228 research outputs found

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    DESIGN OF RF RECEIVER COMPONENTS FOR SPACE APPLICATION SUSING SIGE BICMOS

    Get PDF
    The objective of the proposed research is to understand the behavior of components in SiGe BiCMOS technologies to the radiation environment present in space, and use such understanding to inform the design and testing of RF receiver components for space-flight applications. To evaluate the response of SiGe HBTs to various types of radiation, exposure to X-rays is performed to emulate operation in the space environment. Degradation in relevant device performance characteristics is considered as it changes with longer exposures. Then, implications of impaired device performance are demonstrated for circuit components commonly present in RF receivers for both radar and communications, and design considerations for operation in space are discussed.M.S

    PADRE pixel read-out architecture for Monolithic Active Pixel Sensor for the new ALICE Inner Tracking System in TowerJazz 180 nm technolog

    Full text link
    ALICE (A Large Ion Collider Experiment) is the heavy-ion experiment at the Large Hadron Collider (LHC) at CERN. As an important part of its upgrade plans, the ALICE experiment will schedule the installation of a new Inner Tracking System (ITS) during the Long Shutdown 2 (LS2) of the LHC. The new ITS layout will consist of seven concentric layers, ¿ 12.5 Gigapixel camera covering about 10m2 with Monolithic Active Pixel Sensors (MAPS). This choice of technology has been guided by the tight requirements on the material budget of 0.3% X/X0 per layer for the three innermost layers and backed by the significant progress in the field of MAPS in recent years. The technology initially chosen for the ITS upgrade is the TowerJazz 180 nm CMOS Technology. It offers a standard epitaxial layer of 15 - 18 µm with a resistivity between 1 and 5 k¿ cm¿1 and a gate oxide thickness below 4 nm, thus being more robust to Total Ionizing Dose (TID). The main subject of this thesis is to implement a novel digital pixel readout architecture for MAPS. This thesis aims to study this novel readout architecture as an alternative to the rolling-shutter readout. However, this must be investigated through the study of several chip readout architectures during the R&D phase. Another objective of this thesis is the study and characterization of TowerJazz, if it meets the Non-Ionizing Energy Loss (NIEL) and Single Event Effects (SEE) of the ALICE ITS upgrade program. Other goals of this thesis are: ¿ Implementation of the top-down flow for this CMOS process and the design of multiple readouts for different prototypes up to the assembly of a full-scale prototype. xvii Abstract ¿ Characterization of the radiation hardness and SEE of the chips submitted to fabrication. ¿ Characterization of full custom designs using analog simulations and the generation of digital models for the simulation chain needed for the verification process. ¿ Implementation and study of different digital readouts to meet the ITS upgrade program in integration time, pixel size and power consumption, from the conceptual idea, production and fabrication phase. Chapter 1 is a brief overview of CERN, the LHC and the detectors complex. The ALICE ITS will be explained, focusing on the ITS upgrade in terms of detector needs and design constraints. Chapter 2 explains the properties of silicon detectors and the detector material and the principles of operation for MAPS. Chapters 3 and 4 describe the ALPIDE prototypes and their readout based on MAPS; this forms the central part of this work, including the multiple families of pixel detectors fabricated in order to reach the final design for the ITS. The ALPIDE3/pALPIDE3B chip, the latest MAPS chip designed, will be explained in detail, as well focusing in the matrix digital readout. In chapter 5 the noise measurements and its characterization are presented including a brief summary of detector response to irradiation with soft