585 research outputs found

    Effect of forming gas annealing on the degradation properties of Ge-based MOS stacks

    Get PDF
    The influence of forming gas annealing on the degradation at a constant stress voltage of multi-layered germanium-based Metal-Oxide-Semiconductor capacitors (p-Ge/GeOx/Al2O3/High-K/Metal Gate) has been analyzed in terms of the C-V hysteresis and flat band voltage as a function of both negative and positive stress fields. Significant differences were found for the case of negative voltage stress between the annealed and non-annealed samples, independently of the stressing time. It was found that the hole trapping effect decreases in the case of the forming gas annealed samples, indicating strong passivation of defects with energies close to the valence band existing in the oxide-semiconductor interface during the forming gas annealing. Finally, a comparison between the degradation dynamics of Germanium and III-V (n-InGaAs) MOS stacks is presented to summarize the main challenges in the integration of reliable Ge–III-V hybrid devices.Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Pazos, Sebastián Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Palumbo, Félix Roberto Mario. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; ArgentinaFil: Fadida, S.. Technion - Israel Institute of Technology; IsraelFil: Winter, R.. Technion - Israel Institute of Technology; IsraelFil: Eizenberg, M.. Technion - Israel Institute of Technology; Israe

    HfO2 as gate dielectric on Si and Ge substrate

    Get PDF
    Hafnium oxide HfO2 has been considered as an alternative to silicon dioxide SiO2 in future nano-scale complementary metal-oxide-semiconductor (CMOS) devices since it provides the required capacitance at the reduced device size because of its high dielectric constant. HfO2 films are currently deposited by various techniques. Many of them require high temperature annealing that can impact device performance and reliability. In this research, electrical characteristics of capacitors with HfO2 as gate dielectric deposited by standard thermal evaporation and e-beam evaporation on Si and Ge substrates were investigated. The dielectric constant of HfO2 deposited by thermal evaporation on Si is in the range of 18-25. Al/HfO2/Si MOS capacitors annealed at 450°C show low hysteresis, leakage current density and bulk oxide charges. Interface state density and low temperature charge trapping behavior of these structures were also investigated. Degradation in surface carrier mobility has been reported in Si field-effect-transistors with HfO2 as gate dielectric. To explore the possibility of alleviating this problem we have used germanium (Ge) substrate as this semiconductor has higher carrier mobility than Si. Devices fabricated by depositing HfO2 directly on Ge by standard thermal evaporation were found to be too leaky and show significant hysteresis and large shift in flatband voltage. This deterioration in electrical performance is mainly due to the formation of unstable interfacial layer of GeO2 during the HfO2 deposition. To minimize this effect, Ge surface was treated with the beam of atomic nitrogen prior to the dielectric deposition. The effect of surface nitridation, on interface as well as on bulk oxide, trap energy levels were investigated using low temperature C-V measurements. They revealed additional defect levels in the nitrided devices indicating diffusion of nitrogen from interface into the bulk oxide. Impact of surface nitridation on the reliability of Ge/HfO2/Al MOS capacitors has been investigated by application of constant voltage stress at different voltage levels for various time periods. It was observed that deeper trap levels in nitrided devices, found from low frequency and low temperature measurements, trap the charge carrier immediately after stress but with time these carriers detrap and create more traps inside the bulk oxide resulting in further devices deterioration. It is inferred that though nitrogen is effective in reducing interfacial layer growth it incorporates more defects at interface as well as in bulk oxide. Therefore, it is important to look into alternative methods of surface passivation to limit the growth of GeO2 at the interface

    A III-V channel field effect transistor for non-classical CMOS: process optimisation for improved gate stack function

