force distributions associated with concentrated contact force approach, so it is suitable for instantaneous fracture 

simulations. 

 

When a contactor penetrates any elemental volume dV of the target discrete element, the total resultant infinitesimal contact 

force is given by: 

 

�� � �����	∅
��
 � ����	∅������V        (1) 

 

where �� is the infinitesimal contact force due to overlapped volume dV, ∅
 is the potential of the contactor, and ∅� is the 

potential of the target. 

 

By integrating over the overlap volume, the total contact force exerted by the target onto the contactor can be written as an 

integral over the surface S of the overlapping volume, like so: 

 

� � � ���
 � ��	����∩�� S         (2) 

 

where � is the outward unit normal to the surface of the overlapping volume. 

 

The potentials �
  and ��  are obtained by the summation of potentials associated with its individual finite elements. 

 

�
 � 	�
� � �
� …� �
� � �
�         (3) 

�� � 	��� � ��� …� ��� � ���         (4) 

 

(Munjiza 2004) demonstrated that the contact force between overlapping discrete elements is calculated by summation over 

the edges of corresponding finite elements that overlap.  

 

�� � ∑ ∑ � �!��∩!�" #�
� � ��"$ �ΓΓ���∩��"
%&'()&'        (5) 

 

where, m and n are the total number of finite elements which the contactor and target discrete elements are discretised into. 

 

 
 

 
 
Figure 4 – Discretization of contactor and target into finite elements and integration over 
edges of overlapping elements. (Munjiza 2004) 
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3.3 Deformability 

 
In FEMDEM, the deformability of individual discrete elements is captured by discretising into finite-elements. At each 

timestep, the Cauchy stress and Green-St.Venant strain fields are computed for each finite-element, which also describes 

fracture and fragmentation mechanics in large discontinuous problems. These constitutive laws apply only to visco-elastic 

materials. A concept of reference frames is used to describe the deformation of an individual discrete element. As deformation 

occurs, the deformed frame starts to differ from the initial frame, and is then related together by the deformation gradient F 

(Xiang et al. 2009). 

 

The total Cauchy stress (true stress) for a visco-elastic material is given by: 

 

* �	 +, �- � . � /
, �ln 2 . � 245                       (6) 

 

Where,  

J is the determinant of the deformation gradient (the Jacobian determinant) 

B is the Cauchy-Green tensor 

6 is the tensor rate of deformation obtained from the velocity gradient 

7 is the viscous damping coefficient 

8 and 9 are Lame constants defined by: 

 

: � 	 ;
<�'=>                                                               (7) 

? � 	 >	@
�'=>�'A<>                     (8) 

 

Where, E is Young’s modulus and v is Poisson’s ratio.  

 

4 FEMDEM Numerical simulation setup 

 

4.1 Simulation tools 
 

Currently, there are 2 versions of Y3D. The first, is a complete FEMDEM code called Y3D_D (D for deformable) in which, 

individual discrete-elements are discretised into finite-elements, and deformation is incorporated by calculating the stresses of 

each finite element at each timestep. The other version is Y3D_R (R for rigid), which assumes a discrete body is rigid and 

skips the deformation calculations and runs significantly faster. POSITIT is a particle deposition program written by J Xiang 

which takes a grid input text file containing x y z coordinates, a mesh input file of the deposited particle, and Y3D input file. 

This is used in the following simulations to deposit particles with random orientations from the top of the container. A detailed 

section on the key Y3D simulation parameters is presented here, followed by the importance of mesh quality.  

 

4.2 Critical timestep 

 

There are different integration schemes available for evaluating the momentum conservation equations for each discrete 

element and node. In large FEMDEM simulations, implicit schemes become too computationally expensive to undertake, so 

explicit methods are more commonly employed. An explicit central difference time integration scheme is implemented in 

FEMDEM and this low order scheme reduces the number of operations executed because it doesn't require stiffness matrices.  