X-rays, sources and particle beams.El sub detector ITS (Inner Tracking System) del detector ALICE (A Large Ion Collider Experiment) es un detector de vértice y es el detector mas cercano al punto de interacción. Se encuentra conformado por 3 tipos de subdetectores, dos capas de pixel de silicio (Silicon Pixel Detectors), 2 capas de acumulación de silicio (Silicon Drift Detectors) y 2 capas de banda de Silicio (Silicon Strip Detectors). La función primaria del ITS es identificar y rastrear las partículas de bajo momentum transversal. El detector ITS en sus dos capas más internas están equipadas con sensores de silicio basados en píxeles híbridos. Para reemplazar esta tecnología de Píxeles, el detector ITS actual será reemplazado por un nuevo detector de una sola tecnología, ampliando su resolución espacial y mejorando el rastreo de trazas. Este nuevo detector constará de siete capas de sensores de píxeles activos monolíticos (MAPS), las cuales deberán satisfacer los requerimientos de presupuesto de materiales y ser tolerantes a mayores niveles de radiación para los nuevos escenarios de incrementos de luminosidad y mayores tasas de colisiones. Los sensores MAPS que integran el sensor de imagen y los circuitos de lectura se encuentran en la misma oblea de silicio, tienen grandes ventajas en una buena resolución de posición y un bajo presupuesto material en términos de bajo coste de producción. TowerJazz ofrece la posibilidad de una cuádruple-WELL aislando los transistores pMOS que se encuentran en la misma nWELL evitando la competencia con el electrodo de recolección, permitiendo circuitos mas complejos y compactos para ser implementados dentro de la zona activa y además posee una capa epitaxial de alta resistividad. Esta tecnología proporciona una puerta de óxido muy delgado limitando el daño superficial por la radiación haciéndolo adecuado para su uso denxiii Resúmen tro del experimento ALICE. En los últimos cuatro años se ha llevado a cabo una intensiva I+D en MAPS en el marco de la actualización del ITS de ALICE. Varios prototipos a pequeña escala se han desarrollado y probado exitosamente con rayos X, fuentes radioactivas y haces de partículas. La tolerancia a la radiación de ALICE ITS es moderada con una tolerancia de irradiación TID de 700 krad y NIEL de 1 × 1013 1 MeV neqcm¿2 , MAPS es una opción viable para la actualización del ITS. La contribución original de esta tesis es la implementación de una nueva arquitectura digital de lectura de píxeles para MAPS. Esta tesis presenta un codificador asíncrono de direcciones (arquitectura basada en la supresión de ceros transmitiendo la dirección de los píxeles excitados denominada PADRE) para la arquitectura ALPIDE, el autor también hizo una contribución significativa en el ensamblaje y veri- ficación de circuitos. PADRE es la principal investigación del autor, basada en un codificador de prioridad jerárquica de cuatro entradas y es una alternativa a la arquitectura de lectura rolling-shutter. Además de los prototipos a pequeña escala, también se han desarrollado prototipos a escala completa a las necesidades del detector ITS (15 mm y 30 mm) empleando un nuevo circuito de lectura basado en la versión personalizada del circuito PADRE. El pALPIDEfs fue el primer prototipo a escala completa y se caracterizó obteniendo un tiempo de lectura de la matriz por debajo de 4 µs y un consumo de energía en el orden de 80 mWcm¿2 . En general, los resultados obtenidos representan un avance significativo de la tecnología MAPS en cuanto al consumo de energía, velocidad de lectura, tiempo de recolección de carga y tolerancia a la radiación. El sensor pALPIDE2 ha demostrado ser una opción muy atractiva para el nuevo detector ITS, satisfaciendo los requerimientos en términos de eficiencia de detección, fake-hit rate y resolución de posición, ya que su rendimiento no puede alcanzarse mediante prototipos basados en la arquitectura de lectura tradicionales como esEl subdetector ITS (Inner Tracking System) del detector ALICE (A Large Ion Collider