    Get PDF
    This thesis describes a collection of studies into the electrical response of a III-V MOS stack comprising metal/GaGdO/GaAs layers as a function of fabrication process variables and the findings of those studies. As a result of this work, areas of improvement in the gate process module of a III-V heterostructure MOSFET were identified. Compared to traditional bulk silicon MOSFET design, one featuring a III-V channel heterostructure with a high-dielectric-constant oxide as the gate insulator provides numerous benefits, for example: the insulator can be made thicker for the same capacitance, the operating voltage can be made lower for the same current output, and improved output characteristics can be achieved without reducing the channel length further. It is known that transistors composed of III-V materials are most susceptible to damage induced by radiation and plasma processing. These devices utilise sub-10 nm gate dielectric films, which are prone to contamination, degradation and damage. Therefore, throughout the course of this work, process damage and contamination issues, as well as various techniques to mitigate or prevent those have been investigated through comparative studies of III-V MOS capacitors and transistors comprising various forms of metal gates, various thicknesses of GaGdO dielectric, and a number of GaAs-based semiconductor layer structures. Transistors which were fabricated before this work commenced, showed problems with threshold voltage control. Specifically, MOSFETs designed for normally-off (VTH > 0) operation exhibited below-zero threshold voltages. With the results obtained during this work, it was possible to gain an understanding of why the transistor threshold voltage shifts as the gate length decreases and of what pulls the threshold voltage downwards preventing normally-off device operation. Two main culprits for the negative VTH shift were found. The first was radiation damage induced by the gate metal deposition process, which can be prevented by slowing down the deposition rate. The second was the layer of gold added on top of platinum in the gate metal stack which reduces the effective work function of the whole gate due to its electronegativity properties. Since the device was designed for a platinum-only gate, this could explain the below zero VTH. This could be prevented either by using a platinum-only gate, or by matching the layer structure design and the actual gate metal used for the future devices. Post-metallisation thermal anneal was shown to mitigate both these effects. However, if post-metallisation annealing is used, care should be taken to ensure it is performed before the ohmic contacts are formed as the thermal treatment was shown to degrade the source/drain contacts. In addition, the programme of studies this thesis describes, also found that if the gate contact is deposited before the source/drain contacts, it causes a shift in threshold voltage towards negative values as the gate length decreases, because the ohmic contact anneal process affects the properties of the underlying material differently depending on whether it is covered with the gate metal or not. In terms of surface contamination; this work found that it causes device-to-device parameter variation, and a plasma clean is therefore essential. This work also demonstrated that the parasitic capacitances in the system, namely the contact periphery dependent gate-ohmic capacitance, plays a significant role in the total gate capacitance. This is true to such an extent that reducing the distance between the gate and the source/drain ohmic contacts in the device would help with shifting the threshold voltages closely towards the designed values. The findings made available by the collection of experiments performed for this work have two major applications. Firstly, these findings provide useful data in the study of the possible phenomena taking place inside the metal/GaGdO/GaAs layers and interfaces as the result of chemical processes applied to it. In addition, these findings allow recommendations as to how to best approach fabrication of devices utilising these layers

    The ReaxFF reactive force-field : development, applications and future directions

    Get PDF
    The reactive force-field (ReaxFF) interatomic potential is a powerful computational tool for exploring, developing and optimizing material properties. Methods based on the principles of quantum mechanics (QM), while offering valuable theoretical guidance at the electronic level, are often too computationally intense for simulations that consider the full dynamic evolution of a system. Alternatively, empirical interatomic potentials that are based on classical principles require significantly fewer computational resources, which enables simulations to better describe dynamic processes over longer timeframes and on larger scales. Such methods, however, typically require a predefined connectivity between atoms, precluding simulations that involve reactive events. The ReaxFF method was developed to help bridge this gap. Approaching the gap from the classical side, ReaxFF casts the empirical interatomic potential within a bond-order formalism, thus implicitly describing chemical bonding without expensive QM calculations. This article provides an overview of the development, application, and future directions of the ReaxFF method

    Silicon Nanowire FinFETs

    Get PDF

    Advanced gate stacks for nano-scale CMOS technology

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ランダム・テレグラフ・ノイズの微細MOSFETへの影響に関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    Development of inversion-mode and junctionless Indium-Gallium-Arsenide MOSFETs