 

Explicit integration schemes are conditionally stable, which means that the stability and accuracy of the scheme is dependent 

on the timestep used. The minimum timestep required to maintain stability is called the critical timestep.  In FEMDEM, the 

critical timestep is proportional to the smallest finite element. This means that accuracy can be increased by reducing the 

meshing size, but a smaller timestep is required to maintain stability. Likewise, a larger timestep can be used if the meshing 

size is increased which allows larger timesteps to be used, so simulations can run faster. By assuming contact forces can be 

modeled as a simple 1D dashpot-spring system with no viscous damping, the critical timestep required, ∆C
   can be 

approximated by Equation (9) (Guises et al. 2008):  

 

∆C
 ≤ 2E%@                                (9) 

 

Where m is the mass of the smallest finite element, and E is the Young’s modulus.  
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From this, it can be seen that the critical timestep is a function of the size of the smallest finite element, material density, and 

stiffness of the material. The penalty number selected will also affect the critical timestep. Note that this is an approximation 

for an undamped 1D system, which may not be suitable for 2D and 3D systems. Typically, the critical timestep calculated 

from Equation (9) is further divided 5 to 10 times to ensure stability and accuracy. Equation (10) is therefore used for 

calculating the critical timesteps used for the simulations in this paper. If there are large fluctuations in velocity values, then a 

smaller timestep needs to be used. This iterative process will ensure that the simulation uses less CPU time, without 

introducing instability and numerical simulation distortion. 

 

∆C
 ≤ '
FE%@                                (10) 

 

 

4.3 Penalty Number 
 

The penalty parameter can be said to be a loose approximation of the surface roughness. If a small penalty number is used, 

then there will be a large overlap resulting in large errors in displacement. If an infinite penalty number is used, no penetration 

will occur. This often leads to problems in the temporal domain, so in practical applications, an overlap of contacting bodies is 

acceptable. The errors in displacement due to contact approximation can be reduced by selecting a suitable penalty number as 

a function of the Young’s modulus, or by reducing the mesh size. 

 

In packing density simulations using Y3D_R, the whole particle is treated as a rigid body with no deformation mechanics. The 

volume of overlap during penetration is small compared to the volume of the rigid body. As such, the penalty number used can 

be set to a value up to 10 times smaller than the Young’s Modulus of a material. In the simulations performed, it was 

determined from trial and error that a penalty number of only 5 times smaller than the Young’s Modulus was required to 

prevent excessive penetration. 

 

However, in stress simulations using Y3D_D, the deformation of the discrete body is evaluated along with the stresses in the 

finite elements. The volume of the contacting overlaps can be quite a large fraction of a finite element, so to avoid errors in 

displacements due to excessive penetration of a body into another, the penalty number used needs to be about 10 times larger 

than the Young’s Modulus of a material. In the simulations performed, it was determined from trial and error that a penalty 

number of only 2 times larger than the Young’s Modulus was required to reduce the degree of penetration. 

 

4.4 Material damping coefficient  
 

The computational costs can become quite high when large numbers of interacting particles are modelled as fully deformable 

bodies (using Y3D_D). In gravity packing density simulations, the stresses within each do not become large enough to impact 

packing density results noticably. This is where Y3D_R can become very useful. By removing the internal deformation 

mechanics of discrete-elements, the total computation time can be reduced up to 5 times without much difference to the 

particle packing density.  

 

In a typical packing density simulation setup, particles are deposited into a container and the packing density is calculated only 

when the kinetic energy in the particles reduce to zero. The energy contained by a particle is dissipated through frictional 

contacts, Poissonal contraction and expansion behavior, and also through vibration resulting from stress waves propagating 

within deformable bodies. Y3D_R assumes these bodies are rigid, so the stresses are the same any point in a body. To account 

for the energy that would have been dissipated through vibration and deformation, a material damping coefficient is used in 

the rigid version to approximate the energy dissipation behavior in the material of a particle. 

 

To determine a suitable material damping coefficient to use, gravity packing of particles into a container is simulated using 

Y3D_D with no material damping coefficient. Another set of simulations are done using Y3D_R, but with varying values of 

mass damping coefficients (i.e. 0.02, 0.04, 0.06, 0.08). The final packing density of Y3D_R simulations are calculated and 

compared to the packing density from the Y3D_D simulation. The most suitable material damping coefficient is the one which 

gives a packing density closest to the one obtained from Y3D_D. 

