454 research outputs found

    Effects of capacitors non-idealities in un-even split-capacitor array SAR ADCs

    Get PDF
    This paper studies the effects of capacitors non-idealities in the performance of un-even split-capacitor SAR ADCs. Also, election of the m and l bits of MSB and LSB capacitors banks, respectively, is studied to reduce SAR errors.To exemplify and quantify the non-idealities, MOM capacitors are used. In particular, MOM layout parasitics and effective capacitor’s value is obtained with an electrical extraction tool using a flattened view of the MOM. Effects of capacitors layout placement in the SAR and their surroundings in the effective capacitance value are quantified. A quantitative study of a 10-bit un-even split-capacitor SAR is done for different combinations of m and l bits. Finally, a qualitative set of guidelines to choose the distribution of these bits is listed

    Analog layout design automation: ILP-based analog routers

    Get PDF
    The shrinking design window and high parasitic sensitivity in the advanced technology have imposed special challenges on the analog and radio frequency (RF) integrated circuit design. In this thesis, we propose a new methodology to address such a deficiency based on integer linear programming (ILP) but without compromising the capability of handling any special constraints for the analog routing problems. Distinct from the conventional methods, our algorithm utilizes adaptive resolutions for various routing regions. For a more congested region, a routing grid with higher resolution is employed, whereas a lower-resolution grid is adopted to a less crowded routing region. Moreover, we strengthen its speciality in handling interconnect width control so as to route the electrical nets based on analog constraints while considering proper interconnect width to address the acute interconnect parasitics, mismatch minimization, and electromigration effects simultaneously. In addition, to tackle the performance degradation due to layout dependent effects (LDEs) and take advantage of optical proximity correction (OPC) for resolution enhancement of subwavelength lithography, in this thesis we have also proposed an innovative LDE-aware analog layout migration scheme, which is equipped with our special routing methodology. The LDE constraints are first identified with aid of a special sensitivity analysis and then satisfied during the layout migration process. Afterwards the electrical nets are routed by an extended OPC-inclusive ILP-based analog router to improve the final layout image fidelity while the routability and analog constraints are respected in the meantime. The experimental results demonstrate the effectiveness and efficiency of our proposed methods in terms of both circuit performance and image quality compared to the previous works

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    Cmos Rotary Traveling Wave Oscillators (Rtwos)

    Get PDF
    Rotary Traveling Wave Oscillator (RTWO) represents a transmission line based technology for multi-gigahertz multiple phase clock generation. RTWO is known for providing low jitter and low phase noise signals but the issue of high power consumption is a major drawback in its application. Direction of wave propagation is random and is determined by the least resistance path in the absence of an external direction control circuit. The objective of this research is to address some of the problems of RTWO design, including high power consumption, uncertainty of propagation direction and optimization of design variables. Included is the modeling of RTWO for sensitivity, phase noise and power analysis. Research objectives were met through design, simulation and implementation. Different designs of RTWO in terms of ring size and number of amplifier stages were implemented and tested. Design tools employed include Agilent ADS, Cadence EDA, SONNET and Altium PCB Designer. Test chip was fabricated using IBM 0.18 μm RF CMOS technology. Performance measures of interest are tuning range, phase noise and power consumption. Agilent ADS and SONNET were used for electromagnetic modeling of transmission lines and electromagnetic field radiation. For each design, electromagnetic simulations were carried out followed by oscillation synthesis based on circuit simulation in Cadence Spectre. RTWO frequencies between 2 GHz and 12 GHz were measured based on the ring size of transmission lines. Simulated microstrip transmission line segments had a quality factor between 5.5 and 18. For the various designs, power consumption ranged from 20 mW to 120 mW. Measured phase noise ranged between -123 dBc/Hz and -87 dBc/Hz at 1 MHz offset. Development also included the design of a wide band buffer and a printed circuit board with high signal integrity for accurate measurement of oscillation frequency and other performance measures. Simulated performance, schematics and measurement results are presented