Experiment) és un detector de vèrtex i és el detector mes proper al punt d'interacció. Es troba conformat per 3 tipus de subdetectors, dues capes de píxel de silici (Silicon Pixel Detectors), 2 capes d'acumulació de silici (Silicon Drift Detectors) i 2 capes de banda de Silici (Silicon Strip Detectors). La funció primària del ITS és identificar i rastrejar les partícules de baix moment transversal. El detector ITS en les seues dues capes més internes estan equipades amb sensors de silici basats en píxels híbrids. Per a reemplaçar aquesta tecnologia de Píxels, el detector ITS actual serà reemplaçat per un nou detector d'una sola tecnologia, ampliant la seua resolució espacial i millorant el rastreig de traces. Aquest nou detector constarà de set capes de sensors de píxels actius monolítics (MAPS), les quals hauran de satisfer els requeriments de pressupost de materials i ser tolerants a majors nivells de radiació per als nous escenaris d'increments de lluminositat i majors taxes de col·lisions. Els sensors MAPS que integren el sensor d'imatge i els circuits de lectura es troben en la mateixa hòstia de silici, tenen grans avantatges en una bona resolució de posició i un baix pressupost material en termes de baix cost de producció. TowerJazz ofereix la possibilitat d'una quàdruple-WELL aïllant els transistors pMOS que es troben en la mateixa nWELL evitant la competència amb l'elèctrode de recol·lecció, permetent circuits mes complexos i compactes per a ser implementats dins de la zona activa i a més posseeix una capa epitaxial d'alta resistivitat. Aquesta tecnologia proporciona una porta d'òxid molt prim limitant el dany superficial per la radiació fent-ho adequat per al seu ús dins de l'- experiment ALICE. En els últims quatre anys s'ha dut a terme una intensiva R+D en MAPS en el marc de l'actualització del ITS d'ALICE. Diversos prototips a petita escala s'han desenvolupat i provat ix Resum reeixidament amb rajos X, fonts radioactives i feixos de partícules. La tolerància a la radiació d'ALICE ITS és moderada amb una tolerància d'irradiació TID de 700 krad i NIEL d'1× 1013 1MeV neqcm¿2 , MAPS és una opció viable per a l'actualització del ITS. La contribució original d'aquesta tesi és la implementació d'una nova arquitectura digital de lectura de píxels per a MAPS. Aquesta tesi presenta un codificador asíncron d'adreces (arquitectura basada en la supressió de zeros transmetent l'adreça dels píxels excitats denominada PADRE) per a l'arquitectura ALPIDE, l'autor també va fer una contribució significativa en l'assemblatge i verificació de circuits. PADRE és la principal recerca de l'autor, basada en un codificador de prioritat jeràrquica de quatre entrades i és una alternativa a l'arquitectura de lectura rolling-shutter. A més dels prototips a petita escala, també s'han desenvolupat prototips a escala completa a les necessitats del detector ITS (15 mm i 30 mm) emprant un nou circuit de lectura basat en la versió personalitzada del circuit PADRE. El pALPIDEfs va ser el primer prototip a escala completa i es va caracteritzar obtenint un temps de lectura de la matriu per sota de 4 µs i un consum d'energia en l'ordre de 80 mWcm¿2 . En general, els resultats obtinguts representen un avanç significatiu de la tecnologia MAPS quant al consum d'energia, velocitat de lectura, temps de recol·lecció de càrrega i tolerància a la radiació. El sensor pALPIDE2 ha demostrat ser una opció molt atractiva per al nou detector ITS, satisfent els requeriments en termes d'eficiència de detecció, fake-hit rate i resolució de posició, ja que el seu rendiment no pot aconseguir-se mitjançant prototips basats en l'arquitectura de lectura tradicionals com és el rolling-shutter dissenyat en la mateixa tecnologia. Per aquesta raó, la R+D en els prototips ALPIDE ha continuat amb l'objectiu d'optimitzaMarín Tobón, CA. (2017). PADRE pixel read-out architecture for Monolithic Active Pixel Sensor for the new ALICE Inner Tracking System in TowerJazz 180 nm technolog [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86154TESI