 

In our investigations, a material damping coefficient of 0.05 was used for Y3D_R simulations. This value was determined by 

Xiang and Latham in their investigation of wooden cube packing in a wooden container. The applicability of this value of 

material damping coefficient to approximate Y3D_D behavior for different materials and geometries have not been 

investigated before, and is not verified in this paper due to time constraints. It is very possible that other material and geometry 

combinations require different material damping coefficients. 
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4.5 Mesh construction and the importance of mesh quality  

 

As previously discussed, mesh quality is very important when it comes to FEMDEM simulations because of the discretization 

to finite elements. Finer mesh sizes represent contact behavior more accurately, but require a smaller timestep which increases 

the computational time. Coarser mesh sizes will allow larger timesteps to be used, and which also reduces computation time.   

The container and cylinder proppant geometries with aspect ratios of 0.5, 1.0, 2.0, 3.0, and 4.0 were generated using meshing 

software called GiD 10.0.1 (Figure 5). When generating a mesh, few very fine elements are often found near the edges of a 

particle. A significantly smaller timestep is required just to maintain stability just for these few elements, which larger 

elements would not need. The simulation timestep can be optimized by coarsening these elements to allow a larger timestep to 

be used without decreasing the accuracy significantly. A guide to generating good meshes using GiD 10.0.1 can be found in 

Appendix E. 

 

 
 

4.6 Material properties 

 

The proppants deposited have been modeled with material properties of Bauxite (Table 1). This is a medium density ceramic 

with high compressive strength, which makes it well suited as a proppant material for withstanding high fracture closure 

stresses. It has also been widely used for spherical proppants. The material properties of Bauxite used in our simulations were 

an average of values reported by Pertti Auerkari (1996), Saint-Gobain Proppants (2011), and Carboceramics (2011). 

 

 
 

 

 

Material property Value Units 

Density (ρ) 3620 Kg/m
3
 

Young’s modulus (E) 300 GPa 

Penalty number 60 (Rigid) 600 (Deformable) GPa 

Poisson’s ratio (v) 0.24 - 

Friction coefficient (8 0.43 - 

Material damping coefficient 0.05 (Rigid) 0 (Deformable) - 

Compression strength 86 (for 20-40 mesh) MPa 

 
Table 1 – Table summarising the Bauxite material and simulation parameters used. 

  
 

  

Rod αααα = 0.5 Rod αααα = 1.0 Rod αααα = 2.0 Rod αααα = 3.0 Rod αααα = 4.0 

138 elements 195 elements 392 elements 563 elements 762 elements 

D = 0.01 m D = 0.01 m D = 0.01 m D = 0.01 m D = 0.01 m 

L = 0.005 m L = 0.01 m L = 0.02 m L = 0.03 m L = 0.04 m 

 

 
    

Rod αααα = 0.5 

Fixed volume 

Rod αααα = 1.0 

Fixed volume 

Rod αααα = 2.0 

Fixed volume 

Rod αααα = 3.0 

Fixed volume 

Rod αααα = 4.0  

Fixed volume 

127 elements 195 elements 187 elements 207 elements 345 elements 

D = 0.0126 m D = 0.0100 m D = 0.0079 m D = 0.0069 m D = 0.0063 m 

L = 0.0063 m L = 0.0100 m L = 0.0159 m L = 0.0208 m L = 0.0252 m 

 
Figure 5 – A summary of the cylinder meshes created at 10:1 scale using GiD 10.0.1 (CIMNE 2011). 
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5 Methodology 

 

5.1 Simulation design for investigating packing porosity 
 

In the first part of this work, the effect of cylindrical proppant with different aspect ratios 

(α = 0.5, 1.0, 2.0, 3.0, 4.0) and friction coefficients (μ = 0, 0.2, 0.4, 0.6, 0.8, 1.0) on the 

packing density was investigated in a 10:1 scale using Y3D_R. The influence of aspect 

ratio was investigated by 2 methods; Firstly, the lengths of the cylinders were varied with a 

fixed diameter (D = 0.01 m). From an engineering standpoint, the cylinders can be 

extruded using a standard process which will cheaper to produce. Secondly, from a 

theoretical standpoint, it is important to investigate aspect ratio effects independent of size. 