    A Continuous-Time Delta-Sigma ADC for Portable Ultrasound Scanners

    Get PDF
    A fully differential fourth-order 1-bit continuous-time delta-sigma ADC designed in a 65nm process for portable ultrasound scanners is presented in this paper. The circuit design, implementation and measurements on the fabricated die are shown. The loop filter consists of RC-integrators, programmable capacitor arrays, resistors and voltage feedback DACs. The quantizer contains a pulse generator, a high-speed clocked comparator and a pull-down clocked latch to ensure constant delay in the feedback loop. Using this implementation, a small and low-power solution required for portable ultrasound scanner applications is achieved. The converter has a supply voltage of 1.2V, a bandwidth of 10MHz and an oversampling ratio of 16 leading to an operating frequency of 320MHz. The design occupies a die area of 0.0175mm2. Simulations with extracted parasitics show a SNR of 45.2dB and a current consumption of 489 µA. However, by adding a model of the measurement setup used, the performance degrades to 42.1dB. The measured SNR and current consumption are 41.6dB and 495 µA, which closely fit with the expected simulations. Several dies have been measured, and an estimation of the die spread distribution is given

    Energy-efficient analog-to-digital conversion for ultra-wideband radio

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 207-222).In energy constrained signal processing and communication systems, a focus on the analog or digital circuits in isolation cannot achieve the minimum power consumption. Furthermore, in advanced technologies with significant variation, yield is traditionally achieved only through conservative design and a sacrifice of energy efficiency. In this thesis, these limitations are addressed with both a comprehensive mixed-signal design methodology and new circuits and architectures, as presented in the context of an analog-to-digital converter (ADC) for ultra-wideband (UWB) radio. UWB is an emerging technology capable of high-data-rate wireless communication and precise locationing, and it requires high-speed (>500MS/s), low-resolution ADCs. The successive approximation register (SAR) topology exhibits significantly reduced complexity compared to the traditional flash architecture. Three time-interleaved SAR ADCs have been implemented. At the mixed-signal optimum energy point, parallelism and reduced voltage supplies provide more than 3x energy savings. Custom control logic, a new capacitive DAC, and a hierarchical sampling network enable the high-speed operation. Finally, only a small amount of redundancy, with negligible power penalty, dramatically improves the yield of the highly parallel ADC in deep sub-micron CMOS.by Brian P. Ginsburg.Ph.D

    Reconfigurable pixel antennas for communications

    Get PDF
    The explosive growth of wireless communications has brought new requirements in terms of compactness, mobility and multi-functionality that pushes antenna research. In this context, recon gurable antennas have gained a lot of attention due to their ability to adjust dynamically their frequency and radiation properties, providing multiple functionalities and being able to adapt themselves to a changing environment. A pixel antenna is a particular type of recon gurable antenna composed of a grid of metallic patches interconnected by RF-switches which can dynamically reshape its active surface. This capability provides pixel antennas with a recon guration level much higher than in other recon gurable architectures. Despite the outstanding recon guration capabilities of pixel antennas, there are important practical issues related to the performance-complexity balance that must be addressed before they can be implemented in commercial systems. This doctoral work focuses on the minimization of the pixel antenna complexity while maximizing its recon guration capabilities, contributing to the development of pixel antennas from a conceptual structure towards a practical recon gurable antenna architecture. First, the conceptualization of novel pixel geometries is addressed. It is shown that antenna complexity can be signi cantly reduced by using multiple-sized pixels. This multi-size technique allows to design pixel antennas with a number of switches one order of magnitude lower than in common pixel structures, while preserving high multiparameter recon gurability. A new conceptual architecture where the pixel surface acts as a parasitic layer is also proposed. The parasitic nature of the pixel layer leads to important advantages regarding the switch biasing and integration possibilities. Secondly, new pixel recon guration technologies are explored. After investigating the capabilities of semiconductors and RF-MEMS switches, micro uidic technology is proposed as a new technology to create and remove liquid metal pixels rather than interconnecting them. Thirdly, the full multi-parameter recon guration capabilities of pixel antennas is explored, which contrasts with the partial explorations available in the literature. The maximum achievable recon guration ranges (frequency range, beam-steering angular range and polarization modes) as well as the linkage between the di erent parameter under recon guration are studied. Finally, the performance of recon gurable antennas in beam-steering applications is analyzed. Figures-of-merit are derived to quantify radiation pattern recon gurability, enabling the evaluation of the performance of recon gurable antennas, pixel antennas and recon guration algorithms