    Implementation and Characterisation of Monolithic CMOS Pixel Sensors for the CLIC Vertex and Tracking Detectors

    Get PDF
    Different CMOS technologies are being considered for the vertex and tracking layers of the detector at the proposed high-energy e+^{+}e−^{−} Compact Linear Collider (CLIC). CMOS processes have been proven to be suitable for building high granularity, large area detector systems with low material budget and low power consumption. An effort is put on implementing detectors capable of performing precise timing measurements. Two Application-Specific Integrated Circuits (ASICs) for particle detection have been developed in the framework of this thesis, following the specifications of the CLIC vertex and tracking detectors. The process choice was based on a study of the features of each of the different available technologies and an evaluation of their suitability for each application. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a pixelated detector chip designed to be used in capacitively coupled assemblies with the CLICpix2 readout chip, in the framework of the vertex detector at CLIC. The chip comprises a matrix of 128×128 square pixels with 25 µm pitch. A commercial 180 nm High-Voltage (HV) CMOS process was used for the C3PD design. The charge is collected with a large deep N-well, while each pixel includes a preamplifier placed on top of the collecting electrode. The C3PD chip was produced on wafers with different values for the substrate resistivity (∼ 20, 80, 200 and 1000 Ωcm) and has been extensively tested through laboratory measurements and beam tests. The design details and characterisation results of the C3PD chip will be presented. The CLIC Tracker Detector (CLICTD) is a novel monolithic detector chip developed in the context of the silicon tracker at CLIC. The CLICTD chip combines high density, mixed mode circuits on the same substrate, while it performs a fast time-tagging measurement with 10 ns time bins. The chip is produced in a 180 nm CMOS imaging process with a High-Resistivity (HR) epitaxial layer. A matrix of 16×128 detecting cells, each measuring 300 × 30 µm2^{2} , is included. A small N-well is used to collect the charge generated in the sensor volume, while an additional deep N-type implant is used to fully deplete the epitaxial layer. Using a process split, additional wafers are produced with a segmented deep N-type implant, a modification that has been simulated to result in a faster charge collection time. Each detecting cell is segmented into eight front-ends to ensure prompt charge collection in the sensor diodes. A simultaneous 8-bit timing and 5-bit energy measurement is performed in each detecting cell. A detailed description of the CLICTD design will be given, followed by the first measurement results

    Fully digital-compatible built-in self-test solutions to linearity testing of embedded mixed-signal functions

    Get PDF
    Mixed-signal circuits, especially analog-to-digital and digital-to-analog converters, are the most widely used circuitry in electronic systems. In the most of the cases, mixed-signal circuits form the interface between the analog and digital worlds and enable the processing and recovering of the real-world information. Performance of mixed-signal circuits, such as linearity and noise, are then critical to any applications. Conventionally, mixed-signal circuits are tested by mixed-signal automatic test equipment (ATE). However, along with the continuous performance improvement, using conventionally methods increases test costs significantly since it takes much more time to test high-performance parts than low-performance ones and mixed-signal ATE testers could be extremely expensive depending on the test precision they provide. Another factor that makes mixed-signal testing more and more challenging is the advance of the integration level. In the popular system-on-chip applications, mixed-signal circuits are deeply embedded in the systems. With less observability and accessibility, conventionally external test methods can not guarantee the precision of the source signals and evaluations. Test performance is then degraded. This work investigates new methods using digital testers incorporated with on-chip, built-in self-test circuits to test the linearity performance of data converters with less test cost and better test performance. Digital testers are cheap to use since they only offer logic signals with direct connections. The analog sourcing and evaluation capabilities have to be absorbed by the on-chip BIST circuits, which, meanwhile, could benefit the test performance with access to the internal circuit nodes. The main challenge of the digital-compatible BIST methods is to implement the BIST circuits with enough high test performance but with low design complexity and cost. High-resolution data converter testing needs much higher-precision analog source signals and evaluation circuits. However, high-precision analog circuits are conventionally hard to design and costly, and their performance is subject to mismatch errors and process variations and cannot be guaranteed without careful testing. On the digital side, BIST circuits usually conduct procedure control and data processing. To make the BIST solution more universal, the control and processing performed by the digital BIST circuits should be simple and not rely on any complex microcontroller and DSP block. Therefore, the major tasks of this dissertation are 1) performance-robust analog BIST circuit design and 2) test procedure development. Analog BIST circuits in this work consist of only low-accuracy analog components, which are usually easy to design and cost effective. The precision is then obtained by applying the so-called deterministic dynamic element matching technique to the low-accuracy analog cells. The test procedure and data processing designed for the BIST system are simple and can be implemented by small logic circuits. In this dissertation, we discuss the proposed BIST solutions to ADC and DAC linearity testing in chapter 3 and chapter 5, respectively. In each case, the structure of the test system, the test procedure, and the theoretical analysis of the test performance are presented. Simulation results are shown to verify the efficacy of the methods. The ADC BIST system is also verified experimentally. In addition, chapter 4 introduces a system-identification based reduced-code testing method for pipeline ADCs. This method is able to reduce test time by more than 95%. And it is compatible with the proposed BIST method discussed in chapter 3