These particles were created to have the same volume as rods with α = 1.0, and scaled to 

reflect the correct aspect ratios. The friction coefficient simulations were performed only 

on rods with α = 1.0. 

 

Cylindrical particles were deposited in arrays from a height of 15 cm, with a random 

orientation using POSITIT, into a container of internal dimensions 15 x 15 x 30 cm 

(Figure 6). The proppant particles settle under gravity to a height of 4 diameters. Ideally, 

more particles should be deposited to obtain a better representation of the packing porosity. 

This was not pursued in this investigation due to the computational time required. The 

simulation is stopped when the overall kinetic energy of the system stabilses to near zero, 

and the output mesh is then passed to a porosity calculation algorithm. 

 

5.2 Simulation design for investigating stress distribution 
 

In the second simulation case, the stress distributions within individual proppant particles 

were investigated in a 10:1 scale as a function of aspect ratio (α = 0.5, 1.0, 2.0, 3.0, 4.0). 

The cylindrical particles were deposited into a container of internal 15 x 5 x 10 cm using 

POSITIT with Y3D_R, until a packing height of about 4 diameters was obtained. After 

settling by gravity, a very high density slab with dimensions 14.95 x 4.95 x 2 cm was 

introduced to simulate fracture closure stresses acting on the proppant pack using Y3D_D. 

The plate was given an initial velocity of 1 m/s as a dead weight load control over the slab 

area to reduce the simulation times, and stress distributions at equilibrium should not be 

affected by this. (Figure 7) 

 

The sizing of the plate helps avoid stresses attributed to frictional contact with the 

container wall, and stresses arising from Poissonal contraction and expansions. By 

modifying the density of the plate, the simulated fracture closure stresses of 25 MPa can be 

adjusted to test different fracture closure stresses associated with rocks typically found at 

different depths. This method of stress loading was chosen because the stresses in the 

proppants increase gradually overtime, compared to when pressure or velocity conditions 

were applied. This avoids numerical simulation problems due to stress buffer size caused 

by rapid increase in stresses. At equilibrium, the stress distributions in proppants were 

analysed with a series of cross sections through the container. 

 

5.3 Porosity calculation 
 

Particles packing in a container are subject to wall effects which result 

from a tendency of particles to align thmeselves with the container 

wall. A combination of gravity and friction also contributes to the 

extent of the wall effect. Wall effects cause higher porosity to be 

observed in the near-wall region compared to the centre of the packing. 

To reduce this effect, a series of volumetric sampling windows were 

used. The dimensions of this sampling window were reduced by a 

distance of 0.5 diameters in all 6 dimensions in steps, until a reasonably 

consistent packing density was obtained. However, because the 

simulations were only packed up to 4D, only 1D could be excluded 

from the bottom end and the top of the packing (Figure 8).  

 

 

 

15 cm 

15 cm 

30 cm 

Figure 6 – Schematic of gravity 
deposition simulation setup 

15 cm 

5 cm 

10 cm 

Variable mass loading 

PLATE 

Figure 7 – Schematic of stress 
loading simulation setup 

 

 
 
Figure 8 – Cross-sectional slice of packing bed. The 
volumetric domain used for porosity calculation is 
illustrated in red. 2D indicates that the volumetric 

domain was contracted by a distance of 2 diameters. 

1D 2D 3D 
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The porosity calculation program requires 3 input files. The first is a text file containing the number of random sample points, 

N and a user specified volumetric domain in which these points are generated. The other 2 input files are the Y3D and ym files 

corresponding to the final state of the system. N points are generated in this volumetric domain, and a voxel is created at each 

point. A voxel is assigned a value of '1' if it is located within a discrete element, or ‘0’ is assigned, if it is void. The packing 

porosity is then obtained by computing the ratio of the number of voxels with a value of '0' by the number of voxels generated 

in this volumetric domain. The number of sample points generated is defined by the user, and the porosity calculation is run 3 

times to obtain a range of porosity values. As with Monte Carlo sampling techniques, the porosity calculation becomes more 

accurate as sample points are increased. If there is a range of up to 1% between these values, the calculation is repeated with a 

larger number of sample points to obtain a consistent porosity value.  

 

By this process, 50000 sample points was determined to be sufficient for this work. A plot of the number of sampling points 

against the accuracy of porosity calculation is shown in Figure 9. 