    Switched capacitor converters:a new approach for high power applications

    Get PDF
    High-power, high-voltage and high voltage-conversion ratio DC-DC converters are an enabling technology for offshore DC grids of the future. These converters are required to interface between offshore wind farms and an offshore DC grid and a key design issue is the size and weight of the converter, which significantly impacts the cost of the associated off-shore platform. In addition to this application, some rural communities, particularly in Canada, Australia and South Africa,which are located far away from the electrical power generators, can take the advantages of this technology by tapping into existing HVDC transmission line using a high voltage-conversion ratio DC-DC converter. The work described in this thesis is an investigation as to how such DC-DC converters may be realised for these applications. First a review of existing DC-DC converters was carried out to assess their suitability for the target applications. A classification of DC-DC converters into Direct and Indirect converters was proposed in this work based on the manner in which the energy is transferred from the input to the output terminal of the converter. Direct DC-DC converters, particularly Switched Capacitor(SC) converters are more promising for high-voltage, high-power and high voltage-conversion ratio applications, since the converter can interface between the low-voltage and the high-voltage terminals using low-voltage and low-power power electronic modules. Existing SC topologies were examined to identify the most promising candidate circuits for the target applications. Four SC synthesis techniques were proposed in order to derive new SC circuits from existing topologies. A new 2-Leg Ladder, modular 2-Leg Ladder and bi-pole 2-Leg Ladder were devised, which had significant benefits in terms of size and weight when compared with existing circuits. A scaled power 1 kW converter was built in the laboratory in order to validate the analysis and compare the performance of the new 2-Leg ladder circuit against a conventional Ladder circuit, where it was shown that the new circuit had higher efficiency, smaller size and lower output voltage ripple than the Ladder converter