    Get PDF
    This PhD covers the development of planar inversion-mode and junctionless Al2O3/In0.53Ga0.47As metal-oxidesemiconductor field-effect transistors (MOSFETs). An implant activation anneal was developed for the formation of the source and drain (S/D) of the inversionmode MOSFET. Fabricated inversion-mode devices were used as test vehicles to investigate the impact of forming gas annealing (FGA) on device performance. Following FGA, the devices exhibited a subthreshold swing (SS) of 150mV/dec., an ION/IOFF of 104 and the transconductance, drive current and peak effective mobility increased by 29%, 25% and 15%, respectively. An alternative technique, based on the fitting of the measured full-gate capacitance vs gate voltage using a selfconsistent Poisson-Schrödinger solver, was developed to extract the trap energy profile across the full In0.53Ga0.47As bandgap and beyond. A multi-frequency inversion-charge pumping approach was proposed to (1) study the traps located at energy levels aligned with the In0.53Ga0.47As conduction band and (2) separate the trapped charge and mobile charge contributions. The analysis revealed an effective mobility (μeff) peaking at ~2850cm2/V.s for an inversion-charge density (Ninv) = 7*1011cm2 and rapidly decreasing to ~600cm2/V.s for Ninv = 1*1013 cm2, consistent with a μeff limited by surface roughness scattering. Atomic force microscopy measurements confirmed a large surface roughness of 1.95±0.28nm on the In0.53Ga0.47As channel caused by the S/D activation anneal. In order to circumvent the issue relative to S/D formation, a junctionless In0.53Ga0.47As device was developed. A digital etch was used to thin the In0.53Ga0.47As channel and investigate the impact of channel thickness (tInGaAs) on device performance. Scaling of the SS with tInGaAs was observed for tInGaAs going from 24 to 16nm, yielding a SS of 115mV/dec. for tInGaAs = 16nm. Flat-band μeff values of 2130 and 1975cm2/V.s were extracted on devices with tInGaAs of 24 and 20nm, respectivel

    Crecimiento de dieléctricos de alta permitividad mediante pulverización catódica de alta presión a partir de blancos metálicos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Aplicada III (Electricidad y Electrónica), leída el 07/07/2016The integrated circuit based on complementary metal-oxide-semiconductor (CMOS) devices is currently the dominant technology in the microelectronic industry. Their success is based on their low static power consumption and their high integration density. The metal-oxide-semiconductor field effect transistors (MOSFETs) are the main component of this technology. Their dimensions have been decreasing during the last years following the Moore’s law. This downscaling has made possible their continuous performance improvement. However, the size shrinking produced an excessive increase in the leakage current density that made this technology to face several challenges. The introduction of high permittivity (κ) dielectrics permits the use of a thicker insulator film (thus, reducing the leakage current) but with a lower equivalent SiO2 thickness (EOT). Besides, the introduction of these materials also required a change in the poly-Si electrode, that became a pure metal. The main objective of this thesis was the fabrication of metal-insulator-semiconductor (MIS) structures using high κ dielectrics grown from metallic targets. This was performed by means of high pressure sputtering (HPS). The advantage introduced by this system is that, due to the high working pressure, the particles suffer many collisions (because their mean free path is much lower than the target-substrate distance) and get thermalized before reaching the substrate in a pure diffusion process. This way, the semiconductor surface damage is preserved. The key novelty of this work consisted on the fabrication process using metallic targets. A two-step deposition process was developed: first, a thin metallic film is sputtered in an Ar atmosphere and, afterwards, this film was in situ oxidized...Los circuitos integrados basados en los dispositivos CMOS (complementary metal-oxide-semiconductor) son en la actualidad la tecnología dominante de la industria microelectrónica. Su éxito se basa en su bajo consumo de potencia estática y en su alta capacidad de integración. Esto ha hecho que las dimensiones de los transistores de efecto campo metal-óxido-semiconductor (MOSFET, metal-oxide-semiconductor field effect transistor), que es el dispositivo principal de dicha tecnología, se hayan ido reduciendo durante los últimos años de acuerdo a la ley de Moore. A medida que los tamaños se fueron reduciendo, proceso habitualmente denominado escalado, las prestaciones de los transistores mejoraban. Sin embargo, esta continua reducción de los transistores lleva asociada una excesiva corriente de fugas que hace que los transistores dejen de funcionar de una manera óptima. Por tanto, los dieléctricos de alta permitividad (κ) se introdujeron para permitir emplear aislantes de mayor espesor físico (y así reducir las fugas), pero con un menor espesor de óxido de silicio equivalente (EOT, equivalent oxide thickness). El cambio en el material aislante de la puerta lleva asociado también un cambio en el electrodo metálico...Depto. de Estructura de la Materia, Física Térmica y ElectrónicaFac. de Ciencias FísicasTRUEunpu
    corecore