 

 
 

6 Simulation Results 

 
We had initially set out to first, quantify the effects of aspect ratio and friction on the packing porosity of cylinders, and then 

investigate the stress distribution of different aspect ratio cylinders under stress loading of 25 MPa. Unfortunately, due to 

unforeseen length of simulation, only the investigations on cylinder aspect ratio, and friction could be completed within the 

timeframe of this study (Table 2). These simulations were done on a 10:1 scale to provide near proppant scale data on how 

different aspect ratio cylinders would resist fracture closure stresses while packing to higher porosity than spherical proppants. 

The total computational time is proportional to the size of the smallest element, and would run more quickly if a larger scale 

(e.g. 1000:1) was used for the simulations. This just highlights the need for Y3D to be parallelized before we can extend the 

capabilities to simulating large scale packing of particles.  

 

In hindsight, our investigations could have been completed if it performed on 1000:1 scale for packing porosity simulations. 

The packing porosity is not expected to change significantly. For stress loading simulations on 1000:1 scale, stress scaling 

laws can be applied to recalculate the equivalent stresses in real life scale. 

 

 
 

 

Investigation Total runtime Progress Simulation Images 

Aspect ratio (Fixed diameter) 44 days Complete 100% Appendix B 

Friction coefficient 44 days Complete 100% Omitted due to errors 

Aspect ratio (Fixed volume) 29 days Still depositing 60% Appendix C 

Stress loading 25 MPa 18 days Stress loading 50% Appendix D 

 
Table 2 –Status of our simulations at 10:1 scale. 

 
 
Figure 9 – Graph showing the accuracy of the porosity calculation programme as a function 
of the number of sample points used. 50000 sample points was deemed to be sufficient. 
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6.1 Influence of wall effects 

 
In cylinder packing, we observe three main factors which influence the packing porosity: orientation effects, volume exclusion 

effects, and cylinder aspect ratio. These exert their influence only in specific frictional and deposition conditions. When a 

particle is deposited, kinetic energy is dissipated to its surroundings as a combination of particle-particle contacts, particle-wall 

contacts, and gravitational effects. The particle continuously rearranges itself with nearby geometries to find a stable 

configuration until it loses all the energy. Energy loss is highest near the container walls due to face-wall frictional contacts. 

Under low friction setups (μ < 0.2), very little energy is lost to particle contacts and more energy is available for 

rearrangement. As such, orientation effects tend to dominate in the near-wall region, and we observe high degree of ordering 

near the wall (also known as the wall effect) (Figure 10a). This can also occur when vibration is induced in packings to allow 

rearrangement. As friction increases, the packing structure near the wall become less ordered as more energy is required for 

rearrangement. (Figure 10b, 10c). 

 
 

In our loose packing simulations, we used a friction coefficient of 0.43 (Bauxite material) for the walls and particles to reduce 

the extent of ordered packing in the near-wall region. The porosity in the near-wall region is found to be higher (up to 10%) 

than in the centre of the pack (Figure 11). This indicates that the packings in near-wall regions were less ordered than in low 

friction cases, and wall effects penetrate less into the packing. As distance from the wall increases, the porosity is expected to 

stabilise but instead oscillations were observed even at a distance of 3D from the walls. This behavior can be attributed to 

calculation of porosity from a small volumetric domain of 9D x 9D x 9D, which is purely limited by our experimental setup. 

When plotting the aspect ratio versus packing porosity, we accounted for the fluctuating porosity calculations by averaging the 

porosities within the stable region (1D to 3D). Periodicity is observed for Rod 1, Rod 2 and Rod 3 as the porosity reaches a 

minimum at 0.5D and 1.5D. This periodicity decreases further away from the wall. This is explained by observing the ordering 

at the near-wall region (Roblee et al. 1958). Each particle that touches the wall is in a very ordered position, and the minimum 

porosity is observed at 0.5D from the wall because there is the highest concentration of particle centres in that area. Similarly, 

at 1 diameter from the wall, the porosity is at a maximum because there are void spaces in the interface between 2 layers of 

particles (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 – View of packing structure at the base of container (looking upwards); 
  (a) High degree of ordering observed near the wall in equilateral cylinder packing with µ = 0; 
  (b) Lesser degree ordering observed near the wall in equilateral cylinder packing with µ = 0.4; 
  (c) Least degree ordering observed near the wall in equilateral cylinder packing with µ = 0.6. 