    Characterization of radiation-hard monolithic CMOS sensors

    Get PDF
    The work presented in this thesis consists of the characterisation of monolithic CMOS sensors targeting the requirements of the outer-most layer of the ATLAS Inner Tracker after the High Luminosity upgrade of the Large Hadron Collider. Three detectors are investigated: an investigator chip and two large scale demonstrators (MALTA and mini-MALTA). The investigator chip is designed in the standard TowerJazz 180 nm technology and served as a tool to investigate the geometric parameters that affect the pixel capacitance. The MALTA chip is designed in the modified TowerJazz 180 nm technology and implements a novel asynchronous readout to minimise power consumption. The sensor is irradiated with X-rays up to 1.25 MRad to test the resistance of the front-end circuit to ionising radiation effects. The mini-MALTA chip is designed following the results obtained on MALTA and implements an improved front-end and pixel layout to enhance the radiation hardness of MALTA. A similar X-ray irradiation campaign is done for this chip showing good radiation hardness after 80 MRad of TID. Aside from the characterisation work, FPGA-based readouts for the MALTA and mini-MALTA chips were developed in collaboration with the CMOS development group at CERN

    A mixed-signal ASIC for time and charge measurements with GEM detectors

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design and characterization of BiCMOS mixed-signal circuits and devices for extreme environment applications

    Get PDF
    State-of-the-art SiGe BiCMOS technologies leverage the maturity of deep-submicron silicon CMOS processing with bandgap-engineered SiGe HBTs in a single platform that is suitable for a wide variety of high performance and highly-integrated applications (e.g., system-on-chip (SOC), system-in-package (SiP)). Due to their bandgap-engineered base, SiGe HBTs are also naturally suited for cryogenic electronics and have the potential to replace the costly de facto technologies of choice (e.g., Gallium-Arsenide (GaAs) and Indium-Phosphide (InP)) in many cryogenic applications such as radio astronomy. This work investigates the response of mixed-signal circuits (both RF and analog circuits) when operating in extreme environments, in particular, at cryogenic temperatures and in radiation-rich environments. The ultimate goal of this work is to attempt to fill the existing gap in knowledge on the cryogenic and radiation response (both single event transients (SETs) and total ionization dose (TID)) of specific RF and analog circuit blocks (i.e., RF switches and voltage references). The design approach for different RF switch topologies and voltage references circuits are presented. Standalone Field Effect Transistors (FET) and SiGe HBTs test structures were also characterized and the results are provided to aid in the analysis and understanding of the underlying mechanisms that impact the circuits' response. Radiation mitigation strategies to counterbalance the damaging effects are investigated. A comprehensive study on the impact of cryogenic temperatures on the RF linearity of SiGe HBTs fabricated in a new 4th-generation, 90 nm SiGe BiCMOS technology is also presented.Ph.D

    Millimeter and sub-millimeter wave radiometers for atmospheric remote sensing from CubeSat platforms

    Get PDF
    2018 Fall.Includes bibliographical references.To view the abstract, please see the full text of the document
    • …
    corecore