    축차 비교형 아날로그-디지털 변환기의 성능 향상을 위한 기법에 대한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 김수환.This thesis is written about a performance enhancement technique for the successive-approximation-register analog-to-digital converter (SAR ADC). More specifically, it focuses on improving the resolution of the SAR ADC. The basic operation principles and the architecture of the conventional SAR ADC is examined. To gain insight on areas of improvement, a deeper look is taken at the building components of the SAR ADC. Design considerations of these components are discussed, along with the performance limiting factors in the resolution and bandwidth domains. Prior works which challenge these problems in order to improve the performance of the SAR ADC are presented. To design SAR ADCs, a high-level modeling is presented. This model includes various non-ideal effects that occur in the design and operation. Simulation examples are shown how the model is efficient and useful in the initial top-level designing of the SAR ADC. Then, the thesis proposes a technique that can enhance the resolution. The SAR ADC using integer-based capacitor digital-to-analog converter (CDAC) exploiting redundancy is presented. This technique improves the mismatch problem that arises with the widely used split-capacitor structure in the CDAC of the SAR ADC. Unlike prior works, there is no additional overhead of additional calibration circuits or reference voltages. A prototype SAR ADC which uses the integer-based CDAC exploiting redundancy is designed for automotive applications. Measurement results show a resolution level of 12 bits even without any form of calibration. Finally, the conclusion about the operation and effectiveness on the proposed technique is drawn.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 CONVENTIONAL SUCCESSIVE-APPROXIMATION-REGISTER ANALOG-TO-DIGITAL CONVERTERS 7 2.1 INTRODUCTION 7 2.2 OPERATION PRINCIPLE OF THE CONVENTIONAL SAR ADC 8 2.2.1. OVERVIEW OF THE OPERATION 8 2.2.2. SAMPLING PHASE 10 2.2.3. CONVERSION PHASE 11 2.3 STRUCTURE OF THE CONVENTIONAL SAR ADC 15 2.3.1. FULL STRUCTURE OF THE CONVENTIONAL SAR ADC 15 2.3.2. CAPACITOR DIGITAL-TO-ANALOG CONVERTER (CDAC) 17 2.3.3. COMPARATOR 21 2.3.4. CONTROL LOGIC 23 2.4 PERFORMANCE LIMITING FACTORS 24 2.4.1. RESOLUTION LIMITING FACTORS 24 2.4.2. OPERATION BANDWIDTH LIMITING FACTORS 28 2.5 PRIOR WORK 30 2.5.1. INTRODUCTION 30 2.5.2. SPLIT-CAPACITOR STRUCTURE OF THE CDAC 31 2.5.3. REDUNDANCY AND CDAC WEIGHT DISTRIBUTION 33 2.5.4. ASYNCHRONOUS CONTROL LOGIC 36 2.5.5. CALIBRATION TECHNIQUES 37 2.5.4. DOUBLE-SAMPLING TECHNIQUE FOR SAMPLING TIME REDUCTION 38 2.5.6. TWO-COMPARATOR ARCHITECTURE FOR COMPARATOR DECISION TIME REDUCTION 40 2.5.7. MAJORITY VOTING FOR RESOLUTION ENHANCEMENT 41 CHAPTER 3 MODELING OF THE SAR ADC 43 3.1 INTRODUCTION 43 3.2 WEIGHT DISTRIBUTION OF THE CAPACITOR DAC AND REDUNDANCY 44 3.3 SPLIT-CAPACITOR ARRAY TECHNIQUE 47 3.4 PARASITIC EFFECTS OF THE CAPACITOR DAC 48 3.5 MISMATCH MODEL OF THE CAPACITOR DAC 51 3.6 SETTLING ERROR OF THE DAC 53 3.7 COMPARATOR DECISION ERROR 58 3.8 DIGITAL ERROR CORRECTION 59 CHAPTER 4 SAR ADC WITH INTEGER-BASED SPLIT-CDAC EXPLOITING REDUNDANCY FOR AUTOMOTIVE APPLICATIONS 60 4.1 INTRODUCTION 60 4.2 MOTIVATION 61 4.3 PRIOR WORK ON RESOLVING THE SPLIT-CAPACITOR CDAC MISMATCH FOR THE SAR ADC 64 4.3.1. CONVENTIONAL SPLIT-CAPACITOR CDAC FOR THE SAR ADC 64 4.3.2. SPLITTING THE LAST STAGE OF THE LSB-SIDE OF THE CDAC 66 4.3.3. CALIBRATION OF THE NON-INTEGER MULTIPLE BRIDGE CAPACITOR 67 4.3.4. INTEGER-MULTIPLE BRIDGE CAPACITOR WITH LSB-SIDE CAPACITOR ARRAY CALIBRATION 68 4.3.5. OVERSIZED BRIDGE CAPACITOR WITH ADDITIONAL FRACTIONAL REFERENCE VOLTAGE 69 4.4 PROPOSED INTEGER-BASED CDAC EXPLOITING REDUNDANCY FOR THE SAR ADC 70 4.5 CIRCUIT DESIGN 72 4.5.1. PROPOSED INTEGER-BASED CDAC EXPLOITING REDUNDANCY FOR SAR ADC 72 4.5.2. COMPARATOR 74 4.5.3. CONTROL LOGIC 75 4.6 IMPLEMENTATION AND EXPERIMENTAL RESULTS 76 4.6.1. LAYOUT 76 4.6.2. MEASUREMENT RESULTS AND CONCLUSIONS 82 CHAPTER 5 CONCLUSION AND FUTURE WORK 86 5.1 CONCLUSION 86 5.2 FUTURE WORK 87 APPENDIX. SAR ADC USING THRESHOLD-CONFIGURING COMPARATOR FOR ULTRASOUND IMAGING SYSTEMS 89 BIBLIOGRAPHY 120Docto
    corecore