 
Figure 12 – Illustration of void interface 
between 2 ordered particles near the 
container wall. 

 
Figure 11 – Variation of porosity with the number of diameters from the wall omitted in 

porosity calculation volumetric domain.  

Graph of porosity against distance from wall 

(a) (b) (c) 
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6.2 Effect of aspect ratio on packing porosity 

 
 

Our simulations results coincided well with Zou and Yu (1996) loose packing experiments, and DigiPac Monte Carlo 

geometric packing in a cylindrical column (Zhang 2006). They are presented in Figure 13. We observe a dip in packing 

porosity which is also documented in other studies when equilateral cylinders are used. Equilateral cylinders (α = 1) exhibit 

the weakest orientation effects and form packs with more randomized orientations (Figure 14). This in theory should result in 

higher porosity packings due to less ordered structures, but it actually forms the densest pack of the cylinder aspect ratios 

investigated. This is because volume exclusion effects are small for equilateral cylinders (due to high symmetry) and pack like 

cubes. Packing porosity is also observed to increase when larger cylinder aspect ratios are used. Moderate-high friction setups 

reduce the extent of particle rearrangements and cause entanglements to form. The number of entanglements is related to the 

number of contacts-per-particle, and this increases with high aspect ratio cylinders. As a result, volume exclusion effects 

become more significant and porosity increases. Note that for cylinders with aspect ratio 0.5, the dip observed for aspect ratio 

1.0 cylinder is about 7%. In the literature, this dip is reported to be within a range of 1% to 5%, and for this case, our results 

may be inaccurate due to a smaller sampling domain used compared to our other results. Refer to Appendix B for images. 

 

6.3 Effect of size on packing porosity 

 
The contact interaction algorithm in Y3D is based on a linear spring-dashpot model, which means that the contact force is a 

function of the mass of a particle. If two particles of different volumes made from the same material are deposited from the 

same height above a container, the larger particle would apply more energy. This means that a larger particle has more energy 

available for rearranging itself, unless the friction is high enough for size effects to be ignored. Visatemongkolchai (2010) 

observed in his tetrahedral packing simulations under different friction conditions, that size effects were insignificant for high 

friction coefficients (above 0.2). He also concluded that the size difference needs to be large enough to have an observable 

impact on packing porosity. In our simulations, cylinders with the aspect ratios 0.5, 2.0, 3.0, and 4.0 with the same volume as 

aspect ratio 1.0 cylinder (L = 0.01 m, D = 0.01 m) were packed to investigate aspect ratio effects independently of size. 

Unfortunately, because these particles were smaller, more of them needed to be deposited in the container to perform porosity 

calculations. This meant an even longer computational time was required, and we have not yet packed sufficient number of 

particles to analyse the results (currently 29 days runtime). These are still running on Imperial’s CX1 HPC cluster, and 

analysis may be possible in the future. As such, our results on the effects of aspect ratio on packing porosity are not 

independent of size. The cylinder size effect is not expected to influence porosity results significantly. Refer to Appendix C for 

current progress. 

 
Figure 13 – Plot comparing the results of our investigation on cylinder aspect ratio vs. packing porosity with other 
studies found in literature. Friction coefficient of 0.43 was used in our simulations. 

Cylinder ∝∝∝∝ = 0.5 Cylinder ∝∝∝∝ = 1.0 Cylinder ∝∝∝∝ = 2.0 Cylinder ∝∝∝∝ = 3.0 Cylinder ∝∝∝∝ = 4.0 

 
Figure 14 – Comparison of the packing structures from our investigation on cylinder aspect ratio (Fixed diameter) 

�α�α�α�α 
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6.4 Effect of friction factor on packing density 

 

 
 

As explained before in Section 6.1, particle rearrangement results in ordered packing structures where the porosity is low. 

When friction coefficient is increased, more energy is required for rearrangement and the packing structures are less ordered, 

resulting in higher porosity (Figure 16). Garcia’s (2009) friction investigations on mono-sized spheres, and 

(Visatemongkolchai 2010)’s tetrahedral work, we expected to see a trend of porosity increasing as friction increases. This is 

not observed in our simulation results plotted on Figure 15, and on further inspection, we discover that the version of Y3D_R 

used for this set of simulations has a bug in the implementation of restart file (allows simulations to continue from previous 

saved timestep). The particle velocities after a restart file is used have a mismatch of up to 50%. This is significant, and would 

explain the apparent lack of trend observed in our porosity results for friction. In gravity packing simulations, settling velocity 

influences packing porosity results. High settling velocity means the particles contain more kinetic energy for significant 

rearrangement to occur, and generally results in lower porosity. Unfortunately, the nature of the velocity mismatch is quite 

random, and we cannot quantify the extent of this in our results. These investigations will be run 3 times with random particle 

orientations at a 1000:1 scale to investigate the variability in our results once this version of Y3D_R is fixed.  

 

6.5 Effect of aspect ratio on stress distribution 

 

During the undertaking of this research, simulation setups to investigate the effect of stress loading of cylinders with various 

aspect ratios were created and run using Y3D_D (describes deformations). This investigation is particularly interesting to 

industry because long aspect ratio cylindrical proppants will be subject to compression, friction, and also 3-point-bending 

modes which will induce tensile and compressive stresses that will significantly reduce the strength of ceramic cylinders This 

deformation is described well by Y3D_D. (Figure 17). Also due to computing and time limitations, the investigations on this 

have not yet been concluded, and further work is required. This investigation will benefit greatly from the parallelisation of 

Y3D_D because the timestep required for stable simulation of 10:1 scale particles under 25 MPa stress is in the magnitude of 

2.5 x 10-10 seconds. Shorter simulation times would mean we will be able to numerically simulate particle scale proppants in 

the future. Another way to accomplish this is to model the setup with a larger scale of 1000:1. From our testing, we have 

observed that simulations run at 1000:1 scale decreases the total computation time up to 8 times compared to at 10:1 scale. 

Stress simulations at 1000:1 scale would require in-depth understanding of stress scaling laws to convert results obtained to an 

equivalent stress under real life proppant scale for percentage breakage analysis. Refer to Appendix D for current progress. 

 

 

   
Figure 17 – Stress loading simulation of cylinders with aspect ratio 2.0. Red represent high stresses in magnitude of 10

10
 Pa.  

A logarithmic scale is used here to show stresses propagating through the pack. 

 
Figure 15 – Comparison of our cylinder with tetrahedral & 

sphere packing porosity under varying friction coefficients. 

 
Figure 16 – Variation of porosity with the number of diameters from the 
wall omitted in porosity calculation volumetric domain.  

25 MPa 
25 MPa 25 MPa 



14 Packing characteristics of different shaped proppants for use with hydrofracing – A numerical investigation using 3D FEMDEM 

7 Conclusions 

 

In this paper, we described a framework to investigate the effect of cylinder aspect ratio and friction on the packing porosity, 

and also the internal stresses resulting from stress loading of cylinder geometries using 3D FEMDEM. These investigations 

were performed at a 10:1 scale because of industry interest in particle scale simulations. We have also performed alternative 

simulations on a 1000:1 scale for investigating the total computation time required. Our main conclusions from this research 

are as follows: 

 

1) Parallelisation needs to be implemented in Y3D_R to simulate suffient numbers of particles at 10:1 within a 

reasonable timescale. 

2) Problem in Y3D_R restart subroutine implementation causes velocity mismatches which invalidate our friction 

investigations. 

3) Simulations of packing porosity of different aspect ratio cylinders using Y3D_R agreed well with experiments and 

simulations of cylinder packing.  

4) Y3D_R can generate packing structures which are qualitatively similar to experimental results on cylinders in 

literature. Periodicity in the near-wall region due to local particle ordering is also observed. 

5) Packing simulations with 648 particles at 10:1 scale took 8 times longer to complete compared to 1000:1 scale. 

6) Further work on friction and stress investigations at 1000:1 scale with current Y3D code would have been been more 

appropriate for our timeframe. 

7) Further simulations should be performed to test the variability of porosity results, as we know packing porosity is 

very sensitive to initial deposition conditions. (Latham and Munjiza 2004) 

 

8 Recommendation of future work 

 

8.1 Parallelisation 

 
From our investigations of the effect of cylinder aspect ratio on the packing 

porosity, the average runtime for these simulations with Y3D_R were found to be 

atleast 40 days for 648 particles with a timestep of 1 x 10
-7

 seconds required to 

maintain numerical stability. This timestep is a function of the volume of the 

smallest discrete element, and at 10:1 scale, this is very small. Additionally, the 

number of particles and the mesh sizes of the particles used also increase the 

computational time when more particles are in contact. 

 

To tackle larger problems at a scale of 10:1, Y3D needs to be parallelized so that the 

computational space is discretised into smaller domains which can employ more 

CPU cores for computation (Figure 18). This will significantly reduce the total 

computational time of 3D FEMDEM, and extend the capabilities of this code for 

tackling larger computational problems involving smaller scales and more particles.  

  

 

8.2 Flow simulations to investigate effective permeability of packed beds of cylinders 

 
The key issue the industry is interested in is the modeling of flow through cylinder 

packed beds. Experiments have been performed on flow through sphere packed beds 

(Sharma et al. 2001) (Garcia 2009), but none on cylinders. It will be beneficial to 

investigate how the effective permeability of cylinder packs is influenced by 

cylinder aspect ratios. This can be done by adapting the meshes of gravity packed 

cylinder beds generated from our research for flow simulations using our fluid code 

FLUIDITY, as done by Garcia et al. (2009) in Figure 19.  

 

With further development, the coupling of FLUIDITY with 3D FEMDEM can 

model the migration path of fine particles suspended in a fluid through a packed bed. 

The deposition mechanism could then include sedimentation and buoyancy effects 

instead of gravity deposition, and allow us to simulate the clogging of proppant beds 

in propped fractures with fine particles. This has important applications for 

understanding the effect of fines in hydraulic fracturing on fracture conductivity, as 

well as the efficiency of water filtration systems. 

                     

   
 

Figure 19 – Flow simulation through void 
space mesh of a packed bed using 
FLUIDITY. (Garcia 2009) 

 

            
 

Figure 18 – 3D representation of a 
discretised domain for 64-core parallel 
computation. (M. Griebel 1998) 
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8.3 Stress loading simulations of packed beds of cylinders with different aspect ratios 

 

We have documented our attempts to investigate this at a scale 10:1 in Section 6.5, but were unable to conclude our analysis 

due to length of simulations. Future work is recommended at a larger scale of 1000:1. From our testing, we have observed that 

shorter computation times of up to 8 fold (compared to 10:1 scale simulations) for gravity packing simulations using Y3D_R, 

and have reasonable assumption that this will also be observed in Y3D_D. Stress simulations at 1000:1 scale would require in-

depth understanding of stress scaling laws to convert results obtained to an equivalent stress under real life proppant scale for 

percentage breakage analysis. The models we have created at 10:1 scale can also be modified to perform stress loadings of 

different magnitudes (i.e. 12 MPa, 50 MPa, 75 MPa), on different particle geometries (Figure 20). 

 

Refer to Appendix D for current progress. For a guide on creating these stress loading simulations, refer to Appendix E. 

 

 
 

8.4 Coupling of 3D FEMDEM with Mohr-Coulomb fracture model 
 

By coupling 3D FEMDEM with a Mohr-Coulomb criterion fracture model, the effects of fines production due to crushed 

proppants under high stresses can be investigated. This will also be an interesting tool in the development of catalytic pellet 

reactors which require large surface area to volume ratios with the low pellet breakage. 

 

9 Nomenclature 
 

α = aspect ratio, fraction 

D = diameter, L, m 

Ε = Young’s modulus, m/Lt
2 
, GPa 

GPa  =            giga (1e9) Pascal, m/Lt
2
  

L = length, L, m  

m = Mass, m, kg 

MPa  =            mega (1e6) Pascal, m/Lt2  

: =  friction coefficient, dimensionless 

ρ = density, m/L
3
, kg/m

3 

∆C
 = Critical time-step, t, seconds 

ν = Poisson’s ratio, fraction 
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